WO2011080959A1 - Mass spectroscope, control device of mass spectroscope, and mass spectrometry method - Google Patents

Mass spectroscope, control device of mass spectroscope, and mass spectrometry method Download PDF

Info

Publication number
WO2011080959A1
WO2011080959A1 PCT/JP2010/068929 JP2010068929W WO2011080959A1 WO 2011080959 A1 WO2011080959 A1 WO 2011080959A1 JP 2010068929 W JP2010068929 W JP 2010068929W WO 2011080959 A1 WO2011080959 A1 WO 2011080959A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ions
mass spectrometer
mass
collector
Prior art date
Application number
PCT/JP2010/068929
Other languages
French (fr)
Japanese (ja)
Inventor
善郎 塩川
恵 中村
強 彭
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2011547381A priority Critical patent/JPWO2011080959A1/en
Publication of WO2011080959A1 publication Critical patent/WO2011080959A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry

Definitions

  • the present invention relates to a mass spectrometer that measures the abundance of a specific component in an atmosphere gas to be measured, a controller of the mass spectrometer, and a mass spectrometry method.
  • the atmosphere gas is ionized by an ion source, the ions are fractionated by a mass spectrometer, and the fractionated ions are measured as a current by a collector. This ion current corresponds to the abundance of the component of the atmosphere to be measured.
  • the mass analyzer has a special electromagnetic field area, and only specific ions pass through the area to perform mass separation.
  • a typical mass analyzer is a quadrupole mass analyzer, in which a high frequency electric field and a direct electric field are applied to four electrodes (rods).
  • the length of the rod in the quadrupole mass analyzer is related to the performance as a mass analyzer, but can be an arbitrary length within a certain range.
  • FIG. 1A is a cross-sectional view of a conventional quadrupole mass spectrometer.
  • the quadrupole mass spectrometer has four electrodes (rods) 4, and four electrodes through the openings formed in extraction electrode 2 of ions 5 emitted from ion source 1. It passes between 4 and is incident on the detector 3. At this time, of the four electrodes 4, the opposing electrodes (facing each other with the central axis of the mass analyzer facing each other) are electrically coupled (conducted), and direct current voltage (DC) and high frequency voltage (The above special electromagnetic field (also referred to as a quadrupole electric field) is formed by applying a voltage obtained by superposing RF), and only ions having a mass number corresponding to each voltage, frequency, etc. It is made to pass through.
  • the mean free path is an average value of a path in which ions and the like can freely fly in the atmosphere, and is about 7 mm in an atmosphere of pressure (1 Pa) applied in the sputtering process. Therefore, if the rod length of the quadrupole mass spectrometer is 7 mm, the ion current that can reach the collector due to the collision with the atmosphere gas is attenuated to about 1 / e (0.37).
  • FIG. 1B shows an example of the situation in which the number of ions is attenuated by flight.
  • reference numeral 6 is the original (before attenuation) ion current
  • reference numeral 7 is the measured (after attenuation) ion current.
  • the pressure of the atmosphere is separately measured by means, and the measured ion current is corrected by a conversion formula determined by the pressure value to obtain the original (non-damped) ion current.
  • the accuracy of correction is poor, and a means for measuring the pressure is also required, which makes the apparatus complicated.
  • the present invention has been made in view of such problems, and its object is to provide a mass spectrometer and a mass spectrometer capable of accurately measuring the abundance of the flying ions even if the ions are attenuated. And providing a control device and a mass spectrometry method.
  • the present invention relates to a mass spectrometer, which comprises: an ion source; and an end of a first moving path for passing ions generated by the ion source.
  • Detecting means for detecting a current value of 1 and detecting a second current value of the specific ion at an end of a second moving path which passes the ions longer than the first moving path;
  • Calculation means for calculating the abundance of the specific ion generated in the ion generation source from the first and second current values, and a first one for passing only the specific ion in at least a part of the first movement path
  • a second mass separation unit that allows only the specific ions to pass through at least a part of the second movement path.
  • the present invention is a mass spectrometry method for measuring the abundance of a specific ion, wherein the step of generating the specific ion from an ion generation source, and a mass moved by a first moving distance from the ion generation source A first current value of the particular ion separated is detected, and a second movement distance longer than a first movement distance from the ion generation source is moved for mass separation of a second of the specific ion separated.
  • the method may include the steps of detecting a current and calculating the abundance of the specific ion from the detected first and second currents.
  • the current of ions flying only for the first flight distance and the current of ions flying for a second flight distance longer than the first flight distance is an original without collisional attenuation. Since the ion current is determined, even if the flying ions are attenuated, the abundance of the ions can be accurately measured.
  • FIG. 7 shows an apparatus for measuring mass spectrometry mean free path according to a third embodiment of the present invention.
  • FIG. 7 shows an apparatus for measuring mass spectrometry mean free path according to a fourth embodiment of the present invention.
  • FIG. 14 is a diagram showing an apparatus for measuring mass spectrometry mean free path according to a fifth embodiment of the present invention.
  • FIG. 14 is a diagram showing an apparatus for measuring mass spectrometry mean free path according to a sixth embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the principle of a mass spectrometer according to one embodiment of the present invention.
  • mass analysis with the flight distance of two different ions is performed in the same vacuum region. Therefore, a first mass analyzer (mass separation area) performing mass separation in at least a part of a first flight distance of ions in the same vacuum region, and an ion longer than the first flight distance And a second mass analyzer (mass separation area) for performing mass separation at least a part of the second flight distance of
  • the collector (detector) 23a is separated from the ion source 21a (ion generation source) by the first flight distance L1.
  • a (first detector) is disposed, and a mass spectrometer (mass sorting area) 24a is disposed between the extraction electrode 22a and the collector 23a. That is, since the mass analyzer 24a is disposed between the ion source 21a and the collector 23a spaced apart from the ion source 21a by the first flight distance L1, the mass analyzer 24a Mass separation is performed at least a part of the flight distance L1 of 1.
  • the region between the ion source 21a and the collector 23a functions as a first moving path for passing the ions 25a.
  • the ions 25a are detected at the end of the first movement path (collector 23a in FIG. 2A).
  • the mass analyzer 24a as a first mass separation means configured to pass only specific ions in at least a part of the first movement path is, for example, a quadruple having four electrodes (rods). It can be a polar mass spectrometer. As described above, in the case of using a quadrupole mass spectrometer, electrically connect (conduct) one of the four electrodes 4 facing each other (facing each other with the central axis of the mass analyzer). A quadrupole electric field is formed by applying a voltage in which a direct current voltage (DC) and a high frequency voltage (RF) are superimposed between electrode sets, and only ions having a mass number corresponding to each voltage, frequency, etc. It is made to pass in the longitudinal direction of the electrode.
  • DC direct current voltage
  • RF high frequency voltage
  • the ions 25a emitted from the ion source 21a fly through the mass analyzer 24a through the opening of the extraction electrode 22a and are input to the collector 23a.
  • the collector 23a causes the first ion current IL1 (ion current value IL1 (hereinafter, the ion current value may be simply referred to as "ion current")) of the ions 25a at the first flight distance.
  • ion current ion current value
  • the second source from the ion source 21b (ion generation source) Collector (detector) 23b (second detector) is disposed spaced apart by a flight distance L2 of, and a mass analyzer (mass separation region) 24b is disposed between extraction electrode 22b and collector 23b.
  • the mass analyzer 24b Mass separation is performed at least a part of the flight distance L2 of two.
  • the region between the ion source 21b and the collector 23b functions as a second moving path for passing the ions 25b.
  • the ion 25b is detected at the end of the second movement path (the collector 23b in FIG. 2A).
  • the mass analyzer 24b as a second mass separation means configured to pass only specific ions in at least a part of the second movement path has, for example, a quadruple having four electrodes (rods). It can be a polar mass spectrometer.
  • the ions 25b emitted from the ion source 21b fly through the mass analyzer 24b through the opening of the extraction electrode 22b and are input to the collector 23b. In this manner, the collector 23b detects the second ion current IL2 of the ions 25b at a second flight distance longer than the first flight distance.
  • the ion current IL1 as the first current value and the ion current IL2 as the second current value are directly obtained from the measurement results of the collectors 23a and 23b, respectively.
  • the first and second current values may be determined indirectly.
  • reference numeral 26 is a graph showing the relationship between the ion current and pressure originally (before attenuation), ie, assuming no collision with the atmosphere gas
  • reference numeral 27 represents the ion current after attenuation.
  • Is a graph showing the relationship between the ion current (ion current detected by the collector 23a) and the pressure when the flight distance is short
  • the reference numeral 28 is the ion current after attenuation
  • the flight distance is It is a graph which shows the relationship between the ion current (ion current detected by the collector 23b) in the case of a long and a pressure.
  • the ion current original ion current
  • the flight distance is somewhat arbitrary, but its value must be known exactly.
  • the pressure of the atmosphere is not used for this calculation, it is not necessary to separately measure it. That is, unlike the prior art, it is not necessary to measure the pressure of the atmosphere, and in order to obtain the original ion current, it is also necessary to correct the ion current using a pressure conversion formula which changes depending on the device and measurement conditions. There is not. Therefore, the original ion current can be accurately measured regardless of the apparatus and measurement conditions.
  • equation (5) becomes independent of the mean free path ⁇ , and can be calculated from the set values L1 and L2 that are accurately determined, and the measured values IL1 and IL2 at the collector. Even if it does not perform the correction by the conversion value decided by the pressure which needs measurement, highly accurate measurement can be performed.
  • non-attenuation correction it is assumed that "the conditions other than the attenuation condition by the flight distance are the same", but the conditions are not completely the same in practice. Therefore, it is desirable to measure the ratio of the ion current at low pressure with no attenuation or low, and to correct the actual measurement value. This is called “non-attenuation correction”.
  • non-attenuation calibration will be described.
  • the ion currents IL1-A and IL2-A at the respective collectors 23a and 23b are measured at a good pressure (low pressure) at which the decay can be ignored, and the values are set to initial values ( Set as a value without attenuation).
  • the ion current IL1 and IL2 actually measured in each of the collectors 23a and 23b may be normalized to a value divided by this initial value. If the current values detected at the collectors 23a and 23b are a to b without attenuation and d to e with attenuation, IL1 to IL2 becomes (d / a) to (e / b).
  • this process for producing an initial value will be referred to as "attenuation without calibration”. That is, calibration without attenuation is detected at the first collector and the second collector in the state of the first degree of vacuum (pressure, for example, in the state of good degree of vacuum (state of low pressure)). According to the ratio of the number of charged particles, the first collector and the second in a state of a second degree of vacuum (pressure, for example, a state of degree of vacuum worse than the first degree of vacuum (high pressure state)) It is to calibrate the ratio of the ion current detected in the collector.
  • the mass spectrometer 1007 described in each embodiment described later can incorporate the control unit 1000 shown in FIG. Further, the control unit may be connected via an interface.
  • FIG. 9 is a block diagram showing a schematic configuration of a control system according to an embodiment of the present invention.
  • reference numeral 1000 denotes a control unit as a control unit that controls the entire mass spectrometer 1007.
  • the control unit 1000 includes a CPU 1001 that executes processing operations such as various calculations, controls, and determinations, and a ROM 1002 that stores various control programs and the like executed by the CPU 1001.
  • the control unit 1000 further includes a RAM 1003 for temporarily storing data and input data during processing of the CPU 1001, and a non-volatile memory 1004 such as a flash memory and an SRAM.
  • control unit 1000 displays various displays including an input operation unit 1005 including a keyboard or various switches for inputting predetermined commands or data, and an input / setting state of the mass spectrometer 1007.
  • a unit 1006 (for example, a display) is connected.
  • the "flying distance” is a distance determined by the configuration and conditions of the apparatus used, and from the surface emitting ions of a member capable of emitting ions (for example, the ion emitting surface of the ion source) It is the distance that the emitted ions actually fly (travel) on the assumption that they travel without vibration to a predetermined collector.
  • the simplest example of the flight distance is the distance from the ion generation surface of the ion source to the ion trapping surface of the collector in an apparatus having one ion source and one collector.
  • the flight distance of an ion is the movement distance that the ion moved along the movement path (the first movement path or the second movement path) of the ion, that is, the length of the movement path of the ion.
  • the ions 25a (ions 25b) generated from the ion source 21a (ion source 21b) move by the first moving distance (second moving distance), and mass separation is performed halfway , Mass-separated specific ions are incident on the collector 23a (23b).
  • FIG. 3 is a view showing a mass spectrometer 1007 according to the first embodiment of the present invention.
  • two quadrupole mass spectrometers 30a and 30b having different lengths of rods (electrodes) are installed in the same vacuum region.
  • the quadrupole mass spectrometers 30a and 30b include ion sources 31a and 31b, extraction electrodes 32a and 32b, quadrupole mass analyzers 34a and 34b having four electrodes (rods), and collectors 33a and 33b, respectively.
  • ion sources 31a and 31b extraction electrodes 32a and 32b
  • collectors 33a and 33b respectively.
  • the ions 35a and 35b generated by the ion sources 31a and 31b are extracted by an electric field by the extraction electrodes 32a and 32b, respectively, and the energy corresponding to the potential difference with the ion sources 31a and 31b is a quadrupole mass analyzer 34a or 34b.
  • the quadrupole mass analyzers 34a and 34b high frequency electric fields and DC electric fields are applied to the four electrodes (rods), so that only specific ions pass through.
  • only specific ions subjected to mass separation reach the collectors 33a and 33b and are measured as the ion currents IL1 and IL2.
  • the distance from the ion source 31a to the collector 33a is L1
  • the distance from the ion source 31b to the collector 33b is L2.
  • L1 10 mm
  • L2 30 mm.
  • the ions 35a emitted from the ion source 31a fly in the quadrupole mass spectrometer 34a through the opening of the extraction electrode 32a and are input to the collector 33a.
  • the collector 33a detects the ion current IL1 of the ions 35a that have traveled by the flight distance L1.
  • a region between the ion emission surface of the ion source 31a and the ion detection surface of the collector 33a and through which the ions 35a generated from the ion source 31a pass is a first movement path.
  • the quadrupole mass spectrometer 30a detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 33a) of the first movement path. Needless to say, the length of the first movement path is the distance L1.
  • the ions 35b emitted from the ion source 31b fly in the quadrupole mass analyzer 34b through the opening of the extraction electrode 32b and are input to the collector 33b.
  • the collector 33b detects the ion current IL2 of the ions 35b that have traveled by a flight distance L2 longer than the flight distance L1.
  • a region between the ion emission surface of the ion source 31b and the ion detection surface of the collector 33b and through which the ions 35b generated from the ion source 31b pass is a second movement path.
  • the quadrupole mass spectrometer 30b detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 33b) of the second moving path longer than the first moving path. . It goes without saying that the length of the second movement route is the distance L2.
  • the relationship between the amount of a specific component for example, various expressions such as the pressure, density, and concentration of a specific ion can be made
  • the ion current is obtained in advance. That is, I is the collector current, C is the abundance, and for a specific ion (the ion of the gas to be measured), a proportional coefficient (sensitivity) K which is K in the following equation is obtained in advance.
  • the ion current of a specific ion in the collector 33a and the collector 33b is determined under the same conditions as the preliminary measurement except for the pressure, and these are determined as IL1-B and IL2-B.
  • the calculation is performed as follows.
  • the original ion current I0 is determined.
  • the abundance of a specific ion is determined from equation (6) with I 0 calculated in this way as I.
  • IL1-C IL1-B * ⁇ IL1-A / (IL1-A + IL2-A) ⁇ (7)
  • IL2-C IL2-B * ⁇ IL2-A / (IL1-A + IL2-A) ⁇ (8)
  • I0 which is the original ion current of the specific ion is obtained from the formula (5).
  • the amount of a specific ion is determined from the equation (6) with I 0 calculated in this manner as I.
  • the method for determining the abundance of another specific ion is the same as above. Moreover, it is also possible to use past data without performing the above-mentioned preliminary measurement every time.
  • control unit 1000 is such that the ion 35a is generated from the ion source 31a, and the mass fractionating apparatus performs mass separation of specific ions from the ions 35a by the quadrupole mass spectrometer 34a (high frequency power source and DC power source etc.).
  • Control 1007 Further, the control unit 1000 controls the mass fractionating apparatus 1007 so that the collector 33 a detects ions, acquires the detected ion current I 1 from the mass fractionating apparatus 1007, and stores the ion current I 1 in the RAM 1003.
  • the control unit 1000 reads the abundance C1 and the ion current I1 from the RAM 1003 and obtains the proportional constant K for a specific gas according to equation (6). Are stored in the sex memory 1004.
  • the control unit 1000 controls the mass spectrometer 1007 so that the ions 35a and 35b are generated from the ion sources 31a and 31b.
  • the control unit 1000 controls the mass spectrometer 1007 so that the collectors 33a and 33b detect the ion current, acquires the detected ion currents IL1-B and IL2-B from the mass spectrometer 1007, and controls the RAM 1003.
  • the control unit 1000 controls the mass spectrometer 1007 so that the collectors 33a and 33b detect the ion current, acquires the detected ion currents IL1-B and IL2-B from the mass spectrometer 1007, and controls the RAM 1003.
  • the control unit 1000 reads out the values of L1 and L2 which are setting values from the non-volatile memory 1004, and further reads out the ion currents IL1-B and IL2-B which are measurement values from the RAM 1003, and ion currents IL1-B and IL2-B.
  • the original ion current I0 is calculated according to the equation (5), where IL1 and IL2 respectively.
  • the control unit 1000 reads the proportional constant K from the non-volatile memory 1004, and based on the proportional constant K and the calculated ion current I0, the specific Calculate the abundance of ions. As described above, in the present embodiment, the control unit 1000 reduces the ion currents IL1-B and IL2-B which are the first and second current values measured by the collectors 33a and 33b, respectively. The step of substituting for) is performed to calculate the abundance of the specific ion.
  • “non-attenuation correction” may be performed when calculating the abundance of specific ions.
  • the ion currents IL1-A and IL2-A are measured at the collectors 33a and 33b, with the pressure being sufficiently low (eg, 7 ⁇ 10 ⁇ 3 Pa or the like). That is, except for the pressure, the conditions are the same as in the actual measurement, and the ion current at the collectors 33a and 33b is set as an initial value without attenuation. Then, each of the measured ion currents is divided by this initial value and normalized to a value to be used for calculation.
  • the collector 33a detects the ion current IL1-A
  • the collector 33b detects the ion current IL2-A.
  • the detected ion currents IL1-A and IL2-A are stored in the non-volatile memory 1004, respectively. Therefore, when calibration without attenuation is performed, the control unit 1000 appropriately reads the ion current IL1-A, IL2-A as the initial value stored in the non-volatile memory 1004, and measures the measured value according to the read initial value. Perform calibration without attenuation by normalizing to the value divided by.
  • the control unit 1000 when performing non-attenuation correction, the control unit 1000 reads out the ion currents IL1-B and IL2-B detected from the RAM 1003, and further, the ion current IL1-A and IL2-A as initial values from the non-volatile memory 1004. And calculate the non-attenuation corrected ion current IL1-C, IL2-C according to the equations (7), (8). Then, using the ion currents IL1-C and IL2-C and the distances L1 and L2, the control unit 1000 calculates the original ion current I0 according to the equation (5), and the calculated ion current I0 and the calculated ion current I0. The abundance is calculated from the proportional constant K using equation (6).
  • the flight distance of the ion can be accurately determined.
  • the measured ion current at the flight distance of two different ions can accurately determine the original ion current.
  • FIG. 4 is a view showing a mass spectrometer 1007 according to the second embodiment of the present invention.
  • the electrodes (rods) of the quadrupole mass analyzer are in the longitudinal direction.
  • the collector 43a is separately provided in the middle.
  • the collector 43a is provided with an opening, and some ions are captured and detected here, while other ions pass through to a collector 43b disposed downstream of the quadrupole mass analyzer 44. It is detected.
  • the quadrupole mass spectrometer 44 has four electrodes (rods) 44a of a first length and four electrodes (rods) 44b of a second length, and is a quadrupole. In the longitudinal direction of the mold mass analyzer 44, it is divided into two. In this embodiment, it can be said that the two mass separators are provided: a mass analyzer having four electrodes 44a and a mass separator having four electrodes 44b.
  • a collector 43a for detecting the ions 45 flying the first flight distance L1 is provided. It is provided.
  • a collector 43 b for detecting the ions 45 that have traveled the second flight distance L 2 is provided at a stage subsequent to the quadrupole mass spectrometer 44.
  • the distance L1 (first flight distance) from the ion source 41 to the collector 43a is 10 mm
  • the distance L2 (second flight distance) from the ion source 41 to the collector 43b is 30 mm.
  • the collector 43a is a collector having at least one opening, and some ions are detected, but the remaining ions are transmitted as they are and proceed to the collector 43b located farther than the collector 43a. Is configured.
  • the collector 43a and the collector 43b can be installed in series (two collectors can be arranged on the same ion flight axis), and measurement by one ion source 41 is performed. be able to.
  • the configuration of the collector 43a may be a mesh shape, a slit shape, or a thin film of a conductive member (for example, a silicon thin film) in addition to the structure having at least one opening. Also good. Under the predetermined conditions, when ions enter the conductive thin film, a part of the ions is captured by the conductive thin film, and the other part is transmitted as it is. As described above, in the present embodiment, any member may be used as the collector 43a as long as it can detect part of the incident ions and allow other parts to pass through.
  • a conductive member for example, a silicon thin film
  • the ions 45 emitted from the ion source 41 fly through the opening of the extraction electrode 42 in the electrode 44 a (first mass separation region) of the quadrupole mass analyzer 44. Is input to the collector 43a.
  • the collector 43a captures a part of the input ions 45, transmits the other part, and inputs it to an electrode 44b (mass separation area) which the mass spectrometer 44 has.
  • the collector 43a detects the ion current IL1 of the ions 45 that have traveled by the flight distance L1.
  • the mass spectrometer 1007 detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 43a) of the first movement path.
  • the ions 45 transmitted through the collector 43a fly in the electrode 44b of the quadrupole mass spectrometer 44 and are input to the collector 43b.
  • the collector 43b detects the ion current IL2 of the ions 45 that have traveled by a flight distance L2 longer than the flight distance L1.
  • a region surrounded by the four electrodes 44a and a region surrounded by the four electrodes 44b become a second mass separation region in which mass separation is performed at the second flight distance L2.
  • a region between the ion emission surface of the ion source 41 and the ion detection surface of the collector 43b and through which the ions 45 generated from the ion source 41 pass is a second movement path. Therefore, the mass spectrometer 1007 according to the present embodiment detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 43b) of the second moving path longer than the first moving path.
  • the collector 43 a and the collector 43 b are linearly arranged, and the ions 45 generated from the single ion source 41 are relatively close to the ion source 41.
  • the first movement path constitutes a part of the second movement path because the detection is performed by both 43a and the relatively distant collector 43b.
  • the present embodiment has the same structure as that of the first embodiment except for the division of the rod, and the methods of preliminary measurement, actual measurement, calculation and the like are all the same as those of the first embodiment.
  • the ion source is shared, and the flight regions of the ions also overlap, so the size can be smaller than in the first embodiment.
  • FIG. 5 is a view showing a mass spectrometer 1007 according to the third embodiment of the present invention.
  • the ion source 51 can extract ions to either of two sides by two extraction electrodes (switching electrodes) 52a and 52b. It has become. Then, two quadrupole mass analyzers (mass separation regions) 54a and 54b and two collectors 53a and 53b are provided on both sides of the ion source 51, and mass separation / detection of ions extracted to either is performed. It can be done.
  • an extraction electrode 52a, a quadrupole mass spectrometer 54a, and a collector 53a spaced from the ion source 51 by a distance L1 are provided in this order on the opposite side of the ion source 51.
  • an extraction electrode 52b, a quadrupole mass spectrometer 54b, and a collector 53b spaced from the ion source 51 by a distance L2 are provided in this order.
  • the mass spectrometer 1007 detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 53a) of the first movement path.
  • the collector 53b detects the ion current IL2 of the ions 55b that have traveled by a flight distance L2 longer than the flight distance L1.
  • the structure is the same as that of the second embodiment except for the two extraction electrodes (switching electrodes), and all methods such as preliminary measurement, actual measurement, calculation, etc. are the same as the first embodiment. . Since the present embodiment is independent except for the sharing of the ion source, it is simpler than the second embodiment.
  • the collector may be shared from the viewpoint of sharing the components of the mass spectrometer.
  • a collector having a first ion detection surface and a second ion detection surface different from the first ion detection surface (in FIG. 5, two opposing ion detection surfaces are Collector) is replaced with the ion source 51 and arranged. Further, separate ion sources are arranged instead of the collectors 53a and 53b respectively. With such a configuration, it is possible to detect both ions of the first flight distance L1 and ions of the second flight distance L2 with a single collector.
  • the quadrupole mass analyzer as the mass spectrometer is linear
  • the four electrodes of the quadrupole mass analyzer are nonlinear.
  • the quadrupole mass spectrometer may be non-linear. That is, the first mass separation region (in the first to third embodiments, reference numerals 34a, 44a, 54a in the first to third embodiments) for mass separation at the first flight distance, and the mass separation at the second flight distance At least one of the mass separation regions (in the first to third embodiments, reference numerals 34b, 44b, 54b) may be non-linear.
  • vacuum ultraviolet rays may be incident on the collector from the ion source in addition to ions. This is because vacuum ultraviolet light (light having high energy) is generated by the ion source.
  • vacuum ultraviolet light light having high energy
  • soft X-rays light with higher energy
  • stray light Light with high energy incident on the collector due to such vacuum ultraviolet rays, soft X-rays, or other factors is generally referred to as "stray light”. That is, stray light may be incident or generated along with ions in a mass separation area such as a quadrupole mass spectrometer.
  • the mass analyzer as a mass separation region in a non-linear manner, the ions incident on the mass analyzer are electric fields formed by the mass analyzer (quadrupole mass analysis)
  • the mass analyzer In the case of a detector, it travels in the above-mentioned non-linear fashion due to the quadrupole electric field, but stray light is reflected inside the mass analyzer or a gap formed in the mass analyzer (a quadrupole mass analyzer In this case, the light is transmitted from the region between the electrodes to the outside.
  • the incidence of stray light on the collector can be reduced, and the S / N ratio can be further improved.
  • FIG. 6A is a view showing a mass spectrometer 1007 according to a fourth embodiment of the present invention.
  • the ion source 61 can extract ions to either of two sides by two extraction electrodes (switching electrodes) 62a and 62b. It has become.
  • quadrupole mass analyzers (mass separation regions) 64a and 64b having two arc-shaped electrodes (rods) are provided on both sides of the ion source 61, and mass separation of ions extracted to either can be performed. It has become so.
  • the collector 63 is one.
  • the electrodes (rods) of the quadrupole mass spectrometer are straight, but being straight is not necessarily an absolute condition. Even if the electrode (rod) is non-linear (for example, arc-shaped), if it has the cross-sectional shape shown in FIG. 6B, the basic mass separation function is maintained. The same applies to the first to third embodiments as described above.
  • the ions 65a emitted from one side of the opposing ion source 61 are detected by the first ion detection surface 63a of the collector 63, and the ions 65b emitted from the other side of the opposing ion source 61 are detected.
  • a second ion detection surface 63 b facing the first ion detection surface of the collector 63.
  • An extraction electrode 62a is provided on one side of the ion source 61, and an arc-shaped quadrupole mass analyzer 64a is provided downstream of the extraction electrode 62a.
  • a collector 63 is provided downstream of the circular arc quadrupole mass spectrometer 64 a so as to detect ions 65 a by the first ion detection surface 63 a of the collector 63. That is, the quadrupole mass analyzer 64a is formed in a non-linear shape (here, an arc shape) so that the ions 65a of the first flight distance L1 are incident on the first ion detection surface 63a of the collector 63 There is.
  • an extraction electrode 62b is provided on the other side of the ion source 61, and an arc-shaped quadrupole mass analyzer 64b is provided downstream of the extraction electrode 62b.
  • a collector 63 is provided downstream of the arc-shaped quadrupole mass spectrometer 64 b so as to detect ions 65 b by the second ion detection surface 63 b of the collector 63. That is, the quadrupole mass analyzer 64b is formed in a non-linear shape (here, an arc shape) so that the ions 65b of the second flight distance L2 are incident on the second ion detection surface 63b of the collector 63 There is.
  • configuring the quadrupole mass analyzers 64a and 64b using four concentric annular electrodes arranges the four electrodes of the quadrupole mass analyzer with high parallelism. Because it can be That is, using four concentric circular electrodes, it is possible to provide a reference point (concentric point) when arranging the four electrodes in parallel. In the configuration as shown in 6B, four arc-shaped electrodes can be arranged with high parallelism.
  • ions 65a are extracted from the ion source 61 to the extraction electrode 62a side, and the inside of the quadrupole mass spectrometer 64a is opened through the opening of the extraction electrode 62a. It flies by the first flight distance L 1 and is input to the first ion detection surface 63 a of the collector 63. In this manner, the collector 63 detects the ion current IL1 of the ions 65a that have traveled by the flight distance L1.
  • the ion source 61 follows the shape of the quadrupole mass spectrometer 64a between the ion emission surface facing the first ion detection surface 63a and the first ion detection surface 63a.
  • An arc-shaped area through which the ions 65a generated from the ion source 61 pass is a first movement path. Therefore, the mass spectrometer 1007 according to the present embodiment is configured to detect the ion current IL1 (the first current value of the ion to be detected) at the end of the first movement path (the first ion detection surface 63a of the collector 63). To detect.
  • the ions 65b are extracted from the ion source 61 toward the extraction electrode 62b, and the second mass flow in the quadrupole mass spectrometer 64b is made through the opening of the extraction electrode 62b. It flies by the flight distance L 2 and is input to the second ion detection surface 63 b of the collector 63. In this manner, the collector 63 detects the ion current IL2 of the ions 65b flying by the flight distance L2 longer than the flight distance L1.
  • the ion source 61 follows the shape of the quadrupole mass spectrometer 64b between the ion emission surface facing the second ion detection surface 63b and the second ion detection surface 63b.
  • a second moving path is an arc-shaped area through which the ions 65 b generated from the ion source 61 pass. Therefore, in the mass spectrometer 1007 according to the present embodiment, the ion current IL2 (the ion to be detected) is detected at the end of the second movement path (the second ion detection surface 63b of the collector 63) longer than the first movement path. The second current value is detected.
  • the structure is the same as that of the third embodiment except for the use of an arc electrode (rod) and one collector, and all methods such as preliminary measurement / actual measurement / calculation are the first embodiment and the first embodiment. It is the same.
  • the number of collectors (and the detection system associated therewith) is one, which is simpler than in the third embodiment. Furthermore, since the quadrupole mass analyzers 64a and 64b are formed in a non-linear shape such as an arc shape, it is possible to reduce the incidence of stray light on the collector 63.
  • ions of the first flight distance can be obtained by one collector. And detecting ions of a second flight distance emitted from the same ion source as ions of the first flight distance.
  • the non-linear trajectory of at least one of the two ion trajectories emitted from a single ion source allows the two ions to be incident on a single collector. . That is, by making at least one of the two mass separation regions (mass analyzers) non-linear and bending the trajectory of at least one of the ions, incidence of ions of two flight distances on a single collector can be realized. ing.
  • the single collector may be configured to have at least two surfaces of a first ion detection surface and a second ion detection surface different from the first ion detection surface.
  • the first ion detection surface 63a and the second ion detection surface 63b are provided to face each other, and the ions 65a that fly by the first flight distance L1 enter the first ion detection surface 63a.
  • the quadrupole mass spectrometer 64a which is a mass separation area, is a mass separation area so that the ions 65b flying by the second flight distance L2 are incident on the second ion detection surface 63b.
  • Type mass analyzer 64b is a mass separation area so that the ions 65b flying by the second flight distance L2 are incident on the second ion detection surface 63b.
  • the first ion detection surface 63a and the second ion detection surface 63b do not have to be opposed to each other.
  • the second ion detection surface 63b may be provided on the surface next to the first ion detection surface 63a (surface in the direction perpendicular to the paper surface of FIG. 6A).
  • the extraction electrode 62b is provided on the side of the ion source 61 in the direction perpendicular to the paper surface of FIG. 6A, and the quadrupole mass analyzer 64b is arranged rotated 90.degree. Just do it.
  • the ions 65b emitted from the ion source 61 in the direction perpendicular to the paper surface of FIG. 6A pass through the quadrupole mass analyzer 64b, and the plane of the collector 63 in the direction perpendicular to the paper surface of FIG. It injects into the 2nd ion detection surface 63b provided in.
  • the first mass separation area (mass analyzer) that performs mass separation at the first flight distance L1 and the second mass that performs mass separation at the second flight distance L2 Since at least one of the separation region (mass analyzer) is formed in a non-linear manner, the ion current IL1 of the first flight distance L1 and the second The ion current IL2 of the flight distance L2 can be detected. It is preferable that the non-linear mass separation region be an arc-shaped mass separation region because the flight distance of ions can be easily obtained.
  • FIG. 7 is a view showing a mass spectrometer 1007 according to a fifth embodiment of the present invention.
  • the mass spectrometer 1007 according to the present embodiment is a TOF (Time of fly) type mass spectrometer having one ion source, but the collector 73a is provided with an opening and some ions are Although captured and detected here, other ions pass through and are detected by the collector 73b.
  • the distance L1 (first flight distance) from the ion source 71 to the collector 73a is 10 mm
  • the distance L2 (second flight distance) from the ion source 71 to the collector 73b is 30 mm.
  • the TOF mass spectrometer 1007 includes an ion source 71, an extraction electrode 72 as a blanking electrode, a collector 73a spaced from the ion source 71 by a distance L1, and a distance from the ion source 71. And a collector 73b spaced apart by L2.
  • the TOF mass spectrometer generates ions intermittently to mass separate ions from the time they travel a certain distance.
  • the collector 73a is provided to detect the ions flying from the ion source 71 by the flight distance L1. Therefore, the reference numeral 74a denotes a mass separation region in which mass separation is performed at the first flight distance L1. Become. Further, since the collector 73b is provided to detect the ions flying from the ion source 71 by the flight distance L2, reference numeral 74b is a mass separation area in which mass separation is performed at the second flight distance L2.
  • a region between the ion emission surface of the ion source 71 and the ion detection surface of the collector 73a and through which the ions generated from the ion source 71 pass is a first movement path. Further, a region between the ion emission surface of the ion source 71 and the ion detection surface of the collector 73b and through which ions generated from the ion source 71 pass is a second movement path. Therefore, the TOF mass spectrometer 1007 detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 73a) of the first movement path.
  • the ion current IL1 the first current value of the ion to be detected
  • the mass spectrometer 1007 detects the ion current IL1 which is the first ion current value from the measurement result of the current of the ions detected by the collector 73a. Also, the mass spectrometer 1007 detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 73b) of the second moving path, which is longer than the first moving path. That is, the mass spectrometer 1007 detects the ion current IL2 which is the second ion current value from the measurement result of the current of the ions detected by the collector 73b.
  • the potential of the extraction electrode 72 is changed in a rectangular wave shape.
  • the flight space has no electric field and no electrode is required.
  • the structure is the same as that of the second embodiment except that the mass spectrometer is configured as a TOF type, and all methods such as preliminary measurement / actual measurement / calculation are the same as the first embodiment. It is.
  • the electrode (rod) since the electrode (rod) is unnecessary, the configuration is simpler than in the second embodiment.
  • FIG. 8A is a view showing a mass spectrometer 1007 according to a sixth embodiment of the present invention.
  • the mass spectrometer 1007 according to the present embodiment is a TOF (Time of Fly) type mass spectrometer having one ion source 81, but the flight area 84 of the ions is two sets of deflection rings 86a inside and outside, It is arc-shaped by 86b.
  • a direct current (DC) power source is connected to the inner deflection ring 86a and the outer deflection ring 86b, and these inner deflection ring 86a and the outer deflection ring 86b are connected.
  • DC direct current
  • ions from the ion source 81 enter the circumferential orbit by the deflection electrode 87a for input, and after making a plurality of turns, are deviated from the circumferential orbit by the deflection electrode 87b for extraction and detected by the collector 83.
  • Ru The number of revolutions (that is, the flight distance (movement distance) of ions) can be arbitrarily determined by the timing of voltage application to the deflecting electrode 87b for extraction. That is, it is possible to adjust the flight distance (trajectory of ions) of ions by controlling the voltage applied to the deflection electrode 87a for injection and the deflection electrode 87b for extraction. Therefore, regardless of one ion source and one collector, mass analysis can be performed at substantially different flight distances.
  • the first flight distance L1 is the flight distance of ions when the ions 85 travel around the flight region 84 once
  • the second flight distance L2 is when the ions 85 travel around the flight region 84 three times.
  • the flight distance of the ions is the flight distance of the ions.
  • the control unit 1000 when detecting the ion current of the ions flying by the first flight distance L1, the control unit 1000 applies a predetermined voltage to the deflection electrode 87a for injection to fly the ions 85 from the ion source 81.
  • the mass spectrometer 1007 is controlled to be incident into the region 84.
  • the control unit 1000 applies a predetermined voltage to the deflecting electrode 87b for extraction when the ions 85 make one turn in the flight area 84 so that the ions 85 in the flight area 84 enter the collector 83.
  • the mass spectrometer 1007 is controlled. In this manner, the collectors 83 detect the ions 85 emitted from the ion source 81 and flying for the first flight distance L1.
  • the first mass to be subjected to mass separation at the first flight distance is the flight area 84. It will function as a sorting area.
  • the ions 85 generated from the ion source 81 pass through the circular flight space 84, which is an area between the deflection ring 86a and the deflection ring 86b, for changing the traveling direction of the ions a predetermined number of times.
  • the trajectory followed by the ions 85 when turning once and entering the collector 83 is the first movement path.
  • the TOF mass spectrometer 1007 detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 83) of the first movement path.
  • the control unit 1000 when detecting the ion current of the ions flying by the second flight distance L2, the control unit 1000 applies a predetermined voltage to the deflection electrode 87a for input to make the ions 85 fly from the ion source 81
  • the mass spectrometer 1007 is controlled so as to be incident into 84.
  • the control unit 1000 applies a predetermined voltage to the deflecting electrode 87b for extraction at the timing when the ions 85 make three rounds in the flight area 84 so that the ions 85 in the flight area 84 enter the collector 83.
  • the mass spectrometer 1007 is controlled. In this manner, the collectors 83 detect the ions 85 emitted from the ion source 81 and flying for the second flight distance L2.
  • the ions 85 travel the second flight distance L 2 in the flight area 84 and are detected by the collector 83, the second mass for which the flight area 84 performs mass separation at the second flight distance It will function as a sorting area.
  • the ions 85 generated from the ion source 81 enter the collector 83 by turning the flight space 84 a number of times (three times in the present embodiment) more than at the time of the first current measurement.
  • the trajectory followed by the ion 85 is the second movement path.
  • the TOF mass spectrometer 1007 detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 83) of the second movement path.
  • the flight distance of the ions 85 is changed by the application timing of the voltage to the deflection electrode 87 a for input and the deflection electrode 87 b for extraction, so that the first flight distance and the second flight distance Detection of ion current by
  • the present embodiment has the same structure as that of the fifth embodiment except for the change of the flight distance, and the methods such as the preliminary measurement, the actual measurement, and the calculation are all the same as the first embodiment.
  • the present embodiment since one ion source and one collector are provided, the configuration is simpler than in the fifth embodiment.
  • the present invention is not limited to the calculation formula in the above embodiment in the calculation of the original ion current, but an expression obtained by adding a correction term (experimental formula) obtained empirically based on this calculation formula. It can also be used.
  • the "deviation" from an ideal state always occurs, the “deviation” is often the same if the related conditions (ion current, ion energy, ion species, etc.) are the same. Therefore, it is possible to obtain a calculation formula which measures this "deviation” experimentally (empirically) and corrects it, that is, a calculation formula including an empirical formula (correction term). Furthermore, since the correction term depends on the related condition, it is possible to obtain a function (for example, empirical formulas F and G) of the correction term with the related condition as a variable by conducting experiments under several conditions It becomes. This can be used to make more accurate measurements.
  • a function for example, empirical formulas F and G
  • the present invention can measure not only the atmosphere gas in which the device is installed but also the atmosphere gas in a different (independent) region from the atmosphere in which the device is installed.
  • the gas to be measured may be introduced into the ion source of the present apparatus through piping or a capillary.
  • the atmosphere for attenuating the ion current is not an object to be measured, the original ion current can be calculated by the same method as the above embodiment.
  • the present invention can measure not only the gas that is neutral but also ions that are initially charged. For example, since ions are present as they are in plasma or the like, the case of measuring ion density of plasma or the like is this example. In this case, it is not necessary to set the ion source on the mass spectrometer side, and the location of ion generation such as plasma may be considered as the location of the ion source in the above embodiment.
  • the present invention can be applied to a system comprising a plurality of devices (for example, a computer, an interface device, a reader, a printer, a mass spectrometer 1007, etc.) or to an apparatus comprising a single device.
  • a plurality of devices for example, a computer, an interface device, a reader, a printer, a mass spectrometer 1007, etc.
  • an apparatus comprising a single device.
  • a process for storing a program for operating the configuration of the above-described embodiment to realize the function of the control unit 1000 of the above-described embodiment in a storage medium, reading the program stored in the storage medium as a code, and executing it on a computer Methods are also included within the scope of the embodiments described above. That is, a computer readable storage medium is also included in the scope of the embodiments. Further, not only the storage medium in which the above-described computer program is stored but also the computer program itself is included in the above-described embodiment.
  • a storage medium for example, a floppy (registered trademark) disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a non-volatile memory card, and a ROM can be used.
  • the present invention is not limited to the execution of processing by a single program stored in the storage medium described above, but also runs on the OS in cooperation with other software and the function of the expansion board to execute the operation of the above-described embodiment Are included in the scope of the above-described embodiment.

Abstract

Disclosed are a mass spectroscope, a control device of the mass spectroscope, and a mass spectrometry method, wherein even if a flying ion decays, the abundance of the ion can be accurately measured. Specifically disclosed is a mass spectroscope (1007) for measuring the abundance of a specific component in an atmosphere gas, said mass spectroscope being provided with an ion generation source (31a, 31b), a quadrupole mass spectrometer (34a, 34b), a collector (33a) which detects a first ion current of an ion (35a) at a first flight distance (L1) from the ion generation source (31a), and a collector (33b) which detects a second ion current of an ion (35b) at a second flight distance(L2) longer than the first flight distance (L1). A control unit of the mass spectroscope (1007) provided with the above mentioned configuration calculates the abundance of a specific ion from the detected first and second ion currents.

Description

質量分析装置、質量分析装置の制御装置、および質量分析方法Mass spectrometer, controller for mass spectrometer, and mass spectrometry method
 本発明は、測定すべき雰囲気ガス中の特定の成分の存在量を測定する質量分析装置、質量分析装置の制御装置、および質量分析方法に関するものである。 The present invention relates to a mass spectrometer that measures the abundance of a specific component in an atmosphere gas to be measured, a controller of the mass spectrometer, and a mass spectrometry method.
 スパッタなどの真空プロセスにおいて、プロセス雰囲気ガス中の特定の成分の存在量を知ることは重要となっている。そのための質量分析装置では、雰囲気ガスをイオン源にてイオン化し、そのイオンを質量分析器にて質量を分別し、分別されたイオンをコレクタにて電流として計測する。このイオン電流が、測定すべき雰囲気の成分の存在量に対応することになる。 In vacuum processes such as sputtering, it is important to know the abundance of specific components in the process atmosphere gas. In a mass spectrometer for that purpose, the atmosphere gas is ionized by an ion source, the ions are fractionated by a mass spectrometer, and the fractionated ions are measured as a current by a collector. This ion current corresponds to the abundance of the component of the atmosphere to be measured.
 質量分析器では特殊な電磁界とした領域を持ち、その領域を特定のイオンのみが通過するようにして質量分別を行なう。代表的な質量分析器は四重極型質量分析器であり、4本の電極(ロッド)に高周波電界と直流電界が印加されている。四重極型質量分析器でのロッドの長さは質量分析器としての性能に関係するが、ある範囲では任意の長さとすることができる。図1Aは、従来の四重極型質量分析器の断面図である。 The mass analyzer has a special electromagnetic field area, and only specific ions pass through the area to perform mass separation. A typical mass analyzer is a quadrupole mass analyzer, in which a high frequency electric field and a direct electric field are applied to four electrodes (rods). The length of the rod in the quadrupole mass analyzer is related to the performance as a mass analyzer, but can be an arbitrary length within a certain range. FIG. 1A is a cross-sectional view of a conventional quadrupole mass spectrometer.
 図1Aにおいて、四重極型質量分析器は、4つの電極(ロッド)4を有しており、イオン源1から放出されたイオン5が引き出し電極2に形成された開口を介して4つの電極4の間を通過して検出器3に入射する。このとき、4つの電極4のうち対向する(質量分析器の中心軸を間にして向き合う)電極を電気的に結合(導通)し、それぞれの電極セット間に直流電圧(DC)と高周波電圧(RF)を重畳した電圧を印加することにより、上記特殊な電磁界(四重極電界とも呼ぶ)が形成され、各電圧、周波数等に応じた質量数を有するイオンのみを、電極4の長手方向に通過させるようにしている。 In FIG. 1A, the quadrupole mass spectrometer has four electrodes (rods) 4, and four electrodes through the openings formed in extraction electrode 2 of ions 5 emitted from ion source 1. It passes between 4 and is incident on the detector 3. At this time, of the four electrodes 4, the opposing electrodes (facing each other with the central axis of the mass analyzer facing each other) are electrically coupled (conducted), and direct current voltage (DC) and high frequency voltage ( The above special electromagnetic field (also referred to as a quadrupole electric field) is formed by applying a voltage obtained by superposing RF), and only ions having a mass number corresponding to each voltage, frequency, etc. It is made to pass through.
 さて、平均自由行程とは、イオンなどが雰囲気中を自由に飛行できる行程の平均値のことであり、スパッタプロセスで適用される圧力(1Pa)の雰囲気では7mm程度となる。そのため、もし四重極型質量分析器のロッド長が7mmとすると、雰囲気ガスとの衝突によりコレクタまで到達できるイオン電流は本来の1/e(0.37)程度に減衰してしまう。 The mean free path is an average value of a path in which ions and the like can freely fly in the atmosphere, and is about 7 mm in an atmosphere of pressure (1 Pa) applied in the sputtering process. Therefore, if the rod length of the quadrupole mass spectrometer is 7 mm, the ion current that can reach the collector due to the collision with the atmosphere gas is attenuated to about 1 / e (0.37).
 実際、性能面からロッド長は10~30mm程度が必要なので、スパッタプロセスではイオン電流の減衰は不可避となっている。イオン電流の減衰状況は、イオンの飛行距離(ロッド長)とその雰囲気での平均自由行程との関係で決められる。図1Bに飛行によりイオン数が減衰する状況の一例を示す。図1Bにおいて、符号6は、本来(減衰前)のイオン電流であり、符号7は、計測された(減衰後)のイオン電流である。 In fact, since the rod length needs to be about 10 to 30 mm from the viewpoint of performance, attenuation of ion current is inevitable in the sputtering process. The attenuation condition of the ion current is determined by the relationship between the flight distance (rod length) of the ion and the mean free path in the atmosphere. FIG. 1B shows an example of the situation in which the number of ions is attenuated by flight. In FIG. 1B, reference numeral 6 is the original (before attenuation) ion current, and reference numeral 7 is the measured (after attenuation) ion current.
特開平11-31473号公報Japanese Patent Application Laid-Open No. 11-31473 特開2008-209181号公報JP 2008-209181 A 特開2004-349102号公報JP 2004-349102 A 特開2008-186765号公報JP 2008-186765 A
 上述のように、成分の存在量に対応するイオン電流が減衰してしまうと、成分の正しい存在量を知ることは不可能となる。そこで従来では、雰囲気の圧力を別途手段によって測定し、計測されたイオン電流をその圧力値によって決められた換算式で補正して本来(減衰のない)のイオン電流を求めていた。しかし、上記換算式は装置や測定の諸条件によって変化するので補正の精度が悪く、また圧力を測定する手段も必要となり装置が複雑となっていた。 As described above, when the ion current corresponding to the amount of component decays, it becomes impossible to know the correct amount of component. Therefore, conventionally, the pressure of the atmosphere is separately measured by means, and the measured ion current is corrected by a conversion formula determined by the pressure value to obtain the original (non-damped) ion current. However, since the above conversion equation changes depending on the conditions of the apparatus and the measurement, the accuracy of correction is poor, and a means for measuring the pressure is also required, which makes the apparatus complicated.
 本発明は、このような課題に鑑みてなされたもので、その目的とするところは、飛行するイオンが減衰しても、該イオンの存在量を正確に測定可能な質量分析装置、質量分析装置の制御装置、および質量分析方法を提供することにある。 The present invention has been made in view of such problems, and its object is to provide a mass spectrometer and a mass spectrometer capable of accurately measuring the abundance of the flying ions even if the ions are attenuated. And providing a control device and a mass spectrometry method.
 このような目的を達成するために、本発明は、質量分析装置であって、イオン発生源と、前記イオン発生源で発生したイオンを通過させる第1の移動経路の終端で特定のイオンの第1の電流値を検出し、前記第1の移動経路よりも長い、前記イオンを通過させる第2の移動経路の終端で前記特定のイオンの第2の電流値を検出する検出手段と、前記第1および第2の電流値から前記イオン発生源において発生した前記特定のイオンの存在量を算出する算出手段と前記第1の移動経路の少なくとも一部にて前記特定のイオンだけを通過させる第1の質量分別手段と、前記第2の移動経路の少なくとも一部にて前記特定のイオンだけを通過させる第2の質量分別手段とを備えることを特徴とする。 In order to achieve such an object, the present invention relates to a mass spectrometer, which comprises: an ion source; and an end of a first moving path for passing ions generated by the ion source. Detecting means for detecting a current value of 1 and detecting a second current value of the specific ion at an end of a second moving path which passes the ions longer than the first moving path; Calculation means for calculating the abundance of the specific ion generated in the ion generation source from the first and second current values, and a first one for passing only the specific ion in at least a part of the first movement path And a second mass separation unit that allows only the specific ions to pass through at least a part of the second movement path.
 さらに、本発明は、特定のイオンの存在量を測定する質量分析方法であって、前記特定のイオンをイオン発生源から発生させる工程と、前記イオン発生源から第1の移動距離だけ移動し質量分別された前記特定のイオンの第1の電流値を検出し、前記イオン発生源から第1の移動距離よりも長い第2の移動距離だけ移動し質量分別された前記特定のイオンの第2の電流を検出する工程と、前記検出された第1および第2の電流から前記特定のイオンの存在量を算出する工程とを有することを特徴とする。 Furthermore, the present invention is a mass spectrometry method for measuring the abundance of a specific ion, wherein the step of generating the specific ion from an ion generation source, and a mass moved by a first moving distance from the ion generation source A first current value of the particular ion separated is detected, and a second movement distance longer than a first movement distance from the ion generation source is moved for mass separation of a second of the specific ion separated. The method may include the steps of detecting a current and calculating the abundance of the specific ion from the detected first and second currents.
 本発明によれば、第1の飛行距離だけ飛行してきたイオンの電流と、第1の飛行距離よりも長い第2の飛行距離だけ飛行してきたイオンの電流とにより、衝突による減衰の無い本来のイオン電流を求めているので、飛行するイオンが減衰しても、該イオンの存在量を正確に測定可能である。 According to the present invention, the current of ions flying only for the first flight distance and the current of ions flying for a second flight distance longer than the first flight distance is an original without collisional attenuation. Since the ion current is determined, even if the flying ions are attenuated, the abundance of the ions can be accurately measured.
従来の四重極型質量分析器の断面図である。It is sectional drawing of the conventional quadrupole mass spectrometer. 飛行によりイオン数が減衰する状況の一例を示す図である。It is a figure which shows an example of the condition where the number of ions attenuates by flight. 本発明の原理を説明するための図である。It is a figure for demonstrating the principle of this invention. 本発明の原理を説明するための図である。It is a figure for demonstrating the principle of this invention. 本発明の第1の実施形態に係る平均自由行程を測定する質量分析装置を示す図である。It is a figure showing the mass spectrometer which measures the mean free path concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る質量分析平均自由行程を測定する装置を示す図である。It is a figure which shows the apparatus which measures the mass spectrometry mean free path concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る質量分析平均自由行程を測定する装置を示す図である。FIG. 7 shows an apparatus for measuring mass spectrometry mean free path according to a third embodiment of the present invention. 本発明の第4の実施形態に係る質量分析平均自由行程を測定する装置を示す図である。FIG. 7 shows an apparatus for measuring mass spectrometry mean free path according to a fourth embodiment of the present invention. 図6Aに示す四重極型質量分析器の断面図である。It is sectional drawing of the quadrupole mass spectrometer shown to FIG. 6A. 本発明の第5の実施形態に係る質量分析平均自由行程を測定する装置を示す図である。FIG. 14 is a diagram showing an apparatus for measuring mass spectrometry mean free path according to a fifth embodiment of the present invention. 本発明の第6の実施形態に係る質量分析平均自由行程を測定する装置を示す図である。FIG. 14 is a diagram showing an apparatus for measuring mass spectrometry mean free path according to a sixth embodiment of the present invention. 図8Aに示すTOF型の質量分析装置の断面図である。It is sectional drawing of the TOF type | mold mass spectrometer shown to FIG. 8A. 本発明に係る、平均自由行程を測定する装置における制御系の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control system in the apparatus which measures a mean free stroke based on this invention.
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 
 雰囲気ガスとの衝突によるイオンの減衰の状況は、平均自由行程とイオン飛行距離とによって決められるので、もしイオンの飛行距離の異なる質量分析装置が同じ真空領域に設置されていれば、二つのイオン電流の変化は異なる指数関数となる。しかし、飛行距離による減衰状況以外の条件が同じであれば、その指数関数の仮数は同じとなり、指数のみが異なる二つの指数関数となる。これらの状況を図2A、2Bに示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and the repetitive description thereof is omitted.
The situation of the decay of ions due to collisions with the atmosphere gas is determined by the mean free path and the ion flight distance, so if mass spectrometers with different flight distances of ions are installed in the same vacuum region, two ions The change in current is a different exponential function. However, if the conditions other than the flight distance attenuation condition are the same, then the mantissas of the exponential functions become the same, resulting in two exponential functions differing only in the exponent. These situations are shown in FIGS. 2A and 2B.
 図2Aは、本発明の一実施形態に係る質量分析装置の原理を説明するための図である。本発明の一実施形態では、同一の真空領域中において、2つの異なるイオンの飛行距離による質量分析を行う。よって、同一の真空領域中において、イオンの第1の飛行距離の少なくとも一部にて質量分別を行う第1の質量分析器(質量分別領域)と、該第1の飛行距離よりも長い、イオンの第2の飛行距離の少なくとも一部にて質量分別を行う第2の質量分析器(質量分別領域)とを設ける。 FIG. 2A is a diagram for explaining the principle of a mass spectrometer according to one embodiment of the present invention. In one embodiment of the present invention, mass analysis with the flight distance of two different ions is performed in the same vacuum region. Therefore, a first mass analyzer (mass separation area) performing mass separation in at least a part of a first flight distance of ions in the same vacuum region, and an ion longer than the first flight distance And a second mass analyzer (mass separation area) for performing mass separation at least a part of the second flight distance of
 図2Aにおいて、飛行距離が相対的に短い第1の飛行距離に対応する第1の構成では、イオン源21a(イオン発生源)から第1の飛行距離L1だけ離間してコレクタ(検出器)23a(第1の検出器)が配置されており、引き出し電極22aとコレクタ23aとの間に質量分析器(質量分別領域)24aが配置されている。すなわち、イオン源21aと該イオン源21aから第1の飛行距離L1だけ離間して配置されたコレクタ23aとの間に、質量分析器24aが配置されているので、該質量分析器24aは、第1の飛行距離L1の少なくとも一部にて質量分別を行なうことになる。このように、イオン源21aにて発生したイオン25aをコレクタ23aにて検出しているので、イオン源21aとコレクタ23aとの間の領域が上記イオン25aを通過させる第1の移動経路として機能し、該第1の移動経路の終端(図2Aではコレクタ23a)にてイオン25aを検出することになる。 In FIG. 2A, in the first configuration corresponding to the first flight distance where the flight distance is relatively short, the collector (detector) 23a is separated from the ion source 21a (ion generation source) by the first flight distance L1. A (first detector) is disposed, and a mass spectrometer (mass sorting area) 24a is disposed between the extraction electrode 22a and the collector 23a. That is, since the mass analyzer 24a is disposed between the ion source 21a and the collector 23a spaced apart from the ion source 21a by the first flight distance L1, the mass analyzer 24a Mass separation is performed at least a part of the flight distance L1 of 1. As described above, since the ions 25a generated in the ion source 21a are detected by the collector 23a, the region between the ion source 21a and the collector 23a functions as a first moving path for passing the ions 25a. The ions 25a are detected at the end of the first movement path (collector 23a in FIG. 2A).
 上記第1の移動経路の少なくとも一部にて特定のイオンだけを通過させるように構成された第1の質量分別手段としての該質量分析器24aは、例えば4つの電極(ロッド)を有する四重極型質量分析器とすることができる。このように、四重極型質量分析器を用いる場合は、4つの電極4のうち対向する(質量分析器の中心軸を間にして向き合う)電極を電気的に結合(導通)し、それぞれの電極セット間に直流電圧(DC)と高周波電圧(RF)を重畳した電圧を印加することにより、四重極電界を形成し、各電圧、周波数等に応じた質量数を有するイオンのみを、上記電極の長手方向に通過させるようにしている。よって、イオン源21aから放出されたイオン25aは、引き出し電極22aの開口を介して質量分析器24a中を飛行してコレクタ23aに入力される。このようにして、コレクタ23aにより、第1の飛行距離でのイオン25aの第1のイオン電流IL1(イオン電流値IL1(以下、イオン電流値を単に“イオン電流”と呼ぶこともある))を検出する。 The mass analyzer 24a as a first mass separation means configured to pass only specific ions in at least a part of the first movement path is, for example, a quadruple having four electrodes (rods). It can be a polar mass spectrometer. As described above, in the case of using a quadrupole mass spectrometer, electrically connect (conduct) one of the four electrodes 4 facing each other (facing each other with the central axis of the mass analyzer). A quadrupole electric field is formed by applying a voltage in which a direct current voltage (DC) and a high frequency voltage (RF) are superimposed between electrode sets, and only ions having a mass number corresponding to each voltage, frequency, etc. It is made to pass in the longitudinal direction of the electrode. Accordingly, the ions 25a emitted from the ion source 21a fly through the mass analyzer 24a through the opening of the extraction electrode 22a and are input to the collector 23a. In this manner, the collector 23a causes the first ion current IL1 (ion current value IL1 (hereinafter, the ion current value may be simply referred to as "ion current")) of the ions 25a at the first flight distance. To detect.
 同様に、上記第1の構成と同一の真空領域に配置される、飛行距離が相対的に長い第2の飛行距離に対応する第2の構成では、イオン源21b(イオン発生源)から第2の飛行距離L2だけ離間してコレクタ(検出器)23b(第2の検出器)が配置されており、引き出し電極22bとコレクタ23bとの間に質量分析器(質量分別領域)24bが配置されている。すなわち、イオン源21bと該イオン源21bから第2の飛行距離L2だけ離間して配置されたコレクタ23bとの間に、質量分析器24bが配置されているので、該質量分析器24bは、第2の飛行距離L2の少なくとも一部にて質量分別を行なうことになる。このように、イオン源21bにて発生したイオン25bをコレクタ23bにて検出しているので、イオン源21bとコレクタ23bとの間の領域が上記イオン25bを通過させる第2の移動経路として機能し、該第2の移動経路の終端(図2Aではコレクタ23b)にてイオン25bを検出することになる。 Similarly, in the second configuration corresponding to the second flight distance having a relatively long flight distance, which is disposed in the same vacuum region as the first configuration, the second source from the ion source 21b (ion generation source) Collector (detector) 23b (second detector) is disposed spaced apart by a flight distance L2 of, and a mass analyzer (mass separation region) 24b is disposed between extraction electrode 22b and collector 23b. There is. That is, since the mass analyzer 24b is disposed between the ion source 21b and the collector 23b spaced apart from the ion source 21b by the second flight distance L2, the mass analyzer 24b Mass separation is performed at least a part of the flight distance L2 of two. As described above, since the ions 25b generated in the ion source 21b are detected by the collector 23b, the region between the ion source 21b and the collector 23b functions as a second moving path for passing the ions 25b. The ion 25b is detected at the end of the second movement path (the collector 23b in FIG. 2A).
 上記第2の移動経路の少なくとも一部にて特定のイオンだけを通過させるように構成された第2の質量分別手段としての該質量分析器24bは、例えば4つの電極(ロッド)を有する四重極型質量分析器とすることができる。イオン源21bから放出されたイオン25bは、引き出し電極22bの開口を介して質量分析器24b中を飛行してコレクタ23bに入力される。このようにして、コレクタ23bにより、第1の飛行距離よりも長い第2の飛行距離でのイオン25bの第2のイオン電流IL2を検出する。 The mass analyzer 24b as a second mass separation means configured to pass only specific ions in at least a part of the second movement path has, for example, a quadruple having four electrodes (rods). It can be a polar mass spectrometer. The ions 25b emitted from the ion source 21b fly through the mass analyzer 24b through the opening of the extraction electrode 22b and are input to the collector 23b. In this manner, the collector 23b detects the second ion current IL2 of the ions 25b at a second flight distance longer than the first flight distance.
 なお、図2Aの構成では、第1の電流値であるイオン電流IL1および第2の電流値であるイオン電流IL2をそれぞれ、コレクタ23a、23bの測定結果から直接的に求めているが、本発明では、第1および第2の移動経路の終端の電流値を結果的に求めることができれば良い。従って、本発明の一実施形態では、第1および第2の電流値を間接的に求めても良い。 In the configuration of FIG. 2A, the ion current IL1 as the first current value and the ion current IL2 as the second current value are directly obtained from the measurement results of the collectors 23a and 23b, respectively. In the above, it is sufficient if the current values at the ends of the first and second movement paths can be determined as a result. Thus, in one embodiment of the present invention, the first and second current values may be determined indirectly.
 また、図2Bにおいて、符号26は、本来(減衰前)の、すなわち雰囲気ガスと無衝突と仮定した場合のイオン電流と圧力との関係を示すグラフであり、符号27は、減衰後のイオン電流であって、飛行距離が短い場合のイオン電流(コレクタ23aにて検出されるイオン電流)と圧力との関係を示すグラフであり、符号28は、減衰後のイオン電流であって、飛行距離が長い場合のイオン電流(コレクタ23bにて検出されるイオン電流)と圧力との関係を示すグラフである。 Further, in FIG. 2B, reference numeral 26 is a graph showing the relationship between the ion current and pressure originally (before attenuation), ie, assuming no collision with the atmosphere gas, and reference numeral 27 represents the ion current after attenuation. Is a graph showing the relationship between the ion current (ion current detected by the collector 23a) and the pressure when the flight distance is short, and the reference numeral 28 is the ion current after attenuation, and the flight distance is It is a graph which shows the relationship between the ion current (ion current detected by the collector 23b) in the case of a long and a pressure.
 上述のように、第1および第2の飛行距離と該それぞれの飛行距離に対するイオン電流が分かると、減衰しなかった場合のイオン電流(本来のイオン電流)を算出することが可能となる。飛行距離はある程度の任意性があるが、その値は正確に知られていなければならない。なお、この計算には雰囲気の圧力は使われないので別途測定する必要はない。すなわち、従来のように、雰囲気の圧力を測定する必要が無く、さらに本来のイオン電流を求めるために、装置や測定の条件によって変化する、圧力による換算式を用いてイオン電流を補正する必要も無い。従って、装置や測定条件によらずに、正確に本来のイオン電流を測定することができる。 As described above, when the first and second flight distances and the ion current for each of the flight distances are known, it is possible to calculate the ion current (original ion current) when not attenuated. The flight distance is somewhat arbitrary, but its value must be known exactly. In addition, since the pressure of the atmosphere is not used for this calculation, it is not necessary to separately measure it. That is, unlike the prior art, it is not necessary to measure the pressure of the atmosphere, and in order to obtain the original ion current, it is also necessary to correct the ion current using a pressure conversion formula which changes depending on the device and measurement conditions. There is not. Therefore, the original ion current can be accurately measured regardless of the apparatus and measurement conditions.
 さて、本来のイオン電流をI0、平均自由行程をλ、二つの飛行距離をL1、L2、それぞれのイオン電流をIL1、IL2とすると、減衰式より 
  IL1=I0・exp(-L1/λ)   ・・・(1) 
  IL2=I0・exp(-L2/λ)   ・・・(2) 
対数をとって整理すると、式(1)、(2)は 
  λ=-L1/Loge(IL1/I0)    ・・・(3) 
  λ=-L2/Loge(IL2/I0)    ・・・(4) 
式(3)、(4)からλを消去すると、 
  L1/Loge(IL1/I0)=L2/Loge(IL2/I0)  ・・・(5)
 式(5)の本来のイオン電流I0以外の値はすべて既知(L1,L2:設定値、IL1、IL2:例えば、コレクタ23a、23bでの計測値)であるため、式(5)より本来のイオン電流I0が算出される。このように、式(5)では、平均自由行程λと無関係となり、さらに、正確に求められる設定値L1、L2、およびコレクタでの計測値IL1、IL2により計算できるので、従来のように別個に測定が必要な圧力によって決められた換算値による補正を行わなくても、高精度な測定を行うことができる。
Now, assuming that the original ion current is I0, the mean free path is λ, the two flight distances are L1 and L2, and the ion current is IL1 and IL2, respectively, the attenuation equation
IL1 = I0 · exp (−L1 / λ) (1)
IL2 = I0 · exp (−L2 / λ) (2)
Formulas (1) and (2) are obtained by taking logarithms and arranging
λ = −L1 / Loge (IL1 / I0) (3)
λ = −L2 / Loge (IL2 / I0) (4)
When λ is eliminated from the equations (3) and (4),
L1 / Loge (IL1 / I0) = L2 / Loge (IL2 / I0) (5)
Since all values other than the original ion current I0 of equation (5) are known (L1, L2: set values, IL1, IL2: measured values at collectors 23a, 23b, for example), the original value can be obtained from equation (5) The ion current I0 is calculated. Thus, equation (5) becomes independent of the mean free path λ, and can be calculated from the set values L1 and L2 that are accurately determined, and the measured values IL1 and IL2 at the collector. Even if it does not perform the correction by the conversion value decided by the pressure which needs measurement, highly accurate measurement can be performed.
 しかし、上式では「飛行距離による減衰状況以外の条件が同じ」と仮定しているが、実際には条件は全く同じとはならない。そこで、圧力が低くて減衰がない、あるいは低い状態でのイオン電流の比率を測定しておき、これで実際の計測値を補正することが望ましい。これを「減衰なし補正」とする。 However, in the above equation, it is assumed that "the conditions other than the attenuation condition by the flight distance are the same", but the conditions are not completely the same in practice. Therefore, it is desirable to measure the ratio of the ion current at low pressure with no attenuation or low, and to correct the actual measurement value. This is called "non-attenuation correction".
 上記「減衰なし較正」について説明する。 
 上記減衰なし補正においてはまず、減衰が無視できるような良い圧力(低い圧力)の状態でそれぞれのコレクタ23a、23bでのイオン電流IL1-A、IL2-Aを測定し、その値を初期値(減衰なしの値)として設定しておく。そして、実際の測定では、コレクタ23a、23bの各々で実測したイオン電流IL1、IL2をこの初期値で割った値に規格化して計算すればよい。コレクタ23a、23bで検出された電流値が減衰なしでa対b、減衰ありでd対eの場合、IL1対IL2は(d/a)対(e/b)となる。
The above-mentioned "non-attenuation calibration" will be described.
In the above non-attenuation correction, first, the ion currents IL1-A and IL2-A at the respective collectors 23a and 23b are measured at a good pressure (low pressure) at which the decay can be ignored, and the values are set to initial values ( Set as a value without attenuation). Then, in actual measurement, the ion current IL1 and IL2 actually measured in each of the collectors 23a and 23b may be normalized to a value divided by this initial value. If the current values detected at the collectors 23a and 23b are a to b without attenuation and d to e with attenuation, IL1 to IL2 becomes (d / a) to (e / b).
 本明細書では、初期値を出すためのこのプロセスを「減衰なし較正」と呼ぶことにする。すなわち、減衰なし較正とは、第1の真空度(圧力)の状態(例えば、真空度の良い状態(圧力の低い状態))での、第1のコレクタおよび第2のコレクタにて検出された荷電粒子数の比率により、第2の真空度(圧力)の状態(例えば、第1の真空度よりも悪い真空度の状態(圧力の高い状態))での、第1のコレクタおよび第2のコレクタにて検出されたイオン電流の比率を較正することである。 In this specification, this process for producing an initial value will be referred to as "attenuation without calibration". That is, calibration without attenuation is detected at the first collector and the second collector in the state of the first degree of vacuum (pressure, for example, in the state of good degree of vacuum (state of low pressure)). According to the ratio of the number of charged particles, the first collector and the second in a state of a second degree of vacuum (pressure, for example, a state of degree of vacuum worse than the first degree of vacuum (high pressure state)) It is to calibrate the ratio of the ion current detected in the collector.
 後述する各実施形態にて説明する質量分析装置1007は、図9に示す制御部1000を内蔵することができる。また、該制御部を、インターフェースを介して接続するようにしても良い。 The mass spectrometer 1007 described in each embodiment described later can incorporate the control unit 1000 shown in FIG. Further, the control unit may be connected via an interface.
 図9は、本発明の一実施形態に係る制御系の概略構成を示すブロック図である。 
 図9において、符号1000は質量分析装置1007全体を制御する制御手段としての制御部である。この制御部1000は、種々の演算、制御、判別などの処理動作を実行するCPU1001、およびこのCPU1001によって実行される様々な制御プログラムなどを格納するROM1002を有する。また、制御部1000は、CPU1001の処理動作中のデータや入力データなどを一時的に格納するRAM1003、およびフラッシュメモリやSRAM等の不揮発性メモリ1004などを有する。
FIG. 9 is a block diagram showing a schematic configuration of a control system according to an embodiment of the present invention.
In FIG. 9, reference numeral 1000 denotes a control unit as a control unit that controls the entire mass spectrometer 1007. The control unit 1000 includes a CPU 1001 that executes processing operations such as various calculations, controls, and determinations, and a ROM 1002 that stores various control programs and the like executed by the CPU 1001. The control unit 1000 further includes a RAM 1003 for temporarily storing data and input data during processing of the CPU 1001, and a non-volatile memory 1004 such as a flash memory and an SRAM.
 また、この制御部1000には、所定の指令あるいはデータなどを入力するキーボードあるいは各種スイッチなどを含む入力操作部1005、質量分析装置1007の入力・設定状態などをはじめとする種々の表示を行う表示部1006(例えば、ディスプレイ)が接続されている。 In addition, the control unit 1000 displays various displays including an input operation unit 1005 including a keyboard or various switches for inputting predetermined commands or data, and an input / setting state of the mass spectrometer 1007. A unit 1006 (for example, a display) is connected.
 なお、本明細書において、「飛行距離」とは、用いる装置の構成、条件によって決まる距離であって、イオンを放出可能な部材のイオンを放出する面(例えば、イオン源のイオン放出面)から放出されたイオンが、所定のコレクタまで、振動しないで進むと仮定した際に実際に飛行する(進む)距離である。飛行距離の最も簡単な例としては、イオン源とコレクタを1つ設ける装置においては、イオン源のイオン発生面からコレクタのイオン捕捉面までの距離である。すなわち、イオンの飛行距離とは、イオンの移動経路(第1の移動経路や第2の移動経路)に沿ってイオンが移動した移動距離、すなわち、イオンの移動経路の長さである。よって、例えば、図2Aの構成では、イオン源21a(イオン源21b)から発生したイオン25a(イオン25b)は、第1の移動距離(第2の移動距離)移動し、途中で質量分別されて、質量分別された特定のイオンがコレクタ23a(23b)に入射する。 In the present specification, the "flying distance" is a distance determined by the configuration and conditions of the apparatus used, and from the surface emitting ions of a member capable of emitting ions (for example, the ion emitting surface of the ion source) It is the distance that the emitted ions actually fly (travel) on the assumption that they travel without vibration to a predetermined collector. The simplest example of the flight distance is the distance from the ion generation surface of the ion source to the ion trapping surface of the collector in an apparatus having one ion source and one collector. That is, the flight distance of an ion is the movement distance that the ion moved along the movement path (the first movement path or the second movement path) of the ion, that is, the length of the movement path of the ion. Thus, for example, in the configuration of FIG. 2A, the ions 25a (ions 25b) generated from the ion source 21a (ion source 21b) move by the first moving distance (second moving distance), and mass separation is performed halfway , Mass-separated specific ions are incident on the collector 23a (23b).
 (第1の実施形態) 
 図3は、本発明の第1の実施形態に係る質量分析装置1007を示す図である。 
 本実施形態では、ロッド(電極)の長さが異なる二つの四重極型質量分析装置30a、30bが、同じ真空領域に設置されている。四重極型質量分析装置30a、30bは、それぞれイオン源31a、31b、引き出し電極32a、32b、4つの電極(ロッド)を有する四重極型質量分析器34a、34b、およびコレクタ33a、33bを備えている。
First Embodiment
FIG. 3 is a view showing a mass spectrometer 1007 according to the first embodiment of the present invention.
In the present embodiment, two quadrupole mass spectrometers 30a and 30b having different lengths of rods (electrodes) are installed in the same vacuum region. The quadrupole mass spectrometers 30a and 30b include ion sources 31a and 31b, extraction electrodes 32a and 32b, quadrupole mass analyzers 34a and 34b having four electrodes (rods), and collectors 33a and 33b, respectively. Have.
 雰囲気ガス(中性分子)はイオン源31a、31bにてそれぞれのイオン(主に一価の正イオン)となる。イオン源31a、31bにて生成されたイオン35a、35bはそれぞれ引き出し電極32a、32bによる電界で引き出され、イオン源31a、31bとの電位差に対応するエネルギーで四重極型質量分析器34a、34bを飛行する。四重極型質量分析器34a、34bでは4本の電極(ロッド)に高周波電界と直流電界が印加されているので、特定なイオンのみが通過する。これにより質量分別された特定なイオンのみがコレクタ33a、33bに到達してイオン電流IL1、IL2として計測される。 An atmosphere gas (neutral molecule) becomes each ion (mainly a monovalent positive ion) in the ion sources 31a and 31b. The ions 35a and 35b generated by the ion sources 31a and 31b are extracted by an electric field by the extraction electrodes 32a and 32b, respectively, and the energy corresponding to the potential difference with the ion sources 31a and 31b is a quadrupole mass analyzer 34a or 34b. To fly. In the quadrupole mass analyzers 34a and 34b, high frequency electric fields and DC electric fields are applied to the four electrodes (rods), so that only specific ions pass through. As a result, only specific ions subjected to mass separation reach the collectors 33a and 33b and are measured as the ion currents IL1 and IL2.
 イオン源31aからコレクタ33aまでの距離(第1の飛行距離)をL1、イオン源31bからコレクタ33bまでの距離(第2の飛行距離)をL2とする。本実施形態ではL1=10mm、L2=30mmとしている。 The distance from the ion source 31a to the collector 33a (first flight distance) is L1, and the distance from the ion source 31b to the collector 33b (second flight distance) is L2. In this embodiment, L1 = 10 mm and L2 = 30 mm.
 上述のような構成において、イオン源31aから放出されたイオン35aは、引き出し電極32aの開口を介して四重極型質量分析器34a中を飛行してコレクタ33aに入力される。このようにして、コレクタ33aにより、飛行距離L1だけ飛行したイオン35aのイオン電流IL1を検出する。本実施形態では、イオン源31aのイオン放出面とコレクタ33aのイオン検出面との間の領域であって、イオン源31aから発生したイオン35aが通過する領域が第1の移動経路となる。よって、四重極型質量分析装置30aは、該第1の移動経路の終端(コレクタ33a)でイオン電流IL1(検出すべきイオンの第1の電流値)を検出する。なお、第1の移動経路の長さが距離L1であることは言うまでも無い。 In the configuration as described above, the ions 35a emitted from the ion source 31a fly in the quadrupole mass spectrometer 34a through the opening of the extraction electrode 32a and are input to the collector 33a. In this way, the collector 33a detects the ion current IL1 of the ions 35a that have traveled by the flight distance L1. In this embodiment, a region between the ion emission surface of the ion source 31a and the ion detection surface of the collector 33a and through which the ions 35a generated from the ion source 31a pass is a first movement path. Therefore, the quadrupole mass spectrometer 30a detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 33a) of the first movement path. Needless to say, the length of the first movement path is the distance L1.
 同様に、イオン源31bから放出されたイオン35bは、引き出し電極32bの開口を介して四重極型質量分析器34b中を飛行してコレクタ33bに入力される。このようにして、コレクタ33bにより、飛行距離L1よりも長い飛行距離L2だけ飛行したイオン35bのイオン電流IL2を検出する。本実施形態では、イオン源31bのイオン放出面とコレクタ33bのイオン検出面との間の領域であって、イオン源31bから発生したイオン35bが通過する領域が第2の移動経路となる。よって、四重極型質量分析装置30bは、第1の移動経路よりも長い第2の移動経路の終端(コレクタ33b)でイオン電流IL2(検出すべきイオンの第2の電流値)を検出する。なお、第2の移動経路の長さが距離L2であることは言うまでも無い。 Similarly, the ions 35b emitted from the ion source 31b fly in the quadrupole mass analyzer 34b through the opening of the extraction electrode 32b and are input to the collector 33b. In this way, the collector 33b detects the ion current IL2 of the ions 35b that have traveled by a flight distance L2 longer than the flight distance L1. In this embodiment, a region between the ion emission surface of the ion source 31b and the ion detection surface of the collector 33b and through which the ions 35b generated from the ion source 31b pass is a second movement path. Therefore, the quadrupole mass spectrometer 30b detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 33b) of the second moving path longer than the first moving path. . It goes without saying that the length of the second movement route is the distance L2.
 実際の測定としては、例えば次のように行なえば良い。 
 まず、圧力が十分低い雰囲気において、特定の成分の存在量(例えば、特定のイオンの圧力、密度、濃度など様々な表現が可能)とイオン電流との関係を求めておく。すなわち、コレクタ電流をI、存在量をCとし、特定のイオン(測定対象のガスのイオン)について、予め次式のKなる比例係数(感度)Kを求めておく。 
  C=K×I               ・・・(6)
 つぎに「減衰なし補正」を行う場合は、該減衰なし補正のために、同じく圧力が十分低い雰囲気において、コレクタ33aとコレクタ33bとでの特定イオンのイオン電流を求め、これをIL1-A、IL2-Aとする。ここまでの予備測定を行なっておいてから実際の測定に移る。なお、十分に低い圧力の具体的な値としては、平均自由行程がロッド長(四重極型質量分析器の電極長)よりも十分に大きくなることが必要で、本実施形態では、例えば1000mm程度、圧力として7×10-3Pa程度の圧力であれば良い。
As an actual measurement, for example, it may be performed as follows.
First, in an atmosphere with a sufficiently low pressure, the relationship between the amount of a specific component (for example, various expressions such as the pressure, density, and concentration of a specific ion can be made) and the ion current is obtained. That is, I is the collector current, C is the abundance, and for a specific ion (the ion of the gas to be measured), a proportional coefficient (sensitivity) K which is K in the following equation is obtained in advance.
C = K × I (6)
Next, when performing "no decay correction", for the no decay correction, the ion current of the specific ion in the collector 33a and the collector 33b is also determined in the atmosphere with a sufficiently low pressure, and this is calculated as IL1-A, Call it IL2-A. After performing the preliminary measurement up to this point, we move on to the actual measurement. In addition, as a specific value of a sufficiently low pressure, it is necessary for the mean free path to be sufficiently larger than the rod length (electrode length of the quadrupole mass spectrometer), and in this embodiment, for example, 1000 mm. The pressure may be about 7 × 10 -3 Pa as the pressure.
 実際の測定では、圧力以外は予備測定と同じ条件として、コレクタ33aとコレクタ33bとでの特定のイオンのイオン電流を求めて、これをIL1-B、IL2-Bとする。 In the actual measurement, the ion current of a specific ion in the collector 33a and the collector 33b is determined under the same conditions as the preliminary measurement except for the pressure, and these are determined as IL1-B and IL2-B.
 減衰のない本来のイオン電流を求めるため、計算を次のように行なう。 
 「減衰なし補正」を行わない場合は、式(5)のIL1に上記測定されたIL1-Bを、またIL2に上記測定されたIL2-Bを代入し、L1=10、L2=30を代入して本来のイオン電流I0を求める。このようにして計算されたI0をIとして式(6)から特定のイオンの存在量を求める。
In order to obtain the original ion current without attenuation, the calculation is performed as follows.
When “correction without attenuation” is not performed, the measured IL1-B is substituted into IL1 of Equation (5), and the measured IL2-B is substituted into IL2, and L1 = 10 and L2 = 30 are substituted. Then, the original ion current I0 is determined. The abundance of a specific ion is determined from equation (6) with I 0 calculated in this way as I.
 また、「減衰なし補正」を行う場合は、下式(7)、(8)を用いて、第1および第2の飛行距離での特定のイオンの正しい(飛行距離による減衰以外の条件を同じにした場合の)イオン電流であるIL1-C、IL2-Cを求める。 
  IL1-C=IL1-B×{IL1-A/(IL1-A+IL2-A)}  ・・・(7) 
  IL2-C=IL2-B×{IL2-A/(IL1-A+IL2-A)}  ・・・(8)
 このIL1-C、IL2-CをそれぞれIL1、IL2とし、またL1=10、L2=30として式(5)から特定イオンの本来のイオン電流であるI0を求める。さらに、このようにして計算されたI0をIとして式(6)から特定のイオンの存在量を求める。
In addition, when performing “non-attenuation correction”, the following equations (7) and (8) are used to make sure that the specific ions at the first and second flight distances are the same (conditions other than attenuation by flight distance The ion currents IL 1 -C and IL 2 -C are calculated.
IL1-C = IL1-B * {IL1-A / (IL1-A + IL2-A)} (7)
IL2-C = IL2-B * {IL2-A / (IL1-A + IL2-A)} (8)
Assuming that IL1-C and IL2-C are IL1 and IL2 respectively, and L1 = 10 and L2 = 30, I0 which is the original ion current of the specific ion is obtained from the formula (5). Further, the amount of a specific ion is determined from the equation (6) with I 0 calculated in this manner as I.
 具体的な式の展開は、式(5)にL1=10、L2=30を代入して、 
     10/Loge(IL1/I0)=30/Loge(IL2/I0) 
    ∴ Loge(IL2/I0)/Loge(IL1/I0)=30/10=3 
 対数定理より 
      Log(IL1/I0)(IL2/I0)=3 
すなわち、(IL1/I0)を底とした(IL2/I0)の対数が3であるので、
(IL1/I0) = IL2/I0 
IL1/I0 = IL2/1 
∴ I0 = IL1/IL2 
∴ I0= (IL1/IL2)1/2    ・・・(5a) 
 このように、例えばL1=10、L2=30である場合は、式(5a)により、本来のイオン電流I0を求めることができる。
The expansion of a specific expression substitutes L1 = 10 and L2 = 30 into Expression (5),
10 / Loge (IL1 / I0) = 30 / Loge (IL2 / I0)
∴ Loge (IL2 / I0) / Loge (IL1 / I0) = 30/10 = 3
From the logarithm theorem
Log (IL1 / I0) (IL2 / I0) = 3
That is, since the logarithm of (IL2 / I0) to the bottom of (IL1 / I0) is 3,
(IL1 / I0) 3 = IL2 / I0
IL1 3 / I0 2 = IL 2/1
∴ I0 2 = IL1 3 / IL2
∴ I0 = (IL1 3 / IL2) 1/2 (5a)
Thus, for example, when L1 = 10 and L2 = 30, the original ion current I0 can be obtained by the equation (5a).
 別の特定のイオンの存在量を求める方法も上記と同じである。また、上記の予備測定を毎回行なわずに過去のデータを使用することも可能である。 The method for determining the abundance of another specific ion is the same as above. Moreover, it is also possible to use past data without performing the above-mentioned preliminary measurement every time.
 さらに、スパッタなどでは主成分(Ar)が決まっているので、Arの存在量をCAr、イオン電流をIArとして、下式(9)を(6)の代わりに使うことも出来る。 
  C=CAr×I/IAr              ・・・(9) 
 ただし、IArも式、(5)(減衰なし補正を行う場合は式(7)、(8)も)を使用して計算する。CArは真空計による全圧の値を使用する。
Furthermore, since the main component (Ar) is determined in sputtering or the like, the following equation (9) can be used instead of (6), where the amount of Ar is CAr and the ion current is IAr.
C = CAr × I / IAr (9)
However, I Ar is also calculated using the equation (5) (also equations (7) and (8) when performing no attenuation correction). CAr uses the value of the total pressure by the vacuum gauge.
 以下に、本実施形態に係る質量分析装置による測定動作の一例を説明する。 
 まずは、式(6)の比例定数Kを求めるための予備測定を行う。本実施形態では、存在量として圧力を用いる例について説明する。 
 本実施形態では、圧力が十分に低い状態での存在量C1および該状態でのイオン電流I1を求める必要がある。そこで、上記イオン電流I1の測定に先立って、質量分析装置1007が配置される真空領域(例えば、チャンバ)に、特定のガス(測定対象のガス)を、圧力が十分に低い状態となるように導入し、その時の圧力を電離真空計により測定する。すなわち、制御部1000は、上記真空領域内の圧力を求めるように電離真空計を制御し、この電離真空計により測定された圧力を取得して、存在量C1としてRAM1003に格納する。
Hereinafter, an example of the measurement operation by the mass spectrometer according to the present embodiment will be described.
First, preliminary measurement is performed to determine the proportionality constant K of equation (6). In the present embodiment, an example in which a pressure is used as the abundance will be described.
In the present embodiment, it is necessary to determine the amount C1 of the pressure in a sufficiently low state and the ion current I1 in the state. Therefore, prior to the measurement of the ion current I1, the pressure of a specific gas (gas to be measured) is sufficiently low in a vacuum region (for example, a chamber) in which the mass spectrometer 1007 is disposed. Introduce and measure the pressure at that time with an ionization vacuum gauge. That is, the control unit 1000 controls the ionization vacuum gauge so as to obtain the pressure in the vacuum region, acquires the pressure measured by the ionization vacuum gauge, and stores the pressure in the RAM 1003 as the abundance C1.
 次いで、上記圧力が十分に低い状態において、イオン源31aからイオン(測定対象のガスのイオン)を発生させて四重極型質量分析器34aに入射し、四重極型質量分析器34aにて特定のイオン(測定対象のガスのイオン)を質量分別させて、該特定のイオンをコレクタ33aに入射させる。すなわち、制御部1000は、イオン源31aからイオン35aが発生し、四重極型質量分析器34a(高周波電源および直流電源など)が該イオン35aから特定のイオンを質量分別するように質量分別装置1007を制御する。さらに、制御部1000は、コレクタ33aにてイオンを検出するように質量分別装置1007を制御し、検出されたイオン電流I1を質量分別装置1007から取得し、RAM1003に格納する。 Next, in the state where the pressure is sufficiently low, ions (ions of the gas to be measured) are generated from the ion source 31a, and the ions are incident on the quadrupole mass analyzer 34a, and the quadrupole mass analyzer 34a The specific ions (ions of the gas to be measured) are mass-fractionated, and the specific ions are incident on the collector 33a. That is, the control unit 1000 is such that the ion 35a is generated from the ion source 31a, and the mass fractionating apparatus performs mass separation of specific ions from the ions 35a by the quadrupole mass spectrometer 34a (high frequency power source and DC power source etc.). Control 1007 Further, the control unit 1000 controls the mass fractionating apparatus 1007 so that the collector 33 a detects ions, acquires the detected ion current I 1 from the mass fractionating apparatus 1007, and stores the ion current I 1 in the RAM 1003.
 このように存在量C1とイオン電流I1とを取得すると、制御部1000は、RAM1003から存在量C1とイオン電流I1とを読み出し、式(6)に従って、特定のガスに対する比例定数Kを求め、不揮発性メモリ1004に格納する。 As described above, when the abundance C1 and the ion current I1 are obtained, the control unit 1000 reads the abundance C1 and the ion current I1 from the RAM 1003 and obtains the proportional constant K for a specific gas according to equation (6). Are stored in the sex memory 1004.
 上記予備測定を完了すると、実際の測定を行う。 
 実際の測定ではまず、イオン源31a、31bにてイオン35a、35bを発生させ、該イオン35a、35bを四重極型質量分析器34a、34bに入力させる。すなわち、制御部1000は、イオン源31a、31bからイオン35a、35bが発生するように、質量分析装置1007を制御する。
When the preliminary measurement is completed, an actual measurement is performed.
In the actual measurement, first, the ions 35a and 35b are generated by the ion sources 31a and 31b, and the ions 35a and 35b are input to the quadrupole mass spectrometers 34a and 34b. That is, the control unit 1000 controls the mass spectrometer 1007 so that the ions 35a and 35b are generated from the ion sources 31a and 31b.
 つぎに、コレクタ33a、33bに入力されたイオンのイオン電流IL1-B、IL2-Bを計測する。すなわち、制御部1000は、コレクタ33a、33bにてイオン電流を検出するように質量分析装置1007を制御し、検出されたイオン電流IL1-B、IL2-Bを質量分析装置1007から取得し、RAM1003に格納する。 Next, the ion currents IL1-B and IL2-B of the ions input to the collectors 33a and 33b are measured. That is, the control unit 1000 controls the mass spectrometer 1007 so that the collectors 33a and 33b detect the ion current, acquires the detected ion currents IL1-B and IL2-B from the mass spectrometer 1007, and controls the RAM 1003. Store in
 なお、例えば、不揮発性メモリ1004には、距離L1の値(=10mm)および距離L2の値(=30mm)を予め格納しておく。 For example, the value (= 10 mm) of the distance L1 and the value (= 30 mm) of the distance L2 are stored in the non-volatile memory 1004 in advance.
 制御部1000は、不揮発性メモリ1004から設定値であるL1およびL2の値を読み出し、さらにRAM1003から測定値であるイオン電流IL1-B、IL2-Bを読み出し、イオン電流IL1-B、IL2-BをそれぞれIL1、IL2として、式(5)に従って、本来のイオン電流I0を算出する。 The control unit 1000 reads out the values of L1 and L2 which are setting values from the non-volatile memory 1004, and further reads out the ion currents IL1-B and IL2-B which are measurement values from the RAM 1003, and ion currents IL1-B and IL2-B. The original ion current I0 is calculated according to the equation (5), where IL1 and IL2 respectively.
 上記本来のイオン電流I0を算出すると、制御部1000は、不揮発性メモリ1004から比例定数Kを読み出して、該比例定数Kおよび上記算出されたイオン電流I0から、式(6)に従って、上記特定のイオンの存在量を算出する。このように、本実施形態では、制御部1000は、コレクタ33a、33bにて計測された第1および第2の電流値であるイオン電流IL1-B、IL2-Bを減衰式である式(5)に代入する工程を実行して、上記特定のイオンの存在量を算出する。 When the original ion current I0 is calculated, the control unit 1000 reads the proportional constant K from the non-volatile memory 1004, and based on the proportional constant K and the calculated ion current I0, the specific Calculate the abundance of ions. As described above, in the present embodiment, the control unit 1000 reduces the ion currents IL1-B and IL2-B which are the first and second current values measured by the collectors 33a and 33b, respectively. The step of substituting for) is performed to calculate the abundance of the specific ion.
 本実施形態では、特定のイオンの存在量の算出の際に、「減衰なし補正」を行っても良い。「減衰なし補正」を行う場合は、圧力を十分に低い状態(例えば、7×10-3Paなど)にして、コレクタ33a、33bにてイオン電流IL1-A、IL2-Aを測定する。すなわち、圧力以外は実際の測定と同じ条件とし、コレクタ33a、33bでのイオン電流を減衰なしの初期値として設定する。そして、実測したイオン電流のそれぞれをこの初期値で割った値に規格化して計算に使用する。すなわち、減衰なし較正のための測定では、コレクタ33aがイオン電流IL1-Aを検出し、コレクタ33bがイオン電流IL2-Aを検出する。これら検出されたイオン電流IL1-A、IL2-Aはそれぞれ、不揮発性メモリ1004に記憶される。従って、制御部1000は、減衰なし較正を行う場合に、不揮発性メモリ1004に記憶された初期値としてのイオン電流IL1-A、IL2-Aを適宜読み出し、該読み出された初期値によって測定値を割った値に規格化して減衰なし較正を行う。 In the present embodiment, “non-attenuation correction” may be performed when calculating the abundance of specific ions. When the “non-attenuation correction” is performed, the ion currents IL1-A and IL2-A are measured at the collectors 33a and 33b, with the pressure being sufficiently low (eg, 7 × 10 −3 Pa or the like). That is, except for the pressure, the conditions are the same as in the actual measurement, and the ion current at the collectors 33a and 33b is set as an initial value without attenuation. Then, each of the measured ion currents is divided by this initial value and normalized to a value to be used for calculation. That is, in the measurement for calibration without attenuation, the collector 33a detects the ion current IL1-A, and the collector 33b detects the ion current IL2-A. The detected ion currents IL1-A and IL2-A are stored in the non-volatile memory 1004, respectively. Therefore, when calibration without attenuation is performed, the control unit 1000 appropriately reads the ion current IL1-A, IL2-A as the initial value stored in the non-volatile memory 1004, and measures the measured value according to the read initial value. Perform calibration without attenuation by normalizing to the value divided by.
 例えば、減衰なし補正を行う場合、制御部1000は、RAM1003から検出されたイオン電流IL1-B、IL2-Bを読み出し、さらに不揮発性メモリ1004から初期値としてのイオン電流IL1-A、IL2-Aを読み出し、式(7)、(8)に従って、減衰なし補正されたイオン電流IL1-C、IL2-Cを算出する。次いで、制御部1000は、該イオン電流IL1-C、IL2-C、および距離L1、L2を用いて、式(5)に従って、本来のイオン電流I0を算出し、該算出されたイオン電流I0および比例定数Kから式(6)を用いて存在量を算出する。 For example, when performing non-attenuation correction, the control unit 1000 reads out the ion currents IL1-B and IL2-B detected from the RAM 1003, and further, the ion current IL1-A and IL2-A as initial values from the non-volatile memory 1004. And calculate the non-attenuation corrected ion current IL1-C, IL2-C according to the equations (7), (8). Then, using the ion currents IL1-C and IL2-C and the distances L1 and L2, the control unit 1000 calculates the original ion current I0 according to the equation (5), and the calculated ion current I0 and the calculated ion current I0. The abundance is calculated from the proportional constant K using equation (6).
 このように、本実施形態では、本来のイオン電流の取得に際して装置や測定方法に依存する圧力値によって決められた換算式で補正して求める必要が無く、正確に求めることができるイオンの飛行距離と、2つの異なるイオンの飛行距離でのイオン電流の計測値とにより、本来のイオン電流を正確に求めることができる。 As described above, in the present embodiment, there is no need to correct and obtain the original ion current by a conversion formula determined by the pressure value depending on the apparatus and measurement method, and the flight distance of the ion can be accurately determined. The measured ion current at the flight distance of two different ions can accurately determine the original ion current.
 (第2の実施形態) 
 図4は、本発明の第2の実施形態に係る質量分析装置1007を示す図である。本実施形態では、一つのイオン源41、および一つの四重極型質量分析器44を持つ四重極型質量分析装置であるが、四重極型質量分析器の電極(ロッド)が長手方向で2分割になっており途中に別途コレクタ43aが設けられている。このコレクタ43aには開口が設けられており一部のイオンはここで捕捉されて検出されるが、他のイオンは通過して四重極型質量分析器44の後段に配置されたコレクタ43bで検出される。
Second Embodiment
FIG. 4 is a view showing a mass spectrometer 1007 according to the second embodiment of the present invention. In this embodiment, although it is a quadrupole mass spectrometer having one ion source 41 and one quadrupole mass analyzer 44, the electrodes (rods) of the quadrupole mass analyzer are in the longitudinal direction. The collector 43a is separately provided in the middle. The collector 43a is provided with an opening, and some ions are captured and detected here, while other ions pass through to a collector 43b disposed downstream of the quadrupole mass analyzer 44. It is detected.
 図4において、四重極型質量分析器44は、第1の長さの4つの電極(ロッド)44aと、第2の長さの4つの電極(ロッド)44bとを有し、四重極型質量分析器44の長手方向において2分割された形態である。本実施形態では、4つの電極44aを有する質量分析器と、4つの電極44bを有する質量分別器との2つの質量分別器を備えているとも言える。 In FIG. 4, the quadrupole mass spectrometer 44 has four electrodes (rods) 44a of a first length and four electrodes (rods) 44b of a second length, and is a quadrupole. In the longitudinal direction of the mold mass analyzer 44, it is divided into two. In this embodiment, it can be said that the two mass separators are provided: a mass analyzer having four electrodes 44a and a mass separator having four electrodes 44b.
 2分割の間(電極44aにより形成された質量分別領域と電極44bにより形成された質量分別領域との間)には、第1の飛行距離L1を飛行したイオン45を検出するためのコレクタ43aが設けられている。また、四重極型質量分析器44の後段には、第2の飛行距離L2を飛行したイオン45を検出するためのコレクタ43bが設けられている。 During two divisions (between the mass separation area formed by the electrode 44a and the mass separation area formed by the electrode 44b), a collector 43a for detecting the ions 45 flying the first flight distance L1 is provided. It is provided. In addition, a collector 43 b for detecting the ions 45 that have traveled the second flight distance L 2 is provided at a stage subsequent to the quadrupole mass spectrometer 44.
 本実施形態では、イオン源41からコレクタ43aまでの距離L1(第1の飛行距離)を10mm、イオン源41からコレクタ43bまでの距離L2(第2の飛行距離)を30mmとしている。 In this embodiment, the distance L1 (first flight distance) from the ion source 41 to the collector 43a is 10 mm, and the distance L2 (second flight distance) from the ion source 41 to the collector 43b is 30 mm.
 本実施形態では、コレクタ43aは、少なくとも1つの開口を有するコレクタであり、一部のイオンは検出するが、残りのイオンはそのまま透過して、コレクタ43aよりも遠くに位置するコレクタ43bに進むように構成されている。コレクタ43aをこのように構成することにより、コレクタ43aとコレクタ43bとを直列に設置(同一のイオンの飛行軸上に二つのコレクタを配置)することができ、一つのイオン源41による測定を行うことができる。 In the present embodiment, the collector 43a is a collector having at least one opening, and some ions are detected, but the remaining ions are transmitted as they are and proceed to the collector 43b located farther than the collector 43a. Is configured. By thus configuring the collector 43a, the collector 43a and the collector 43b can be installed in series (two collectors can be arranged on the same ion flight axis), and measurement by one ion source 41 is performed. be able to.
 上記コレクタ43aの構成としては、少なくとも1つの開口を有する構成の他に、メッシュ状、スリット状であってもよく、あるいは、導電性の部材を薄膜化したもの(例えば、シリコン薄膜)であっても良い。所定条件においては、導電性薄膜にイオンが入射すると、その一部は該導電性薄膜に捕捉され、他の一部はそのまま透過する。このように、本実施形態では、コレクタ43aとしては、入射されたイオンの一部を検出し、他の一部を透過させることができる部材であればいずれの部材を用いても良い。 The configuration of the collector 43a may be a mesh shape, a slit shape, or a thin film of a conductive member (for example, a silicon thin film) in addition to the structure having at least one opening. Also good. Under the predetermined conditions, when ions enter the conductive thin film, a part of the ions is captured by the conductive thin film, and the other part is transmitted as it is. As described above, in the present embodiment, any member may be used as the collector 43a as long as it can detect part of the incident ions and allow other parts to pass through.
 上述のような構成において、イオン源41から放出されたイオン45は、引き出し電極42の開口を介して四重極型質量分析器44が有する電極44a中(第1の質量分別領域)を飛行してコレクタ43aに入力される。該コレクタ43aは、入力されたイオン45の一部を捕捉し、他の一部を透過させて質量型質量分析器44が有する電極44b(質量分別領域)へと入力する。このように、コレクタ43aにより、飛行距離L1だけ飛行したイオン45のイオン電流IL1を検出する。本実施形態では、イオン源41のイオン放出面とコレクタ43aのイオン検出面との間の領域であって、イオン源41から発生したイオン45が通過する領域が第1の移動経路となる。よって、本実施形態に係る質量分析装置1007は、該第1の移動経路の終端(コレクタ43a)でイオン電流IL1(検出すべきイオンの第1の電流値)を検出する。 In the configuration as described above, the ions 45 emitted from the ion source 41 fly through the opening of the extraction electrode 42 in the electrode 44 a (first mass separation region) of the quadrupole mass analyzer 44. Is input to the collector 43a. The collector 43a captures a part of the input ions 45, transmits the other part, and inputs it to an electrode 44b (mass separation area) which the mass spectrometer 44 has. As described above, the collector 43a detects the ion current IL1 of the ions 45 that have traveled by the flight distance L1. In this embodiment, a region between the ion emission surface of the ion source 41 and the ion detection surface of the collector 43a and through which the ions 45 generated from the ion source 41 pass is a first movement path. Therefore, the mass spectrometer 1007 according to the present embodiment detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 43a) of the first movement path.
 上記コレクタ43aを透過したイオン45は四重極型質量分析器44が有する電極44b中を飛行してコレクタ43bに入力される。このようにして、コレクタ43bにより、飛行距離L1よりも長い飛行距離L2だけ飛行したイオン45のイオン電流IL2を検出する。このとき、4つの電極44aにより囲まれた領域および4つの電極44bにより囲まれた領域が、第2の飛行距離L2にて質量分別を行う第2の質量分別領域となる。本実施形態では、イオン源41のイオン放出面とコレクタ43bのイオン検出面との間の領域であって、イオン源41から発生したイオン45が通過する領域が第2の移動経路となる。よって、本実施形態に係る質量分析装置1007は、第1の移動経路よりも長い第2の移動経路の終端(コレクタ43b)でイオン電流IL2(検出すべきイオンの第2の電流値)を検出する。 The ions 45 transmitted through the collector 43a fly in the electrode 44b of the quadrupole mass spectrometer 44 and are input to the collector 43b. In this manner, the collector 43b detects the ion current IL2 of the ions 45 that have traveled by a flight distance L2 longer than the flight distance L1. At this time, a region surrounded by the four electrodes 44a and a region surrounded by the four electrodes 44b become a second mass separation region in which mass separation is performed at the second flight distance L2. In the present embodiment, a region between the ion emission surface of the ion source 41 and the ion detection surface of the collector 43b and through which the ions 45 generated from the ion source 41 pass is a second movement path. Therefore, the mass spectrometer 1007 according to the present embodiment detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 43b) of the second moving path longer than the first moving path. Do.
 なお、図4からも明らかなように、本実施形態では、コレクタ43aおよびコレクタ43bを直線的に配置し、単一のイオン源41から発生したイオン45を、イオン源41に相対的に近いコレクタ43aおよび相対的に遠いコレクタ43bの双方で検出しているので、第1の移動経路は、第2の移動経路の一部を構成している。 As apparent from FIG. 4, in the present embodiment, the collector 43 a and the collector 43 b are linearly arranged, and the ions 45 generated from the single ion source 41 are relatively close to the ion source 41. The first movement path constitutes a part of the second movement path because the detection is performed by both 43a and the relatively distant collector 43b.
 なお、本実施形態では、ロッドの分割以外は第1の実施形態と同じ構造であり、予備測定・実際の測定・計算などの方法もすべて第1の実施形態と同じである。 
 本実施形態ではイオン源を共用し、イオンの飛行領域も重なっているので、第1の実施形態に比べてより小型とすることができる。
The present embodiment has the same structure as that of the first embodiment except for the division of the rod, and the methods of preliminary measurement, actual measurement, calculation and the like are all the same as those of the first embodiment.
In the present embodiment, the ion source is shared, and the flight regions of the ions also overlap, so the size can be smaller than in the first embodiment.
 (第3の実施形態) 
 図5は、本発明の第3の実施形態に係る質量分析装置1007を示す図である。本実施形態では、一つのイオン源51を持つ四重極型質量分析装置であるが、イオン源51はふたつの引き出し電極(切り換え電極)52a、52bによって、両側のいずれかにイオンを引き出されるようになっている。そして、二つの四重極型質量分析器(質量分別領域)54a、54bと二つのコレクタ53a、53bとがイオン源51の両側に設けられ、どちらかに引き出されたイオンの質量分別・検出が行なえるようになっている。
Third Embodiment
FIG. 5 is a view showing a mass spectrometer 1007 according to the third embodiment of the present invention. In this embodiment, although it is a quadrupole mass spectrometer having one ion source 51, the ion source 51 can extract ions to either of two sides by two extraction electrodes (switching electrodes) 52a and 52b. It has become. Then, two quadrupole mass analyzers (mass separation regions) 54a and 54b and two collectors 53a and 53b are provided on both sides of the ion source 51, and mass separation / detection of ions extracted to either is performed. It can be done.
 図5において、イオン源51の対向する一方側には、引き出し電極52a、四重極型質量分析器54a、およびイオン源51から距離L1だけ離間して配置されたコレクタ53aがこの順番で設けられている。また、イオン源51の対向する他方側には、引き出し電極52b、四重極型質量分析器54b、およびイオン源51から距離L2だけ離間して配置されたコレクタ53bがこの順番で設けられている。 In FIG. 5, an extraction electrode 52a, a quadrupole mass spectrometer 54a, and a collector 53a spaced from the ion source 51 by a distance L1 are provided in this order on the opposite side of the ion source 51. ing. Further, on the other side opposite to the ion source 51, an extraction electrode 52b, a quadrupole mass spectrometer 54b, and a collector 53b spaced from the ion source 51 by a distance L2 are provided in this order. .
 このような構成において、引き出し電極52aに所定の電圧を印加すると、イオン源51からイオン55aが引き出し電極52a側に引き出され、引き出し電極52aの開口を介して四重極型質量分析器54a中を飛行してコレクタ53aに入力される。このようにして、コレクタ53aにより、飛行距離L1だけ飛行したイオン55aのイオン電流IL1を検出する。本実施形態では、イオン源51のコレクタ53a側のイオン放出面とコレクタ53aのイオン検出面との間の領域であって、イオン源51から発生したイオン55aが通過する領域が第1の移動経路となる。よって、本実施形態に係る質量分析装置1007は、該第1の移動経路の終端(コレクタ53a)でイオン電流IL1(検出すべきイオンの第1の電流値)を検出する。 In such a configuration, when a predetermined voltage is applied to the extraction electrode 52a, ions 55a are extracted from the ion source 51 toward the extraction electrode 52a, and the inside of the quadrupole mass spectrometer 54a is opened through the opening of the extraction electrode 52a. It flies and it inputs into collector 53a. In this way, the collector 53a detects the ion current IL1 of the ions 55a that have traveled by the flight distance L1. In this embodiment, a region between the ion emission surface on the collector 53a side of the ion source 51 and the ion detection surface of the collector 53a and through which the ions 55a generated from the ion source 51 pass is the first movement path. It becomes. Therefore, the mass spectrometer 1007 according to the present embodiment detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 53a) of the first movement path.
 同様に、引き出し電極52bに所定の電圧を印加すると、イオン源51からイオン55bが引き出し電極52b側に引き出され、引き出し電極52bの開口を介して四重極型質量分析器54b中を飛行してコレクタ53bに入力される。このようにして、コレクタ53bにより、飛行距離L1よりも長い飛行距離L2だけ飛行したイオン55bのイオン電流IL2を検出する。本実施形態では、イオン源51のコレクタ53b側のイオン放出面とコレクタ53bのイオン検出面との間の領域であって、イオン源51から発生したイオン55bが通過する領域が第2の移動経路となる。よって、本実施形態に係る質量分析装置1007は、第1の移動経路よりも長い第2の移動経路の終端(コレクタ53b)でイオン電流IL2(検出すべきイオンの第2の電流値)を検出する。 Similarly, when a predetermined voltage is applied to the extraction electrode 52b, ions 55b are extracted from the ion source 51 toward the extraction electrode 52b, and fly through the quadrupole mass spectrometer 54b through the opening of the extraction electrode 52b. It is input to the collector 53b. In this way, the collector 53b detects the ion current IL2 of the ions 55b that have traveled by a flight distance L2 longer than the flight distance L1. In this embodiment, a region between the ion emission surface on the collector 53b side of the ion source 51 and the ion detection surface of the collector 53b, and through which the ions 55b generated from the ion source 51 pass, is a second movement path It becomes. Therefore, the mass spectrometer 1007 according to the present embodiment detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 53b) of the second movement path longer than the first movement path. Do.
 なお、本実施形態では、二つの引き出し電極(切り換え電極)以外は第2の実施形態と同じ構造であり、予備測定・実際の測定・計算などの方法はすべて第1の実施形態と同じである。 
 本実施形態ではイオン源の共用以外は独立しているので、第2の実施形態に比べてよりシンプルとなっている。
In the present embodiment, the structure is the same as that of the second embodiment except for the two extraction electrodes (switching electrodes), and all methods such as preliminary measurement, actual measurement, calculation, etc. are the same as the first embodiment. .
Since the present embodiment is independent except for the sharing of the ion source, it is simpler than the second embodiment.
 なお、質量分析装置の構成要素の共用という観点から、コレクタを共用するように構成しても良い。この場合は、例えば、図5において、第1のイオン検出面および該第1のイオン検出面とは異なる第2のイオン検出面を有するコレクタ(図5では、対向する2面をイオン検出面とするコレクタ)をイオン源51に変えて配置する。さらに、コレクタ53aおよび53bのそれぞれに変えて別個のイオン源を配置する。このような構成により、単一のコレクタにて、第1の飛行距離L1のイオンと、第2の飛行距離L2のイオンとの双方を検出することができる。 The collector may be shared from the viewpoint of sharing the components of the mass spectrometer. In this case, for example, in FIG. 5, a collector having a first ion detection surface and a second ion detection surface different from the first ion detection surface (in FIG. 5, two opposing ion detection surfaces are Collector) is replaced with the ion source 51 and arranged. Further, separate ion sources are arranged instead of the collectors 53a and 53b respectively. With such a configuration, it is possible to detect both ions of the first flight distance L1 and ions of the second flight distance L2 with a single collector.
 さて、第1~第3の実施形態では、質量分析器としての四重極型質量分析器を直線状にしているが、四重極型質量分析器が有する4つの電極を非直線状にして、四重極型質量分析器を非直線状にしても良い。すなわち、第1の飛行距離での質量分別を行う第1の質量分別領域(第1~第3の実施形態では、符号34a、44a、54a)、および第2の飛行距離での質量分別を行う質量分別領域(第1~第3の実施形態では、符号34b、44b、54b)の少なくとも一方を非直線状にしても良い。 Now, in the first to third embodiments, although the quadrupole mass analyzer as the mass spectrometer is linear, the four electrodes of the quadrupole mass analyzer are nonlinear. The quadrupole mass spectrometer may be non-linear. That is, the first mass separation region (in the first to third embodiments, reference numerals 34a, 44a, 54a in the first to third embodiments) for mass separation at the first flight distance, and the mass separation at the second flight distance At least one of the mass separation regions (in the first to third embodiments, reference numerals 34b, 44b, 54b) may be non-linear.
 質量分析の際には、イオン源からコレクタにはイオンの他に真空紫外線が入射することがある。これは、真空紫外光(高エネルギーを持った光)がイオン源で発生するためである。また、四重極型質量分析器が有する電極にイオンが衝突することにより、軟X線(より高いエネルギーを持った光)が発生してコレクタに入射することもある。このような真空紫外線や軟X線、あるいは他の要因でコレクタに入射した高エネルギーを持った光を総じて「迷光」と呼ぶことにする。すなわち、四重極型質量分析器といった質量分別領域には、イオンと共に、迷光が入射、あるいは生成されることがある。 In mass spectrometry, vacuum ultraviolet rays may be incident on the collector from the ion source in addition to ions. This is because vacuum ultraviolet light (light having high energy) is generated by the ion source. In addition, when ions collide with the electrode of the quadrupole mass spectrometer, soft X-rays (light with higher energy) may be generated and be incident on the collector. Light with high energy incident on the collector due to such vacuum ultraviolet rays, soft X-rays, or other factors is generally referred to as "stray light". That is, stray light may be incident or generated along with ions in a mass separation area such as a quadrupole mass spectrometer.
 そこで、上述のように、質量分別領域としての質量分析器を非直線状に形成することにより、質量分析器に入射されたイオンは、質量分析器により形成された電界(四重極型質量分析器の場合は、四重極電界)により上記非直線状に進行するが、迷光は質量分析器の内部にて反射されたり、質量分析器に形成された隙間(四重極型質量分析器の場合は、電極間の領域)から外部へと透過していくことになる。よって、迷光がコレクタに入射するのを低減することができ、S/N比をさらに向上させることができる。 Therefore, as described above, by forming the mass analyzer as a mass separation region in a non-linear manner, the ions incident on the mass analyzer are electric fields formed by the mass analyzer (quadrupole mass analysis) In the case of a detector, it travels in the above-mentioned non-linear fashion due to the quadrupole electric field, but stray light is reflected inside the mass analyzer or a gap formed in the mass analyzer (a quadrupole mass analyzer In this case, the light is transmitted from the region between the electrodes to the outside. Thus, the incidence of stray light on the collector can be reduced, and the S / N ratio can be further improved.
 (第4の実施形態) 
 図6Aは、本発明の第4の実施形態に係る質量分析装置1007を示す図である。本実施形態では、一つのイオン源61を持つ四重極型質量分析装置であるが、イオン源61は二つの引き出し電極(切り換え電極)62a、62bによって、両側のいずれかにイオンが引き出されるようになっている。そして、二つの円弧状の電極(ロッド)を有する四重極型質量分析器(質量分別領域)64a、64bがイオン源61の両側に設けられ、どちらかに引き出されたイオンの質量分別が行なえるようになっている。しかし、ふたつの円弧状の電極(ロッド)の終端部は同じ位置となるので、コレクタ63はひとつとなっている。
Fourth Embodiment
FIG. 6A is a view showing a mass spectrometer 1007 according to a fourth embodiment of the present invention. In this embodiment, although it is a quadrupole mass spectrometer having one ion source 61, the ion source 61 can extract ions to either of two sides by two extraction electrodes (switching electrodes) 62a and 62b. It has become. Then, quadrupole mass analyzers (mass separation regions) 64a and 64b having two arc-shaped electrodes (rods) are provided on both sides of the ion source 61, and mass separation of ions extracted to either can be performed. It has become so. However, since the end portions of the two arc-shaped electrodes (rods) are at the same position, the collector 63 is one.
 通常四重極型質量分析器の電極(ロッド)は直線状であるが、直線であることは必ずしも絶対条件ではない。上記電極(ロッド)が非直線状(例えば、円弧状)であっても図6Bに示された断面形状になっていれば、基本的な質量分別の機能を保持している。このことは、上述のように、第1~第3の実施形態にも同様のことが言える。 Usually, the electrodes (rods) of the quadrupole mass spectrometer are straight, but being straight is not necessarily an absolute condition. Even if the electrode (rod) is non-linear (for example, arc-shaped), if it has the cross-sectional shape shown in FIG. 6B, the basic mass separation function is maintained. The same applies to the first to third embodiments as described above.
 図6Aにおいて、対向するイオン源61の一方側から放出されたイオン65aを、コレクタ63の第1のイオン検出面63aにて検出し、対向するイオン源61の他方側から放出されたイオン65bを、コレクタ63の第1のイオン検出面と対向する第2のイオン検出面63bにて検出する。 In FIG. 6A, the ions 65a emitted from one side of the opposing ion source 61 are detected by the first ion detection surface 63a of the collector 63, and the ions 65b emitted from the other side of the opposing ion source 61 are detected. , And a second ion detection surface 63 b facing the first ion detection surface of the collector 63.
 上記イオン源61の一方側には引き出し電極62aが設けられており、該引き出し電極62aの後段には、円弧状の四重極型質量分析器64aが設けられている。該円弧状の四重極型質量分析器64aの後段には、コレクタ63が、該コレクタ63の第1のイオン検出面63aによりイオン65aを検出するように設けられている。すなわち、コレクタ63の第1のイオン検出面63aに第1の飛行距離L1のイオン65aが入射するように、四重極型質量分析器64aを非直線状(ここでは円弧状)に形成している。 An extraction electrode 62a is provided on one side of the ion source 61, and an arc-shaped quadrupole mass analyzer 64a is provided downstream of the extraction electrode 62a. A collector 63 is provided downstream of the circular arc quadrupole mass spectrometer 64 a so as to detect ions 65 a by the first ion detection surface 63 a of the collector 63. That is, the quadrupole mass analyzer 64a is formed in a non-linear shape (here, an arc shape) so that the ions 65a of the first flight distance L1 are incident on the first ion detection surface 63a of the collector 63 There is.
 一方、上記イオン源61の他方側には引き出し電極62bが設けられており、該引き出し電極62bの後段には、円弧状の四重極型質量分析器64bが設けられている。該円弧状の四重極型質量分析器64bの後段には、コレクタ63が、該コレクタ63の第2のイオン検出面63bによりイオン65bを検出するように設けられている。すなわち、コレクタ63の第2のイオン検出面63bに第2の飛行距離L2のイオン65bが入射するように、四重極型質量分析器64bを非直線状(ここでは円弧状)に形成している。 On the other hand, an extraction electrode 62b is provided on the other side of the ion source 61, and an arc-shaped quadrupole mass analyzer 64b is provided downstream of the extraction electrode 62b. A collector 63 is provided downstream of the arc-shaped quadrupole mass spectrometer 64 b so as to detect ions 65 b by the second ion detection surface 63 b of the collector 63. That is, the quadrupole mass analyzer 64b is formed in a non-linear shape (here, an arc shape) so that the ions 65b of the second flight distance L2 are incident on the second ion detection surface 63b of the collector 63 There is.
 なお、上記四重極型質量分析器64a、64bを、同心の4つの円環状の電極を用いて構成することは、四重極型質量分析器が有する4つの電極を高い平行度で配置することができるので好ましい。すなわち、同心の4つの円環状の電極を用いると、該4つの電極を平行に配置する際の基準点(同心点)を設けることができるので、該基準点を基準に配置することにより、図6Bに示すような形態で、円弧状の4つの電極を高い平行度で配置することができる。 Note that configuring the quadrupole mass analyzers 64a and 64b using four concentric annular electrodes arranges the four electrodes of the quadrupole mass analyzer with high parallelism. Because it can be That is, using four concentric circular electrodes, it is possible to provide a reference point (concentric point) when arranging the four electrodes in parallel. In the configuration as shown in 6B, four arc-shaped electrodes can be arranged with high parallelism.
 このような構成において、引き出し電極62aに所定の電圧を印加すると、イオン源61からイオン65aが引き出し電極62a側に引き出され、引き出し電極62aの開口を介して四重極型質量分析器64a中を第1の飛行距離L1だけ飛行してコレクタ63の第1のイオン検出面63aに入力される。このようにして、コレクタ63により、飛行距離L1だけ飛行したイオン65aのイオン電流IL1を検出する。本実施形態では、イオン源61の、第1のイオン検出面63aと対向する側のイオン放出面と第1のイオン検出面63aとの間の四重極型質量分析器64aの形状に沿った円弧状の領域であって、イオン源61から発生したイオン65aが通過する領域が第1の移動経路となる。よって、本実施形態に係る質量分析装置1007は、該第1の移動経路の終端(コレクタ63の第1のイオン検出面63a)でイオン電流IL1(検出すべきイオンの第1の電流値)を検出する。 In such a configuration, when a predetermined voltage is applied to the extraction electrode 62a, ions 65a are extracted from the ion source 61 to the extraction electrode 62a side, and the inside of the quadrupole mass spectrometer 64a is opened through the opening of the extraction electrode 62a. It flies by the first flight distance L 1 and is input to the first ion detection surface 63 a of the collector 63. In this manner, the collector 63 detects the ion current IL1 of the ions 65a that have traveled by the flight distance L1. In the present embodiment, the ion source 61 follows the shape of the quadrupole mass spectrometer 64a between the ion emission surface facing the first ion detection surface 63a and the first ion detection surface 63a. An arc-shaped area through which the ions 65a generated from the ion source 61 pass is a first movement path. Therefore, the mass spectrometer 1007 according to the present embodiment is configured to detect the ion current IL1 (the first current value of the ion to be detected) at the end of the first movement path (the first ion detection surface 63a of the collector 63). To detect.
 同様に、引き出し電極62bに所定の電圧を印加すると、イオン源61からイオン65bが引き出し電極62b側に引き出され、引き出し電極62bの開口を介して四重極型質量分析器64b中を第2の飛行距離L2だけ飛行してコレクタ63の第2のイオン検出面63bに入力される。このようにして、コレクタ63により、飛行距離L1よりも長い飛行距離L2だけ飛行したイオン65bのイオン電流IL2を検出する。本実施形態では、イオン源61の、第2のイオン検出面63bと対向する側のイオン放出面と第2のイオン検出面63bとの間の四重極型質量分析器64bの形状に沿った円弧状の領域であって、イオン源61から発生したイオン65bが通過する領域が第2の移動経路となる。よって、本実施形態に係る質量分析装置1007は、第1の移動経路よりも長い第2の移動経路の終端(コレクタ63の第2のイオン検出面63b)でイオン電流IL2(検出すべきイオンの第2の電流値)を検出する。 Similarly, when a predetermined voltage is applied to the extraction electrode 62b, the ions 65b are extracted from the ion source 61 toward the extraction electrode 62b, and the second mass flow in the quadrupole mass spectrometer 64b is made through the opening of the extraction electrode 62b. It flies by the flight distance L 2 and is input to the second ion detection surface 63 b of the collector 63. In this manner, the collector 63 detects the ion current IL2 of the ions 65b flying by the flight distance L2 longer than the flight distance L1. In the present embodiment, the ion source 61 follows the shape of the quadrupole mass spectrometer 64b between the ion emission surface facing the second ion detection surface 63b and the second ion detection surface 63b. A second moving path is an arc-shaped area through which the ions 65 b generated from the ion source 61 pass. Therefore, in the mass spectrometer 1007 according to the present embodiment, the ion current IL2 (the ion to be detected) is detected at the end of the second movement path (the second ion detection surface 63b of the collector 63) longer than the first movement path. The second current value is detected.
 本実施形態では、円弧状の電極(ロッド)および1つのコレクタの使用以外は第3の実施形態と同じ構造であり、予備測定・実際の測定・計算などの方法はすべて第1の実施形態と同じである。 In this embodiment, the structure is the same as that of the third embodiment except for the use of an arc electrode (rod) and one collector, and all methods such as preliminary measurement / actual measurement / calculation are the first embodiment and the first embodiment. It is the same.
 本実施形態ではコレクタ、(およびそれに伴う検出系)はひとつなので、第3の実施形態に比べてよりシンプルとなっている。さらに、四重極型質量分析器64a、64bを円弧状といった非直線状に形成しているので、迷光のコレクタ63への入射を低減することができる。 In the present embodiment, the number of collectors (and the detection system associated therewith) is one, which is simpler than in the third embodiment. Furthermore, since the quadrupole mass analyzers 64a and 64b are formed in a non-linear shape such as an arc shape, it is possible to reduce the incidence of stray light on the collector 63.
 なお、本実施形態では、四重極型質量分析器が有する電極を円弧状にすることが本質ではなく、装置をよりシンプルにするために、1つのコレクタにて、第1の飛行距離のイオン、および該第1の飛行距離のイオンと同一のイオン源から放出された第2の飛行距離のイオンを検出することを本質としている。このとき、単一のイオン源から放射される2つのイオンの軌道のうち、少なくとも一方のイオンの軌道を非直線状にすることにより、該2つのイオンを単一のコレクタに入射させることができる。すなわち、2つの質量分別領域(質量分析器)の少なくとも一方を非直線状にして少なくとも一方のイオンの軌道を曲げることにより、単一のコレクタへの、2つの飛行距離のイオンの入射を実現している。 In the present embodiment, it is not essential to make the electrode of the quadrupole mass analyzer arc-shaped, but in order to make the apparatus simpler, ions of the first flight distance can be obtained by one collector. And detecting ions of a second flight distance emitted from the same ion source as ions of the first flight distance. At this time, the non-linear trajectory of at least one of the two ion trajectories emitted from a single ion source allows the two ions to be incident on a single collector. . That is, by making at least one of the two mass separation regions (mass analyzers) non-linear and bending the trajectory of at least one of the ions, incidence of ions of two flight distances on a single collector can be realized. ing.
 なお、単一のコレクタは、第1のイオン検出面と該第1のイオン検出面とは異なる第2のイオン検出面との2つの面を少なくとも有するように構成しても良い。図6Aでは、第1のイオン検出面63aと第2のイオン検出面63bとを対向するように設け、第1の飛行距離L1だけ飛行したイオン65aが第1のイオン検出面63aに入射するように質量分別領域である四重極型質量分析器64aを構成し、第2の飛行距離L2だけ飛行したイオン65bが第2のイオン検出面63bに入射するように質量分別領域である四重極型質量分析器64bを構成している。 The single collector may be configured to have at least two surfaces of a first ion detection surface and a second ion detection surface different from the first ion detection surface. In FIG. 6A, the first ion detection surface 63a and the second ion detection surface 63b are provided to face each other, and the ions 65a that fly by the first flight distance L1 enter the first ion detection surface 63a. The quadrupole mass spectrometer 64a, which is a mass separation area, is a mass separation area so that the ions 65b flying by the second flight distance L2 are incident on the second ion detection surface 63b. Type mass analyzer 64b.
 なお、第1のイオン検出面63aと第2のイオン検出面63bとは対向している必要は無い。例えば、図6Aにおいて、第2のイオン検出面63bを第1のイオン検出面63aの隣の面(図6Aの紙面垂直方向の面)に設けても良い。この場合は、引き出し電極62bを、イオン源61の、図6Aの紙面垂直方向側に設け、四重極型質量分析器64bを、図6Aの紙面垂直方向側に90°回転した形で配置すれば良い。このようにすれば、イオン源61から、図6Aの紙面垂直方向に放出されたイオン65bは、四重極型質量分析器64bを通過して、コレクタ63の、図6Aの紙面垂直方向の面に設けられた第2のイオン検出面63bに入射する。 The first ion detection surface 63a and the second ion detection surface 63b do not have to be opposed to each other. For example, in FIG. 6A, the second ion detection surface 63b may be provided on the surface next to the first ion detection surface 63a (surface in the direction perpendicular to the paper surface of FIG. 6A). In this case, the extraction electrode 62b is provided on the side of the ion source 61 in the direction perpendicular to the paper surface of FIG. 6A, and the quadrupole mass analyzer 64b is arranged rotated 90.degree. Just do it. In this way, the ions 65b emitted from the ion source 61 in the direction perpendicular to the paper surface of FIG. 6A pass through the quadrupole mass analyzer 64b, and the plane of the collector 63 in the direction perpendicular to the paper surface of FIG. It injects into the 2nd ion detection surface 63b provided in.
 このように、本実施形態では、第1の飛行距離L1にて質量分別を行う第1の質量分別領域(質量分析器)と、第2の飛行距離L2にて質量分別を行う第2の質量分別領域(質量分析器)との少なくとも一方を非直線状に形成しているので、単一のイオン源および単一のコレクタにて、第1の飛行距離L1のイオン電流IL1と、第2の飛行距離L2のイオン電流IL2を検出することができる。なお、非直線状の質量分別領域としては、円弧状の質量分別領域であることは、イオンの飛行距離を容易に求めることができるので、好ましい。 Thus, in the present embodiment, the first mass separation area (mass analyzer) that performs mass separation at the first flight distance L1 and the second mass that performs mass separation at the second flight distance L2 Since at least one of the separation region (mass analyzer) is formed in a non-linear manner, the ion current IL1 of the first flight distance L1 and the second The ion current IL2 of the flight distance L2 can be detected. It is preferable that the non-linear mass separation region be an arc-shaped mass separation region because the flight distance of ions can be easily obtained.
 (第5の実施形態) 
 図7は、本発明の第5の実施形態に係る質量分析装置1007を示す図である。本実施形態に係る質量分析装置1007は、一つのイオン源を持つTOF(Time of fly:飛行時間)型の質量分析装置であるが、コレクタ73aには開口が設けられており一部のイオンはここで捕捉されて検出されるが、他のイオンは通過してコレクタ73bで検出される。イオン源71からコレクタ73aまでの距離L1(第1の飛行距離)を10mm、イオン源71からコレクタ73bまでの距離L2(第2の飛行距離)を30mmとしている。
Fifth Embodiment
FIG. 7 is a view showing a mass spectrometer 1007 according to a fifth embodiment of the present invention. The mass spectrometer 1007 according to the present embodiment is a TOF (Time of fly) type mass spectrometer having one ion source, but the collector 73a is provided with an opening and some ions are Although captured and detected here, other ions pass through and are detected by the collector 73b. The distance L1 (first flight distance) from the ion source 71 to the collector 73a is 10 mm, and the distance L2 (second flight distance) from the ion source 71 to the collector 73b is 30 mm.
 図7において、TOF型の質量分析装置1007は、イオン源71と、ブランキング電極としての引き出し電極72と、イオン源71から距離L1だけ離間して配置されたコレクタ73aと、イオン源71から距離L2だけ離間して配置されたコレクタ73bとを備える。 In FIG. 7, the TOF mass spectrometer 1007 includes an ion source 71, an extraction electrode 72 as a blanking electrode, a collector 73a spaced from the ion source 71 by a distance L1, and a distance from the ion source 71. And a collector 73b spaced apart by L2.
 TOF型質量分析装置は、イオンを断続的に発生させて、イオンがある距離を飛行する時間から質量分別する。本実施形態では、イオン源71から飛行距離L1だけ飛行したイオンを検出するようにコレクタ73aが設けられているので、符号74aが、第1の飛行距離L1にて質量分別を行う質量分別領域となる。また、イオン源71から飛行距離L2だけ飛行したイオンを検出するようにコレクタ73bが設けられているので、符号74bが、第2の飛行距離L2にて質量分別を行う質量分別領域となる。 The TOF mass spectrometer generates ions intermittently to mass separate ions from the time they travel a certain distance. In the present embodiment, the collector 73a is provided to detect the ions flying from the ion source 71 by the flight distance L1. Therefore, the reference numeral 74a denotes a mass separation region in which mass separation is performed at the first flight distance L1. Become. Further, since the collector 73b is provided to detect the ions flying from the ion source 71 by the flight distance L2, reference numeral 74b is a mass separation area in which mass separation is performed at the second flight distance L2.
 本実施形態では、イオン源71のイオン放出面とコレクタ73aのイオン検出面との間の領域であって、イオン源71から発生したイオンが通過する領域が第1の移動経路となる。また、イオン源71のイオン放出面とコレクタ73bのイオン検出面との間の領域であって、イオン源71から発生したイオンが通過する領域が第2の移動経路となる。よって、TOF型の質量分析装置1007は、該第1の移動経路の終端(コレクタ73a)でイオン電流IL1(検出すべきイオンの第1の電流値)を検出する。すなわち、質量分析装置1007は、コレクタ73aにて検出されたイオンの電流の測定結果から第1のイオン電流値であるイオン電流IL1を検出する。また、質量分析装置1007は、第1の移動経路よりも長い第2の移動経路の終端(コレクタ73b)でイオン電流IL2(検出すべきイオンの第2の電流値)を検出する。すなわち、質量分析装置1007は、コレクタ73bにて検出されたイオンの電流の測定結果から第2のイオン電流値であるイオン電流IL2を検出する。 In this embodiment, a region between the ion emission surface of the ion source 71 and the ion detection surface of the collector 73a and through which the ions generated from the ion source 71 pass is a first movement path. Further, a region between the ion emission surface of the ion source 71 and the ion detection surface of the collector 73b and through which ions generated from the ion source 71 pass is a second movement path. Therefore, the TOF mass spectrometer 1007 detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 73a) of the first movement path. That is, the mass spectrometer 1007 detects the ion current IL1 which is the first ion current value from the measurement result of the current of the ions detected by the collector 73a. Also, the mass spectrometer 1007 detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 73b) of the second moving path, which is longer than the first moving path. That is, the mass spectrometer 1007 detects the ion current IL2 which is the second ion current value from the measurement result of the current of the ions detected by the collector 73b.
 イオンの断続発生には、引き出し電極72の電位を矩形波状で変化させる。直線飛行の場合には飛行空間は無電界となり電極は不要となる。 For intermittent generation of ions, the potential of the extraction electrode 72 is changed in a rectangular wave shape. In the case of a straight flight, the flight space has no electric field and no electrode is required.
 なお、本実施形態では、質量分析装置をTOF型に構成すること以外は第2の実施形態と同じ構造であり、予備測定・実際の測定・計算などの方法はすべて第1の実施形態と同じである。 
 本実施形態では電極(ロッド)が不要なので、第2の実施形態に比べてよりシンプルな構成となっている。
In the present embodiment, the structure is the same as that of the second embodiment except that the mass spectrometer is configured as a TOF type, and all methods such as preliminary measurement / actual measurement / calculation are the same as the first embodiment. It is.
In the present embodiment, since the electrode (rod) is unnecessary, the configuration is simpler than in the second embodiment.
 (第6の実施形態) 
 図8Aは、本発明の第6の実施形態に係る質量分析装置1007を示す図である。本実施形態に係る質量分析装置1007は、一つのイオン源81を持つTOF(Time of fly:飛行時間)型の質量分析装置であるが、イオンの飛行領域84は内外2組の偏向リング86a、86bによる円弧状となっている。本実施形態では、図8Bに示すように、内側の偏向リング86aと外側の偏向リング86bとには直流(DC)電源が接続されており、これら内側の偏向リング86aと外側の偏向リング86bとに所定の直流電圧を印加することにより、イオン85は、円弧状に飛行する。
Sixth Embodiment
FIG. 8A is a view showing a mass spectrometer 1007 according to a sixth embodiment of the present invention. The mass spectrometer 1007 according to the present embodiment is a TOF (Time of Fly) type mass spectrometer having one ion source 81, but the flight area 84 of the ions is two sets of deflection rings 86a inside and outside, It is arc-shaped by 86b. In the present embodiment, as shown in FIG. 8B, a direct current (DC) power source is connected to the inner deflection ring 86a and the outer deflection ring 86b, and these inner deflection ring 86a and the outer deflection ring 86b are connected. By applying a predetermined DC voltage to the ions 85, the ions 85 fly in an arc shape.
 また、イオン源81からのイオンは投入用の偏向電極87aによって円周軌道に入り、複数回の周回を行なった後、取り出し用の偏向電極87bによって円周軌道からはずれてコレクタ83にて検出される。周回の回数(すなわち、イオンの飛行距離(移動距離))は、取り出し用の偏向電極87bへの電圧印加のタイミングで任意に決定できる。すなわち、投入用の偏向電極87aおよび取り出し用の偏向電極87bへの印加電圧を制御することにより、イオンの飛行距離(イオンの軌道)を調節することができる。したがって、ひとつのイオン源、ひとつのコレクタにも関わらず、実質的に異なる飛行距離での質量分析を行なうことが出来る。 Further, ions from the ion source 81 enter the circumferential orbit by the deflection electrode 87a for input, and after making a plurality of turns, are deviated from the circumferential orbit by the deflection electrode 87b for extraction and detected by the collector 83. Ru. The number of revolutions (that is, the flight distance (movement distance) of ions) can be arbitrarily determined by the timing of voltage application to the deflecting electrode 87b for extraction. That is, it is possible to adjust the flight distance (trajectory of ions) of ions by controlling the voltage applied to the deflection electrode 87a for injection and the deflection electrode 87b for extraction. Therefore, regardless of one ion source and one collector, mass analysis can be performed at substantially different flight distances.
 例えば、第1の飛行距離L1をイオン85が飛行領域84中を1回周回した時のイオンの飛行距離とし、第2の飛行距離L2をイオン85が飛行領域84中を3回周回した時のイオンの飛行距離とする。 For example, the first flight distance L1 is the flight distance of ions when the ions 85 travel around the flight region 84 once, and the second flight distance L2 is when the ions 85 travel around the flight region 84 three times. The flight distance of the ions.
 このとき、第1の飛行距離L1だけ飛行したイオンのイオン電流を検出する際には、制御部1000は、投入用の偏向電極87aに所定の電圧を印加してイオン源81からイオン85が飛行領域84中に入射するように質量分析装置1007を制御する。次いで、制御部1000は、上記イオン85が飛行領域84中を1周回するタイミングで取り出し用の偏向電極87bに所定の電圧を印加して飛行領域84中のイオン85がコレクタ83に入射するように質量分析装置1007を制御する。このようにして、イオン源81から放出され、第1の飛行距離L1だけ飛行したイオン85がコレクタ83にて検出される。このとき、飛行領域84中をイオン85が第1の飛行距離L1だけ飛行してコレクタ83にて検出されるので、飛行領域84が、第1の飛行距離にて質量分別を行う第1の質量分別領域として機能することになる。本実施形態では、イオン源81から発生したイオン85が、イオンの進行方向を変化させるための、偏向リング86aおよび偏向リング86bの間の領域である円状の飛行空間84中を所定回数(本実施形態では1回)旋回してコレクタ83に入射する際にイオン85が辿る軌跡が第1の移動経路となる。TOF型の質量分析装置1007は、該第1の移動経路の終端(コレクタ83)でイオン電流IL1(検出すべきイオンの第1の電流値)を検出する。 At this time, when detecting the ion current of the ions flying by the first flight distance L1, the control unit 1000 applies a predetermined voltage to the deflection electrode 87a for injection to fly the ions 85 from the ion source 81. The mass spectrometer 1007 is controlled to be incident into the region 84. Next, the control unit 1000 applies a predetermined voltage to the deflecting electrode 87b for extraction when the ions 85 make one turn in the flight area 84 so that the ions 85 in the flight area 84 enter the collector 83. The mass spectrometer 1007 is controlled. In this manner, the collectors 83 detect the ions 85 emitted from the ion source 81 and flying for the first flight distance L1. At this time, since the ions 85 travel the first flight distance L1 in the flight area 84 and are detected by the collector 83, the first mass to be subjected to mass separation at the first flight distance is the flight area 84. It will function as a sorting area. In the present embodiment, the ions 85 generated from the ion source 81 pass through the circular flight space 84, which is an area between the deflection ring 86a and the deflection ring 86b, for changing the traveling direction of the ions a predetermined number of times. In the embodiment, the trajectory followed by the ions 85 when turning once and entering the collector 83 is the first movement path. The TOF mass spectrometer 1007 detects the ion current IL1 (the first current value of the ion to be detected) at the end (collector 83) of the first movement path.
 一方、第2の飛行距離L2だけ飛行したイオンのイオン電流を検出する際には、制御部1000は、投入用の偏向電極87aに所定の電圧を印加してイオン源81からイオン85が飛行領域84中に入射するように質量分析装置1007を制御する。次いで、制御部1000は、上記イオン85が飛行領域84中を3周回するタイミングで取り出し用の偏向電極87bに所定の電圧を印加して飛行領域84中のイオン85がコレクタ83に入射するように質量分析装置1007を制御する。このようにして、イオン源81から放出され、第2の飛行距離L2だけ飛行したイオン85がコレクタ83にて検出される。このとき、飛行領域84中をイオン85が第2の飛行距離L2だけ飛行してコレクタ83にて検出されるので、飛行領域84が、第2の飛行距離にて質量分別を行う第2の質量分別領域として機能することになる。本実施形態では、イオン源81から発生したイオン85が、上記飛行空間84中を、第1の電流値測定時よりも多い回数(本実施形態では3回)旋回してコレクタ83に入射する際にイオン85が辿る軌跡が第2の移動経路となる。TOF型の質量分析装置1007は、該第2の移動経路の終端(コレクタ83)でイオン電流IL2(検出すべきイオンの第2の電流値)を検出する。 On the other hand, when detecting the ion current of the ions flying by the second flight distance L2, the control unit 1000 applies a predetermined voltage to the deflection electrode 87a for input to make the ions 85 fly from the ion source 81 The mass spectrometer 1007 is controlled so as to be incident into 84. Next, the control unit 1000 applies a predetermined voltage to the deflecting electrode 87b for extraction at the timing when the ions 85 make three rounds in the flight area 84 so that the ions 85 in the flight area 84 enter the collector 83. The mass spectrometer 1007 is controlled. In this manner, the collectors 83 detect the ions 85 emitted from the ion source 81 and flying for the second flight distance L2. At this time, since the ions 85 travel the second flight distance L 2 in the flight area 84 and are detected by the collector 83, the second mass for which the flight area 84 performs mass separation at the second flight distance It will function as a sorting area. In the present embodiment, the ions 85 generated from the ion source 81 enter the collector 83 by turning the flight space 84 a number of times (three times in the present embodiment) more than at the time of the first current measurement. The trajectory followed by the ion 85 is the second movement path. The TOF mass spectrometer 1007 detects the ion current IL2 (the second current value of the ion to be detected) at the end (collector 83) of the second movement path.
 このように、本実施形態では、投入用の偏向電極87aおよび取り出し用の偏向電極87bへの電圧の印加タイミングによりイオン85の飛行距離を変化させて、第1の飛行距離および第2の飛行距離によるイオン電流の検出を行っている。 As described above, in the present embodiment, the flight distance of the ions 85 is changed by the application timing of the voltage to the deflection electrode 87 a for input and the deflection electrode 87 b for extraction, so that the first flight distance and the second flight distance Detection of ion current by
 なお、本実施形態では、飛行距離の変更以外は第5の実施形態と同じ構造であり、予備測定・実際の測定・計算などの方法はすべて第1の実施形態と同じである。 
 本実施形態ではイオン源、ひとつのコレクタがひとつなので、第5の実施形態に比べてよりシンプルな構成となっている。
The present embodiment has the same structure as that of the fifth embodiment except for the change of the flight distance, and the methods such as the preliminary measurement, the actual measurement, and the calculation are all the same as the first embodiment.
In the present embodiment, since one ion source and one collector are provided, the configuration is simpler than in the fifth embodiment.
 (その他の実施形態) 
 本発明は、本来のイオン電流の算出には上記実施形態での計算式に限定されることなく、この計算式を基本としながら経験的に得られた補正項(実験式)を加えた式を利用することも出来る。
(Other embodiments)
The present invention is not limited to the calculation formula in the above embodiment in the calculation of the original ion current, but an expression obtained by adding a correction term (experimental formula) obtained empirically based on this calculation formula. It can also be used.
 理想的な状態からの“ずれ”は必ず発生するものであるが、関連する条件(イオン電流、イオンエネルギー、イオン種など)が同じであれば“ずれ”もほぼ同じであることが多い。そこで、実験的(経験的)にこの“ずれ”を測定し、これを補正するような計算式、すなわち実験式(補正項)を入れた計算式を求めておくことが出来る。さらに、補正項は関連する条件に依存するので、いくつかの条件での実験を行なうことにより、関連する条件を変数とした補正項の関数(例えば、実験式F、G)を求めることが可能となる。これを使用すると、さらに精度のよい測定を行うことができる。 Although the "deviation" from an ideal state always occurs, the "deviation" is often the same if the related conditions (ion current, ion energy, ion species, etc.) are the same. Therefore, it is possible to obtain a calculation formula which measures this "deviation" experimentally (empirically) and corrects it, that is, a calculation formula including an empirical formula (correction term). Furthermore, since the correction term depends on the related condition, it is possible to obtain a function (for example, empirical formulas F and G) of the correction term with the related condition as a variable by conducting experiments under several conditions It becomes. This can be used to make more accurate measurements.
 本発明は、本装置が設置されている雰囲気ガスを測定対象とするだけでなく、本装置が設置されている雰囲気とは別の(独立した)領域の雰囲気ガスを測定対象とすることも出来る。このためには、被測定対象のガスを配管やキャピラリーで本装置のイオン源に導入すればよい。この場合では、イオン電流を減衰させる雰囲気は被測定対象ではないが、上記実施形態と同じ方法によって本来のイオン電流を算出することが出来る。 The present invention can measure not only the atmosphere gas in which the device is installed but also the atmosphere gas in a different (independent) region from the atmosphere in which the device is installed. . For this purpose, the gas to be measured may be introduced into the ion source of the present apparatus through piping or a capillary. In this case, although the atmosphere for attenuating the ion current is not an object to be measured, the original ion current can be calculated by the same method as the above embodiment.
 本発明は、中性となっているガスを測定対象とするだけでなく、最初から荷電しているイオンを測定対象とすることも出来る。例えば、プラズマなどにはイオンがそのままで存在しているので、プラズマなどのイオン密度を測定する場合がこの例となる。この場合には、質量分析装置側にイオン源を設置する必要はなく、プラズマなどのイオン発生の場所を上記実施形態でのイオン源の場所と考えれば良い。 The present invention can measure not only the gas that is neutral but also ions that are initially charged. For example, since ions are present as they are in plasma or the like, the case of measuring ion density of plasma or the like is this example. In this case, it is not necessary to set the ion source on the mass spectrometer side, and the location of ion generation such as plasma may be considered as the location of the ion source in the above embodiment.
 (さらにその他の実施形態) 
 本発明は、複数の機器(例えばコンピュータ、インターフェース機器、リーダ、プリンタ、質量分析装置1007など)から構成されるシステムに適用することも、1つの機器からなる装置に適用することも可能である。
(Still other embodiments)
The present invention can be applied to a system comprising a plurality of devices (for example, a computer, an interface device, a reader, a printer, a mass spectrometer 1007, etc.) or to an apparatus comprising a single device.
 前述した実施形態の制御部1000の機能を実現するように前述した実施形態の構成を動作させるプログラムを記憶媒体に記憶させ、該記憶媒体に記憶されたプログラムをコードとして読み出し、コンピュータにおいて実行する処理方法も上述の実施形態の範疇に含まれる。即ちコンピュータ読み取り可能な記憶媒体も実施例の範囲に含まれる。また、前述のコンピュータプログラムが記憶された記憶媒体はもちろんそのコンピュータプログラム自体も上述の実施形態に含まれる。 A process for storing a program for operating the configuration of the above-described embodiment to realize the function of the control unit 1000 of the above-described embodiment in a storage medium, reading the program stored in the storage medium as a code, and executing it on a computer Methods are also included within the scope of the embodiments described above. That is, a computer readable storage medium is also included in the scope of the embodiments. Further, not only the storage medium in which the above-described computer program is stored but also the computer program itself is included in the above-described embodiment.
 かかる記憶媒体としてはたとえばフロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性メモリカード、ROMを用いることができる。 As such a storage medium, for example, a floppy (registered trademark) disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a non-volatile memory card, and a ROM can be used.
 また前述の記憶媒体に記憶されたプログラム単体で処理を実行しているものに限らず、他のソフトウエア、拡張ボードの機能と共同して、OS上で動作し前述の実施形態の動作を実行するものも前述した実施形態の範疇に含まれる。 Also, the present invention is not limited to the execution of processing by a single program stored in the storage medium described above, but also runs on the OS in cooperation with other software and the function of the expansion board to execute the operation of the above-described embodiment Are included in the scope of the above-described embodiment.

Claims (16)

  1.  イオン発生源と、
     前記イオン発生源で発生したイオンを通過させる第1の移動経路の終端で特定のイオンの第1の電流値を検出し、前記第1の移動経路よりも長い、前記イオンを通過させる第2の移動経路の終端で前記特定のイオンの第2の電流値を検出する検出手段と、
     前記第1および第2の電流値から前記イオン発生源において発生した前記特定のイオンの存在量を算出する算出手段と、
     前記第1の移動経路の少なくとも一部にて前記特定のイオンだけを通過させる第1の質量分別手段と、
     前記第2の移動経路の少なくとも一部にて前記特定のイオンだけを通過させる第2の質量分別手段と
     を備えることを特徴とする質量分析装置。
    An ion source,
    A second current value of a specific ion is detected at the end of a first moving path for passing ions generated by the ion generation source, and the second ion passing path is longer than the first moving path. Detection means for detecting a second current value of the particular ion at the end of the movement path;
    Calculation means for calculating the abundance of the specific ion generated in the ion generation source from the first and second current values;
    First mass separation means for passing only the specific ions in at least a part of the first movement path;
    And a second mass separation unit that allows only the specific ions to pass through at least a part of the second movement path.
  2.  前記イオン発生源は、雰囲気ガスをイオン化するイオン源であり、
     前記雰囲気ガスの存在量を測定することを特徴とする請求項1に記載の質量分析装置。
    The ion source is an ion source that ionizes an atmosphere gas,
    The mass spectrometer according to claim 1, wherein the amount of the atmosphere gas is measured.
  3.  同一の雰囲気ガス中に前記イオン源を2個備えることを特徴とする請求項2に記載の質量分析装置。 The mass spectrometer according to claim 2, wherein two of the ion sources are provided in the same atmosphere gas.
  4.  前記検出手段は、前記第1の電流値を検出する検出手段と前記第2の電流値を検出する検出手段とを兼用させた1つの検出手段であることを特徴とする請求項3に記載の質量分析装置。 4. The apparatus according to claim 3, wherein said detection means is one detection means which is used as both the detection means for detecting the first current value and the detection means for detecting the second current value. Mass spectrometer.
  5.  前記第1の移動経路および第2の移動経路の少なくとも一方は、非直線状であることを特徴とする請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein at least one of the first movement path and the second movement path is non-linear.
  6.  前記検出手段は、イオンを検出する検出器であり、前記第1の移動経路の終端でイオンが前記検出器に入射するように構成され、かつ、前記第2の移動経路の終端でイオンが前記検出器に入射するように構成されていることを特徴とする請求項1に記載の質量分析装置。 The detection means is a detector for detecting ions, and is configured such that ions are incident on the detector at the end of the first moving path, and the ions are detected at the end of the second moving path. The mass spectrometer according to claim 1, wherein the mass spectrometer is configured to be incident on the detector.
  7.  前記検出器は、前記第1の電流値を検出する検出手段と前記第2の電流値を検出する検出手段とを兼用させた1つの検出手段であるとともに、第1のイオン検出面と該第1のイオン検出面とは異なる第2のイオン検出面とを有し、
     前記検出器は、前記第1の移動経路の終端でイオンが前記第1のイオン検出面に入射するように構成され、かつ前記第2の移動経路の終端でイオンが前記第2のイオン検出面に入射するように構成されていることを特徴とする請求項6に記載の質量分析装置。
    The detector is a single detection means that combines the detection means for detecting the first current value and the detection means for detecting the second current value, and the first ion detection surface and the first ion detection surface And a second ion detection surface different from the first ion detection surface,
    The detector is configured such that ions are incident on the first ion detection surface at the end of the first movement path, and ions are detected at the end of the second movement path. The mass spectrometer according to claim 6, characterized in that it is configured to be incident on.
  8.  前記第1の移動経路は、前記第2の移動経路の一部を構成することを特徴とする請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein the first movement path constitutes a part of the second movement path.
  9.  前記第1および第2の移動経路の各々は、円弧状であることを特徴とする請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein each of the first and second movement paths has an arc shape.
  10.  前記円弧状である第1および第2の移動経路が、同じ直径と同じ中心点を有することを特徴とする請求項9に記載の質量分析装置。 10. The mass spectrometer according to claim 9, wherein the first and second movement paths in the form of arcs have the same diameter and the same center point.
  11.  前記検出手段は、
     前記特定のイオンを検出する検出器と、
     前記イオン発生源から前記検出器までの前記特定のイオンの移動距離を調整することにより、前記第1の移動経路の長さおよび前記第2の移動経路の長さを調整手段とを有し、
     前記調整手段により前記特定のイオンの移動距離を変化させることにより、前記検出器は前記第1および第2の電流値を検出することを特徴とする請求項1に記載の質量分析装置。
    The detection means
    A detector for detecting the specific ion;
    The length of the first movement path and the length of the second movement path may be adjusted by adjusting the movement distance of the specific ion from the ion source to the detector.
    The mass spectrometer according to claim 1, wherein the detector detects the first and second current values by changing the movement distance of the specific ion by the adjusting unit.
  12.  前記検出手段は、
     前記第1の移動経路の終端でイオンを検出する第1の検出器と、
     前記第2の移動経路の終端でイオンを検出する第2の検出器とを有し、
     前記第1の検出器は、到達したイオンのうちその一部を検出するとともに、他の一部のイオンをそのまま通過させるように構成された検出器であることを特徴とする請求項1に記載の質量分析装置。
    The detection means
    A first detector for detecting ions at the end of the first movement path;
    And a second detector for detecting ions at the end of the second movement path,
    The first detector according to claim 1, wherein the first detector is a detector configured to detect a part of the reached ions and pass another part of the ions as it is. Mass spectrometer.
  13.  前記検出手段は、減衰しなかった場合のイオン電流をI0とし、前記第1の移動経路の長さをL1とし、前記第2の移動経路の長さをL2とし、前記第1の電流値をIL1とし、前記第2の電流値をIL2とする場合の、L1/Loge(IL1/I0)=L2/Loge(IL2/I0)という式に、前記第1および第2の電流値を代入する工程を実行して前記存在量を算出することを特徴とする請求項1に記載の質量分析装置。 The detection means sets the ion current in the case of not being attenuated to I0, the length of the first movement path to L1, the length of the second movement path to L2, and the first current value A step of substituting the first and second current values into the equation L1 / Loge (IL1 / I0) = L2 / Loge (IL2 / I0) where IL1 is the second current value IL2. The mass spectrometer according to claim 1, wherein the abundance is calculated by performing
  14.  特定のイオンの存在量を測定する質量分析方法であって、
     前記特定のイオンをイオン発生源から発生させる工程と、
     前記イオン発生源から第1の移動距離だけ移動し質量分別された前記特定のイオンの第1の電流値を検出し、前記イオン発生源から第1の移動距離よりも長い第2の移動距離だけ移動し質量分別された前記特定のイオンの第2の電流を検出する工程と、
     前記検出された第1および第2の電流から前記特定のイオンの存在量を算出する工程と
     を有することを特徴とする質量分析方法。
    A mass spectrometry method for measuring the abundance of specific ions, comprising
    Generating the specific ion from an ion source;
    A first current value of the specific ion moved by a first movement distance from the ion generation source and detected by mass separation is detected, and a second movement distance longer than the first movement distance from the ion generation source is detected. Detecting a second current of the particular ion which has moved and mass separated;
    Calculating the abundance of the specific ion from the detected first and second currents.
  15.  コンピュータを、
     イオン発生源と、前記イオン発生源で発生したイオンを通過させる第1の移動経路の終端で特定のイオンの第1の電流値を検出し、前記第1の移動経路よりも長い、前記イオンを通過させる第2の移動経路の終端で前記特定のイオンの第2の電流値を検出する検出手段とを備える質量分析装置の制御装置であって、
     前記特定のイオンを発生させるように前記イオン発生源を制御して、前記検出手段にて前記第1および第2の電流値を検出させる手段と、
     前記第1の電流値および第2の電流値を取得する手段と、
     前記第1および第2の電流値から前記特定のイオンの存在量を算出する手段と
     を備える制御装置として機能させるコンピュータプログラム。
    Computer,
    A first current value of a specific ion is detected at an end of a first movement path for passing ions generated by the ion generation source and the ion generation source, and the ion longer than the first movement path is detected A control unit of a mass spectrometer comprising: detection means for detecting a second current value of the specific ion at the end of a second movement path to be passed through;
    A control unit configured to control the ion generation source to generate the specific ion, and to cause the detection unit to detect the first and second current values;
    Means for acquiring the first current value and the second current value;
    A computer program that functions as a control device, comprising: means for calculating the abundance of the specific ion from the first and second current values.
  16.  コンピュータにより読み出し可能なプログラムを格納した記憶媒体であって、請求項15に記載のコンピュータプログラムを格納したことを特徴とする記憶媒体。 A storage medium storing a computer readable program, wherein the computer program according to claim 15 is stored.
PCT/JP2010/068929 2009-12-28 2010-10-26 Mass spectroscope, control device of mass spectroscope, and mass spectrometry method WO2011080959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547381A JPWO2011080959A1 (en) 2009-12-28 2010-10-26 Mass spectrometer, control apparatus for mass spectrometer, and mass spectrometry method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-298320 2009-12-28
JP2009298320 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080959A1 true WO2011080959A1 (en) 2011-07-07

Family

ID=44226379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068929 WO2011080959A1 (en) 2009-12-28 2010-10-26 Mass spectroscope, control device of mass spectroscope, and mass spectrometry method

Country Status (2)

Country Link
JP (1) JPWO2011080959A1 (en)
WO (1) WO2011080959A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248482U (en) * 1975-09-30 1977-04-06
JPS59176663A (en) * 1983-03-04 1984-10-06 チヤ−ング・チヤング Parallel mass spectrographic method and device thereof
JPH10214591A (en) * 1997-01-30 1998-08-11 Aloka Co Ltd Isotope analyzer and mass spectrometer
JPH11513838A (en) * 1995-10-11 1999-11-24 カリフォルニア インスティチュート オブ テクノロジー Small quadrupole mass spectrometer array
WO2008129929A1 (en) * 2007-04-13 2008-10-30 Horiba Stec, Co., Ltd. Gas analyzer
JP2009187771A (en) * 2008-02-06 2009-08-20 Jeol Ltd Merging/separation mechanism of charged particles and neutral particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248482U (en) * 1975-09-30 1977-04-06
JPS59176663A (en) * 1983-03-04 1984-10-06 チヤ−ング・チヤング Parallel mass spectrographic method and device thereof
JPH11513838A (en) * 1995-10-11 1999-11-24 カリフォルニア インスティチュート オブ テクノロジー Small quadrupole mass spectrometer array
JPH10214591A (en) * 1997-01-30 1998-08-11 Aloka Co Ltd Isotope analyzer and mass spectrometer
WO2008129929A1 (en) * 2007-04-13 2008-10-30 Horiba Stec, Co., Ltd. Gas analyzer
JP2009187771A (en) * 2008-02-06 2009-08-20 Jeol Ltd Merging/separation mechanism of charged particles and neutral particles

Also Published As

Publication number Publication date
JPWO2011080959A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
US9482642B2 (en) Fast method for measuring collision cross section of ions utilizing ion mobility spectrometry
US9455129B2 (en) Segmented planar calibration for correction of errors in time of flight mass spectrometers
JP6305543B2 (en) Targeted mass spectrometry
US7375318B2 (en) Mass spectrometer
WO2019150576A1 (en) Mass spectroscope and mass calibration method for mass spectroscope
US9627190B2 (en) Energy resolved time-of-flight mass spectrometry
GB2530369A (en) Self-calibration of spectra using differences in molecular weight from know charge states
JP2011249109A (en) Tandem quadrupole type mass spectrometer
JP5136650B2 (en) Mass spectrometer
RU124434U1 (en) MASS SPECTROMETER
JP6418337B2 (en) Quadrupole mass filter and quadrupole mass spectrometer
Antony Joseph et al. Effects of the source gap on transmission efficiency of a quadrupole mass spectrometer
WO2011080959A1 (en) Mass spectroscope, control device of mass spectroscope, and mass spectrometry method
CN112639458A (en) Method for evaluating mass spectrometer, method for calibrating mass spectrometer, analysis method, mass spectrometer, and reagent for mass analysis
JP6544491B2 (en) Mass spectrometer
JP2015072775A (en) Time-of-flight mass spectrometer
JP5164478B2 (en) Ion trap time-of-flight mass spectrometer
JP2007242426A (en) Time-of-flight mass spectrometer
CN115413362A (en) Calibration of analytical instruments
JP2006120412A (en) Mass spectroscope
Langejürgen et al. Using Comsol 4.1 to Build a Transient Model of a Drift Tube Ion Mobility Spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547381

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840818

Country of ref document: EP

Kind code of ref document: A1