JP2009187771A - Merging/separation mechanism of charged particles and neutral particles - Google Patents

Merging/separation mechanism of charged particles and neutral particles Download PDF

Info

Publication number
JP2009187771A
JP2009187771A JP2008026049A JP2008026049A JP2009187771A JP 2009187771 A JP2009187771 A JP 2009187771A JP 2008026049 A JP2008026049 A JP 2008026049A JP 2008026049 A JP2008026049 A JP 2008026049A JP 2009187771 A JP2009187771 A JP 2009187771A
Authority
JP
Japan
Prior art keywords
electrode
particles
optical axis
neutral
charged particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008026049A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Iwanaga
光恭 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2008026049A priority Critical patent/JP2009187771A/en
Publication of JP2009187771A publication Critical patent/JP2009187771A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of maintaining transmission efficiency of charged particles to a certain extent even in the case there are collisions between charged particles and gas. <P>SOLUTION: This is a merging and separation mechanism of charged particles and neutral particles having: four electrode rods which are arranged along an optical axis having a bent portion bent in a certain plane and at equal spacings from the optical axis so as to surround the optical axis at angular intervals of 90°, and of which the position of both end parts are aligned while maintaining mutually parallel relations; and an entrance electrode and an exit electrode which are arranged to interpose the four electrode rods so as to cross at right angles the optical axis and each have a first aperture at a position to cross the optical axis and a second aperture at a position to cross the extension line of an orbit going straight from the bent portion of the optical line without bending. The electrode rods are arranged at the angular positions of obliquely 45° from the optical axis against the plane including the bent optical axis and the charged particles and/or neutral particles enter from the aperture of the entrance electrode and are emitted from the aperture of the exit electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、質量分析計に用いて有効な、荷電粒子と中性粒子の合流または分離機構に関する。   The present invention relates to a merging or separating mechanism for charged particles and neutral particles, which is effective for use in a mass spectrometer.

荷電粒子と中性粒子を分離する機構として、真空に排気された空間に置かれた静電場の偏向電極を組み合わせた構造の従来事例(特許文献1)があり、その構造を図1に示す。   As a mechanism for separating charged particles and neutral particles, there is a conventional case (Patent Document 1) of a structure in which a deflecting electrode of an electrostatic field placed in a space evacuated to vacuum is used. The structure is shown in FIG.

この例では、入口20から入って来る粒子ビームから荷電粒子と中性粒子を分離して、荷電粒子だけを出口29から取り出す場合は、遮蔽板28を中心軸・中性粒子の軌道Oを塞ぐ位置へ挿入した状態で中性粒子の飛行を遮り、4個の偏向電極21〜24に同じ電圧を印加して荷電粒子の軌道Iを描ける電場を形成させれば良い。   In this example, when the charged particles and neutral particles are separated from the particle beam entering from the entrance 20 and only the charged particles are taken out from the exit 29, the shielding plate 28 is blocked by the central axis / neutral particle trajectory O. It is only necessary to block the flight of neutral particles while being inserted into the position and apply the same voltage to the four deflection electrodes 21 to 24 to form an electric field that can draw the trajectory I of the charged particles.

他方、中性粒子だけを出口29から取り出す場合は、先の遮蔽板28を中心軸・中性粒子の軌道Oから外す位置に移動させた状態にして、4個の偏向電極21〜24に荷電粒子の軌道Iを描けない電場形成条件の電圧を印加すれば良い。   On the other hand, when only the neutral particles are taken out from the outlet 29, the four shielding electrodes 21 to 24 are charged with the previous shielding plate 28 moved to a position removed from the central axis / neutral particle trajectory O. What is necessary is just to apply the voltage of the electric field formation conditions which cannot draw the orbit I of a particle.

特許第3497367号公報Japanese Patent No. 3497367 特開2000−243347号公報JP 2000-243347 A

荷電粒子と中性粒子が混在する粒子ビームから片方の粒子のみを取り出したい、あるいは除去したい、または分離して別々に取り出したい、等の要求がある場合があり、荷電粒子と中性粒子の軌道を分離するのが本発明の目的である。   There may be demands such as taking out only one particle from a particle beam containing both charged particles and neutral particles, or removing them, or separating them separately, and so on. Is the object of the present invention.

従来例図1で上げた構造では、粒子の飛行軌道上で、その空間に残留ガス、ないしは意図して入れたガスと粒子との衝突があった場合は、粒子の運動エネルギーに損失が生じるために、運動エネルギーが様々に変化した荷電粒子は、軌道上で偏向電極21〜24から受け取る力との均衡が崩れてしまうため、衝突しなかった粒子以外は、出口29へと向かう軌道を描けなくなる。   In the structure shown in FIG. 1 of the conventional example, if there is a collision between residual gas in the space of the particle or an intentionally introduced gas and the particle in the space, the kinetic energy of the particle is lost. In addition, the charged particles having various kinetic energies lose their balance with the forces received from the deflection electrodes 21 to 24 on the orbit, and therefore, the particles other than those that have not collided cannot draw the orbit toward the outlet 29. .

たとえ偏向電極に印加する電圧を様々に組み合わせて設定したとしても、それで形成される場では、それから受ける力と均衡が取れるある限られた運動エネルギーの荷電粒子が通せる可能性のある条件になるだけなので、結果としては荷電粒子の透過率が低下してしまうことになる。   Even if the voltage applied to the deflection electrode is set in various combinations, the field formed by it will be a condition where charged particles with a limited kinetic energy that can balance the force received from it can pass. As a result, the transmittance of charged particles is reduced as a result.

ところで、荷電粒子の進行軸を偏向する方法としては、高周波電圧を印加した四重極の電極棒を屈曲させた事例が特許文献2に記載されている。しかし、この事例だと、イオンの軌道は偏向できても、直進する中性粒子は、曲げた電極棒がその進行軸を遮るため、電極棒に当たって発散することになり、中性粒子は遺失してしまって、もはや中性粒子ビームとしては取り出せなくなる。   By the way, as a method of deflecting the traveling axis of charged particles, Patent Document 2 describes an example in which a quadrupole electrode rod to which a high-frequency voltage is applied is bent. However, in this case, even if the trajectory of the ions can be deflected, the neutral particles that go straight will diverge against the electrode rod because the bent electrode rod blocks the axis of travel, and the neutral particles are lost. As a result, it can no longer be extracted as a neutral particle beam.

本発明の目的は、上述した点に鑑み、荷電粒子とガスとの衝突を考慮しなければならない場合でも、中性粒子に較べて通過条件が厳しくなる荷電粒子の透過効率をある程度維持する方法を提供することにある。   In view of the above points, an object of the present invention is to provide a method for maintaining the transmission efficiency of charged particles to some extent even when collisions between charged particles and gas have to be taken into consideration, compared to neutral particles. It is to provide.

この目的を達成するため、本発明にかかる荷電粒子と中性粒子の合流または分離機構は、
ある平面内で屈曲した屈曲部を有する光軸に沿い且つ光軸を90°間隔で取り囲むように光軸から等間隔の位置に配置され、お互いの平行関係を維持しながら、両端部の位置を揃えられた4本の電極棒と、
該4本の電極棒を間に挟み光軸と直交するように配置され、光軸と交わる部分に第1の開口、光軸の屈曲部を屈曲させずに直進させた軌道の延長線と交わる位置に第2の開口を有する入口電極または出口電極と
を備えた荷電粒子と中性粒子の合流または分離機構であって、
該電極棒は、屈曲した光軸を含む前記平面に対して光軸より斜め45°の角度の位置に配置され、荷電粒子および/または中性粒子は、前記入口電極の開口より入射するとともに、前記出口電極の開口より出射するように構成されていて、
該電極棒には所定の高周波電圧、マスフィルター機能用直流電圧、および軸電位設定用直流電圧、出口電極および入口電極には所定の軸方向電場形成用直流電圧を印加することにより、荷電粒子は電極棒の屈曲部の形状に沿って進行させ、中性粒子は電極棒の屈曲部を直進させることにより、荷電粒子と中性粒子の合流または分離を行なわせるようにしたことを特徴としている。
In order to achieve this object, the merging or separating mechanism of charged particles and neutral particles according to the present invention is:
Along the optical axis having a bent portion bent in a certain plane and at equal intervals from the optical axis so as to surround the optical axis at 90 ° intervals, the positions of both ends are maintained while maintaining the mutual parallel relationship. 4 aligned electrode bars,
The four electrode rods are arranged so as to be orthogonal to the optical axis, and intersect with the first opening at the portion that intersects the optical axis and the extended line of the trajectory straightly advanced without bending the bent portion of the optical axis. A charged particle and neutral particle merging or separating mechanism comprising an inlet electrode or an outlet electrode having a second opening in position,
The electrode rod is disposed at a position inclined at an angle of 45 ° from the optical axis with respect to the plane including the bent optical axis, and charged particles and / or neutral particles are incident from the opening of the entrance electrode, It is configured to emit from the opening of the exit electrode,
By applying a predetermined high-frequency voltage, a DC voltage for mass filter function, and a DC voltage for setting an axial potential to the electrode bar, and a predetermined DC voltage for forming an axial electric field to the outlet electrode and the inlet electrode, The neutral particles are made to travel along the shape of the bent portion of the electrode rod, and the charged particles and the neutral particles are joined or separated by moving the bent portion of the electrode rod straight.

また、前記4本の電極棒には、隣り合う電極同士で前記高周波電圧および前記マスフィルター機能用直流電圧がそれぞれ逆極性となるように重畳印加されていることを特徴としている。   In addition, the four electrode rods are characterized in that the high frequency voltage and the mass filter function DC voltage are superimposed and applied so as to have opposite polarities between adjacent electrodes.

また、前記軸電位設定用直流電圧は、すべての電極で互いに同極性となるような電圧が印加されていることを特徴としている。   Further, the axial potential setting DC voltage is characterized in that voltages having the same polarity are applied to all electrodes.

また、前記軸方向電場形成用直流電圧は、正の荷電粒子の輸送・貯蔵時には、荷電粒子の輸送方向に負の電場勾配、負の荷電粒子の輸送・貯蔵時には、荷電粒子の輸送方向に正の電場勾配を生じるような極性の電圧が印加されることを特徴としている。   Further, the DC voltage for forming an axial electric field is positive in the transport direction of charged particles when transporting and storing positive charged particles, and is negative in the transport direction of charged particles when transporting and storing negative charged particles. It is characterized in that a voltage having a polarity that generates an electric field gradient is applied.

また、前記4本の電極棒によって囲まれた空間領域には、所定の圧力のガスを導入できるようになっていることを特徴としている。   In addition, a gas having a predetermined pressure can be introduced into a space region surrounded by the four electrode rods.

本発明の荷電粒子と中性粒子の合流または分離機構によれば、
ある平面内で屈曲した屈曲部を有する光軸に沿い且つ光軸を90°間隔で取り囲むように光軸から等間隔の位置に配置され、お互いの平行関係を維持しながら、両端部の位置を揃えられた4本の電極棒と、
該4本の電極棒を間に挟み光軸と直交するように配置され、光軸と交わる部分に第1の開口、光軸の屈曲部を屈曲させずに直進させた軌道の延長線と交わる位置に第2の開口を有する入口電極または出口電極と
を備えた荷電粒子と中性粒子の合流または分離機構であって、
該電極棒は、屈曲した光軸を含む前記平面に対して光軸より斜め45°の角度の位置に配置され、荷電粒子および/または中性粒子は、前記入口電極の開口より入射するとともに、前記出口電極の開口より出射するように構成されていて、
該電極棒には所定の高周波電圧、マスフィルター機能用直流電圧、および軸電位設定用直流電圧、出口電極および入口電極には所定の軸方向電場形成用直流電圧を印加することにより、荷電粒子は電極棒の屈曲部の形状に沿って進行させ、中性粒子は電極棒の屈曲部を直進させることにより、荷電粒子と中性粒子の合流または分離を行なわせるようにしたので、
荷電粒子とガスとの衝突を考慮しなければならない場合でも、中性粒子に較べて通過条件が厳しくなる荷電粒子の透過効率をある程度維持する方法を提供することが可能になった。
According to the merged or separated mechanism of charged particles and neutral particles of the present invention,
Along the optical axis having a bent portion bent in a certain plane and at equal intervals from the optical axis so as to surround the optical axis at 90 ° intervals, the positions of both ends are maintained while maintaining the mutual parallel relationship. 4 aligned electrode bars,
The four electrode rods are arranged so as to be orthogonal to the optical axis, and intersect with the first opening at the portion that intersects the optical axis and the extended line of the trajectory straightly advanced without bending the bent portion of the optical axis. A charged particle and neutral particle merging or separating mechanism comprising an inlet electrode or an outlet electrode having a second opening in position,
The electrode rod is disposed at a position inclined at an angle of 45 ° from the optical axis with respect to the plane including the bent optical axis, and charged particles and / or neutral particles are incident from the opening of the entrance electrode, It is configured to emit from the opening of the exit electrode,
By applying a predetermined high-frequency voltage, a DC voltage for mass filter function, and a DC voltage for setting an axial potential to the electrode bar, and a predetermined DC voltage for forming an axial electric field to the outlet electrode and the inlet electrode, Since the neutral particles are allowed to travel along the shape of the bent portion of the electrode rod, and the neutral particles move straight along the bent portion of the electrode rod, the charged particles and the neutral particles are joined or separated.
Even when collisions between charged particles and gas have to be taken into account, it has become possible to provide a method for maintaining a certain degree of transmission efficiency of charged particles, whose passage conditions are stricter than those of neutral particles.

以下、図面を参照して、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施例1]
図2に本発明にかかる荷電粒子と中性粒子の分離機構の一実施例を示す。図2では、基本的な構造を、正面図、平面図、右側面図、立体図、四重極部断面と配線図の5つの図面に分けて示す。
[Example 1]
FIG. 2 shows an embodiment of a separation mechanism for charged particles and neutral particles according to the present invention. In FIG. 2, the basic structure is divided into five drawings: a front view, a plan view, a right side view, a three-dimensional view, a quadrupole section, and a wiring diagram.

基本構造は、入口電極1と出口電極3との間に四重極2として示した部分を挟んだものとなる。この四重極2は、ある平面内で屈曲した屈曲部を有する中心軸(光軸とも呼ぶ)に沿い且つ中心軸を90°間隔で取り囲むように中心軸から等間隔の位置に配置され、お互いの平行関係を維持しながら、両端部の位置を揃えられた4本の電極棒から構成されている。また、少なくともこれらの電極の表面は導電性となっており、これらに電圧・電流等が供給される。ただしそれ用の電源その他については省略してある。   The basic structure is such that a portion shown as a quadrupole 2 is sandwiched between the entrance electrode 1 and the exit electrode 3. The quadrupole 2 is arranged at equal intervals along the central axis (also referred to as an optical axis) having a bent portion bent in a certain plane and surrounding the central axis at 90 ° intervals. These four electrode rods are aligned at both ends while maintaining the parallel relationship. Further, at least the surfaces of these electrodes are conductive, and voltage, current, etc. are supplied to them. However, the power supply for that is omitted.

更に、これらは、通常、真空容器内に格納・設置され、この空間に任意のガス成分が種類・量ともに制御されて供給される場合もある。また、図には例示されていないが、構成する電極に供給される各電圧を印加するタイミングやその設定値制御のためのシーケンサやコンピュータ等の制御系とユニット、その他、真空排気装置等を備えている。   Furthermore, these are usually stored and installed in a vacuum vessel, and there may be a case where an arbitrary gas component is supplied to this space with its kind and amount controlled. In addition, although not illustrated in the figure, a control system and a unit such as a sequencer and a computer for controlling each voltage supplied to the constituent electrodes and its set value control, and a vacuum exhaust device and the like are provided. ing.

入口電極1と出口電極3には、中心軸6の延長線上に開口部分がある。出口電極3には、この例では、中心軸の屈曲部を屈曲して延伸させた下流延長線上に設けられた荷電粒子出口4と、中心軸の屈曲部を屈曲させずに直進して延伸させた軌道の下流延長線上に設けられた中性粒子出口5とが、粒子の取り出し口として設けてある。入口電極1も同様に開口するが省略してある。尚、入口電極1と出口電極3は、中心軸と直交するように配置されている。   The entrance electrode 1 and the exit electrode 3 have an opening on an extension line of the central axis 6. In this example, the outlet electrode 3 has a charged particle outlet 4 provided on a downstream extension line that is bent and stretched at the bent portion of the central axis, and straightly extends without bending the bent portion of the central axis. A neutral particle outlet 5 provided on the downstream extension line of the track is provided as a particle outlet. The entrance electrode 1 is also opened in the same manner, but is omitted. In addition, the entrance electrode 1 and the exit electrode 3 are arrange | positioned so that it may orthogonally cross with a central axis.

四重極2の部分は、この場合、丸棒の電極(極子とも呼ぶ)で、図のように、途中Aの2点鎖線上のところで上方向に一旦曲がり、Bの2点鎖線上のところで今度は下方向に曲げ戻されている。この曲げの角度は、荷電粒子の運動エネルギーが低い場合は大きくできるが、逆に高い場合は小さい角度になる。   In this case, the quadrupole 2 is a round bar electrode (also called a pole), and as shown in the figure, once bent upward on the two-dot chain line in the middle A and on the two-dot chain line in B. This time it is bent back downward. The bending angle can be increased when the kinetic energy of the charged particles is low, but conversely, the angle becomes small when the kinetic energy is high.

このような形状の丸棒の電極が4本組として、入口電極1から出口電極3に向かって屈曲した光軸を含む平面に対して光軸より斜め45°(±1°、許容値は中性粒子ビームの広がりの径と角度にも拠る。最良は45°)の角度の位置に配置されている。この位置関係は、中心軸6と垂直になる面で切った断面を示した「四重極部断面と配線図」で確認できる。また、配置については「立体図」でも確認できる。また、4本の電極棒は、両端部の位置を揃えられている。   As a set of four round bar electrodes having such a shape, 45 ° obliquely from the optical axis (± 1 °, allowable value is medium with respect to a plane including the optical axis bent from the entrance electrode 1 toward the exit electrode 3 It depends on the diameter and angle of the spread of the active particle beam (the best is 45 °). This positional relationship can be confirmed by a “quadrupole section and wiring diagram” showing a section cut by a plane perpendicular to the central axis 6. The arrangement can also be confirmed by a “three-dimensional view”. The four electrode rods are aligned at both ends.

四重極2には、「四重極部断面と配線図」に示す例のように、高周波と直流の電圧が印加されている。図中の式の記号は、V0:高周波振幅電圧値、ω:角周波数、t:時間、θ:位相、U1:直流電圧値(マスフィルター機能用)、U2:直流電圧値(軸電位すなわちオフセット電位設定用)を示している。 The quadrupole 2 is applied with high-frequency and direct-current voltages as in the example shown in the “quadrupole section and wiring diagram”. Symbols in the expression are V 0 : high frequency amplitude voltage value, ω: angular frequency, t: time, θ: phase, U 1 : DC voltage value (for mass filter function), U2: DC voltage value (axis potential) That is, for offset potential setting).

この事例では、入口電極1の前段と出口電極3の後段の構成が省略されているが、実際には入射粒子ビームの供給源や、出射する荷電粒子と中性粒子の選択、あるいは検出や利用する部分が接続されて構成される。   In this case, the configuration of the front stage of the entrance electrode 1 and the rear stage of the exit electrode 3 is omitted. However, in actuality, the source of the incident particle beam, the selection of the emitted charged particles and neutral particles, or the detection and use thereof are used. The parts to be connected are configured.

図2で例示した構成で、これに荷電粒子と中性粒子を入射させた際のシミュレーション例を図3に示す。入口電極1と出口電極3には、正の荷電粒子が対象であれば、入口電極1と出口電極3に印加される両直流電圧U3、U4がそれぞれU3>U4の大小関係、負の荷電粒子が対象であれば、入口電極1と出口電極3に印加される両直流電圧U3、U4がそれぞれU3<U4の大小関係で印加されている。これは、直流電圧U3、U4によって形成される電場勾配によって、荷電粒子が四重極2の上流側から下流側へ向けて移動できるようにするためである。 FIG. 3 shows a simulation example when charged particles and neutral particles are incident on the configuration illustrated in FIG. In the case of positively charged particles at the entrance electrode 1 and the exit electrode 3, both DC voltages U 3 and U 4 applied to the entrance electrode 1 and the exit electrode 3 have a magnitude relationship of U 3 > U 4 , respectively. If negative charged particles are targeted, both DC voltages U 3 and U 4 applied to the entrance electrode 1 and the exit electrode 3 are applied in a magnitude relationship of U 3 <U 4 , respectively. This is because the charged particles can move from the upstream side to the downstream side of the quadrupole 2 by the electric field gradient formed by the DC voltages U 3 and U 4 .

四重極2の4本の電極には、対向する電極のうち、一方の組にはV0・cos(ωt+θ)+U1+U2、他方の組にはV0・cos(ωt+θ)−U1+U2なる電圧が印加されている。なお、U1の値は、光軸が曲がっているので低めに設定する。これにより質量分解能は低下するが透過率は改善する。荷電粒子の質量が不特定であればU1は通常零値とされる。 The four electrodes of the quadrupole 2 include V 0 · cos (ωt + θ) + U 1 + U 2 in one set of opposing electrodes, and V 0 · cos (ωt + θ) −U 1 in the other set. A voltage of + U 2 is applied. Note that the value of U 1 is set low because the optical axis is bent. This reduces the mass resolution but improves the transmittance. If the mass of the charged particle is not specified, U 1 is normally zero.

この条件下で、中心軸6上にある入口電極1の開口部から入射する荷電粒子と中性粒子とが混在する粒子ビームは、電場の影響を受けない中性粒子が入射時の角度で出口電極3側に向かって直進するのに対し、荷電粒子の方は、四重極2の形成する交流電場の影響を受けて、動径方向に振動しながら出口電極3側へと進む。   Under this condition, a particle beam in which charged particles and neutral particles that are incident from the opening of the entrance electrode 1 on the central axis 6 are mixed is exited at an angle at which the neutral particles that are not affected by the electric field are incident. Whereas the particles move straight toward the electrode 3 side, the charged particles are influenced by the AC electric field formed by the quadrupole 2 and proceed to the exit electrode 3 side while vibrating in the radial direction.

四重極2は、Aの位置とBの位置で曲げ部分を持つ形で作られているので、この位置付近に進行してきた荷電粒子は、その曲げ方向に沿って軌道を曲げられて進んでいく。この事例では、荷電粒子と中性粒子の進行軸が平行する関係になるよう、荷電粒子の軌道だけが変えられている。   Since the quadrupole 2 is formed in a shape having a bent portion at the position A and the position B, the charged particles that have traveled in the vicinity of this position are bent along the orbit along the bending direction. Go. In this case, only the trajectory of the charged particle is changed so that the traveling axes of the charged particle and the neutral particle are parallel to each other.

荷電粒子は、荷電粒子軌道7で示されるように、動径方向に振動しながら、ある一定幅で出口電極3に設けられた開口部の荷電粒子出口4を通って進むが、中性粒子は、中性粒子軌道8のように、入射時の初期幅と角度に依存した広がりで直進し、中性粒子出口5の穴径以内の範囲にあるビームのみが中性粒子出口5を通過し、それ以外は出口電極3に当たって進行が遮られる。この様子が、正面図と右側面図とに、ビームの軌道が電極棒や電極板などを透かす格好で描いてある。   As shown by the charged particle trajectory 7, the charged particle travels through the charged particle outlet 4 of the opening provided in the outlet electrode 3 with a certain width while vibrating in the radial direction. As in the neutral particle trajectory 8, the beam travels straight with a spread depending on the initial width and angle at the time of incidence, and only the beam within the range of the hole diameter of the neutral particle outlet 5 passes through the neutral particle outlet 5. Other than that, it strikes the exit electrode 3 and the progress is blocked. This state is depicted in a front view and a right side view in such a way that the beam trajectory passes through the electrode rod, the electrode plate, and the like.

以上は、ガス成分の粒子との衝突がない条件下での動作になるが、図4の場合は、粒子の平均自由行程が構造物の寸法よりも短く、粒子衝突がある場合(ヘリウムガス存在下で平均自由行程が3mmの例)についての状況をシミュレーションしたものである。ただし、衝突による運動エネルギーの低下のみを考慮したものなので、実態を反映しきれていないが、少なくとも荷電粒子の軌道が保たれて、動径方向の振幅が小さく、ビーム径が絞られている様子が確認される。   The above is the operation under the condition that there is no collision with the gas component particles, but in the case of FIG. 4, when the particle mean free path is shorter than the size of the structure and there is particle collision (the presence of helium gas) The following is a simulation of the situation for an example in which the mean free path is 3 mm. However, since it only considers the decrease in kinetic energy due to collision, it does not fully reflect the actual situation, but at least the charged particle trajectory is maintained, the radial amplitude is small, and the beam diameter is narrowed Is confirmed.

[実施例2]
実施例1で示した四重極部分の途中の曲げは、直線の折れ線状ではなく、滑らかなS字カーブを描いた曲げのものであっても良い。更に、荷電粒子の進行方向を実施例1のように平行にするのではなく、別の角度で出射させる場合は、曲げの角度は、2回の曲げごとに違えても良く、2回の曲げで戻す形でなくても良い。
[Example 2]
The bending in the middle of the quadrupole portion shown in the first embodiment may not be a straight polygonal line but may be a bending with a smooth S-shaped curve. Furthermore, when the traveling direction of the charged particles is not made parallel as in the first embodiment but is emitted at a different angle, the bending angle may be different every two bendings. It does not have to be returned in the form.

また、円弧を描くような形の曲げの構造にしても良く、その場合の例を図5に示す。四重極2の屈曲部分は、弧を描く形で曲がっており、これに伴って、荷電粒子出口4は右側面図に見られるように、電極棒の湾曲方向の下流延長線上に、また中性粒子出口5は電極棒の湾曲部を湾曲せずに直進した軌道の下流延長線上に配される。   Further, a bending structure having a shape of drawing an arc may be used, and an example of such a case is shown in FIG. The bent portion of the quadrupole 2 is bent in an arcuate shape, and as a result, the charged particle outlet 4 is located on the downstream extension line in the curved direction of the electrode rod and in the middle as seen in the right side view. The active particle outlet 5 is disposed on the downstream extension line of the trajectory that has straightly traveled without curving the curved portion of the electrode rod.

三角法的な図示では形が把握しがたい部分は、立体図と立体1/4切取断面図とで全体の形状を示している。電極棒の配置は、この例でも斜め45°(±1°)の位置とした条件は、実施例1と同じである。電極各部への電圧供給も実施例1と同じである。   In the trigonometric illustration, the portion whose shape is difficult to grasp is shown as a whole by a three-dimensional view and a three-dimensional cut-out sectional view. The arrangement of the electrode rods is the same as that in Example 1 under the condition that the position is 45 ° (± 1 °) obliquely in this example. The voltage supply to each part of the electrode is the same as in the first embodiment.

動作的なものは、実施例1とほぼ同じである。荷電粒子の軌道は、四重極2の曲げの方向に沿うが、中性粒子ビームは、入射時の方向を維持した軌道を取る。高真空下での荷電粒子と中性粒子の軌道をシミュレーションした例を図6に示す。粒子の軌道は、透視図で示してある。   The operation is almost the same as in the first embodiment. The trajectory of the charged particles follows the bending direction of the quadrupole 2, but the neutral particle beam takes a trajectory that maintains the direction at the time of incidence. FIG. 6 shows an example in which the trajectories of charged particles and neutral particles are simulated under high vacuum. The particle trajectories are shown in perspective.

立体的な描画として、「立体1/4切取断面図」と「立体垂直断面図」で更に軌道分離のようすを示す。また、「垂直断面図」には、四重極2の内接円内中央付近を通る荷電粒子軌道7と下側2本の電極棒の間隙を通る中性粒子軌道8とを示す。   As a three-dimensional drawing, a “three-dimensional 1/4 cut-out cross-sectional view” and a “three-dimensional vertical cross-sectional view” further show how orbits are separated. Further, the “vertical sectional view” shows a charged particle trajectory 7 passing through the vicinity of the center of the inscribed circle of the quadrupole 2 and a neutral particle trajectory 8 passing through the gap between the two lower electrode bars.

中性粒子の軌道の広がりが大きい場合は、電極棒の内接円側の中性粒子軌道8に面する部分の削り落としも可能である。その例を図6の「中性粒子通路拡大加工時垂直断面図」に示すが、電極棒の内側を削り落とす加工が荷電粒子ビームの軌道に及ぼす影響は、ほとんどなかった。   When the extension of the orbit of the neutral particles is large, the portion facing the neutral particle orbit 8 on the inscribed circle side of the electrode rod can be scraped off. An example of this is shown in “Vertical sectional view during neutral particle passage enlargement processing” in FIG. 6, and there was almost no influence on the trajectory of the charged particle beam by machining the inside of the electrode rod.

図7には、この空間にガスを入れて真空度を下げ、ガスの粒子との衝突を考慮したシミュレーションの事例を示す。ただし、実施例1と同様だが、荷電粒子も中性粒子も、ガス粒子と衝突することによる運動エネルギーの損失のみを計算に入れただけである。ガス粒子と衝突したことによる、飛行方向の変化は、簡易化のため考慮に入れていない。   FIG. 7 shows a simulation example in which gas is introduced into this space to lower the degree of vacuum and the collision with gas particles is taken into consideration. However, although it is the same as that of Example 1, only the loss of the kinetic energy due to collision with the gas particle is taken into account for both the charged particle and the neutral particle. Changes in flight direction due to collisions with gas particles are not taken into account for simplicity.

しかし、簡易計算ではあっても、荷電粒子が運動エネルギーを低下させたときに、その飛行軌道が四重極2の曲げられた方向に沿って偏向されるという平均的挙動を確認することはできる。   However, even if it is a simple calculation, when a charged particle decreases its kinetic energy, it can confirm the average behavior that its flight trajectory is deflected along the bent direction of the quadrupole 2. .

ガス粒子との衝突があると、「衝突冷却」と呼ばれる現象で、荷電粒子の振動幅が次第に狭くなって、荷電粒子ビームの太さも細く変化するが、その様子も図6と図7を比較して確認できる。特に、それぞれの図の右側面図を比較すれば、四重極の空間を飛行中の軌道部分では、より明瞭にそれが判別できる。   When there is a collision with a gas particle, a phenomenon called “cold cooling” causes the vibration width of the charged particle to become narrower and the thickness of the charged particle beam to change. Can be confirmed. In particular, if the right side views of the respective figures are compared, it can be more clearly discriminated at the orbital portion in flight in the quadrupole space.

[実施例3]
図8に示す事例は、実施例2の構造で入口と出口の関係を逆にしたものである。すなわち、荷電粒子ビームの入口側に四重極2の曲がった電極棒が向いた構造で配置される。また、これに伴って、荷電粒子入口9は左側面図に見られるように、電極棒の湾曲方向の上流延長線上に、また中性粒子入口10は電極棒の湾曲部を湾曲せずに直線的に遡及させた軌道の上流延長線上に配される。四重極2を構成する電極棒の配置は、この例でも斜め45°(±1°)の位置とした条件は、実施例1と同じである。
[Example 3]
In the example shown in FIG. 8, the relationship between the inlet and the outlet is reversed in the structure of the second embodiment. In other words, the bent electrode rod of the quadrupole 2 is arranged on the entrance side of the charged particle beam. Accordingly, as shown in the left side view, the charged particle inlet 9 is on the upstream extension line in the bending direction of the electrode rod, and the neutral particle inlet 10 is straight without bending the curved portion of the electrode rod. It is placed on the upstream extension of the track that was retroactively extended. The arrangement of the electrode rods constituting the quadrupole 2 is the same as that in the first embodiment under the condition that the position of the diagonal 45 ° (± 1 °) is set also in this example.

平面的な図で不明瞭な部分は、立体図と立体1/4切取断面図とで示してある。電圧供給も実施例1と同様であるが、印加される直流電圧は、荷電粒子が上流から下流側へ加速される向きに電場勾配が発生するように、すなわち図8の例だと左から右に向けて電位勾配が発生するように設定される。これは入口電極1より出口電極3の電位が低い関係に設定されることになる。この関係は、荷電粒子の極性が正の場合であり、荷電粒子の極性が負の場合は逆となる。   Portions that are unclear in the plan view are shown in a three-dimensional view and a three-quarter cut-out sectional view. The voltage supply is the same as in Example 1, but the applied DC voltage is such that an electric field gradient is generated in a direction in which charged particles are accelerated from upstream to downstream, that is, from the left to the right in the example of FIG. Is set so that a potential gradient is generated. This is set so that the potential of the outlet electrode 3 is lower than that of the inlet electrode 1. This relationship is when the polarity of the charged particles is positive, and is opposite when the polarity of the charged particles is negative.

ただし、入射する粒子の運動エネルギーが比較的高めの場合や、四重極2の置かれた空間の平均自由行程が短くない場合には、衝突確率も小さいので、電位勾配を設けなくても良い場合もある。四重極2にも高周波電圧と直流電圧が実施例1と同様に印加される。   However, if the kinetic energy of the incident particles is relatively high, or if the mean free path of the space where the quadrupole 2 is placed is not short, the collision probability is small, so there is no need to provide a potential gradient. In some cases. A high-frequency voltage and a direct-current voltage are applied to the quadrupole 2 as in the first embodiment.

図9に、この事例での動作を、粒子ビームの軌道シミュレーションにて示す。荷電粒子ビームは荷電粒子入口9から、中性粒子ビームは中性粒子入口10から、それぞれ別々に入射して、四重極2の曲がりを終えた付近で合流する。この辺りから出口へと向かう軌道の中で、荷電粒子と中性粒子の衝突の機会が作られる。   FIG. 9 shows the operation in this case by particle beam trajectory simulation. The charged particle beam is incident separately from the charged particle inlet 9 and the neutral particle beam is incident separately from the neutral particle inlet 10, and merges in the vicinity of the bending of the quadrupole 2. In this orbit from the vicinity to the exit, an opportunity for collision between charged particles and neutral particles is created.

これらの粒子は、相互作用を受けながら、共通する出射口である荷電/中性粒子出口11へと進む。通常、この後には、モニターや分析計、粒子受容装置等が置かれて利用される。この場合の相互作用とは、物理・化学的な反応を想定しているが、荷電粒子と中性粒子の相違がもたらす結果を観察・利用することになる。   These particles proceed to the charged / neutral particle outlet 11, which is a common exit, while receiving the interaction. Usually, a monitor, an analyzer, a particle receiving device, etc. are placed and used after this. The interaction in this case assumes a physical / chemical reaction, but observes and uses the result of the difference between charged particles and neutral particles.

この事例では、真空度を下げて衝突を考慮したシミュレーションの例は示していないが、実施例2とほぼ同様な軌道となる。ただし、荷電粒子の入射が四重極2の曲がった部分からであり、出口方向に四重極2の直線部分が位置する関係で、細部の様子は多少異なる。後述する実施例4では、衝突の場合も示すので、その様子を参考にすることができる。   This example does not show an example of a simulation considering the collision by lowering the degree of vacuum, but the trajectory is almost the same as that of the second embodiment. However, the incident of charged particles is from the bent portion of the quadrupole 2, and the details are slightly different because the linear portion of the quadrupole 2 is located in the exit direction. In Example 4 to be described later, a case of a collision is also shown, so that the situation can be referred to.

[実施例4]
図10に荷電粒子ビームと中性粒子ビームの合流・分離例を示す。先に上げた実施例2のビーム軌道分離と実施例3のビーム軌道合流を合わせた構造の事例である。1対の曲がった四重極2は、直線部分の側で中間電極12を挟んで向かい合わせとなり、屈曲部分の側がビームの入射並びに出射する方向に配置されて、中心軸6で両者のビーム軌道が合致する接合となる。
[Example 4]
FIG. 10 shows an example of merging / separating a charged particle beam and a neutral particle beam. It is an example of the structure which combined the beam trajectory separation of Example 2 raised previously and the beam trajectory merge of Example 3. FIG. The pair of bent quadrupoles 2 face each other across the intermediate electrode 12 on the straight portion side, and the bent portion side is arranged in the direction in which the beam enters and exits. Is a joint that matches.

なお、ここの中間電極12は、それぞれの四重極2の空間同士で真空度の差がないならば、必ずしも必要ではない場合もある。   Note that the intermediate electrode 12 here is not necessarily required if there is no difference in the degree of vacuum between the spaces of the respective quadrupoles 2.

入口電極1、中間電極12、出口電極3には四重極空間に電位勾配を形成するための直流電圧が、また四重極2には荷電粒子をガイドするための高周波並びに直流電圧が先例と同様に印加され、四重極2を構成する電極棒の配置も先例と同様に斜め45°(±1°)の位置となる。   The entrance electrode 1, the intermediate electrode 12, and the exit electrode 3 are preceded by a direct current voltage for forming a potential gradient in the quadrupole space, and the quadrupole 2 is preceded by a high frequency and direct current voltage for guiding charged particles. Similarly, the arrangement of the electrode rods constituting the quadrupole 2 is inclined at 45 ° (± 1 °) as in the previous example.

図11に荷電粒子と中性粒子の両ビームの合流と分離の状況をシミュレーションで示す。荷電粒子と中性粒子が入射し、両ビームが合流する前半部分については実施例3と同じであり。荷電粒子と中性粒子の混合されたビームが別々に分離される後半部分については実施例2とほぼ同じ動作になると言える。   FIG. 11 shows a simulation of the state of merging and separation of both charged and neutral particles. The first half where charged particles and neutral particles are incident and the two beams merge is the same as in the third embodiment. It can be said that the operation in the second half where the mixed beam of charged particles and neutral particles is separated is the same as that of the second embodiment.

荷電粒子軌道7は、中間電極12付近で動径方向の振幅が大きくなっているが、電極電圧の最適化が不十分なためであって、荷電粒子の平均的な軌道軸は、四重極2の軸に沿って曲げられたり直進したりして進む様子が確認できる。一方、中性粒子ビームは、電場による偏向作用は受けないので、入射時点での初期角度と位置と運動エネルギーとで決まる所定の広がりを持ったビームとして進むことになる。衝突するものは、更に広がりを持つことになる。   The charged particle trajectory 7 has a large radial amplitude in the vicinity of the intermediate electrode 12, but is because the electrode voltage is not sufficiently optimized. The average trajectory axis of the charged particle is a quadrupole. It can be seen that it is bent along the axis 2 or goes straight. On the other hand, since the neutral particle beam is not deflected by the electric field, it travels as a beam having a predetermined spread determined by the initial angle, position and kinetic energy at the time of incidence. Anything that collides will be more expansive.

ガスを入れるか、あるいは真空ポンプの排気量を下げるかして真空度を下げた条件下でのガス粒子との衝突を考慮したシミュレーションを図12に示す。ただし、中性粒子の衝突による軌道変化は考慮に入れていない。   FIG. 12 shows a simulation that considers collisions with gas particles under conditions where the degree of vacuum is lowered by introducing gas or reducing the displacement of the vacuum pump. However, trajectory changes due to neutral particle collisions are not taken into account.

[実施例5]
実施例1の変形として、軌道分離した後に中性粒子を利用しない場合は、予め中性粒子出口5の部分を斜めに傾斜させた反射偏向板で塞いでおき、中性粒子出口5から取り出された中性粒子ビームを反射偏向させて、後段に届かないようにしても良い。
[Example 5]
As a modification of the first embodiment, when neutral particles are not used after the orbital separation, the neutral particle outlet 5 portion is previously blocked by a slanting reflecting deflection plate and taken out from the neutral particle outlet 5. Alternatively, the neutral particle beam may be reflected and deflected so as not to reach the subsequent stage.

[実施例6]
実施例1の変形として、荷電粒子ビームと中性粒子ビームを分離するための四重極2を、通常の四重極型質量分析計のマスフィルターの前段に配置されるプリポール、または後段に配置されるポストポールとして使用する。
[Example 6]
As a modification of the first embodiment, a quadrupole 2 for separating a charged particle beam and a neutral particle beam is arranged in a pre-pole disposed in a front stage of a mass filter of a normal quadrupole mass spectrometer, or in a rear stage. Used as a post pole.

この構成では、中性粒子ビームを排除するために動作させるので、中性粒子の取り出し口は設けない。この部分の四重極子に印加される直流電圧は、4本の極子とも同じ極性、値として、軸電位を形成させる。   In this configuration, since the operation is performed to eliminate the neutral particle beam, the neutral particle take-out port is not provided. The DC voltage applied to the quadrupole in this part forms an axial potential with the same polarity and value for the four poles.

この方法で荷電粒子の軌道のみを偏向させ、中性粒子ビームを排除することにより、検出器のノイズを減らすことができる。また、本方法では、四重極子が45°斜め方向に配置されているので、中性粒子ビームは電極棒の間隙を飛行し、電極棒と衝突して棒表面を汚染することがない。   By deflecting only the charged particle trajectory in this way and eliminating the neutral particle beam, detector noise can be reduced. Further, in this method, since the quadrupoles are arranged at an angle of 45 °, the neutral particle beam does not fly in the gap between the electrode rods and collide with the electrode rods to contaminate the rod surface.

荷電粒子と中性粒子の研究に広く利用できる。   Can be widely used for research on charged particles and neutral particles.

従来の荷電粒子と中性粒子の分離機構の一例を示す図である。It is a figure which shows an example of the separation mechanism of the conventional charged particle and neutral particle. 本発明にかかる荷電粒子と中性粒子の分離機構の一実施例を示す図である。It is a figure which shows one Example of the separation mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の分離機構によるシミュレーションの一実施例を示す図である。It is a figure which shows one Example of the simulation by the separation mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の分離機構によるシミュレーションの別の実施例を示す図である。It is a figure which shows another Example of the simulation by the separation mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の分離機構の別の実施例を示す図である。It is a figure which shows another Example of the separation mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の分離機構によるシミュレーションの別の実施例を示す図である。It is a figure which shows another Example of the simulation by the separation mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の分離機構によるシミュレーションの別の実施例を示す図である。It is a figure which shows another Example of the simulation by the separation mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の合流機構の一実施例を示す図である。It is a figure which shows one Example of the confluence | merging mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の合流機構によるシミュレーションの一実施例を示す図である。It is a figure which shows one Example of the simulation by the joining mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の合流・分離機構の一実施例を示す図である。It is a figure which shows one Example of the joining / separation mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の合流・分離機構によるシミュレーションの一実施例を示す図である。It is a figure which shows one Example of the simulation by the joining / separation mechanism of the charged particle and neutral particle concerning this invention. 本発明にかかる荷電粒子と中性粒子の合流・分離機構によるシミュレーションの別の実施例を示す図である。It is a figure which shows another Example of the simulation by the joining / separation mechanism of the charged particle and neutral particle concerning this invention.

符号の説明Explanation of symbols

1:入口電極、2:四重極、3:出口電極、4:荷電粒子出口、5:中性粒子出口、6:中心軸(光軸)、7:荷電粒子軌道、8:中性粒子軌道、9:荷電粒子入口、10:中性粒子入口、11:荷電/中性粒子出口、12:中間電極、20:入射口、21:偏向電極、22:偏向電極、23:偏向電極、24:偏向電極、25:ボディ、26:ボディ、27:隔離板、28:ストッパ、29:出射口、I:イオン軌道、O:中心光軸 1: entrance electrode, 2: quadrupole, 3: exit electrode, 4: charged particle exit, 5: neutral particle exit, 6: central axis (optical axis), 7: charged particle trajectory, 8: neutral particle trajectory 9: charged particle inlet, 10: neutral particle inlet, 11: charged / neutral particle outlet, 12: intermediate electrode, 20: incident port, 21: deflection electrode, 22: deflection electrode, 23: deflection electrode, 24: Deflection electrode, 25: body, 26: body, 27: separator, 28: stopper, 29: exit port, I: ion trajectory, O: central optical axis

Claims (5)

ある平面内で屈曲した屈曲部を有する光軸に沿い且つ光軸を90°間隔で取り囲むように光軸から等間隔の位置に配置され、お互いの平行関係を維持しながら、両端部の位置を揃えられた4本の電極棒と、
該4本の電極棒を間に挟み光軸と直交するように配置され、光軸と交わる部分に第1の開口、光軸の屈曲部を屈曲させずに直進させた軌道の延長線と交わる位置に第2の開口を有する入口電極または出口電極と
を備えた荷電粒子と中性粒子の合流または分離機構であって、
該電極棒は、屈曲した光軸を含む前記平面に対して光軸より斜め45°の角度の位置に配置され、荷電粒子および/または中性粒子は、前記入口電極の開口より入射するとともに、前記出口電極の開口より出射するように構成されていて、
該電極棒には所定の高周波電圧、マスフィルター機能用直流電圧、および軸電位設定用直流電圧、出口電極および入口電極には所定の軸方向電場形成用直流電圧を印加することにより、荷電粒子は電極棒の屈曲部の形状に沿って進行させ、中性粒子は電極棒の屈曲部を直進させることにより、荷電粒子と中性粒子の合流または分離を行なわせるようにしたことを特徴とする荷電粒子と中性粒子の合流または分離機構。
Along the optical axis having a bent portion bent in a certain plane and at equal intervals from the optical axis so as to surround the optical axis at 90 ° intervals, the positions of both ends are maintained while maintaining the mutual parallel relationship. 4 aligned electrode bars,
The four electrode rods are arranged so as to be orthogonal to the optical axis, and intersect with the first opening at the portion that intersects the optical axis and the extended line of the trajectory straightly advanced without bending the bent portion of the optical axis. A charged particle and neutral particle merging or separating mechanism comprising an inlet electrode or an outlet electrode having a second opening in position,
The electrode rod is disposed at a position inclined at an angle of 45 ° from the optical axis with respect to the plane including the bent optical axis, and charged particles and / or neutral particles are incident from the opening of the entrance electrode, It is configured to emit from the opening of the exit electrode,
By applying a predetermined high-frequency voltage, a DC voltage for mass filter function, and a DC voltage for setting an axial potential to the electrode bar, and a predetermined DC voltage for forming an axial electric field to the outlet electrode and the inlet electrode, Charging characterized in that it proceeds along the shape of the bent portion of the electrode rod, and the neutral particles move straightly along the bent portion of the electrode rod so that the charged particles and neutral particles merge or separate. Mechanism of merging or separating particles and neutral particles.
前記4本の電極棒には、隣り合う電極同士で前記高周波電圧および前記マスフィルター機能用直流電圧がそれぞれ逆極性となるように重畳印加されていることを特徴とする請求項1記載の荷電粒子と中性粒子の合流または分離機構。 2. The charged particle according to claim 1, wherein the high frequency voltage and the mass filter function DC voltage are applied to the four electrode rods so as to have opposite polarities between adjacent electrodes. Mechanism of merging or separating neutral particles. 前記軸電位設定用直流電圧は、すべての電極で互いに同極性となるような電圧が印加されていることを特徴とする請求項1記載の荷電粒子と中性粒子の合流または分離機構。 2. The mechanism for merging or separating charged particles and neutral particles according to claim 1, wherein the axial potential setting DC voltage is applied with voltages having the same polarity in all electrodes. 前記軸方向電場形成用直流電圧は、正の荷電粒子の輸送・貯蔵時には、荷電粒子の輸送方向に負の電場勾配、負の荷電粒子の輸送・貯蔵時には、荷電粒子の輸送方向に正の電場勾配を生じるような極性の電圧が印加されることを特徴とする請求項1記載の荷電粒子と中性粒子の合流または分離機構。 The DC voltage for forming an axial electric field is a negative electric field gradient in the transport direction of charged particles when transporting and storing positive charged particles, and a positive electric field in the transport direction of charged particles when transporting and storing negative charged particles. 2. A mechanism for merging or separating charged particles and neutral particles according to claim 1, wherein a voltage having a polarity that causes a gradient is applied. 前記4本の電極棒によって囲まれた空間領域には、所定の圧力のガスを導入できるようになっていることを特徴とする請求項1記載の荷電粒子と中性粒子の合流または分離機構。 The charged particle / neutral particle merging or separating mechanism according to claim 1, wherein a gas having a predetermined pressure can be introduced into a space region surrounded by the four electrode rods.
JP2008026049A 2008-02-06 2008-02-06 Merging/separation mechanism of charged particles and neutral particles Withdrawn JP2009187771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026049A JP2009187771A (en) 2008-02-06 2008-02-06 Merging/separation mechanism of charged particles and neutral particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008026049A JP2009187771A (en) 2008-02-06 2008-02-06 Merging/separation mechanism of charged particles and neutral particles

Publications (1)

Publication Number Publication Date
JP2009187771A true JP2009187771A (en) 2009-08-20

Family

ID=41070810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026049A Withdrawn JP2009187771A (en) 2008-02-06 2008-02-06 Merging/separation mechanism of charged particles and neutral particles

Country Status (1)

Country Link
JP (1) JP2009187771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080959A1 (en) * 2009-12-28 2011-07-07 キヤノンアネルバ株式会社 Mass spectroscope, control device of mass spectroscope, and mass spectrometry method
WO2012081122A1 (en) * 2010-12-17 2012-06-21 株式会社島津製作所 Ion guide and mass spectrometer
WO2012134684A1 (en) * 2011-03-28 2012-10-04 Thermo Finnigan Llc Ion guide with improved gas dynamics and combined noise reduction device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080959A1 (en) * 2009-12-28 2011-07-07 キヤノンアネルバ株式会社 Mass spectroscope, control device of mass spectroscope, and mass spectrometry method
JPWO2011080959A1 (en) * 2009-12-28 2013-05-09 キヤノンアネルバ株式会社 Mass spectrometer, control apparatus for mass spectrometer, and mass spectrometry method
WO2012081122A1 (en) * 2010-12-17 2012-06-21 株式会社島津製作所 Ion guide and mass spectrometer
JP5644863B2 (en) * 2010-12-17 2014-12-24 株式会社島津製作所 Ion guide and mass spectrometer
US9589781B2 (en) 2010-12-17 2017-03-07 Shimadzu Corporation Ion guide and mass spectrometer
WO2012134684A1 (en) * 2011-03-28 2012-10-04 Thermo Finnigan Llc Ion guide with improved gas dynamics and combined noise reduction device
US8461524B2 (en) 2011-03-28 2013-06-11 Thermo Finnigan Llc Ion guide with improved gas dynamics and combined noise reduction device

Similar Documents

Publication Publication Date Title
JP5606793B2 (en) Accelerator and cyclotron
JP5282102B2 (en) Multiple reflection time-of-flight mass analyzer
US20090266984A1 (en) Plasma Ion Source Mass Spectrometer
US9236235B2 (en) Curved ion guide and related methods
WO2010138922A2 (en) Curved ion guide with varying ion deflecting field and related methods
JP2012503298A (en) Ion trap for cooling ions
JPWO2014203305A1 (en) Ion transport device and mass spectrometer using the device
JP6237896B2 (en) Mass spectrometer
JP2010531031A (en) Multipole ion guide interface for background noise reduction in mass spectrometry
JP6458128B2 (en) Ion guide and mass spectrometer using the same
JP5257334B2 (en) Mass spectrometer
JP2009187771A (en) Merging/separation mechanism of charged particles and neutral particles
US8680479B2 (en) Charged particle analyzer
JP5673848B2 (en) Mass spectrometer
KR100748617B1 (en) Gas chromatograph-mass spectrometer having improved detection limit
TWI530984B (en) Mass spectrometry for gas analysis with a one-stage charged particle deflector lens between a charged particle source and a charged particle analyzer both offset from a central axis of the deflector lens
TWI530982B (en) Mass spectrometry for gas analysis with structures for inhibiting asightline between a charged particle source and a charged particle analyzer and enabling a change to a baseline offset of a charged particle analyzer
JP6295150B2 (en) Mass spectrometer
JPH07191169A (en) Ion deflecting magnet and method for ion deflecting
JP5953956B2 (en) Ion detector, mass spectrometer, and triple quadrupole mass spectrometer
JP2010123561A (en) Curved ion guide, and related methods
JPH0831370A (en) Gas-phase ion source of time-of-flight mass spectrometer
US20220293408A1 (en) Mass spectrometer
US8138677B2 (en) Radial hall effect ion injector with a split solenoid field
JP5585788B2 (en) Ion implanter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510