WO2011080952A1 - Element mounting substrate, semiconductor module, camera module, and method for producing element mounting substrate - Google Patents

Element mounting substrate, semiconductor module, camera module, and method for producing element mounting substrate Download PDF

Info

Publication number
WO2011080952A1
WO2011080952A1 PCT/JP2010/067120 JP2010067120W WO2011080952A1 WO 2011080952 A1 WO2011080952 A1 WO 2011080952A1 JP 2010067120 W JP2010067120 W JP 2010067120W WO 2011080952 A1 WO2011080952 A1 WO 2011080952A1
Authority
WO
WIPO (PCT)
Prior art keywords
element mounting
mounting substrate
transparent member
opening
camera module
Prior art date
Application number
PCT/JP2010/067120
Other languages
French (fr)
Japanese (ja)
Inventor
良輔 臼井
真弓 中里
修 田畑
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009298267A external-priority patent/JP2013051223A/en
Priority claimed from JP2009298260A external-priority patent/JP2013051222A/en
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011080952A1 publication Critical patent/WO2011080952A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Definitions

  • the present invention relates to an element mounting substrate on which chip parts and the like can be mounted, and a semiconductor module using the same. More specifically, the present invention relates to an element mounting substrate in which an opening is formed.
  • Portable electronic devices such as mobile phones, PDAs, DVCs, and DSCs are becoming smaller and lighter in order for these products to be accepted in the market as camera functions for taking pictures of people and landscapes are accelerating.
  • a highly integrated system LSI is required.
  • a camera module which is an example of a conventional portable electronics device, will be described.
  • FIG. 11 is a cross-sectional view showing the structure of a conventional camera module.
  • the conventional camera module includes an imaging device 31 that is an imaging semiconductor device, a lens barrel 33, a lens 35, an optical filter (infrared filter) 37, a circuit board 39, a reinforcing plate 41, an adhesive 43, and A sealing material 45 is provided.
  • the imaging element 31 having the imaging surface (light receiving surface) 47 on which the subject image is incident is electrically connected to the circuit board 39 via the bumps 49.
  • the lens 35 forms a subject image on the light receiving surface 47 of the image sensor 31, and a light guide space 51 is formed between the lens 35 and the image sensor 31.
  • An infrared filter 37 is provided in the light guide space 51, and the infrared filter 37 blocks infrared rays that cause deterioration of the captured image.
  • the reinforcing plate 41 is provided to compensate for the insufficient strength when the circuit board 39 has insufficient strength.
  • the reinforcing plate 41 is bonded to the circuit board 39 with an adhesive 43.
  • FIG. 12 is a cross-sectional view showing another structure of the conventional camera module.
  • an image pickup device 3 such as a CMOS is mounted on a mounting substrate 1 via an electrode portion 7.
  • the housing 2 is fixed to the mounting substrate 1, and the image sensor 3 is arranged inside the base end side of the housing 2.
  • a lens holder 8 incorporating the lens 4 is provided on the front end side of the housing 2.
  • An optical filter 11 such as an infrared cut filter is installed between the lens 4 and the image sensor 3. The optical filter 11 is held by a holding portion 13 formed on the lens holder 8.
  • optical filter 11 is curved so as to protrude toward the image sensor 3.
  • a wiring board (element mounting board or circuit board) typified by a printed circuit board as in the past, the rigidity of the wiring board is lowered and thermal stress is applied. There has been a problem that it is easily deformed. Specifically, when a chip component or the like is mounted on a wiring board having an opening using solder, the wiring board is twisted, which may cause a reduction in connection reliability of the wiring board.
  • the present invention has been made in view of these problems, and an object thereof is to provide a technique for increasing the rigidity of an element mounting substrate provided with an opening for transmitting electromagnetic waves. Another object of the present invention is to provide a technique that enables a further reduction in the height of the camera module.
  • An aspect of the present invention is an element mounting substrate.
  • the element mounting board includes a wiring board provided with an opening penetrating from one main surface to the other main surface, a transparent member fitted into the opening and capable of transmitting electromagnetic waves in a specific wavelength region, In the surface direction of the wiring board, at least a part of the outer peripheral side surface of the transparent member overlaps the side wall of the wiring board in the opening.
  • the transparent member may be an infrared cut filter.
  • the wiring board may include an insulating resin layer filled with an inorganic filler, and the transparent member may have the same thermal expansion coefficient as the inorganic filler.
  • the transparent member may be made of a glass material, and the inorganic filler may be made of a glass cloth.
  • the semiconductor module includes another element mounting board on which a semiconductor element is mounted, the element mounting board in the above-described aspect provided above the other element mounting board, and a semiconductor element.
  • An electrical connection member for electrically connecting the wiring layer provided on the element mounting substrate and the wiring layer provided on the element mounting substrate of the above-described aspect is provided.
  • Still another aspect of the present invention is a semiconductor module.
  • the semiconductor module includes the element mounting substrate according to the aspect described above and a semiconductor element mounted on the other main surface of the element mounting substrate.
  • Still another aspect of the present invention is a camera module.
  • the camera module is provided with a first element mounting substrate on which a semiconductor element is mounted, and an opening penetrating from one main surface to the other main surface, provided above the first element mounting substrate.
  • the second element mounting board, the wiring layer provided around the semiconductor element and provided on the second element mounting board, and the wiring layer provided on the first element mounting board are electrically connected.
  • a second element mounting board comprising: an electrical connection member that is electrically connected; a lens provided above the opening; and a transparent member that is fitted into the opening and is capable of transmitting electromagnetic waves in a specific wavelength region. In the surface direction, at least part of the outer peripheral side surface of the transparent member and the inner wall of the second element mounting substrate in the opening portion overlap each other.
  • the second element mounting substrate may include an insulating resin layer filled with an inorganic filler, and the transparent member may have the same thermal expansion coefficient as that of the inorganic filler.
  • Still another aspect of the present invention is a method for manufacturing an element mounting substrate.
  • the element mounting substrate manufacturing method includes a step of forming an opening in a predetermined region of the wiring substrate, and a wiring substrate provided with the opening is placed on a base having a recess in the region corresponding to the opening. And a step of fitting the transparent member into the opening and supporting the transparent member by the recess, and a step of bonding the transparent member and the inner wall of the wiring board of the opening.
  • the step of forming the opening includes a step of forming a through hole in a region corresponding to a corner of the transparent member, and a step of cutting the wiring substrate so as to connect the through hole. And when the transparent member is fitted into the opening, the corners of the transparent member may be located in the through-hole formation region.
  • the present invention it is possible to increase the rigidity of the element mounting substrate provided with an opening for transmitting electromagnetic waves. Further, according to the present invention, the camera module can be further reduced in height.
  • FIG. 2 is a schematic cross-sectional view showing the structure of a camera module according to Embodiment 1.
  • FIG. FIG. 5 is a schematic cross-sectional view showing the structure of a camera module according to Embodiment 2.
  • 6 is a schematic cross-sectional view showing the structure of a camera module according to Embodiment 3.
  • FIG. It is process drawing which shows the preparation methods of the element mounting substrate. It is process drawing which shows the preparation methods of the element mounting substrate. It is process drawing which shows the preparation methods of the element mounting substrate. It is process drawing which shows the preparation methods of the element mounting substrate. It is process drawing which shows the preparation methods of the element mounting substrate.
  • 6 is a schematic cross-sectional view showing a structure of a camera module according to Embodiment 4.
  • FIG. 10 is a partial cross-sectional view of the mobile phone shown in FIG. 9. It is sectional drawing which shows the structure of the conventional camera module. It is sectional drawing which shows the other structure of the conventional camera module.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a camera module 10 as an example of a semiconductor module according to the first embodiment.
  • the camera module 10 according to the present embodiment is used in an imaging device such as a digital still camera, a digital video camera, or a camera mounted on a mobile phone.
  • the camera module 10 according to Embodiment 1 includes a circuit module 200.
  • the circuit module 200 has a configuration in which the chip component 220 is mounted on one surface of the element mounting substrate 210 and the semiconductor element 120 is mounted on the other surface of the element mounting substrate 210.
  • the chip component 220 is an electronic component for driving a lens 290 described later, and examples thereof include a drive IC, a power supply IC, and passive components such as a resistor and a capacitor.
  • the semiconductor element 120 is a light receiving element such as a CMOS image sensor. Photodiodes are formed in a matrix on the surface of the semiconductor element 120. Each photodiode photoelectrically converts light into a charge amount according to the amount of received light and outputs it as a pixel signal.
  • the element mounting substrate 210 includes an insulating resin layer 230 serving as a base material, a wiring layer 240 formed on one main surface (in this embodiment, a semiconductor element mounting surface) of the insulating resin layer 230, and an insulating resin layer. 230, electrode portion 242 formed on the other main surface, insulating resin layer 250 formed on one main surface of insulating resin layer 230, and insulating resin layer formed on the other main surface of insulating resin layer 230. 252.
  • the insulating resin layer 230 can be formed of, for example, a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide.
  • a glass cloth 232 that is a kind of inorganic filler is embedded in the insulating resin layer 230 as a reinforcing material.
  • the thickness of the insulating resin layer 230 is, for example, 240 ⁇ m.
  • a wiring layer 240 having a predetermined pattern is provided on one main surface of the insulating resin layer 230.
  • a gold plating layer such as a Ni / Au layer may be formed on the wiring layer 240.
  • the chip component 220 is electrically connected by solder 221 at a predetermined portion of the wiring layer 240.
  • an electrode portion 242 is provided on the other main surface of the insulating resin layer 230.
  • a gold plating layer such as a Ni / Au layer may be formed on the electrode portion 242.
  • An example of a material constituting the wiring layer 240 and the electrode portion 242 is copper.
  • the wiring layer 240 and the electrode part 242 are electrically connected by a via conductor (not shown) penetrating the insulating resin layer 230 at a predetermined position of the insulating resin layer 230.
  • a via conductor not shown
  • the other main surface of the insulating resin layer 230 is provided with a wiring layer that is the same layer as the electrode portion 242 and has the same height.
  • An insulating resin layer 250 made of a photo solder resist or the like is provided on one main surface of the insulating resin layer 230.
  • an insulating resin layer 252 made of a photo solder resist or the like is provided on the other main surface of the insulating resin layer 230.
  • the thickness of the insulating resin layer 250 and the insulating resin layer 252 is, for example, 30 ⁇ m.
  • the insulating resin layer 252 is provided with an opening for mounting the solder 272 on the electrode portion 242.
  • the electrode portion 242 and the element electrode 121 provided on the semiconductor element 120 are electrically connected by the solder 272.
  • the element mounting substrate 210 is provided with a lens barrel 280, and the cylindrical main body 282 and the lens barrel 280 are coupled by screwing of a screw portion provided on the inner peripheral surface of the lens barrel 280.
  • the lens 290 is attached to the cylindrical main body 282.
  • an opening 300 penetrating the element mounting substrate 210 is provided corresponding to the installation area of the semiconductor element 120.
  • a transparent member 310 is fitted into the opening 300.
  • the outer peripheral side surface of the transparent member 310 is fixed to the inner wall of the element mounting substrate 210 exposed in the opening 300 with an adhesive 320.
  • the thickness of the transparent member 310 is, for example, 300 ⁇ m.
  • the transparent member 310 is made of a material that can transmit electromagnetic waves in a specific wavelength region, and specifically, is an IR cut filter. By using the transparent member 310 as an IR cut filter, excessively long wavelength infrared rays flowing into the semiconductor element 120 are blocked.
  • the transparent member 310 includes an ultraviolet cut filter, a color filter, a polarizing plate, a combustion gas transmission filter, a flame temperature measurement filter, a plastic temperature measurement filter, a quartz glass transmission filter, and a glass temperature measurement filter. Etc.
  • the main surface on the lens 290 side of the transparent member 310 is flush with the main surface on the lens 290 side of the insulating resin layer 250, but the main surface on the lens 290 side of the transparent member 310 and the insulating resin layer.
  • the main surface on the lens 290 side of 250 may form a step.
  • the wiring substrate is the element mounting substrate 210 including the insulating resin layer 230, the insulating resin layer 250, and the insulating resin layer 252.
  • the thermal expansion coefficient of the transparent member 310 is equal to the thermal expansion coefficient of the inorganic filler embedded in the insulating resin layer 230, that is, the glass cloth 232 in the present embodiment.
  • a commonly used glass cloth has a thermal expansion coefficient (° C. ⁇ 1 ) of 5.5 ⁇ 10 ⁇ 6 .
  • the thermal expansion coefficient (° C. ⁇ 1 ) of the transparent member 310 is preferably 5.5 ⁇ 10 ⁇ 6 .
  • the thermal expansion coefficients (° C. ⁇ 1 ) of quartz glass, borosilicate glass, and soda quartz glass are 5.6 ⁇ 10 ⁇ 7 , 5.2 ⁇ 10 ⁇ 6 , and 8.5 ⁇ 10 ⁇ 6 , respectively.
  • the range of the thermal expansion coefficient (° C. ⁇ 1 ) of the transparent member 310 can be in the range of 5 ⁇ 10 ⁇ 7 to 9 ⁇ 10 ⁇ 6 .
  • the thermal expansion coefficient (° C. ⁇ 1 ) of the epoxy resin is approximately 6 ⁇ 10 ⁇ 5, which is outside the range of the thermal expansion coefficient of the transparent member 310.
  • the camera module 10 as an example of the semiconductor module described above, at least the following effects can be obtained.
  • the following items are listed as effects obtained by the camera module 10 of the present embodiment.
  • the transparent member 310 having the same thermal expansion coefficient as the inorganic filler embedded in the insulating resin layer 230 into the opening 300 provided in the element mounting substrate 210 the entire element mounting substrate 210 is Thermal responsiveness can be made uniform. Thereby, when the chip component 220 and the semiconductor element 120 are surface-mounted, when the element mounting substrate 210 is heated, it is possible to prevent the element mounting substrate 210 from being twisted.
  • the transparent member 310 By fitting the transparent member 310 into the opening 300 provided in the element mounting substrate 210, as shown in FIG.
  • the height of the lens 290 can be further reduced, and as a result, the height of the camera module 10 can be reduced.
  • a fillet made of an adhesive for fixing the transparent member 310 is formed and spreads to the side of the transparent member 310.
  • the chip component mounting area is restricted.
  • the adhesive 320 for fixing the transparent member 310 stays in the opening 300 by fitting the transparent member 310 into the opening 300 provided in the element mounting substrate 210, the chip component 220 is installed. It is possible to improve the degree of design freedom regarding the area.
  • the inner wall of the element mounting substrate 210 exposed to the opening 300 is covered with the adhesive 320, it is not necessary to separately provide an end face protective resin for suppressing dust generation.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the camera module 10 as an example of the semiconductor module according to the second embodiment.
  • the camera module 10 according to the present embodiment is used in an imaging device such as a digital still camera, a digital video camera, or a camera mounted on a mobile phone.
  • the camera module 10 according to the second embodiment includes a circuit module (first circuit module) 100 and a circuit module (second circuit module) 200 mounted on the circuit module 100.
  • the semiconductor element 120 is mounted on the back side of the element mounting substrate 210 and is provided in the circuit module 200.
  • the semiconductor element 120 is mounted on the circuit module 100. Is provided.
  • the element mounting substrate 210 constituting the circuit module 200, the lens barrel 280, the lens 290 and the like mounted thereon are the same as those in the first embodiment, and the description thereof is omitted.
  • the circuit module 100 includes an element mounting substrate (first element mounting substrate) 110 and a semiconductor element 120 mounted on the element mounting substrate 110 as main components.
  • the element mounting substrate 110 includes an insulating resin layer 130 and a glass cloth 132.
  • the glass cloth 132 may be woven into a plurality of layers in the insulating resin layer 130.
  • the insulating resin layer 130 can be formed of a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide.
  • a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide.
  • the rigidity of the element mounting substrate 110 is enhanced by the glass cloth 132 embedded in the insulating resin layer 130.
  • a wiring layer 140 having a predetermined pattern is provided on one main surface of the insulating resin layer 130 (in this embodiment, a circuit element mounting surface). Further, on one main surface of the insulating resin layer 130, an electrode portion 160 for joining solder for mounting a circuit module is provided. The electrode unit 160 will be described later.
  • An example of the material constituting the wiring layer 140 is copper.
  • the thickness of the wiring layer 140 is 20 ⁇ m, for example.
  • An insulating resin layer 150 is provided on one main surface of the insulating resin layer 130.
  • the insulating resin layer 150 covers the periphery of the electrode part 160 and the upper surface peripheral part of the conductor part 162 constituting the electrode part 160.
  • the insulating resin layer 150 is provided with an opening that exposes the central region of the electrode portion 160.
  • the insulating resin layer 150 is formed by, for example, a photo solder resist.
  • the thickness of the insulating resin layer 150 is, for example, 80 to 100 ⁇ m.
  • the insulating resin layer 150 is provided in a bank shape along the periphery of the insulating resin layer 130 as well as around the electrode portion 160. That is, a region surrounded by the insulating resin layer 150 is a recess (cavity).
  • the electrode part 160 includes a conductor part 162 and a conductor part 164.
  • the conductor portion 162 is the same layer as the wiring layer 140 and is formed on one main surface of the insulating resin layer 130. Furthermore, the conductor part 162 has a thickness (for example, 20 ⁇ m) equivalent to the wiring layer 140. The diameter of the conductor portion 162 is, for example, 350 ⁇ m.
  • the conductor portion 164 is filled in a space formed by the upper surface of the conductor portion 162 and the side wall of the insulating resin layer 150. That is, the upper surface of the conductor portion 164 is located in the opening provided in the insulating resin layer 150.
  • the thickness of the conductor part 164 is, for example, 40 ⁇ m.
  • a gold plating layer such as a Ni / Au layer may be formed on the upper surface of the conductor portion 164. Oxidation of the conductor part 164 is suppressed by the gold plating layer.
  • the thickness of the Ni layer provided on the conductor portion 164 side is, for example, 1 to 15 ⁇ m, and the thickness of the Au layer provided on the Ni layer is For example, it is 0.03 to 1 ⁇ m.
  • the semiconductor element 120 is mounted on the element mounting substrate 110 described above. Specifically, the semiconductor element 120 is mounted in a cavity surrounded by the insulating resin layer 150. A device electrode 121 provided on the semiconductor device 120 and a wiring layer 140 in a predetermined region are connected by wire bonding with a gold wire 122. Further, a gold plating layer such as a Ni / Au layer may be formed on the upper surface of the wiring layer 140 to which wire bonding is connected.
  • the following effects can be obtained in addition to the effects (1) to (5) obtained by the camera module 10 of the first embodiment.
  • (6) After stacking the upper printed circuit board provided with the opening on the lower printed circuit board, when installing the transparent member so as to close the opening of the upper printed circuit board, until the transparent member is installed In the meantime, dust may fall on a semiconductor element such as a CMOS image sensor on the lower printed circuit board.
  • the opening 300 is closed by the transparent member 310 before the element mounting substrate 210 is mounted on the element mounting substrate 110, the element mounting substrate 210 is By mounting on the element mounting substrate 110, it is possible to suppress dust from falling on the semiconductor element 120.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the camera module 10 as an example of the semiconductor module according to the third embodiment.
  • the camera module 10 of the present embodiment is the same as that of the second embodiment except for the configuration of the lens 290 and the transparent member 310.
  • the lens 290 is an asymmetric plano-convex lens, and the transparent member 310 side is convex.
  • the thickness of the transparent member 310 is the same as the thickness of the element mounting substrate 210, and the transparent member 310 is transparent to the main surface of the element mounting substrate 210 on the lens 290 side (in this embodiment, the surface of the insulating resin layer 250).
  • the lens 310 has a concave surface on the lens 290 side. For this reason, in addition to the effects described in the second embodiment, the distance between the convex surface of the lens 290 and the surface of the transparent member 310 on the lens 290 side can be secured, and the camera module 10 can be further reduced in height. Can be planned.
  • (Method for manufacturing element mounting substrate) 4A, 4B, and 5 to 7 are process diagrams illustrating a method for manufacturing the element mounting substrate 210.
  • FIG. 6 and 7, FIGS. 6 (i) and 7 (i) are plan views of the element mounting substrate 210, and cross-sectional views corresponding to the respective AA ′ lines are shown in FIG. 6 (ii).
  • FIG. 7 (ii) shows.
  • an element mounting substrate 210 is prepared. 4 to 7, the element mounting substrate 210 is illustrated in a simplified manner, and the wiring layer 240 and the like are omitted as appropriate.
  • a through-hole (removal hole) 312 is drilled into a predetermined region of the element mounting substrate 210 (a region corresponding to a corner of the transparent member 310 to be assembled in a later step). Form. More specifically, the through hole 312 is formed so that the corners of the transparent member 310 are located in the region of the through hole 312.
  • the element mounting substrate 210 is cut along cutting lines 314 such that the four corners become the through holes 312, thereby forming the openings 300.
  • the shape of the four corners is rounded as indicated by the dotted line 316, so that the effective area in the opening 300 is reduced.
  • the through holes 312 in the four corners of the opening 300 in advance, there are no obstacles at the four corners of the opening 300, so that the inside of the opening 300 can be used more widely. That is, a transparent member having a larger area can be fitted into the opening 300.
  • the transparent member 310 is placed in the opening 300. Insert and temporarily place.
  • the region 410 in the center portion of the pedestal 400 is lower than the reference plane 420 of the pedestal 400 by a depth H. For this reason, when the transparent member 310 is fitted into the opening 300, the lower surface of the transparent member 310 protrudes downward by a depth H from the lower surface of the element mounting substrate 210.
  • the upper surface of the transparent member 310 is made higher than the upper surface of the element mounting substrate 210 by using the pedestal 400 in which the central region 410 is lowered. It can be held in a state of being lowered by the depth H.
  • a recess 430 that is lower than the region 410 is provided around the region 410 in the center portion of the base 400.
  • the thickness of the transparent member 310 is equal to the thickness of the element mounting substrate 210 and is transparent to the main surface of the element mounting substrate 210 on the semiconductor element 120 side.
  • the surface of the member 310 on the semiconductor element 120 side is convex, but is not limited thereto.
  • the transparent member 310 may be thinner than the element mounting substrate 210, and the surface of the transparent member 310 on the semiconductor element 120 side may be recessed with respect to the surface of the element mounting substrate 210 on the semiconductor element 120 side. In this case, using the pedestal 400 in which the central area 410 is higher than the reference plane 420, the transparent member 310 is placed in the opening 300 with the element mounting substrate 210 placed on the pedestal 400. Insert and temporarily place.
  • FIG. 8 is a schematic cross-sectional view showing a structure of a camera module 10 as an example of a semiconductor module according to the fourth embodiment.
  • the camera module 10 of the present embodiment is the same as that of the third embodiment except for the thickness of the transparent member 310.
  • the transparent member 310 is thinner than the element mounting substrate 210.
  • the surface on the lens 290 side of the transparent member 310 is recessed with respect to the main surface on the lens 290 side of the element mounting substrate 210 (in this embodiment, the surface of the insulating resin layer 250).
  • the main surface of the element mounting substrate 210 on the semiconductor element 120 side and the surface of the transparent member 310 on the semiconductor element 120 side are flush with each other.
  • the difference between the thickness of the element mounting substrate 210 and the thickness of the transparent member 310 corresponds to a step between the main surface of the element mounting substrate 210 on the lens 290 side and the surface of the transparent member 310 on the lens 290 side. Therefore, as in the third embodiment, the distance between the convex surface of the lens 290 and the surface of the transparent member 310 on the lens 290 side can be secured, and the camera module 10 can be further reduced in height. . Further, since the main surface of the element mounting substrate 210 on the semiconductor element 120 side and the surface of the transparent member 310 on the semiconductor element 120 side are flush with each other, the height of the solder ball 270 is reduced to reduce the transparency of the transparent member 310 and the semiconductor. The distance from the element 120 can be reduced, and as a result, the camera module 10 can be further reduced in height.
  • a portable device including the camera module of one embodiment of the present invention is described.
  • the example mounted in a mobile telephone as a portable apparatus is shown, for example, it may be an electronic apparatus such as a personal digital assistant (PDA), a digital video camera (DVC), a music player, and a digital still camera (DSC). Good.
  • PDA personal digital assistant
  • DVC digital video camera
  • DSC digital still camera
  • FIG. 9 is a diagram illustrating an external configuration of a mobile phone including the camera module 10 according to the embodiment.
  • a structure in which the camera module of the present application is mounted will be described later.
  • a cellular phone 1111 has a structure in which a first housing 1112 and a second housing 1114 are connected by a movable portion 1120. The first housing 1112 and the second housing 1114 can be rotated around the movable portion 1120.
  • the first housing 1112 is provided with a display portion 1118 and a speaker portion 1124 for displaying information such as characters and images.
  • the second housing 1114 is provided with an operation portion 1122 such as operation buttons and a microphone portion 1126.
  • One of the camera modules according to each embodiment of the present invention is mounted inside such a mobile phone 1111.
  • FIG. 10 is a partial cross-sectional view of the mobile phone shown in FIG. 9 (a cross-sectional view of the first housing 1112 and the second housing 1114).
  • the semiconductor module 1200 is mounted on the printed board 1128a via the solder balls 1210, and is electrically connected to the display unit 1118 and the like via the printed board 1128a.
  • the semiconductor module 1200 includes, for example, a power supply circuit for driving each circuit, an RF generation circuit for generating RF, a DAC, an encoder circuit, and a drive circuit for a backlight as a light source of a liquid crystal panel employed in a display unit of a mobile phone It functions as an input / output circuit for image data acquired by the camera module 10 to be described later.
  • the camera module 10 is mounted on a printed circuit board 1128b provided in the second housing 1114.
  • the second housing 1114 is provided with a window portion 1115 that transmits light, and a lens provided in the camera module 10 is provided to face the window portion 1115.
  • This camera module 10 enables photographing with a mobile phone.
  • the photographed data is stored in a memory (not shown) by the processing of the semiconductor module 1200.
  • the portable device including the semiconductor module according to the embodiment of the present invention, the following effects can be obtained.
  • the strength or rigidity of the element mounting substrate 210 as shown in FIG. 1 is increased, so that the operation reliability of a portable device equipped with such a camera module 10 is increased. be able to.
  • the camera module 10 shown in the above embodiment is further reduced in height, it is possible to reduce the thickness of a portable device equipped with such a camera module 10.
  • the insulating resin layer 130 may be multilayered, and the wiring layer may be multilayered in accordance with the multilayering of the insulating resin layer 130.
  • the insulating resin layer 230 may be multilayered, and the wiring layer may be multilayered according to the multilayering of the insulating resin layer 230.
  • the present invention can be used for an element mounting board on which chip parts and the like can be mounted and a semiconductor module using the same.

Abstract

An element mounting substrate (210) on which chip parts (220) are mounted is provided with an opening (300) corresponding to an area for installing a semiconductor element (120). A transparent member (310) is fitted in the opening (300), and a side surface at the outer periphery of the transparent member (310) is fixed, by an adhesive (320), to an inner wall of the element mounting substrate (210) exposing to the opening (300). Further, a second element mounting substrate (210) mounted with a lens (290) and chip parts (220) is laminated on a first element mounting substrate (110) mounted with a semiconductor element (120), through a solder ball (270). The second element mounting substrate (210) is provided with an opening (300) corresponding to an area for installing the semiconductor element (120). A transparent member (310) is fitted in the opening (300), and the outer periphery of the transparent member (310) is fixed, by an adhesive (320), to an inner wall of the second element mounting substrate (210) exposing to the opening (300).

Description

素子搭載用基板、半導体モジュール、カメラモジュールおよび素子搭載用基板の製造方法Device mounting substrate, semiconductor module, camera module, and device mounting substrate manufacturing method
 本発明は、チップ部品等を搭載可能な素子搭載用基板およびこれを用いた半導体モジュールに関する。より具体的には、開口部が形成された素子搭載用基板に関する。 The present invention relates to an element mounting substrate on which chip parts and the like can be mounted, and a semiconductor module using the same. More specifically, the present invention relates to an element mounting substrate in which an opening is formed.
 携帯電話、PDA、DVC、DSCといったポータブルエレクトロニクス機器には、人物や風景を撮影できるカメラ機能が付加されるなどの高機能化が加速するなか、こうした製品が市場で受け入れられるためには小型・軽量化が必須となっており、その実現のために高集積のシステムLSIが求められている。 Portable electronic devices such as mobile phones, PDAs, DVCs, and DSCs are becoming smaller and lighter in order for these products to be accepted in the market as camera functions for taking pictures of people and landscapes are accelerating. For this purpose, a highly integrated system LSI is required.
 一方、これらのエレクトロニクス機器に対しては、より使い易く便利なものが求められており、機器に使用されるLSIに対し、高機能化、高性能化が要求されている。このため、LSIチップの高集積化に伴いそのI/O数が増大する一方でパッケージ自体の小型化、薄型化の要求も強く、これらを両立させるために、半導体部品の高密度な基板実装に適合した半導体パッケージの開発が強く求められている。このような要求に応えるため、半導体部品を搭載する半導体モジュールについてはさらなる薄型化が求められている。 On the other hand, these electronic devices are required to be easier to use and more convenient, and higher functionality and higher performance are required for LSIs used in the devices. For this reason, as the number of I / Os increases with higher integration of LSI chips, there is a strong demand for downsizing and thinning of the package itself. There is a strong demand for the development of compatible semiconductor packages. In order to meet such demands, further thinning is required for semiconductor modules on which semiconductor components are mounted.
 従来のポータブルエレクトロニクス機器の一例であるカメラモジュールについて説明する。 A camera module, which is an example of a conventional portable electronics device, will be described.
 図11は、従来のカメラモジュールの構造を示す断面図である。図11に示すように、従来のカメラモジュールは、撮像用半導体素子である撮像素子31、鏡筒33、レンズ35、光学フィルター(赤外線フィルター)37、回路基板39、補強板41、接着剤43および封止材45を備えている。 FIG. 11 is a cross-sectional view showing the structure of a conventional camera module. As shown in FIG. 11, the conventional camera module includes an imaging device 31 that is an imaging semiconductor device, a lens barrel 33, a lens 35, an optical filter (infrared filter) 37, a circuit board 39, a reinforcing plate 41, an adhesive 43, and A sealing material 45 is provided.
 被写体像が入射される撮像面(受光面)47を有する撮像素子31は、バンプ49を介して回路基板39に電気的に接続されている。レンズ35は、被写体像を撮像素子31の受光面47に結像し、レンズ35と撮像素子31との間に導光空間51が形成されている。導光空間51には赤外線フィルター37が設けられ、赤外線フィルター37は撮像画像の劣化の原因となる赤外線を遮断する。補強板41は、回路基板39が強度不足となる場合に、この強度不足を補うために設けられている。補強板41は接着剤43により回路基板39に接着されている。 The imaging element 31 having the imaging surface (light receiving surface) 47 on which the subject image is incident is electrically connected to the circuit board 39 via the bumps 49. The lens 35 forms a subject image on the light receiving surface 47 of the image sensor 31, and a light guide space 51 is formed between the lens 35 and the image sensor 31. An infrared filter 37 is provided in the light guide space 51, and the infrared filter 37 blocks infrared rays that cause deterioration of the captured image. The reinforcing plate 41 is provided to compensate for the insufficient strength when the circuit board 39 has insufficient strength. The reinforcing plate 41 is bonded to the circuit board 39 with an adhesive 43.
 また、図12は、従来のカメラモジュールの他の構造を示す断面図である。 FIG. 12 is a cross-sectional view showing another structure of the conventional camera module.
 図12に示すように、従来のカメラモジュールでは、CMOS等の撮像素子3が電極部7を介して実装基板1に実装されている。筐体2は、実装基板1に固定されており、撮像素子3は筐体2の基端側の内部に配置されている。筐体2の先端側に、レンズ4を内蔵したレンズホルダ8が設けられている。レンズ4と撮像素子3との間に、赤外カットフィルターなどの光学フィルター11が設置されている。光学フィルター11は、レンズホルダ8に形成された保持部13により保持されている。レンズ4が光学フィルター11に近づいても、レンズ4を透過して光学フィルター11の周辺部に入射する光の入射角がレンズ4が光学フィルター11から離れているときと変わらないようにするため、光学フィルター11は、撮像素子3の側に突出するように湾曲している。 As shown in FIG. 12, in a conventional camera module, an image pickup device 3 such as a CMOS is mounted on a mounting substrate 1 via an electrode portion 7. The housing 2 is fixed to the mounting substrate 1, and the image sensor 3 is arranged inside the base end side of the housing 2. A lens holder 8 incorporating the lens 4 is provided on the front end side of the housing 2. An optical filter 11 such as an infrared cut filter is installed between the lens 4 and the image sensor 3. The optical filter 11 is held by a holding portion 13 formed on the lens holder 8. Even when the lens 4 approaches the optical filter 11, in order to prevent the incident angle of light that passes through the lens 4 and enters the peripheral portion of the optical filter 11 from being different from that when the lens 4 is separated from the optical filter 11, The optical filter 11 is curved so as to protrude toward the image sensor 3.
特開2005-316127号公報JP 2005-316127 A 特開2005-027155号公報JP 2005-027155 A
 従来のようにプリント基板に代表される配線基板(素子搭載用基板あるいは回路基板)に可視光を含む電磁波を透過させるための開口部を設けると、配線基板の剛性が低くなり、熱応力が加わったときに変形しやすくなるという課題が生じていた。具体的には、開口部を有する配線基板にチップ部品などをはんだを用いて実装する際に配線基板にねじれが生じ、配線基板の接続信頼性の低下を招くおそれがあった。 If an opening for transmitting electromagnetic waves including visible light is provided in a wiring board (element mounting board or circuit board) typified by a printed circuit board as in the past, the rigidity of the wiring board is lowered and thermal stress is applied. There has been a problem that it is easily deformed. Specifically, when a chip component or the like is mounted on a wiring board having an opening using solder, the wiring board is twisted, which may cause a reduction in connection reliability of the wiring board.
 また、従来の他の構造のように、湾曲した光学フィルターを用いる場合には、平板状の光学フィルターを湾曲させる工程が別途必要となり、製造上の工程数が増えることで、製造コストの増加を招いていた。このため、カメラモジュールの低背化技術としては、製造コストを考慮すると現実的な技術ではなく、改良の余地が残されていた。 In addition, when using a curved optical filter as in other conventional structures, an additional step of bending the flat optical filter is required, which increases the number of manufacturing steps and increases the manufacturing cost. I was invited. For this reason, as a technique for reducing the height of the camera module, considering the manufacturing cost, it is not a realistic technique, and there remains room for improvement.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、電磁波を透過させるための開口部が設けられた素子搭載用基板の剛性を高める技術の提供にある。また、本発明の他の目的は、カメラモジュールのさらなる低背化を可能にする技術の提供にある。 The present invention has been made in view of these problems, and an object thereof is to provide a technique for increasing the rigidity of an element mounting substrate provided with an opening for transmitting electromagnetic waves. Another object of the present invention is to provide a technique that enables a further reduction in the height of the camera module.
 本発明のある態様は素子搭載用基板である。当該素子搭載用基板は、一方の主表面から他方の主表面に貫通する開口部が設けられている配線基板と、開口部に嵌め込まれ、特定の波長領域の電磁波が透過可能な透明部材と、を備え、配線基板の面方向において、透明部材の外周の側面の少なくとも一部と、開口部の配線基板の側壁とが重畳している。 An aspect of the present invention is an element mounting substrate. The element mounting board includes a wiring board provided with an opening penetrating from one main surface to the other main surface, a transparent member fitted into the opening and capable of transmitting electromagnetic waves in a specific wavelength region, In the surface direction of the wiring board, at least a part of the outer peripheral side surface of the transparent member overlaps the side wall of the wiring board in the opening.
 上記態様の素子搭載用基板において、透明部材は、赤外線カットフィルターであってもよい。また、配線基板は、無機充填材が充填された絶縁樹脂層を含み、透明部材は、無機充填材と熱膨張係数が同等であってもよい。また、また、透明部材はガラス材からなり無機充填材はガラスクロスからなっていてもよい。 In the element mounting substrate of the above aspect, the transparent member may be an infrared cut filter. The wiring board may include an insulating resin layer filled with an inorganic filler, and the transparent member may have the same thermal expansion coefficient as the inorganic filler. Further, the transparent member may be made of a glass material, and the inorganic filler may be made of a glass cloth.
 本発明の他の態様は、半導体モジュールである。当該半導体モジュールは、半導体素子を搭載した他の素子搭載用基板と、他の素子搭載用基板の上方に設けられた上述した態様の素子搭載用基板と、半導体素子の周囲に設けられ、他の素子搭載用基板に設けられている配線層と上述した態様の素子搭載用基板に設けられている配線層とを電気的に接続する電気接続部材と、を備えることを特徴とする。 Another aspect of the present invention is a semiconductor module. The semiconductor module includes another element mounting board on which a semiconductor element is mounted, the element mounting board in the above-described aspect provided above the other element mounting board, and a semiconductor element. An electrical connection member for electrically connecting the wiring layer provided on the element mounting substrate and the wiring layer provided on the element mounting substrate of the above-described aspect is provided.
 本発明のさらに他の態様は、半導体モジュールである。当該半導体モジュールは、上述した態様の素子搭載用基板と、素子搭載用基板の他方の主表面に実装されている半導体素子と、を備えることを特徴とする。 Still another aspect of the present invention is a semiconductor module. The semiconductor module includes the element mounting substrate according to the aspect described above and a semiconductor element mounted on the other main surface of the element mounting substrate.
 本発明のさらに他の態様はカメラモジュールである。当該カメラモジュールは、半導体素子を搭載した第1の素子搭載用基板と、第1の素子搭載用基板の上方に設けられ、一方の主表面から他方の主表面に貫通する開口部が設けられている第2の素子搭載用基板と、半導体素子の周囲に設けられ、第2の素子搭載用基板に設けられている配線層と第1の素子搭載用基板に設けられている配線層とを電気的に接続する電気接続部材と、開口部の上方に設けられたレンズと、開口部に嵌め込まれ、特定の波長領域の電磁波が透過可能な透明部材と、を備え、第2の素子搭載用基板の面方向において、透明部材の外周の側面の少なくとも一部と、開口部の第2の素子搭載用基板の内壁とが重畳していることを特徴とする。 Still another aspect of the present invention is a camera module. The camera module is provided with a first element mounting substrate on which a semiconductor element is mounted, and an opening penetrating from one main surface to the other main surface, provided above the first element mounting substrate. The second element mounting board, the wiring layer provided around the semiconductor element and provided on the second element mounting board, and the wiring layer provided on the first element mounting board are electrically connected. A second element mounting board comprising: an electrical connection member that is electrically connected; a lens provided above the opening; and a transparent member that is fitted into the opening and is capable of transmitting electromagnetic waves in a specific wavelength region. In the surface direction, at least part of the outer peripheral side surface of the transparent member and the inner wall of the second element mounting substrate in the opening portion overlap each other.
 上記態様のカメラモジュールにおいて、第2の素子搭載用基板のレンズ側の主表面に対して、対応する側の透明部材の主表面が第2の素子搭載用基板の内部の方へ凹んでいてもよい。また、第2の素子搭載用基板は、無機充填材が充填された絶縁樹脂層を含み、透明部材は、無機充填材と熱膨張係数が同等であってもよい。 In the camera module of the above aspect, even if the main surface of the transparent member on the corresponding side is recessed toward the inside of the second element mounting substrate with respect to the main surface on the lens side of the second element mounting substrate. Good. The second element mounting substrate may include an insulating resin layer filled with an inorganic filler, and the transparent member may have the same thermal expansion coefficient as that of the inorganic filler.
 本発明のさらに他の態様は素子搭載用基板の製造方法である。当該素子搭載用基板の製造方法は、配線基板の所定領域に開口部を形成する工程と、開口部が設けられた配線基板を、開口部に対応する領域に凹部を有する台座の上に載置する工程と、開口部に透明部材を嵌め込み、凹部で透明部材を支持させる工程と、透明部材と開口部の配線基板の内壁とを接着する工程と、を備えることを特徴とする。 Still another aspect of the present invention is a method for manufacturing an element mounting substrate. The element mounting substrate manufacturing method includes a step of forming an opening in a predetermined region of the wiring substrate, and a wiring substrate provided with the opening is placed on a base having a recess in the region corresponding to the opening. And a step of fitting the transparent member into the opening and supporting the transparent member by the recess, and a step of bonding the transparent member and the inner wall of the wiring board of the opening.
 上記態様の素子搭載用基板の製造方法において、開口部を形成する工程は、透明部材の角部に対応する領域に貫通孔を形成する工程と、貫通孔を結ぶように配線基板を切断する工程と、を備え、透明部材を開口部に嵌め込んだときに、透明部材の角部が貫通孔の形成領域の中に位置してもよい。 In the element mounting substrate manufacturing method of the above aspect, the step of forming the opening includes a step of forming a through hole in a region corresponding to a corner of the transparent member, and a step of cutting the wiring substrate so as to connect the through hole. And when the transparent member is fitted into the opening, the corners of the transparent member may be located in the through-hole formation region.
 なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。 Note that a combination of the above-described elements as appropriate can be included in the scope of the invention for which protection by patent is sought by this patent application.
 本発明によれば、電磁波を透過させるための開口部が設けられた素子搭載用基板の剛性を高めることができる。また、本発明によれば、カメラモジュールをさらに低背化することができる。 According to the present invention, it is possible to increase the rigidity of the element mounting substrate provided with an opening for transmitting electromagnetic waves. Further, according to the present invention, the camera module can be further reduced in height.
実施の形態1に係るカメラモジュールの構造を示す概略断面図である。2 is a schematic cross-sectional view showing the structure of a camera module according to Embodiment 1. FIG. 実施の形態2に係るカメラモジュールの構造を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing the structure of a camera module according to Embodiment 2. 実施の形態3に係るカメラモジュールの構造を示す概略断面図である。6 is a schematic cross-sectional view showing the structure of a camera module according to Embodiment 3. FIG. 素子搭載用基板の作製方法を示す工程図である。It is process drawing which shows the preparation methods of the element mounting substrate. 素子搭載用基板の作製方法を示す工程図である。It is process drawing which shows the preparation methods of the element mounting substrate. 素子搭載用基板の作製方法を示す工程図である。It is process drawing which shows the preparation methods of the element mounting substrate. 素子搭載用基板の作製方法を示す工程図である。It is process drawing which shows the preparation methods of the element mounting substrate. 実施の形態4に係るカメラモジュールの構造を示す概略断面図である。6 is a schematic cross-sectional view showing a structure of a camera module according to Embodiment 4. FIG. 実施の形態に係るカメラモジュールを備えた携帯電話の構成を示す図である。It is a figure which shows the structure of the mobile telephone provided with the camera module which concerns on embodiment. 図9に示した携帯電話の部分断面図である。FIG. 10 is a partial cross-sectional view of the mobile phone shown in FIG. 9. 従来のカメラモジュールの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional camera module. 従来のカメラモジュールの他の構造を示す断面図である。It is sectional drawing which shows the other structure of the conventional camera module.
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 (実施の形態1)
 図1は、実施の形態1に係る半導体モジュールの一例としてのカメラモジュール10の構造を示す概略断面図である。本実施の形態に係るカメラモジュール10は、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話に搭載のカメラなどの撮像装置に用いられる。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing the structure of a camera module 10 as an example of a semiconductor module according to the first embodiment. The camera module 10 according to the present embodiment is used in an imaging device such as a digital still camera, a digital video camera, or a camera mounted on a mobile phone.
 実施の形態1に係るカメラモジュール10は、回路モジュール200を備える。 The camera module 10 according to Embodiment 1 includes a circuit module 200.
 回路モジュール200は、素子搭載用基板210の一方の面にチップ部品220が搭載され、素子搭載用基板210の他方の面に半導体素子120が搭載された構成を有する。チップ部品220は、後述するレンズ290を駆動するための電子部品であり、たとえば、駆動IC、電源IC、抵抗や容量等の受動部品等が挙げられる。半導体素子120はCMOS型イメージセンサ等の受光素子である。半導体素子120の表面には、フォトダイオードがマトリクス状に形成されており、各フォトダイオードは、受光量に応じて光を電荷量に光電変換し、画素信号として出力する。 The circuit module 200 has a configuration in which the chip component 220 is mounted on one surface of the element mounting substrate 210 and the semiconductor element 120 is mounted on the other surface of the element mounting substrate 210. The chip component 220 is an electronic component for driving a lens 290 described later, and examples thereof include a drive IC, a power supply IC, and passive components such as a resistor and a capacitor. The semiconductor element 120 is a light receiving element such as a CMOS image sensor. Photodiodes are formed in a matrix on the surface of the semiconductor element 120. Each photodiode photoelectrically converts light into a charge amount according to the amount of received light and outputs it as a pixel signal.
 素子搭載用基板210は、基材となる絶縁樹脂層230と、絶縁樹脂層230の一方の主表面(本実施の形態では、半導体素子搭載面)に形成された配線層240と、絶縁樹脂層230の他方の主表面に形成された電極部242と、絶縁樹脂層230の一方の主表面に形成された絶縁樹脂層250と、絶縁樹脂層230の他方の主表面に形成された絶縁樹脂層252とを含む。 The element mounting substrate 210 includes an insulating resin layer 230 serving as a base material, a wiring layer 240 formed on one main surface (in this embodiment, a semiconductor element mounting surface) of the insulating resin layer 230, and an insulating resin layer. 230, electrode portion 242 formed on the other main surface, insulating resin layer 250 formed on one main surface of insulating resin layer 230, and insulating resin layer formed on the other main surface of insulating resin layer 230. 252.
 絶縁樹脂層230は、たとえば、BTレジン等のメラミン誘導体、液晶ポリマー、エポキシ樹脂、PPE樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、ポリアミドビスマレイミド等の熱硬化性樹脂で形成することができる。本実施の形態では、絶縁樹脂層230に、補強材として無機充填材の一種であるガラスクロス232が埋設されている。絶縁樹脂層230の厚さは、たとえば、240μmである。 The insulating resin layer 230 can be formed of, for example, a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide. In the present embodiment, a glass cloth 232 that is a kind of inorganic filler is embedded in the insulating resin layer 230 as a reinforcing material. The thickness of the insulating resin layer 230 is, for example, 240 μm.
 絶縁樹脂層230の一方の主表面に所定パターンの配線層240が設けられている。図示しないが、配線層240の上にNi/Au層などの金めっき層が形成されていてもよい。配線層240の所定箇所において、チップ部品220がはんだ221により電気的に接続されている。また、絶縁樹脂層230の他方の主表面に電極部242が設けられている。図示しないが、電極部242の上にNi/Au層などの金めっき層が形成されていてもよい。配線層240および電極部242を構成する材料としては銅が挙げられる。配線層240と電極部242とは、絶縁樹脂層230の所定位置において絶縁樹脂層230を貫通するビア導体(図示せず)により電気的に接続されている。なお、特に図示していないが、絶縁樹脂層230の他方の主表面には、電極部242と同層で、かつ、同じ高さの配線層が設けられている。 A wiring layer 240 having a predetermined pattern is provided on one main surface of the insulating resin layer 230. Although not shown, a gold plating layer such as a Ni / Au layer may be formed on the wiring layer 240. The chip component 220 is electrically connected by solder 221 at a predetermined portion of the wiring layer 240. In addition, an electrode portion 242 is provided on the other main surface of the insulating resin layer 230. Although not shown, a gold plating layer such as a Ni / Au layer may be formed on the electrode portion 242. An example of a material constituting the wiring layer 240 and the electrode portion 242 is copper. The wiring layer 240 and the electrode part 242 are electrically connected by a via conductor (not shown) penetrating the insulating resin layer 230 at a predetermined position of the insulating resin layer 230. Although not particularly illustrated, the other main surface of the insulating resin layer 230 is provided with a wiring layer that is the same layer as the electrode portion 242 and has the same height.
 絶縁樹脂層230の一方の主表面にフォトソルダーレジストなどからなる絶縁樹脂層250が設けられている。また、絶縁樹脂層230の他方の主表面にフォトソルダーレジストなどからなる絶縁樹脂層252が設けられている。絶縁樹脂層250および絶縁樹脂層252の厚さは、たとえば、30μmである。絶縁樹脂層252には、電極部242にはんだ272を搭載するための開口が設けられている。はんだ272により、電極部242と半導体素子120に設けられた素子電極121とが電気的に接続されている。 An insulating resin layer 250 made of a photo solder resist or the like is provided on one main surface of the insulating resin layer 230. In addition, an insulating resin layer 252 made of a photo solder resist or the like is provided on the other main surface of the insulating resin layer 230. The thickness of the insulating resin layer 250 and the insulating resin layer 252 is, for example, 30 μm. The insulating resin layer 252 is provided with an opening for mounting the solder 272 on the electrode portion 242. The electrode portion 242 and the element electrode 121 provided on the semiconductor element 120 are electrically connected by the solder 272.
 素子搭載用基板210には、鏡筒280が設置されており、鏡筒280の内周面に設けられたネジ部の螺合によって円筒型本体282と鏡筒280とが結合している。レンズ290は、円筒型本体282に取り付けられている。 The element mounting substrate 210 is provided with a lens barrel 280, and the cylindrical main body 282 and the lens barrel 280 are coupled by screwing of a screw portion provided on the inner peripheral surface of the lens barrel 280. The lens 290 is attached to the cylindrical main body 282.
 また、半導体素子120の設置領域に対応して、素子搭載用基板210を貫通する開口部300が設けられている。この開口部300に透明部材310が嵌め込まれている。透明部材310の外周の側面は、開口部300に露出する素子搭載用基板210の内壁に接着剤320により固着されている。透明部材310の厚さは、たとえば、300μmである。 Further, an opening 300 penetrating the element mounting substrate 210 is provided corresponding to the installation area of the semiconductor element 120. A transparent member 310 is fitted into the opening 300. The outer peripheral side surface of the transparent member 310 is fixed to the inner wall of the element mounting substrate 210 exposed in the opening 300 with an adhesive 320. The thickness of the transparent member 310 is, for example, 300 μm.
 透明部材310は、特定の波長領域の電磁波が透過可能な材料で形成されており、具体的には、IRカットフィルターである。透明部材310をIRカットフィルターとすることにより、半導体素子120へ流入する過度な長波長の赤外線が遮断される。なお、透明部材310としては、IRカットフィルターの他に、紫外線カットフィルター、カラーフィルター、偏光板、燃焼ガス透過フィルター、火炎測温フィルター、プラスチック測温フィルター、石英ガラス透過フィルター、ガラス測温用フィルターなどが挙げられる。 The transparent member 310 is made of a material that can transmit electromagnetic waves in a specific wavelength region, and specifically, is an IR cut filter. By using the transparent member 310 as an IR cut filter, excessively long wavelength infrared rays flowing into the semiconductor element 120 are blocked. In addition to the IR cut filter, the transparent member 310 includes an ultraviolet cut filter, a color filter, a polarizing plate, a combustion gas transmission filter, a flame temperature measurement filter, a plastic temperature measurement filter, a quartz glass transmission filter, and a glass temperature measurement filter. Etc.
 本実施の形態では、透明部材310のレンズ290側の主表面は、絶縁樹脂層250のレンズ290側の主表面と面一であるが、透明部材310のレンズ290側の主表面と絶縁樹脂層250のレンズ290側の主表面とが段差を形成していてもよい。言い換えると、素子搭載用基板210の面方向において、透明部材310の外周の側面の少なくとも一部と、開口部300の素子搭載用基板210の内壁とが重畳していればよい。なお、本実施の形態では、配線基板は、絶縁樹脂層230、絶縁樹脂層250および絶縁樹脂層252を含む素子搭載用基板210である。 In the present embodiment, the main surface on the lens 290 side of the transparent member 310 is flush with the main surface on the lens 290 side of the insulating resin layer 250, but the main surface on the lens 290 side of the transparent member 310 and the insulating resin layer. The main surface on the lens 290 side of 250 may form a step. In other words, in the surface direction of the element mounting substrate 210, at least a part of the outer peripheral side surface of the transparent member 310 and the inner wall of the element mounting substrate 210 in the opening 300 may overlap each other. In the present embodiment, the wiring substrate is the element mounting substrate 210 including the insulating resin layer 230, the insulating resin layer 250, and the insulating resin layer 252.
 透明部材310の熱膨張係数は、絶縁樹脂層230に埋設された無機充填材、本実施の形態では、ガラスクロス232の熱膨張係数と同等である。一般的に使用されるガラスクロスの熱膨張係数(℃-1)は、5.5×10-6である。この場合、透明部材310の熱膨張係数(℃-1)として5.5×10-6が好ましい。なお、石英ガラス、ホウケイ酸ガラス、ソーダ石英ガラスの熱膨張係数(℃-1)は、それぞれ、5.6×10-7、5.2×10-6、8.5×10-6であり、ガラスクロスの構成材料によっては、透明部材310の熱膨張係数(℃-1)の範囲として、5×10-7~9×10-6の範囲を取り得る。なお、エポキシ樹脂の熱膨張係数(℃-1)は、およそ6×10-5であり、透明部材310の熱膨張係数の範囲から外れている。 The thermal expansion coefficient of the transparent member 310 is equal to the thermal expansion coefficient of the inorganic filler embedded in the insulating resin layer 230, that is, the glass cloth 232 in the present embodiment. A commonly used glass cloth has a thermal expansion coefficient (° C. −1 ) of 5.5 × 10 −6 . In this case, the thermal expansion coefficient (° C. −1 ) of the transparent member 310 is preferably 5.5 × 10 −6 . The thermal expansion coefficients (° C. −1 ) of quartz glass, borosilicate glass, and soda quartz glass are 5.6 × 10 −7 , 5.2 × 10 −6 , and 8.5 × 10 −6 , respectively. Depending on the constituent material of the glass cloth, the range of the thermal expansion coefficient (° C. −1 ) of the transparent member 310 can be in the range of 5 × 10 −7 to 9 × 10 −6 . Note that the thermal expansion coefficient (° C. −1 ) of the epoxy resin is approximately 6 × 10 −5, which is outside the range of the thermal expansion coefficient of the transparent member 310.
 以上説明した半導体モジュールの一例としてのカメラモジュール10によれば、少なくとも以下に挙げる効果を得ることができる。
(1)素子搭載用基板210に設けられた開口部300に透明部材310を嵌め込むことにより、素子搭載用基板210の強度あるいは剛性を高めることができる。
According to the camera module 10 as an example of the semiconductor module described above, at least the following effects can be obtained.
(1) By fitting the transparent member 310 into the opening 300 provided in the element mounting substrate 210, the strength or rigidity of the element mounting substrate 210 can be increased.
 この他に、本実施の形態のカメラモジュール10によって得られる効果として以下の項目が挙げられる。
(2)素子搭載用基板210に設けられた開口部300に絶縁樹脂層230に埋設された無機充填材と熱膨張係数が同等の透明部材310を嵌め込むことにより、素子搭載用基板210全体の熱応答性を均一にすることができる。これにより、チップ部品220や半導体素子120を表面実装する際に、素子搭載用基板210に熱が加わった場合に、素子搭載用基板210にねじれが生じることを抑制することができる。
(3)素子搭載用基板210に設けられた開口部300に透明部材310を嵌め込むことにより、図10に示すように、光学フィルター37を回路基板39の上方に載置する場合に比べて、レンズ290の高さをより低くすることができ、ひいては、カメラモジュール10の低背化を図ることができる。
(4)透明部材310を素子搭載用基板210の上方に載置する場合には、透明部材310を固定するための接着剤によるフィレットが形成され、透明部材310の側方に広がる。これにより、素子搭載用基板210にチップ部品を搭載する場合に、チップ部品の搭載領域が制約される。これに対して、素子搭載用基板210に設けられた開口部300に透明部材310を嵌め込むことにより、透明部材310を固着する接着剤320は開口部300内にとどまるため、チップ部品220の設置領域に関する設計自由度を向上させることができる。
(5)開口部300に露出する素子搭載用基板210の内壁が接着剤320で被覆されるため、ダスト発生抑制のための端面保護樹脂を別途設ける必要がない。
In addition, the following items are listed as effects obtained by the camera module 10 of the present embodiment.
(2) By fitting the transparent member 310 having the same thermal expansion coefficient as the inorganic filler embedded in the insulating resin layer 230 into the opening 300 provided in the element mounting substrate 210, the entire element mounting substrate 210 is Thermal responsiveness can be made uniform. Thereby, when the chip component 220 and the semiconductor element 120 are surface-mounted, when the element mounting substrate 210 is heated, it is possible to prevent the element mounting substrate 210 from being twisted.
(3) By fitting the transparent member 310 into the opening 300 provided in the element mounting substrate 210, as shown in FIG. 10, compared to the case where the optical filter 37 is placed above the circuit substrate 39, The height of the lens 290 can be further reduced, and as a result, the height of the camera module 10 can be reduced.
(4) When the transparent member 310 is placed above the element mounting substrate 210, a fillet made of an adhesive for fixing the transparent member 310 is formed and spreads to the side of the transparent member 310. As a result, when a chip component is mounted on the element mounting substrate 210, the chip component mounting area is restricted. On the other hand, since the adhesive 320 for fixing the transparent member 310 stays in the opening 300 by fitting the transparent member 310 into the opening 300 provided in the element mounting substrate 210, the chip component 220 is installed. It is possible to improve the degree of design freedom regarding the area.
(5) Since the inner wall of the element mounting substrate 210 exposed to the opening 300 is covered with the adhesive 320, it is not necessary to separately provide an end face protective resin for suppressing dust generation.
 (実施の形態2)
 図2は、実施の形態2に係る半導体モジュールの一例としてのカメラモジュール10の構造を示す概略断面図である。本実施の形態に係るカメラモジュール10は、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話に搭載のカメラなどの撮像装置に用いられる。実施の形態2に係るカメラモジュール10は、回路モジュール(第1の回路モジュール)100と、回路モジュール100の上に搭載された回路モジュール(第2の回路モジュール)200とを備える。実施の形態1に係るカメラモジュール10では、半導体素子120が素子搭載用基板210の裏面側に搭載され、回路モジュール200に備えられているが、本実施の形態では、半導体素子120が回路モジュール100に備えられている。なお、回路モジュール200を構成する素子搭載用基板210およびこれに搭載された鏡筒280、レンズ290等は実施の形態1と同様であり、説明を省略する。
(Embodiment 2)
FIG. 2 is a schematic cross-sectional view showing the structure of the camera module 10 as an example of the semiconductor module according to the second embodiment. The camera module 10 according to the present embodiment is used in an imaging device such as a digital still camera, a digital video camera, or a camera mounted on a mobile phone. The camera module 10 according to the second embodiment includes a circuit module (first circuit module) 100 and a circuit module (second circuit module) 200 mounted on the circuit module 100. In the camera module 10 according to the first embodiment, the semiconductor element 120 is mounted on the back side of the element mounting substrate 210 and is provided in the circuit module 200. However, in the present embodiment, the semiconductor element 120 is mounted on the circuit module 100. Is provided. The element mounting substrate 210 constituting the circuit module 200, the lens barrel 280, the lens 290 and the like mounted thereon are the same as those in the first embodiment, and the description thereof is omitted.
 回路モジュール100は、主な構成として素子搭載用基板(第1の素子搭載用基板)110と素子搭載用基板110に実装された半導体素子120を備える。 The circuit module 100 includes an element mounting substrate (first element mounting substrate) 110 and a semiconductor element 120 mounted on the element mounting substrate 110 as main components.
 素子搭載用基板110は、絶縁樹脂層130とガラスクロス132とを含む。このガラスクロス132は、絶縁樹脂層130に複数層織り込まれていてもよい。 The element mounting substrate 110 includes an insulating resin layer 130 and a glass cloth 132. The glass cloth 132 may be woven into a plurality of layers in the insulating resin layer 130.
 絶縁樹脂層130は、たとえば、BTレジン等のメラミン誘導体、液晶ポリマー、エポキシ樹脂、PPE樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、ポリアミドビスマレイミド等の熱硬化性樹脂で形成することができる。 The insulating resin layer 130 can be formed of a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide.
 絶縁樹脂層130に埋め込まれたガラスクロス132により、素子搭載用基板110の剛性が高められている。 The rigidity of the element mounting substrate 110 is enhanced by the glass cloth 132 embedded in the insulating resin layer 130.
 絶縁樹脂層130の一方の主表面(本実施の形態では、回路素子搭載面)に所定パターンの配線層140が設けられている。また、絶縁樹脂層130の一方の主表面には、回路モジュール搭載用のはんだを接合するための電極部160が設けられている。電極部160については後述する。配線層140を構成する材料としては銅が挙げられる。配線層140の厚さは、たとえば20μmである。 A wiring layer 140 having a predetermined pattern is provided on one main surface of the insulating resin layer 130 (in this embodiment, a circuit element mounting surface). Further, on one main surface of the insulating resin layer 130, an electrode portion 160 for joining solder for mounting a circuit module is provided. The electrode unit 160 will be described later. An example of the material constituting the wiring layer 140 is copper. The thickness of the wiring layer 140 is 20 μm, for example.
 絶縁樹脂層130の一方の主表面に絶縁樹脂層150が設けられている。絶縁樹脂層150は、電極部160の周囲および電極部160を構成する導体部162の上面周縁部を被覆している。言い換えると、絶縁樹脂層150には、電極部160の中央領域が露出するような開口が設けられている。なお、絶縁樹脂層150は、たとえば、フォトソルダーレジストにより形成される。絶縁樹脂層150の厚さは、たとえば80~100μmである。絶縁樹脂層150は、電極部160の周囲のみならず、絶縁樹脂層130の周縁に沿って堤防状に設けられている。すなわち、絶縁樹脂層150で囲まれた領域が凹部(キャビティ)となっている。 An insulating resin layer 150 is provided on one main surface of the insulating resin layer 130. The insulating resin layer 150 covers the periphery of the electrode part 160 and the upper surface peripheral part of the conductor part 162 constituting the electrode part 160. In other words, the insulating resin layer 150 is provided with an opening that exposes the central region of the electrode portion 160. The insulating resin layer 150 is formed by, for example, a photo solder resist. The thickness of the insulating resin layer 150 is, for example, 80 to 100 μm. The insulating resin layer 150 is provided in a bank shape along the periphery of the insulating resin layer 130 as well as around the electrode portion 160. That is, a region surrounded by the insulating resin layer 150 is a recess (cavity).
 電極部160は、導体部162および導体部164を含む。 The electrode part 160 includes a conductor part 162 and a conductor part 164.
 導体部162は、配線層140と同層であり、絶縁樹脂層130の一方の主表面に形成されている。さらに、導体部162は、配線層140と同等の厚さ(たとえば20μm)を有する。導体部162の径は、たとえば350μmである。 The conductor portion 162 is the same layer as the wiring layer 140 and is formed on one main surface of the insulating resin layer 130. Furthermore, the conductor part 162 has a thickness (for example, 20 μm) equivalent to the wiring layer 140. The diameter of the conductor portion 162 is, for example, 350 μm.
 導体部164は、導体部162の上面、絶縁樹脂層150の側壁により形成された空間内に充填されている。すなわち、導体部164の上面は、絶縁樹脂層150に設けられた開口内に位置している。導体部164の厚さは、たとえば40μmである。 The conductor portion 164 is filled in a space formed by the upper surface of the conductor portion 162 and the side wall of the insulating resin layer 150. That is, the upper surface of the conductor portion 164 is located in the opening provided in the insulating resin layer 150. The thickness of the conductor part 164 is, for example, 40 μm.
 なお、導体部164の上面にNi/Au層などの金めっき層が形成されていてもよい。金めっき層により導体部164の酸化が抑制される。金めっき層としてNi/Au層を形成する場合には、導体部164側に設けられるNi層の厚さは、たとえば1~15μmであり、Ni層の上に設けられるAu層の厚さは、たとえば0.03~1μmである。 Note that a gold plating layer such as a Ni / Au layer may be formed on the upper surface of the conductor portion 164. Oxidation of the conductor part 164 is suppressed by the gold plating layer. When forming the Ni / Au layer as the gold plating layer, the thickness of the Ni layer provided on the conductor portion 164 side is, for example, 1 to 15 μm, and the thickness of the Au layer provided on the Ni layer is For example, it is 0.03 to 1 μm.
 以上説明した素子搭載用基板110に半導体素子120が搭載されている。具体的には、絶縁樹脂層150で囲まれたキャビティに半導体素子120が実装されている。半導体素子120に設けられた素子電極121と所定領域の配線層140とが金線122によりワイヤボンディング接続されている。また、ワイヤボンディングが接続される配線層140の上面にNi/Au層などの金めっき層が形成されていてもよい。 The semiconductor element 120 is mounted on the element mounting substrate 110 described above. Specifically, the semiconductor element 120 is mounted in a cavity surrounded by the insulating resin layer 150. A device electrode 121 provided on the semiconductor device 120 and a wiring layer 140 in a predetermined region are connected by wire bonding with a gold wire 122. Further, a gold plating layer such as a Ni / Au layer may be formed on the upper surface of the wiring layer 140 to which wire bonding is connected.
 本実施の形態のカメラモジュール10によれば、実施の形態1のカメラモジュール10で得られる効果(1)~(5)の他に以下の効果が得られる。
(6)開口部が設けられた上側のプリント基板を下側のプリント基板に積層した後、上側のプリント基板の開口部を塞ぐように透明部材を設置する場合に、透明部材を設置するまでの間に下側のプリント基板上のCMOSイメージセンサー等の半導体素子にダストが落ちるおそれがある。これに対して、素子搭載用基板210は、素子搭載用基板210を素子搭載用基板110に搭載する前に、開口部300が透明部材310により塞がれているため、素子搭載用基板210を素子搭載用基板110に搭載することで、半導体素子120にダストが落ちることを抑制することができる。
According to the camera module 10 of the present embodiment, the following effects can be obtained in addition to the effects (1) to (5) obtained by the camera module 10 of the first embodiment.
(6) After stacking the upper printed circuit board provided with the opening on the lower printed circuit board, when installing the transparent member so as to close the opening of the upper printed circuit board, until the transparent member is installed In the meantime, dust may fall on a semiconductor element such as a CMOS image sensor on the lower printed circuit board. On the other hand, since the opening 300 is closed by the transparent member 310 before the element mounting substrate 210 is mounted on the element mounting substrate 110, the element mounting substrate 210 is By mounting on the element mounting substrate 110, it is possible to suppress dust from falling on the semiconductor element 120.
 (実施の形態3)
 図3は、実施の形態3に係る半導体モジュールの一例としてのカメラモジュール10の構造を示す概略断面図である。本実施の形態のカメラモジュール10は、レンズ290および透明部材310の構成を除き、実施の形態2と同様である。
(Embodiment 3)
FIG. 3 is a schematic cross-sectional view showing the structure of the camera module 10 as an example of the semiconductor module according to the third embodiment. The camera module 10 of the present embodiment is the same as that of the second embodiment except for the configuration of the lens 290 and the transparent member 310.
 本実施の形態では、レンズ290が非対称の平凸レンズであり、透明部材310の側が凸になっている。 In this embodiment, the lens 290 is an asymmetric plano-convex lens, and the transparent member 310 side is convex.
 透明部材310の厚みは素子搭載用基板210の厚みと同等であり、素子搭載用基板210のレンズ290側の主表面(本実施の形態では、絶縁樹脂層250の表面)に対して、透明部材310のレンズ290側の表面が凹んだ構造となっている。このため、実施の形態2で述べた効果の他に、レンズ290の凸側表面と透明部材310のレンズ290側の表面との距離を確保することができ、カメラモジュール10のさらなる低背化を図ることができる。
(素子搭載用基板の作製方法)
 図4(A)、図4(B)、図5乃至図7は、素子搭載用基板210の作製方法を示す工程図である。なお、図6および図7では、図6(i)、図7(i)に素子搭載用基板210の平面図を示し、それぞれのA-A’線に対応する断面図を図6(ii)、図7(ii)に示す。
The thickness of the transparent member 310 is the same as the thickness of the element mounting substrate 210, and the transparent member 310 is transparent to the main surface of the element mounting substrate 210 on the lens 290 side (in this embodiment, the surface of the insulating resin layer 250). The lens 310 has a concave surface on the lens 290 side. For this reason, in addition to the effects described in the second embodiment, the distance between the convex surface of the lens 290 and the surface of the transparent member 310 on the lens 290 side can be secured, and the camera module 10 can be further reduced in height. Can be planned.
(Method for manufacturing element mounting substrate)
4A, 4B, and 5 to 7 are process diagrams illustrating a method for manufacturing the element mounting substrate 210. FIG. 6 and 7, FIGS. 6 (i) and 7 (i) are plan views of the element mounting substrate 210, and cross-sectional views corresponding to the respective AA ′ lines are shown in FIG. 6 (ii). FIG. 7 (ii) shows.
 まず、図4(A)に示すように、素子搭載用基板210を用意する。なお、図4乃至図7では、素子搭載用基板210が簡略化して図示されており、配線層240等は適宜省略されている。 First, as shown in FIG. 4A, an element mounting substrate 210 is prepared. 4 to 7, the element mounting substrate 210 is illustrated in a simplified manner, and the wiring layer 240 and the like are omitted as appropriate.
 次に、図4(B)に示すように、素子搭載用基板210の所定領域(後の工程で組み付けられる透明部材310の角部に対応する領域)にドリル加工により貫通孔(捨て穴)312を形成する。より具体的には、貫通孔312の領域内に透明部材310の角部が位置するように貫通孔312を形成する。 Next, as shown in FIG. 4B, a through-hole (removal hole) 312 is drilled into a predetermined region of the element mounting substrate 210 (a region corresponding to a corner of the transparent member 310 to be assembled in a later step). Form. More specifically, the through hole 312 is formed so that the corners of the transparent member 310 are located in the region of the through hole 312.
 次に、図5に示すように、四隅が貫通孔312となるような切断線314に沿って素子搭載用基板210を切断し、開口部300を形成する。開口部300を形成する切断加工をルーターのみを用いて行うと、四隅の形状が点線316のように丸みを帯びるため、開口部300内の有効面積が減少する。これに対して、開口部300の四隅に貫通孔312を予め形成しておくことにより、開口部300の四隅に障害となる部分がなくなるため、開口部300内をより広く利用することができる。すなわち、より大きい面積の透明部材を開口部300に嵌め込むことができる。 Next, as shown in FIG. 5, the element mounting substrate 210 is cut along cutting lines 314 such that the four corners become the through holes 312, thereby forming the openings 300. When the cutting process for forming the opening 300 is performed by using only a router, the shape of the four corners is rounded as indicated by the dotted line 316, so that the effective area in the opening 300 is reduced. On the other hand, by forming the through holes 312 in the four corners of the opening 300 in advance, there are no obstacles at the four corners of the opening 300, so that the inside of the opening 300 can be used more widely. That is, a transparent member having a larger area can be fitted into the opening 300.
 次に、図6(i)および図6(ii)に示すように、台座(または治具)400の上に、素子搭載用基板210を載置した状態で、開口部300に透明部材310を嵌め込み、仮置きを行う。なお、台座400の中央部分の領域410は、台座400の基準面420から深さHだけ低くなっている。このため、開口部300に透明部材310を嵌め込むと、透明部材310の下面は、素子搭載用基板210の下面から深さHだけ下方に突出する。言い換えると、透明部材310と素子搭載用基板210の厚みが同じ場合には、中央部分の領域410が低くなった台座400を用いることにより、透明部材310の上面が素子搭載用基板210の上面より深さH分だけ低くなった状態で保持することができる。また、台座400の中央部分の領域410の周囲に領域410よりさらに低い凹部430が設けられている。 Next, as shown in FIGS. 6 (i) and 6 (ii), with the element mounting substrate 210 placed on the pedestal (or jig) 400, the transparent member 310 is placed in the opening 300. Insert and temporarily place. The region 410 in the center portion of the pedestal 400 is lower than the reference plane 420 of the pedestal 400 by a depth H. For this reason, when the transparent member 310 is fitted into the opening 300, the lower surface of the transparent member 310 protrudes downward by a depth H from the lower surface of the element mounting substrate 210. In other words, when the transparent member 310 and the element mounting substrate 210 have the same thickness, the upper surface of the transparent member 310 is made higher than the upper surface of the element mounting substrate 210 by using the pedestal 400 in which the central region 410 is lowered. It can be held in a state of being lowered by the depth H. In addition, a recess 430 that is lower than the region 410 is provided around the region 410 in the center portion of the base 400.
 次に、図7(i)および図7(ii)に示すように、台座400によって透明部材310が保持された状態で、透明部材310と開口部300に露出した素子搭載用基板210の内壁との間の隙間に接着剤320を流し込む。このとき、余分な接着剤が発生した場合に、余分な接着剤は凹部430に流れ込み、凹部430が液だめとして機能することにより、余分な接着剤が素子搭載用基板210に付着することを抑制することができる。 Next, as shown in FIGS. 7 (i) and 7 (ii), with the transparent member 310 held by the pedestal 400, the transparent member 310 and the inner wall of the element mounting substrate 210 exposed to the opening 300 are The adhesive 320 is poured into the gap between the two. At this time, when an excess adhesive is generated, the excess adhesive flows into the recess 430, and the recess 430 functions as a reservoir, thereby preventing the excess adhesive from adhering to the element mounting substrate 210. can do.
 なお、実施の形態2に係るカメラモジュール10では、透明部材310の厚みと素子搭載用基板210の厚みとが同等であり、素子搭載用基板210の半導体素子120側の主表面に対して、透明部材310の半導体素子120側の表面が凸になっているが、これに限られない。透明部材310の厚みが素子搭載用基板210よりも厚みが薄く、透明部材310の半導体素子120側の表面が素子搭載用基板210の半導体素子120側の表面に対して凹んでいてもよい。この場合には、中央部分の領域410が基準面420より高くなっている台座400を用いて、台座400の上に、素子搭載用基板210を載置した状態で、開口部300に透明部材310を嵌め込み、仮置きを行う。 In the camera module 10 according to the second embodiment, the thickness of the transparent member 310 is equal to the thickness of the element mounting substrate 210 and is transparent to the main surface of the element mounting substrate 210 on the semiconductor element 120 side. The surface of the member 310 on the semiconductor element 120 side is convex, but is not limited thereto. The transparent member 310 may be thinner than the element mounting substrate 210, and the surface of the transparent member 310 on the semiconductor element 120 side may be recessed with respect to the surface of the element mounting substrate 210 on the semiconductor element 120 side. In this case, using the pedestal 400 in which the central area 410 is higher than the reference plane 420, the transparent member 310 is placed in the opening 300 with the element mounting substrate 210 placed on the pedestal 400. Insert and temporarily place.
 (実施の形態4)
 図8は、実施の形態4に係る半導体モジュールの一例としてのカメラモジュール10の構造を示す概略断面図である。
(Embodiment 4)
FIG. 8 is a schematic cross-sectional view showing a structure of a camera module 10 as an example of a semiconductor module according to the fourth embodiment.
 本実施の形態のカメラモジュール10は、透明部材310の厚みを除き、実施の形態3と同様である。透明部材310の厚みは素子搭載用基板210の厚みより薄い。素子搭載用基板210のレンズ290側の主表面(本実施の形態では、絶縁樹脂層250の表面)に対して、透明部材310のレンズ290側の表面が凹んでいる。一方、素子搭載用基板210の半導体素子120側の主表面と、透明部材310の半導体素子120側の表面とは面一になっている。すなわち、素子搭載用基板210の厚みと透明部材310の厚みとの差が素子搭載用基板210のレンズ290側の主表面と透明部材310のレンズ290側の表面との段差に相当している。このため、実施の形態3と同様に、レンズ290の凸側表面と透明部材310のレンズ290側の表面との距離を確保することができ、カメラモジュール10のさらなる低背化を図ることができる。さらに、素子搭載用基板210の半導体素子120側の主表面と、透明部材310の半導体素子120側の表面とは面一であるため、はんだボール270の高さを低くして透明部材310と半導体素子120との間隔を狭めることができ、ひいてはカメラモジュール10のさらなる低背化を図ることができる。 The camera module 10 of the present embodiment is the same as that of the third embodiment except for the thickness of the transparent member 310. The transparent member 310 is thinner than the element mounting substrate 210. The surface on the lens 290 side of the transparent member 310 is recessed with respect to the main surface on the lens 290 side of the element mounting substrate 210 (in this embodiment, the surface of the insulating resin layer 250). On the other hand, the main surface of the element mounting substrate 210 on the semiconductor element 120 side and the surface of the transparent member 310 on the semiconductor element 120 side are flush with each other. That is, the difference between the thickness of the element mounting substrate 210 and the thickness of the transparent member 310 corresponds to a step between the main surface of the element mounting substrate 210 on the lens 290 side and the surface of the transparent member 310 on the lens 290 side. Therefore, as in the third embodiment, the distance between the convex surface of the lens 290 and the surface of the transparent member 310 on the lens 290 side can be secured, and the camera module 10 can be further reduced in height. . Further, since the main surface of the element mounting substrate 210 on the semiconductor element 120 side and the surface of the transparent member 310 on the semiconductor element 120 side are flush with each other, the height of the solder ball 270 is reduced to reduce the transparency of the transparent member 310 and the semiconductor. The distance from the element 120 can be reduced, and as a result, the camera module 10 can be further reduced in height.
 (携帯機器への適用)
 次に、本発明の一態様のカメラモジュールを備えた携帯機器について説明する。なお、携帯機器として携帯電話に搭載する例を示すが、たとえば、個人用携帯情報端末(PDA)、デジタルビデオカメラ(DVC)、音楽プレーヤ、及びデジタルスチルカメラ(DSC)といった電子機器であってもよい。
(Application to mobile devices)
Next, a portable device including the camera module of one embodiment of the present invention is described. In addition, although the example mounted in a mobile telephone as a portable apparatus is shown, for example, it may be an electronic apparatus such as a personal digital assistant (PDA), a digital video camera (DVC), a music player, and a digital still camera (DSC). Good.
 図9は実施の形態に係るカメラモジュール10を備えた携帯電話の外観の構成を示す図である。なお、本願のカメラモジュールを搭載した構造については後述する。携帯電話1111は、第1の筐体1112と第2の筐体1114が可動部1120によって連結される構造になっている。第1の筐体1112と第2の筐体1114は可動部1120を軸として回動可能である。第1の筐体1112には文字や画像等の情報を表示する表示部1118やスピーカ部1124が設けられている。第2の筐体1114には操作用ボタンなどの操作部1122やマイク部1126が設けられている。なお、本発明の各実施形態に係るカメラモジュールのいずれかがこうした携帯電話1111の内部に搭載されている。 FIG. 9 is a diagram illustrating an external configuration of a mobile phone including the camera module 10 according to the embodiment. A structure in which the camera module of the present application is mounted will be described later. A cellular phone 1111 has a structure in which a first housing 1112 and a second housing 1114 are connected by a movable portion 1120. The first housing 1112 and the second housing 1114 can be rotated around the movable portion 1120. The first housing 1112 is provided with a display portion 1118 and a speaker portion 1124 for displaying information such as characters and images. The second housing 1114 is provided with an operation portion 1122 such as operation buttons and a microphone portion 1126. One of the camera modules according to each embodiment of the present invention is mounted inside such a mobile phone 1111.
 図10は図9に示した携帯電話の部分断面図(第1の筐体1112および第2の筐体1114の断面図)である。半導体モジュール1200がはんだボール1210を介してプリント基板1128aに搭載され、こうしたプリント基板1128aを介して表示部1118などと電気的に接続されている。半導体モジュール1200は、たとえば、各回路を駆動するための電源回路、RFを発生するRF発生回路、DAC、エンコーダ回路、携帯電話の表示部に採用される液晶パネルの光源としてのバックライトの駆動回路、後述するカメラモジュール10で取得された画像データなどの入出力回路などとして機能する。 FIG. 10 is a partial cross-sectional view of the mobile phone shown in FIG. 9 (a cross-sectional view of the first housing 1112 and the second housing 1114). The semiconductor module 1200 is mounted on the printed board 1128a via the solder balls 1210, and is electrically connected to the display unit 1118 and the like via the printed board 1128a. The semiconductor module 1200 includes, for example, a power supply circuit for driving each circuit, an RF generation circuit for generating RF, a DAC, an encoder circuit, and a drive circuit for a backlight as a light source of a liquid crystal panel employed in a display unit of a mobile phone It functions as an input / output circuit for image data acquired by the camera module 10 to be described later.
 実施の形態に係るカメラモジュール10は、第2の筐体1114に設けられたプリント基板1128bに実装されている。第2の筐体1114には、光を透過させる窓部1115が設けられており、カメラモジュール10に設けられたレンズが窓部1115に対向して設けられている。このカメラモジュール10により携帯電話で撮影が可能になっている。撮影されたデータは、半導体モジュール1200の処理によりメモリ(図示せず)に格納される。 The camera module 10 according to the embodiment is mounted on a printed circuit board 1128b provided in the second housing 1114. The second housing 1114 is provided with a window portion 1115 that transmits light, and a lens provided in the camera module 10 is provided to face the window portion 1115. This camera module 10 enables photographing with a mobile phone. The photographed data is stored in a memory (not shown) by the processing of the semiconductor module 1200.
 本発明の実施形態に係る半導体モジュールを備えた携帯機器によれば、以下の効果を得ることができる。 According to the portable device including the semiconductor module according to the embodiment of the present invention, the following effects can be obtained.
 上記実施の形態で示したカメラモジュール10は、図1に示したような素子搭載用基板210の強度あるいは剛性が高められているので、こうしたカメラモジュール10を搭載した携帯機器の動作信頼性を高めることができる。 In the camera module 10 shown in the above embodiment, the strength or rigidity of the element mounting substrate 210 as shown in FIG. 1 is increased, so that the operation reliability of a portable device equipped with such a camera module 10 is increased. be able to.
 また、上記実施の形態で示したカメラモジュール10はさらなる低背化が図られているため、こうしたカメラモジュール10を搭載した携帯機器の薄型化を図ることができる。 In addition, since the camera module 10 shown in the above embodiment is further reduced in height, it is possible to reduce the thickness of a portable device equipped with such a camera module 10.
 本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.
 例えば、絶縁樹脂層130が多層化され、配線層が絶縁樹脂層130の多層化に応じて多層化されていてもよい。同様に、絶縁樹脂層230が多層化され、配線層が絶縁樹脂層230の多層化に応じて多層化されていてもよい。 For example, the insulating resin layer 130 may be multilayered, and the wiring layer may be multilayered in accordance with the multilayering of the insulating resin layer 130. Similarly, the insulating resin layer 230 may be multilayered, and the wiring layer may be multilayered according to the multilayering of the insulating resin layer 230.
10 カメラモジュール、100 回路モジュール、110 素子搭載用基板、120 半導体素子、130 絶縁樹脂層、132 ガラスクロス、150 絶縁樹脂層、160 電極部、200 回路モジュール、210 素子搭載用基板、220 チップ部品、230,250,252 絶縁樹脂層、270 はんだボール、280 鏡筒、282 円筒型本体、290 レンズ、310 透明部材、320 接着剤 10 camera module, 100 circuit module, 110 element mounting substrate, 120 semiconductor element, 130 insulating resin layer, 132 glass cloth, 150 insulating resin layer, 160 electrode part, 200 circuit module, 210 element mounting substrate, 220 chip component, 230, 250, 252, insulating resin layer, 270 solder balls, 280 barrel, 282 cylindrical body, 290 lens, 310 transparent member, 320 adhesive
 本発明は、チップ部品等を搭載可能な素子搭載用基板およびこれを用いた半導体モジュールに利用可能である。 The present invention can be used for an element mounting board on which chip parts and the like can be mounted and a semiconductor module using the same.

Claims (12)

  1.  一方の主表面から他方の主表面に貫通する開口部が設けられている配線基板と、
     前記開口部に嵌め込まれ、特定の波長領域の電磁波が透過可能な透明部材と、
     を備え、
     前記配線基板の面方向において、前記透明部材の外周の側面の少なくとも一部と、前記開口部の前記配線基板の内壁とが重畳している素子搭載用基板。
    A wiring board provided with an opening penetrating from one main surface to the other main surface;
    A transparent member fitted into the opening and capable of transmitting electromagnetic waves in a specific wavelength region;
    With
    An element mounting substrate in which, in the surface direction of the wiring substrate, at least a part of an outer peripheral side surface of the transparent member overlaps with an inner wall of the wiring substrate of the opening.
  2.  前記透明部材は、赤外線カットフィルターである請求項1に記載の素子搭載用基板。 The element mounting substrate according to claim 1, wherein the transparent member is an infrared cut filter.
  3.  前記配線基板は、無機充填材が充填された絶縁樹脂層を含み、
     前記透明部材は、前記無機充填材と熱膨張係数が同等である請求項1または2に記載の素子搭載用基板。
    The wiring board includes an insulating resin layer filled with an inorganic filler,
    The element mounting substrate according to claim 1, wherein the transparent member has a thermal expansion coefficient equivalent to that of the inorganic filler.
  4.  前記透明部材はガラス材からなり前記無機充填材はガラスクロスからなる請求項3に記載の素子搭載用基板。 4. The element mounting substrate according to claim 3, wherein the transparent member is made of a glass material, and the inorganic filler is made of a glass cloth.
  5.  半導体素子を搭載した他の素子搭載用基板と、
     前記他の素子搭載用基板の上方に設けられた請求項1乃至4のいずれか1項に記載の素子搭載用基板と、
     前記半導体素子の周囲に設けられ、前記他の素子搭載用基板に設けられている配線層と請求項1乃至4のいずれか1項に記載の素子搭載用基板に設けられている配線層とを電気的に接続する電気接続部材と、を備えることを特徴とする半導体モジュール。
    Other device mounting boards on which semiconductor devices are mounted,
    The element mounting substrate according to any one of claims 1 to 4, provided above the other element mounting substrate;
    5. A wiring layer provided around the semiconductor element and provided on the other element mounting substrate, and a wiring layer provided on the element mounting substrate according to claim 1. A semiconductor module comprising: an electrical connection member for electrical connection.
  6.  請求項1乃至4のいずれか1項に記載の素子搭載用基板と、
     前記素子搭載用基板の他方の主表面に実装されている半導体素子と、
     を備えることを特徴とする半導体モジュール。
    The element mounting substrate according to any one of claims 1 to 4,
    A semiconductor element mounted on the other main surface of the element mounting substrate;
    A semiconductor module comprising:
  7.  半導体素子を搭載した第1の素子搭載用基板と、
     前記第1の素子搭載用基板の上方に設けられ、一方の主表面から他方の主表面に貫通する開口部が設けられている第2の素子搭載用基板と、
     前記半導体素子の周囲に設けられ、前記第2の素子搭載用基板に設けられている配線層と前記第1の素子搭載用基板に設けられている配線層とを電気的に接続する電気接続部材と、
     前記開口部の上方に設けられたレンズと、
     前記開口部に嵌め込まれ、特定の波長領域の電磁波が透過可能な透明部材と、
     を備え、
     前記第2の素子搭載用基板の面方向において、前記透明部材の外周の側面の少なくとも一部と、前記開口部の前記第2の素子搭載用基板の内壁とが重畳していることを特徴とするカメラモジュール。
    A first element mounting substrate on which a semiconductor element is mounted;
    A second element mounting substrate provided above the first element mounting substrate and provided with an opening penetrating from one main surface to the other main surface;
    An electrical connection member provided around the semiconductor element and electrically connecting a wiring layer provided on the second element mounting substrate and a wiring layer provided on the first element mounting substrate When,
    A lens provided above the opening;
    A transparent member fitted into the opening and capable of transmitting electromagnetic waves in a specific wavelength region;
    With
    In the surface direction of the second element mounting substrate, at least a part of the outer peripheral side surface of the transparent member overlaps with the inner wall of the second element mounting substrate of the opening. Camera module.
  8.  前記第2の素子搭載用基板のレンズ側の主表面に対して、対応する側の前記透明部材の主表面が前記第2の素子搭載用基板の内部の方へ凹んでいる請求項2に記載のカメラモジュール。 The main surface of the transparent member on a corresponding side with respect to the main surface on the lens side of the second element mounting substrate is recessed toward the inside of the second element mounting substrate. Camera module.
  9.  前記第2の素子搭載用基板は、無機充填材が充填された絶縁樹脂層を含み、
     前記透明部材は、前記無機充填材と熱膨張係数が同等である請求項7または8に記載のカメラモジュール。
    The second element mounting substrate includes an insulating resin layer filled with an inorganic filler,
    The camera module according to claim 7 or 8, wherein the transparent member has a thermal expansion coefficient equivalent to that of the inorganic filler.
  10.  前記透明部材は、赤外線カットフィルターである請求項7乃至9のいずれか1項に記載のカメラモジュール。 10. The camera module according to claim 7, wherein the transparent member is an infrared cut filter.
  11.  配線基板の所定領域に開口部を形成する工程と、
     前記開口部が設けられた前記配線基板を、前記開口部に対応する領域に凹部を有する台座の上に載置する工程と、
     前記開口部に透明部材を嵌め込み、前記凹部で前記透明部材を支持させる工程と、
     前記透明部材と前記開口部の前記配線基板の内壁とを接着する工程と、
     を備えることを特徴とする素子搭載用基板の製造方法。
    Forming an opening in a predetermined region of the wiring board;
    Placing the wiring board provided with the opening on a pedestal having a recess in a region corresponding to the opening; and
    Inserting a transparent member into the opening, and supporting the transparent member in the recess;
    Bonding the transparent member and the inner wall of the wiring board of the opening;
    A method for manufacturing an element mounting board, comprising:
  12.  前記開口部を形成する工程は、
     前記透明部材の角部に対応する領域に貫通孔を形成する工程と、
     前記貫通孔を結ぶように前記配線基板を切断する工程と、
     を備え、
     前記透明部材を前記開口部に嵌め込んだときに、前記透明部材の角部が前記貫通孔の形成領域の中に位置する請求項11に記載の素子搭載用基板の製造方法。
    The step of forming the opening includes
    Forming a through hole in a region corresponding to a corner of the transparent member;
    Cutting the wiring board so as to connect the through holes;
    With
    The method for manufacturing an element mounting substrate according to claim 11, wherein when the transparent member is fitted into the opening, a corner portion of the transparent member is positioned in a region where the through hole is formed.
PCT/JP2010/067120 2009-12-28 2010-09-30 Element mounting substrate, semiconductor module, camera module, and method for producing element mounting substrate WO2011080952A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009298267A JP2013051223A (en) 2009-12-28 2009-12-28 Camera module and method of manufacturing element mount substrate
JP2009298260A JP2013051222A (en) 2009-12-28 2009-12-28 Element mount substrate and semiconductor module
JP2009-298260 2009-12-28
JP2009-298267 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080952A1 true WO2011080952A1 (en) 2011-07-07

Family

ID=44226372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067120 WO2011080952A1 (en) 2009-12-28 2010-09-30 Element mounting substrate, semiconductor module, camera module, and method for producing element mounting substrate

Country Status (1)

Country Link
WO (1) WO2011080952A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747411A1 (en) * 2011-08-19 2014-06-25 FUJIFILM Corporation Imaging element module and method for manufacturing same
CN104038681A (en) * 2013-03-05 2014-09-10 太阳诱电株式会社 Camera Module
JP2014191146A (en) * 2013-03-27 2014-10-06 Panasonic Corp Imaging apparatus
JPWO2013081156A1 (en) * 2011-11-30 2015-04-27 京セラ株式会社 Image pickup device storage package and image pickup apparatus
WO2018224031A1 (en) * 2017-06-08 2018-12-13 宁波舜宇光电信息有限公司 Welding structure for optical module and application thereof
US11451651B2 (en) * 2018-06-13 2022-09-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Display assembly of electronic device and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142058A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Semiconductor imaging element and manufacturing method thereof, and semiconductor imaging apparatus and manufacturing method thereof
JP2008148222A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Solid state imaging apparatus and its manufacturing method
JP2009147664A (en) * 2007-12-13 2009-07-02 Hitachi Maxell Ltd Lens module and camera module
JP2009239636A (en) * 2008-03-27 2009-10-15 Sharp Corp Wiring substrate, solid imaging apparatus, and electronic equipment
JP4374078B2 (en) * 2008-02-18 2009-12-02 パナソニック株式会社 Compound eye camera module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142058A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Semiconductor imaging element and manufacturing method thereof, and semiconductor imaging apparatus and manufacturing method thereof
JP2008148222A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Solid state imaging apparatus and its manufacturing method
JP2009147664A (en) * 2007-12-13 2009-07-02 Hitachi Maxell Ltd Lens module and camera module
JP4374078B2 (en) * 2008-02-18 2009-12-02 パナソニック株式会社 Compound eye camera module
JP2009239636A (en) * 2008-03-27 2009-10-15 Sharp Corp Wiring substrate, solid imaging apparatus, and electronic equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747411A1 (en) * 2011-08-19 2014-06-25 FUJIFILM Corporation Imaging element module and method for manufacturing same
EP2747411A4 (en) * 2011-08-19 2015-04-15 Fujifilm Corp Imaging element module and method for manufacturing same
JPWO2013081156A1 (en) * 2011-11-30 2015-04-27 京セラ株式会社 Image pickup device storage package and image pickup apparatus
CN104038681A (en) * 2013-03-05 2014-09-10 太阳诱电株式会社 Camera Module
JP2014170183A (en) * 2013-03-05 2014-09-18 Taiyo Yuden Co Ltd Camera module
US9818780B2 (en) 2013-03-05 2017-11-14 Taiyo Yuden Co., Ltd. Camera module
JP2014191146A (en) * 2013-03-27 2014-10-06 Panasonic Corp Imaging apparatus
WO2018224031A1 (en) * 2017-06-08 2018-12-13 宁波舜宇光电信息有限公司 Welding structure for optical module and application thereof
US11714250B2 (en) 2017-06-08 2023-08-01 Ningbo Sunny Opotech Co., Ltd. Welding structure for optical module and application thereof
US11451651B2 (en) * 2018-06-13 2022-09-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Display assembly of electronic device and electronic device

Similar Documents

Publication Publication Date Title
US11887839B2 (en) Imaging unit and imaging apparatus
KR100718421B1 (en) Imaging device package, camera module and camera module producing method
KR100860308B1 (en) Camera module package and method of manufacturing the same
JP5982380B2 (en) Image sensor module and manufacturing method thereof
JP4584214B2 (en) Image sensor module, camera module using the same, and camera module manufacturing method
WO2011080952A1 (en) Element mounting substrate, semiconductor module, camera module, and method for producing element mounting substrate
JP2002198502A (en) Optical instrument, its manufacturing method, and electronic equipment
JP2011015392A (en) Camera module
JP4712737B2 (en) Imaging device, manufacturing method thereof, and portable terminal device
JP2010238995A (en) Semiconductor module and camera module mounted with the same
JP2011244346A (en) Camera module
WO2012029318A1 (en) Substrate for mounting element and optical module
JP2004242166A (en) Optical module, its manufacturing method, and electronic equipment
JP6939561B2 (en) Manufacturing method of image sensor package, image sensor and image sensor package
JP2010252164A (en) Solid-state image sensing device
JP2003179217A (en) Solid-state imaging device and method of manufacturing the same
WO2017134972A1 (en) Imaging element package and imaging device
JP2013051222A (en) Element mount substrate and semiconductor module
TWI434570B (en) Solid-state photography device and electronic device
JP5299106B2 (en) Image sensor module
JP2014170819A (en) Image pickup unit and image pickup device
JP2013051223A (en) Camera module and method of manufacturing element mount substrate
JP2009088650A (en) Image sensor module and method of manufacturing the same
JP2004343638A (en) Optical device and its manufacturing method, optical module, and electronic equipment
KR101037481B1 (en) Method of Fabricating Camera Module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP