WO2011080883A1 - Electro-mechanical converter, spatial optical modulator, exposure device, and methods for manufacturing them - Google Patents

Electro-mechanical converter, spatial optical modulator, exposure device, and methods for manufacturing them Download PDF

Info

Publication number
WO2011080883A1
WO2011080883A1 PCT/JP2010/007236 JP2010007236W WO2011080883A1 WO 2011080883 A1 WO2011080883 A1 WO 2011080883A1 JP 2010007236 W JP2010007236 W JP 2010007236W WO 2011080883 A1 WO2011080883 A1 WO 2011080883A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
torsion shaft
spatial light
light modulator
Prior art date
Application number
PCT/JP2010/007236
Other languages
French (fr)
Japanese (ja)
Inventor
美彦 鈴木
浩 小西
純児 鈴木
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009297369A external-priority patent/JP2011138888A/en
Priority claimed from JP2009298815A external-priority patent/JP5630015B2/en
Priority claimed from JP2009297436A external-priority patent/JP2011137961A/en
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2011080883A1 publication Critical patent/WO2011080883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means

Definitions

  • the present invention relates to an electromechanical converter, a spatial light modulator, an exposure apparatus, and manufacturing methods thereof.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 09-101467
  • the electromechanical transducer and the spatial light modulator formed by the lithography technique are easily affected by residual stress relaxation or the like because the member is formed of a thin thin film. For this reason, it is difficult to stabilize the characteristics over a long period of time.
  • a substrate having electrodes, a substrate-side torsion shaft portion that is elastically deformed with one end fixed to the substrate, and a substrate-side torsion shaft portion Bending stress on the movable part, which is supported by the other end and is arranged integrally with the movable part, having a movable part that is attracted to the electrode by electrostatic force and swings relative to the substrate, and a surface that intersects one surface of the movable part.
  • An electromechanical transducer with a structural material that counteracts the above is provided.
  • a spatial light modulator including the electromechanical converter and a reflecting mirror supported by the movable part and swinging with respect to the substrate together with the movable part.
  • a spatial light modulator including a substrate and a reflecting mirror that swings relative to the substrate, the reflecting mirror including a reflecting surface and a surface that intersects the reflecting surface.
  • a spatial light modulator is provided having a structural material disposed on the back surface of the reflecting surface and resisting bending stress on the reflecting surface.
  • a substrate having electrodes, a substrate-side torsion shaft portion that is elastically deformed with one end fixed to the substrate, and being supported by the other end of the torsion shaft portion A frame body that is attracted to an electrode by an electrostatic force and swings with respect to the substrate, a frame-side torsion shaft portion that is elastically deformed with one end fixed to the frame body, and a frame-side torsion shaft portion Spatial light modulation comprising a movable part that is supported by the end and is attracted to the electrode by an electrostatic force and swings with respect to the frame, and a reflecting mirror that is supported by the movable part and swings with respect to the substrate together with the movable part A vessel is provided.
  • an exposure apparatus including any one of the spatial light modulators.
  • a substrate having electrodes, a substrate-side torsion shaft portion that is elastically deformed by fixing one end to the substrate, and supported at the other end of the substrate-side torsion shaft portion
  • a structure that has a movable portion that is attracted to an electrode by an electrostatic force and swings with respect to the substrate, and a surface that intersects one surface of the movable portion, is arranged integrally with the movable portion, and resists bending stress on the movable portion
  • a method of manufacturing an electromechanical transducer comprising a material, the step of forming a patterned sacrificial material layer on a base, and a layer of a material to be a movable part on the sacrificial material layer
  • a manufacturing method includes depositing and removing a layer of sacrificial material and forming a movable part having a region spaced from the substrate.
  • a substrate and a reflecting mirror that swings relative to the substrate are provided, and the reflecting mirror is disposed on the back surface of the reflecting surface including the reflecting surface and a surface that intersects the reflecting surface.
  • a method of manufacturing a spatial light modulator having a structural material that resists bending stress on a reflective surface comprising: forming a patterned sacrificial material layer on a base; and And a step of depositing a layer of a non-reflective film material to be a structural material and a step of removing a layer of a sacrificial material, the manufacturing method including a step of forming a region in which the layer of the non-reflective film material is separated from the base Provided.
  • a substrate having electrodes, a substrate-side torsion shaft portion that is elastically deformed with one end fixed to the substrate, and being supported by the other end of the torsion shaft portion
  • a frame body that is attracted to an electrode by an electrostatic force and swings with respect to the substrate, a frame-side torsion shaft portion that is elastically deformed with one end fixed to the frame body, and a frame-side torsion shaft portion Spatial light modulation comprising a movable part that is supported by the end and is attracted to the electrode by an electrostatic force and swings with respect to the frame, and a reflecting mirror that is supported by the movable part and swings with respect to the substrate together with the movable part
  • a method of manufacturing a vessel comprising: forming a patterned sacrificial material layer on a base; depositing a frame material layer on the sacrificial material layer; And a step of forming a frame having a region spaced from the base. Manufacturing method is provided
  • FIG. 1 is a schematic perspective view showing an external appearance of a spatial light modulator 100.
  • FIG. 3 is an exploded perspective view of a unit element 200.
  • FIG. 3 is a cross-sectional view of a unit element 200.
  • FIG. 3 is a cross-sectional view of a unit element 200.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • FIG. 11 is
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100.
  • 3 is an exploded perspective view of a unit element 200.
  • FIG. 3 is a cross-sectional view of a unit element 200.
  • FIG. 3 is a cross-sectional view of a unit element 200.
  • FIG. 1 is a perspective view of a spatial light modulator 100.
  • FIG. 2 is a schematic diagram of an exposure apparatus 400.
  • FIG. FIG. 5 is a view showing the operation of the spatial light modulator 100 in the exposure apparatus 400.
  • 3 is a cross-sectional view of a unit element 200.
  • FIG. 3 is a perspective view of a drive unit 220.
  • FIG. 3 is a cross-sectional view of a unit element 200.
  • FIG. 1 is a perspective view of a spatial light modulator 100.
  • FIG. 2 is a schematic diagram of an exposure apparatus 400.
  • FIG. FIG. 5 is a view showing the operation of the spatial light modulator 100 in
  • FIG. 3 is a perspective view of a reflecting mirror 230.
  • FIG. 3 is a perspective view of a reflecting mirror 230.
  • FIG. 4 is a cross-sectional view of a reflecting mirror 230.
  • FIG. 3 is a perspective view of a reflecting mirror 230.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230.
  • FIG. 4 is a cross-sectional view of a reflecting mirror 230.
  • FIG. 3 is a perspective view of a reflecting mirror 230.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230.
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230.
  • FIG. 4 is a cross-sectional view of a reflecting
  • FIG. 1 is a schematic perspective view showing the appearance of the spatial light modulator 100.
  • the spatial light modulator 100 includes a substrate 210 and a reflecting mirror 230.
  • the plurality of reflecting mirrors 230 that are two-dimensionally arranged on the substrate 210 and form a matrix have dimensions of about several ⁇ m to several hundreds of ⁇ m, and can be individually swung with respect to the substrate 210. . Therefore, if the light is reflected with some of the reflecting mirrors 230 swinging and tilting as shown in the drawing, the illuminance distribution of the reflected light changes. Therefore, an arbitrary illuminance distribution can be formed by controlling the swing of the reflecting mirror 230.
  • FIG. 2 is a schematic exploded perspective view of the unit element 200.
  • the unit element 200 is a structure related to one reflecting mirror 230.
  • each of the plurality of reflecting mirrors 230 is supported by the same structure.
  • the unit element 200 includes a driving unit 220 mounted on the substrate 210 and a reflecting mirror 230 mounted on the driving unit 220. Further, electrodes 212, 214, and 216 are disposed on the surface of the substrate 210.
  • the driving unit 220 includes a fixed frame 222 and a movable unit 226.
  • the fixed frame 222 is formed of a hollow member having an open upper surface, and forms a rectangular frame that surrounds the outer periphery of the unit element 200.
  • the fixed frame 222 is fixed on the electrode 216 on the substrate 210. As shown in FIG. 1, in the spatial light modulator 100, a large number of unit elements 200 are arranged. However, the electrode 216 is connected to a common potential, for example, a ground potential, and the reference potential of the spatial light modulator 100 as a whole. Make common.
  • the pair of electrodes 212 and 214 on the substrate 210 are positioned in the vicinity of the edge of the movable portion 226, as indicated by a dotted line in the drawing. Therefore, the lower surface of the movable part 226 and the electrodes 212 and 214 face each other.
  • the movable portion 226 is supported on the inner side of the fixed frame 222 from the inner surface of the fixed frame 222 via the torsion shaft portion 224.
  • One end of the torsion shaft portion 224 is fixed to the inner surface of the fixed frame 222.
  • the other end of the torsion shaft portion 224 is fixed to a rib 225 that extends downward from the peripheral edge of the movable portion 226. Since the torsion shaft portion 224 is elastically torsionally deformed, the movable portion 226 swings with respect to the substrate 210 using the torsion shaft portion 224 as the swing shaft. However, since the rib 225 has a high bending rigidity, the movable portion 226 is not easily deformed.
  • a flange-like portion that spreads outward from the movable portion 226 at the lower end of the rib 225. This is a remaining region when the layer including the rib 225 is patterned, and may not be present. However, the rigidity of the movable part 226 is not lowered, but may be improved, so it may be left. As a result, it is possible to avoid remarkably increasing the patterning accuracy, which contributes to an improvement in productivity.
  • the reflecting mirror 230 has a reflecting surface 234 having a high reflectance on the upper surface.
  • the reflective surface 234 is formed of a metal deposited as a thin film, such as an aluminum thin film.
  • a post 232 protruding downward is disposed on the lower surface of the reflecting mirror 230.
  • the post 232 is fixed to the approximate center of the movable part 226 indicated by a dotted line in the drawing. Thereby, when the movable part 226 swings with respect to the substrate 210, the reflecting mirror 230 swings together with the movable part 226.
  • the drive unit 220 and the reflecting mirror 230 can be individually formed, a structure and material suitable for each function can be selected.
  • the reflection surface 234 having an area larger than the area of the drive unit 220 can be formed, the unit element 200 having high reflection efficiency can be formed.
  • FIG. 3 is a schematic cross-sectional view of the unit element 200.
  • the unit element 200 shows the AA cross section shown in FIG. 2 with the fixed frame 222 fixed to the substrate 210 and the reflecting mirror 230 fixed to the movable portion 226. Elements that are the same as those in FIG. 2 are given the same reference numerals, and redundant descriptions are omitted.
  • the movable part 226 has an electrode 228 on the lower surface.
  • the electrode 228 faces the electrode 212 on the substrate 210.
  • the movable part 226 has a rib 225 extending downward from the edge. Thereby, the movable part 226 has high bending rigidity.
  • the torsion shaft portion 224 does not have an element corresponding to the rib 225. Therefore, when a driving force described later is applied to the movable portion 226, the torsion shaft portion 224 is elastically deformed, and the movable portion 226 is displaced without being deformed.
  • FIG. 4 is a schematic cross-sectional view of the unit element 200, showing the BB cross section shown in FIG. 2 and 3 are denoted by the same reference numerals, and redundant description is omitted.
  • each of the pair of electrodes 212 and 214 on the substrate 210 faces the vicinity of the end of the movable portion 226. Therefore, when a driving voltage is applied to either of the electrodes 212 and 214, an electrostatic force acts on either end of the electrode 228.
  • the movable portion 226 is coupled to the fixed frame 222 by the torsion shaft portion 224. Therefore, when an electrostatic force acts on the electrode 228 from either of the electrodes 212 and 214, the movable portion 226 swings with the torsion shaft portion 224 as the swing shaft. Therefore, the reflecting mirror 230 fixed with respect to the movable part 226 also swings.
  • a driving voltage is applied to the electrode 214, and the right side of the electrode 228 in the drawing is attracted toward the substrate 210. Thereby, the reflecting surface 234 of the reflecting mirror 230 is inclined rightward.
  • each of the plurality of reflecting mirrors 230 can be individually controlled by individually supplying or blocking driving power to the above-described structure provided in each of the reflecting mirrors 230. Therefore, an arbitrary irradiation pattern can be formed by once reflecting the light to the spatial light modulator 100, and can be used as a variable light source, an exposure device, an image display device, an optical switch, or the like.
  • FIGS. 5 to 26 are cross-sectional views showing a manufacturing process of the spatial light modulator 100 shown in FIGS. 5 to 26 show the manufacturing process, the corresponding elements of the spatial light modulator 100 may be included in different shapes or states. Therefore, after assigning unique reference numbers to these drawings to explain the contents of each drawing, FIG. 26 shows the correspondence with the spatial light modulator 100 shown in FIGS.
  • a lower insulating layer 312 is deposited immediately above the surface of the substrate 210 on which the spatial light modulator 100 is formed. As a result, the surface of the substrate 210 is covered with the insulating layer 312.
  • the material of the substrate 210 members having a flat surface such as a compound semiconductor substrate and a ceramic substrate can be widely used in addition to a silicon single crystal substrate.
  • a material of the insulating layer 312 for example, an oxide or a nitride of the material of the substrate 210 can be used.
  • the insulating layer 312 may be a porous body having a high dielectric constant.
  • a method for forming the insulating layer 312 can be appropriately selected from various physical vapor deposition methods and chemical vapor deposition methods depending on the material of the insulating layer 312.
  • a patterned conductor layer 320 is formed on the insulating layer 312 as shown in FIG.
  • the conductor layer 320 becomes the electrodes 212, 214, and 216 in the spatial light modulator 100.
  • Examples of the material of the conductor layer 320 include metals such as aluminum and copper.
  • a method for forming the conductor layer 320 can be appropriately selected from various physical vapor deposition methods, chemical vapor deposition methods, plating methods, and the like depending on the material of the conductor layer 320.
  • the surface of the conductor layer 320 and the surface of the lower insulating layer 312 exposed in the gap between the patterns of the conductor layer 320 are covered with the upper insulating layer 314.
  • the surface of the upper insulating layer 314 is undulated depending on whether or not the conductor layer 320 is present under the upper insulating layer 314.
  • the undulations formed on the surface of the upper insulating layer 314 are planarized by the resist layer 332.
  • the resist layer 332 can be applied by a spin coating method, a spray coating method, or the like as appropriate.
  • a non-reflective film formation base to be described later is formed.
  • the film formation base is composed of two layers, and in the stage shown in FIG. 9, a lower resist layer 334 is formed on the planarized insulating layer 314.
  • the resist layer 334 is patterned by sequentially performing application of a resist material, pre-baking, exposure, development, and post-baking to form two pairs of side walls 335.
  • an upper resist layer 336 is formed on the lower resist layer 334.
  • the resist layer 336 is also patterned to form side walls 337 above the side walls 335 of the lower resist layer 334, and two additional pairs of side walls 339.
  • shallow side walls 339 and deep side walls 337 and 335 are formed.
  • These lower and upper resist layers 334 and 336 can be patterned by photolithography. That is, the resist layers 334 and 336 are formed of a photosensitive material and exposed in a pattern according to the design specifications, so that the resist layers 334 and 336 can be formed into a shape as required. Further, the resist layers 334 and 336 may be processed and patterned by a dry etching method such as plasma etching.
  • a three-dimensional film formation base can be formed by using a plurality of resist layers 334 and 336.
  • a non-conductive layer 342 is deposited on the film formation base formed by the insulating layer 314 and the resist layers 334 and 336.
  • the formed non-conductive layer 342 has a three-dimensional shape following the shape of the resist layers 334 and 336.
  • the thin film structure including the formed non-conductive layer 342 has a high moment of inertia in cross section.
  • the material for the non-conductor layer 34 various oxides and nitrides can be used. Further, the method for forming the non-conductor layer 342 can be appropriately selected from various physical vapor deposition methods and chemical vapor deposition methods depending on the material of the non-conductor layer 342.
  • the contact hole 315 can be formed by dry etching, for example.
  • a patterned conductor layer 344 is formed on the non-conductor layer 342.
  • the conductor layer 344 includes a pair of columnar structures that reach the upper ends of the side walls 335 and 337 from the inside of the contact hole 315 and a flat region formed on the land of the resist layer 336 sandwiched between the side walls 339. Remain as.
  • the structure of the conductor layer 344 formed inside the side walls 335 and 337 is electrically coupled to any land of the conductor layer 320.
  • a conductor layer 346 covering the entire surfaces of the non-conductor layer 342 and the conductor layer 344 is formed.
  • the patterned conductor layer 344 is electrically coupled by the current conductor layer 346.
  • the material of the conductor layer 346 may be the same as or different from the material of the conductor layer 344.
  • an upper non-conductive layer 348 covering the entire surface of the conductive layer 346 is formed.
  • the upper non-conductive layer 348 is formed of the same material as the non-conductive layer 342 located below the conductive layers 344 and 346.
  • the film formation method can also be performed by the same method as that for the lower non-conductor layer 342.
  • a non-reflective film 340 having a three-layer structure is formed by the lower non-conductor layer 342, the conductor layers 344 and 346, and the upper non-conductor layer 348 having the same pattern and shape.
  • the entire three-layer structure is called the non-reflective film 340.
  • the non-reflective film 340 since the non-reflective film 340 has the non-conductor layers 342 and 348 formed of the same material on the front and back, the bimetal effect generated between the conductor layers 344 and 346 and the non-conductor layers 342 and 348 is canceled by the temperature change. It is. Thereby, the shape of the non-reflective film 340 is stabilized. Further, since the non-reflective film 340 as a whole is formed using the same material as that of the reflective film described later, there is no difference in thermal expansion coefficient from the reflective film.
  • a part of the non-reflective film 340 is removed, and the outer shape of the driving unit 220 is formed. Thereby, the resist layer 334 located under the non-reflective film 340 is exposed at both ends of the non-reflective film 340.
  • the non-reflective film 340 can be patterned by dry etching.
  • the upper surface of the non-reflective film 340 that is, the surface of the non-conductive layer 348 is planarized with a resist layer 352.
  • the resist layer 332 can be applied by a spin coating method, a spray coating method, or the like as appropriate.
  • a film formation base is generated again using a two-layer resist. That is, first, as shown in FIG. 18, the lower resist layer 354 of the two-layer structure is formed on the surfaces of the flattened resist layer 352 and non-conductive layer 348. Further, the resist layer 354 is patterned to form a side wall 353 at substantially the center.
  • the upper resist layer 356 of the two-layer structure is formed on the lower resist layer 354.
  • the upper resist layer 356 is also patterned, and has a side wall 355 formed above the side wall 353 of the lower resist layer 354 and side walls 357 formed near both side ends.
  • a three-dimensional film formation base is formed by the resist layers 354 and 356.
  • a reflection film material layer 362 is formed on the entire surface of the resist layers 354 and 356. At this time, the reflective film material layer 362 is bonded to the surface of the non-reflective film 340 inside the side wall 353.
  • Examples of the reflective film material used for forming the reflective film material layer 362 include metal materials such as aluminum. Further, as the reflective film material, the same material as the conductor layers 344 and 346 of the non-reflective film 340 may be used. The method for forming the reflective film material layer 362 can be appropriately selected from various physical vapor deposition methods and chemical vapor deposition methods depending on the material of the reflective film material layer 362.
  • a non-reflective film material layer 364 is deposited on the entire surface of the reflective film material layer 362.
  • the non-reflective film material for forming the non-reflective film material layer 364 the same material as the non-conductive layers 342 and 348 of the non-reflective film 340 may be used.
  • the formation method of the non-reflective film material layer 364 can be appropriately selected from various physical vapor deposition methods and chemical vapor deposition methods depending on the material of the non-reflective film material layer 364.
  • a part of the reflective film material layer 362 and the non-reflective film material layer 364 is removed to form an outer shape of the reflective mirror 230.
  • the resist layer 354 located under the reflective film material layer 362 is exposed at both ends of the reflective film material layer 362 and the non-reflective film material layer 364.
  • the reflective film material layer 362 and the non-reflective film material layer 364 can be patterned by dry etching.
  • a reflective film material layer 366 is deposited on the surface of the non-reflective film material layer 364 and the exposed surface of the resist layer 354.
  • the reflective film material The bimetallic effect that occurs between the layers 362, 366 and the non-reflective film material layer 364 is counteracted. Therefore, the shape is stabilized against the action of internal stress caused by temperature change.
  • the reflective film material layer 366 finally becomes a surface that reflects incident light in the spatial light modulator 100. Therefore, prior to the formation of the reflective film material layer 366, the surface of the non-reflective film material layer 364 serving as the base may be mirror-polished by chemical mechanical polishing. Further, the surface of the reflective film material layer 366 itself may be mirror-polished by chemical mechanical polishing. Further, both the non-reflective film material layer 364 and the reflective film material layer 366 may be subjected to chemical mechanical polishing.
  • a protective layer 368 is formed on the surface of the reflective film material layer 366. That is, when a metal layer such as Al is formed as the reflective film material layer 366, the surface thereof reacts with oxygen in the atmosphere and changes in diameter. As a result, the characteristics of the spatial light modulator 100 also change. However, the reaction between the reflective film material layer 366 and the atmosphere can be prevented or suppressed by covering the surface of the reflective film material layer 366 with a dense protective film.
  • the material of the protective layer 368 examples include a thin film of an inorganic material such as alumina. Needless to say, the protective layer 368 should be transparent to the light reflected by the reflective film material layer 366, and is formed to a thickness that allows the light to pass therethrough. Thus, the reflective film 360 in which the reflective film material layers 362 and 366, the non-reflective film material layer 364, and the protective layer 368 are stacked is formed.
  • the reflection film 360 is removed, and the outer shape of the reflection mirror 230 is formed.
  • the resist layer 354 located under the reflective film material layer 362 is exposed at both ends of the reflective film 360.
  • the reflective film material layer 362 and the non-reflective film material layer 364 can be patterned by dry etching.
  • the resist layers 332, 334, and 336 that are the formation base of the non-reflective film 340 and the resist layers 352, 354, and 356 that are the formation base of the reflective film 360 are removed.
  • the surface of the resist layer 354 is exposed at both ends of the reflective film 360. Since the resist layer 356 inside the reflective film 360 is laminated on the resist layer 354, both are continuous.
  • both are continuous.
  • the resist layer 352 and the resist layers 334 and 332 are continuous at both ends of the non-reflective film 340.
  • the resist layer 336 located inside the non-reflective film 340 is laminated on the resist layer 334, both are continuous.
  • the removal of the resist layers 332, 334, 336, 352, 354, and 356 may be a wet process using a dissolving material. Further, it may be a dry process by ashing using plasma. Further, the resist layers 332, 334, 336, 352, 354, and 356 are merely examples of layers of sacrificial materials, and a similar process can be performed using other sacrificial materials.
  • the spatial light modulator 100 having the same structure as the spatial light modulator 100 shown in FIGS. 1 to 4 can be manufactured by lithography technology. Since the fine unit element 200 can be formed by the lithography technique, the spatial light modulator 100 with high resolution can be manufactured.
  • each layer for example, the conductor layers 320, 344, and 346 and the reflective film material layers 362 and 366 are protected by aluminum, and the non-conductive layers 342 and 348 and the non-reflective film material layer 364 are protected by silicon nitride.
  • Layer 368 can be alumina.
  • the material of each part is not limited to the above, and can be appropriately selected from, for example, SiOx, SiNx, Al, Cr, Al alloy.
  • the conductor layer 320 on the substrate 210 corresponds to one of the electrodes 212, 214, and 216.
  • the central part of the non-reflective film 340 corresponds to the movable part 226.
  • the conductor layer 344 located on the lower surface of the portion corresponding to the movable portion 226 corresponds to the electrode 228.
  • the portion located on the lateral outer side of the portion corresponding to the movable portion 226 corresponds to the pair of torsion shaft portions 224.
  • the outside of the portion corresponding to the twisted shaft portion 224 corresponds to the fixed frame 222.
  • both side ends of the non-reflective film 340 extend horizontally further to the outside than the portion to be the fixed frame 222.
  • This portion forms a light blocking portion 341 that blocks light that is inserted toward the substrate 210 from the gap between the adjacent unit elements 200. This prevents the temperature of the substrate 210 in the spatial light modulator 100 from rising due to the irradiation light.
  • the CMOS element on the substrate 210 is prevented from being deteriorated by the incident light.
  • the reflection film 360 corresponds to the reflection mirror 230 in the spatial light modulator 100.
  • the lower surface of the depressed portion 361 formed in the central portion of the reflective film 360 corresponds to the post 232 of the reflective mirror 230.
  • the upper surface of the reflective film 360 corresponds to the reflective surface 234.
  • FIG. 27 is a schematic exploded perspective view of a unit element 200 having another structure.
  • the unit element 200 has the same structure as that of the unit element 200 shown in FIG. 2 except for portions described below. Therefore, the same elements as those in FIG.
  • the unit element 200 includes a driving unit 220 and a reflecting mirror 230 that are arranged on the substrate 210.
  • the reflecting mirror 230 has the same shape as the unit element 200 shown in FIG.
  • another pair of electrodes 213 and 215 is disposed on the surface of the substrate 210.
  • the driving unit 220 further includes a movable frame 227 arranged so as to be concentric between the fixed frame 222 and the movable unit 226.
  • the movable frame 227 is supported from the fixed frame 222 via a pair of torsion shaft portions 223. Accordingly, the movable frame 227 swings with respect to the fixed frame 222 using the torsion shaft portion 223 as the swing shaft.
  • the torsion shaft part 223 is orthogonal to the torsion shaft part 224.
  • One end of the torsion shaft portion 224 that supports the movable portion 226 is coupled to the inside of the movable frame 227. Accordingly, the movable portion 226 swings with respect to the movable frame 227 using the torsion shaft portion 224 as the swing shaft. Therefore, the movable portion 226 swings about two torsion shaft portions 223 and 224 that are orthogonal to each other with respect to the fixed frame 222.
  • the movable frame 227 has ribs 229 extending downward from the outer and inner edges. Thereby, the movable frame 227 has high bending rigidity and torsional rigidity. Therefore, even when the movable frame 227 and the movable portion 226 are individually swung and the torsion shaft portions 223 and 224 are elastically deformed, the movable frame 227 and the movable portion 226 are hardly deformed. Even when internal stress is applied due to relaxation of residual stress or the like, the movable frame 227 and the movable portion 226 are not easily deformed.
  • FIG. 28 is a schematic cross-sectional view of the unit element 200.
  • the unit element 200 has a CC cross section shown in FIG. 27 in a state where the fixed frame 222 is fixed to the substrate 210 and the reflecting mirror 230 is fixed to the movable portion 226.
  • Elements common to those in FIG. 27 are assigned the same reference numerals, and redundant description is omitted.
  • the movable frame 227 has an electrode 221 on the lower surface.
  • the electrode 221 faces the electrodes 213 and 215 on the substrate 210. Therefore, when a driving voltage is applied to the electrodes 213 and 215, the left or right side of the movable frame 227 in the drawing is attracted toward the substrate 210.
  • the movable frame 227 has a rib 229 extending downward from the edge. Thereby, the movable frame 227 has high bending rigidity.
  • the torsion shaft portion 224 does not have an element corresponding to the rib 225. Therefore, when a driving force is applied to the movable portion 226 by the voltage applied to the electrodes 212 and 214, the torsion shaft portion 224 is elastically deformed, and the movable portion 226 swings with respect to the movable frame 227.
  • FIG. 29 is a schematic cross-sectional view of the unit element 200, showing the DD cross section shown in FIG. Elements common to FIGS. 27 and 28 are given the same reference numerals, and redundant description is omitted.
  • the torsion shaft portion 223 that couples the fixed frame 222 and the movable frame 227 does not have an element corresponding to the rib 229. Therefore, when a drive voltage is applied to either of the electrodes 213 and 215, the movable frame 227 swings with respect to the substrate 210 using the torsion shaft portion 223 as the swing axis.
  • FIG. 30 is a schematic perspective view showing the appearance of the spatial light modulator 100 including the unit element 200 as described above.
  • Each of the plurality of reflecting mirrors 230 can be individually controlled by individually supplying or blocking driving power to the above-described structure provided in each of the reflecting mirrors 230.
  • Each reflecting mirror 230 changes the propagation direction of reflected light to a wider range by a gimbal structure formed by the movable frame 227 and the torsion shaft portions 223 and 224 of the driving unit 220.
  • FIG. 31 is a schematic diagram of the exposure apparatus 400.
  • the exposure apparatus 400 includes the spatial light modulator 100 and can make illumination light having an arbitrary illuminance distribution incident on the illumination optical system 600 when executing the light source mask optimization method. That is, the exposure apparatus 400 includes an illumination light generator 500, an illumination optical system 600, and a projection optical system 700.
  • the illumination light generation unit 500 includes a control unit 510, a light source 520, a spatial light modulator 100, a prism 530, an imaging optical system 540, a beam splitter 550, and a measurement unit 560.
  • the light source 520 generates illumination light L.
  • the illumination light L generated by the light source 520 has an illuminance distribution according to the characteristics of the light emitting mechanism of the light source 520. For this reason, the illumination light L has the original image I 1 in a cross section orthogonal to the optical path of the illumination light L.
  • the illumination light L emitted from the light source 520 enters the prism 530.
  • the prism 530 guides the illumination light L to the spatial light modulator 100 and then emits the light again to the outside.
  • the spatial light modulator 100 modulates the illumination light L incident under the control of the control unit 510.
  • the structure and operation of the spatial light modulator 100 are as described above.
  • the illumination light L emitted from the prism 530 via the spatial light modulator 100 is incident on the illumination optical system 600 at the subsequent stage via the imaging optical system 540.
  • the imaging optical system 540 forms an illumination light image I 3 on the incident surface 612 of the illumination optical system 600.
  • the beam splitter 550 is disposed on the optical path of the illumination light L between the imaging optical system 540 and the illumination optical system.
  • the beam splitter 550 separates a part of the illumination light L before entering the illumination optical system 600 and guides it to the measurement unit 560.
  • the measurement unit 560 measures an image of the illumination light L at a position optically conjugate with the incident surface 612 of the illumination optical system 600. Thereby, the measurement unit 560 measures the same image as the illumination light image I 3 incident on the illumination optical system 600. Therefore, the control unit 510 refers to the illumination light image I 3 which is measured by the measuring unit 560 can be feedback controlled spatial light modulator 100.
  • the illumination optical system 600 includes a fly-eye lens 610, a condenser optical system 620, a field stop 630, and an imaging optical system 640.
  • a mask stage 720 holding a mask 710 is disposed at the exit end of the illumination optical system 600.
  • the fly-eye lens 610 includes a large number of lens elements arranged densely in parallel, and forms a secondary light source including illumination light images I 3 as many as the number of lens elements on the rear focal plane.
  • the condenser optical system 620 collects the illumination light L emitted from the fly-eye lens 610 and illuminates the field stop 630 in a superimposed manner.
  • the illumination light L that has passed through the field stop 630 forms an irradiation light image I 4 that is an image of the opening of the field stop 630 on the pattern surface of the mask 710 by the imaging optical system 640.
  • the illuminance distribution formed at the entrance end of the fly-eye lens 610 which is also the entrance surface 612 of the illumination optical system 600, is as high as the overall illuminance distribution of the entire secondary light source formed at the exit end of the fly-eye lens 610. Show correlation. Therefore, the illumination light image I 3 that the illumination light generation unit 500 enters the illumination optical system 600 is also reflected in the illumination light image I 4 that is the illuminance distribution of the illumination light L that the illumination optical system 600 irradiates the mask 710. .
  • Projection optical system 700 is disposed immediately after mask stage 720 and includes an aperture stop 730.
  • the aperture stop 730 is disposed at a position optically conjugate with the exit end of the fly-eye lens 610 of the illumination optical system 600.
  • a substrate stage 820 that holds a substrate 810 coated with a photosensitive material is disposed at the exit end of the projection optical system 700.
  • the mask 710 held on the mask stage 720 has a mask pattern composed of a region that reflects or transmits the illumination light L irradiated by the illumination optical system 600 and a region that absorbs it. Therefore, by irradiating the illumination light image I 4 to the mask 710, the projection light image I 5 is generated by the interaction between the mask pattern of the mask 710 and the illuminance distribution of the illumination light image I 4 itself. The projected light image I 5 is projected onto the photosensitive material of the substrate 810 to form a resist layer having the required pattern on the surface of the substrate 810.
  • the optical path of the illumination light L is drawn in a straight line, but the exposure apparatus 400 can be downsized by bending the optical path of the illumination light L.
  • the illumination light L is drawn so as to pass through the mask 710, but a reflective mask 710 may be used.
  • FIG. 32 is a partially enlarged view of the illumination light generation unit 500 and shows the role of the spatial light modulator 100 in the exposure apparatus 400.
  • the prism 530 has a pair of reflecting surfaces 532 and 534.
  • the illumination light L incident on the prism 530 is irradiated toward the spatial light modulator 100 by the one reflecting surface 532.
  • the spatial light modulator 100 has a plurality of reflecting mirrors 230 that can be individually swung. Therefore, the control unit 510 controls the spatial light modulator 100 can be formed of any light source image I 2 corresponding to the request.
  • the light source image I 2 emitted from the spatial light modulator 100 is reflected by the other reflecting surface 534 of the prism 530 and emitted from the right end surface of the prism 530 in the drawing.
  • the light source image I 2 emitted from the prism 530 forms an illumination light image I 3 on the incident surface 612 of the illumination optical system 600 by the imaging optical system 540.
  • FIG. 33 is a schematic cross-sectional view of the unit element 200 and shows a modified example of the drive unit 220. Since it has the same structure as the unit element 200 shown in FIG. 29 except for the part described below, common elements are denoted by the same reference numerals and redundant description is omitted.
  • the torsion shaft portion 223 is coupled to the lower end of the rib 229 of the movable frame 227.
  • the torsion shaft portion 223 is coupled to the upper end of the rib 229.
  • the other end of the torsion shaft portion 223 is coupled to the upper end of the fixed frame 222.
  • FIG. 34 is a schematic perspective view of the drive unit 220, and shows the drive unit 220 shown in FIG.
  • the torsion shaft portion 224 connecting the movable portion 226 and the movable frame 227 is also coupled to the upper ends of the ribs 225 and 229 in the same manner as the torsion shaft portion 223 connecting the fixed frame 222 and the movable frame 227. Is done.
  • the swing axis when the movable frame 227 swings with respect to the fixed frame 222 and the swing axis when the movable portion 226 swings with respect to the movable frame 227 are relative to the reflecting mirror 230. , Both rise relatively. Therefore, the moment of inertia when the reflecting mirror 230 is swung is reduced, and the responsiveness as the spatial light modulator 100 can be improved.
  • the unit element 200 can be formed even if a reflective film is directly provided on the upper surface of the movable portion 226 indicated by oblique lines in the drawing. Thereby, although the reflection area is reduced as compared with the case where the individual reflecting mirror 230 is provided, the spatial light modulator 100 having a high response speed can be formed with a small number of man-hours.
  • FIG. 35 is a schematic cross-sectional view of the unit element 200 and shows an example in which the drive unit 220 is further deformed. Since it has the same structure as the unit element 200 shown in FIG. 29 except for the part described below, common elements are denoted by the same reference numerals and redundant description is omitted.
  • the connecting portion of the torsion shaft portion 223 is the upper end with respect to the fixed frame 222 and the lower end of the rib 229 with respect to the movable frame 227.
  • the movable frame 227 moves upward in the figure with respect to the fixed frame 222.
  • the torsion shaft portion 224 is coupled to the upper end of the rib 229 of the movable frame 227 and the lower end of the rib 225 of the movable portion 226. Thereby, the movable part 226 is located further upward.
  • the upper surface of the movable portion 226 is positioned relatively above the fixed frame 222 and the movable frame 227. Therefore, even if the reflecting surface 234 is formed directly on the upper surface of the movable portion 226, incident light on the reflecting surface 234 and reflected light emitted from the reflecting surface 234 do not interfere with the fixed frame 222 and the movable frame 227. .
  • the process of forming the reflecting mirror 230 can be omitted, productivity is also improved.
  • the responsiveness as the spatial light modulator 100 can be further improved, so that it can be used publicly in applications where it is sufficient to reflect signal light with a limited beam diameter, such as an optical switch. .
  • FIG. 36 is a schematic perspective view of the reflecting mirror 230, showing a modification of the reflecting mirror 230 alone. Elements that are common to the reflecting mirror 230 shown so far are assigned the same reference numerals, and redundant description is omitted.
  • the reflecting mirror 230 has a bent portion 237 arranged in the middle between the post 232 and the peripheral portion of the reflecting surface 234 instead of the rib 236 hanging from the peripheral portion of the reflecting surface 234. Even with such a shape, the bending rigidity or torsional rigidity of the reflecting surface 234 can be improved.
  • FIG. 37 is a schematic perspective view of the reflecting mirror 230, and shows another modification of the reflecting mirror 230.
  • the reflecting mirror 230 has both a rib 236 disposed on the peripheral edge of the reflecting surface 234 and a curved portion 237 disposed on the inside thereof. Furthermore, it also has a diagonally bent portion 237 extending from the post 232 located at the center and intersecting the bent portion 237 and the rib 236. Thus, the rigidity of the reflecting mirror 230 is further increased by providing the rib 236 and the bent portion 237 together.
  • FIG. 38 is a schematic diagram showing a cross-sectional shape of the reflecting mirror 230. An EE cross section of the reflecting mirror 230 shown in FIG. 37 is shown.
  • the bent portion 237 is depressed to form a groove when viewed from the reflecting surface 234 side. For this reason, a part of reflective surface 234 stops functioning as a reflective surface.
  • the rib 236 and the bent portion 237 are processed in the same process as the reflecting mirror 230. It can be formed together. Therefore, it is possible to prevent an increase in the number of man-hours for manufacturing the reflecting mirror 230 due to the provision of the rib 236 and the bent portion 237.
  • the rib 236 or the bent portion 237 can be formed while keeping the reflecting surface 234 flat, as long as the number of processes for forming the reflecting mirror 230 is not increased. Therefore, when the spatial light modulator 100 is used for applications such as an exposure apparatus and an image display apparatus, the reflection surface can be flattened to improve the quality and utilization efficiency of the reflected light.
  • a member having at least one of the rib 236 and the bent portion 237 as described above together with the post 232 may be used as a structural material. That is, the unit element 200 with high reflection efficiency can be formed by further forming the flat reflection surface 234 on a member having the rib 236, the bent portion 237, and the like and having high rigidity.
  • FIG. 39 is a schematic perspective view showing another modification of the reflecting mirror 230. Elements that are common to the reflecting mirror 230 shown so far are assigned the same reference numerals, and redundant description is omitted.
  • the reflecting mirror 230 has a box-shaped structural member 238 that supports the reflecting surface 234 from the back surface instead of the rib 236 and the bent portion 237. Thereby, the reflecting mirror 230 forms a monocoque shell and has high bending rigidity and torsional rigidity. Therefore, the form of the reflecting mirror 230 can be stabilized over a long period.
  • the structural material 238 is hollow, the moment of inertia of the assembly including the reflecting mirror 230 and the structural material 238 is not increased. Therefore, the response speed of the spatial light modulator 100 is prevented from being lowered due to the high rigidity of the reflecting mirror 230.
  • hole 239 formed in the structural material 238 penetrates the horizontal surface of the structural material 238 and communicates the inside and outside of the structural material 238. The use of the punched hole 239 will be described later.
  • FIG. 40 is a schematic cross-sectional view showing the manufacturing process of the reflecting mirror 230.
  • the structural material 238 is formed by sequentially depositing the material of the reflecting mirror 230 on the stepped base formed of resist in the same manner as the steps shown in FIGS.
  • by forming the structural material 238 from the same material as the reflecting mirror 230 it is possible to align changes such as expansion due to temperature changes with the reflecting mirror 230.
  • FIG. 41 is a schematic cross-sectional view showing the next stage in the manufacturing process of the reflecting mirror 230.
  • a region corresponding to the bottom surface of the formed structural member 238 is etched to form a hole 239.
  • the punched hole 239 passes through the front and back of the structural material 238.
  • the inside of the structural material 238 is filled with a resist in the same manner as in the stage shown in FIG. As a result, a flat base is formed on the structural material 238.
  • FIG. 42 is a schematic cross-sectional view of the reflecting mirror 230. Subsequently, the material of the reflecting mirror 230 is sequentially deposited on the flat base formed on the upper end of the structural member 238 as described above. Further, the resist remaining inside the structural member 238 is discharged from the punched hole 239, and the reflecting mirror 230 is completed.
  • the reflecting surface 234 can be formed flat over the entire surface. Therefore, an effective reflecting surface is widened, and incident light is efficiently reflected. Further, when used in an image display device or the like, the spatial light modulator 100 with few gaps between pixels can be formed.
  • FIG. 43 is a schematic perspective view showing another modification of the reflecting mirror 230. Elements that are common to the reflecting mirror 230 shown so far are assigned the same reference numerals, and redundant description is omitted.
  • the reflecting mirror 230 also has a three-dimensional structural material 238 that supports the reflecting surface 234 from the back surface.
  • the reflecting mirror 230 including the structural member 238 has a plurality of surfaces intersecting each other and has high bending rigidity and torsional rigidity. Therefore, the form of the reflecting mirror 230 can be stabilized over a long period.
  • the structural material 238 has a shape opened downward, the resist serving as a base can be easily removed in the manufacturing process.
  • a closed space is formed inside the post 232. Therefore, for example, it is preferable to provide a hole 239 in the bottom surface of the post 232 and the movable portion 226.
  • the structural material 238 is formed by sequentially depositing the material of the reflecting mirror 230 on the stepped base formed of resist in the same manner as the steps shown in FIGS.
  • the structural member 238 is formed of the same material as that of the reflecting mirror 230, so that changes such as expansion due to a temperature change can be aligned with the reflecting mirror 230.
  • FIG. 45 is a schematic cross-sectional view showing the next stage in the manufacturing process of the reflecting mirror 230.
  • FIG. In the formed structural member 238, a hole 239 is formed on the bottom surface of the post 232.
  • the inside and outside of the post 232 can be communicated with each other through the hole 239.
  • the periphery of the structural material 238 is filled with a resist in the same manner as in the stage shown in FIG. Thereby, a flat base continuous with the upper surface of the structural member 238 is formed.
  • FIG. 46 is a schematic cross-sectional view of the reflecting mirror 230. Subsequently, the material of the reflecting mirror 230 is sequentially deposited on the structural member 238 as described above. Further, the resist remaining inside the post 232 is removed by being discharged from the punched hole 239, whereby the reflecting mirror 230 is completed.
  • the reflecting surface 234 can be formed flat over the entire surface. Therefore, an effective reflecting surface is widened, and incident light is efficiently reflected. Further, when used in an image display device or the like, the spatial light modulator 100 with few gaps between pixels can be formed.
  • 100 spatial light modulator 200 unit element, 210 substrate, 212, 213, 214, 215, 216, 221, 228 electrode, 220 drive unit, 222 fixed frame, 223, 224 torsion shaft, 225, 229, 236 Rib, 226 Movable part, 227 Movable frame, 230 Reflector, 232 Post, 234, 532, 534 Reflective surface, 236 Rib, 237 Curved part, 238 Structural material, 239 Open hole, 312, 314 Insulating layer, 315 Contact hole, 320, 344, 346 Conductor layer, 332, 334, 336, 352, 354, 356 Resist layer, 335, 337, 339, 353, 355, 357 Side wall, 340 Non-reflective film, 341 Light-shielding part, 342, 348 Non-conductive layer 360, reflective film, 361 depression, 362, 366 Reflective film material layer, 364 Non-reflective film material layer, 368 protective layer, 400 exposure device, 500 illumination light generation unit,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

Disclosed is an electro-mechanical converter provided with a board having an electrode, a board-side torsional shaft part having one end secured to the board and elastically deformed, a movable part supported by the other end of the board-side torsional shaft part and swingable with respect to the board when the movable part is attracted to the electrode by an electrostatic force, and a structure member having a surface crossing a surface of the movable part, so provided as to be integrated with the movable part, and resistant against the flectional stress applied to the movable part. The torsional shaft part of the electro-mechanical converter can be integrated with the movable part. The electro-mechanical converter can be further provided with a frame body supported by the other end of the torsional shaft part and swingable with respect to the board when the frame body is attracted to the electrode on the board by an electrostatic force and a frame-side torsional shaft part having one end secured to the frame body and the other end supporting the movable part. The movable part can be swingable with respect to the frame body.

Description

電気機械変換器、空間光変調器、露光装置およびそれらの製造方法Electromechanical converter, spatial light modulator, exposure apparatus, and manufacturing method thereof
 本発明は、電気機械変換器、空間光変調器、露光装置およびそれらの製造方法に関する。 The present invention relates to an electromechanical converter, a spatial light modulator, an exposure apparatus, and manufacturing methods thereof.
 リソグラフィ技術により製造され、捩じりヒンジで支持されたミラーを静電力により駆動する電気機械変換器を備えた空間光変調器がある(特許文献1参照)。
[先行技術文献]
[特許文献]
 [特許文献1] 特開平09-101467号公報
There is a spatial light modulator including an electromechanical transducer that drives a mirror manufactured by lithography technology and supported by a torsion hinge by electrostatic force (see Patent Document 1).
[Prior art documents]
[Patent Literature]
[Patent Document 1] Japanese Patent Application Laid-Open No. 09-101467
 リソグラフィ技術により形成された機械電気変換器および空間光変調器は、部材が薄い薄膜により形成されるので、残留応力緩和等の影響を受けやすい。このため、長期間にわたっての特性を安定させることが難しい。 The electromechanical transducer and the spatial light modulator formed by the lithography technique are easily affected by residual stress relaxation or the like because the member is formed of a thin thin film. For this reason, it is difficult to stabilize the characteristics over a long period of time.
 上記課題を解決すべく、本発明の第一態様として、電極を有する基板と、基板に対して一端を固定されて弾性変形する基板側捩じり軸部と、基板側捩じり軸部の他端に支持され、静電力により電極に引き付けられて基板に対して揺動する可動部と可動部の一面と交差する面を有して可動部と一体的に配され、可動部に対する曲げ応力に対抗する構造材とを備えた電気機械変換器が提供される。 In order to solve the above problems, as a first aspect of the present invention, a substrate having electrodes, a substrate-side torsion shaft portion that is elastically deformed with one end fixed to the substrate, and a substrate-side torsion shaft portion Bending stress on the movable part, which is supported by the other end and is arranged integrally with the movable part, having a movable part that is attracted to the electrode by electrostatic force and swings relative to the substrate, and a surface that intersects one surface of the movable part. An electromechanical transducer with a structural material that counteracts the above is provided.
 また、本発明の第二態様として、上記電気機械変換器と、可動部に支持され、可動部と共に基板に対して揺動する反射鏡とを備える空間光変調器が提供される。 Also, as a second aspect of the present invention, there is provided a spatial light modulator including the electromechanical converter and a reflecting mirror supported by the movable part and swinging with respect to the substrate together with the movable part.
 更に、本発明の第三態様として、基板と、基板に対して揺動する反射鏡とを備えた空間光変調器であって、反射鏡は、反射面と、反射面に交差する面を含み反射面の裏面に配されて反射面に対する曲げ応力に対抗する構造材とを有する空間光変調器が提供される。 Furthermore, as a third aspect of the present invention, a spatial light modulator including a substrate and a reflecting mirror that swings relative to the substrate, the reflecting mirror including a reflecting surface and a surface that intersects the reflecting surface. A spatial light modulator is provided having a structural material disposed on the back surface of the reflecting surface and resisting bending stress on the reflecting surface.
 また更に、本発明の第四態様として、電極を有する基板と、基板に対して一端を固定されて弾性変形する基板側捩じり軸部と、捩じり軸部の他端に支持されつつ、静電力により電極に引き付けられて基板に対して揺動する枠体と、枠体に対して一端を固定されて弾性変形する枠側捩じり軸部と枠側捩じり軸部の他端に支持されつつ、静電力により電極に引き付けられて枠体に対して揺動する可動部と可動部に支持されて、可動部と共に基板に対して揺動する反射鏡とを備える空間光変調器が提供される。 Still further, as a fourth aspect of the present invention, a substrate having electrodes, a substrate-side torsion shaft portion that is elastically deformed with one end fixed to the substrate, and being supported by the other end of the torsion shaft portion A frame body that is attracted to an electrode by an electrostatic force and swings with respect to the substrate, a frame-side torsion shaft portion that is elastically deformed with one end fixed to the frame body, and a frame-side torsion shaft portion Spatial light modulation comprising a movable part that is supported by the end and is attracted to the electrode by an electrostatic force and swings with respect to the frame, and a reflecting mirror that is supported by the movable part and swings with respect to the substrate together with the movable part A vessel is provided.
 また更に、本発明の第五態様として、上記空間光変調器のいずれかを備える露光装置が提供される。 Still further, as a fifth aspect of the present invention, there is provided an exposure apparatus including any one of the spatial light modulators.
 また更に、本発明の第六態様として、電極を有する基板と、基板に対して一端を固定されて弾性変形する基板側捩じり軸部と、基板側捩じり軸部の他端に支持され、静電力により電極に引き付けられて基板に対して揺動する可動部と可動部の一面と交差する面を有して可動部と一体的に配され、可動部に対する曲げ応力に対抗する構造材とを備えた電気機械変換器を製造する製造方法であって、下地の上にパターニングされた犠牲材料の層を形成する段階と、犠牲材料の層の上に可動部となる材料の層を堆積する段階と、犠牲材料の層を除去する段階とを備え、下地から離間した領域を有する可動部を形成する工程を含む製造方法が提供される。 Furthermore, as a sixth aspect of the present invention, a substrate having electrodes, a substrate-side torsion shaft portion that is elastically deformed by fixing one end to the substrate, and supported at the other end of the substrate-side torsion shaft portion A structure that has a movable portion that is attracted to an electrode by an electrostatic force and swings with respect to the substrate, and a surface that intersects one surface of the movable portion, is arranged integrally with the movable portion, and resists bending stress on the movable portion A method of manufacturing an electromechanical transducer comprising a material, the step of forming a patterned sacrificial material layer on a base, and a layer of a material to be a movable part on the sacrificial material layer A manufacturing method is provided that includes depositing and removing a layer of sacrificial material and forming a movable part having a region spaced from the substrate.
 また更に、本発明の第七態様として、基板と、基板に対して揺動する反射鏡とを備え、反射鏡は、反射面と、反射面に交差する面を含み反射面の裏面に配されて反射面に対する曲げ応力に対抗する構造材とを有する空間光変調器を製造する製造方法であって、下地の上にパターニングされた犠牲材料の層を形成する段階と、犠牲材料の層の上に構造材となる非反射膜材料の層を堆積する段階と、犠牲材料の層を除去する段階とを備え、非反射膜材料の層が下地から離間した領域を形成する工程を含む製造方法が提供される。 Furthermore, as a seventh aspect of the present invention, a substrate and a reflecting mirror that swings relative to the substrate are provided, and the reflecting mirror is disposed on the back surface of the reflecting surface including the reflecting surface and a surface that intersects the reflecting surface. A method of manufacturing a spatial light modulator having a structural material that resists bending stress on a reflective surface, the method comprising: forming a patterned sacrificial material layer on a base; and And a step of depositing a layer of a non-reflective film material to be a structural material and a step of removing a layer of a sacrificial material, the manufacturing method including a step of forming a region in which the layer of the non-reflective film material is separated from the base Provided.
 また更に、本発明の第八態様として、電極を有する基板と、基板に対して一端を固定されて弾性変形する基板側捩じり軸部と、捩じり軸部の他端に支持されつつ、静電力により電極に引き付けられて基板に対して揺動する枠体と、枠体に対して一端を固定されて弾性変形する枠側捩じり軸部と枠側捩じり軸部の他端に支持されつつ、静電力により電極に引き付けられて枠体に対して揺動する可動部と可動部に支持されて、可動部と共に基板に対して揺動する反射鏡とを備える空間光変調器を製造する製造方法であって、下地の上にパターニングされた犠牲材料の層を形成する段階と、犠牲材料の層の上に枠体となる材料の層を堆積する段階と、犠牲材料の層を除去する段階とを備え、下地から離間した領域を有する枠体を形成する工程を含む製造方法が提供される。 Furthermore, as an eighth aspect of the present invention, a substrate having electrodes, a substrate-side torsion shaft portion that is elastically deformed with one end fixed to the substrate, and being supported by the other end of the torsion shaft portion A frame body that is attracted to an electrode by an electrostatic force and swings with respect to the substrate, a frame-side torsion shaft portion that is elastically deformed with one end fixed to the frame body, and a frame-side torsion shaft portion Spatial light modulation comprising a movable part that is supported by the end and is attracted to the electrode by an electrostatic force and swings with respect to the frame, and a reflecting mirror that is supported by the movable part and swings with respect to the substrate together with the movable part A method of manufacturing a vessel, comprising: forming a patterned sacrificial material layer on a base; depositing a frame material layer on the sacrificial material layer; And a step of forming a frame having a region spaced from the base. Manufacturing method is provided.
 上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションも発明となり得る。 The above summary of the invention does not enumerate all the necessary features of the present invention. Further, a sub-combination of these feature groups can be an invention.
空間光変調器100の外観を示す模式的斜視図である。1 is a schematic perspective view showing an external appearance of a spatial light modulator 100. FIG. 単位素子200の分解斜視図である。3 is an exploded perspective view of a unit element 200. FIG. 単位素子200の断面図である。3 is a cross-sectional view of a unit element 200. FIG. 単位素子200の断面図である。3 is a cross-sectional view of a unit element 200. FIG. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 空間光変調器100の製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 100. 単位素子200の分解斜視図である。3 is an exploded perspective view of a unit element 200. FIG. 単位素子200の断面図である。3 is a cross-sectional view of a unit element 200. FIG. 単位素子200の断面図である。3 is a cross-sectional view of a unit element 200. FIG. 空間光変調器100の斜視図である。1 is a perspective view of a spatial light modulator 100. FIG. 露光装置400の模式図である。2 is a schematic diagram of an exposure apparatus 400. FIG. 露光装置400における空間光変調器100の動作を示す図である。FIG. 5 is a view showing the operation of the spatial light modulator 100 in the exposure apparatus 400. 単位素子200の断面図である。3 is a cross-sectional view of a unit element 200. FIG. 駆動部220の斜視図である。3 is a perspective view of a drive unit 220. FIG. 単位素子200の断面図である。3 is a cross-sectional view of a unit element 200. FIG. 反射鏡230の斜視図である。3 is a perspective view of a reflecting mirror 230. FIG. 反射鏡230の斜視図である。3 is a perspective view of a reflecting mirror 230. FIG. 反射鏡230の断面図である。4 is a cross-sectional view of a reflecting mirror 230. FIG. 反射鏡230の斜視図である。3 is a perspective view of a reflecting mirror 230. FIG. 反射鏡230の製造過程を示す断面図である。5 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230. FIG. 反射鏡230の製造過程を示す断面図である。5 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230. FIG. 反射鏡230の断面図である。4 is a cross-sectional view of a reflecting mirror 230. FIG. 反射鏡230の斜視図である。3 is a perspective view of a reflecting mirror 230. FIG. 反射鏡230の製造過程を示す断面図である。5 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230. FIG. 反射鏡230の製造過程を示す断面図である。5 is a cross-sectional view showing a manufacturing process of the reflecting mirror 230. FIG. 反射鏡230の断面図である。4 is a cross-sectional view of a reflecting mirror 230. FIG.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、空間光変調器100の外観を示す模式的斜視図である。空間光変調器100は、基板210および反射鏡230を備える。 FIG. 1 is a schematic perspective view showing the appearance of the spatial light modulator 100. FIG. The spatial light modulator 100 includes a substrate 210 and a reflecting mirror 230.
 基板210上に二次元的に配列されてマトリクスを形成する複数の反射鏡230は、それぞれ数μmから百数十μm程度の寸法を有し、基板210に対して個別に揺動させることができる。よって、図示のように一部の反射鏡230が揺動して傾斜した状態で光を反射させると、反射光の照度分布が変化する。よって、反射鏡230の揺動を制御することにより、任意の照度分布を形成できる。 The plurality of reflecting mirrors 230 that are two-dimensionally arranged on the substrate 210 and form a matrix have dimensions of about several μm to several hundreds of μm, and can be individually swung with respect to the substrate 210. . Therefore, if the light is reflected with some of the reflecting mirrors 230 swinging and tilting as shown in the drawing, the illuminance distribution of the reflected light changes. Therefore, an arbitrary illuminance distribution can be formed by controlling the swing of the reflecting mirror 230.
 図2は、単位素子200の模式的分解斜視図である。単位素子200は1枚の反射鏡230に係る構造物であり、空間光変調器100においては、複数の反射鏡230のそれぞれが同様の構造物に支持される。 FIG. 2 is a schematic exploded perspective view of the unit element 200. The unit element 200 is a structure related to one reflecting mirror 230. In the spatial light modulator 100, each of the plurality of reflecting mirrors 230 is supported by the same structure.
 単位素子200は、基板210の上に搭載される駆動部220と、駆動部220に搭載される反射鏡230とを有する。また、基板210の表面には、電極212、214、216が配される。 The unit element 200 includes a driving unit 220 mounted on the substrate 210 and a reflecting mirror 230 mounted on the driving unit 220. Further, electrodes 212, 214, and 216 are disposed on the surface of the substrate 210.
 駆動部220は、固定枠222および可動部226を有する。固定枠222は、上面が開放された中空の部材により形成されて、単位素子200の外周を包囲する方形の枠をなす。固定枠222は、基板210上で、電極216の上に固定される。なお、図1に示したように、空間光変調器100では、単位素子200が多数配列されるが、電極216は共通な電位、例えば接地電位に接続され、空間光変調器100全体の基準電位を共通にする。 The driving unit 220 includes a fixed frame 222 and a movable unit 226. The fixed frame 222 is formed of a hollow member having an open upper surface, and forms a rectangular frame that surrounds the outer periphery of the unit element 200. The fixed frame 222 is fixed on the electrode 216 on the substrate 210. As shown in FIG. 1, in the spatial light modulator 100, a large number of unit elements 200 are arranged. However, the electrode 216 is connected to a common potential, for example, a ground potential, and the reference potential of the spatial light modulator 100 as a whole. Make common.
 固定枠222が基板210に対して固定された場合、基板210上の一対の電極212、214は、図中に点線で示すように、可動部226の縁部近傍に位置する。よって、可動部226の下面と、電極212、214とは、互いに対向する。 When the fixed frame 222 is fixed to the substrate 210, the pair of electrodes 212 and 214 on the substrate 210 are positioned in the vicinity of the edge of the movable portion 226, as indicated by a dotted line in the drawing. Therefore, the lower surface of the movable part 226 and the electrodes 212 and 214 face each other.
 可動部226は、固定枠222の内側において、固定枠222の内側の面から捩じり軸部224を介して支持される。捩じり軸部224の一端は、固定枠222の内面に対して固定される。 The movable portion 226 is supported on the inner side of the fixed frame 222 from the inner surface of the fixed frame 222 via the torsion shaft portion 224. One end of the torsion shaft portion 224 is fixed to the inner surface of the fixed frame 222.
 捩じり軸部224の他端は、可動部226の周縁部から下方に延在するリブ225に対して固定される。捩じり軸部224は、弾性的に捩じり変形するので、可動部226は、捩じり軸部224を揺動軸として基板210に対して揺動する。しかしながら、リブ225により高い曲げ剛性を有するので、可動部226は変形し難い。 The other end of the torsion shaft portion 224 is fixed to a rib 225 that extends downward from the peripheral edge of the movable portion 226. Since the torsion shaft portion 224 is elastically torsionally deformed, the movable portion 226 swings with respect to the substrate 210 using the torsion shaft portion 224 as the swing shaft. However, since the rib 225 has a high bending rigidity, the movable portion 226 is not easily deformed.
 なお、リブ225の下端には、可動部226の外方に向かって広がったフランジ様の部分がある。これは、リブ225を含む層をパターニングする場合に残った領域で、無くてもよい。しかしながら、可動部226の剛性を低下させるものではなく、むしろ向上させる場合もあるので残してもよい。これにより、パターニングの精度を著しく高くすることが避けられるので生産性向上にも寄与する。 In addition, there is a flange-like portion that spreads outward from the movable portion 226 at the lower end of the rib 225. This is a remaining region when the layer including the rib 225 is patterned, and may not be present. However, the rigidity of the movable part 226 is not lowered, but may be improved, so it may be left. As a result, it is possible to avoid remarkably increasing the patterning accuracy, which contributes to an improvement in productivity.
 反射鏡230は、上面に反射率の高い反射面234を有する。反射面234は、薄膜として堆積された金属、例えばアルミニウム薄膜により形成される。反射鏡230の下面には、下方に向かって突出したポスト232が配される。 The reflecting mirror 230 has a reflecting surface 234 having a high reflectance on the upper surface. The reflective surface 234 is formed of a metal deposited as a thin film, such as an aluminum thin film. A post 232 protruding downward is disposed on the lower surface of the reflecting mirror 230.
 ポスト232は、図中に点線で示す可動部226の略中央に固定される。これにより、可動部226が基板210に対して揺動した場合、反射鏡230も可動部226と共に揺動する。 The post 232 is fixed to the approximate center of the movable part 226 indicated by a dotted line in the drawing. Thereby, when the movable part 226 swings with respect to the substrate 210, the reflecting mirror 230 swings together with the movable part 226.
 このように、駆動部220と反射鏡230とを個別に形成できる構造を有するので、それぞれの機能に適した構造と材料を選択できる。また、駆動部220の面積よりも大きい面積の反射面234を形成できるので、反射効率の高い単位素子200を形成できる。 As described above, since the drive unit 220 and the reflecting mirror 230 can be individually formed, a structure and material suitable for each function can be selected. In addition, since the reflection surface 234 having an area larger than the area of the drive unit 220 can be formed, the unit element 200 having high reflection efficiency can be formed.
 図3は、単位素子200の模式的断面図である。単位素子200は、固定枠222を基板210に固定し、反射鏡230を可動部226に固定した状態で、図2に示したA-A断面を示す。図2と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 3 is a schematic cross-sectional view of the unit element 200. The unit element 200 shows the AA cross section shown in FIG. 2 with the fixed frame 222 fixed to the substrate 210 and the reflecting mirror 230 fixed to the movable portion 226. Elements that are the same as those in FIG. 2 are given the same reference numerals, and redundant descriptions are omitted.
 図示のように、可動部226は、下面に電極228を有する。電極228は、基板210上の電極212と対向する。 As shown in the figure, the movable part 226 has an electrode 228 on the lower surface. The electrode 228 faces the electrode 212 on the substrate 210.
 また、可動部226は、縁部から下方に延びたリブ225を有する。これにより、可動部226は、高い曲げ剛性を有する。一方、捩じり軸部224は、リブ225に相当する要素を有していない。よって、可動部226に後述する駆動力が作用した場合、捩じり軸部224が弾性変形して、可動部226は、変形することなく変位する。 Also, the movable part 226 has a rib 225 extending downward from the edge. Thereby, the movable part 226 has high bending rigidity. On the other hand, the torsion shaft portion 224 does not have an element corresponding to the rib 225. Therefore, when a driving force described later is applied to the movable portion 226, the torsion shaft portion 224 is elastically deformed, and the movable portion 226 is displaced without being deformed.
 図4は、単位素子200模式的の断面図であり、図2に示したB-B断面を示す。なお、図2および図3と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 4 is a schematic cross-sectional view of the unit element 200, showing the BB cross section shown in FIG. 2 and 3 are denoted by the same reference numerals, and redundant description is omitted.
 図示のように、基板210上の一対の電極212、214のそれぞれは、可動部226の端部近傍に対向する。よって、電極212、214のいずれかに駆動電圧を印加した場合、電極228のいずれかの端部に静電力が作用する。 As shown in the figure, each of the pair of electrodes 212 and 214 on the substrate 210 faces the vicinity of the end of the movable portion 226. Therefore, when a driving voltage is applied to either of the electrodes 212 and 214, an electrostatic force acts on either end of the electrode 228.
 このように、可動部226は、捩じり軸部224により固定枠222に結合されている。よって、電極212、214のいずれかから電極228に静電力が作用した場合、可動部226は、捩じり軸部224を揺動軸として揺動する。よって、可動部226に対して固定された反射鏡230も揺動する。 Thus, the movable portion 226 is coupled to the fixed frame 222 by the torsion shaft portion 224. Therefore, when an electrostatic force acts on the electrode 228 from either of the electrodes 212 and 214, the movable portion 226 swings with the torsion shaft portion 224 as the swing shaft. Therefore, the reflecting mirror 230 fixed with respect to the movable part 226 also swings.
 なお、図示の例では、電極214に駆動電圧が印加され、電極228の図中右側が、基板210の方に引き付けられる。これにより、反射鏡230の反射面234は右方に傾く。 In the illustrated example, a driving voltage is applied to the electrode 214, and the right side of the electrode 228 in the drawing is attracted toward the substrate 210. Thereby, the reflecting surface 234 of the reflecting mirror 230 is inclined rightward.
 再び図1を参照すると、反射鏡230のそれぞれに設けた上記のような構造に対して駆動電力を個別に供給または遮断することにより、複数の反射鏡230のそれぞれを個別に制御できる。よって、空間光変調器100にいったん反射させることにより任意の照射パターンを形成でき、可変光源、露光装置、画像表示装置、光スイッチ等として使用できる。 Referring to FIG. 1 again, each of the plurality of reflecting mirrors 230 can be individually controlled by individually supplying or blocking driving power to the above-described structure provided in each of the reflecting mirrors 230. Therefore, an arbitrary irradiation pattern can be formed by once reflecting the light to the spatial light modulator 100, and can be used as a variable light source, an exposure device, an image display device, an optical switch, or the like.
 図5から図26までは、図1から図4までに示した空間光変調器100の製造過程を示す断面図である。なお、図5から図26までに示すのは作製過程なので、空間光変調器100の対応する要素が異なる形状または状態で含まれている場合がある。そこで、これらの図について固有の参照番号を付与して各図の内容を説明した上で、図26において、図1から図4までに示した空間光変調器100との対応関係を示す。 5 to 26 are cross-sectional views showing a manufacturing process of the spatial light modulator 100 shown in FIGS. 5 to 26 show the manufacturing process, the corresponding elements of the spatial light modulator 100 may be included in different shapes or states. Therefore, after assigning unique reference numbers to these drawings to explain the contents of each drawing, FIG. 26 shows the correspondence with the spatial light modulator 100 shown in FIGS.
 図5に示すように、空間光変調器100が形成される基板210の表面直上には、下側の絶縁層312が堆積される。これにより、基板210の表面は絶縁層312により覆われる。 As shown in FIG. 5, a lower insulating layer 312 is deposited immediately above the surface of the substrate 210 on which the spatial light modulator 100 is formed. As a result, the surface of the substrate 210 is covered with the insulating layer 312.
 基板210の材料としては、シリコン単結晶基板の他、化合物半導体基板、セラミックス基板等、平坦な表面を有する部材を広く使用できる。絶縁層312の材料としては、例えば、基板210の材料の酸化物、窒化物等を使用できる。また、絶縁層312は、誘電率の高い多孔質体であってもよい。絶縁層312の成膜方法としては、絶縁層312の材料に応じて、各種の物理気相析出法、化学気相析出法から適宜選択できる。 As the material of the substrate 210, members having a flat surface such as a compound semiconductor substrate and a ceramic substrate can be widely used in addition to a silicon single crystal substrate. As a material of the insulating layer 312, for example, an oxide or a nitride of the material of the substrate 210 can be used. The insulating layer 312 may be a porous body having a high dielectric constant. A method for forming the insulating layer 312 can be appropriately selected from various physical vapor deposition methods and chemical vapor deposition methods depending on the material of the insulating layer 312.
 次に、図6に示すように、絶縁層312の上に、パターニングした導体層320が形成される。導体層320は、空間光変調器100において、電極212、214、216となる。導体層320の材料としては、アルミニウム、銅等の金属を例示できる。導体層320の成膜方法としては、導体層320の材料に応じて、各種の物理気相析出法、化学気相析出法、鍍金法等から適宜選択できる。 Next, a patterned conductor layer 320 is formed on the insulating layer 312 as shown in FIG. The conductor layer 320 becomes the electrodes 212, 214, and 216 in the spatial light modulator 100. Examples of the material of the conductor layer 320 include metals such as aluminum and copper. A method for forming the conductor layer 320 can be appropriately selected from various physical vapor deposition methods, chemical vapor deposition methods, plating methods, and the like depending on the material of the conductor layer 320.
 次に、図7に示すように、導体層320の表面および導体層320のパターンの間隙に露出する下側の絶縁層312の表面が、上側の絶縁層314により被覆される。このとき、上側の絶縁層314の下に導体層320が存在するか否かに応じて、上側の絶縁層314の表面には起伏が生じる。 Next, as shown in FIG. 7, the surface of the conductor layer 320 and the surface of the lower insulating layer 312 exposed in the gap between the patterns of the conductor layer 320 are covered with the upper insulating layer 314. At this time, the surface of the upper insulating layer 314 is undulated depending on whether or not the conductor layer 320 is present under the upper insulating layer 314.
 次に、図8に示すように、上側の絶縁層314の表面に形成された起伏がレジスト層332により平坦化される。これにより、平坦な下地の上で、以下に説明する工程を実行できる。なお、レジスト層332の塗布は、スピンコート法、スプレイコート法等を適宜選択できる。 Next, as shown in FIG. 8, the undulations formed on the surface of the upper insulating layer 314 are planarized by the resist layer 332. Thereby, the process demonstrated below can be performed on a flat base | substrate. The resist layer 332 can be applied by a spin coating method, a spray coating method, or the like as appropriate.
 次に、図9に示すように、後述する非反射膜の成膜下地が形成される。成膜下地は2層からなり、図9に示す段階では、下側のレジスト層334が平坦化された絶縁層314上に形成される。また、レジスト層334には、レジスト材料の塗布、プリベイク、露光、現像、ポストベイクを順次実行することによりパターニングされて、2対の側壁335が形成される。 Next, as shown in FIG. 9, a non-reflective film formation base to be described later is formed. The film formation base is composed of two layers, and in the stage shown in FIG. 9, a lower resist layer 334 is formed on the planarized insulating layer 314. The resist layer 334 is patterned by sequentially performing application of a resist material, pre-baking, exposure, development, and post-baking to form two pairs of side walls 335.
 次に、図10に示すように、下側のレジスト層334の上に、上側のレジスト層336が形成される。レジスト層336もパターニングされ、下側のレジスト層334の側壁335の上方にそれぞれ側壁337を、それとは別に更に2対の側壁339を形成している。これにより、上側のレジスト層336の表面から見ると、浅い側壁339と、深い側壁337、335とが形成される。 Next, as shown in FIG. 10, an upper resist layer 336 is formed on the lower resist layer 334. The resist layer 336 is also patterned to form side walls 337 above the side walls 335 of the lower resist layer 334, and two additional pairs of side walls 339. Thus, when viewed from the surface of the upper resist layer 336, shallow side walls 339 and deep side walls 337 and 335 are formed.
 これら下側および上側のレジスト層334、336は、フォトリソグラフィによりパターニングできる。即ち、レジスト層334、336を感光性材料により形成して、設計仕様に従ったパターンで露光することにより、レジスト層334、336を要求に応じた形状に成形できる。また、プラズマエッチング等のドライエッチングの手法により、レジスト層334、336を加工してパターニングしてもよい。 These lower and upper resist layers 334 and 336 can be patterned by photolithography. That is, the resist layers 334 and 336 are formed of a photosensitive material and exposed in a pattern according to the design specifications, so that the resist layers 334 and 336 can be formed into a shape as required. Further, the resist layers 334 and 336 may be processed and patterned by a dry etching method such as plasma etching.
 ただし、フォトリソグラフィによるパターニングは平面的なものであり、側壁335、337、339のような立体的構造を形成する目的で、立体的な下地層を形成することは難しい。そこで、図9、図10に示したように、複数のレジスト層334、336を用いることにより、立体的な成膜下地を形成できる。 However, patterning by photolithography is planar, and it is difficult to form a three-dimensional underlayer for the purpose of forming a three-dimensional structure such as the side walls 335, 337, and 339. Therefore, as shown in FIGS. 9 and 10, a three-dimensional film formation base can be formed by using a plurality of resist layers 334 and 336.
 次に、図11に示すように、絶縁層314およびレジスト層334、336により形成された成膜下地の上に、非導体層342が堆積される。形成された非導体層342は、レジスト層334、336の形状に倣って立体的な形状を有する。これにより、形成された非導体層342を含む薄膜の構造物は、高い断面二次モーメントを有する。 Next, as shown in FIG. 11, a non-conductive layer 342 is deposited on the film formation base formed by the insulating layer 314 and the resist layers 334 and 336. The formed non-conductive layer 342 has a three-dimensional shape following the shape of the resist layers 334 and 336. Thus, the thin film structure including the formed non-conductive layer 342 has a high moment of inertia in cross section.
 非導体層342の材料としては、各種酸化物、窒化物を使用できる。また、非導体層342を形成する方法としては、非導体層342の材料に応じて、各種の物理気相析出法、化学気相析出法から適宜選択できる。 As the material for the non-conductor layer 342, various oxides and nitrides can be used. Further, the method for forming the non-conductor layer 342 can be appropriately selected from various physical vapor deposition methods and chemical vapor deposition methods depending on the material of the non-conductor layer 342.
 次に、図12に示すように、レジスト層334、336の側壁335、337の内側底部を除去して、導体層320に到達するコンタクトホール315を形成する。コンタクトホール315は、例えば、ドライエッチングにより形成できる。 Next, as shown in FIG. 12, the inner bottom portions of the side walls 335 and 337 of the resist layers 334 and 336 are removed, and contact holes 315 reaching the conductor layer 320 are formed. The contact hole 315 can be formed by dry etching, for example.
 次に、図13に示すように、非導体層342の上に、パターニングされた導体層344が形成される。これにより、コンタクトホール315の内側から側壁335、337の上端に到達する一対の柱状の構造物と、側壁339に挟まれたレジスト層336のランド上に形成された平坦な領域とが導体層344として残る。側壁335、337の内側に形成された導体層344の構造物は、導体層320のいずれかのランドと電気的に結合される。 Next, as shown in FIG. 13, a patterned conductor layer 344 is formed on the non-conductor layer 342. Thus, the conductor layer 344 includes a pair of columnar structures that reach the upper ends of the side walls 335 and 337 from the inside of the contact hole 315 and a flat region formed on the land of the resist layer 336 sandwiched between the side walls 339. Remain as. The structure of the conductor layer 344 formed inside the side walls 335 and 337 is electrically coupled to any land of the conductor layer 320.
 次に、図14に示すように、非導体層342および導体層344の表面全体を覆う導体層346が形成される。これにより、パターニングされた導体層344は、今度の導体層346により電気的に結合される。導体層346の材料は、導体層344の材料と同じであっても、異なっていてもよい。 Next, as shown in FIG. 14, a conductor layer 346 covering the entire surfaces of the non-conductor layer 342 and the conductor layer 344 is formed. As a result, the patterned conductor layer 344 is electrically coupled by the current conductor layer 346. The material of the conductor layer 346 may be the same as or different from the material of the conductor layer 344.
 次に、図15に示すように、導体層346の表面全体を覆う上側の非導体層348が形成される。上側の非導体層348は、導体層344、346の下側に位置する非導体層342と同じ材料により形成される。成膜方法も、下側の非導体層342と同じ方法で成膜できる。 Next, as shown in FIG. 15, an upper non-conductive layer 348 covering the entire surface of the conductive layer 346 is formed. The upper non-conductive layer 348 is formed of the same material as the non-conductive layer 342 located below the conductive layers 344 and 346. The film formation method can also be performed by the same method as that for the lower non-conductor layer 342.
 これにより、互いに同じパターンと形状を有する、下側の非導体層342、導体層344、346および上側の非導体層348により3層構造の非反射膜340が形成される。なお、非反射膜340の表面は、反射膜の材料には向かない非導体層342、348が現れているので、3層構造全体を非反射膜340と呼んでいる。しかしながら、後述する反射膜と区別する目的で非反射膜340と記載しているに過ぎない。 Thereby, a non-reflective film 340 having a three-layer structure is formed by the lower non-conductor layer 342, the conductor layers 344 and 346, and the upper non-conductor layer 348 having the same pattern and shape. In addition, since non-conductive layers 342 and 348 that are not suitable for the material of the reflective film appear on the surface of the non-reflective film 340, the entire three-layer structure is called the non-reflective film 340. However, it is only described as a non-reflective film 340 for the purpose of distinguishing it from a reflective film described later.
 ここで、非反射膜340は、表裏に同じ材料で形成された非導体層342、348を有するので、温度変化により導体層344、346および非導体層342、348の間で生じるバイメタル効果が打ち消される。これにより、非反射膜340の形状が安定する。また、非反射膜340全体としては、後述する反射膜と同じ材料を用いて形成されているので、反射膜との熱膨張率差も生じない。 Here, since the non-reflective film 340 has the non-conductor layers 342 and 348 formed of the same material on the front and back, the bimetal effect generated between the conductor layers 344 and 346 and the non-conductor layers 342 and 348 is canceled by the temperature change. It is. Thereby, the shape of the non-reflective film 340 is stabilized. Further, since the non-reflective film 340 as a whole is formed using the same material as that of the reflective film described later, there is no difference in thermal expansion coefficient from the reflective film.
 次に、図16に示すように、非反射膜340の一部が除去され、駆動部220の外形が形成される。これにより、非反射膜340の両端において、非反射膜340の下層に位置するレジスト層334が露出される。非反射膜340は、ドライエッチングによりパターニングできる。 Next, as shown in FIG. 16, a part of the non-reflective film 340 is removed, and the outer shape of the driving unit 220 is formed. Thereby, the resist layer 334 located under the non-reflective film 340 is exposed at both ends of the non-reflective film 340. The non-reflective film 340 can be patterned by dry etching.
 次に、図17に示すように、非反射膜340の上面、即ち、非導体層348の表面を、レジスト層352により平坦化する。これにより、再び平坦な下地の上で、以下に説明する工程を実行できる。なお、レジスト層332の塗布は、スピンコート法、スプレイコート法等を適宜選択できる。 Next, as shown in FIG. 17, the upper surface of the non-reflective film 340, that is, the surface of the non-conductive layer 348 is planarized with a resist layer 352. Thereby, the process described below can be executed again on the flat base. The resist layer 332 can be applied by a spin coating method, a spray coating method, or the like as appropriate.
 次に、再び2層構造のレジストにより成膜下地を生成する。即ち、まず、図18に示すように、平坦化されたレジスト層352および非導体層348の表面に、2層構造のうち下側のレジスト層354が形成される。更に、レジスト層354はパターニングされ、略中央に側壁353が形成される。 Next, a film formation base is generated again using a two-layer resist. That is, first, as shown in FIG. 18, the lower resist layer 354 of the two-layer structure is formed on the surfaces of the flattened resist layer 352 and non-conductive layer 348. Further, the resist layer 354 is patterned to form a side wall 353 at substantially the center.
 次に、図19に示すように、下側のレジスト層354の上に、2層構造のうち上側のレジスト層356が形成される。上側のレジスト層356もパターニングされており、下側のレジスト層354の側壁353の上方に形成された側壁355と、側方両端近傍に形成された側壁357とを有する。こうして、レジスト層354、356により、立体的な成膜下地が形成される。 Next, as shown in FIG. 19, the upper resist layer 356 of the two-layer structure is formed on the lower resist layer 354. The upper resist layer 356 is also patterned, and has a side wall 355 formed above the side wall 353 of the lower resist layer 354 and side walls 357 formed near both side ends. Thus, a three-dimensional film formation base is formed by the resist layers 354 and 356.
 次に、図20に示すように、レジスト層354、356の表面全体に、反射膜材料層362が形成される。このとき、側壁353の内側では、反射膜材料層362が、非反射膜340の表面に結合される。 Next, as shown in FIG. 20, a reflection film material layer 362 is formed on the entire surface of the resist layers 354 and 356. At this time, the reflective film material layer 362 is bonded to the surface of the non-reflective film 340 inside the side wall 353.
 反射膜材料層362の形成に用いる反射膜材料としては、例えばアルミニウム等の金属材料を例示できる。また、反射膜材料として、非反射膜340の導体層344、346と同じ材料を用いてもよい。反射膜材料層362の形成方法としては、反射膜材料層362の材料に応じて、各種の物理気相析出法、化学気相析出法から適宜選択できる。 Examples of the reflective film material used for forming the reflective film material layer 362 include metal materials such as aluminum. Further, as the reflective film material, the same material as the conductor layers 344 and 346 of the non-reflective film 340 may be used. The method for forming the reflective film material layer 362 can be appropriately selected from various physical vapor deposition methods and chemical vapor deposition methods depending on the material of the reflective film material layer 362.
 次に、図21に示すように、反射膜材料層362の表面全体に、非反射膜材料層364を堆積させる。非反射膜材料層364を形成する非反射膜材料としては、非反射膜340の非導体層342、348と同じ材料を用いてもよい。非反射膜材料層364の形成方法としては、非反射膜材料層364の材料に応じて各種の物理気相析出法、化学気相析出法から適宜選択できる。 Next, as shown in FIG. 21, a non-reflective film material layer 364 is deposited on the entire surface of the reflective film material layer 362. As the non-reflective film material for forming the non-reflective film material layer 364, the same material as the non-conductive layers 342 and 348 of the non-reflective film 340 may be used. The formation method of the non-reflective film material layer 364 can be appropriately selected from various physical vapor deposition methods and chemical vapor deposition methods depending on the material of the non-reflective film material layer 364.
 次に、図22に示すように、反射膜材料層362および非反射膜材料層364の一部が除去され、反射鏡230の外形状に形成される。これにより、反射膜材料層362および非反射膜材料層364の両側端において、反射膜材料層362の下層に位置するレジスト層354が露出される。反射膜材料層362および非反射膜材料層364は、ドライエッチングによりパターニングできる。 Next, as shown in FIG. 22, a part of the reflective film material layer 362 and the non-reflective film material layer 364 is removed to form an outer shape of the reflective mirror 230. As a result, the resist layer 354 located under the reflective film material layer 362 is exposed at both ends of the reflective film material layer 362 and the non-reflective film material layer 364. The reflective film material layer 362 and the non-reflective film material layer 364 can be patterned by dry etching.
 次に、図23に示すように、非反射膜材料層364の表面と、露出したレジスト層354の表面との上に、反射膜材料層366が堆積される。こうして形成された、下側の反射膜材料層362、非反射膜材料層364および上側の反射膜材料層366により形成された3層構造では、非反射膜340の場合と同様に、反射膜材料層362、366および非反射膜材料層364の間で生じるバイメタル効果が打ち消される。よって、温度変化に起因する内部応力の作用に対して形状が安定する。 Next, as shown in FIG. 23, a reflective film material layer 366 is deposited on the surface of the non-reflective film material layer 364 and the exposed surface of the resist layer 354. In the three-layer structure formed by the lower reflective film material layer 362, the non-reflective film material layer 364, and the upper reflective film material layer 366 thus formed, as in the case of the non-reflective film 340, the reflective film material The bimetallic effect that occurs between the layers 362, 366 and the non-reflective film material layer 364 is counteracted. Therefore, the shape is stabilized against the action of internal stress caused by temperature change.
 反射膜材料層366は、最終的に空間光変調器100において入射光を反射する面となる。従って、反射膜材料層366の形成に先立って、その下地となる非反射膜材料層364の表面を化学機械研磨して鏡面化してもよい。また、反射膜材料層366そのものの表面を化学機械研磨して鏡面化してもよい。更に、非反射膜材料層364および反射膜材料層366の両方を化学機械研磨してもよい。 The reflective film material layer 366 finally becomes a surface that reflects incident light in the spatial light modulator 100. Therefore, prior to the formation of the reflective film material layer 366, the surface of the non-reflective film material layer 364 serving as the base may be mirror-polished by chemical mechanical polishing. Further, the surface of the reflective film material layer 366 itself may be mirror-polished by chemical mechanical polishing. Further, both the non-reflective film material layer 364 and the reflective film material layer 366 may be subjected to chemical mechanical polishing.
 次に、図24に示すように、反射膜材料層366の表面に保護層368が形成される。即ち、反射膜材料層366としてAl等の金属層を形成した場合、その表面は大気中の酸素等と反応して径年変化する。これにより空間光変調器100の特性も変化する。しかしながら、反射膜材料層366の表面を緻密な保護膜で被覆することにより、反射膜材料層366と雰囲気との反応を阻止または抑制できる。 Next, as shown in FIG. 24, a protective layer 368 is formed on the surface of the reflective film material layer 366. That is, when a metal layer such as Al is formed as the reflective film material layer 366, the surface thereof reacts with oxygen in the atmosphere and changes in diameter. As a result, the characteristics of the spatial light modulator 100 also change. However, the reaction between the reflective film material layer 366 and the atmosphere can be prevented or suppressed by covering the surface of the reflective film material layer 366 with a dense protective film.
 保護層368の材料としては、アルミナ等の無機材料の薄膜を例示できる。なお、保護層368は、反射膜材料層366において反射される光に対して透明であるべきことはいうまでもなく、当該光を透過させる厚さで形成される。こうして、反射膜材料層362、366、非反射膜材料層364および保護層368が積層された反射膜360が形成される。 Examples of the material of the protective layer 368 include a thin film of an inorganic material such as alumina. Needless to say, the protective layer 368 should be transparent to the light reflected by the reflective film material layer 366, and is formed to a thickness that allows the light to pass therethrough. Thus, the reflective film 360 in which the reflective film material layers 362 and 366, the non-reflective film material layer 364, and the protective layer 368 are stacked is formed.
 次に、図25に示すように、反射膜360の一部が除去され、反射鏡230の外形状に形成される。これにより、反射膜360の両側端において、反射膜材料層362の下層に位置するレジスト層354が露出される。反射膜材料層362および非反射膜材料層364は、ドライエッチングによりパターニングできる。 Next, as shown in FIG. 25, a part of the reflection film 360 is removed, and the outer shape of the reflection mirror 230 is formed. As a result, the resist layer 354 located under the reflective film material layer 362 is exposed at both ends of the reflective film 360. The reflective film material layer 362 and the non-reflective film material layer 364 can be patterned by dry etching.
 次に、図26に示すように、非反射膜340の成膜下地となったレジスト層332、334、336と、反射膜360の成膜下地となったレジスト層352、354、356とを除去する。ここで、反射膜360の両側端においてレジスト層354の表面が露出している。反射膜360の内側にあるレジスト層356は、レジスト層354の上に積層されているので、両者は連続する。 Next, as shown in FIG. 26, the resist layers 332, 334, and 336 that are the formation base of the non-reflective film 340 and the resist layers 352, 354, and 356 that are the formation base of the reflective film 360 are removed. To do. Here, the surface of the resist layer 354 is exposed at both ends of the reflective film 360. Since the resist layer 356 inside the reflective film 360 is laminated on the resist layer 354, both are continuous.
 また、レジスト層354は、レジスト層352の上に積層されているので、両者は連続する。非反射膜340の両側端においてレジスト層352とレジスト層334、332とは連続する。更に、非反射膜340の内側に位置するレジスト層336は、レジスト層334の上に積層されているので、両者は連続する。 Also, since the resist layer 354 is laminated on the resist layer 352, both are continuous. The resist layer 352 and the resist layers 334 and 332 are continuous at both ends of the non-reflective film 340. Furthermore, since the resist layer 336 located inside the non-reflective film 340 is laminated on the resist layer 334, both are continuous.
 このように、全てのレジスト層332、334、336、352、354、356が連続しているので、図25に示した状態から一括して除去することができる。よって、反射面234を形成する反射膜360に、レジスト除去のためのエッチングホールを設けなくてもよい。これにより、反射面234の反射効率を向上させることができる。 Thus, since all the resist layers 332, 334, 336, 352, 354, and 356 are continuous, they can be removed from the state shown in FIG. Therefore, it is not necessary to provide an etching hole for removing the resist in the reflective film 360 that forms the reflective surface 234. Thereby, the reflective efficiency of the reflective surface 234 can be improved.
 レジスト層332、334、336、352、354、356の除去は、溶解材を用いたウェットプロセスであってもよい。また、プラズマを用いた灰化によるドライプロセスであってもよい。更に、レジスト層332、334、336、352、354、356は、犠牲材料の層の一例に過ぎず、他の犠牲材料を用いても同様のプロセスを実施できる。 The removal of the resist layers 332, 334, 336, 352, 354, and 356 may be a wet process using a dissolving material. Further, it may be a dry process by ashing using plasma. Further, the resist layers 332, 334, 336, 352, 354, and 356 are merely examples of layers of sacrificial materials, and a similar process can be performed using other sacrificial materials.
 こうして、図1から図4までに示した空間光変調器100と同じ構造を有する空間光変調器100を、リソグラフィ技術により製造できる。リソグラフィ技術で製造することにより微細な単位素子200を形成できるので、解像度の高い空間光変調器100を製造できる。 Thus, the spatial light modulator 100 having the same structure as the spatial light modulator 100 shown in FIGS. 1 to 4 can be manufactured by lithography technology. Since the fine unit element 200 can be formed by the lithography technique, the spatial light modulator 100 with high resolution can be manufactured.
 なお、各層の材料の組み合わせとしては、例えば、導体層320、344、346および反射膜材料層362、366をアルミニウムにより、非導体層342、348および非反射膜材料層364を窒化珪素により、保護層368をアルミナとすることができる。ただし、各部の材料が上記のものに限られるわけではなく、例えば、SiOx、SiNx,Al,Cr,Al合金、などから適宜選択できる。 As a combination of materials of each layer, for example, the conductor layers 320, 344, and 346 and the reflective film material layers 362 and 366 are protected by aluminum, and the non-conductive layers 342 and 348 and the non-reflective film material layer 364 are protected by silicon nitride. Layer 368 can be alumina. However, the material of each part is not limited to the above, and can be appropriately selected from, for example, SiOx, SiNx, Al, Cr, Al alloy.
 図26に示した単位素子200において、基板210上の導体層320は、電極212、214、216のいずれかに相当する。非反射膜340の中央部分は、可動部226に相当する。また、可動部226相当部分の下面に位置する導体層344は、電極228に相当する。更に、可動部226相当部分の側方外側に位置する部分は、一対の捩じり軸部224に相当する。更に、捩じり軸部224相当部分の外側は、固定枠222に相当する。 In the unit element 200 shown in FIG. 26, the conductor layer 320 on the substrate 210 corresponds to one of the electrodes 212, 214, and 216. The central part of the non-reflective film 340 corresponds to the movable part 226. Further, the conductor layer 344 located on the lower surface of the portion corresponding to the movable portion 226 corresponds to the electrode 228. Furthermore, the portion located on the lateral outer side of the portion corresponding to the movable portion 226 corresponds to the pair of torsion shaft portions 224. Further, the outside of the portion corresponding to the twisted shaft portion 224 corresponds to the fixed frame 222.
 なお、非反射膜340の両側端は、固定枠222となる部分よりも更に外側まで水平に延在する。この部分は、隣接する単位素子200との間隙から基板210に向かって差し込む光を遮断する遮光部341を形成する。これにより、空間光変調器100における基板210の温度が照射光により上昇することが防止される。また、入射光により、基板210上のCMOS素子等が劣化することが防止される。 Note that both side ends of the non-reflective film 340 extend horizontally further to the outside than the portion to be the fixed frame 222. This portion forms a light blocking portion 341 that blocks light that is inserted toward the substrate 210 from the gap between the adjacent unit elements 200. This prevents the temperature of the substrate 210 in the spatial light modulator 100 from rising due to the irradiation light. In addition, the CMOS element on the substrate 210 is prevented from being deteriorated by the incident light.
 また、図26に示した単位素子200において、反射膜360は、空間光変調器100における反射鏡230に相当する。ここで、反射膜360の中央部に形成された陥没部361の下面は、反射鏡230のポスト232に相当する。また、反射膜360の上面は、反射面234に相当する。 Further, in the unit element 200 shown in FIG. 26, the reflection film 360 corresponds to the reflection mirror 230 in the spatial light modulator 100. Here, the lower surface of the depressed portion 361 formed in the central portion of the reflective film 360 corresponds to the post 232 of the reflective mirror 230. Further, the upper surface of the reflective film 360 corresponds to the reflective surface 234.
 図27は、他の構造を有する単位素子200の模式的分解斜視図である。なお、この単位素子200は、以下に説明する部分を除くと、図2に示した単位素子200と同じ構造を有する。そこで、図1と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 27 is a schematic exploded perspective view of a unit element 200 having another structure. The unit element 200 has the same structure as that of the unit element 200 shown in FIG. 2 except for portions described below. Therefore, the same elements as those in FIG.
 単位素子200は、基板210の上に重ねて配される駆動部220および反射鏡230を有する。反射鏡230は、図1に示した単位素子200と同じ形状を有する。一方、基板210の表面には、電極212、214、216に加えて、もう一対の電極213、215が配される。 The unit element 200 includes a driving unit 220 and a reflecting mirror 230 that are arranged on the substrate 210. The reflecting mirror 230 has the same shape as the unit element 200 shown in FIG. On the other hand, in addition to the electrodes 212, 214, and 216, another pair of electrodes 213 and 215 is disposed on the surface of the substrate 210.
 駆動部220は、固定枠222および可動部226の間に、いわば同芯状に配された可動枠227を更に有する。可動枠227は、一対の捩じり軸部223を介して固定枠222から支持される。これにより、可動枠227は、固定枠222に対して、捩じり軸部223を揺動軸として揺動する。捩じり軸部223は、捩じり軸部224に対して直交する。 The driving unit 220 further includes a movable frame 227 arranged so as to be concentric between the fixed frame 222 and the movable unit 226. The movable frame 227 is supported from the fixed frame 222 via a pair of torsion shaft portions 223. Accordingly, the movable frame 227 swings with respect to the fixed frame 222 using the torsion shaft portion 223 as the swing shaft. The torsion shaft part 223 is orthogonal to the torsion shaft part 224.
 可動部226を支持する捩じり軸部224の一端は、可動枠227の内側に結合される。これにより、可動部226は、可動枠227に対して、捩じり軸部224を揺動軸として揺動する。よって、可動部226は、固定枠222に関して、互いに直交する二つの捩じり軸部223、224について揺動する。 One end of the torsion shaft portion 224 that supports the movable portion 226 is coupled to the inside of the movable frame 227. Accordingly, the movable portion 226 swings with respect to the movable frame 227 using the torsion shaft portion 224 as the swing shaft. Therefore, the movable portion 226 swings about two torsion shaft portions 223 and 224 that are orthogonal to each other with respect to the fixed frame 222.
 なお、可動枠227は、外側および内側の縁部から下方に向かって延在するリブ229を有する。これにより、可動枠227を高い曲げ剛性および捩じり剛性を有する。よって、可動枠227および可動部226が個別に揺動して捩じり軸部223、224が弾性変形した場合も、可動枠227および可動部226は殆ど変形しない。また、残留応力の緩和等により内部応力が作用した場合も、可動枠227および可動部226は変形し難い。 The movable frame 227 has ribs 229 extending downward from the outer and inner edges. Thereby, the movable frame 227 has high bending rigidity and torsional rigidity. Therefore, even when the movable frame 227 and the movable portion 226 are individually swung and the torsion shaft portions 223 and 224 are elastically deformed, the movable frame 227 and the movable portion 226 are hardly deformed. Even when internal stress is applied due to relaxation of residual stress or the like, the movable frame 227 and the movable portion 226 are not easily deformed.
 図28は、単位素子200の模式的断面図である。単位素子200は、固定枠222を基板210に固定し、反射鏡230を可動部226に固定した状態で、図27に示したC-C断面を示す。なお、図27と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 28 is a schematic cross-sectional view of the unit element 200. The unit element 200 has a CC cross section shown in FIG. 27 in a state where the fixed frame 222 is fixed to the substrate 210 and the reflecting mirror 230 is fixed to the movable portion 226. Elements common to those in FIG. 27 are assigned the same reference numerals, and redundant description is omitted.
 図示のように、可動枠227は電極221を下面に有する。電極221は、基板210上の電極213、215と対向する。よって、電極213、215に駆動電圧が印加された場合、可動枠227の図中左側または右側が基板210に向かって引き付けられる。 As shown in the figure, the movable frame 227 has an electrode 221 on the lower surface. The electrode 221 faces the electrodes 213 and 215 on the substrate 210. Therefore, when a driving voltage is applied to the electrodes 213 and 215, the left or right side of the movable frame 227 in the drawing is attracted toward the substrate 210.
 また、可動枠227は、縁部から下方に延びたリブ229を有する。これにより、可動枠227は高い曲げ剛性を有する。一方、捩じり軸部224は、リブ225に相当する要素を有していない。よって、電極212、214に印加された電圧により可動部226に駆動力が作用した場合、捩じり軸部224が弾性変形して、可動部226は、可動枠227に対して揺動する。 Also, the movable frame 227 has a rib 229 extending downward from the edge. Thereby, the movable frame 227 has high bending rigidity. On the other hand, the torsion shaft portion 224 does not have an element corresponding to the rib 225. Therefore, when a driving force is applied to the movable portion 226 by the voltage applied to the electrodes 212 and 214, the torsion shaft portion 224 is elastically deformed, and the movable portion 226 swings with respect to the movable frame 227.
 なお、リブ229の下端には、可動枠227の外方および内方に向かって広がったフランジ様の部分がある。これは、リブ229を含む層をパターニングする場合に残った領域で、無くてもよい。しかしながら、可動枠227の剛性を低下させるものではなく、むしろ向上させる場合もあるので残してもよい。これにより、パターニングの精度を著しく高くすることが避けられるので生産性向上にも寄与する。 It should be noted that there is a flange-like portion that spreads outward and inward of the movable frame 227 at the lower end of the rib 229. This is a remaining region when the layer including the rib 229 is patterned, and may be omitted. However, the rigidity of the movable frame 227 is not lowered, but may be improved, so it may be left. As a result, it is possible to avoid remarkably increasing the patterning accuracy, which contributes to an improvement in productivity.
 図29は、単位素子200の模式的断面図であり、図27に示したD-D断面を示す。図27および図28と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 29 is a schematic cross-sectional view of the unit element 200, showing the DD cross section shown in FIG. Elements common to FIGS. 27 and 28 are given the same reference numerals, and redundant description is omitted.
 図示のように、固定枠222および可動枠227を結合する捩じり軸部223は、リブ229に相当する要素を有していない。よって、電極213、215のいずれかに駆動電圧を印加した場合、可動枠227は、捩じり軸部223を揺動軸として、基板210に対して揺動する。 As shown in the figure, the torsion shaft portion 223 that couples the fixed frame 222 and the movable frame 227 does not have an element corresponding to the rib 229. Therefore, when a drive voltage is applied to either of the electrodes 213 and 215, the movable frame 227 swings with respect to the substrate 210 using the torsion shaft portion 223 as the swing axis.
 図30は、上記のような単位素子200を含む空間光変調器100の外観を示す模式的斜視図である。反射鏡230のそれぞれに設けた上記のような構造に対して駆動電力を個別に供給または遮断することにより、複数の反射鏡230のそれぞれを個別に制御できる。各反射鏡230は、駆動部220の可動枠227と捩じり軸部223、224とにより形成されたジンバル構造によって、反射光の伝播方向をより広い範囲に変化させる。 FIG. 30 is a schematic perspective view showing the appearance of the spatial light modulator 100 including the unit element 200 as described above. Each of the plurality of reflecting mirrors 230 can be individually controlled by individually supplying or blocking driving power to the above-described structure provided in each of the reflecting mirrors 230. Each reflecting mirror 230 changes the propagation direction of reflected light to a wider range by a gimbal structure formed by the movable frame 227 and the torsion shaft portions 223 and 224 of the driving unit 220.
 図31は、露光装置400の模式図である。この露光装置400は、空間光変調器100を備え、光源マスク最適化法を実行する場合に、照明光学系600に任意の照度分布を有する照明光を入射できる。即ち、露光装置400は、照明光発生部500、照明光学系600および投影光学系700を備える。 FIG. 31 is a schematic diagram of the exposure apparatus 400. The exposure apparatus 400 includes the spatial light modulator 100 and can make illumination light having an arbitrary illuminance distribution incident on the illumination optical system 600 when executing the light source mask optimization method. That is, the exposure apparatus 400 includes an illumination light generator 500, an illumination optical system 600, and a projection optical system 700.
 照明光発生部500は、制御部510、光源520、空間光変調器100、プリズム530、結像光学系540、ビームスプリッタ550および計測部560を含む。光源520は、照明光Lを発生する。光源520が発生した照明光Lは、光源520の発光機構の特性に応じた照度分布を有する。このため、照明光Lは、照明光Lの光路と直交する断面において原画像Iを有する。 The illumination light generation unit 500 includes a control unit 510, a light source 520, a spatial light modulator 100, a prism 530, an imaging optical system 540, a beam splitter 550, and a measurement unit 560. The light source 520 generates illumination light L. The illumination light L generated by the light source 520 has an illuminance distribution according to the characteristics of the light emitting mechanism of the light source 520. For this reason, the illumination light L has the original image I 1 in a cross section orthogonal to the optical path of the illumination light L.
 光源520から出射された照明光Lは、プリズム530に入射する。プリズム530は、照明光Lを空間光変調器100に導いた後、再び外部に出射させる。空間光変調器100は、制御部510の制御の下に入射した照明光Lを変調する。空間光変調器100の構造と動作については、既に説明した通りである。 The illumination light L emitted from the light source 520 enters the prism 530. The prism 530 guides the illumination light L to the spatial light modulator 100 and then emits the light again to the outside. The spatial light modulator 100 modulates the illumination light L incident under the control of the control unit 510. The structure and operation of the spatial light modulator 100 are as described above.
 空間光変調器100を経てプリズム530から出射された照明光Lは、結像光学系540を経て、後段の照明光学系600に入射される。結像光学系540は、照明光学系600の入射面612に照明光画像Iを形成する。 The illumination light L emitted from the prism 530 via the spatial light modulator 100 is incident on the illumination optical system 600 at the subsequent stage via the imaging optical system 540. The imaging optical system 540 forms an illumination light image I 3 on the incident surface 612 of the illumination optical system 600.
 ビームスプリッタ550は、結像光学系540および照明光学系の間において、照明光Lの光路上に配される。ビームスプリッタ550は、照明光学系600に入射する前の照明光Lの一部を分離して計測部560に導く。 The beam splitter 550 is disposed on the optical path of the illumination light L between the imaging optical system 540 and the illumination optical system. The beam splitter 550 separates a part of the illumination light L before entering the illumination optical system 600 and guides it to the measurement unit 560.
 計測部560は、照明光学系600の入射面612と光学的に共役な位置で照明光Lの画像を計測する。これにより、計測部560は、照明光学系600に入射する照明光画像Iと同じ画像を計測する。よって、制御部510は、計測部560により計測される照明光画像Iを参照して、空間光変調器100を帰還制御できる。 The measurement unit 560 measures an image of the illumination light L at a position optically conjugate with the incident surface 612 of the illumination optical system 600. Thereby, the measurement unit 560 measures the same image as the illumination light image I 3 incident on the illumination optical system 600. Therefore, the control unit 510 refers to the illumination light image I 3 which is measured by the measuring unit 560 can be feedback controlled spatial light modulator 100.
 照明光学系600は、フライアイレンズ610、コンデンサ光学系620、視野絞り630および結像光学系640を含む。照明光学系600の出射端には、マスク710を保持したマスクステージ720が配される。 The illumination optical system 600 includes a fly-eye lens 610, a condenser optical system 620, a field stop 630, and an imaging optical system 640. A mask stage 720 holding a mask 710 is disposed at the exit end of the illumination optical system 600.
 フライアイレンズ610は、並列的に緻密に配された多数のレンズ素子を備え、後側焦点面にレンズ素子の数と同数の照明光画像Iを含む2次光源を形成する。コンデンサ光学系620は、フライアイレンズ610から出射された照明光Lを集光して視野絞り630を重畳的に照明する。 The fly-eye lens 610 includes a large number of lens elements arranged densely in parallel, and forms a secondary light source including illumination light images I 3 as many as the number of lens elements on the rear focal plane. The condenser optical system 620 collects the illumination light L emitted from the fly-eye lens 610 and illuminates the field stop 630 in a superimposed manner.
 視野絞り630を経た照明光Lは、結像光学系640により、マスク710のパターン面に、視野絞り630の開口部の像である照射光画像Iを形成する。こうして、照明光学系600は、その出射端に配されたマスク710のパターン面を、照射光画像Iによりケーラー照明する。 The illumination light L that has passed through the field stop 630 forms an irradiation light image I 4 that is an image of the opening of the field stop 630 on the pattern surface of the mask 710 by the imaging optical system 640. Thus, the illumination optical system 600, the pattern surface of the mask 710 disposed at its exit end, Koehler illuminated by illumination light image I 4.
 なお、照明光学系600の入射面612でもあるフライアイレンズ610の入射端に形成される照度分布は、フライアイレンズ610の出射端に形成される2次光源全体の大局的な照度分布と高い相関を示す。よって、照明光発生部500が照明光学系600に入射させる照明光画像Iは、照明光学系600がマスク710に照射する照明光Lの照度分布である照射光画像Iにも反映される。 Note that the illuminance distribution formed at the entrance end of the fly-eye lens 610, which is also the entrance surface 612 of the illumination optical system 600, is as high as the overall illuminance distribution of the entire secondary light source formed at the exit end of the fly-eye lens 610. Show correlation. Therefore, the illumination light image I 3 that the illumination light generation unit 500 enters the illumination optical system 600 is also reflected in the illumination light image I 4 that is the illuminance distribution of the illumination light L that the illumination optical system 600 irradiates the mask 710. .
 投影光学系700はマスクステージ720の直後に配され、開口絞り730を備える。開口絞り730は、照明光学系600のフライアイレンズ610の出射端と光学的に共役な位置に配される。投影光学系700の出射端には、感光性材料を塗布された基板810を保持する基板ステージ820が配される。 Projection optical system 700 is disposed immediately after mask stage 720 and includes an aperture stop 730. The aperture stop 730 is disposed at a position optically conjugate with the exit end of the fly-eye lens 610 of the illumination optical system 600. A substrate stage 820 that holds a substrate 810 coated with a photosensitive material is disposed at the exit end of the projection optical system 700.
 マスクステージ720に保持されたマスク710は、照明光学系600により照射された照明光Lを反射または透過する領域と吸収する領域とからなるマスクパターンを有する。よって、マスク710に照明光画像Iを照射することにより、マスク710のマスクパターンと照明光画像I自体の照度分布との相互作用により投影光画像Iが生成される。投影光画像Iは、基板810の感光性材料に投影されて、要求されたパターンを有するレジスト層を基板810の表面に形成する。 The mask 710 held on the mask stage 720 has a mask pattern composed of a region that reflects or transmits the illumination light L irradiated by the illumination optical system 600 and a region that absorbs it. Therefore, by irradiating the illumination light image I 4 to the mask 710, the projection light image I 5 is generated by the interaction between the mask pattern of the mask 710 and the illuminance distribution of the illumination light image I 4 itself. The projected light image I 5 is projected onto the photosensitive material of the substrate 810 to form a resist layer having the required pattern on the surface of the substrate 810.
 なお、図31では照明光Lの光路を直線状に描いているが、照明光Lの光路を屈曲させることにより露光装置400を小型化できる。また、図31は、照明光Lがマスク710を透過するように描いているが、反射型のマスク710が用いられる場合もある。 In FIG. 31, the optical path of the illumination light L is drawn in a straight line, but the exposure apparatus 400 can be downsized by bending the optical path of the illumination light L. In FIG. 31, the illumination light L is drawn so as to pass through the mask 710, but a reflective mask 710 may be used.
 図32は、照明光発生部500の部分拡大図であり、露光装置400における空間光変調器100の役割を示す図である。プリズム530は、一対の反射面532、534を有する。プリズム530に入射した照明光Lは、一方の反射面532により、空間光変調器100に向かって照射される。 FIG. 32 is a partially enlarged view of the illumination light generation unit 500 and shows the role of the spatial light modulator 100 in the exposure apparatus 400. The prism 530 has a pair of reflecting surfaces 532 and 534. The illumination light L incident on the prism 530 is irradiated toward the spatial light modulator 100 by the one reflecting surface 532.
 既に説明した通り、空間光変調器100は、個別に揺動させることができる複数の反射鏡230を有する。よって、制御部510が空間光変調器100を制御することにより、要求に応じた任意の光源画像Iを形成できる。 As already described, the spatial light modulator 100 has a plurality of reflecting mirrors 230 that can be individually swung. Therefore, the control unit 510 controls the spatial light modulator 100 can be formed of any light source image I 2 corresponding to the request.
 空間光変調器100から出射された光源画像Iは、プリズム530の他方の反射面534により反射され、図中のプリズム530右端面から出射される。プリズム530から出射された光源画像Iは、結像光学系540により、照明光学系600の入射面612に照明光画像Iを形成する。 The light source image I 2 emitted from the spatial light modulator 100 is reflected by the other reflecting surface 534 of the prism 530 and emitted from the right end surface of the prism 530 in the drawing. The light source image I 2 emitted from the prism 530 forms an illumination light image I 3 on the incident surface 612 of the illumination optical system 600 by the imaging optical system 540.
 図33は、単位素子200の模式的断面図であり、駆動部220の変形例を示す。以下に説明する部分を除くと図29に示した単位素子200と同じ構造を有するので、共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 33 is a schematic cross-sectional view of the unit element 200 and shows a modified example of the drive unit 220. Since it has the same structure as the unit element 200 shown in FIG. 29 except for the part described below, common elements are denoted by the same reference numerals and redundant description is omitted.
 図29に示した単位素子200では、捩じり軸部223が、可動枠227のリブ229の下端に結合されていた。これに対して、図33に示す例では、捩じり軸部223が、リブ229の上端に結合される。また、捩じり軸部223の他端は、固定枠222の上端に結合される。 29, the torsion shaft portion 223 is coupled to the lower end of the rib 229 of the movable frame 227. In the unit element 200 shown in FIG. In contrast, in the example shown in FIG. 33, the torsion shaft portion 223 is coupled to the upper end of the rib 229. Further, the other end of the torsion shaft portion 223 is coupled to the upper end of the fixed frame 222.
 図34は、駆動部220の模式的斜視図であり、図33に示した駆動部220を抜き出して示す。図示のように、可動部226および可動枠227を結ぶ捩じり軸部224も、固定枠222および可動枠227を結合する捩じり軸部223と同様に、リブ225、229の上端に結合される。 FIG. 34 is a schematic perspective view of the drive unit 220, and shows the drive unit 220 shown in FIG. As shown in the figure, the torsion shaft portion 224 connecting the movable portion 226 and the movable frame 227 is also coupled to the upper ends of the ribs 225 and 229 in the same manner as the torsion shaft portion 223 connecting the fixed frame 222 and the movable frame 227. Is done.
 これにより、可動枠227が固定枠222に対して揺動する場合の揺動軸と、可動部226が可動枠227に対して揺動する場合の揺動軸とが、反射鏡230に対して、いずれも相対的に上昇する。よって、反射鏡230を揺動させる場合の慣性モーメントが小さくなり、空間光変調器100としての応答性を向上させることができる。 Thus, the swing axis when the movable frame 227 swings with respect to the fixed frame 222 and the swing axis when the movable portion 226 swings with respect to the movable frame 227 are relative to the reflecting mirror 230. , Both rise relatively. Therefore, the moment of inertia when the reflecting mirror 230 is swung is reduced, and the responsiveness as the spatial light modulator 100 can be improved.
 なお、図中に斜線で示す可動部226の上面に、直接に反射膜を設けても、単位素子200を形成できる。これにより、個別の反射鏡230を設けた場合に対して反射面積こそ小さくなるものの、少ない工数で、応答速度の早い空間光変調器100を形成できる。 The unit element 200 can be formed even if a reflective film is directly provided on the upper surface of the movable portion 226 indicated by oblique lines in the drawing. Thereby, although the reflection area is reduced as compared with the case where the individual reflecting mirror 230 is provided, the spatial light modulator 100 having a high response speed can be formed with a small number of man-hours.
 図35は、単位素子200の模式的断面図であり、駆動部220を更に変形させた例を示す。以下に説明する部分を除くと図29に示した単位素子200と同じ構造を有するので、共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 35 is a schematic cross-sectional view of the unit element 200 and shows an example in which the drive unit 220 is further deformed. Since it has the same structure as the unit element 200 shown in FIG. 29 except for the part described below, common elements are denoted by the same reference numerals and redundant description is omitted.
 図示のように、この単位素子200では、捩じり軸部223の結合箇所が、固定枠222に対しては上端に、可動枠227に対してはリブ229の下端になっている。これにより、可動枠227は、固定枠222に対して、図中で上方に移動している。 As shown in the figure, in this unit element 200, the connecting portion of the torsion shaft portion 223 is the upper end with respect to the fixed frame 222 and the lower end of the rib 229 with respect to the movable frame 227. Thereby, the movable frame 227 moves upward in the figure with respect to the fixed frame 222.
 更に、捩じり軸部224の図示は省いたが、捩じり軸部224は、可動枠227のリブ229の上端と、可動部226のリブ225の下端に結合される。これにより、可動部226は、更に上方に位置する。 Further, although the illustration of the torsion shaft portion 224 is omitted, the torsion shaft portion 224 is coupled to the upper end of the rib 229 of the movable frame 227 and the lower end of the rib 225 of the movable portion 226. Thereby, the movable part 226 is located further upward.
 このような構造により、可動部226の上面は、固定枠222および可動枠227に対して相対的に上方に位置する。よって、可動部226の上面に直接に反射面234を形成しても、反射面234に対する入射光および反射面234から出射される反射光が、固定枠222および可動枠227と干渉することがない。 With such a structure, the upper surface of the movable portion 226 is positioned relatively above the fixed frame 222 and the movable frame 227. Therefore, even if the reflecting surface 234 is formed directly on the upper surface of the movable portion 226, incident light on the reflecting surface 234 and reflected light emitted from the reflecting surface 234 do not interfere with the fixed frame 222 and the movable frame 227. .
 また、反射鏡230を形成するプロセスが省けるので、生産性も向上される。このような構造により、空間光変調器100としての応答性を更に向上させることができるので、光スイッチのように、ビーム径の限られた信号光を反射すれば足りる用途で公的に使用できる。 Also, since the process of forming the reflecting mirror 230 can be omitted, productivity is also improved. With such a structure, the responsiveness as the spatial light modulator 100 can be further improved, so that it can be used publicly in applications where it is sufficient to reflect signal light with a limited beam diameter, such as an optical switch. .
 図36は、反射鏡230の模式的斜視図であり、反射鏡230単独の変形例を示す。これまでに示した反射鏡230と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 36 is a schematic perspective view of the reflecting mirror 230, showing a modification of the reflecting mirror 230 alone. Elements that are common to the reflecting mirror 230 shown so far are assigned the same reference numerals, and redundant description is omitted.
 この反射鏡230は、反射面234の周縁部から垂下したリブ236に換えて、ポスト232と反射面234の周縁部との中程に配された褶曲部237を有する。このような形状によっても、反射面234の曲げ剛性あるいは捩れ剛性を向上させることができる。 The reflecting mirror 230 has a bent portion 237 arranged in the middle between the post 232 and the peripheral portion of the reflecting surface 234 instead of the rib 236 hanging from the peripheral portion of the reflecting surface 234. Even with such a shape, the bending rigidity or torsional rigidity of the reflecting surface 234 can be improved.
 図37は、反射鏡230の模式的斜視図であり、反射鏡230の他の変形例を示す。この反射鏡230は、反射面234の周縁部に配されたリブ236と、その内側に配された褶曲部237とを両方有する。更に、中心に位置するポスト232から延在して、褶曲部237およびリブ236と交差する対角線状の褶曲部237も有する。このように、リブ236および褶曲部237を併せて設けることにより反射鏡230の剛性は更に高くなる。 FIG. 37 is a schematic perspective view of the reflecting mirror 230, and shows another modification of the reflecting mirror 230. FIG. The reflecting mirror 230 has both a rib 236 disposed on the peripheral edge of the reflecting surface 234 and a curved portion 237 disposed on the inside thereof. Furthermore, it also has a diagonally bent portion 237 extending from the post 232 located at the center and intersecting the bent portion 237 and the rib 236. Thus, the rigidity of the reflecting mirror 230 is further increased by providing the rib 236 and the bent portion 237 together.
 図38は、反射鏡230の断面形状を示す模式図である。図37に記載した反射鏡230のE-E断面を示す。 FIG. 38 is a schematic diagram showing a cross-sectional shape of the reflecting mirror 230. An EE cross section of the reflecting mirror 230 shown in FIG. 37 is shown.
 図示のように、褶曲部237は、反射面234側からみると陥没して溝を形成する。このため、反射面234の一部が反射面として機能しなくなる。しかしながら、図10等に示したように段差を形成したレジストを下地として、その上に反射鏡230となる材料を堆積させることにより、リブ236および褶曲部237は、反射鏡230と共通のプロセスで併せて形成できる。よって、リブ236および褶曲部237を設けたことによる反射鏡230の生産工数の増加を防止できる。 As shown in the figure, the bent portion 237 is depressed to form a groove when viewed from the reflecting surface 234 side. For this reason, a part of reflective surface 234 stops functioning as a reflective surface. However, as shown in FIG. 10 and the like, by using a resist having a step as a base and depositing a material to be the reflecting mirror 230 thereon, the rib 236 and the bent portion 237 are processed in the same process as the reflecting mirror 230. It can be formed together. Therefore, it is possible to prevent an increase in the number of man-hours for manufacturing the reflecting mirror 230 due to the provision of the rib 236 and the bent portion 237.
 換言すれば、後述するように、反射鏡230を形成するプロセスの工数が増えることを厭わなければ、反射面234を平坦にしたまま、リブ236または褶曲部237を形成することもできる。よって、空間光変調器100を、露光装置、画像表示装置等の用途に用いる場合は、反射面を平坦にして、反射光の品質と利用効率を向上させることができる。 In other words, as will be described later, the rib 236 or the bent portion 237 can be formed while keeping the reflecting surface 234 flat, as long as the number of processes for forming the reflecting mirror 230 is not increased. Therefore, when the spatial light modulator 100 is used for applications such as an exposure apparatus and an image display apparatus, the reflection surface can be flattened to improve the quality and utilization efficiency of the reflected light.
 また、ポスト232と共に上記のようなリブ236および褶曲部237の少なくとも一方を有する部材を、構造材として使用してもよい。即ち、リブ236、褶曲部237等を有して高い剛性を有する部材の上に平坦な反射面234を更に形成することにより、反射効率の高い単位素子200を形成できる。 Further, a member having at least one of the rib 236 and the bent portion 237 as described above together with the post 232 may be used as a structural material. That is, the unit element 200 with high reflection efficiency can be formed by further forming the flat reflection surface 234 on a member having the rib 236, the bent portion 237, and the like and having high rigidity.
 図39は、反射鏡230の他の変形例を示す模式的斜視図である。これまでに示した反射鏡230と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 39 is a schematic perspective view showing another modification of the reflecting mirror 230. Elements that are common to the reflecting mirror 230 shown so far are assigned the same reference numerals, and redundant description is omitted.
 この反射鏡230は、リブ236および褶曲部237に換えて、反射面234を裏面から支持する箱状の構造材238を有する。これにより、反射鏡230はモノコックシェルを形成して、高い曲げ剛性および捩れ剛性を有する。よって、反射鏡230の形態を長期にわたって安定させることができる。 The reflecting mirror 230 has a box-shaped structural member 238 that supports the reflecting surface 234 from the back surface instead of the rib 236 and the bent portion 237. Thereby, the reflecting mirror 230 forms a monocoque shell and has high bending rigidity and torsional rigidity. Therefore, the form of the reflecting mirror 230 can be stabilized over a long period.
 また、構造材238は中空なので、反射鏡230および構造材238を含む組立体の慣性モーメントを増加させることがない。よって、反射鏡230を高剛性化したことによる空間光変調器100の応答速度低下が防止される。 Moreover, since the structural material 238 is hollow, the moment of inertia of the assembly including the reflecting mirror 230 and the structural material 238 is not increased. Therefore, the response speed of the spatial light modulator 100 is prevented from being lowered due to the high rigidity of the reflecting mirror 230.
 なお、構造材238に形成された抜き穴239は、構造材238の水平面を貫通して、構造材238の内外を連通させる。抜き穴239の用途については後述する。 Note that the hole 239 formed in the structural material 238 penetrates the horizontal surface of the structural material 238 and communicates the inside and outside of the structural material 238. The use of the punched hole 239 will be described later.
 図40は、反射鏡230の製造過程を示す模式的断面図である。図9および図10に示した段階と同じ要領で、レジストにより形成した段付きの下地に反射鏡230の材料を順次堆積させることにより、構造材238が形成される。なお、構造材238を反射鏡230と同じ材料で形成することにより、温度変化による膨張等の変化を反射鏡230と揃えることができる。 FIG. 40 is a schematic cross-sectional view showing the manufacturing process of the reflecting mirror 230. The structural material 238 is formed by sequentially depositing the material of the reflecting mirror 230 on the stepped base formed of resist in the same manner as the steps shown in FIGS. In addition, by forming the structural material 238 from the same material as the reflecting mirror 230, it is possible to align changes such as expansion due to temperature changes with the reflecting mirror 230.
 図41は、反射鏡230の製造過程の次の段階を示す模式的断面図である。形成された構造材238の底面にあたる領域をエッチングして、抜き穴239を形成する。抜き穴239は、構造材238の表裏を貫通する。更に、図17に示した段階と同じ要領で、構造材238の内側をレジストにより満たす。これにより、構造材238の上に、平坦な下地が形成される。 FIG. 41 is a schematic cross-sectional view showing the next stage in the manufacturing process of the reflecting mirror 230. A region corresponding to the bottom surface of the formed structural member 238 is etched to form a hole 239. The punched hole 239 passes through the front and back of the structural material 238. Further, the inside of the structural material 238 is filled with a resist in the same manner as in the stage shown in FIG. As a result, a flat base is formed on the structural material 238.
 図42は、反射鏡230の模式的断面図である。続いて、上記のようにして構造材238の上端に形成された平坦な下地の上に、反射鏡230の材料を順次堆積させる。更に、構造材238の内部に残ったレジストを抜き穴239から排出して、反射鏡230が完成する。 FIG. 42 is a schematic cross-sectional view of the reflecting mirror 230. Subsequently, the material of the reflecting mirror 230 is sequentially deposited on the flat base formed on the upper end of the structural member 238 as described above. Further, the resist remaining inside the structural member 238 is discharged from the punched hole 239, and the reflecting mirror 230 is completed.
 このような手順により、反射面234は全面にわたって平坦に形成できる。よって、有効な反射面が広くなり、入射光を効率よく反射する。また、画像表示装置等に用いた場合は、画素間の空隙が少ない空間光変調器100を形成できる。 By such a procedure, the reflecting surface 234 can be formed flat over the entire surface. Therefore, an effective reflecting surface is widened, and incident light is efficiently reflected. Further, when used in an image display device or the like, the spatial light modulator 100 with few gaps between pixels can be formed.
 図43は、反射鏡230の他の変形例を示す模式的斜視図である。これまでに示した反射鏡230と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 43 is a schematic perspective view showing another modification of the reflecting mirror 230. Elements that are common to the reflecting mirror 230 shown so far are assigned the same reference numerals, and redundant description is omitted.
 この反射鏡230も、反射面234を裏面から支持する立体的な形状の構造材238を有する。構造材238を備える反射鏡230は、互いに交差する複数の面を有して高い曲げ剛性および捩れ剛性を有する。よって、反射鏡230の形態を長期にわたって安定させることができる。 The reflecting mirror 230 also has a three-dimensional structural material 238 that supports the reflecting surface 234 from the back surface. The reflecting mirror 230 including the structural member 238 has a plurality of surfaces intersecting each other and has high bending rigidity and torsional rigidity. Therefore, the form of the reflecting mirror 230 can be stabilized over a long period.
 なお、この構造材238は下方に向かって開いた形状なので、製造過程で下地となるレジストは容易に除去できる。しかしながら、ポスト232の内部には閉じた空間が形成される。そこで、例えば、ポスト232の底面および可動部226に抜き穴239を設けることが好ましい。 Note that since the structural material 238 has a shape opened downward, the resist serving as a base can be easily removed in the manufacturing process. However, a closed space is formed inside the post 232. Therefore, for example, it is preferable to provide a hole 239 in the bottom surface of the post 232 and the movable portion 226.
 図44は、図43に示した反射鏡230の製造過程を示す模式的断面図である。図9および図10に示した段階と同じ要領で、レジストにより形成した段付きの下地に反射鏡230の材料を順次堆積させることにより、構造材238が形成される。構造材238は、反射鏡230と同じ材料で形成することにより、温度変化による膨張等の変化を反射鏡230と揃えることができる。 44 is a schematic cross-sectional view showing a manufacturing process of the reflecting mirror 230 shown in FIG. The structural material 238 is formed by sequentially depositing the material of the reflecting mirror 230 on the stepped base formed of resist in the same manner as the steps shown in FIGS. The structural member 238 is formed of the same material as that of the reflecting mirror 230, so that changes such as expansion due to a temperature change can be aligned with the reflecting mirror 230.
 図45は、反射鏡230の製造過程の次の段階を示す模式的断面図である。形成された構造材238において、ポスト232の底面に抜き穴239を形成する。図示は省くが、駆動部220の可動部226中央に連通穴を設けることにより、抜き穴239を通じてポスト232の内外を連通させることができる。 45 is a schematic cross-sectional view showing the next stage in the manufacturing process of the reflecting mirror 230. FIG. In the formed structural member 238, a hole 239 is formed on the bottom surface of the post 232. Although not shown, by providing a communication hole at the center of the movable part 226 of the drive unit 220, the inside and outside of the post 232 can be communicated with each other through the hole 239.
 更に、図17に示した段階と同じ要領で、構造材238の周囲をレジストにより満たす。これにより、構造材238の上面と連続した平坦な下地が形成される。 Further, the periphery of the structural material 238 is filled with a resist in the same manner as in the stage shown in FIG. Thereby, a flat base continuous with the upper surface of the structural member 238 is formed.
 図46は、反射鏡230の模式的断面図である。続いて、上記のようにして構造材238の上に反射鏡230の材料を順次堆積させる。更に、ポスト232の内部に残ったレジストを抜き穴239から排出さけることにより除去して反射鏡230が完成する。 FIG. 46 is a schematic cross-sectional view of the reflecting mirror 230. Subsequently, the material of the reflecting mirror 230 is sequentially deposited on the structural member 238 as described above. Further, the resist remaining inside the post 232 is removed by being discharged from the punched hole 239, whereby the reflecting mirror 230 is completed.
 このような手順により、反射面234は全面にわたって平坦に形成できる。よって、有効な反射面が広くなり、入射光を効率よく反射する。また、画像表示装置等に用いた場合は、画素間の空隙が少ない空間光変調器100を形成できる。 By such a procedure, the reflecting surface 234 can be formed flat over the entire surface. Therefore, an effective reflecting surface is widened, and incident light is efficiently reflected. Further, when used in an image display device or the like, the spatial light modulator 100 with few gaps between pixels can be formed.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加え得ることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置およびシステムの動作、手順、ステップおよび段階等の実行順序は、特段「より前に」、「先立って」等と明示しておらず、前の処理の出力を後の処理で用いる場合でない限り、任意の順序で実現し得る。請求の範囲、明細書および図面において、便宜上「まず」、「次に」等を用いて説明したとしても、この順で実施することが必須であることを意味するわけではない。 The order of execution of the operations, procedures, steps, and stages of the devices and systems shown in the claims, the description, and the drawings is not clearly indicated as “before”, “prior”, etc. As long as the output of the process is not used in the subsequent process, it can be realized in an arbitrary order. In the claims, the specification, and the drawings, the description using “first”, “next”, and the like for convenience does not imply that it is essential to implement in this order.
100 空間光変調器、200 単位素子、210 基板、212、213、214、215、216、221、228 電極、220 駆動部、222 固定枠、223、224 捩じり軸部、225、229、236 リブ、226 可動部、227 可動枠、230 反射鏡、232 ポスト、234、532、534 反射面、236 リブ、237 褶曲部、238 構造材、239 抜き穴、312、314 絶縁層、315 コンタクトホール、320、344、346 導体層、332、334、336、352、354、356 レジスト層、335、337、339、353、355、357 側壁、340 非反射膜、341 遮光部、342、348 非導体層、360 反射膜、361 陥没部、362、366 反射膜材料層、364 非反射膜材料層、368 保護層、400 露光装置、500 照明光発生部、510 制御部、520 光源、530 プリズム、540、640 結像光学系、550 ビームスプリッタ、560 計測部、600 照明光学系、612 入射面、610 フライアイレンズ、620 コンデンサ光学系、630 視野絞り、700 投影光学系、710 マスク、720 マスクステージ、730 開口絞り、810 基板、820 基板ステージ 100 spatial light modulator, 200 unit element, 210 substrate, 212, 213, 214, 215, 216, 221, 228 electrode, 220 drive unit, 222 fixed frame, 223, 224 torsion shaft, 225, 229, 236 Rib, 226 Movable part, 227 Movable frame, 230 Reflector, 232 Post, 234, 532, 534 Reflective surface, 236 Rib, 237 Curved part, 238 Structural material, 239 Open hole, 312, 314 Insulating layer, 315 Contact hole, 320, 344, 346 Conductor layer, 332, 334, 336, 352, 354, 356 Resist layer, 335, 337, 339, 353, 355, 357 Side wall, 340 Non-reflective film, 341 Light-shielding part, 342, 348 Non-conductive layer 360, reflective film, 361 depression, 362, 366 Reflective film material layer, 364 Non-reflective film material layer, 368 protective layer, 400 exposure device, 500 illumination light generation unit, 510 control unit, 520 light source, 530 prism, 540, 640 imaging optical system, 550 beam splitter, 560 measurement Part, 600 illumination optical system, 612 entrance surface, 610 fly-eye lens, 620 condenser optical system, 630 field stop, 700 projection optical system, 710 mask, 720 mask stage, 730 aperture stop, 810 substrate, 820 substrate stage

Claims (27)

  1.  電極を有する基板と、
     前記基板に対して一端を固定されて弾性変形する基板側捩じり軸部と、
     前記基板側捩じり軸部の他端に支持され、静電力により前記電極に引き付けられて前記基板に対して揺動する可動部と
     前記可動部の一面と交差する面を有して前記可動部と一体的に配され、前記可動部に対する曲げ応力に対抗する構造材と
     を備えた電気機械変換器。
    A substrate having electrodes;
    A substrate-side torsion shaft that is elastically deformed with one end fixed to the substrate;
    The movable portion is supported by the other end of the substrate side torsion shaft portion, and has a movable portion that is attracted to the electrode by an electrostatic force and swings with respect to the substrate, and a surface that intersects one surface of the movable portion. An electromechanical transducer comprising: a structural material that is integrally disposed with the portion and that resists bending stress on the movable portion.
  2.  前記基板側捩じり軸部は、前記可動部と一体をなす請求項1に記載の電気機械変換器。 The electromechanical transducer according to claim 1, wherein the substrate-side torsion shaft portion is integrated with the movable portion.
  3.  前記基板側捩じり軸部の前記他端に支持され、静電力により前記電極に引き付けられて前記基板に対して揺動する枠体と、
     一端を前記枠体に固定され、他端において前記可動部を支持する枠側捩じり軸部と
     を更に備え、
     前記可動部は、前記枠体に対しても揺動する請求項1または請求項2に記載の電気機械変換器。
    A frame that is supported by the other end of the substrate-side torsion shaft and that is attracted to the electrode by electrostatic force and swings relative to the substrate;
    A frame-side torsion shaft that is fixed to the frame at one end and supports the movable part at the other end;
    The electromechanical converter according to claim 1, wherein the movable portion swings with respect to the frame.
  4.  前記基板側捩じり軸部および前記枠側捩じり軸部は互いに交差する請求項3に記載の電気機械変換器。 4. The electromechanical transducer according to claim 3, wherein the substrate side torsion shaft portion and the frame side torsion shaft portion intersect each other.
  5.  前記可動部の面積は、前記枠側捩じり軸部の周囲において前記可動部および前記基板の間に形成される間隙の面積よりも大きい請求項3または請求項4に記載の電気機械変換器。 5. The electromechanical transducer according to claim 3, wherein an area of the movable portion is larger than an area of a gap formed between the movable portion and the substrate around the frame-side torsion shaft portion. .
  6.  請求項1から請求項5までのいずれか一項に記載の電気機械変換器と、
     前記可動部に支持され、前記可動部と共に前記基板に対して揺動する反射鏡と
     を備える空間光変調器。
    An electromechanical converter according to any one of claims 1 to 5,
    A spatial light modulator comprising: a reflecting mirror supported by the movable part and swinging with respect to the substrate together with the movable part.
  7.  基板と、前記基板に対して揺動する反射鏡とを備えた空間光変調器であって、
     前記反射鏡は、反射面と、前記反射面に交差する面を含み前記反射面の裏面に配されて前記反射面に対する曲げ応力に対抗する構造材とを有する空間光変調器。
    A spatial light modulator comprising a substrate and a reflecting mirror that swings relative to the substrate,
    The reflective mirror includes a reflective surface and a structural material that includes a surface that intersects the reflective surface and is disposed on a back surface of the reflective surface to resist bending stress on the reflective surface.
  8.  前記構造材は、前記面に更に交差する底面を有する請求項7に記載の空間光変調器。 The spatial light modulator according to claim 7, wherein the structural material has a bottom surface that further intersects the surface.
  9.  前記構造材は、前記反射面と共に包囲した空間と、当該空間の外部との間を連通させる貫通孔を有する請求項7または請求項8に記載の空間光変調器。 The spatial light modulator according to claim 7 or 8, wherein the structural material has a through hole that allows communication between a space enclosed with the reflection surface and the outside of the space.
  10.  前記反射面は、前記構造材の表面に堆積された反射膜材料の薄膜を含む請求項7から請求項9までのいずれか一項に記載の空間光変調器。 The spatial light modulator according to any one of claims 7 to 9, wherein the reflective surface includes a thin film of a reflective film material deposited on a surface of the structural material.
  11.  前記反射鏡は、前記構造材に支持された平坦な前記反射面を有する請求項7から請求項9までのいずれか一項に記載の空間光変調器。 The spatial light modulator according to any one of claims 7 to 9, wherein the reflecting mirror has the flat reflecting surface supported by the structural material.
  12.  前記基板に配された電極と、
     前記基板に対して一端を固定されて弾性変形する捩じり軸部と、
     前記捩じり軸部の他端に支持され、静電力により前記電極に引き付けられて前記基板に対して揺動する可動部と
     を更に備え、
     前記反射鏡は、前記可動部に支持されて前記可動部と共に前記基板に対して揺動する請求項7から請求項11までのいずれか一項に記載の空間光変調器。
    An electrode disposed on the substrate;
    A torsion shaft that is elastically deformed with one end fixed to the substrate;
    A movable part supported by the other end of the torsion shaft part and attracted to the electrode by an electrostatic force to swing with respect to the substrate;
    The spatial light modulator according to claim 7, wherein the reflecting mirror is supported by the movable part and swings with respect to the substrate together with the movable part.
  13.  電極を有する基板と、
     前記基板に対して一端を固定されて弾性変形する基板側捩じり軸部と、
     前記捩じり軸部の他端に支持されつつ、静電力により前記電極に引き付けられて前記基板に対して揺動する枠体と、
     前記枠体に対して一端を固定されて弾性変形する枠側捩じり軸部と
     前記枠側捩じり軸部の他端に支持されつつ、静電力により前記電極に引き付けられて前記枠体に対して揺動する可動部と
     前記可動部に支持されて、前記可動部と共に前記基板に対して揺動する反射鏡と
     を備える空間光変調器。
    A substrate having electrodes;
    A substrate-side torsion shaft that is elastically deformed with one end fixed to the substrate;
    A frame body that is supported by the other end of the torsion shaft portion and that is attracted to the electrode by an electrostatic force and swings with respect to the substrate;
    A frame-side torsion shaft portion that is elastically deformed by fixing one end to the frame body, and is supported by the other end of the frame-side torsion shaft portion and is attracted to the electrode by an electrostatic force, and the frame body A spatial light modulator comprising: a movable portion that swings relative to the substrate; and a reflecting mirror that is supported by the movable portion and swings with respect to the substrate together with the movable portion.
  14.  前記基板側捩じり軸部および前記枠側捩じり軸部は、互いに交差する方向に配される請求項13に記載の空間光変調器。 The spatial light modulator according to claim 13, wherein the substrate-side torsion shaft portion and the frame-side torsion shaft portion are arranged in directions intersecting each other.
  15.  前記反射鏡は、表面を気密に覆う透明な保護層を更に備える請求項13または請求項14に記載の空間光変調器。 15. The spatial light modulator according to claim 13, wherein the reflecting mirror further includes a transparent protective layer that covers a surface airtightly.
  16.  請求項6から請求項15までのいずれか一項に記載の空間光変調器を備える露光装置。 An exposure apparatus comprising the spatial light modulator according to any one of claims 6 to 15.
  17.  前記空間光変調器は、光源から入射した照明光を反射して、露光マスクに照射される照明光に照度分布を形成する請求項16に記載の露光装置。 The exposure apparatus according to claim 16, wherein the spatial light modulator reflects illumination light incident from a light source to form an illuminance distribution in the illumination light irradiated on the exposure mask.
  18.  電極を有する基板と、
     前記基板に対して一端を固定されて弾性変形する基板側捩じり軸部と、
     前記基板側捩じり軸部の他端に支持され、静電力により前記電極に引き付けられて前記基板に対して揺動する可動部と
     前記可動部の一面と交差する面を有して前記可動部と一体的に配され、前記可動部に対する曲げ応力に対抗する構造材と
     を備えた電気機械変換器を製造する製造方法であって、
     下地の上にパターニングされた犠牲材料の層を形成する段階と、
     前記犠牲材料の層の上に前記可動部となる材料の層を堆積する段階と、
     前記犠牲材料の層を除去する段階と
     を備え、前記下地から離間した領域を有する前記可動部を形成する工程を含む製造方法。
    A substrate having electrodes;
    A substrate-side torsion shaft that is elastically deformed with one end fixed to the substrate;
    The movable portion is supported by the other end of the substrate side torsion shaft portion, and has a movable portion that is attracted to the electrode by an electrostatic force and swings with respect to the substrate, and a surface that intersects one surface of the movable portion. A manufacturing method for manufacturing an electromechanical transducer including a structural material arranged integrally with a portion and resisting bending stress to the movable portion,
    Forming a patterned layer of sacrificial material on a substrate;
    Depositing a layer of material to be the movable part on the sacrificial material layer;
    Removing the sacrificial material layer, and forming the movable part having a region spaced from the base.
  19.  基板と、前記基板に対して揺動する反射鏡とを備え、
     前記反射鏡は、反射面と、前記反射面に交差する面を含み前記反射面の裏面に配されて前記反射面に対する曲げ応力に対抗する構造材とを有する空間光変調器を製造する方法であって、
     下地の上にパターニングされた犠牲材料の層を形成する段階と、
     前記犠牲材料の層の上に前記構造材となる非反射膜材料の層を堆積する段階と、
     前記犠牲材料の層を除去する段階と
     を備え、前記非反射膜材料の層が前記下地から離間した領域を形成する工程を含む製造方法。
    A substrate and a reflecting mirror that swings relative to the substrate;
    The reflecting mirror is a method for manufacturing a spatial light modulator having a reflecting surface and a structural material that includes a surface that intersects the reflecting surface and is disposed on the back surface of the reflecting surface and resists bending stress with respect to the reflecting surface. There,
    Forming a patterned layer of sacrificial material on a substrate;
    Depositing a layer of non-reflective coating material to be the structural material on the sacrificial material layer;
    Removing the sacrificial material layer, and forming a region in which the non-reflective film material layer is separated from the base.
  20.  前記非反射膜材料の層の上に犠牲材料の層を形成する段階と、
     前記犠牲材料の層の上に前記反射面となる反射膜材料の層を堆積する段階と、
     前記犠牲材料の層を除去する段階と
     を更に備え、前記反射膜材料の層が前記非反射膜材料の層から離間した領域を形成する工程を含む、請求項19に記載の製造方法。
    Forming a layer of sacrificial material over the layer of non-reflective coating material;
    Depositing a layer of reflective film material to be the reflective surface on the sacrificial material layer;
    The method according to claim 19, further comprising: removing the sacrificial material layer, and forming a region in which the reflective film material layer is separated from the non-reflective film material layer.
  21.  前記反射膜材料の層の表面を化学機械研磨する段階を更に備える請求項20項に記載の製造方法。 The manufacturing method according to claim 20, further comprising a step of chemically mechanically polishing a surface of the layer of the reflective film material.
  22.  前記反射膜材料はアルミニウムにより形成される請求項20または請求項21に記載の製造方法。 The manufacturing method according to claim 20 or 21, wherein the reflective film material is formed of aluminum.
  23.  電極を有する基板と、
     前記基板に対して一端を固定されて弾性変形する基板側捩じり軸部と、
     前記捩じり軸部の他端に支持されつつ、静電力により前記電極に引き付けられて前記基板に対して揺動する枠体と、
     前記枠体に対して一端を固定されて弾性変形する枠側捩じり軸部と
     前記枠側捩じり軸部の他端に支持されつつ、静電力により前記電極に引き付けられて前記枠体に対して揺動する可動部と
     前記可動部に支持されて、前記可動部と共に前記基板に対して揺動する反射鏡と
     を備える空間光変調器を製造する製造方法であって、
     下地の上にパターニングされた犠牲材料の層を形成する段階と、
     前記犠牲材料の層の上に前記枠体となる材料の層を堆積する段階と、
     前記犠牲材料の層を除去する段階と
     を備え、前記下地から離間した領域を有する前記枠体を形成する工程を含む製造方法。
    A substrate having electrodes;
    A substrate-side torsion shaft that is elastically deformed with one end fixed to the substrate;
    A frame body that is supported by the other end of the torsion shaft portion and that is attracted to the electrode by an electrostatic force and swings with respect to the substrate;
    A frame-side torsion shaft portion that is elastically deformed by fixing one end to the frame body, and is supported by the other end of the frame-side torsion shaft portion and is attracted to the electrode by an electrostatic force, and the frame body A spatial light modulator comprising: a movable part that swings relative to the substrate; and a reflecting mirror that is supported by the movable part and swings with respect to the substrate together with the movable part,
    Forming a patterned layer of sacrificial material on a substrate;
    Depositing a layer of material to form the frame on the sacrificial material layer;
    Removing the sacrificial material layer, and forming the frame body having a region spaced from the base.
  24.  前記基板側捩じり軸部および前記枠側捩じり軸部の少なくとも一方は、前記枠体となる材料の層の一部として形成される請求項23に記載の製造方法。 24. The manufacturing method according to claim 23, wherein at least one of the substrate side torsion shaft portion and the frame side torsion shaft portion is formed as a part of a layer of a material to be the frame body.
  25.  前記可動部に支持される反射膜材料の層を堆積する前に、当該反射膜材料の層の下地を化学機械研磨する段階を更に備える請求項23または請求項24に記載の製造方法。 The manufacturing method according to claim 23 or 24, further comprising a step of chemically mechanically polishing a base of the layer of the reflective film material before depositing the layer of the reflective film material supported by the movable part.
  26.  前記可動部に支持される反射膜材料の層の表面を化学機械研磨する段階を更に備える請求項23から請求項25までのいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 23 to 25, further comprising a step of chemically mechanically polishing a surface of the layer of the reflective film material supported by the movable part.
  27.  前記反射膜材料はアルミニウムにより形成される請求項25または請求項26に記載の製造方法。 27. The manufacturing method according to claim 25 or claim 26, wherein the reflective film material is formed of aluminum.
PCT/JP2010/007236 2009-12-28 2010-12-13 Electro-mechanical converter, spatial optical modulator, exposure device, and methods for manufacturing them WO2011080883A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-298815 2009-12-28
JP2009297369A JP2011138888A (en) 2009-12-28 2009-12-28 Electro-mechanical converter, spatial optical modulator, aligner, and methods for manufacturing them
JP2009-297436 2009-12-28
JP2009298815A JP5630015B2 (en) 2009-12-28 2009-12-28 Spatial light modulator, exposure apparatus and manufacturing method thereof
JP2009297436A JP2011137961A (en) 2009-12-28 2009-12-28 Spatial light modulator, exposure devices and method of manufacturing them
JP2009-297369 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080883A1 true WO2011080883A1 (en) 2011-07-07

Family

ID=44226311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007236 WO2011080883A1 (en) 2009-12-28 2010-12-13 Electro-mechanical converter, spatial optical modulator, exposure device, and methods for manufacturing them

Country Status (1)

Country Link
WO (1) WO2011080883A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027400A1 (en) * 2011-08-25 2013-02-28 株式会社ニコン Method for manufacturing spatial light modulation element, spatial light modulation element, spatial light modulator and exposure apparatus
WO2013027405A1 (en) * 2011-08-25 2013-02-28 株式会社ニコン Spatial light modulating element and exposure equipment
CN103389575A (en) * 2012-05-11 2013-11-13 精工爱普生株式会社 Optical device, optical scanner, and image display device
EP2662721A1 (en) * 2012-05-11 2013-11-13 Seiko Epson Corporation Optical device, optical scanner, and image display device
US9638914B2 (en) 2015-04-01 2017-05-02 Seiko Epson Corporation Electrooptical apparatus, production method for the electrooptical apparatus, and electronic appliance
CN112204450A (en) * 2018-06-12 2021-01-08 奥林巴斯株式会社 Light deflector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148120A (en) * 2000-11-10 2002-05-22 Nikon Corp Thin film member, and radiation detector using the same
JP2003005102A (en) * 2001-04-19 2003-01-08 Nikon Corp Thin film elastic structure, method for manufacturing the same and mirror device and optical switch using the same
JP2003117896A (en) * 2001-10-02 2003-04-23 Nec Corp Thin film structure member, manufacturing method thereof, and switching element using the thin film structure member
JP2003172897A (en) * 2001-08-20 2003-06-20 Ricoh Co Ltd Optical scanner and its manufacturing method, optical writing device, image forming apparatus, vibratory mirror chip and its manufacturing method, and optical scanning module
JP2004133212A (en) * 2002-10-10 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JP2004522997A (en) * 2001-02-15 2004-07-29 ティーム、フォトニクス Optical micromirror and method of manufacturing micromirror, array of multiple micromirrors obtained by this method
JP2005010453A (en) * 2003-06-19 2005-01-13 Ricoh Co Ltd Oscillating mirror and method of manufacturing the same, optical write-in device and image forming device
JP2005506909A (en) * 2001-10-22 2005-03-10 モンタナ ステート ユニバーシティ−ボーズマン Reinforced surface micromachined structure and manufacturing method thereof
WO2006109687A1 (en) * 2005-04-11 2006-10-19 Matsushita Electric Industrial Co., Ltd. Micromachine structure
WO2007088988A1 (en) * 2006-02-02 2007-08-09 Nikon Corporation Spatial light modulation device and display device using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148120A (en) * 2000-11-10 2002-05-22 Nikon Corp Thin film member, and radiation detector using the same
JP2004522997A (en) * 2001-02-15 2004-07-29 ティーム、フォトニクス Optical micromirror and method of manufacturing micromirror, array of multiple micromirrors obtained by this method
JP2003005102A (en) * 2001-04-19 2003-01-08 Nikon Corp Thin film elastic structure, method for manufacturing the same and mirror device and optical switch using the same
JP2003172897A (en) * 2001-08-20 2003-06-20 Ricoh Co Ltd Optical scanner and its manufacturing method, optical writing device, image forming apparatus, vibratory mirror chip and its manufacturing method, and optical scanning module
JP2003117896A (en) * 2001-10-02 2003-04-23 Nec Corp Thin film structure member, manufacturing method thereof, and switching element using the thin film structure member
JP2005506909A (en) * 2001-10-22 2005-03-10 モンタナ ステート ユニバーシティ−ボーズマン Reinforced surface micromachined structure and manufacturing method thereof
JP2004133212A (en) * 2002-10-10 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JP2005010453A (en) * 2003-06-19 2005-01-13 Ricoh Co Ltd Oscillating mirror and method of manufacturing the same, optical write-in device and image forming device
WO2006109687A1 (en) * 2005-04-11 2006-10-19 Matsushita Electric Industrial Co., Ltd. Micromachine structure
WO2007088988A1 (en) * 2006-02-02 2007-08-09 Nikon Corporation Spatial light modulation device and display device using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013027400A1 (en) * 2011-08-25 2015-03-05 株式会社ニコン Spatial light modulation element manufacturing method, spatial light modulation element, spatial light modulator, and exposure apparatus
WO2013027405A1 (en) * 2011-08-25 2013-02-28 株式会社ニコン Spatial light modulating element and exposure equipment
TWI585458B (en) * 2011-08-25 2017-06-01 尼康股份有限公司 Space light modulation elements and exposure devices
US9389439B2 (en) 2011-08-25 2016-07-12 Nikon Corporation Spatial light modulation element and exposure apparatus
US9217860B2 (en) 2011-08-25 2015-12-22 Nikon Corporation Spatial light modulation elements, method for manufacturing same, and spatial light modulators and exposure apparatus comprising same
WO2013027400A1 (en) * 2011-08-25 2013-02-28 株式会社ニコン Method for manufacturing spatial light modulation element, spatial light modulation element, spatial light modulator and exposure apparatus
JPWO2013027405A1 (en) * 2011-08-25 2015-03-05 株式会社ニコン Spatial light modulation element and exposure apparatus
US9182593B2 (en) 2012-05-11 2015-11-10 Seiko Epson Corporation Optical device, optical scanner, and image display device
US20130301100A1 (en) * 2012-05-11 2013-11-14 Seiko Epson Corporation Optical device, optical scanner, and image display device
CN103389576A (en) * 2012-05-11 2013-11-13 精工爱普生株式会社 Optical device, optical scanner, and image display device
EP2662721A1 (en) * 2012-05-11 2013-11-13 Seiko Epson Corporation Optical device, optical scanner, and image display device
US9563054B2 (en) 2012-05-11 2017-02-07 Seiko Epson Corporation Optical device, optical scanner, and image display device
CN103389575A (en) * 2012-05-11 2013-11-13 精工爱普生株式会社 Optical device, optical scanner, and image display device
US9638914B2 (en) 2015-04-01 2017-05-02 Seiko Epson Corporation Electrooptical apparatus, production method for the electrooptical apparatus, and electronic appliance
CN112204450A (en) * 2018-06-12 2021-01-08 奥林巴斯株式会社 Light deflector
CN112204450B (en) * 2018-06-12 2022-03-29 奥林巴斯株式会社 Light deflector

Similar Documents

Publication Publication Date Title
JP5630015B2 (en) Spatial light modulator, exposure apparatus and manufacturing method thereof
JP5751332B2 (en) Spatial light modulation element manufacturing method, spatial light modulation element, spatial light modulator, and exposure apparatus
WO2011080883A1 (en) Electro-mechanical converter, spatial optical modulator, exposure device, and methods for manufacturing them
JP2011137961A (en) Spatial light modulator, exposure devices and method of manufacturing them
KR20090039664A (en) Micro actuator, optical unit, exposure device, and device manufacturing method
JP2011138888A (en) Electro-mechanical converter, spatial optical modulator, aligner, and methods for manufacturing them
JPWO2009060906A1 (en) Microactuator, optical device, display device, exposure apparatus, and device manufacturing method
JP5549222B2 (en) Spatial light modulator, exposure apparatus and manufacturing method thereof
JP5509912B2 (en) Spatial light modulator, illumination device, exposure device, and manufacturing method thereof
JP5374860B2 (en) Microactuator and manufacturing method thereof, microactuator array, microactuator device, optical device, display device, exposure apparatus, and device manufacturing method
JP6106970B2 (en) Spatial light modulator and exposure apparatus
KR100400223B1 (en) A micromirror actuator
WO2013027405A1 (en) Spatial light modulating element and exposure equipment
TWI646353B (en) Space light modulator, light drawing device, exposure device, and component manufacturing method
JP4404787B2 (en) Light modulation element and image forming apparatus
JP6492893B2 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JPH11160635A (en) Optical element and manufacturing method thereof and device using it
JP5573212B2 (en) Spatial light modulation element, manufacturing method of spatial light modulation element, illumination light generator and exposure apparatus
JP2010062336A (en) Method of manufacturing structure by anisotropic etching, and silicon substrate with etching mask
KR100691476B1 (en) Micro-mirror actuator
JP2011170298A (en) Method for manufacturing spatial light modulator, spatial light modulator, illumination light generating device, and exposure device
JP2007024947A (en) Optical modulation element array
JP2003098447A (en) Optical modulator and optical modulation method
JP2005259806A (en) Photocoupler, photocoupler array, and semiconductor integrated circuit incorporating photocoupler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840743

Country of ref document: EP

Kind code of ref document: A1