WO2011079579A1 - 一种载波聚合方法与频谱动态分配的方法 - Google Patents

一种载波聚合方法与频谱动态分配的方法 Download PDF

Info

Publication number
WO2011079579A1
WO2011079579A1 PCT/CN2010/073889 CN2010073889W WO2011079579A1 WO 2011079579 A1 WO2011079579 A1 WO 2011079579A1 CN 2010073889 W CN2010073889 W CN 2010073889W WO 2011079579 A1 WO2011079579 A1 WO 2011079579A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
access point
wireless access
sub
user terminal
Prior art date
Application number
PCT/CN2010/073889
Other languages
English (en)
French (fr)
Inventor
刁心玺
朱晓冬
赖峥嵘
马志锋
杨光
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10840369.2A priority Critical patent/EP2521390B1/en
Priority to JP2012546320A priority patent/JP5616460B2/ja
Priority to BR112012011671A priority patent/BR112012011671A2/pt
Priority to AU2010338918A priority patent/AU2010338918B2/en
Priority to US13/509,579 priority patent/US20120250591A1/en
Priority to ES10840369.2T priority patent/ES2624958T3/es
Publication of WO2011079579A1 publication Critical patent/WO2011079579A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a carrier aggregation method and a method for dynamic spectrum allocation.
  • the carrier aggregation of LTE-A Long Term Evolution Advance
  • 3GPP 3rd Generation Partnership Project
  • the duplex mode for example, can realize the combination of the bidirectional use spectrum and the unidirectional use spectrum through carrier aggregation, thereby improving the flexibility of spectrum utilization and spectrum use, thereby improving the use of the wireless communication system in a complicated networking environment.
  • the effectiveness of the spectrum can be realized using LTE-A (Long Term Evolution Advance) in 3GPP (3rd Generation Partnership Project) can achieve not only large transmission bandwidth but also flexible
  • the duplex mode for example, can realize the combination of the bidirectional use spectrum and the unidirectional use spectrum through carrier aggregation, thereby improving the flexibility of spectrum utilization and spectrum use, thereby improving the use of the wireless communication system in a complicated networking environment.
  • the effectiveness of the spectrum can be used to realize the combination of the bidirectional use spectrum and the un
  • the operator establishes the network by means of RAN Sharing (Radio Access Network Sharing), and the RAN Sharing method mainly adopts
  • the TDD (Time Division Duplexing) system is implemented by co-site or common antenna with FDD (Frequency Division Duplexing) system.
  • the wireless access point transmits the downlink signal and the received uplink signal in the same frequency band.
  • a sufficiently wide frequency band is required between the TDD system and the FDD system.
  • the protective tape for example, the width of the protective tape is set to 10 MHz or more.
  • Mode 1 the micro-cell wireless access point is deployed in an off-site, because the indoor wireless access point or the micro-area wireless access point and the macro cell
  • the wireless access point is an off-site deployment, and the micro-cell wireless access point is spatially isolated from the macro-cell wireless access point. Therefore, it is only necessary to set a small protection band between the TDD system and the FDD system (eg, Set the guard band to 3MHz);
  • mode 2 when the TDD system is co-sited or co-located with the FDD system, the micro-area wireless access point or the macro-cell wireless access point uses the guard band between the TDD system and the FDD system. Communicate with the user terminal.
  • the wireless access point uses the TDD for the TDD system and the FDD system co-site or common antenna
  • the protection band between the system and the FDD system implements communication with the user terminal, the application number is US20070286156, and the name is protection between the time division duplex (TDD) wireless communication system and the frequency division duplex (FDD) wireless communication system.
  • TDD time division duplex
  • FDD frequency division duplex
  • Fig. 1 a technical solution provided by the above patent application No. US20070286156 uses a TDD system and an FDD system. Schematic diagram of the guard band spectrum between the two.
  • the FDD system operating in the first frequency band 101 provides at least one first FDD channel
  • the TDD system operating in the second frequency band 102 provides at least one first TDD channel
  • the frequency band 101 and the second frequency band 102 are separated by the third frequency band 103
  • the H-FDD (Half Duplex FDD) system operating in the third frequency band 103 provides at least one first H-FDD channel, the first H-FDD channel
  • the transmission is synchronized with the uplink transmission or the downlink transmission of the TDD.
  • the FDD system further configures at least one second FDD channel on the fourth frequency band 104, the fourth frequency band 104 and the The two frequency bands 102 are separated by a fifth frequency band 105; the H-FDD further configures a second H-FDD channel on the fifth frequency band 105.
  • the third frequency band 103 and the fifth frequency band 105 form a half-duplex FDD (H-FDD)
  • HD-FDD half-duplex FDD
  • the introduction of HD-FDD on the guard band has the following drawbacks.
  • the wireless access point transmits the downlink signal to the user terminal by using the third frequency band 103
  • the fifth frequency band 105 is in an idle state
  • the wireless access point uses the fifth frequency band 105 to receive the uplink signal sent by the user terminal
  • the three-band 103 is in an idle state. Therefore, the prior art solution has a problem that the utilization of the protection band is low; on the other hand, two guard bands are required to ensure that the frequency band used by the two lines achieves normal two-way communication, but In an actual network environment, there is no guarantee that there is sufficient bandwidth to ensure two-way communication. Therefore, in the prior art, there is a poor use of the protection band, which leads to the use of the protection band to achieve two-way communication.
  • the invention provides a carrier aggregation method and a spectrum dynamic allocation method to improve the spectrum utilization of the guard band and the flexibility of using the guard band spectrum.
  • the method for aggregating includes: in a first time zone, the wireless access point transmits a downlink signal to the user terminal by using a first guard band between the TDD system and the FDD system and a bidirectional communication band of the TDD system; or/and, In the second time zone, the wireless access point receives an uplink signal sent by the user terminal using a second guard band between the TDD system and the FDD system and the two-way communication band.
  • the two-way communication spectrum in the TDD system and the protection between the TDD system and the FDD system are used.
  • the band simultaneously transmits downlink signals to the user terminal, thereby improving the spectrum utilization of the guard band and increasing the transmission rate of the downlink signal.
  • the user terminal can also use the two-way communication spectrum in the TDD system and between the TDD system and the FDD system.
  • the protection band simultaneously sends an uplink signal to the wireless access point, thereby further improving the spectrum utilization of the guard band and increasing the transmission rate of the uplink signal; therefore, the technical solution of the present invention improves the relationship between the wireless access point and the user terminal.
  • the flexibility of communication also increases the flexibility of using a guard band between the TDD system and the FDD system.
  • a method for realizing dynamic spectrum allocation includes: applying dynamic spectrum allocation of a unilateral guard band between a micro cell wireless access point and a macro cell wireless access point in a TDD system, including: in a first time zone, The macro access node uses a first unilateral guard band between the TDD system and the FDD system and a bidirectional communication band of the TDD system to transmit a first downlink signal to the user terminal; in the second time zone, The micro cell access point transmits the second downlink signal to the user terminal by using the first unilateral guard band between the TDD system and the FDD system and the bidirectional communication band of the TDD system; or, in the third time zone, the macro cell Receiving, by the wireless access point, the second unilateral guard band between the TDD system and the FDD system, and the first uplink signal sent by the two-way communication band; in the fourth time zone, the micro cell is connected Receiving, by the user terminal, a second one-side guard band between the TDD system and the FDD system, and a second uplink signal sent by the two-way communication band
  • FIG. 1 is a schematic diagram of a spectrum of a guard band between a TDD system and an FDD system in the prior art
  • FIG. 2 is a spectrum distribution diagram between a TDD system and an FDD system according to an embodiment of the present invention
  • FIGS. 3A and 3B are respectively
  • FIG. 4 is a schematic diagram of implementing asymmetric carrier aggregation in a micro-area wireless access point according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an embodiment of the present invention
  • 2 is a schematic diagram of implementing asymmetric carrier aggregation on a micro-area wireless access point
  • FIG. 6 is a third schematic diagram of implementing asymmetric carrier aggregation on a micro-area wireless access point according to an embodiment of the present invention
  • FIG. 7 is an implementation of the present invention
  • FIG. 4 is a schematic diagram of implementing asymmetric carrier aggregation in a micro-area wireless access point according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an embodiment of the present invention
  • 2 is a schematic diagram of implementing asymmetric carrier aggregation on a micro-area
  • FIG. 8 is a schematic diagram of using a guard band spectrum by a macro cell wireless access point according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a micro cell radio access according to an embodiment of the present invention
  • FIG. 10 is a spectrum between a macro cell access point and a cell access point in the embodiment of the present invention
  • Schematic diagram of dynamic allocation. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
  • 2 is a spectrum distribution diagram of a spectrum of a TDD system and a spectrum of an FDD system according to an embodiment of the present invention.
  • the TDD system and the FDD system share a common antenna or a common base station, and the pattern includes: a first frequency band 201, a second a frequency band 202, a third frequency band 203, a fourth frequency band 204, and a fifth frequency band 205, wherein: the first frequency band 201 is a downlink frequency band of a paired frequency spectrum in an FDD system; and the second frequency band 202 is a frequency band used for two-way communication in a TDD system.
  • the second frequency band 202 is a frequency band used in the conventional TDD mode on the TDD licensed frequency band; the third frequency band 203 is a guard frequency band between the first frequency band 201 and the second frequency band 202; the fourth frequency band 204 is a paired spectrum in the FDD system The uplink frequency band; the fifth frequency band 205 is a guard frequency band between the fourth frequency band 204 and the second frequency band 202.
  • the embodiment of the present invention is not limited to the spectrum distribution pattern shown in FIG. 2, and may be a position where the first frequency band 201 and the second frequency band 202 are swapped, and the third frequency band 203 and the fifth frequency band 205 are changed positions. Spectrum distribution pattern.
  • the macro cell radio access point working in the third frequency band 203 and the second frequency band 202 and the macro cell radio access point working on the first frequency band 201 or/and working on the fourth frequency band 204
  • the macro cell access point is a co-site or a common antenna; in the case of a co-site or a common antenna between the plurality of macro cell radio nodes, a unilateral guard band between the TDD system and the FDD system (as implemented by the present invention)
  • the size of the third frequency band 203 and the fifth frequency band 205 in the example needs to be set to 10 MHz or more.
  • the third frequency band 203 in the embodiment of the present invention is a sub-band located in a TDD frequency band (eg, 1880-1920 MHz).
  • the second frequency band 202 and the third frequency band 203 in the embodiment of the present invention are adjacent or non-adjacent spectrums on the licensed band of the TDD system; when in the non-adjacent spectrum, in the second frequency band 202 and the third
  • the frequency band 203 includes a frequency band for one-way communication or a frequency band for two-way communication that does not participate in carrier aggregation.
  • the second frequency band 202 and the fifth frequency band 205 in the embodiment of the present invention are adjacent or non-adjacent spectrums on the licensed band of the TDD system; when in the non-adjacent spectrum, in the second frequency band 202 and the fifth
  • the frequency band 205 includes a frequency band for one-way communication or a frequency band for two-way communication that does not participate in carrier aggregation.
  • the third frequency band 203 is located between the first frequency band 201 and the second frequency band 202 of the FDD system.
  • the fifth frequency band 205 is located between the fourth frequency band 204 and the second frequency band 202 of the FDD system.
  • the interference band GB2 is disposed between the first frequency band 201 and the third frequency band 203.
  • the third frequency band 203 is adjacent to the first frequency band 201 of the FDD system, and the isolation band GB2 is left.
  • the mutual interference between the fifth frequency band 205 and the fourth frequency band 204 is suppressed.
  • An isolation band GB1 is disposed between the fifth frequency band 205 and the fourth frequency band 204 (i.e., the isolation band GB1 is left on the fifth frequency band 205 near the fourth frequency band 204 of the FDD system).
  • Embodiment 1 This embodiment 1 communicates with a user terminal by using a guard band between the TDD system and the FDD system for the macro cell wireless access point, and is described in detail.
  • the frequency allocation pattern of the frequency of the FDD system and the frequency of the TDD system shown in FIG. 2 is used.
  • the macro cell wireless access point transmits the synchronization signal and the cell broadcast signal on the second frequency band 202 according to the method specified by the TDD technical standard, and provides the spectrum resource for the randomly accessed user terminal according to the manner specified by the TDD technical standard.
  • the first time zone is allocated in the radio frame for the macro cell wireless access point in the first time zone.
  • the time zone formed by the downlink time slot) the macro cell wireless access point transmits the downlink signal to the user terminal in parallel with the downlink carrier on the third frequency band 203 and the downlink carrier on the second frequency band 202, as shown in FIG. 3A.
  • the user After receiving the downlink signal sent by the macro cell radio access point, the user is in the second time zone (the time zone formed by the uplink time slot allocated for the macro cell radio access point in the radio frame in the radio time frame)
  • the uplink carrier of the second frequency band 202 is used to send reception acknowledgement information (such as ACK (Acknowledgement Character), NACK, etc.) to the macro cell radio access point, as shown in FIG. 3B.
  • reception acknowledgement information such as ACK (Acknowledgement Character), NACK, etc.
  • the user terminal is configured to send the uplink signal to the macro cell wireless access point by using the uplink carrier of the second frequency band 202 and the uplink carrier of the fifth frequency 205.
  • the macro cell wireless access point sends an uplink scheduling instruction to the user terminal by using the downlink carrier of the second frequency band 202; after receiving the uplink scheduling instruction sent by the macro cell wireless access point, the user terminal
  • the uplink carrier of the second frequency band 202 is used to transmit an uplink signal to the macro cell wireless access point in parallel with the uplink carrier of the fifth frequency band 205.
  • Embodiment 2 This embodiment 2 communicates with the user terminal by using the guard band between the TDD system and the FDD system for the micro cell wireless access point, and details are described.
  • the frequency allocation pattern of the frequency of the FDD system and the frequency of the TDD system shown in FIG. 2 is used.
  • the protection band between the TDD system and the FDD system of the micro cell wireless access point mainly includes the following three methods: Mode 1: The difference between the wireless access point of the cell and the macro cell of the TDD system/FDD system Station deployment, therefore, the interference power of the transmission power of the macro cell wireless access point deployed in the first frequency band 201 received by the micro cell wireless access point deployed on the third frequency band 203 is small due to the spatial isolation effect, Thereby, the micro cell wireless access point can receive the uplink signal sent by the user terminal by using part of the frequency band in the third frequency band 203. As shown in FIG.
  • the third frequency band 203 can be divided into a first sub-band (represented by 203a) and a second sub-band (represented by 203b), wherein: the first sub-band 203a is used for one-way downlink communication; The second sub-band 203b is used for two-way communication.
  • the size of the frequency band of the first sub-band 203a is determined by the uplink signal transmitted by the TDD user terminal on the second sub-band 203b and the interference of the downlink signal received by the FDD user terminal on the first frequency band 201, for example, the first sub-band set.
  • the size of 203a ensures that when the TDD user terminal of the first sub-band 203a transmits an uplink signal to the micro-area wireless access point, the signal power leaked to the FDD user terminal of the first frequency band 201 is lower than a preset power threshold.
  • the communication between the wireless access point and the user terminal is implemented as follows: When the cell wireless access point needs to send a downlink signal to the user terminal, the micro cell wireless access point is in the first time zone, The downlink carrier of the second frequency band 202, and the downlink carrier of the first sub-band 203a or/and the downlink carrier of the second sub-band 203b transmit a downlink signal to the user terminal (the downlink signal packet)
  • a cell broadcast signal of a macro cell a multimedia broadcast signal of a macro cell, a cell synchronization signal of a macro cell, and service data, etc.
  • the user terminal In the second time zone, the user
  • Manner 2 The micro-area wireless access deployed on the fifth frequency band 205 due to spatial isolation due to the hetero-site deployment between the micro-cell wireless access point and the macro-cell wireless access point in the TDD system/FDD system
  • the point-to-point strength of the macro-cell wireless access point deployed on the fourth frequency band 204 is small, so that the micro-region wireless access point can transmit the downlink signal to the user terminal using part of the frequency band in the fifth frequency band 205. As shown in FIG.
  • the fifth frequency band 205 can be divided into a third sub-band (represented by 205a) and a fourth sub-band (represented by 205b), wherein: the third sub-band 205a is used for one-way uplink communication; The fourth sub-band 205b is used for two-way communication.
  • the frequency band size of the third sub-band 205a is determined by the uplink signal transmitted by the FDD user terminal on the fourth frequency band 204 and the interference of the downlink signal received by the TDD user terminal on the fourth sub-band 205b, for example, the set third sub-band
  • the size of 205a ensures that when the FDD user terminal of the fourth frequency band 204 transmits an uplink signal to the macro cell wireless access point, the signal power leaked to the TDD user terminal of the fourth sub-band 205b is lower than a preset power threshold.
  • the communication between the wireless access point and the user terminal is implemented in the foregoing manner: when the cell wireless access point needs to send an uplink scheduling instruction to the user terminal, the micro cell wireless access point is in the third time zone (the The third time zone is a time zone formed by the downlink time slot allocated by the wireless frame for the wireless access point of the wireless cell.
  • the downlink carrier of the second frequency band 202 or/and the downlink carrier of the fourth sub-band 205b may be used for the user.
  • the terminal sends an uplink scheduling instruction; after receiving the uplink scheduling instruction sent by the micro-area wireless access point, the user terminal allocates in the fourth time zone that the wireless frame is the wireless cell of the activated cell
  • the time zone formed by the uplink time slot) is transmitted to the micro cell wireless access point by using the uplink carrier of the second frequency band 202 and the uplink carrier of the fourth subband 205b or/and the uplink carrier of the third subband 205a in parallel Uplink signal.
  • the activated cell wireless node may use the fifth frequency band 205, the third frequency band 203, and the second frequency band 202 to communicate with the user terminal. As shown in FIG.
  • the third mode 203 and the second frequency band 202 are used to implement communication with the user terminal by using the above manner 1, and the fifth mode 205 and the second frequency band 202 are implemented by using the above manner 2 to implement the user. Communication between terminals.
  • the receiving channel of the micro cell wireless access point is set on the fourth sub-band 205b (ie, the third sub-range).
  • the frequency band 205a is disposed between the fourth sub-band 205b and the fourth frequency band 204, and uses the third sub-band 205a as a guard band between the fourth sub-band 205b and the fourth frequency band 204; as shown in FIG.
  • the total bandwidth of the five-band 205 is 10 MHz, and the bandwidth of the fourth sub-band 205b is set to 5 MHz.
  • the micro cell wirelessly
  • the receiving channel of the access point is disposed on the second sub-band 203b (ie, the first sub-band 203a is disposed between the second sub-band 203b and the first band 201, and the first sub-band 203a is used as the second sub-band 203b
  • the guard band between the first frequency bands 201 as shown in FIG.
  • the bandwidth of the second sub-band 203b is set to 5 MHz.
  • the thousand signals generated by the FDD user terminal located in the first frequency band 201 in the FDD system receive the downlink signal.
  • the receiving channel of the wireless access point of the cell is set on the second sub-band 203b (ie, the first sub-band 203a is located between the second sub-band 203b and the first band 201 of the FDD system.
  • the first sub-band 203a is a guard band between the second sub-band 203b and the first frequency band 201 of the FDD system, as shown in FIG. 9; It should be noted that the reason for receiving the signal in the fifth frequency band by using the technical solution of the present invention can be illustrated by a specific example. The following examples are as follows: In the embodiment of the present invention, in the fourth frequency band 204 and the fifth frequency band 205 The intervening thousand 4 is mainly such that the FDD terminal on the fourth frequency band 204 transmits a signal to the FDD system wireless access point to the TDD terminal on the fifth frequency band 205 to receive the signal transmitted by the wireless access point. As shown in FIG.
  • the FDD terminal 701 operating on the fourth frequency band 204 transmits an uplink signal to the wireless access point of the FDD system, its out-of-band leakage signal 703 may be received by the TDD terminal 702 currently in the receiving state;
  • the fourth sub-band 205b and the fourth sub-band 204 are separated by the third sub-band 205a.
  • the size of the third sub-band 205a is about 5 MHz.
  • the power of the leakage signal 703 of the FDD terminal to the TDD terminal is more than 40 dB of the transmission power of the FDD terminal, and because the transmission power of the micro-region wireless access point is greater than or equal to the transmission power of the FDD terminal, the cell access point to the TDD is activated.
  • the path loss of the terminal 702 is equivalent to the path loss of the FDD terminal 701 to the TDD terminal 702.
  • the technical solution of the present invention can ensure that the TDD terminal performs normal reception of the signal on the fifth frequency band.
  • the carrier combining method provided in the embodiment of the present invention can be applied to a TDD system, and can also be applied to a ten-system of the FDD system and the TDD system.
  • the two-way communication spectrum in the TDD system and the protection between the TDD system and the FDD system are used.
  • the band transmits the downlink signal to the user terminal at the same time, thereby improving the spectrum utilization rate of the guard band and improving the transmission rate of the downlink signal; on the other hand, the user terminal can also use the two-way communication frequency in the TDD system, and the TDD system and the FDD system.
  • the protection band simultaneously sends an uplink signal to the wireless access point, thereby further improving the spectrum utilization of the protection band and improving the transmission rate of the uplink signal.
  • the protection band is combined with different frequency bands to implement communication with the user terminal. Therefore, the technical solution of the present invention improves the flexibility of communication between the wireless access point and the user terminal, and also improves the flexibility. Use the flexibility of the guard band between the TDD system and the FDD system.
  • the embodiment of the present invention further provides a method for dynamically allocating spectrum resources in a macro cell and a micro interval, based on the manner in which the macro cell wireless access point and the micro cell wireless access point use a guard band between the TDD system and the FDD system. The method is applied to the dynamic allocation of the spectrum of the unilateral guard band shared between the micro cell wireless access point and the macro cell wireless access point in the TDD system.
  • how the macro cell wireless access point uses the protection between the TDD system and the FDD system to implement communication with the user terminal can adopt the method in the first embodiment; the micro cell wireless access point How to use the protection between the TDD system and the FDD system to implement communication with the user terminal can be implemented in the manner provided in the second embodiment, and is not mentioned here.
  • the radio frame used by the macro cell radio access point and the micro cell radio access point maintains strict synchronization in time slot allocation, and the macro cell radio access point is in the third frequency band 203, in the The downlink time slot configuration of the time division duplex radio frame on the second frequency band 202 is strictly consistent with the configuration of the downlink time slot of the radio frame of the second cell band 203b.
  • the micro cell wireless node operating on the second sub-band 203b is an indoor distributed base station
  • the macro cell wireless node is an outdoor distributed base station
  • the micro cell wireless access point and the macro cell wireless access point Inter-site deployment therefore, the micro-cell wireless access point is connected to the macro cell wirelessly.
  • the backhaul channel (B ACKHAULL) of the micro cell wireless access point may use XDSL (Digital Subscriber Line) or XPON (Passive Optical Network) is implemented.
  • the synchronization of the downlink time slot configuration of the time division duplex radio frame used by the macro cell wireless access point and the downlink time slot of the radio frame used by the cell initiation access point can be achieved by the following manner.
  • One or a combination is implemented: Method 1: Implementing a synchronization signal conforming to the IEEE 1588 standard on XDSL or XPON; Mode 2, synchronizing by transmitting a macro cell wireless access point on the second frequency band 202 or the third frequency band 203 Signal to achieve.
  • the micro-area, the regional wireless access point and the macro-cell wireless access point share the third frequency band 203, and implement dynamic dynamic spectrum between the micro-region wireless access point and the macro-cell wireless access point.
  • the allocation can be illustrated by FIG.
  • the time division duplex radio frame 901 used by the macro cell radio node operating on the second frequency band 202 is a radio frame structure conforming to the LTE TDD specification; the radio frame used by the macro cell radio node operating on the third band 203 902a is an infinite frame structure with only downlink time slots.
  • the radio frame 902a may be a downlink radio frame structure of FDD or an LTE TDD radio frame structure used as a downlink slot.
  • the radio frame 902a used by the initiating cell radio access point operating on the second sub-band 203b is a radio frame structure having only downlink slots, the radio frame 902a is strictly synchronized with the radio frame 901, and the radio frame structure 902a is The configuration of the downlink slot is the same as the configuration of the downlink slot in the radio frame on the second subband 203b.
  • the radio frame 902b used by the micro cell radio access point working on the second sub-band 203b is a radio frame structure conforming to the LTE TDD specification, and the radio frame structure includes a macro cell radio access point and a micro cell radio.
  • the downlink time slot that the access point can share can dynamically allocate the sharable downlink time slot to the macro cell wireless connection according to the downlink traffic volume of the macro cell wireless access point and the micro cell wireless access point. Incoming point and micro cell wireless access point. As shown in FIG. 10, TS8 ⁇ TS19 in the radio frame are downlink time slots that can be shared by the macro cell radio access point and the micro cell radio access point, where TS8 ⁇ TS13 are allocated to the macro cell radio access point to send downlink.
  • TS 13 ⁇ TS 19 points The micro-area wireless access point is allocated to transmit downlink signals; the number of downlink time slots occupied by the macro-cell wireless access point and the downlink wireless traffic of the cell-based wireless access point may be dynamically adjusted, for example, when the macro cell is used.
  • the time slots TS8 ⁇ TS 17 may be allocated to the macro cell wireless access point to send the downlink time slot, and the time slots TS 18 ⁇ TS 19 are allocated to the micro cell wireless access point to send. Downstream signal.
  • the macro cell wireless access point and the micro cell wireless access point share the guard band between the TDD system and the FDD system, there is macro cell radio access in the same radio frame structure allocation.
  • the downlink time slot shared by the point and the micro cell, and the number of downlink time slots occupied by the macro cell radio access point and the micro cell radio access point can be dynamically adjusted according to the downlink service change condition, thereby more effectively utilizing the spectrum resource.
  • the macro cell wireless access point may use a single carrier or multiple carriers to transmit downlink signals to the user terminal in the guard band.
  • the macro cell wireless access point transmits a downlink signal to the user terminal by using one carrier on the second subband 203b or the first subcarrier 203a, or the macro cell radio access point is in the first subcarrier 203a and the second subcarrier.
  • the frequency band 203b transmits a downlink signal to the user terminal by using one carrier;
  • the macro cell wireless access point transmits a downlink signal to the user terminal by using one carrier in the second sub-band 203b and the first sub-band 203a, respectively.
  • the macro cell wireless access point can also receive the uplink signal sent by the user terminal by using a single carrier or multiple carriers.
  • the macro cell wireless access point receives the user terminal on the second subband 203b or the first subcarrier 203a.
  • the uplink signal sent by one carrier, or the macro cell wireless access point receives the uplink signal sent by the user terminal on the first subcarrier 203a and the second subband 203b by using one carrier; the macro cell wireless access point receives the user terminal
  • An uplink signal transmitted by one carrier is used in the second sub-band 203b and the first sub-band 203a, respectively.
  • the technical solution of the present invention introduces uplink and downlink asymmetric spectrum aggregation in the protection band between the TDD system and the FDD system in the TDD system, thereby improving the utilization of the TDD system in the TDD system and The flexibility of the guard band between the FDD systems; on the other hand, for the cell-based wireless access point, the micro-area wireless is realized by introducing uplink-downlink asymmetric spectrum aggregation on the guard band between the TDD system and the FDD system.
  • the access point performs two-way communication on the guard band, and suppresses mutual interference between the TDD user terminal performing two-way communication on the guard band and the FDD terminal on the adjacent frequency band; on the other hand, wireless through the micro cell
  • the access point and the macro cell wireless access point are flexibly configured in spectrum usage and improve the flexibility and effectiveness of using the guard band. It is apparent that those skilled in the art can make various modifications and variations to the invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and the modifications of the invention.

Description

一种载波聚合方法与频谱动态分配的方法 技术领域 本发明涉及无线通信领域, 尤其涉及一种载波聚合方法与频谱动态分配 的方法。 背景技术 目前, 3GPP ( Third Generation Partnership Project, 第三代合作伙伴计划) 中的 LTE-A ( Long Term Evolution Advance, 长期演进升级版) 载波聚合不 仅可以实现较大的传输带宽, 还可以实现灵活的双工方式, 比如, 通过载波 聚合可以实现双向使用的频谱与单向使用频谱的合并使用, 从而提高频谱利 用率与频谱使用的灵活性, 从而提高了无线通信系统在复杂的组网环境下使 用频谱的有效性。 为了在 2G网络系统、 3G网络系统以及 LTE系统共存的环境下降低建网 成本, 运营商以 RAN Sharing ( Radio Access Network Sharing , 无线接入网共 享) 的方式建网, RAN Sharing 的方式主要是通过将 TDD ( Time Division Duplexing, 时分双工) 系统与 FDD ( Frequncy Division Duplexing, 频分双 工) 系统共站址或共天线来实现。 在传统 TDD模式中, 无线接入点釆用同一频带传输下行信号与接收上 行信号, 为避免 TDD系统与 FDD系统之间收发信号的千扰, 在 TDD系统 与 FDD 系统之间需要足够宽的频带作为保护带, 比如, 将保护带的宽度设 置为 10MHz以上。 目前, 使用 TDD系统与 FDD系统间的保护带来传输信号主要有两种方 式: 方式一, 微小区无线接入点异站部署, 由于室内无线接入点或微小区无 线接入点与宏小区无线接入点为异站部署, 微小区无线接入点与宏小区无线 接入点之间具有空间隔离, 因此, 只需要为 TDD系统与 FDD系统之间设置 较小的保护带即可(如将保护带设置为 3MHz );方式二,当 TDD系统与 FDD 系统共站址或共天线时,微小区无线接入点或宏小区无线接入点使用该 TDD 系统与 FDD系统之间的保护带与用户终端实现通信。 针对 TDD系统与 FDD系统共站址或共天线时,无线接入点使用该 TDD 系统与 FDD 系统之间的保护带实现与用户终端进行通信的方式, 申请号为 US20070286156 , 名称为利用时分双工 ( TDD ) 无线通信系统及频分双工 ( FDD ) 无线通信系统之间的保护带 ( Utilizing guard band between FDD and TDD wireless systems的专利申请所提供的技术方案如图 1所示。 参见图 1 , 为上述专利号为 US20070286156的专利申请提供的技术方案 中使用 TDD系统与 FDD系统之间的保护带频谱的示意图。 图 1中, 工作在 第一频带 101内的 FDD系统至少提供一个第一 FDD信道; 工作在第二频带 102内的 TDD系统至少提供一个第一 TDD信道; 第一频带 101和第二频带 102由第三频带 103分开; 并且, 工作在第三频带 103内的 H-FDD (半双工 FDD )系统至少提供一个第一 H-FDD信道, 第一 H-FDD信道的发射与 TDD 的上行发射或者下行发射同步。 FDD系统进一步地在第四频带 104上至少配 置一个第二 FDD信道,第四频带 104与第二频带 102之间通过第五频带 105 分开; H-FDD进一步地在第五频带 105上配置第二 H-FDD信道。 将第三频 带 103与第五频带 105构成半双工 FDD(H-FDD)。 釆用上述技术方案, 在保护带上引入半双工 FDD (即 HD-FDD )的方式 虽然可以部分地提高保护带的利用率, 但是, 在该保护带上引入 HD-FDD存 在以下缺陷: 一方面, 无线接入点釆用第三频带 103向用户终端发送下行信 号时, 第五频带 105处于空闲状态; 当无线接入点釆用第五频带 105接收用 户终端发送的上行信号, 第三频带 103处于空闲状态, 因此, 釆用现有技术 方案存在保护带利用率较低的问题; 另一方面, 需要两个保护带才能保证双 线使用的频带实现正常的双向通信, 但由于在实际的网络环境中, 并不能保 证有足够的带宽来保证双向通信, 因此, 现有技术存在保护带使用灵活性较 差从而导致使用保护带实现双向通信不稳定、 系统性能较差的问题。 发明内容 本发明实施例提供一种载波聚合的方法及频谱动态分配的方法, 以提高 保护带的频谱利用率以及使用保护带频谱的灵活性。 一种载波聚合的方法, 包括: 在第一时间区, 无线接入点釆用 TDD系统与 FDD系统之间的第一保护 频带以及 TDD系统的双向通信频带向用户终端发送下行信号; 或 /和, 在第二时间区,所述无线接入点接收所述用户终端釆用 TDD系统与 FDD 系统之间的第二保护频带以及所述双向通信频带发送的上行信号。 本发明实施例中, 一方面, 在 TDD系统中, 由于 TDD系统的无线接入 点在向用户终端发送下行信号时, 釆用 TDD 系统中的双向通信频谱以及 TDD系统与 FDD系统之间的保护带同时向用户终端发送下行信号, 从而提 高保护带的频谱利用率与提高下行信号的传输速率; 另一方面, 用户终端也 可釆用 TDD系统中的双向通信频谱以及 TDD系统与 FDD系统之间的保护 带同时向无线接入点发送上行信号, 从而进一步提高了保护带的频谱利用率 与提高上行信号的传输速率; 因此, 釆用本发明技术方案提高了无线接入点 与用户终端之间进行通信的灵活性, 也提高了使用 TDD系统与 FDD系统之 间的保护带的灵活性。 一种实现频谱动态分配的方法, 包括: 应用于 TDD 系统中的微小区无线接入点与宏小区无线接入点之间共享 单边保护带的频谱动态分配, 包括: 在第一时间区, 所述宏 ' j、区接入点釆用 TDD系统与 FDD系统之间的第 一单边保护频带以及 TDD 系统的双向通信频带向用户终端发送第一下行信 号; 在第二时间区, 所述微小区接入点釆用 TDD系统与 FDD系统之间的第 一单边保护频带以及 TDD 系统的双向通信频带向用户终端发送第二下行信 号; 或者, 在第三时间区, 所述宏小区无线接入点接收所述用户终端釆用 TDD 系 统与 FDD 系统之间的第二单边保护频带以及所述双向通信频带发送的第一 上行信号; 在第四时间区, 所述微小区无线接入点接收所述用户终端釆用 TDD 系 统与 FDD 系统之间的第二单边保护频带以及所述双向通信频带发送的第二 上行信号; 所述第一时间区与第二时间区分别由同一无线帧中的不同的下行时隙构 成的时间区; 所述第三时间区与第四时间区分别由所述无线帧的不同上行时隙构成的 时间区; 根据所述宏小区接入点与所述微小区接入点各自的下行业务量, 调整构 成各自的时间区的下行时隙的数量以及调整构成各自的时间区的上行时隙的 数量。 本发明实施例中, 在 TDD 系统中, 针对宏小区无线接入点与微小区无 线接入点共享 TDD系统与 FDD系统之间保护频带时, 在同一无线帧结构中 分配有宏小区无线接入点与微小区共享的下行时隙, 并且可根据宏小区无线 接入点与微小区无线接入点的下行业务变化情况动态调整各自所占的下行时 隙的数量, 从而更有效地利用频谱资源, 提高了频谱利用率, 改善网络性能。 附图说明 图 1为现有技术中使用 TDD系统与 FDD系统间保护带频谱的示意图; 图 2为本发明实施例中使用 TDD系统与 FDD系统间的频谱分布图; 图 3A、 3B分别为本发明实施例中实现下行载波聚合、 上行载波聚合的 结构示意图; 图 4为本发明实施例中在微小区无线接入点上实现非对称载波聚合的示 意图之一; 图 5为本发明实施例中在微小区无线接入点上实现非对称载波聚合的示 意图之二; 图 6为本发明实施例中在微小区无线接入点上实现非对称载波聚合的示 意图之三; 图 7 为本发明实施例中釆用本发明载波聚合方式实现千扰抑制的示意 图; 图 8为本发明实施例中宏小区无线接入点使用保护带频谱的示意图; 图 9为本发明实施例中微小区无线接入点使用保护带频谱的示意图; 图 10 为本发明实施例中实现宏小区接入点与啟小区接入点之间的频谱 动态分配的示意图。 具体实施方式 下面结合说明书附图对本发明实施例进行详细的描述。 参见图 2 , 为本发明实施例中 TDD系统的频谱与 FDD系统的频谱的频 谱分布格局图,该 TDD系统与 FDD系统共天线或共基站,该格局图中包括: 第一频带 201、 第二频带 202、 第三频带 203、 第四频带 204、 第五频带 205 , 其中: 第一频带 201为 FDD 系统中成对频谱的下行频带; 第二频带 202为 TDD系统中用于双向通信的频带, 该第二频带 202为 TDD许可频带上的以 传统 TDD方式使用的频带; 第三频带 203为第一频带 201 与第二频带 202 之间的保护频带; 第四频带 204为 FDD 系统中成对频谱的上行频带; 第五 频带 205为第四频带 204与第二频带 202之间的保护频带。 本发明实施例中并不仅限于如图 2所示的频谱分布格局图, 还可以是将 第一频带 201与第二频带 202调换位置,以及将第三频带 203与第五频带 205 调换位置后的频谱分布格局图。 本发明实施例中, 工作在第三频带 203与第二频带 202的宏小区无线接 入点与工作在第一频带 201上的宏小区无线接入点或 /和工作在第四频带 204 上的宏小区接入点为共站址或共天线; 在该多个宏小区无线节点之间共站址 或共天线的情况下, TDD系统与 FDD系统之间的单边保护频带 (如本发明 实施例中的第三频带 203、 第五频带 205 ) 的大小需要设置为 10MHz以上。 本发明实施例中的第三频带 203为位于 TDD频段 (如 1880- 1920MHz ) 上的一个子频带。 较佳地, 本发明实施例中的第二频带 202与第三频带 203为 TDD系统 许可频带上的相邻或非相邻频谱; 当为非相邻频谱时, 在第二频带 202与第 三频带 203之间包括未参与载波聚合的用于单向通信的频带或用于双向通信 的频带。 较佳地, 本发明实施例中的第二频带 202与第五频带 205为 TDD系统 许可频带上的相邻或非相邻频谱; 当为非相邻频谱时, 在第二频带 202与第 五频带 205之间包括未参与载波聚合的用于单向通信的频带或用于双向通信 的频带。 较佳地, 第三频带 203位于 FDD 系统的第一频带 201 与第二频带 202 之间。 较佳地, 第五频带 205位于 FDD 系统的第四频带 204与第二频带 202 之间。 较佳地, 为抑制第三频带 203与第一频带 201之间收发信号存在相互千 扰, 本发明实施例中在第一频带 201与第三频带 203之间设置有隔离带 GB2 (即在第三频带 203上靠近 FDD系统的第一频带 201—侧留出隔离带 GB2 ); 同理, 本发明实施例中为抑制第五频带 205与第四频带 204之间收发信号存 在的相互千扰, 在第五频带 205与第四频带 204之间设置有隔离带 GB1 (即 在第五频带 205上靠近 FDD系统的第四频带 204—侧留出隔离带 GB1 )。 本发明实施例中针对不同类型的的无线接入点 (包括宏小区无线接入点 与啟小区无线接入点), 其使用 TDD 系统与 FDD 系统间的保护带的方式不 一致, 下面釆用两个实施例对本发明技术方案进行详细的描述。 实施例一 该实施例一针对宏小区无线接入点使用该 TDD系统与 FDD系统之间的 保护频带与用户终端进行通信, 进行详细的说明。 本发明实施例中, 釆用如图 2所示的 FDD系统频 i普与 TDD系统的频 i普 的频谱分配格局。 宏小区无线接入点在第二频带 202上按照 TDD技术标准 所规范的方法发送同步信号与小区广播信号, 并按照 TDD 技术标准所规范 的方式为随机接入的用户终端提供频谱资源。 在 TDD系统中, 当 TDD系统中的宏小区无线接入点需要向用户终端发 送下行信号时, 在第一时间区 (该第一时间区为无线帧中为该宏小区无线接 入点分配的下行时隙所构成的时间区),宏小区无线接入点釆用第三频带 203 上的下行载波与第二频带 202上的下行载波并行的向该用户终端发送下行信 号, 如图 3A所示; 用户接收到该宏小区无线接入点发送的下行信号之后, 在第二时间区 (该二时间区为无线帧中为该宏小区无线接入点分配的上行时 隙所构成的时间区) 釆用第二频带 202的上行载波向该宏小区无线接入点发 送接收确认信息(如 ACK( Acknowledgement Character,确认信号)或 NACK 等), 如图 3B所示。 当宏小区无线接入点需要向用户终端发送上行调度指令, 以指示用户终 端釆用第二频带 202的上行载波与第五频 205的上行载波并行的向该宏小区 无线接入点发送上行信号时, 在第三时间区, 宏小区无线接入点釆用第二频 带 202的下行载波向用户终端发送上行调度指令; 用户终端接收到该宏小区 无线接入点发送的上行调度指令之后,在第四时间区,釆用釆用第二频带 202 的上行载波与第五频带 205的上行载波并行的向该宏小区无线接入点发送上 行信号。 实施例二 该实施例二针对微小区无线接入点使用该 TDD系统与 FDD系统之间的 保护频带与用户终端进行通信, 进行详细的说明。 本发明实施例中, 釆用如图 2所示的 FDD系统频 i普与 TDD系统的频 i普 的频谱分配格局。 微小区无线接入点使用 TDD系统与 FDD系统间的保护频带主要包括以 下三种方式: 方式一: 由于啟小区无线接入点与 TDD系统 /FDD系统中的宏小区无线 接入点之间异站部署, 因此, 由于空间隔离作用导致部署在第三频带 203上 的微小区无线接入点接收到的部署在第一频带 201的宏小区无线接入点的发 射功率的千扰强度较小, 从而使得微小区无线接入点可釆用第三频带 203中 的部分频带接收用户终端发送的上行信号。 如图 4所示, 可将第三频带 203 划分为第一子频带 (后续用 203a表示) 与第二子频带 (后续用 203b表示), 其中: 第一子频带 203a用于单向下行通信; 第二子频带 203b用于双向通信。 第一子频带 203a的频带的大小由第二子频带 203b上的 TDD用户终端发射 上行信号对第一频带 201 上的 FDD用户终端接收下行信号的千扰来决定, 比如, 设置的第一子频带 203a的大小保证第一子频带 203a的 TDD用户终 端向微小区无线接入点发射上行信号时, 其泄露给第一频带 201 的 FDD用 户终端的信号功率低于预先设定的功率阈值。 釆用上述方式一实现啟小区无线接入点与用户终端之间的通信为: 当 小区无线接入点需要向用户终端发送下行信号时, 微小区无线接入点在第一 时间区, 釆用第二频带 202的下行载波, 以及第一子频带 203a的下行载波 或 /和第二子频带 203b的下行载波向用户终端发送下行信号 (该下行信号包 括以下一种或多种: 宏小区的小区广播信号、 宏小区的多媒体广播信号、 宏 小区的小区同步信号以及业务数据等);用户终端在接收到微小区无线接入点 发送的下行信号之后, 在第二时间区, 该用户终端釆用第二频带 202的上行 载波或 /和第二子频带 203b 的上行载波向该啟小区无线接入点发送 ACK或 NACK。 方式二、 由于微小区无线接入点与 TDD系统 /FDD系统中的宏小区无线 接入点之间异站部署, 因此, 由于空间隔离作用导致部署在第五频带 205上 的微小区无线接入点对部署在第四频带 204上的宏小区无线接入点的千扰强 度较小, 从而使得微小区无线接入点可釆用第五频带 205中的部分频带向用 户终端发送下行信号。如图 5所示,可将第五频带 205划分为第三子频带(后 续用 205a表示)与第四子频带(后续用 205b表示), 其中: 第三子频带 205a 用于单向上行通信; 第四子频带 205b用于双向通信。 第三子频带 205a的频 带大小由第四频带 204 上的 FDD 用户终端发射的上行信号对第四子频带 205b上的 TDD用户终端接收下行信号的千扰来决定, 比如, 设置的第三子 频带 205a的大小保证第四频带 204的 FDD用户终端向宏小区无线接入点发 射上行信号时, 其泄露给第四子频带 205b的 TDD用户终端的信号功率低于 预先设定的功率阈值。 釆用上述方式二实现啟小区无线接入点与用户终端之间的通信为: 当 小区无线接入点需要向用户终端发送上行调度指令时, 微小区无线接入点在 第三时间区 (该第三时间区为无线帧为该 ^啟小区无线接入点分配的下行时隙 所构成的时间区) 可釆用第二频带 202的下行载波或 /和第四子频带 205b的 下行载波向用户终端发送上行调度指令; 该用户终端在接收到该微小区无线 接入点发送的上行调度指令之后, 在第四时间区 (该第四时间区为无线帧为 该啟小区无线接入点分配的上行时隙所构成的时间区) 釆用第二频带 202的 上行载波,以及第四子频带 205b的上行载波或 /和第三子频带 205a的上行载 波并行的向该微小区无线接入点发送上行信号。 方式三、 为更进一步的充分使用第三频带 203与第五频带 205实现双向 通信, 啟小区无线节点可釆用第五频带 205、第三频带 203以及第二频带 202 来与用户终端进行通信。 如图 6所示, 在第三频带 203与第二频带 202上釆 用上述方式 1 实现与用户终端之间的通信, 在第五频带 205与第二频带 202 上釆用上述方式 2实现与用户终端之间的通信。 较佳地, 为了将第四频带 204上的 FDD用户终端发射信号对第五频带 205上的 TDD用户终端接收信号所产生的千 4尤控制在可接受范围内,本发明 实施例中, 将微小区无线接入点的接收通道设置在第四子频带 205b 上 (即 第三子频带 205a设置在第四子频带 205b与第四频带 204之间, 釆用第三子 频带 205a作为第四子频带 205b与第四频带 204之间的保护带); 如图 7所 示, 若第五频带 205的总带宽为 10MHz, 则将第四子频带 205b的带宽设置 为 5MHz。 同理, 为了将第三频带 203上的 TDD用户终端发射信号对第一频 带 201上的 FDD用户终端接收信号所产生的千扰控制在可接受范围内, 本 发明实施例中, 将微小区无线接入点的接收通道设置在第二子频带 203b 上 (即第一子频带 203a设置在第二子频带 203b与第一频带 201之间, 釆用第 一子频带 203a作为第二子频带 203b与第一频带 201之间的保护带);如图 8 所示, 若第三频带 203的总带宽为 10MHz, 则将第二子频带 203b的带宽设 置为 5MHz。 较佳地, 为了抑制 TDD系统中位于第二子频带 203b的 TDD用户终端 向微小区无线接入点发射的上行信号对 FDD 系统中位于第一频带 201 的 FDD用户终端接收下行信号所产生的千 4尤, 本发明实施例中, 将啟小区无线 接入点的接收通道设置在第二子频带 203b上(即第一子频带 203a位于第二 子频带 203b与 FDD系统的第一频带 201之间, 该第一子频带 203a为第二 子频带 203b与 FDD系统的第一频带 201之间的保护带, 如图 9所示;)。 需要说明的是, 通过釆用本发明技术方案可以实现在第五频带接收信号 的理由, 可通过具体实例来说明, 实例如下: 本发明实施例中, 在第四频带 204与第五频带 205之间的千 4尤主要为第四频带 204上的 FDD终端向 FDD 系统无线接入点发射信号对第五频带 205上的 TDD终端接收无线接入点发 射的信号的千 4尤。 如图 7所示, 工作在第四频带 204上的 FDD终端 701向 FDD系统的无线接入点发送上行信号时,其带外泄露信号 703可能被当前处 于接收状态的 TDD终端 702接收; 由于第四子频带 205b与第四频带 204由 第三子频带 205a隔开, 一般情况下, 第三子频带 205a的大小约为 5MHz, 由于 ACLR( Adjacent Channel Leakage Ratio,相邻频道泄漏比)的限制, FDD 终端对 TDD终端的泄露信号 703的功率氏于 FDD终端的发射功率 40dB以 上, 又因为微小区无线接入点的发射功率大于或等于 FDD终端的发射功率, ^啟小区无线接入点至 TDD终端 702的路径损耗与 FDD终端 701至 TDD终 端 702的路径损耗相当, 因此, 即使微小区无线接入点至 TDD终端 702的 路径损耗比 FDD终端 701至 TDD终端 702的路径损耗大 30dB , 在 ^啟小区 无线接入点与 FDD终端 701 同功率发射的情况下, TDD终端从^啟小区无线 接入点接收到的功率比 FDD终端 701泄漏到 TDD终端 702的功率高 10dB , 因此, 釆用本发明技术方案可以保证 TDD 终端在第五频带上进行信号的正 常接收。 本发明实施例中提供的载波合并的方式可以应用于 TDD 系统, 还可以 应用于 FDD系统与 TDD系统组成的十办同系统中。 本发明实施例中, 一方面, 在 TDD系统中, 由于 TDD系统的无线接入 点在向用户终端发送下行信号时, 釆用 TDD 系统中的双向通信频谱以及 TDD系统与 FDD系统之间的保护带同时向用户终端发送下行信号, 从而提 高保护带的频谱利用率与提高下行信号的传输速率; 另一方面, 用户终端也 可釆用 TDD系统中的双向通信频 i普以及 TDD系统与 FDD系统之间的保护 带同时向无线接入点发送上行信号, 从而进一步提高了保护带的频谱利用率 与提高上行信号的传输速率; 再一方面, 针对宏小区无线接入点与微小区无 线接入点, 将保护带与不同的频带进行载波合并来实现与用户终端之间的通 信, 因此, 釆用本发明技术方案提高了无线接入点与用户终端之间进行通信 的灵活性, 也提高了使用 TDD系统与 FDD系统之间的保护带的灵活性。 基于上述宏小区无线接入点与微小区无线接入点使用 TDD系统与 FDD 系统之间的保护带的方式, 本发明实施例还提供一种在宏小区与微小区间动 态分配频谱资源的方法, 该方法应用于 TDD 系统中的微小区无线接入点与 宏小区无线接入点之间共享单边保护带的频谱动态分配。 本发明实施例中, 宏小区无线接入点如何釆用 TDD系统与 FDD系统之 间的保护带来实现与用户终端之间的通信可釆用实施例一中的方式; 微小区 无线接入点如何釆用 TDD系统与 FDD系统之间的保护带来实现与用户终端 之间的通信可釆用实施例二中的提供的方式, 在此不再赞述。 本发明实施例中, 宏小区无线接入点与微小区无线接入点所使用的无线 帧在时隙分配上保持严格的同步, 并且, 宏小区无线接入点在第三频带 203、 在第二频带 202上的时分双工无线帧的下行时隙配置与 ^啟小区无线节点在第 二子频带 203b上的无线帧的下行时隙的配置严格一致。 在本实施例中, 工作在第二子频带 203b 上的微小区无线节点是室内分 布的基站, 宏小区无线节点为室外分布的基站, 由于微小区无线接入点与宏 小区无线接入点之间为异站部署, 因此, 微小区无线接入点与宏小区无线接 入点之间存在很强的空间隔离。 若微小区无线接入点与宏小区无线接入点之 间的空间隔离大于 40dB , 则微小区无线接入点的返程通道 (B ACKHAULL) 可釆用 XDSL ( Digital Subscriber Line, 数字用户线路 )或者 XPON ( Passive Optical Network, 无源光网络) 方式实现。 本发明实施例中, 实现宏小区无线接入点釆用的时分双工无线帧的下行 时隙配置与啟小区无线接入点釆用的无线帧的下行时隙的同步, 可通过如下 方式之一或者组合来实现: 方式一、通过 XDSL或者 XPON上的符合 IEEE 1588标准的同步信号来 实现; 方式二、 通过接收宏小区无线接入点在第二频带 202或者第三频带 203 上发送的同步信号来实现。 本实施例中,微'〗、区无线接入点与宏小区无线接入点共享第三频带 203 , 并实现对微小区无线接入点与宏小区无线接入点之间的频谱进行动态的分 配, 可通过图 10来说明。 工作在第二频带 202上的宏小区无线节点所釆用的时分双工无线帧 901 为符合 LTE TDD规范的无线帧结构; 工作在第三频带 203上的宏小区无线 节点所釆用的无线帧 902a为只有下行时隙的无限帧结构, 该无线帧 902a可 以为 FDD的下行无线帧结构, 也可以是作为下行时隙使用的 LTE TDD无线 帧结构。 工作在第二子频带 203b上的啟小区无线接入点所釆用的无线帧 902a为 只有下行时隙的无线帧结构, 该无线帧 902a与无线帧 901严格同步, 并且 该无线帧结构 902a中下行时隙的配置与第二子频带 203b上的无线帧中下行 时隙的配置相同。 工作在第二子频带 203b上的微小区无线接入点所釆用的无线帧 902b , 为符合 LTE TDD规范的无线帧结构, 该无线帧结构中包含有宏小区无线接 入点与微小区无线接入点可以共享的下行时隙, 可根据宏小区无线接入点与 微小区无线接入点的下行业务量, 动态的按照不同的比例将该可共享的下行 时隙分配给宏小区无线接入点与微小区无线接入点。 如图 10 所示, 无线帧 中的 TS8〜TS 19 为宏小区无线接入点与微小区无线接入点可共享的下行时 隙, 其中 TS8〜TS 13分配给宏小区无线接入点发送下行信号, TS 13〜TS 19分 配给微小区无线接入点发送下行信号; 可根据宏小区无线接入点与为小区无 线接入点的下行业务量的变化情况来动态调整各自所占下行时隙的数量,如, 当宏小区无线接入点的下行业务量较大时, 可将时隙 TS8〜TS 17分配给宏小 区无线接入点发送下行时隙,将时隙 TS 18〜TS 19分配给微小区无线接入点发 送下行信号。 本发明实施例中, 在 TDD 系统中, 针对宏小区无线接入点与微小区无 线接入点共享 TDD系统与 FDD系统之间保护频带时, 在同一无线帧结构分 配中有宏小区无线接入点与微小区共享的下行时隙, 并且可根据宏小区无线 接入点与微小区无线接入点的下行业务变化情况动态调整各自所占的下行时 隙的数量, 从而更有效的利用频谱资源, 提高了频谱利用率, 改善网络性能。 较佳地, 本发明实施例中, 宏小区无线接入点在保护频带上即可以釆用 单载波也可以多载波向用户终端发送下行信号。 如, 宏小区无线接入点在第 二子频带 203b 或第一子载波 203a 上釆用一个载波向用户终端发送下行信 号, 或者, 宏小区无线接入点在第一子载波 203a与第二子频带 203b上釆用 一个载波向用户终端发送下行信号; 宏小区无线接入点在第二子频带 203b 与第一子频带 203a 上分别使用一个载波向用户终端发送下行信号。 同理, 宏小区无线接入点还可通过单载波或多载波接收用户终端发送的上行信号, 如, 宏小区无线接入点接收用户终端在第二子频带 203b或第一子载波 203a 上釆用一个载波发送的上行信号, 或者, 宏小区无线接入点接收用户终端在 第一子载波 203a与第二子频带 203b上釆用一个载波发送的上行信号; 宏小 区无线接入点接收用户终端在第二子频带 203b与第一子频带 203a上分别使 用一个载波发送的上行信号。 釆用本发明技术方案, 一方面, 在 TDD系统中在 TDD系统与 FDD系 统之间的保护频带与 TDD 系统频带上引入上、 下行非对称频谱聚合, 从而 提高了利用 TDD系统中在 TDD系统与 FDD系统之间的保护频带的灵活性; 另一方面, 对于啟小区无线接入点, 通过在位于 TDD系统和 FDD系统之间 的保护带上引入上下行非对称频谱聚合, 实现了微小区无线接入点在保护带 上进行双向通信, 并抑制了在保护带上进行双向通信的 TDD 用户终端与邻 近频带上的 FDD 终端之间收发信号存在的相互千扰; 再一方面, 通过微小 区无线接入点与宏小区无线接入点 (该宏小区无线接入点为 TDD 系统中的 接入点) 在频谱使用上的灵活配置, 并提高了使用保护频带的灵活性与有效 性。 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书
1. 一种载波聚合的方法, 其特征在于, 应用于时分双工 TDD系统, 或时分 双工 TDD系统与频分双工 FDD系统组成的协同系统, 包括:
在第一时间区, 无线接入点釆用 TDD系统与 FDD系统之间的第一 保护频带以及 TDD系统的双向通信频带向用户终端发送下行信号; 或 /和,
在第二时间区,所述无线接入点接收所述用户终端釆用 TDD系统与 FDD系统之间的第二保护频带以及所述双向通信频带发送的上行信号。
2. 如权利要求 1所述的方法, 其特征在于, 所述第一保护频带与所述双向 通信频带之间为 TDD系统许可频带上的相邻或非相邻频带; 或 /和, 所述第二保护频带与所述双向通信频带之间为 TDD 系统许可频带 上的相邻或非相邻频带。
3. 如权利要求 1所述的方法,其特征在于 ,所述第一保护频带位于所述 FDD 系统的下行频带与所述双向通信频带之间;
所述第二保护频带位于所述 FDD 系统的上行频带与所述双向通信 频带之间。
4. 如权利要求 3所述的方法, 其特征在于, 在所述第一保护频带上靠近所 述 FDD系统的下行频带一侧进一步留出第一隔离带;
在所述第二保护频带上靠近所述 FDD 系统的上行频带一侧进一步 留出第二隔离带。
5. 如权利要求 1所述的方法, 其特征在于, 所述无线接入点为啟小区无线 接入点;
所述第一保护带包括用于单向通信的第一子频带与用于双向通信的 第二子频带; 所述无线接入点向所述用户终端发送下行信号的步骤包括: 所述无线接入点釆用所述第一单边保护频带的第一子频带或 /和第 二子频带, 以及所述双向通信频带向所述用户终端发送下行信号。
6. 如权利要求 5所述的方法, 其特征在于, 在所述无线接入点向所述用户 终端发送下行信号之后, 还包括:
在第二时间区, 所述无线接入点接收所述用户终端釆用第一保护频 带的第二子频带或 /和所述双向通信频带发送的第二上行信号。
7. 如权利要求 5或 6所述的方法, 其特征在于, 所述第二子频带位于所述 第一子频带与所述双向通信频带之间。
8. 如权利要求 1所述的方法, 其特征在于, 所述无线接入点为啟小区无线 接入点;
所述第二保护带包括用于单向通信的第三子频带与用于双向通信的 第四子频带; 所述无线接入点接收所述用户终端发送的上行信号的步骤包括: 所述无线接入点接收所述用户终端釆用所述第二单边保护频带的第 三子频带或 /和第四子频带, 以及所述双向通信频带向所述啟小区无线接 入点发送上行信号。
9. 如权利要求 8所述的方法, 其特征在于, 在所述无线接入点接收所述用 户终端发送上行信号之前, 还包括:
在第一时间区, 所述无线接入点釆用第二保护频带的第四子频带或 / 和所述双向通信频带向用户终端发送的第二下行信号。
10. 如权利要求 8或 9所述的方法, 其特征在于, 所述第四子频带位于所述 第三子频带与所述双向通信频带之间。
11. 一种实现频谱动态分配的方法, 其特征在于, 应用于时分双工 TDD系统 中的微小区无线接入点与宏小区无线接入点之间共享单边保护带的频谱 动态分配, 包括:
在第一时间区, 所述宏小区接入点釆用 TDD 系统与频分双工 FDD 系统之间的第一保护频带以及 TDD 系统的双向通信频带向用户终端发 送第一下行信号;
在第二时间区, 所述微小区接入点釆用 TDD系统与 FDD系统之间 的第一保护频带以及 TDD 系统的双向通信频带向用户终端发送第二下 行信号; 或者,
在第三时间区, 所述宏小区无线接入点接收所述用户终端釆用 TDD 系统与 FDD 系统之间的第二保护频带以及所述双向通信频带发送的第 一上行信号;
在第四时间区, 所述啟小区无线接入点接收所述用户终端釆用 TDD 系统与 FDD 系统之间的第二保护频带以及所述双向通信频带发送的第 二上行信号;
所述第一时间区与第二时间区分别由同一无线帧中的不同的下行时 隙构成的时间区;
所述第三时间区与第四时间区分别由所述无线帧的不同上行时隙构 成的时间区;
根据所述宏小区接入点与所述微小区接入点的下行业务量, 调整构 成各自的时间区的下行时隙的数量以及调整构成各自的时间区的上行时 隙的数量。
12. 如权利要求 11所述的方法, 其特征在于, 所述第一保护频带包括用于单 向通信的第一子频带与用于双向通信的第二子频带;
在第一时间区, 所述宏小区无线接入点釆用第一保护频带向用户终 端发送第一下行信号的步骤包括:
所述宏小区无线接入点釆用一个下行载波在所述第二子频带或 /和 第一子频带上向所述用户终端发送第一下行信号;
或者, 所述宏小区无线接入点釆用两个下行载波向所述用户终端发 送第一下行信号, 所述两个下行载波的中一个下行载波通过所述第二子 频带发送, 另一个下行载波通过所述第一子频带发送。
13. 如权利要求 11或 12所述的方法, 其特征在于, 所述第二下行信号为以 下信号中的一种或多种: 所述宏小区无线接入点的小区广播信号、 多媒 体广播信号、 小区同步信号以及业务数据。
PCT/CN2010/073889 2009-12-31 2010-06-12 一种载波聚合方法与频谱动态分配的方法 WO2011079579A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10840369.2A EP2521390B1 (en) 2009-12-31 2010-06-12 Method for carrier aggregation and method for dynamic spectrum allocation
JP2012546320A JP5616460B2 (ja) 2009-12-31 2010-06-12 キャリアアグリゲーション方法及び動的なスペクトル割り当ての方法
BR112012011671A BR112012011671A2 (pt) 2009-12-31 2010-06-12 método para agregação de transportador e método para implementar uma alocação de espectro dinâmica.
AU2010338918A AU2010338918B2 (en) 2009-12-31 2010-06-12 Method for carrier aggregation and method for dynamic spectrum allocation
US13/509,579 US20120250591A1 (en) 2009-12-31 2010-06-12 Method for carrier aggregation and method for dynamic spectrum allocation
ES10840369.2T ES2624958T3 (es) 2009-12-31 2010-06-12 Método para agregación de portadoras y método para asignación dinámica de espectro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910260737.6A CN102118756B (zh) 2009-12-31 2009-12-31 一种载波聚合方法与频谱动态分配的方法
CN200910260737.6 2009-12-31

Publications (1)

Publication Number Publication Date
WO2011079579A1 true WO2011079579A1 (zh) 2011-07-07

Family

ID=44217314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073889 WO2011079579A1 (zh) 2009-12-31 2010-06-12 一种载波聚合方法与频谱动态分配的方法

Country Status (8)

Country Link
US (1) US20120250591A1 (zh)
EP (1) EP2521390B1 (zh)
JP (1) JP5616460B2 (zh)
CN (1) CN102118756B (zh)
AU (1) AU2010338918B2 (zh)
BR (1) BR112012011671A2 (zh)
ES (1) ES2624958T3 (zh)
WO (1) WO2011079579A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729304B2 (en) 2012-09-27 2017-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for radio communication configuration

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222204B (zh) * 2010-11-17 2016-11-02 诺基亚技术有限公司 用于降低通信系统中频分双工信号和时分双工信号之间的干扰的装置和方法
CN103002454B (zh) * 2011-09-15 2016-04-13 华为技术有限公司 频谱聚合方法和设备
CN103096326B (zh) * 2011-11-04 2018-05-01 中兴通讯股份有限公司 一种抑制带外泄漏干扰的信道配置方法及系统
US9491738B2 (en) 2012-02-03 2016-11-08 Qualcomm Incorporated Managing downlink and uplink resources for low cost user equipments
CN103326806B (zh) * 2012-03-19 2016-08-03 电信科学技术研究院 一种下行控制信令的传输方法及装置
US9300395B2 (en) * 2012-07-05 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for carrier aggregation
CN102905270B (zh) * 2012-10-24 2015-03-18 中国联合网络通信集团有限公司 频分双工系统的通信方法、装置和基站
CN103857042B (zh) * 2012-12-04 2017-08-25 成都鼎桥通信技术有限公司 一种在对称频谱上传输tdd帧的方法
CN103974407B (zh) * 2013-02-01 2018-03-23 中国移动通信集团公司 一种精同步跟踪参考符号的映射方法、系统和装置
CN103650580B (zh) 2013-07-10 2018-05-22 华为技术有限公司 通信方法及其装置
WO2015027520A1 (zh) * 2013-09-02 2015-03-05 华为技术有限公司 载波聚合方法、设备及系统
GB201316165D0 (en) * 2013-09-11 2013-10-23 Neul Ltd Communication bandwidth
CN104468064B (zh) * 2013-09-17 2017-12-22 中国移动通信集团公司 一种小区的实现方法、系统和设备
KR102318726B1 (ko) 2014-06-11 2021-10-28 스카이워크스 솔루션즈, 인코포레이티드 무선 애플리케이션들을 위한 시분할 및 주파수-분할 듀플렉스 프로토콜들에 관련된 시스템들 및 방법들
US9854527B2 (en) * 2014-08-28 2017-12-26 Apple Inc. User equipment transmit duty cycle control
US20160219584A1 (en) * 2015-01-22 2016-07-28 Texas Instruments Incorporated High performance nlos wireless backhaul frame structure
US10333752B2 (en) * 2015-03-13 2019-06-25 Qualcomm Incorporated Guard-band for scaled numerology multiplexing
US9949220B2 (en) * 2015-03-27 2018-04-17 Qualcomm Incorporated Uplink scheduling with power control command in an FDD half-duplex network
US9848420B2 (en) * 2015-04-01 2017-12-19 GM Global Technology Operations LLC Method and apparatus of dynamic Wi-Fi multi-channel switch based on data traffic context
EP3293813B1 (en) * 2015-05-07 2020-07-08 China United Network Communications Group Company Limited Method and device for combining minimum isolation bandwidths
US9596608B2 (en) * 2015-06-29 2017-03-14 T-Mobile Usa, Inc. Cellular communications spectrum management
CN106452698B (zh) * 2015-08-06 2019-04-12 中国电信股份有限公司 用于提升上行速率的方法、装置和系统
CN107277817A (zh) * 2016-04-08 2017-10-20 中兴通讯股份有限公司 一种保护频带使用方法及无线电装置
CN105828335B (zh) * 2016-05-09 2020-03-03 中国联合网络通信集团有限公司 一种频谱共享的方法及装置
CN106211177B (zh) * 2016-06-30 2019-09-03 北京邮电大学 一种基于动态tdd配置的时频资源分配方法
JP6977763B2 (ja) * 2017-02-15 2021-12-08 富士通株式会社 基地局、端末、および無線通信方法
EP3713121B1 (en) * 2019-03-20 2023-08-23 Vodafone IP Licensing Limited Multiple radio access technologies interference reduction
US11516800B2 (en) * 2020-04-02 2022-11-29 Qualcomm Incorporated Bandwidth part (BWP) configuration for full duplex

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965513A (zh) * 2004-05-01 2007-05-16 桥扬科技有限公司 用于以时分双工进行通信的方法和装置
US20070286156A1 (en) * 2006-06-06 2007-12-13 Sr Telecom Inc Utilizing guard band between FDD and TDD wireless systems
US20090059820A1 (en) * 2007-08-31 2009-03-05 Samsung Electronics Co. Ltd. System and method for using frequency and time resources in a communication system
CN101730112A (zh) * 2008-11-03 2010-06-09 大唐移动通信设备有限公司 一种频段相邻时的信号发送方法和装置
CN101729125A (zh) * 2008-10-31 2010-06-09 大唐移动通信设备有限公司 一种信号发送方法和装置
CN101778392A (zh) * 2009-01-08 2010-07-14 中国移动通信集团公司 一种保护频带的使用方法及设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650630B1 (en) * 1999-06-25 2003-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Resource management and traffic control in time-division-duplex communication systems
US7027424B1 (en) * 2000-05-24 2006-04-11 Vtech Communications, Ltd. Method for avoiding interference in a digital communication system
US7151755B2 (en) * 2002-08-23 2006-12-19 Navini Networks, Inc. Method and system for multi-cell interference reduction in a wireless communication system
FI20055161A0 (fi) * 2005-04-08 2005-04-08 Nokia Corp Diversiteettivastaanotto samaan asennuspaikkaan sijoitetuille tukiasemille
US20080151788A1 (en) * 2006-12-22 2008-06-26 Gormley Eamonn F Converting a wireless system deployment from one duplexing scheme to another
JP5174046B2 (ja) * 2008-02-19 2013-04-03 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局装置、ユーザ装置及び方法
US8422469B2 (en) * 2008-08-29 2013-04-16 Ntt Docomo, Inc. Method for interference-minimizing resource block-size selection at a macrocell, a microcell and a femtocell
US8537724B2 (en) * 2009-03-17 2013-09-17 Motorola Mobility Llc Relay operation in a wireless communication system
KR101731333B1 (ko) * 2009-03-25 2017-04-28 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
US8755298B2 (en) * 2009-07-06 2014-06-17 Lg Electronics Inc. Method and apparatus for random access in a wireless communication system
US8743749B2 (en) * 2009-07-27 2014-06-03 Qualcomm Incorporated Method and apparatus for managing flexible usage of unpaired frequencies
US8792411B2 (en) * 2009-07-29 2014-07-29 Lg Electronics Inc. Method and apparatus for transmitting control signal of relay station in wireless communication system
KR101787097B1 (ko) * 2009-11-18 2017-10-19 엘지전자 주식회사 무선 통신 시스템에서 harq 수행 방법 및 장치
KR101777416B1 (ko) * 2009-11-26 2017-09-27 엘지전자 주식회사 반송파 집성 시스템에서 단말의 통신 방법 및 단말

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965513A (zh) * 2004-05-01 2007-05-16 桥扬科技有限公司 用于以时分双工进行通信的方法和装置
US20070286156A1 (en) * 2006-06-06 2007-12-13 Sr Telecom Inc Utilizing guard band between FDD and TDD wireless systems
US20090059820A1 (en) * 2007-08-31 2009-03-05 Samsung Electronics Co. Ltd. System and method for using frequency and time resources in a communication system
CN101729125A (zh) * 2008-10-31 2010-06-09 大唐移动通信设备有限公司 一种信号发送方法和装置
CN101730112A (zh) * 2008-11-03 2010-06-09 大唐移动通信设备有限公司 一种频段相邻时的信号发送方法和装置
CN101778392A (zh) * 2009-01-08 2010-07-14 中国移动通信集团公司 一种保护频带的使用方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2521390A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729304B2 (en) 2012-09-27 2017-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for radio communication configuration

Also Published As

Publication number Publication date
CN102118756B (zh) 2014-07-16
EP2521390A1 (en) 2012-11-07
JP2013516802A (ja) 2013-05-13
AU2010338918B2 (en) 2014-03-06
BR112012011671A2 (pt) 2016-07-05
ES2624958T3 (es) 2017-07-18
JP5616460B2 (ja) 2014-10-29
CN102118756A (zh) 2011-07-06
US20120250591A1 (en) 2012-10-04
EP2521390B1 (en) 2017-03-15
EP2521390A4 (en) 2015-10-07
AU2010338918A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2011079579A1 (zh) 一种载波聚合方法与频谱动态分配的方法
US11882570B2 (en) Signal indication for flexible new radio (NR) long term evolution (LTE) coexistence
CN107408980B (zh) 用于具有滤波ofdm的自适应帧结构的系统和方法
TWI732140B (zh) 用於針對於雙rat通訊的分時多工的方法和裝置
KR20170142177A (ko) 이동 통신 시스템에서 스케줄링 요청을 송수신하는 방법 및 장치
WO2009070964A1 (fr) Procédé et appareil pour déterminer la structure d'une trame radio d'un système duplex à répartition dans le temps
WO2011079587A1 (zh) 一种双工通信方法、终端调度方法及系统
WO2010078835A1 (zh) 一种保护频带的使用方法及设备
EP3420772A1 (en) Flexible frame structure for ofdm systems
US10827493B2 (en) Device, network, and method for wideband long-term evolution (LTE) uplink transmission
WO2011079578A1 (zh) 一种无线中继装置及其与基站和终端通信的方法
KR20130127291A (ko) 기지국간 반송파 집적 기술을 사용하는 무선통신시스템에서 버퍼 상태 보고를 처리하는 방법 및 장치
CN115589596A (zh) 侧行通信的方法及装置
KR20150045684A (ko) 서빙셀별로 듀플렉스 방식을 달리하는 무선 통신 시스템에서 통신을 수행하는 장치 및 그 방법
WO2024045304A1 (zh) 用于侧行通信的方法及装置
WO2023011518A1 (zh) 一种通信方法及通信装置
WO2024055241A1 (zh) 通信方法、终端设备以及网络设备
WO2024065762A1 (zh) 无线通信的方法及终端设备
WO2023116809A1 (zh) 一种通信方法及装置
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
WO2024065420A1 (zh) 用于侧行通信的方法及终端设备
CN112583565B (zh) 用于具有滤波ofdm的自适应帧结构的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840369

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012546320

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010840369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010840369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010338918

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13509579

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010338918

Country of ref document: AU

Date of ref document: 20100612

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011671

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011671

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120516