WO2011079556A1 - 含铝-硅-锌-稀土-镁-铁-铜-锰-铬-锆的热浸镀合金及其制备方法 - Google Patents

含铝-硅-锌-稀土-镁-铁-铜-锰-铬-锆的热浸镀合金及其制备方法 Download PDF

Info

Publication number
WO2011079556A1
WO2011079556A1 PCT/CN2010/071487 CN2010071487W WO2011079556A1 WO 2011079556 A1 WO2011079556 A1 WO 2011079556A1 CN 2010071487 W CN2010071487 W CN 2010071487W WO 2011079556 A1 WO2011079556 A1 WO 2011079556A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
nano
zirconium
magnesium
hot dip
Prior art date
Application number
PCT/CN2010/071487
Other languages
English (en)
French (fr)
Inventor
冯立新
张敏燕
张平则
Original Assignee
江苏麟龙新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏麟龙新材料股份有限公司 filed Critical 江苏麟龙新材料股份有限公司
Priority to EP10840346.0A priority Critical patent/EP2520688B1/en
Priority to US13/127,230 priority patent/US8828314B2/en
Priority to JP2012538171A priority patent/JP5478730B2/ja
Publication of WO2011079556A1 publication Critical patent/WO2011079556A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Hot dip coating alloy containing aluminum-silicon-zinc-rare earth-magnesium-iron-copper-manganese-chromium-zirconium and preparation method thereof
  • the invention relates to a hot dip coating alloy containing aluminum-silicon-zinc-rare-magnesium-iron-copper-manganese-chromium-zirconium for surface coating of titanium alloy parts and a preparation method thereof.
  • Titanium alloys have become an important aerospace material because of their high strength and corrosion resistance.
  • the use of titanium alloys is important for reducing aircraft weight and improving aircraft performance.
  • the titanium alloy itself has good corrosion resistance.
  • it when it is in contact with aluminum alloy and alloy steel, it is prone to contact corrosion and failure due to the synergy between stress and the environment.
  • Contact corrosion is a kind of galvanic corrosion, that is, dissimilar metals are in contact with the same medium. Due to the difference in metal potential, the dissolution rate of the metal with lower potential is accelerated, causing local corrosion at the contact.
  • the fundamental measure for controlling contact corrosion is to properly select the coating material, properly perform surface modification and surface coating treatment, so that the potential of the dissimilar materials of the contact is close, thereby reducing or eliminating contact corrosion.
  • the object of the present invention is to provide a hot dip coating alloy for surface coating of titanium alloy parts, and the anti-contact corrosion coating prepared by using the hot dip coating alloy does not under the harsh environment and stress.
  • the peeling off and the resistance to contact with the candle are greatly improved, thereby completely solving the contact corrosion problem of the titanium alloy with the aluminum alloy and the steel material.
  • the invention provides a hot dip coating alloy for surface coating of titanium alloy parts, wherein the hot dip coating alloy is composed of aluminum, silicon, zinc, rare earth elements, magnesium, iron, copper, manganese, chromium, zirconium and nano-oxidation.
  • the composition of the particle reinforcing agent, the percentage of each component in the total mass is: silicon content: 8 ⁇ 24%, zinc content: 1.2 ⁇ 3.1%, rare earth element content: O.C2 ⁇ 0.5%, magnesium content: 0.5-3.2 %, iron content: 0.05-1%, copper content 0.05 ⁇ 0.5%, manganese content: 1.0-2.0%, chromium content: 0.5-2.0%, zirconium content: 0.02 ⁇ 0.5%, total content of nano-oxide particle enhancer : 1-2%, balance aluminum and unavoidable impurities, the nano oxide particles are selected from a reinforcing agent ⁇ 0 2, Ce0 2 in one or two.
  • the specific surface ⁇ 0 2, Ce0 2 in one or two.
  • D represents the average particle size
  • the preferred surface area of the nano-oxide reinforcing agent of the present invention is larger than the calculated value of the above formula. :
  • the Ti0 2 has an average particle diameter of 15 to 60 nm.
  • the specific surface area of the ⁇ 0 0 2 is 20 to 90 m 2 /g.
  • the average particle diameter of the Ce0 2 is 25 to 70 ⁇ .
  • the specific surface area of the Ce0 2 is 10 to 80 m 2 /g.
  • the enhancer is a nano-oxide particles 2 and Ti0 and when CeO 2, ⁇ 0 2 and CeO 2 mass ratio of 1: (1-3) "is more preferred, 2 and Ti0 and Ce (3 ⁇ 4 mass ratio of 1: 2 .
  • each component comprises a total mass percentage: silicon content: 12-20%, zinc content: 1.5-2.5%, rare earth element content: 0.1-0.3%, magnesium content: 1-2.5%, iron content: 0.2 -0.8%, copper content 0.2 ⁇ 0.4%, manganese content: 1.5-2.0%, chromium content: 0.8 ⁇ 2.0%, zirconium content: 0.1 ⁇ 0.4%, total content of nano-oxide particle reinforcing agent: 1.2 ⁇ 1.8%.
  • the present invention also provides a method for manufacturing the hot dip coating alloy, first in an atmosphere protection melting furnace, the aluminum silicon alloy is first heated to 750 ⁇ 800 ° C fully melted, and then heated to 845 ⁇ 855 ° C After adding rare earth elements, stir the rod evenly, then heat up to 860 ⁇ 880 °C, add zinc, cool down to 700 ⁇ 750 °C and then add nano-oxide particle enhancer and magnesium, iron, copper, manganese, chromium, Zirconium is obtained by mechanical and electromagnetic compound mixing, and then the temperature is lowered to 700 ⁇ 650 °C for 20 ⁇ 30 minutes.
  • the heating rate in the heating process is 10 to 40 ° C / min
  • the cooling rate in the cooling process is 20 to 60 ° C / min.
  • the aluminum-silicon coating used in the invention is an effective coating for preventing corrosion of titanium alloy, especially high temperature corrosion, wherein aluminum mainly provides corrosion performance and long-lasting corrosion resistance under the condition of temperature; and silicon can further improve wear resistance of the coating. Sexual and high temperature corrosion resistance.
  • the present invention refines the grain of the coating by adding a nano oxide particle reinforcing agent. , significantly improved its ambiguity, and its peers significantly improved the resistance to contact corrosion.
  • the coating's ability to resist atmospheric corrosion, electrochemical corrosion, and airflow erosion is significantly improved, and the strength and hardness of the coating are significantly improved to give the coating better erosion resistance.
  • the disturbing corrosion resistance of the coating can be more significantly improved.
  • the particle size of the nano-oxide particle reinforcing agent adopts the numerical range of the present invention, and the wear resistance of the coating layer can be greatly improved, and the specific surface area of the nano-oxide particle reinforcing agent adopts the numerical range of the present invention.
  • the degree of aggregation of the alloy can be greatly improved, thereby more significantly improving the anti-scourability of the alloy coating.
  • the further addition of zinc to the coating provides very good cathodic protection, while the rare earth further refines the crystal grains of the alloy and enhances the wear resistance and fluidity of the alloy.
  • microalloying elements such as magnesium, iron, copper, manganese, chromium, zirconium, etc.
  • the addition of these microalloying elements can further refine the grains and strengthen the strengthening phase in the coating, also from the alloy It has a solid solution effect and further improves the toughness and stability of the coating, and further improves the toughness and corrosion resistance of the coating.
  • magnesium can also improve the affinity of the coating, corrosion resistance and room temperature strength of the alloy, while iron can also improve the anti-oxidation effect. Copper can also improve the hardness and flexural strength.
  • Manganese can further improve the surface quality of the coating.
  • Chromium can also improve the protection of the initial oxide film.
  • Zirconium can also refine the grain structure and improve the mechanical properties and corrosion resistance of the coating.
  • the present invention also provides a method for adding hot dip alloying elements by using multiple temperature sections.
  • the nano oxide particle reinforcing agent and various elements can be dispersed with the increase of temperature. Properties, thereby improving the uniformity of the coating composition and significantly increasing the bonding strength of the coating to the substrate.
  • the invention adopts a part of the temperature section to add a part of the hot dip coating alloy element, and then reduces the temperature to a certain temperature, then adds the nano oxide particle reinforcing agent, and finally cools and keeps the temperature for a certain time, thus overcoming the above defects.
  • a coating with uniform composition and good toughness was obtained.
  • the invention improves the alloy and its smelting process, and can form a coating with good corrosion resistance and wear resistance on the surface of the titanium alloy and metallurgical bonding with the substrate.
  • the coating potential is close to that of aluminum alloy and other materials, which can prevent contact corrosion of titanium alloy parts and aerospace materials such as aluminum alloys and high-temperature alloys. ⁇
  • the anti-contact corrosion coating prepared by using the hot dip coating alloy does not peel off even under the harsh environment and stress, and the performance against contact corrosion is greatly improved, thereby completely solving the problem.
  • the contact corrosion of titanium alloys with aluminum alloys and steel materials is of great significance for further expanding the application of titanium alloys in the aerospace industry and promoting the improvement of aircraft performance.
  • the hot dip coating alloy for the surface coating of titanium alloy parts of the present invention wherein the hot dip coating alloy is made of aluminum, silicon, zinc, rare earth elements, magnesium, iron, copper, manganese, chromium, zirconium and nano oxides.
  • the composition of the particle enhancer, the percentage of each component in the total mass is: silicon content: 8 ⁇ 24%, zinc content: 1.2 ⁇ 3.1%, rare earth element content: 0.02-0.5%, magnesium content: 0.5-3.2%, iron Content: 0.05-1%, copper content 0.05 ⁇ 0.5%, manganese content: 1.0-2.0%, chromium content: 0.5-2.0%, zirconium content: 0.02 ⁇ 0.5%, total content of nano-oxide particle enhancer: 1 ⁇ 2 %, the balance is aluminum and unavoidable impurities, the nano oxide particle reinforcing agent is selected from one or two of Ti0 2 and Ce0 2 , wherein the impurities which are impossible to avoid are usually Pb, Sn, Cd Impurity elements that cannot be completely removed
  • the performance of the coating can be more significantly improved, if the nano-oxide particles used are uniform spheres.
  • the specific surface area and average particle size of the sphere satisfy the following relationship:
  • D represents the average particle size
  • the preferred surface area of the preferred nano-oxide particles of the present invention is larger than the calculated value of this formula.
  • the Ti0 2 has an average particle diameter of 15 to 60 nm.
  • the specific surface area of the Ti0 2 is 20 to 90 m 2 /g.
  • the nano-oxide particles are used (3 ⁇ 40 2 , the CeO 2 has an average particle diameter of 25 to 70 ⁇ .
  • the specific surface area of the Ce0 2 is 10 to 80 m 2 /g.
  • the core content is By adding a certain amount of nano-oxide particle reinforcing agent, it is possible to refine the grain of the coating, improve its toughness, improve its resistance to contact corrosion, and overcome the adverse effects caused by excessive silicon content.
  • the appropriate particle size and suitable specific surface area it is only to make this technology more prominent and superior, therefore, although both of the following Tables 1-3 are listed at the same time.
  • the parameters, but only the more preferred conditions, are intended to give a more detailed description of the technical information of the present invention, and are not described as essential to the present invention.
  • the hot dip coating alloy is composed of aluminum, silicon, zinc, magnesium, iron, copper, manganese, chromium, zirconium, rare earth elements and 13 ⁇ 43 ⁇ 4 nanometer oxide particle reinforcing agent, and the percentage of each component in the total mass is: silicon content : 8-24% , Zinc content: 1.2-3.1 % , Rare earth element content: 0.02-0.5 %, Magnesium content: 0.5-3.2%, Iron content: 0.05-1%, Copper content 0.05-0.5%, Manganese content: 1.0-2.0%, complex content: 0.5-2.0%, zirconium content: 0.02-0.5%, ⁇ 0 2 content: 1 ⁇ 2%, balance is aluminum, see Table 1 below for details:
  • the hot dip coating alloy is composed of aluminum, silicon, zinc, magnesium, iron, copper, manganese, chromium, zirconium, rare earth elements and CeO ft rice oxide particle reinforcing agent, and the percentage of each component in the total mass is: silicon Content: 8-24%, Zinc content: 1.2-3.1%, Rare earth element content: 0.02-0.5%, Magnesium content: 0.5-3.2%, Iron content: 0.05-1%, Copper content 0.05-0.5%, Manganese content : 1.0 ⁇ 2.0%, Chromium content: 0.5 ⁇ 2.0%, Zirconium content: 0.02 ⁇ 0.5%, Ce0 2 content: 1 ⁇ 2%, balance is aluminum, see Table 2 below for details:
  • the hot dip coating alloy is composed of aluminum, silicon, zinc, magnesium, iron, copper, manganese, chromium, zirconium, rare earth elements and nano oxide particle reinforcing agents, wherein the nano oxide particles are Ti0 2 and Ce0 2 , and The ratio of ⁇ 3 ⁇ 4 and Ce0 2 is 1: (1 ⁇ 3), the percentage of each component in total mass is: silicon content: S ⁇ 24%, zinc content: 1.2 ⁇ 3.1%, content of rare earth elements: 0.02-0.5 %, Magnesium content: 0.5-3.2%, Iron content: 0.05-1%, Copper content 0.05 ⁇ 0.53 ⁇ 4, Manganese content: 1.0-2.0%, Chromium content: 0.5-2.0%, Zirconium content: 0.02-0.5%, Ti0 2 and Ce0 2 total content: 1 ⁇ 2%, the balance is aluminum, see Table 3 below for details:
  • each component comprises a total mass percentage: silicon content: 12-20%, zinc content: 1.5 ⁇ 2.5%, rare earth element content: 0.1 ⁇ 0.3%, magnesium content: 1 -2.5%, iron content: 0.2 ⁇ 0.8%, copper content 0.2 ⁇ 0.4%, manganese content: 1.5 ⁇ 2.0%, chromium content: 0.8 ⁇ 2.0%, zirconium content: 0.1 ⁇ 0.4%, nano-oxide particle enhancer Total content: 1 ⁇ 2 ⁇ 1 ⁇ 8%
  • the silicon content is preferably 15 20%, more preferably 19%.
  • the bulk density of the nano-oxide particle reinforcing agent used in the present invention can be appropriately selected, the properties and effects of the finally obtained coating layer are more desirable. If Ti0 2 is used, it is preferred that the bulk density of the Ti0 2 does not exceed 3 g/cm 3 .
  • Ce0 2 is used, wherein the Ce0 2 has a bulk density of no more than 5 g/cm 3 .
  • Ti0 2 and Ce0 2 are used at the same time, it is preferred that the Ti0 2 and . 6 (3 ⁇ 4 average loose density is 0.6 ⁇ 4.5 g/cm.
  • the present invention also provides a method for manufacturing the hot dip coating alloy according to the quality of aluminum, silicon, zinc, rare earth elements, magnesium, iron, copper, manganese, chromium, zirconium and nano oxide particle reinforcing agents.
  • Percentage preparation first in the atmosphere protection melting furnace, the aluminum-silicon alloy is first heated to 750 ⁇ 800 ⁇ fully melted, and then heated to 845 ⁇ 855 ° C, then add rare earth elements, stir evenly, and then heat to 860 ⁇ 880 ° C after heating
  • the aluminum silicon alloy is first heated in the atmosphere protection melting furnace.
  • the atmosphere protection melting furnace To 780 ⁇ 80 (TC fully melted, and then heated to 850 ⁇ 855, add rare earth elements, stir evenly, then heat up to 870 ⁇ 880 ⁇ , add zinc, cool down to 730 ⁇ 700 ⁇ and then add nano-oxide particle enhancer and Magnesium, iron, copper, manganese, chromium, zirconium, evenly stirred by mechanical and electromagnetic compound, and then the temperature is reduced to 68Q ⁇ 65 (TC is kept for 20-25 minutes).
  • the temperature is lowered to 720-700 ° C and then the nano-oxide particle reinforcing agent and magnesium, iron, copper, manganese, chromium, and zirconium are simultaneously added; and finally the temperature is lowered to 690-660 ⁇ for 22 to 28 minutes.
  • the temperature is lowered to 710 ° C and the nano oxide particle reinforcing agent and magnesium, iron, copper, manganese, chromium, zirconium are simultaneously added; finally, the temperature is lowered to 680 ° C for 25 minutes.
  • the heating rate during the heating is 10 to 40 ° C / min
  • the cooling rate during the cooling is 20 to 60 ° C / min.
  • the heating rate during the heating is 20 to 30 ° C / min
  • the cooling rate during the cooling is 30 to 50 ° C / min.
  • TA6 parts after treatment, using the hot dip coating alloy of the present invention as a plating material to form a 200 thick coating, in contact with GH30 parts, with reference to aviation standard HB5374, standard galvanic corrosion test in 3% NaCl solution, average The galvanic current density is 0.27, the Class A corrosion resistance standard is reached, and no cracks appear in the coating.
  • the invention can form a coating with good corrosion resistance, wear resistance and metallurgical bonding on the surface of the titanium alloy through the improvement of the plating material and the plating process. Any adaptations made on the basis of the present invention are within the scope of the present invention without departing from the spirit of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Conductive Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

i兑明书 含铝-硅-锌 -稀土 -镁-铁-铜 -锰-铬-锆的热浸镀合金及其制备方法
本发明涉及一种钛合金零部件表面涂层用的含铝 -硅-锌-稀土-镁 -铁-铜-锰 -铬-锆的热 浸镀合金及其制备方法。
钛合金具有强度高, 耐蚀性强等优点而成为重要的航空材料。 钛合金的使用, 对减轻飞 机重量, 提升飞机性能具有重要意义。 然而, 钛合金自身虽具有良好的耐腐蚀性能。 但当其 与铝合金及合金钢接触时, 在应力与环境协同作用下, 则易于发生接触腐蚀而导致失效。
接触腐蚀是一种电偶腐蚀, 即异种金属在同一种介质中接触, 由于金属电位不同使电位 较低的金属溶解速度加快, 造成接触处的局部腐蚀。 控制接触腐蚀根本措施是通过合理的选 择涂层材料, 适当地进行表面改性与表面涂镀层处理, 使接触件异种材料的电位接近, 从而 降低或消除接触腐蚀。
然而, 国内外防止钛合金接触腐蚀虽然取得一定的成果, 但目前的手段均存在一定的问 题, 主要是采用的涂镀层在环境、 应力协同作用下, 很容易失去防护效果, 钛合金表面的常 规镀覆涂层在接触载荷作用下极易剥落, 很容易失去防腐作用, 剥落的碎片使接触零件之间 形成磨粒磨损, 加剧了零件的失效, 因此飞机中大量的钛合金紧固件, 迫切需要解决接触腐 蚀导致的失效问题。
发明内容
本发明的目的在于提供一种钛合金零部件表面涂层用的热浸镀合金, 釆用该热浸镀合金 制备的抗接触腐蚀涂层即使在恶劣的环境和应力的作用下, 也不会剥落, 并且抗接触腐烛的 性能也大大得以提高, 从而彻底解决了钛合金与铝合金和钢铁材料的接触腐蚀问题。
本发明提供的专用于钛合金零部件表面涂层的热浸镀合金, 其中所述热浸镀合金由铝、 硅、 锌、 稀土元素、 镁、 铁、 铜、 锰、 铬、 锆和纳米氧化物颗粒增强剂组成, 各组成成份占 总质量的百分比为: 硅含量: 8~24%, 锌含量: 1.2~3.1 %, 稀土元素的含量: O.C2~0.5 %, 镁 含量: 0.5-3.2% , 铁含量: 0.05-1 % , 铜含量 0.05~0.5%, 锰含量: 1.0-2.0 % ,铬含量: 0.5-2.0 % , 锆含量: 0.02~0.5 %, 纳米氧化物颗粒增强剂的总含量: 1~2%, 余量为铝以及不可避免 的杂质, 所述纳米氧化物颗粒增强剂选自 Τί02、 Ce02中的一种或两种。 优选的, 如果采用的纳米氧化物增强剂颗粒是均匀的球体颗粒, 则球体比表面积和平均 粒径满足如下关系式:
比表面积
Figure imgf000003_0001
其中 D代表平均粒径;
代表密度。
如果釆用的纳米氧化物增强剂颗粒比一般的球体颗粒形状复杂一些, 涂层的性能、 效果 可以更加理想, 因此, 本发明进一步优选的纳米氧化物增强剂的比表面积要大于上述公式计 算值:
优选的, 纳米氧化物颗粒采用 Ti02时, 所述 Ti02的平均粒径为 15~60nm。
优选的, 纳米氧化物颗粒采用 Ti02时, 所述 Τι02的比表面积为 20~90m2/g。
优选的, 纳米氧化物颗粒采用 Ce02时, 所述 Ce02的平均粒径为 25~70ηηι。
优选的, 纳米氧化物颗粒采用 Ce02时, 所述 Ce02的比表面积为 10~80m2/g。
优选的, 纳米氧化物颗粒增强剂为 Ti02和 Ce02时, Ή02和 Ce02质量比为 1: (1~3)„ 更优选的, 其中 Ti02和 Ce(¾质量比为 1:2。
优选的, 各组成成份占总质量百分比为: 硅含量: 12-20%, 锌含量: 1.5-2.5%, 稀土元 素的含量: 0.1-0.3%,镁含量: 1-2.5%,铁含量: 0.2-0.8%,铜含量 0.2~0.4%,锰含量: 1.5-2.0 %, 铬含量: 0.8~2.0%, 锆含量: 0.1~0.4%, 纳米氧化物颗粒增强剂的总含量: 1.2~1.8%。
另外, 本发明还提供一种制造所述的热浸镀合金的方法, 先在气氛保护熔炼炉内, 将铝 硅合金先加热到 750~800°C充分熔化, 再升温至 845~855°C后加入稀土元素, 搅棒均匀, 再加 热升温至 860~880°C后加入锌, 经降温至 700~750°C再同时加入纳米氧化物颗粒增强剂及镁、 铁、 铜、 锰、 铬、 锆, 经机械、 电磁复合搅拌均匀, 再将温度降低到 700~650°C保温 20~30 分钟获得的。
其中,所述加热过程中的升温速率为 10〜40°C/分钟,所述降温过程中的降温速率为 20〜 60°C/分钟。
本发明采用的铝硅涂层是防止钛合金腐蚀特别是高温腐蚀的有效涂层, 其中铝主要提供 髙温情况下的腐蚀性能及持久的抗腐蚀性能; 而硅可以进一步提高涂层的耐磨性、 抗高温腐 蚀性提高。 然而, 随着硅含量的提高, 涂层的韧性有所下降, 不利于载荷、 介质协同作用的接触腐 蚀, 为此, 本发明通过添加纳米氧化物颗粒增强剂, 细化了涂层的晶粒, 显著改善了其轫性, 同吋显著提高了抗接触腐蚀能力。 除此之外, 还显著提高了涂层抵抗大气腐蚀、 电化学腐蚀 以及气流冲刷侵蚀的能力, 并且还显著提高了涂层的强度、 硬度, 从而赋予涂层更好的抗冲 刷性能。
进一歩的, 在大量反复实验、 筛选后, 通过选择合适的纳米氧化物颗粒增强剂的粒径和 比表面积, 可以更加显著的提高涂层的扰接触腐蚀能力。 除此之外, 纳米氧化物颗粒增强剂 的粒径采用本发明的数值范围, 还可以使涂层的耐磨度大大提高, 而纳米氧化物颗粒增强剂 的比表面积采用本发明的数值范围, 可以使合金的聚集度大大提高, 从而更加显著的提高合 金涂层的抗冲刷性能。
另外, 涂层中进一步加入的锌提供了非常好的阴极保护性, 而稀土则进一步细化了合金 的结晶晶粒, 并增强了合金的耐磨性和液体流动性。
在此基础上, 进一步添加镁、 铁、 铜、 锰、 铬、 锆等微合金元素, 这些微合金元素的加 入可以更加细化晶粒, 并加强了涂层中的强化相, 还对合金起到了固溶作用, 并进一步改善 了涂层的韧性和稳定性, 进一歩提高了涂层的强韧性和耐腐蚀性。 除此之外, 其中的镁还可 以提髙涂层的亲和力、耐腐蚀性和提髙合金的室温强度, 而铁还可以起到提髙抗氧化的作用, 铜还可以提高硬度和抗弯强度, 锰还可以进一步改进涂层的表面质量, 铬还可以提高初期氧 化膜的保护性, 而锆还可以显著细化晶粒组织, 提高涂层力学性能及抗腐蚀性能。
另一方面, 本发明还提供了一种采用多温度段添加热浸镀合金元素的方法, 采用该方法, 随着温度的提高, 可以有利于提高纳米氧化物颗粒增强剂及各种元素的分散性, 从而改善了 涂层成分的均匀性, 显著地提高了涂层与基体的结合强度。
然而, 如果在熔体温度过高的时候加入所有元素, 涂层易形成高铝脆性相, 不利于承担 接触微动载荷。 为此, 本发明采用先多温度段添加部分热浸镀合金元素, 再将温度降低到一 定温度后再添加纳米氧化物颗粒增强剂, 最后再降温并保温一定时间, 这样就克服了上述缺 陷, 获得了成分均匀, 韧性较好的涂层。
综上所述, 本发明通过对合金及其熔炼工艺的改进, 可在钛合金表面形成耐蚀、 耐磨性 好, 与基体冶金结合好的涂层。涂层电位与铝合金等材料接近, 可防止钛合金零件与铝合金、 高温合金等航空材料的接触腐蚀。 釆用该热浸镀合金制备的抗接触腐蚀涂层即使在恶劣的环 境和应力的作用下, 也不会剥落, 并且抗接触腐蚀的性能也大大得以提高, 从而彻底解决了 钛合金与铝合金和钢铁材料的接触腐蚀问题, 对进一歩扩大钛合金在航空领域的应用, 推动 飞机性能的提升具有重要的意义。
本发明的专用于钛合金零部件表面涂层的热浸镀合金, 其中所述热浸镀合金由铝、 硅、 锌、 稀土元素、 镁、 铁、 铜、 锰、 铬、 锆和纳米氧化物颗粒增强剂组成, 各组成成份占总质 量的百分比为: 硅含量: 8~24%, 锌含量: 1.2〜3.1 %, 稀土元素的含量: 0.02-0.5%, 镁含量: 0.5-3.2% , 铁含量: 0.05-1 % , 铜含量 0.05~0.5%, 锰含量: 1.0-2.0 % , 铬含量: 0.5-2.0% , 锆含量: 0.02~0.5 %, 纳米氧化物颗粒增强剂的总含量: 1~2 %, 余量为铝以及不可避免的杂 质, 所述纳米氧化物颗粒增强剂选自 Ti02、 Ce02中的一种或两种, 其中该不可能避免的杂质 通常是 Pb、 Sn、 Cd等无法彻底去除的杂质元素。
进一歩的, 在大量反复实验、 筛选后, 通过选择合适的纳米氧化物颗粒增强剂的粒径和 比表面积, 可以更加显著的提高涂层的性能, 如果采用的纳米氧化物颗粒是均匀的球体颗粒, 则球体比表面积和平均粒径满足如下关系式:
比表面积 = (/«2 / g)
其中 D代表平均粒径;
代表密度。
进一步, 如果采用的纳米氧化物颗粒比一般的球体颗粒形状复杂一些, 涂层的性能、 效 果可以更加理想, 因此, 本发明优选的纳米氧化物颗粒的比表面积要大于此公式计算值。
优选的, 纳米氧化物颗粒采用 Ti02时, 所述 Ti02的平均粒径为 15~60nm。
优选的, 纳米氧化物颗粒采用 Ti02时, 所述 Ti02的比表面积为 20~90m2/g。
优选的, 纳米氧化物颗粒釆用 (¾02时, 所述 Ce02的平均粒径为 25~70ηπι。
优选的, 纳米氧化物颗粒采用 Ce02时, 所述 Ce02的比表面积为 10~80m2/g。
下面结合表 1-3给出本发明各组成成份质量百分比的一些优选实施例, 但本发明的各组 成成份的含量不局限于该表中所列数值, 对于本领域的技术人员来说, 完全可以在表中所列 数值范围的基础上进行合 S概括和推理。
并且需要特别说明的是, 尽管表 1-3 中同时列出了纳米氧化物颗粒的粒径、 比表面积的 相关数值, 但这两个条件并不是作为必要条件加以描述的。 对于本发明而言, 核心的内容在 于通过添加一定量的纳米氧化物颗粒增强剂而达到细化涂层的晶粒、 改善其韧性、 提高其抗 接触腐蚀能力、 克服硅含量过高所带来的不良影响的目的。 而在此基础上, 通过进一步选择 合适的粒径、 合适的比表面积都只是为了使这一技术效果更突出, 更优越, 因此, 尽管下述 表 1-3 中均同时列出的这两个参数, 但都只是更优选的条件, 都是为了更详细的给出关于本 发明的技术信息, 而并非是作为本发明的必要条件加以描述。
实施例 1:
所述热浸镀合金是由铝、 硅、 锌、 镁、 铁、 铜、 锰、 铬、 锆、 稀土元素和 1¾¾纳米氧化 物颗粒增强剂组成, 各组成成份占总质量的百分比为: 硅含量: 8-24% , 锌含量: 1.2-3.1 % , 稀土元素的含量: 0.02-0.5 % , 镁含量: 0.5-3.2%, 铁含量: 0.05-1 % , 铜含量 0.05-0.5%, 锰含量: 1.0-2.0 % , 络含量: 0.5-2.0 % , 锆含量: 0.02-0.5 % , Ή02的含量: 1〜2%, 余量 为铝, 具体的见下表 1 :
表 1 : 各组成成份占总重量的质量百分比含量 (%) 及相关指标参数
\元素 Ti02
A1 Si Zn Mg Fe Cu Mn Cr Zr RE 粒径 比表面积 含量
序 ( am) (m2/g)
1 余量 24 1.98 1.0 0.05 0.1 1.0 0.5 0.1 0.02 1.0 15 90
2 余量 22 1.95 1.5 0.2 0.2 1.2 0.6 0.2 0.05 1.05 18 85
3 余量 21 1.9 1.92 0.3 0.3 1.3 0.7 0.3 0.08 1.1 20 80
4 余量 20 1.85 1.9 0.4 0.4 1.4 0.8 0-4 0.1 1.15 23 75
5 余量 19 1.8 1.88 0.5 0.5 1.5 0.9 0.5 0.12 1.2 25 70
6 余量 17 1.85 2.7 0.6 0.05 1.6 1.0 0.02 0.15 1.3 28 65
7 余量 16 1.82 2.6 0.7 0.2 1.7 1.1 0.2 0.18 1.4 30 60
8 余量 15 1.5 2.8 0.8 0.3 1.8 1.2 0.3 0.2 1.5 35 55
9 余量 13 2.75 2.4 0.9 0.4 1.9 1.3 0.4 0.25 1.6 40 50
10 佘量 11 2.8 3.2 1.0 0.5 1.8 1.4 0.5 0.30 1.7 45 45
11 余量 12 1.2 2.68 0.9 0.1 1.7 1.5 0.08 0.32 1.8 50 40
12 余量 10 3 0.8 0.8 0-2 1-6 1.6 0.2 0.35 1.85 53 35
13 余量 10 3.1 0.6 0.7 0.3 1.5 1.7 0.3 0.40 1.90 55 30
14 余量 9 2.95 0.65 0.6 0.4 1.4 1.8 0.4 0.45 1.95 58 25
15 余量 8 3.0 0.5 0.5 0.5 1.3 1.9 0.5 0.5 2 60 20 实施例 2:
所述热浸镀合金是由铝、 硅、 锌、 镁、 铁、 铜、 锰、 铬、 锆、 稀土元素和 CeO ft米氧化 物颗粒增强剂组成, 各组成成份占总质量的百分比为: 硅含量: 8-24%, 锌含量: 1.2-3.1%, 稀土元素的含量: 0.02-0.5%, 镁含量: 0.5-3.2%, 铁含量: 0.05-1%, 铜含量 0.05-0.5%, 锰含量: 1.0~2.0%, 铬含量: 0.5~2.0%, 锆含量: 0.02~0.5%, Ce02的含量: 1〜2%, 余量 为铝, 具体的见下表 2:
表 2: 各组成成份占总重量的质量百分比含量 (%) 及相关指标参数
Figure imgf000007_0001
实施例 3:
所述热浸镀合金是由铝、 硅、 锌、 镁、 铁、 铜、 锰、 铬、 锆、 稀土元素和纳米氧化物颗 粒增强剂组成, 其中纳米氧化物颗粒为 Ti02和 Ce02, 且 Ή¾和 Ce02比例为 1: (1〜3), 各 组成成份占总质量的百分比为:硅含量: S~24%,锌含量: 1.2~3.1%,稀土元素的含量: 0.02-0.5 %, 镁含量: 0.5-3.2%, 铁含量: 0.05-1%, 铜含量 0.05~0.5¾, 锰含量: 1.0-2.0%, 铬含量: 0.5-2.0%, 锆含量: 0.02-0.5%, Ti02和 Ce02的总含量: 1〜2%, 余量为铝, 具体的见下表 3:
表 3: 各组成成份占总重量的质量百分比含量 (%) 及相关指标参数
Figure imgf000008_0001
实施例 1-3中, 优选的, 其中各组成成份占总质量百分比为: 硅含量: 12-20%, 锌含量: 1.5~2.5%,稀土元素的含量: 0.1~0.3%,镁含量: 1-2.5%,铁含量: 0.2~0.8%,铜含量 0.2~0.4%, 錳含量: 1.5~2.0%, 铬含量: 0.8~2.0%, 锆含量: 0.1~0.4%, 纳米氧化物颗粒增强剂的总含 量: 1·2~1·8%
更优选的, 其中所述硅含量优选 15 20 %, 更优选 19%。
另外, 通过大量的反复实验还发现, 如果对本发明采用的纳米氧化物颗粒增强剂的松装 密度也能适当选择, 则最终获得的涂层性能、 效果将更为理想。 如果采用 Ti02, 则优选的, 其中所述 Ti02的松装密度不超过 3g/cm3
如果采用 Ce02, 则优选的, 其中所述 Ce02的松装密度不超过 5g/cm3
如果同时采用 Ti02和 Ce02,则优选的,其中所述 Ti02和。6(¾平均松装密度为 0.6〜4.5 g/cm。
另外, 本发明还提供了一种制造所述的热浸镀合金的方法, 根据铝、 硅、 锌、 稀土元素、 镁、 铁、 铜、 锰、 铬、 锆和纳米氧化物颗粒增强剂的质量百分比备料, 先在气氛保护熔炼炉 内, 将铝硅合金先加热到 750~800Γ充分熔化, 再升温至 845~855 °C后加入稀土元素, 搅拌均 匀,再加热升温至 860~880°C后加入锌,经降温至 700~750°C再同时加入纳米氧化物颗粒增强 剂及镁、 铁、 铜、 锰、 铬、 锆, 经机械、 电磁复合搅拌均匀, 再将温度降低到 700~65(TC保 温 20~30分钟获得的。
优选的, 根据铝、 硅、 锌、 稀土元素、 镁、 铁、 铜、 锰、 络、 锆和纳米氧化物颗粒增强 剂的质量百分比备料, 先在气氛保护熔炼炉内, 将铝硅合金先加热到 780~80(TC充分熔化, 再升温至 850~855 后加入稀土元素, 搅拌均匀, 再加热升温至 870~880Ό后加入锌, 经降温 至 730~700Ό再同时加入纳米氧化物颗粒增强剂及镁、 铁、 铜、 锰、 铬、 锆, 经机械、 电磁 复合搅拌均匀, 再将温度降低到 68Q~65(TC保温 20-25分钟获得的。
优选的, 经降温至 720~700°C再同时加入纳米氧化物颗粒增强剂及镁、 铁、 铜、 锰、 铬、 锆; 最后将温度降低到 690〜660Γ保温 22〜28分钟获得的。
更优选的, 经降温至 710°C再同时加入纳米氧化物颗粒增强剂及镁、铁、铜、锰、铬、锆; 最后再将温度降低到 680'C保温 25分钟获得的。
其中所述加热过程中的升温速率为 10〜40°C/分钟,所述降温过程中的降温速率为 20〜60 °C/分钟。
优选的, 其中所述加热过程中的升温速率为 20〜30°C/分钟, 所述降温过程中的降温速率 为 30〜50°C/分钟。
更优选的, 其中所述加热过程中的升温速率为 25°C/分钟, 所述降温过程中的降温速率为 40°C/分钟。 弯折加工和耐腐蚀性实验结果
实施例 4:
Ti6A14V螺栓,经处理后,采用本发明的热浸镀合金作为镀覆材料,形成 30(^ !11厚涂层, 与铝合金零件接触, 参照航空标准 HB5374 , 在 3 %NaCl溶液中进行标准电偶腐蚀试验, 平均 电偶电流密度为 0. 74, 达到 B级抗腐蚀标准, 并且涂层中无裂紋出现。
而采用常规的镀覆材料, 仅数月后即产生显著的腐蚀。
实施例 5:
TA6零件, 经处理后, 采用本发明的热浸镀合金作为镀覆材料, 形成 200 厚涂层, 与 GH30零件接触, 参照航空标准 HB5374, 在 3 %NaCl溶液中进行标准电偶腐蚀试验, 平均电偶 电流密度为 0. 27, 达到 A级抗腐蚀标准, 并且涂层中无裂紋出现。
而釆用常规的镀覆材料, 仅数月后即产生显著的腐蚀。
综上所述, 本发明通过镀覆材料、 镀覆工艺的改进, 可在钛合金表面形成耐蚀、 耐磨性 好, 与基体冶金结合好的涂层。 任何在本发明基础上进行的适应的改进, 均不脱离本发明的 思想, 均落入本发明保护的范围。

Claims

权利要求书
1. 一种专用于钛合金零部件表面凃层的热浸镀合金, 其中所述热浸镀合金由铝、硅、 锌、 稀土元素、 镁、 铁、 铜、 锰、 铬、 锆和纳米氧化物颗粒增强剂组成, 各组成成份占总质量 的百分比为: 硅含量: 8~24%, 锌含量: 1.2~3.1%, 稀土元素的含量: 0.02~0.5%, 镁含 量; 0.5-3.2%,铁含量; 0,05-1%,铜含量 0.05-0.5%,锰含量: 1.0-2.0%,铬含量: 0.5-2.0 , 锆含量: 0.02~0.5%, 纳米氧化物颗粒增强剂的总含量: 1 2%, 余量为铝以及不可避 免的杂质, 所述纳米氧化物颗粒增强剂选自 Ti02、 Ce02中的一种或两种。
2. 如权利要求 1所述的热浸镀合金, 其中纳米氧化物颗粒增强剂是均匀的球体颗粒, 且 纳米氧化物颗粒增强剂的比表面积和平均粒径满足如下关系式: 比表面积 (m2/g) =_
P-D
其中 ΰ代表平均粒径;
Ρ代表密度。
3. 如权利要求 1所述的热浸镀合金, 其中所述 Ti02的平均粒径为 15~60nm。
4. 如权利要求 1或 3所述的热浸镀合金, 其中所述 Ti02的比表面积为 20~90m2/g。
5. 如权利要求 1所述的热浸镀合金, 其中所述 Ce02的平均粒径为 25~70nm。
6. 如权利要求 1或 5所述的热浸镀合金, 其中所述 Ce02的比表面积为 10~80m2/g。
7. 如权利要求 1所述的热浸镀合金,其中纳米氧化物颗粒增强剂为 Ti02和 Ce02,且 Ή02 和 Ce02质量比为 1: (l~3)o
8. 如权利要求 1所述的热浸镀合金, 其中各组成成份占总质量百分比为: 硅含量: 12-20 %, 锌含量: 1.5~2.5%, 稀土元素的含量: 0.1~0.3%, 镁含量: 1~2.5%, 铁含量: 0.2~0.8 %, 铜含量 0.2-0.4%, 锰含量: 1.5-2.0%, 铬含量: 0.8-2.0 锆含量: 0.1-0.4%, 纳 米氧化物颗粒增强剂的总含量: 1.2~1.8%。
9. 一种制造权利要求 1所述的热浸镀合金的方法, 根据铝、 硅、 锌、 稀土元素、 镁、 铁、 铜、 锰、 铬、 锆和纳米氧化物颗粒增强剂的质量百分比备料, 先在气氛保护熔炼炉内, 将 铝硅合金先加热到 750- 800Ό充分熔化,再升温至 845 855 后加入稀土元素, 搅拌均匀, 再加热升温至 860~88(TC后加入锌, 经降温至 750~700°C再同时加入纳米氧化物颗粒增强 剂及镁、 铁、 铜、 猛、 铬、 锆, 经机械、 电磁复合搅拌均匀, 再将温度降低到 70[)~650 °〇 保温 20~30分钟获得的。
10.如权利要求 9所述的方法, 所述加热过程中的升温速率为 L0~4CTC /分钟, 所述降温过 程中的降温速率为 20~60°C/分钟。
PCT/CN2010/071487 2009-12-28 2010-03-31 含铝-硅-锌-稀土-镁-铁-铜-锰-铬-锆的热浸镀合金及其制备方法 WO2011079556A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10840346.0A EP2520688B1 (en) 2009-12-28 2010-03-31 Hot-dip alloy containing aluminium, silicon, zinc, rare earth, magnesium, iron, copper, manganese, chromium and zirconium and preparation method thereof
US13/127,230 US8828314B2 (en) 2009-12-28 2010-03-31 Hot-dip plating alloy containing Al—Si—Zn—RE—Mg—Fe—Cu—Mn—Cr—Zr and preparation method thereof
JP2012538171A JP5478730B2 (ja) 2009-12-28 2010-03-31 アルミ−ケイ素−亜鉛−希土−マグネシウム−鉄−銅−マンガン−クロム−ジルコニウム含有の熱溶融めっき合金及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910262737.X 2009-12-28
CN200910262737XA CN101736248B (zh) 2009-12-28 2009-12-28 含铝-硅-锌-稀土-镁-铁-铜-锰-铬-锆的热浸镀合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2011079556A1 true WO2011079556A1 (zh) 2011-07-07

Family

ID=42460274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071487 WO2011079556A1 (zh) 2009-12-28 2010-03-31 含铝-硅-锌-稀土-镁-铁-铜-锰-铬-锆的热浸镀合金及其制备方法

Country Status (5)

Country Link
US (1) US8828314B2 (zh)
EP (1) EP2520688B1 (zh)
JP (1) JP5478730B2 (zh)
CN (1) CN101736248B (zh)
WO (1) WO2011079556A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101760716B (zh) * 2009-12-28 2011-09-21 江苏麟龙新材料股份有限公司 一种在钛合金表面制备抗接触腐蚀涂层的方法
CN101760717B (zh) * 2009-12-28 2011-09-21 江苏麟龙新材料股份有限公司 一种对耐海洋气候工程零件涂层进行扩散处理的方法
CN103131984A (zh) * 2011-11-29 2013-06-05 贵州铝厂 高性能低锌热浸镀铝合金镀层材料
CN103710597A (zh) * 2013-12-17 2014-04-09 芜湖万润机械有限责任公司 一种大功率led灯基板用铝合金型材的制备方法
CN103710652A (zh) * 2013-12-17 2014-04-09 芜湖万润机械有限责任公司 一种高耐损伤铝合金型材的制备方法
CN103725933A (zh) * 2013-12-17 2014-04-16 芜湖万润机械有限责任公司 一种柴油机活塞用铝合金型材的制备方法
CN104213007A (zh) * 2014-06-10 2014-12-17 上海中捷有色金属有限公司 铝锌硅稀土锭及其制备方法
CN107923429B (zh) * 2015-08-28 2020-07-28 日本发条株式会社 紧固部件以及紧固部件用棒状部件
CN113174517B (zh) * 2021-04-30 2022-12-06 余姚思酷迈文具有限公司 耐蚀型Al-Si合金及其增材制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825468A (ja) * 1982-07-28 1983-02-15 Nippon Steel Corp 溶融金属浴浸漬部材
EP0446677A2 (en) * 1990-02-21 1991-09-18 Kawasaki Steel Corporation Surface-treated steel sheet having improved weldability and plating properties, and method for producing the same
CN1398304A (zh) * 2000-02-09 2003-02-19 日新制钢株式会社 热浸镀高Al的Zn-Al-Mg合金的钢板
CN1576383A (zh) * 2003-06-27 2005-02-09 株式会社神户制钢所 钛材料及其生产和排气管

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116748A (ja) * 1992-10-08 1994-04-26 Sumitomo Metal Ind Ltd 耐食性に優れたAl合金多層めっき金属材
TW374096B (en) * 1995-01-10 1999-11-11 Nihon Parkerizing Process for hot dip-coating a steel material with a molten aluminum alloy according to an one-stage metal alloy coating method using a flux
DE69603782T2 (de) * 1995-05-18 2000-03-23 Nippon Steel Corp Aluminiumbeschichtetes Stahlband mit sehr guter Korrosions- und Wärmebeständigkeit und zugehöriges Herstellungsverfahren
DE19733204B4 (de) * 1997-08-01 2005-06-09 Daimlerchrysler Ag Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung, Spritzpulver zu deren Herstellung sowie deren Verwendung
WO2002031064A1 (de) * 2000-10-11 2002-04-18 Chemetall Gmbh Verfahren zur vorbehandlung oder/und beschichtung von metallischen oberflächen vor der umformung mit einem lackähnlichen überzug und verwendung der derart beschichteten substrate
JP5097027B2 (ja) * 2003-06-27 2012-12-12 株式会社神戸製鋼所 チタン材、その製造方法および排気管
DE502007002411D1 (de) * 2007-05-24 2010-02-04 Rheinfelden Aluminium Gmbh Warmfeste Aluminiumlegierung
CN101760716B (zh) * 2009-12-28 2011-09-21 江苏麟龙新材料股份有限公司 一种在钛合金表面制备抗接触腐蚀涂层的方法
CN101751195A (zh) 2009-12-30 2010-06-23 中兴通讯股份有限公司 一种电阻式触摸屏上的移动事件控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825468A (ja) * 1982-07-28 1983-02-15 Nippon Steel Corp 溶融金属浴浸漬部材
EP0446677A2 (en) * 1990-02-21 1991-09-18 Kawasaki Steel Corporation Surface-treated steel sheet having improved weldability and plating properties, and method for producing the same
CN1398304A (zh) * 2000-02-09 2003-02-19 日新制钢株式会社 热浸镀高Al的Zn-Al-Mg合金的钢板
CN1576383A (zh) * 2003-06-27 2005-02-09 株式会社神户制钢所 钛材料及其生产和排气管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2520688A4 *

Also Published As

Publication number Publication date
US20120224993A1 (en) 2012-09-06
EP2520688A1 (en) 2012-11-07
CN101736248B (zh) 2011-04-20
CN101736248A (zh) 2010-06-16
EP2520688B1 (en) 2016-11-16
JP5478730B2 (ja) 2014-04-23
US8828314B2 (en) 2014-09-09
JP2013510945A (ja) 2013-03-28
EP2520688A4 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2011079556A1 (zh) 含铝-硅-锌-稀土-镁-铁-铜-锰-铬-锆的热浸镀合金及其制备方法
CN101928901A (zh) 含铝-硅-锌-稀土-镁的热浸镀合金及其制备方法
CN101736229B (zh) 含铝-硅-锌-稀土-镁-铜-锰的热浸镀合金及其制备方法
CN101736260B (zh) 含铝-硅-锌-稀土-镁-铜-锰-铬的热浸镀合金及其制备方法
CN101736239B (zh) 含铝-硅-锌-稀土-铜-铬的热浸镀合金及其制备方法
CN101736222B (zh) 含铝-硅-锌-稀土-铜的热浸镀合金及其制备方法
CN101736232B (zh) 含铝-硅-锌-稀土-镁-铁-铜的热浸镀合金及其制备方法
CN101928903B (zh) 含铝-硅-锌-稀土-镁-铁-锰-铬的热浸镀合金及其制备方法
CN101928904B (zh) 含铝-硅-锌-稀土-铁-铜-铬的热浸镀合金及其制备方法
CN101736251B (zh) 含铝-硅-锌-稀土-镁-铁-铜-锰-铬的热浸镀合金及其制备方法
CN101736234B (zh) 含铝-硅-锌-稀土-镁-铁-铬的热浸镀合金及其制备方法
CN101736230B (zh) 含铝-硅-锌-稀土-镁-铜-铬的热浸镀合金及其制备方法
CN101736263B (zh) 含铝-硅-锌-稀土-镁-铁-铜-锰的热浸镀合金及其制备方法
CN101736269B (zh) 专用于钛合金零部件表面涂层的热浸镀合金及其制备方法
CN101928902B (zh) 含铝-硅-锌-稀土-镁-锰-铬的热浸镀合金及其制备方法
CN101736250B (zh) 含铝-硅-锌-稀土-镁-铜-锰-铬-锆的热浸镀合金及其制备方法
CN101736219B (zh) 含铝-硅-锌-稀土-镁-铬的热浸镀合金及其制备方法
CN101736247B (zh) 含铝-硅-锌-稀土-镁-铜的热浸镀合金及其制备方法
CN101736218B (zh) 含铝-硅-锌-稀土-镁-锰的热浸镀合金及其制备方法
CN101736233B (zh) 含铝-硅-锌-稀土-镁-铁-锰的热浸镀合金及其制备方法
CN101736245B (zh) 含铝-硅-锌-稀土-锰-铬的热浸镀合金及其制备方法
CN101736238B (zh) 含铝-硅-锌-稀土-铜-锰的热浸镀合金及其制备方法
CN101736256B (zh) 含铝-硅-锌-稀土-铁-铜-锰-铬的热浸镀合金及其制备方法
CN101736264A (zh) 含铝-硅-锌-稀土-镁-铁-铜-铬的热浸镀合金及其制备方法
CN101736262A (zh) 含铝-硅-锌-稀土-镁-铜-铬-锆的热浸镀合金及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13127230

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012538171

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010840346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010840346

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE