WO2011079483A1 - 同轴换热器 - Google Patents

同轴换热器 Download PDF

Info

Publication number
WO2011079483A1
WO2011079483A1 PCT/CN2010/000375 CN2010000375W WO2011079483A1 WO 2011079483 A1 WO2011079483 A1 WO 2011079483A1 CN 2010000375 W CN2010000375 W CN 2010000375W WO 2011079483 A1 WO2011079483 A1 WO 2011079483A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat exchanger
fluid
coaxial heat
inner tube
Prior art date
Application number
PCT/CN2010/000375
Other languages
English (en)
French (fr)
Inventor
吴展豪
方真健
蒋志武
Original Assignee
英特换热设备(浙江)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特换热设备(浙江)有限公司 filed Critical 英特换热设备(浙江)有限公司
Publication of WO2011079483A1 publication Critical patent/WO2011079483A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/06Heat exchange conduits having walls comprising obliquely extending corrugations, e.g. in the form of threads

Definitions

  • the present invention relates to a heat exchange device, and more particularly to a water source/ground source and a coaxial heat exchanger for a heat pump water heater. Background technique
  • Coaxial heat exchangers have excellent heat transfer performance and are widely used in refrigeration, air conditioning, chemical, power and other fields.
  • the casing type heat exchanger currently used on the market has a simple structure and convenient processing, but the heat exchange amount per unit area is large, and the manufacturing cost is high.
  • Some inner wall of the casing type heat exchanger is made of knurling or In the fin design, although the heat exchange metal consumption per unit area is reduced, the manufacturing cost is still large. Therefore, effectively reducing the metal consumption per unit area becomes a key technology for heat exchanger manufacturing.
  • heat exchangers are also a major component affecting the efficiency of air conditioning systems. Increasing the efficiency of the heat exchanger will significantly increase the energy efficiency of the system. Therefore, from the perspective of energy saving, in order to further reduce the volume of the heat exchanger, reduce the weight and metal consumption, reduce the power consumed by the heat exchanger, and enable the heat exchanger to work at a lower temperature difference, various methods must be used. Enhance the heat transfer efficiency of the heat exchanger. Disclosure of invention
  • the invention provides a coaxial heat exchanger, which has low heat dissipation metal consumption per unit area and good heat exchange effect.
  • the present invention provides a coaxial heat exchanger comprising:
  • An outer tube is disposed at each end of the outer tube respectively, and the interface tube is respectively used as a second fluid inlet and a second fluid outlet;
  • An inner tube disposed inside the outer tube, the inner tube being coaxially disposed with the outer tube;
  • the inner tube comprises a main body section, a transition section respectively located at two ends of the main body section, and a constricted pipe section respectively connected to the transition section, wherein the outer diameter of the main body section is smaller than the inner diameter of the outer pipe, and the gap between the main body section and the outer pipe 0.1 ⁇ lmm, the neck portion is respectively used as the first fluid outlet and the first fluid inlet;
  • the intermediate body segment of the inner tube is a multi-headed spiral tube having a plurality of parallel spiral groove structures; the inside of the inner tube forms a first fluid passage, and a plurality of parallel snails are formed between the outer tube and the inner tube a second fluid passage formed by the spiral groove, the second fluid passage is hooked around the first fluid passage;
  • the coaxial heat exchanger may further comprise a transition joint sleeved at two ends of the outer tube, the inner side of the transition joint tube being closely matched with the outer side of the outer tube;
  • the interface tube serving as a second fluid inlet and a second fluid outlet, respectively;
  • the outer wall of the inner tube is sandblasted
  • the coaxial heat exchanger further includes a mounting fixing plate installed at a bottom of the heat exchanger; the first fluid flows from the first fluid inlet, passes through the first fluid passage, flows out from the first fluid outlet, and the second fluid From the second fluid inlet, through the second fluid passage, from the second fluid outlet, the two fluids flow in opposite directions, and heat exchange is performed through the tube wall of the inner tube.
  • the coaxial heat exchanger provided by the invention has a plurality of parallel spiral second fluid channels to cause intense turbulence of the second fluid, thereby ensuring a better heat exchange capacity of the heat exchanger under the same heat exchange area.
  • the gap between the outer tube and the inner tube is divided by the spiral groove structure, so that the flow medium is hooked, which is beneficial to improve the heat exchange area and maintain good oil return characteristics when the evaporator is used.
  • the spiral groove increases the heat exchange area between the fluids, improves the heat exchange efficiency, reduces the metal consumption per unit heat exchange area, and saves the production cost.
  • the reverse flow of the two fluids causes the largest temperature difference between the two fluids. The heat transfer performance is enhanced to ensure sufficient heat exchange of the heat exchanger.
  • the outer wall of the inner tube is sandblasted, and the surface of the pipe wall is formed with uneven pits, which increases the heat exchange area and enhances heat transfer.
  • the coaxial heat exchanger adopts a spiral structure, which can reduce the volume of the heat exchanger, make the overall structure compact and reasonable, and is convenient and simple to operate and install.
  • FIG. 1 is a schematic structural view of a coaxial heat exchanger provided by the present invention.
  • FIG. 2 is a schematic structural view of an inner tube of a coaxial heat exchanger provided by the present invention
  • FIG. 3 is a schematic cross-sectional view of an inner tube of a coaxial heat exchanger provided by the present invention.
  • FIG. 4 is a schematic cross-sectional view of the inner tube outer tube of the coaxial heat exchanger provided by the present invention
  • FIG. 5 is a schematic diagram of the internal structure of the coaxial heat exchanger provided by the present invention
  • FIG. 6 is a schematic view showing the structure of the inner tube after the blasting treatment of the coaxial heat exchanger provided by the present invention
  • FIG. 7 is a schematic cross-sectional view of the inner tube after the blasting treatment of the coaxial heat exchanger provided by the present invention
  • 9 is a schematic structural view of the inner tube outer tube of the coaxial heat exchanger provided by the present invention
  • FIG. 10 is a schematic view showing the spring type outer structure of the coaxial heat exchanger provided by the present invention
  • Figure 11 is a schematic view showing the structure of a scroll type of a coaxial heat exchanger provided by the present invention.
  • FIG. 12 is a schematic view showing a double-helical structure of a coaxial heat exchanger provided by the present invention
  • FIG. 13 is a schematic view showing a structure of a raceway type of a coaxial heat exchanger provided by the present invention
  • Figure 14 is a schematic view showing the outer shape of a serpentine form of a coaxial heat exchanger provided by the present invention.
  • Fig. 15 is a schematic view showing the multi-joined outer structure of the coaxial heat exchanger provided by the present invention. The best way to implement the invention
  • the outer tube 1 is provided at both ends of the outer tube 1 with interface tubes 4 and 5, the interface tube 4 is a second fluid inlet, and the interface tube 5 is a second fluid outlet;
  • the inner tube 2 is disposed inside the outer tube 1, and the inner tube 2 is disposed coaxially with the outer tube 1;
  • the inner tube 2 comprises a main body section 18, a transition section 17 respectively located at opposite ends of the main body section 18, and a constricted pipe section 3 and 6 respectively connecting the transition section 17, the outer diameter of the main body section 18.
  • the main body portion 18 is tightly fitted with the outer tube 1, the fitting gap is 0.1 ⁇ 1 mm, the constricted tube portion 3 is the first fluid outlet, and the constricted tube portion 6 is the first fluid inlet;
  • the intermediate body section 18 of the inner tube 2 is a multi-headed spiral tube having a plurality of parallel spiral groove structures, and adopts 3 to 8 spiral tubes;
  • the inside of the inner tube 2 forms a first fluid passage 22, and a second fluid passage 21 composed of a plurality of parallel spiral grooves is formed between the outer tube 1 and the inner tube 2, thereby causing the second fluid to be intense.
  • the turbulent flow ensures that the heat exchanger has better heat exchange capacity under the same heat exchange area, and the second fluid passage 21 uniformly surrounds the first fluid passage 22, and the gap between the outer tube 1 and the inner tube 2 It is divided by the spiral groove structure to make the flow medium evenly distributed, which is beneficial to improve the heat exchange area and maintain good oil return characteristics when used as an evaporator;
  • the coaxial heat exchanger further includes a transition joint 10 sleeved at two ends of the outer tube 1, and the inner side of the transition joint 10 is closely matched with the outer side of the outer tube 1;
  • the interface tube 4 is provided with the interface tubes 4 and 5, the interface tube 4 is a second fluid inlet, and the interface tube 5 is a second fluid outlet; As shown in Fig. 6 and Fig. 7, the outer wall of the inner tube 2 is subjected to sand blasting treatment, and the surface of the tube wall is formed with uneven pits, which increases the heat exchange area and acts to enhance heat transfer;
  • the coaxial heat exchanger further comprises a mounting fixing plate 7, which is mounted at the bottom of the heat exchanger.
  • the countercurrent causes a maximum temperature difference between the two fluids, and the heat exchange capacity is enhanced to ensure sufficient heat exchange of the heat exchanger.
  • the inner tube 2 is a shrink-formed heat transfer tube of a selected length and a wall thickness, and the ends are formed by a constriction to form a transition portion 17 and a constriction connecting the transition portion 17.
  • the pipe sections 3 and 6, the intermediate body section 18 is a spiral pipe having a plurality of parallel spiral grooves, the inner pipe 2 being sized to properly penetrate into the outer pipe 1, and the main body section 18 of the inner pipe 2 is processed on a spiral forming apparatus to form
  • the spiral tube with a plurality of parallel spiral grooves increases the heat exchange area between the fluids, improves the heat exchange efficiency, reduces the metal consumption per unit heat exchange area, and saves the production cost;
  • the coaxial heat exchanger is a spiral-type overall structure, which can reduce the volume of the heat exchanger, make the structure compact, and is convenient and simple to operate and install.
  • the first fluid and the second fluid medium may be water or a refrigerant
  • the outer tube 1 is a steel pipe, a copper pipe, an aluminum pipe, an engineering plastic pipe, or the like;
  • the inner tube 2 is a copper tube, a stainless steel tube or a copper-nickel alloy tube;
  • the coaxial heat exchanger provided by the invention can be used in air-conditioning systems such as marine vessels, warships, offshore drilling platforms and swimming pools, as well as medicine, food and others. Some special industries.
  • the coaxial heat exchanger provided by the invention can also be used as a heat recovery device while the system works. Producing hot water for living, improving the energy efficiency and economy of the system.
  • the unique heat transfer performance of the present invention ensures high efficiency when applied to condensers, evaporators, refrigeration units, gas cooling units, heating/cooling tubes, and other heat exchanger groups.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

同轴换热器 技术领域
本发明涉及一种热交换装置, 尤其涉及一种水源 /地源、热泵热水器用同 轴换热器。 背景技术
同轴换热器具有优良的换热性能, 是制冷空调、 化工、 动力等领域广泛 应用的通用设备。 目前市场上采用的套管式换热器, 结构简单, 加工方便, 但单位面积换热金属耗量大, 制造成本较高, 有的套管式换热器的内管壁制 作采用滚花或翅片设计, 单位面积换热金属耗量虽然有所降低, 但制造成本 仍很大。因此,有效降低单位面积金属耗量成为换热器制造的一个关键技术。
另外, 换热器也是影响空调系统效率的主要部件。 提高换热器的效率, 将可以显着提高系统的能源效率。 因此从节能的角度出发, 为了进一步减小 换热器的体积, 减轻重量和金属消耗, 减少换热器消耗的功率, 并使换热器 能够在较低温差下工作, 必须用各种办法来增强换热器的传热效率。 发明的公开
本发明提供的一种同轴换热器,单位面积换热金属耗量低、换热效果好。 为了达到上述目的, 本发明提供一种同轴换热器, 包含:
外管, 在所述的外管的两端分别设置有接口管, 该接口管分别作为第二 流体入口和第二流体出口;
套设在外管内部的内管, 该内管与外管同轴设置;
所述的内管包含主体段、 分别位于主体段两端的过渡段, 还包含分别连 接过渡段的缩口管段, 该主体段的外径小于外管的内径, 主体段与外管之间 的间隙为 0.1~lmm, 缩口管段分别作为第一流体出口和第一流体入口;
所述内管的中间主体段为具有多条平行螺旋槽结构的多头螺旋管; 内管的内部形成第一流体通道, 在外管和内管之间形成由多条平行的螺 旋槽组成的第二流体通道, 第二流体通道均勾环绕第一流体通道;
所述的同轴换热器还可以包含套设在外管两端的过渡接管, 该过渡接管 的内侧与外管的外侧紧密配合;
在所述的过渡接管上设置有接口管, 该接口管分别作为第二流体入口和 第二流体出口;
内管的外壁经过喷砂处理;
该同轴换热器还包含安装固定板, 该安装固定板安装在换热器的底部; 第一流体从第一流体入口流入, 经过第一流体通道, 从第一流体出口流 出, 第二流体从第二流体入口流入, 经过第二流体通道, 从第二流体出口流 出, 两种流体逆向流动, 通过内管的管壁进行热交换。
本发明提供的同轴换热器, 多条平行螺旋的第二流体信道促使第二流体 产生激烈的紊流, 保证了换热器在相同的换热面积情况下, 获得较好的换热 能力,外管和内管之间的间隙被螺旋槽结构均勾分割,使流动介质均勾分布, 有利于改善换热面积和作为蒸发器时保持良好的回油特性, 内管上多条平行 的螺旋槽, 增大了流体间的热交换面积, 提高了换热效率, 同时减少了单位 换热面积金属耗量, 节约了生产成本, 两种流体的逆流使两种流体之间产生 最大的温差, 增强了换热性能, 以保证换热器进行充分的热交换, 内管的外 壁经过喷砂处理, 管壁表面形成凹凸不平的细坑, 增加了换热面积, 起到强 化传热的作用, 同轴换热器采用盘旋式结构, 可以缩小换热器体积, 使整体 结构紧凑合理, 操作安装方便简单。 附图的简要说明
图 1是本发明提供的同轴换热器的结构示意图;
图 2是本发明提供的同轴换热器的内管结构示意图;
图 3是本发明提供的同轴换热器的内管横截面示意图;
图 4是本发明提供的同轴换热器的内管外管装配后横截面示意图; 图 5是本发明提供的同轴换热器的内部结构原理图;
图 6是本发明提供的同轴换热器的喷砂处理后内管结构示意图; 图 7是本发明提供的同轴换热器的喷砂处理后内管横截面示意图; 图 8是本发明提供的同轴换热器的内管外管装配后纵向剖面图; 图 9是本发明提供的同轴换热器的内管外管装配后结构示意图; 图 10是本发明提供的同轴换热器的弹簧式外形结构示意图;
图 11是本发明提供的同轴换热器的涡旋式外形结构示意图;
图 12是本发明提供的同轴换热器的双螺旋式外形结构示意图; 图 13是本发明提供的同轴换热器的跑道式外形结构示意图;
图 14是本发明提供的同轴换热器的蛇形式外形结构示意图;
图 15是本发明提供的同轴换热器的多联组合式外形结构示意图。 实现本发明的最佳方式
以下根据图 1〜图 15, 具体说明本发明的较佳实施示例:
如图 1所示, 为同轴换热器, 其包含:
外管 1 ;在所述的外管 1的两端设置有接口管 4和 5,接口管 4是第二流 体入口, 接口管 5是第二流体出口;
套设在外管 1内部的内管 2, 该内管 2与外管 1同轴设置;
如图 2所示, 所述的内管 2包含主体段 18、 分别位于主体段 18两端的 过渡段 17, 还包含分别连接过渡段 17的缩口管段 3和 6, 该主体段 18的外 径小于外管 1的内径,该主体段 18与外管 1紧密配合,配合间隙为 0.1〜lmm, 缩口管段 3是第一流体出口, 缩口管段 6是第一流体入口;
如图 3所示,所述内管 2的中间主体段 18为具有多条平行螺旋槽结构的 多头螺旋管, 采用 3〜8头螺旋管;
如图 4所示, 内管 2的内部形成第一流体通道 22, 在外管 1和内管 2之 间形成由多条平行的螺旋槽组成的第二流体通道 21,促使第二流体产生激烈 的紊流, 保证了 _换热器在相同的换热面积情况下, 获得较好的换热能力, 第 二流体通道 21均匀环绕第一流体通道 22, 外管 1和内管 2之间的间隙被螺 旋槽结构均勾分割, 使流动介质均匀分布, 有利于改善换热面积和作为蒸发 器时保持良好的回油特性;
如图 5所示,所述的同轴换热器还包含套设在外管 1两端的过渡接管 10, 该过渡接管 10的内侧与外管 1的外侧紧密配合;
在所述的过渡接管 10上设置有接口管 4和 5,接口管 4是第二流体入口, 接口管 5是第二流体出口; 如图 6和图 7所示, 内管 2的外壁经过喷砂处理, 管壁表面形成凹凸不 平的细坑, 增加了换热面积, 起到强化传热的作用;
如图 1所示, 该同轴换热器还包含安装固定板 7, 该安装固定板 7安装 在换热器的底部。
如图 1和图 5所示,第一流体从缩口管段 6流入,经过第一流体通道 22, 从缩口管段 3流出, 第二流体从接口管 4流入, 经过第二流体通道 21, 从接 口管 5流出, 两种流体逆向流动, 通过内管 2的管壁进行热交换, 逆流使两 种流体之间产生最大的温差, 增强了换热能力, 以保证换热器进行充分的热 交换;
如图 8和图 9所示, 所述的内管 2是一根选定长度和壁厚的缩口成型的 传热管, 两端经过缩口形成过渡段 17和连接过渡段 17的缩口管段 3和 6, 中间主体段 18是具有多条平行螺旋槽的螺旋管,内管 2的尺寸能够合适地穿 入外管 1内, 内管 2的主体段 18在螺旋成型设备上加工,形成具有多条平行 螺旋槽的螺旋管, 增大了流体间的热交换面积, 提高了换热效率, 同时减少 了单位换热面积金属耗量, 节约了生产成本;
所述的同轴换热器为盘旋式总体结构, 可以缩小换热器体积, 使结构紧 凑合理, 操作安装方便简单。
如图 10所示, 为弹簧式结构;
如图 11所示, 为涡旋式结构;
如图 12所示, 为双螺旋式结构;
如图 13所示, 为跑道式结构;
如图 14所示, 为蛇形式结构;
如图 15所示, 为多联组合式结构;
所述的第一流体和第二流体介质可以是水, 或者是冷媒;
所述的外管 1是钢管、 铜管、 铝管、 工程塑料管等;
所述的内管 2为铜管、 不锈钢管或铜镍合金管等;
当内管 2材质采用白铜、 不锈钢或镀镍合金时, 本发明提供的同轴换热 器可使用在海洋船舶、 军舰、 海洋钻井平台和泳池等空调系统中, 也可用于 医药、 食品和其它一些特殊行业。
本发明提供的同轴换热器同时也可以作为热回收器, 在系统工作的同时 产生生活用热水, 提高了系统的能效比和经济性。 本发明独特的传热性能保 证了其应用于冷凝器、 蒸发器、制冷机组、气体冷却装置、 加热 /制冷管以及 其它热交换机组时的高效率。
尽管本发明的内容已经通过上述优选实施示例作了详细介绍, 但应当认 识到上述的描述不应被认为是对本发明的限制。 在本领域技术人员阅读了上 述内容后, 对于本发明的多种修改和替代都将是显而易见的。 因此, 本发明 的保护范围应由所附的权利要求来限定。

Claims

权利要求
1. 一种同轴换热器, 其特征在于, 该同轴换热器包含:
外管 (1 ); 在所述的外管 (1 ) 的两端设置有接口管 (4) 和 (5), 接口管 (4) 是第二流体入口, 接口管 (5 ) 是第二流体出口;
套设在外管 (1 ) 内部的内管 (2), 该内管 (2) 与外管 (1 ) 同轴设 置;
所述的内管 (2) 包含主体段 (18)、 分别位于主体段 (18) 两端的 过渡段 (17), 还包含分别连接过渡段 (17) 的縮口管段 (3 ) 和 (6), 縮口管段 (3 ) 是第一流体出口, 缩口管段 (6) 是第一流伴入口;
所述内管(2) 的中间主体段(18) 为具有多条平行螺旋槽结^ I的多 头螺旋管;
内管(2) 的内部形成第一流体通道(22), 在外管 (1 )和内管 (2) 之间形成由多条平行的螺旋槽组成的第二流体通道(21 ), 第二流体通道 (21 ) 均匀环绕第一流体通道 (22);
第一流体从縮口管段 (6) 流入, 经过第一流体通道 (22), 从缩口 管段(3 )流出, 第二流体从接口管(4)流入, 经过第二流体通道(21 ), 从接口管 (5) 流出, 两种流体逆向流动, 通过内管 (2) 的管壁进行热 交换。
2. 如权利要求 1所述的同轴换热器, 其特征在于, 所述主体段(18)的外径 小于外管(1 )的内径, 主体段(18)与外管(1 )之间的间隙为 0.1~lmm。
3. 如权利要求 2所述的同轴换热器, 其特征在于, 所述的主体段(18)采用
3~8头螺旋管。
4. 如权利要求 3所述的同轴换热器, 其特征在于, 所述内管 (2) 的外壁经 过喷砂处理。
5. 如权利要求 1所述的同轴换热器,其特征在于,所述的同轴换热器还包含 安装固定板 (7), 该安装固定板 (7) 安装在换热器的底部。
6. 如权利要求 1所述的同轴换热器,其^ T征在于,所述的同轴换热器为盘旋
6
修改页 (条约第 19条) 式总体结构, 采用弹簧式结构、或者涡旋式结构、或者双螺旋式结构、 或 者跑道式结构、 或者蛇形式结构, 或者多联组合式结构。
7. 如权利要求 1所述的同轴换热器, 其特征在于, 所述的外管(1 )是钢管、 铜管、 铝管、 工程塑料管。
8. 如权利要求 1所述的同轴换热器, 其特征在于, 所述的内管(2)为铜管、 不锈钢管或铜镍合金管。
9. 如权利要求 1所述的同轴换热器,其特征在于,所述的第一流体和第二流 体介质是水, 或者冷媒。
10.—种同轴换热器, 其特征在于, 该同轴换热器包含:
外管 (1 );
套设在外管 (1 ) 内部的内管 (2), 该内管 (2) 与外管 (1 ) 同轴设 置;
所述的内管 (2) 包含主体段 (18)、 分别位于主体段 (18) 两端的 过渡段 (17), 还包含分别连接过渡段 (17) 的缩口管段 (3 ) 和 (6), 缩口管段 (3 ) 是第一流体出口, 缩口管段 (6) 是第一流体入口;
所述内管(2) 的中间主体段(18) 为具有多条平行螺旋槽结构的多 头螺旋管;
所述的同轴换热器还包含套设在外管 (1 ) 两端的过渡接管 (10), 该过渡接管 (10) 的内侧与外管 (1 ) 的外侧紧密配合; 在所述的过渡接 管 (10) 上设置有接口管 (4) 和 (5 ), 接口管 (4) 是第二流体入口, 接口管 (5 ) 是第二流体出口;
内管 (2) 的内部形成第一流体通道(22), 在外管(1 )和内管 (2) 之间形成由多条平行的螺旋槽组成的第二流体通道(21 ), 第二流体通道 (21 )均匀环绕第一流体通道 (22);
第一流体从缩口管段 (6)流入, 经过第一流体通道 (22), 从缩口 管段(3 )流出, 第二流体从接口管(4)流入, 经过第二流体通道(21 ), 从接口管 (5 ) 流出, 两种流体逆向流动, 通过内管 (2) 的管壁进行热 交换。
11.如权利要求 10所述的同轴换热器, 其特征在于, 所述主体段 (18) 的外 径小于外管( 1 )的内径,主体段(18)与外管( 1 )之间的间隙为 0.1~lmm。
修改页 (条约第 19条) 如权利要求 11所述的同轴换热器, 其特征在于, 所述的主体段(18)采 用 3~8头螺旋管。
如权利要求 12所述的同轴换热器, 其特征在于, 所述内管(2)的外壁经 过喷砂处理。
如权利要求 10所述的同轴换热器, 其特征在于, 所述的同轴换热器还包 含安装固定板(7), 该安装固定板 (7) 安装在换热器的底部。
如权利要求 10所述的同轴换热器, 其特征在于, 所述的同轴换热器为盘 旋式总体结构, 采用弹簧式结构, 或者涡旋式结构, 或者双螺旋式结构, 或者跑道式结构, 或者蛇形式结构, 或者多联组合式结构。
如权利要求 10所述的同轴换热器,其特征在于,所述的外管( 1 )是钢管、 铜管、 铝管、 工程塑料管。
如权利要求 10所述的同轴换热器,其特征在于,所述的内管(2)为铜管、 不锈钢管或铜镍合金管。
如权利要求 10所述的同轴换热器, 其特征在于, 所述的第一流体和第二 流体介质是水, 或者冷媒。
8
修改页 (条约第 19条)
PCT/CN2010/000375 2009-12-31 2010-03-26 同轴换热器 WO2011079483A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102173150A CN102116585A (zh) 2009-12-31 2009-12-31 同轴换热器
CN200910217315.0 2009-12-31

Publications (1)

Publication Number Publication Date
WO2011079483A1 true WO2011079483A1 (zh) 2011-07-07

Family

ID=44215461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000375 WO2011079483A1 (zh) 2009-12-31 2010-03-26 同轴换热器

Country Status (2)

Country Link
CN (1) CN102116585A (zh)
WO (1) WO2011079483A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303626B6 (cs) * 2011-09-20 2013-01-16 2 Vv S. R. O. Protiproudý válcový rekuperacní výmeník s vícechodými sroubovite stocenými teplosmennými plochami, urcený zejména pro vetrací zarízení
FR3030027A1 (fr) * 2014-12-12 2016-06-17 Cetm Echangeur thermique helicoidale a conduits concentriques, constitue par plusieurs portions helicoidales autonomes en capacite d'echange thermique
CZ306075B6 (cs) * 2014-10-30 2016-07-27 Halla Visteon Climate Control Corporation Soustava koaxiálních trubic a způsob její výroby
RU171543U1 (ru) * 2016-10-13 2017-06-06 Общество с ограниченной ответственностью "Прогресс" Змеевиковый теплообменник для проведения процессов теплообмена
EP3715602A1 (en) * 2019-03-27 2020-09-30 Rolls-Royce plc Heat exchanger
EP4199318A1 (en) * 2021-12-17 2023-06-21 Valeo eAutomotive Germany GmbH A heat exchanger of an electric module

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201202791D0 (en) * 2012-02-20 2012-04-04 Simpson Robert Methods and system for energy conversion and generation
CN102636052A (zh) * 2012-05-11 2012-08-15 江苏亚太轻合金科技股份有限公司 高效热交换同轴管
TWI471510B (zh) * 2012-05-16 2015-02-01 Yu Chen Lin 電加熱裝置
EP2977698A1 (en) * 2014-07-23 2016-01-27 A-Steel S.R.L. Positioning machine to position an inner pipe of a double pipe coil for heat exchangers
CN104913671B (zh) * 2015-05-25 2017-05-24 泰安三明化工设备有限公司 深度螺旋槽换热管换热器
US10508867B2 (en) 2015-05-28 2019-12-17 Dometic Sweden Ab Corrosion resistant coaxial heat exchanger assembly
CN104896563A (zh) * 2015-06-03 2015-09-09 宁波格林美孚新材料科技有限公司 一种电磁加热供暖装置
CN104848713A (zh) * 2015-06-05 2015-08-19 杭州沈氏节能科技股份有限公司 一种具有多头螺旋槽纹管的换热器
CN104848726A (zh) * 2015-06-05 2015-08-19 杭州沈氏节能科技股份有限公司 一种多头螺旋段管体及多头螺旋槽纹换热管
CN105387736A (zh) * 2015-12-17 2016-03-09 英特换热设备(浙江)有限公司 一种加强型螺旋管高效换热器
CN106017186A (zh) * 2016-07-11 2016-10-12 广东环境保护工程职业学院 一种换热管结构
KR101759110B1 (ko) * 2016-08-10 2017-07-19 주식회사 화승알앤에이 이중관 열교환기 및 그의 제조방법
CN106767097A (zh) * 2017-01-12 2017-05-31 珠海格力电器股份有限公司 换热管及套管式换热器
CN108679686B (zh) * 2018-05-21 2019-07-23 吉林建筑大学 一种储能式供热系统
CN110411244A (zh) * 2019-07-22 2019-11-05 杭州沈氏节能科技股份有限公司 换热套管以及具有该换热套管的换热器
CN110984307B (zh) * 2019-12-19 2021-10-26 天长市飞龙金属制品有限公司 一种排水管用隔板
CN111701259B (zh) * 2020-06-04 2021-12-21 江西纵横特种设备有限公司 一种旋转式升膜蒸发器
CN114518792A (zh) * 2020-11-19 2022-05-20 英业达科技有限公司 散热装置
CN113758351B (zh) * 2021-09-27 2024-03-29 玮成新材料(山东)有限公司 一种基于流体运动变化的换热装置
CN114414176B (zh) * 2022-03-30 2022-06-03 风凯换热器制造(常州)有限公司 双层输送管路的加工方法及泄漏检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2449172Y (zh) * 2000-10-25 2001-09-19 于奎明 空调机组使用的套管式换热器
CN2611857Y (zh) * 2003-03-19 2004-04-14 冯家户 同轴换热器
CN2795782Y (zh) * 2005-03-31 2006-07-12 广州百晟空调配件有限公司 一种高效套管式换热器
CN2828706Y (zh) * 2005-09-15 2006-10-18 葛建民 涡旋型套管换热器
CN2828708Y (zh) * 2005-09-30 2006-10-18 吕刚 多头螺旋糙面套管式换热器
CN201218674Y (zh) * 2008-05-23 2009-04-08 英特换热设备(浙江)有限公司 塑料套管换热器
CN201218675Y (zh) * 2008-05-23 2009-04-08 英特换热设备(浙江)有限公司 铝同轴换热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2449172Y (zh) * 2000-10-25 2001-09-19 于奎明 空调机组使用的套管式换热器
CN2611857Y (zh) * 2003-03-19 2004-04-14 冯家户 同轴换热器
CN2795782Y (zh) * 2005-03-31 2006-07-12 广州百晟空调配件有限公司 一种高效套管式换热器
CN2828706Y (zh) * 2005-09-15 2006-10-18 葛建民 涡旋型套管换热器
CN2828708Y (zh) * 2005-09-30 2006-10-18 吕刚 多头螺旋糙面套管式换热器
CN201218674Y (zh) * 2008-05-23 2009-04-08 英特换热设备(浙江)有限公司 塑料套管换热器
CN201218675Y (zh) * 2008-05-23 2009-04-08 英特换热设备(浙江)有限公司 铝同轴换热器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303626B6 (cs) * 2011-09-20 2013-01-16 2 Vv S. R. O. Protiproudý válcový rekuperacní výmeník s vícechodými sroubovite stocenými teplosmennými plochami, urcený zejména pro vetrací zarízení
WO2013041066A2 (en) 2011-09-20 2013-03-28 2Vv S.R.O. Counterflow cylindrical recuperative heat exchanger with multi-thread screw-like coiled heat exchanger surfaces, designed for ventilating devices
CZ306075B6 (cs) * 2014-10-30 2016-07-27 Halla Visteon Climate Control Corporation Soustava koaxiálních trubic a způsob její výroby
FR3030027A1 (fr) * 2014-12-12 2016-06-17 Cetm Echangeur thermique helicoidale a conduits concentriques, constitue par plusieurs portions helicoidales autonomes en capacite d'echange thermique
RU171543U1 (ru) * 2016-10-13 2017-06-06 Общество с ограниченной ответственностью "Прогресс" Змеевиковый теплообменник для проведения процессов теплообмена
EP3715602A1 (en) * 2019-03-27 2020-09-30 Rolls-Royce plc Heat exchanger
US11412642B2 (en) 2019-03-27 2022-08-09 Rolls-Royce Plc Heat exchanger
EP4199318A1 (en) * 2021-12-17 2023-06-21 Valeo eAutomotive Germany GmbH A heat exchanger of an electric module

Also Published As

Publication number Publication date
CN102116585A (zh) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2011079483A1 (zh) 同轴换热器
WO2017101235A1 (zh) 一种加强型螺旋管高效换热器
EP2354743A2 (en) Double-pipe heat exchanger
CN201589555U (zh) 同轴换热器
CN103629952B (zh) 管道式换热器、其制造方法以及换热设备
CN201359461Y (zh) 外绕金属小管的波纹管
CN101363697A (zh) 一种具有微细通道结构的高效换热管
CN201306953Y (zh) 一种热交换器
CN102721299A (zh) 一种阶梯式高效换热器
CN205279802U (zh) 一种加强型螺旋管高效换热器
CN203489539U (zh) 热交换器
CN105276865A (zh) 同轴螺纹管内插芯体式换热器
CN201314804Y (zh) 一种具有微细通道结构的高效换热管
CN2828706Y (zh) 涡旋型套管换热器
CN107367184A (zh) 一种管内外胀式螺旋波节管
CN203964721U (zh) 套管式换热器及具有该套管式换热器的热泵热水器
CN102022933A (zh) 绕管式换热器
WO2008099434A1 (en) Tubeless heat exchanger and method for the manufacture thereof
CN207649173U (zh) 一种微通道管道换热器
CN105277021A (zh) 同轴缠绕式换热器
WO2010078686A1 (zh) 一种换热用毛细管
CN201935605U (zh) 绕管式换热器
CN2404092Y (zh) 内外自羽管
CN105571355A (zh) 一种弹簧式套管高效防冻换热器
CN202675942U (zh) 一种阶梯式高效换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840273

Country of ref document: EP

Kind code of ref document: A1