WO2011079473A1 - 一种频率偏移估计方法和装置 - Google Patents

一种频率偏移估计方法和装置 Download PDF

Info

Publication number
WO2011079473A1
WO2011079473A1 PCT/CN2009/076371 CN2009076371W WO2011079473A1 WO 2011079473 A1 WO2011079473 A1 WO 2011079473A1 CN 2009076371 W CN2009076371 W CN 2009076371W WO 2011079473 A1 WO2011079473 A1 WO 2011079473A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
symbol sequence
frequency offset
phase difference
weighting
Prior art date
Application number
PCT/CN2009/076371
Other languages
English (en)
French (fr)
Inventor
赵哲
任震
刘涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2009/076371 priority Critical patent/WO2011079473A1/zh
Publication of WO2011079473A1 publication Critical patent/WO2011079473A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation

Definitions

  • the present invention relates to communication systems, and more particularly to a method and apparatus for frequency offset estimation in Wideband Code Division Multiple Access (WCDMA).
  • WCDMA Wideband Code Division Multiple Access
  • Interference mainly includes noise, fading and frequency offset.
  • the frequency offset is mainly composed of two parts: one part is the frequency offset caused by the inconsistent frequency of the base station (Node B) and the terminal (UE), and the other part is caused by the relative speed between the mobile station and the base station. Doppler shift.
  • the frequency of the signal at the receiving end changes. This frequency change is called the Doppler effect.
  • the Doppler effect is different in different environments: Doppler Spread in an environment with no direct line of sight (NLOS); direct signal (LOS, line)
  • NLOS direct line of sight
  • LOS direct signal
  • line The channel environment of the sight has a Doppler Shift.
  • the Doppler shift has an impact on both the base station and the terminal.
  • the impact on the base station is as follows:
  • the WCDMA base station works in the coherent demodulation detection mode.
  • the local demodulation carrier at the receiving end and the carrier of the received signal must be in phase with the same frequency.
  • the jitter of the carrier frequency will have a significant impact on the demodulation performance of the receiver. When the offset reaches a certain level, it will seriously affect the uplink access, capacity and coverage.
  • the effect on the terminal is: In order to combat the frequency jitter caused by the Doppler effect, the user terminal automatically locks the frequency of the received signal of the best serving cell through Automatic Frequency Correction (AFC) technology, and locks the frequency.
  • AFC Automatic Frequency Correction
  • the uplink signal is transmitted as a reference.
  • the AFC algorithm plays a crucial role in reducing the influence of Doppler shift and improving the demodulation performance.
  • the variance and convergence time of the frequency offset estimation are not very important.
  • the large variance of the frequency offset estimation does not have much impact on the demodulation performance, because the voice service has a lower bit rate and a higher operating point, so the variance is small; although the UPA (uplink packet access) service has a high code rate,
  • the demodulation performance can be guaranteed by retransmission.
  • IC Interference Cancellation
  • the variance and convergence time of the frequency offset estimation will seriously affect the Interference Reconstruction (IR), which will cause the IC gain to decrease, thus affecting the demodulation performance of other users. , reduce the cell capacity.
  • the depolarized pilot and the depolarized non-pilot symbols can be expressed as:
  • represents the magnitude, which is related to the channel fading through which the symbol passes.
  • S The period of a symbol, in seconds (S), ⁇ / is the residual frequency offset on the first symbol, in Hertz (Hz).
  • ⁇ /year is the current residual frequency offset value, which directly affects the frequency offset value used for compensation.
  • a ⁇ can be considered as the frequency difference between the two symbols before and after. From equations (4) and (5), when approaching 1/ 2J S , ⁇ /country will approach 0, and frequency offset compensation cannot be performed. ⁇ With this algorithm, the maximum offset value that can be compensated depends on At 1 / 2 ⁇ .
  • each symbol is very affected by noise, so it is necessary to average ⁇ / admiration over a period of time; or for a period of time
  • the ⁇ inside is accumulated; and/or the ⁇ /character is filtered to obtain a frequency offset estimation result with a small variance. After these processes, the convergence time of the frequency offset estimation will be greatly extended.
  • the technical problem to be solved by the present invention is to provide a frequency offset estimation method and apparatus, which solves the contradiction between the accuracy (variance) of frequency offset estimation and the convergence speed under low SNR.
  • the present invention provides a frequency offset estimation method, including: acquiring a plurality of consecutive pilot symbols, obtaining a first symbol sequence, and performing weighted summation on each pilot symbol in the first symbol sequence to obtain First weighting value;
  • the above method may further have the following feature, the /3 ⁇ 4 being equal to the length of the first symbol sequence.
  • the above method may further have the following feature: when the first symbol sequence and the second symbol sequence are weighted, the pilot symbols of the corresponding positions have the same weight value.
  • the first weighted value which is the second weighted value
  • imag ( ) represents the imaginary part value
  • real ( ) represents the real part value.
  • the above method may further have the following features, the method further comprising: averaging the phase differences over a period of time, or, after accumulating ⁇ )x_y( ;r in a period of time, and then accumulating the values according to the accumulation Calculating the phase difference, and/or filtering the phase difference, where ⁇ ) is the first weighting value and ⁇ ') is the second weighting value.
  • the present invention also provides a frequency offset estimating apparatus, including
  • a symbol acquisition unit configured to acquire a plurality of consecutive pilot symbols to obtain a first symbol sequence; and further configured to perform a sliding window on the basis of the first symbol sequence, and delay/3 ⁇ 4 symbols to obtain a second symbol sequence; And performing weighted summation on each pilot symbol in the first symbol sequence to obtain a first weighting value; performing weighted summation on each pilot symbol of the second symbol sequence to obtain a second weighting value; and using a frequency offset estimating unit, Calculating a phase difference between the first weighting value and the second weighting value, and performing frequency offset estimation according to the phase difference, wherein /3 ⁇ 4 is greater than or equal to 1, but does not exceed the length of the first symbol sequence.
  • the above apparatus may further have the following feature, the /3 ⁇ 4 being equal to the length of the first symbol sequence.
  • the foregoing apparatus may further have the following feature: the weighting and summing unit is configured to use the same weight value for the pilot symbols of the corresponding positions when weighting the first symbol sequence and the second symbol sequence.
  • the frequency offset estimating unit is configured to calculate a phase difference between the first weighting value and the second weighting value by using the following method:
  • ⁇ ' is the second weighted value
  • imag ( ) represents the imaginary part value
  • real ( ) represents the real part value
  • the frequency offset estimating unit is configured to average the phase difference in a period of time, or to accumulate _y(t)x ⁇ in a period of time, and then according to The accumulated values calculate the phase difference and/or filter the phase difference; wherein ⁇ ) is the first weight value and ⁇ ') is the second weight value.
  • the frequency offset estimation method and apparatus improves the convergence speed by first weighting and summing the pilot symbols and then calculating the frequency offset to ensure that the variance is small.
  • 1 is a schematic diagram of a conventional frequency offset estimation method for selecting symbols
  • FIG. 2 is a schematic diagram of a method of selecting symbols according to the present invention.
  • FIG. 3 is a schematic diagram of another method of selecting symbols in accordance with the present invention.
  • Figure 4 is a process flow diagram related to the present invention.
  • Figure 5 is a comparison of the present invention with the conventional frequency offset estimation variance
  • Figure 7 is a result of frequency offset estimation of the present invention at a low signal to noise ratio.
  • the core idea of the present invention is: After performing weighted summation on a plurality of pilot symbols, the phase difference is calculated using the weighted summation result, and the residual frequency offset is obtained according to the phase difference, thereby reducing the frequency offset estimation variance.
  • the weighting method is: performing weighted summation of contiguous pilot symbols (referred to as a first symbol sequence) to obtain a first weighting value, delaying symbols on the basis of the pilot symbols, and obtaining the guiding
  • a pilot symbol (referred to as a second symbol sequence) preceding the frequency symbol is subjected to weighted summation of the second weighting value, and a phase difference between the sum is calculated, and frequency estimation is performed based on the phase difference to obtain a residual frequency offset. Is the number of pilot symbols used for weighted summation.
  • is the weight value.
  • the weight values of the corresponding pilot symbols may be the same, that is, criz.. Of course, different weight values may also be used as needed.
  • Example ⁇ When 2,
  • a / re can be used to obtain the phase of the residual frequency offset compensation.
  • a sliding window mechanism is introduced on the basis of a plurality of symbol weighted summations.
  • the specific method is: performing weighted summation of a plurality of pilot symbols (referred to as a first symbol sequence) to obtain a first weighting value.
  • the symbols contain the first " 3 ⁇ 4 symbols” and the " 3 ⁇ 4 symbols before.” - « 3 ⁇ 4 symbols are common.
  • the symbols (referred to as the second symbol sequence) are weighted and summed to obtain a second weighted value to calculate the phase difference between y ⁇ k-(n a - « 3 ⁇ 4 ⁇ and the frequency offset is estimated according to the phase difference, and the residual frequency is obtained. Partial, where 1 ⁇ " 3 ⁇ 4 ⁇ ".
  • pilot symbols of the first symbol sequence are respectively 1 ⁇ 2 _.. y k
  • the corresponding weight values are respectively ⁇ ... ⁇
  • the weight values of the corresponding pilot symbols may be the same, that is, ⁇ may be equal to W;, equal to .
  • may be equal to W;, equal to .
  • the sliding window operation in Embodiment 2 is equivalent to the process of adding multi-symbol averaging in the frequency-level estimation of the symbol level, and is characterized in that not only does the convergence speed and the maximum supported are not reduced as compared with Embodiment 1.
  • the frequency offset also guarantees the variance of the frequency offset estimation by the averaging mechanism.
  • After obtaining ⁇ / by the method of Embodiment 1 or 2, it is also possible to average ⁇ / over a period of time, or, for a period of time; /( )x y'( - « fl ))'or; / (A)x y' ( - to accumulate; or, or for a period of time; ( ) xO ( - or ; ( ) xO ( - ( «. - after accumulating, then calculate ⁇ based on the value obtained by accumulating /, and / or filter ⁇ / to get the final frequency offset estimate.
  • the antenna data enters the descrambling and despreading module after passing through the automatic gain controller (AGC), and the multipath data after frequency offset compensation is subjected to maximum ratio combining (MRC).
  • AGC automatic gain controller
  • MRC maximum ratio combining
  • the hard decision is depolarized after the symbol polarity is obtained, and the depolarized multipath symbol will be used for channel estimation and (residual) frequency offset estimation.
  • the results of the channel estimation will be used for MRC combining, and the results of the (residual) frequency offset estimation will be used for frequency offset compensation.
  • the specific steps include:
  • Step 401 Obtain a multi-path symbol after depolarization, respectively weighting the symbols, and delaying the sum of the other n a symbols obtained by the 3 ⁇ 4 symbols to obtain ⁇ k) and
  • Step 402 using (A) and ; ten calculating the residual phase difference within a period of time, the specific calculation method may be:
  • Step 403 using the residual phase difference and the historical value, that is, the previous residual value, and filtering to obtain a residual phase (corresponding to the residual frequency offset) for compensation.
  • each residual value is calculated by several time slots or even several frames.
  • Figure 5 is a comparison of the present invention with conventional frequency offset estimation variance. It can be seen from Fig. 5 that at low SNR, the variance of the traditional frequency offset estimation is much larger than the existing algorithm. Figure 6 shows that the present invention is still able to track frequency offset well in an extremely low Ecp/Nt environment.
  • Figure 7 shows that the maximum frequency offset supported by the present invention exceeds 5000 Hz, which is sufficient for most environments.
  • the present invention also provides a frequency offset estimating apparatus, including
  • a symbol acquisition unit configured to acquire a plurality of consecutive pilot symbols to obtain a first symbol sequence; and further configured to perform a sliding window on the basis of the first symbol sequence, and delay/3 ⁇ 4 symbols to obtain a second symbol sequence; And performing weighted summation on each pilot symbol in the first symbol sequence to obtain a first weighting value; performing weighted summation on each pilot symbol of the second symbol sequence to obtain a second weighting value; and using a frequency offset estimating unit, Calculating a phase difference between the first weighting value and the second weighting value, and performing frequency offset estimation according to the phase difference, wherein /3 ⁇ 4 is greater than or equal to 1, but does not exceed the length of the first symbol sequence.
  • the 3 ⁇ 4 may be equal to the length of the first symbol sequence.
  • the weighting and summing unit is configured to use the same weight value for the pilot symbols of the corresponding positions when weighting the first symbol sequence and the second symbol sequence.
  • the frequency offset estimating unit is configured to calculate a phase difference between the first weighting value and the second weighting value by using:
  • imag ( ) represents the imaginary part value
  • real ( ) represents the real part value
  • the frequency offset estimation unit is configured to average the phase difference over a period of time, or to accumulate _yx ⁇ ⁇ in a period of time, and then calculate a phase difference according to the accumulated value, and/or The phase difference is filtered; wherein, is the first weighting value, and ⁇ ') is the second weighting value.
  • the invention greatly reduces the variance in the low SNR environment while ensuring that the residual frequency offset value supported is not too small, and at the same time ensures the convergence time in the case of using the same IIR filter coefficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明提供了一种频率偏移估计方法,包括,获取若干个连续的导频符号,得到第一符号序列,对第一符号序列中各导频符号进行加权求和,得到第一加权值;在第一符号序列基础上进行滑窗,延迟nb个符号得到第二符号序列,对第二符号序列的各导频符号进行加权求和,得到第二加权值;计算第一加权值和第二加权值的相位差,根据该相位差进行频偏估计,其中,nb大于等于1,但不超过第一符号序列的长度。本发明还提供一种频率偏移估计装置。本发明大大降低了低信噪比环境下的方差和收敛时间。

Description

一种频率偏移估计方法和装置
技术领域
本发明涉及通信系统, 具体涉及用于宽带码分多址(WCDMA ) 中的频 率偏移估计方法和装置。
背景技术
移动通信系统中, 信号发射, 传输和接收的过程中会引入干扰。 干扰主 要包括噪声, 衰落和频率偏移。 其中频率偏移主要由两部分构成: 一部分是 由于基站(Node B )与终端(UE )两者本地震荡频率不一致而产生的频率偏 移, 另一部分是由于移动台与基站间存在相对速度而引起的多普勒频移。
当终端在运动中进行通信, 特别是高速运动的情况下, 接收端的信号频 率会发生变化, 这种频率变化称为多普勒效应。 在不同的环境中多普勒效应 的表现形式不同: 在没有直射信号(NLOS, none line of sight )的环境中表现 为多普勒频语扩展 ( Doppler Spread ); 在有直射信号( LOS, line of sight ) 的 信道环境中有表现为多普勒偏移( Doppler Shift )。 多普勒偏移对基站和终端 均会产生影响。
对基站的影响为: WCDMA基站釆用相干解调检测方式工作, 接收端的 本地解调载波与其接收信号的载波必须同频同相, 载波频率的抖动会对接收 机的解调性能产生明显的影响。 当偏移达到一定程度时, 会严重影响到上行 接入, 容量和覆盖。
对终端的影响为: 为了对抗由多普勒效应而产生的频率抖动, 用户终端 通过自动频率补偿 (Automatic Frequency Correction, AFC)技术来自动锁定最佳 服务小区的接收信号频率,并将锁定的频率作为参考基准发送上行信号。 AFC 算法对于减小多普勒频移产生的影响, 提高解调性能,起到至关重要的作用。
目前常用的频偏估计算法都是基于符号间的相位差。 其特点是所支持的 最大频偏高, 然而容易受到噪声干扰, 方差偏大。 另外, 方差和收敛速度较 大的取决于滤波系数: 如果当前的频偏估计结果权重小, 那么方差也小, 然 而收敛时间会延长; 如果当前的频偏估计结果权重大, 那么收敛时间短, 然 而方差会变大。
传统的系统中, 频偏估计的方差和收敛时间并不是很重要。 频偏估计的 方差偏大并不会对解调性能带来太大的影响, 因为语音业务码率较低, 工作 点高, 因此方差小; UPA (上行分组接入)业务虽然码率高, 但是能够通过 重传保证解调性能。 然而在有干扰消除(Interference Cancellation, IC ) 的系 统中, 由于频偏估计的方差和收敛时间都会严重影响干扰重构 (Interference Reconstruction, IR ) , 导致 IC增益下降, 从而影响其它用户的解调性能, 降 低小区容量。
传统的频偏估计算法中, 去极性后的导频和去极性后的非导频符号可以 表示为:
其中 是第 个符号上的噪声。 ^代表幅度,与符号经过的信道衰落有关。 为一个符号的周期, 单位为秒(S) , Δ/ 为第 个符号上的残余频偏, 单位 为赫兹(Hz ) 。
现有计算残余频偏的方法如图 1所示, 直接釆用去极性后的符号进行计 算。 两种广为人知的计算残余频偏的方法如下:
方法 1: Δ/„ = imag ykyk_x ) ( 2 )
方法 2: Afn = tan( '^ ) = imag ykyk_x ) I real (ykyk_, ) ( 3 )
Δ/„为当前的残余频率偏移值, 这个值直接影响到用于补偿的频偏值。 将
Λ代入式(2 ) 、 ( 3 )可得:
方法 1 : Δ/„ = + n0 ( 4 ) 方法 2 : Afn =
Figure imgf000004_0001
+ n0 ( 5 )
A ^可以认为是前后两个符号间的频率差。从式(4 )和(5 )可知, 当 趋近于 1/ 2JS时, Δ/„会趋近于 0, 无法进行频偏补偿。 釆用此种算法, 能够补 偿的最大频偏值取决于 1 / 2Γ 。
在 UMTS (通用移动通信系统)中,频偏估计所用的导频符号对应的 7;为 固定值:
Γ5 =256/38400000)
因此可以被补偿的最大频偏值为:
Amax =1/2JS =1/(2* 256/3840000) = 7500(Hz) 然而, 每一个符号受噪声影响非常大, 因此需要对一段时间内的 Δ/„进行 平均; 或对一段时间内的 ^ 进行累加; 和 /或对 Δ/„进行滤波才能得到方差 较小的频偏估计结果。 经过这些处理后, 频偏估计的收敛时间将大大延长。
发明内容
本发明要解决的技术问题是提供一种频率偏移估计方法和装置, 解决了 低信噪比下频偏估计准确性(方差)与收敛速度之间的矛盾。
为了解决上述问题, 本发明提供了一种频率偏移估计方法, 包括, 获取 若干个连续的导频符号, 得到第一符号序列, 对第一符号序列中各导频符号 进行加权求和, 得到第一加权值;
在第一符号序列基础上进行滑窗, 延迟/ ¾个符号得到第二符号序列, 对 第二符号序列的各导频符号进行加权求和, 得到第二加权值;
计算第一加权值和第二加权值的相位差, 根据该相位差进行频偏估计, 其中, /¾大于等于 1, 但不超过第一符号序列的长度。
进一步地, 上述方法还可具有以下特点, 所述/ ¾等于第一符号序列的长 度。
进一步地, 上述方法还可具有以下特点, 对第一符号序列和第二符号序 列进行加权时, 对应位置的导频符号其权重值相同。
进一步地, 上述方法还可具有以下特点, 釆用如下方法计算第一加权值 和第二加权值的相位差: Δ/ =imag(y(k) D*)或者 Δ/ = imag(y(k)y(k ')* ) / real (y(k) y{k')")
其中, 是第一加权值, 是第二加权值, imag ( )表示取虚部值; real ( )表示取实部值。 进一步地, 上述方法还可具有以下特点, 所述方法还包括: 对一段时间 内的相位差进行平均, 或者, 对一段时间内的 ^ )x_y( ;r进行累加后, 再根据 累加得到的值计算相位差, 和 /或对所述相位差进行滤波, 其中, ^)是第一 加权值, ^')是第二加权值。
本发明还提供一种频率偏移估计装置, 包括,
符号获取单元, 用于获取若干个连续的导频符号, 得到第一符号序列; 还用于在第一符号序列基础上进行滑窗, 延迟/ ¾个符号得到第二符号序列; 加权求和单元, 对第一符号序列中各导频符号进行加权求和, 得到第一 加权值; 对第二符号序列的各导频符号进行加权求和, 得到第二加权值; 频偏估计单元, 用于计算第一加权值和第二加权值的相位差, 根据该相 位差进行频偏估计, 其中, /¾大于等于 1 , 但不超过第一符号序列的长度。
进一步地, 上述装置还可具有以下特点, 所述/ ¾等于第一符号序列的长 度。
进一步地, 上述装置还可具有以下特点, 所述加权求和单元, 用于对第 一符号序列和第二符号序列进行加权时, 对二者对应位置的导频符号使用相 同的权重值。
进一步地, 上述装置还可具有以下特点, 所述频偏估计单元, 用于釆用 如下方法计算第一加权值和第二加权值的相位差:
Δ/ = imag(y(k) D*)或者 Δ/ = imag(y(k)y(k ')* ) / real (y(k) y{k ')" )
其中, 是第一加权值, ^')是第二加权值, imag ( )表示取虚部值; real ( )表示取实部值。
进一步地, 上述装置还可具有以下特点, 所述频偏估计单元, 用于对一 段时间内的相位差进行平均, 或者, 对一段时间内的 _y( t)x ^ 进行累加后, 再根据累加得到的值计算相位差,和 /或对所述相位差进行滤波;其中, ^)是 第一加权值, ^')是第二加权值。
本发明提供的频率偏移估计方法和装置, 通过先将导频符号加权求和再 计算频率偏移, 在保证方差较小的情况下, 提高了收敛速度。 附图概述
图 1是传统频偏估计选择符号的方法示意图;
图 2是本发明选择符号的方法示意图;
图 3是本发明另一选择符号的方法示意图;
图 4是与本发明相关的处理流程图;
图 5是本发明与传统频偏估计方差对比的结果;
图 6是本发明在低信噪比下的频偏估计结果;
图 7是本发明在低信噪比下的频偏估计结果。
本发明的较佳实施方式
本发明通过下面结合附图的详细描述可以得到完全的解释和理解, 本发 明的特征、 性质和优点将变得更加明显。
本发明的核心思想是: 对多个导频符号进行加权求和后, 使用加权求和 后的结果计算相位差, 根据该相位差得到残余频偏, 从而降低频偏估计方差。
实施例 1
如图 2所示, 加权方法为: 将 个连续导频符号 (称为第一符号序列) 进行加权求和得到第一加权值 , 在该 个导频符号基础上延迟 个符号, 得到该 个导频符号之前的 个导频符号 (称为第二符号序列)进行加权求 和第二加权值 , 计算 和 )之间的相位差, 根据该相位差进 行频频估计, 得到残余频偏。 为用于加权求和的导频符号的个数。
计算公式如下:
y \k - na) = J wk,yk, ( 6 ) y\k)= ∑ ' (7)
其中, ^,为 的权重值。 其中, 计算第一加权值和第二加权值时, 对应 导频符号的权重值可以相同, 即 „。。 当然, 也可以根据需要使用不同 权重值。 例 ^当 =2时,
2 4
y '(2) =∑ w^ k' = wiyi + wiyi y '(4) =∑ ^'Λ' = W^ + y '(6) =∑ = wsys + w 6y6 : 其中, Wl, w3 , w5可以取相同值, w2, w4, w6可以取相同值。 利用 和 (A- w。)计算频率残差, 可以利用 Δ/ = sin ( ( x ( (A-wJ)*)或 Af = tm(y \k) x (y \k - na ))* )进行计算, 以 Δ/ = tan ( \k) x (y \k - na ))* )计算如下:
Af = tan y\k)x(y\k-na))*)
=
Figure imgf000008_0001
t (2 aTsAfres „ ) + n0 =1/2" ^
其中, A/re 可用来得到残余频偏补偿的相位。
U TS, 当 取不同的值时, Δ/ 不同, 如表 1所示。
表 1 «。和 关系
Figure imgf000008_0002
实施例 2
本实施例, 在多个符号加权求和的基础上引入滑窗机制, 具体方法是: 将 个导频符号 (称为第一符号序列)进行加权求和得到第一加权值 将该《。个符号包含的前《¾个符号及该《¾个符号前的《。 - «¾个符号共《。个符号 (称为第二符号序列) 进行加权求和得到第二加权值 计算 y\k-(na - «¾》和 之间的相位差,根据该相位差进行频偏估计,得到残余频 偏, 其中, 1≤ "¾ < "。。
假设第一符号序列各导频符号分别为½_ …. yk, 其对应的权重值分别 为^…^,第二符号序列各导频符号分别为; 其对应的权值 分别为 , 则 y\k) = wi yk-na+i + · ·+υ;
y k - ("。 - "¾》 = Λ— 2"。+"6+1 +… + W"。 Λ―"。 +"6
其中, 计算第一加权值和第二加权值时, 对应导频符号的权重值可以相 同, 即 ^可以等于 W;, 等于 。 当然, 也可以根据需要使用不 同权重值。
如果对应导频符 :
Figure imgf000009_0001
k
k =k-na+\
利用第一加权值 \k)和第二加权值 \k - (na - nh》计算相位差, 可以利用
Af = s (y'(k)x(y'(k-(na-nb))y)或 Δ/ = tan ( (A)x( (A -("。- )))*)进行计算, 以 Δ/ = tm{y\k) {y\k-{na)))*)计算如下:
¥ = tan( ' \k) x (y \k - (na - nb )))* )
Figure imgf000009_0002
4^ =1/2 ^ = 7500^)
其中, „=4^_4/ ("。- ), 可用来得到频偏补偿的相位。
实施例 2中的滑窗操作相当于在符号级的频偏估计中加入了多符号平均 的过程, 与实施例 1相比, 其特点是不仅没有降低收敛速度和所支持的最大 频偏, 也通过平均机制保证了频偏估计的方差。
釆用实施例 1或 2中的方法得到 Δ/后,还可以对一段时间内的 Δ/进行平 均, 或者, 或对一段时间内的; /( )x y'( -«fl))'或;/ (A)x y'( - 进行累 加; 或者, 或对一段时间内的; ( )xO ( - 或; ( )xO ( - («。- 进行累 加后, 再根据累加得到的值计算 Δ/, 和 /或对 Δ/进行滤波, 从而得到最终的 频偏估计值。
图 4是与本发明相关的系统框图及流程图, 通过滑窗方式进行计算。 天线数据经过自动增益控制器 ( AGC )后进入解扰解扩模块, 频偏补偿 后的多径数据进行最大比合并(MRC) 。 硬判决得到符号极性后对多径符号 进行去极性, 去极性后的多径符号将用于进行信道估计和(残余)频偏估计。 信道估计的结果将用于 MRC合并, (残余 )频偏估计的结果将用于频偏补 偿。 具体步骤包括:
步骤 401, 获取去极性后的多径符号, 分别对 个符号, 以及延迟《¾个符 号得到的另外 na个符号进行加权求和得到 \k)和
具体获取方法和计算方法参见实施例 1和实施例 2。
步骤 402, 利用 (A)与; 十算一段时间内残余的相位差, 具体计算 方法可为:
方法 1: Afn = imag(yky \k _"。)*)
方法 2: Afn = tm(yky \k-na)") = imag(yky \k-n )l real (yky \k-na)")
步骤 403, 利用残余相位差与历史值, 即前一残差值, 经过滤波后得到 用于补偿的残余相位(对应残余频偏) 。
一般每个残差值由几个时隙甚至几帧计算得到。
图 5是本发明与传统频偏估计方差对比的结果。 由图 5可以看出, 在低 信噪比下, 传统频偏估计的方差远大于现有算法。 图 6显示出, 在极低的 Ecp/Nt的环境下, 本发明仍然能够很好的跟踪频 偏。
图 7显示出, 本发明所支持的最大频偏超过 5000Hz, 能够满足绝大多数 的环境。
本发明还提供一种频率偏移估计装置, 包括,
符号获取单元, 用于获取若干个连续的导频符号, 得到第一符号序列; 还用于在第一符号序列基础上进行滑窗, 延迟/ ¾个符号得到第二符号序列; 加权求和单元, 对第一符号序列中各导频符号进行加权求和, 得到第一 加权值; 对第二符号序列的各导频符号进行加权求和, 得到第二加权值; 频偏估计单元, 用于计算第一加权值和第二加权值的相位差, 根据该相 位差进行频偏估计, 其中, /¾大于等于 1 , 但不超过第一符号序列的长度。 所 述 ¾可以等于第一符号序列的长度。
所述加权求和单元, 用于对第一符号序列和第二符号序列进行加权时, 对二者对应位置的导频符号使用相同的权重值。
所述频偏估计单元, 用于釆用如下方法计算第一加权值和第二加权值的 相位差:
Δ/ = imag(y(k) D*)或者 Δ/ = imag(y(k)y(k ')* ) / real (y(k) y{k ')" )
其中, 是第一加权值, 是第二加权值, imag ( )表示取虚部值; real ( )表示取实部值。
其中, 所述频偏估计单元, 用于对一段时间内的相位差进行平均, 或者, 对一段时间内的 _y x ^ Ύ进行累加后, 再根据累加得到的值计算相位差, 和 /或对所述相位差进行滤波; 其中, 是第一加权值, ^')是第二加权值。
工业实用性
本发明在保证所支持的残余频偏值不过小的情况下, 大大降低了低信噪比 环境下的方差, 同时可以保证在釆用相同 IIR滤波系数的情况下的收敛时间。

Claims

权 利 要 求 书
1、 一种频率偏移估计方法, 包括,
获取若干个连续的导频符号, 得到第一符号序列, 对第一符号序列中各 导频符号进行加权求和, 得到第一加权值;
在第一符号序列基础上进行滑窗, 延迟/ ¾个符号得到第二符号序列, 对 第二符号序列的各导频符号进行加权求和, 得到第二加权值;
计算第一加权值和第二加权值的相位差, 根据该相位差进行频偏估计, 其中, /¾大于等于 1 , 但不超过第一符号序列的长度。
2、 如权利要求 1所述的方法,其中,所述/ ¾等于第一符号序列的长度。
3、 如权利要求 1所述的方法,其中,对第一符号序列和第二符号序列 进行加权时, 对应位置的导频符号其权重值相同。
4、 如权利要求 1所述的方法,其中,釆用如下方法计算第一加权值和 第二加权值的相位差:
Δ/ = imag(y(k) D*)或者 Δ/ = imag(y(k)y(k ')* ) / real (y(k) y{k ')" )
其中, 是第一加权值, 是第二加权值, imag ( )表示取虚部值; real ( )表示取实部值。
5、 如权利要求 1或 4所述的方法, 其中, 所述方法还包括: 对一段时 间内的相位差进行平均, 或者, 对一段时间内的 ^)x_y(W进行累加后, 再根 据累加得到的值计算相位差, 和 /或对所述相位差进行滤波, 其中, ^)是第 一加权值, ^')是第二加权值。
6、 一种频率偏移估计装置, 包括,
符号获取单元, 用于获取若干个连续的导频符号, 得到第一符号序列; 还用于在第一符号序列基础上进行滑窗, 延迟/ ¾个符号得到第二符号序列; 加权求和单元, 对第一符号序列中各导频符号进行加权求和, 得到第一 加权值; 对第二符号序列的各导频符号进行加权求和, 得到第二加权值; 频偏估计单元, 用于计算第一加权值和第二加权值的相位差, 根据该相 位差进行频偏估计, 其中, /¾大于等于 1 , 但不超过第一符号序列的长度。
7、 如权利要求 6所述的装置,其中,所述/ ¾等于第一符号序列的长度。
8、 如权利要求 6所述的装置, 其中, 所述加权求和单元, 用于对第一 符号序列和第二符号序列进行加权时, 对二者对应位置的导频符号使用相同 的权重值。
9、 如权利要求 6所述的装置, 其中, 所述频偏估计单元, 用于釆用如 下方法计算第一加权值和第二加权值的相位差:
Δ/ = imag(y(k) D*)或者 Δ/ = imag(y(k)y(k ')* ) / real (y(k) y{k ')" )
其中, 是第一加权值, 是第二加权值, imag ( )表示取虚部值; real ( )表示取实部值。
10、 如权利要求 6或 9所述的装置, 其中, 所述频偏估计单元, 用于对 一段时间内的相位差进行平均,或者,对一段时间内的 _y(t)x ^ 进行累加后, 再根据累加得到的值计算相位差,和 /或对所述相位差进行滤波;其中, ^)是 第一加权值, ^')是第二加权值。
PCT/CN2009/076371 2009-12-31 2009-12-31 一种频率偏移估计方法和装置 WO2011079473A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/076371 WO2011079473A1 (zh) 2009-12-31 2009-12-31 一种频率偏移估计方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/076371 WO2011079473A1 (zh) 2009-12-31 2009-12-31 一种频率偏移估计方法和装置

Publications (1)

Publication Number Publication Date
WO2011079473A1 true WO2011079473A1 (zh) 2011-07-07

Family

ID=44226151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076371 WO2011079473A1 (zh) 2009-12-31 2009-12-31 一种频率偏移估计方法和装置

Country Status (1)

Country Link
WO (1) WO2011079473A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107679014A (zh) * 2017-10-09 2018-02-09 中国电子科技集团公司第二十研究所 一种基于内点罚函数和相邻相关数据段的频偏估计方法
CN109633709A (zh) * 2018-12-28 2019-04-16 四川安迪科技实业有限公司 一种卫星通信系统中实用高效的频偏估计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007078101A1 (en) * 2005-12-30 2007-07-12 Posdata Co., Ltd. Apparatus and method for estimating carrier frequency offset in communication terminal, and communication terminal for performing the method
CN101212440A (zh) * 2006-12-29 2008-07-02 大唐移动通信设备有限公司 一种载波频率偏移的估计方法及装置
US20090135978A1 (en) * 2007-11-28 2009-05-28 Chi-Tung Chang Apparatus and method for estimating and compensating sampling frequency offset
CN101471688A (zh) * 2007-12-25 2009-07-01 安国国际科技股份有限公司 取样频率偏移估计与补偿装置与方法
US20090268850A1 (en) * 2008-04-23 2009-10-29 Newport Media, Inc. Coarse Frequency Offset Estimation in ISDB Receivers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007078101A1 (en) * 2005-12-30 2007-07-12 Posdata Co., Ltd. Apparatus and method for estimating carrier frequency offset in communication terminal, and communication terminal for performing the method
CN101212440A (zh) * 2006-12-29 2008-07-02 大唐移动通信设备有限公司 一种载波频率偏移的估计方法及装置
US20090135978A1 (en) * 2007-11-28 2009-05-28 Chi-Tung Chang Apparatus and method for estimating and compensating sampling frequency offset
CN101471688A (zh) * 2007-12-25 2009-07-01 安国国际科技股份有限公司 取样频率偏移估计与补偿装置与方法
US20090268850A1 (en) * 2008-04-23 2009-10-29 Newport Media, Inc. Coarse Frequency Offset Estimation in ISDB Receivers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107679014A (zh) * 2017-10-09 2018-02-09 中国电子科技集团公司第二十研究所 一种基于内点罚函数和相邻相关数据段的频偏估计方法
CN107679014B (zh) * 2017-10-09 2020-09-22 中国电子科技集团公司第二十研究所 一种基于内点罚函数和相邻相关数据段的频偏估计方法
CN109633709A (zh) * 2018-12-28 2019-04-16 四川安迪科技实业有限公司 一种卫星通信系统中实用高效的频偏估计方法
CN109633709B (zh) * 2018-12-28 2020-05-15 四川安迪科技实业有限公司 一种卫星通信系统中实用高效的频偏估计方法

Similar Documents

Publication Publication Date Title
US9755785B2 (en) Receiver for wireless communication network with extended range
US7668076B2 (en) Multi-user receiving apparatus converting SC-FDMA received signals of all users to signals in a frequency domain commonly
KR101209135B1 (ko) 파일럿 시퀀스 신호를 검색하는 방법, 설비 및 시스템
US20040240531A1 (en) Communication receiver with hybrid equalizer
US9819388B2 (en) DSL noise cancellation
US7272176B2 (en) Communication receiver with an adaptive equalizer
WO2002023742A9 (en) Apparatus for and method of adapting a radio receiver using control functions
EP1941688A1 (en) Apparatus and methods for reducing channel estimation noise in a wireless transceiver
US20080186948A1 (en) Method and device for frame synchronization and coarse frequency offset estimation (cfe)
JP2002534844A (ja) モバイル無線システムにおける適応等化技法の改良された方法
WO2010094191A1 (zh) Td-scdma系统中多普勒频移估计和补偿的方法和终端
WO2008047776A1 (fr) Procédé et dispositif de réception
WO2005006779A2 (en) Unbiased signal to interference ratio in wireless communications devices and methods therefor
EP2371099A1 (en) Method and apparatus for receiver frequency error compensation
CN111614593A (zh) 一种ofdm系统抗单音干扰的同步方法
WO2011079473A1 (zh) 一种频率偏移估计方法和装置
Hafeez et al. Co-channel interference cancellation for D-AMPS hand set
EP2039093A1 (en) Channel impulse response estimate using search window
KR101231174B1 (ko) 수신기의 자동 주파수 제어 시스템
JP5628160B2 (ja) 干渉存在下のcdmaシステムにおける信頼度重み付けのための方法及び装置
KR101683937B1 (ko) Umts 통신 네트워크용 수신기 내의 주파수 오프셋의 추정을 계산하기 위한 프로세스, umts 통신 시스템용 수신기 및 umts 통신 네트워크용 휴대폰
JP4910952B2 (ja) 受信機および受信方法
CN101610100A (zh) 下行信号处理方法及装置
Tsai et al. MLSD coupled with LMMSE channel estimation for OFDM in time-variant channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852758

Country of ref document: EP

Kind code of ref document: A1