WO2011078639A2 - Obtención de grafeno vía oxidación en fase acuosa - Google Patents

Obtención de grafeno vía oxidación en fase acuosa Download PDF

Info

Publication number
WO2011078639A2
WO2011078639A2 PCT/MX2010/000152 MX2010000152W WO2011078639A2 WO 2011078639 A2 WO2011078639 A2 WO 2011078639A2 MX 2010000152 W MX2010000152 W MX 2010000152W WO 2011078639 A2 WO2011078639 A2 WO 2011078639A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
graphite
exfoliation
oxidation
water
Prior art date
Application number
PCT/MX2010/000152
Other languages
English (en)
French (fr)
Other versions
WO2011078639A3 (es
Inventor
Erasto Armando Zaragoza Contreras
Sergio Gabriel Flores Gallardo
Rigoberto Ibarra Gomez
Claudia Alejandra Hernandez Escobar
Original Assignee
Centro De Investigacion En Materiales Avanzados, S.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigacion En Materiales Avanzados, S.C. filed Critical Centro De Investigacion En Materiales Avanzados, S.C.
Publication of WO2011078639A2 publication Critical patent/WO2011078639A2/es
Publication of WO2011078639A3 publication Critical patent/WO2011078639A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation

Definitions

  • the present invention relates to the method of oxidation, intercalation and exfoliation of graphite (G) to obtain graphene sheets or nanometric plates.
  • This material is a semiconductor that can operate at nanometer scale and at room temperature, with properties that no other semiconductor offers and everything points to the possibility of creating new miniaturized electronic devices unsuspected with this material, being able to quickly approach the promising quantum computation, so that, predictably, all civilization will be favored.
  • Graphene is a material obtained from graphite, with the particularity that the first consists only of one of the sheets or plates that make up the second. That is, and to be located in the nanometric order to which we are referring: the graphene sheet is the thickness of "an"atom; regardless of the shapes and structures that can be acquired (for example, as nanotubes, if the sheet is rolled in the form of a cylinder, or as fullerenes, if the sheet is rolled up in the form of a balloon, or how many of these layers can be superimposed or combined to its applications and industrial uses
  • Graphene is derived primarily from an interleaving of graphite that can be converted to flexible graphite or graphene nanometer plates (PNG) .
  • a PNG is composed of a flat sheet of graphene or multiple flat sheets of stacked graphene and linked to each other
  • Each graphene plane also known as a graphene sheet or basal plane, comprises a two-dimensional hexagonal structure of carbon
  • the thickness of a PNG is 100 nanometers (nm) or smaller, being as thin as 0.34 nm for a single PNG sheet.
  • the length and width of a PNG are typically between 1 and 2 microns, but they could be longer or shorter. For certain applications, both the length and width must be less than 1 meter.
  • the so-called “heat method” has been used, which consists in applying a folded "adhesive tape" to the two ends of the workpiece. graphite, and then separating it and repeating the process several times until obtaining a single layer. All this (adhesive tape included) on a nanometric scale.
  • Graphene is a member of a broader family of structures in which carbon atoms join in flat sheets, forming a hexagonal honeycomb (with an atom in each vertex). Placed many honeycombs one on another, it has graphite.
  • the electrons interact with the graphene honeycomb and can move through hexagonal cells, at a speed only four hundred times lower than the speed of light, much higher than the usual electrons in an ordinary conductor, which is enough for exhibit relativistic behaviors.
  • electrons maintain this velocity even at very low temperatures by behaving as if they had no resting mass. Therefore, in order to study the physics of these electrons, it is necessary to use the Dirac equation for mass-free fermions.
  • Graphene acting as a stable and two-dimensional semiconductor allows electrons to move freely along the path that is most convenient, not attached to a straight path as in conventional transistors based on the semiconductor capabilities of silicon, which is used to create tiny tubes by where the electric current flows.
  • graphene electrons cannot be isolated in areas where they cannot leave.
  • graphene is a semiconductor that can operate at a nanometric scale and at room temperature, with properties that no other semiconductor offers and everything suggests that new miniaturized electronic devices unsuspected with this material can be created, allowing us to quickly approach the promising computing quantum, so, predictably all of civilization will be favorably affected.
  • US Patent Application 2008/0258359 describes a method for producing sheets or plates on a nanometric scale with thickness less than 100 nm; These plates are called graphenes.
  • the exfoliation of the plates is performed in aqueous medium with the assistance of ultrasound or some other method that provides high cutting efforts.
  • the addition of a surfactant is decisive to maintain the separation of the plates.
  • US patent application 2009/0028778 describes a process for graphite exfoliation to produce graphene plates or graphite nanogaleras.
  • the method comprises oxidation using carboxylic acids and hydrogen peroxide.
  • the plates thus obtained are in a thickness less than 30 nm.
  • US Patent 7,071,258 describes a process for obtaining graphene plates nanometric scale.
  • Graphene plates comprise from one sheet or multiplicity of graphite sheets.
  • Graphite is composed of a two-dimensional hexagonal network of carbon atoms and the plates have a magnitude of length, width and thickness of at least one of them less than 100 nm.
  • the production process comprises the following steps: a) partial or complete carbonization of a polymer precursor or heat treatment of petroleum or tar pitch to produce a polymeric carbon containing crystallites of micro and nanometric graphite scale, where each crystallite comprises a sheet or several flat sheets of graphite; b) exfoliation of crystallites in polymeric carbon; c) mechanical submission of polymeric carbon containing graphite exfoliated crystallites.
  • United States patent application 2005/0271574 describes a process for the production of graphene plates where each plate comprises from a sheet or multiplicity of graphite sheets.
  • the process : a) Provides a powder of fine graphite particles comprising graphite crystallites corresponding to a sheet or normally multiplicity of joined flat sheets of graphite; b) exfoliation of crystallites of graphites; and c) submission of mechanical wear in order to reduce at least one dimension of the particles on a nanometric scale, less than 100 nm.
  • Figure 1 is a graphical representation of unilayered graphene.
  • Figure 2 is a graphical representation of multilayer graphene.
  • Figure 3 is a scanning electron microscope micrograph showing graphene sheets or plates obtained by the inventors of this work, using the method of the present invention from commercial graphite.
  • Figure 4 is a micrograph with the thickness dimensions of graphene nanometer sheets or plates obtained during the development of the experimentation by the method of the present invention from commercial graphite.
  • Figure 5 is a scanning electron microscope micrograph showing graphene sheets or plates obtained by the method of the present invention from expanded graphite. Detailed description of the invention
  • the present invention relates to the method of oxidation, intercalation and exfoliation of commercial graphite or any kind of graphite (G) for obtaining graphene sheets or nanometric plates.
  • Said sheets or plates can be constituted in a thickness range between 0.34 to 100 nm, and with variable length and width, being able to reach nanometer magnitudes up to microns, the thickness dimension being more important as shown in Figure 4.
  • the material of heading is commercial graphite; however, expanded graphite or any other type can also be used.
  • an inorganic oxidizing agent of persulfate type also known as peroxydisulfate
  • metallic counterion of sodium (Na + ), potassium (K + ) or ammonium (NH4 + ) is used.
  • the oxidizing agent (AO) is used in a weight ratio to graphite (AO: G) from 0.1: 1 to 20: 1 weight / weight, preferably at a ratio of 1: 1 to 8: 1 weight / weight
  • Both materials may or may not be dry premixed before being integrated into a volume of water of 10 to 200 parts by weight relative to the weight of oxidizing agent; preferably from 25 to 50 parts by weight of water with respect to the weight of oxidizing agent is used.
  • the mixture produced is subjected to ultrasound for a time of 20 to 240 min, preferably for 60 to 120 min.
  • the sonification equipment can be a bath or a device with a lance, therefore, the frequency of sonification to perform the exfoliation can vary, depending on the equipment.
  • An intensive mixing device is also feasible to be used to facilitate exfoliation, although the use of ultrasound is more efficient.
  • Other methods such as the use of ball mills or mechanical wear may also be feasible for carrying out said process.
  • the oxidation is carried out within a temperature range of 15 to 150 ° C, preferably 30 to 70 ° C.
  • a surfactant is used, which can be of the anionic, cationic or non-ionic type.
  • the use of an anionic compound such as sodium dodecylbenzene sulphonate, sodium lauryl ether sulfate, sodium dodecyl sulfate, or any other preferably water soluble is recommended.
  • the concentration of the surfactant is in a concentration range of 1x10 " to 10 weight / weight with respect to water; preferably a weight / weight concentration of surfactant of lxl O " 3 to 0.1 with respect to the water content is used.
  • the method carried out step by step is the following: a) Graphite is placed in a container with an inorganic oxidizing agent of persulfate type (also known as peroxidi sulfate) with metallic counterion of sodium (Na + ), potassium (K + ) or ammonium (NH4 + ).
  • the oxidizing agent (AO) is used in a weight ratio to graphite (AO: G) from 0.1: 1 to 20: 1 weight / weight, preferably at a ratio of 1: 1 to 8: 1 weight / weight.
  • Both materials may or may not be dry premixed.
  • c) The material of a) is integrated at a volume of water of 10 to 200 parts by weight with respect to the weight of oxidizing agent; preferably from 25 to 50 parts by weight of water with respect to the weight of oxidizing agent is used.
  • the mixture produced in c) is subjected to ultrasound for a time of 20 to 240 min, preferably for 60 to 120 min.
  • the sonification equipment can be a bath or a device with a lance, therefore, the frequency of sonification to perform the exfoliation can vary, depending on the equipment.
  • An intensive mixing device is also feasible to be used to facilitate exfoliation, although the use of ultrasound is more efficient.
  • Other methods such as the use of ball mills or mechanical wear may also be feasible for carrying out said process.
  • the oxidation is carried out within a temperature range of 15 to 150 ° C, preferably 30 to 70 ° C.
  • the oxidation is carried out within a temperature range of 15 to 150 ° C, preferably 30 to 70 ° C.
  • a surfactant which can be of the ammonium, cationic or nonionic type.
  • an anionic compound such as sodium dodecylbenzene sulphonate, sodium lauryl ether sulfate, sodium dodecyl sulfate, or any other preferably water soluble is recommended.
  • the concentration of the surfactant is in a concentration range of 1x10 " to 10% weight / weight with respect to water; preferably a weight / weight concentration of surfactant of 1x10 " to 0.1 with respect to the water content is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La presente invención describe el tratamiento de oxidación, intercalación y exfoliación de grafito estándar o grafito expandido, mediante agentes oxidantes inorgánicos del tipo persulfato de amonio, potasio o sodio, en medio acuoso. El producto de este tratamiento, de acuerdo a análisis de microscopía electrónica son láminas o placas nanométricas de grafeno con espesores menores de 100 nm.

Description

Obtención de grafeno vía oxidación en fase acuosa Objeto de la invención
La presente invención se relaciona con el método de oxidación, intercalación y exfoliación de grafito (G) para la obtención de láminas o placas nanométricas de grafeno. Este material es un semiconductor que puede operar a escala nanométrica y a temperatura ambiente, con propiedades que ningún otro semiconductor ofrece y todo apunta a que se podrán crear nuevos dispositivos electrónicos miniaturizados insospechados con este material, pudiéndonos acercar rápidamente a la prometedora computación cuántica, por lo que, previsiblemente toda la humanidad se verá favorecida.
Aunque la realidad de sus aplicaciones no se evidenciará hasta que aparezcan los primeros productos comerciales, su importancia ya es enorme en la física fundamental, porque gracias al nuevo material, los fenómenos relativísticos cuánticos, algunos de ellos no observables en la física de alta energía, pueden ahora reproducirse y probarse en experimentos de laboratorio relativamente sencillos.
Antecedentes
El grafeno es un material obtenido a partir del grafito, con la particularidad de que el primero consiste sólo en una de las láminas o placas que conforman al segundo. Es decir, y para ubicarse en el orden nanométrico al que nos estamos refiriendo: la lámina de grafeno tiene el grosor de "un" átomo; independientemente de las formas y estructuras que pueda adquirir (por ejemplo, como nanotubos, si la lámina se enrolla en forma de cilindro, o como fullerenos, si la lámina se enrolla en forma de balón, o cuántas de esas capas puedan superponerse o combinarse para sus aplicaciones y usos industriales. El grafeno se deriva primeramente de una intercalación del grafito que puede ser convertido a grafito flexible o placas nanométricas de grafeno (PNG). Un PNG está compuesto de una hoja plana de grafeno o múltiples hojas planas de grafeno apiladas y enlazadas unas a otras. Cada plano de grafeno, también conocido como una hoja de grafeno o plano basal, comprende una estructura de dos dimensiones hexagonal de átomos de carbono. Cada placa de grafeno tiene una longitud y anchura paralelo al plano del grafito, mientras que su espesor es ortogonal al mismo plano. Por definición, el espesor de un PNG es de 100 nanometros (nm) o más pequeño, siendo tan delgada como 0.34 nm para una sola hoja de PNG. La longitud y anchura de un PNG son típicamente entre 1 y 2 mieras, pero podrían llegar a ser más largas o cortas. Para ciertas aplicaciones, tanto la longitud y la anchura deberán ser menores a 1 miera. Para obtener las láminas o placas individuales de grafeno a partir del grafito previamente frotado sobre una lámina de silicio se ha venido utilizando el llamado "método del celo", que consiste en aplicar una "cinta adhesiva" doblada a los dos extremos de la pieza de grafito, y después separándola y repitiendo el proceso varias veces hasta la obtención de una única capa. Todo ello (cinta adhesiva incluida) a escala nanométrica. Para su producción industrial se continúan investigando y desarrollando métodos obviamente distintos al del "celo" y, dada la cantidad de nuevas potenciales aplicaciones que día a día se plantean para el grafeno y las extraordinarias propiedades del mismo que una y otra vez se descubren o se confirman, se espera que pronto pueda hacerse a gran escala y bajo costo. Las aplicaciones del grafeno, algunas aún potenciales y otras llevadas ya a la realidad y la práctica, incluyen desde sus usos electrónicos, dadas sus extraordinarias propiedades conductoras y semiconductoras, hasta la futura construcción de ascensores espaciales, pasando por la fabricación de corazas humanas en el ámbito de la seguridad; por ejemplo, un chaleco antibalas de una flexibilidad sólo comparable a su extrema resistencia, y tan fino como el papel.
La industria de semiconductores, uno de los campos donde el material parece ser más prometedor, tiene la intención de construir ordenadores mucho más rápidos que los actuales mediante el desarrollo de microprocesadores con transistores de grafeno. Precisamente uno de los principales impedimentos en la construcción de microprocesadores es la presión, ya que los materiales usados para fabricar los transistores no sólo deben tener excelentes propiedades eléctricas, "sino que también deben ser capaces de sobrevivir a la tensión a que se ven sometidos durante el proceso de fabricación y al calentamiento generado por repetidas operaciones. El proceso utilizado para estampar conexiones eléctricas metálicas en los microprocesadores, por ejemplo, ejerce una tensión que puede provocar el fallo de los chips."
El grafeno es un miembro de una familia más amplia de estructuras en las que los átomos de carbono se unen en láminas planas, formando un panal de abejas hexagonal (con un átomo en cada vértice). Situados muchos panales uno sobre otro, se tiene grafito. Los electrones interaccionan con el panal del grafeno y se pueden mover por las celdas hexagonales, a una velocidad sólo cuatrocientas veces inferior a la velocidad de la luz, muy superior a la usual de los electrones en un conductor ordinario, lo que es suficiente para que exhiban comportamientos relativistas. Además, los electrones mantienen esta velocidad incluso a muy bajas temperaturas comportándose como si no tuviesen masa en reposo. Por ello, para poder estudiar la física de estos electrones es necesario utilizar la ecuación de Dirac para fermiones sin masa. El paso de los electrones (electricidad) por el grafeno origina un efecto Hall cuántico que es imprescindible para su comportamiento como semiconductor. Pero mientras que otros semiconductores sólo presentan este efecto a temperaturas muy bajas, el grafeno lo mantiene bien incluso a temperatura ambiente, lo que le convierte en un excelente semiconductor y su conductividad eléctrica no decae por debajo de un valor mínimo, incluso cuando no hay electrones libres en el grafeno. Este resultado es completamente contra intuitivo pues en cualquier otro material la conductividad eléctrica desaparece cuando no hay cargas.
El grafeno, actuando como semiconductor estable y bidimensional permite que los electrones se muevan libremente por el camino que más convenga, no ceñidos a un camino recto como en los transistores convencionales basados en las capacidades semiconductoras del silicio, que es empleado para crear pequeñísimos tubos por donde fluye la corriente eléctrica. Además, al contrario que en otros sistemas bidimensionales que tengan pequeñas impurezas, en el grafeno los electrones no se pueden quedar aislados en zonas donde no puedan salir. En resumen, el grafeno es un semiconductor que puede operar a .escala nanométrica y a temperatura ambiente, con propiedades que ningún otro semiconductor ofrece y todo apunta a que se podrán crear nuevos dispositivos electrónicos miniaturizados insospechados con este material, pudiéndonos acercar rápidamente a la prometedora computación cuántica, por lo que, previ siblemente toda la humanidad se verá favorablemente afectada. Aunque la realidad de sus aplicaciones no se evidenciará hasta que aparezcan los primeros productos comerciales, su importancia es ya enorme en la física fundamental porque gracias al nuevo material los fenómenos relativísticos cuánticos, algunos de ellos no observables en la física de alta energía, pueden ahora reproducirse y probarse en experimentos de laboratorio relativamente sencillos. Actualmente existen algunas patentes en las que se describen métodos para la obtención de placas de grafeno nanométricas, dentro de las que se pueden citar:
La solicitud de patente de los Estados Unidos 2008/0258359 describe un método para producir láminas o placas en escala nanométrica con espesor menor a los 100 nm; a estas placas se les denomina grafenos. La exfoliación de las placas se realiza en medio acuoso con la asistencia de ultrasonido o algún otro método que proporcione altos esfuerzos de corte. La adición de un surfactante es determinante para mantener la separación de las placas. Una vez separadas las placas en medio acuoso es posible generar un compuesto polimérico mediante la adición de monómero o prepolímeros. La solicitud de patente de los Estados Unidos 2009/0028778 describe un proceso para exfoliación de grafito para producir placas de grafeno o nanogaleras de grafito. El método comprende una oxidación utilizando ácidos carboxílicos y peróxido de hidrógeno. Las placas así obtenidas se encuentran en un espesor menor a los 30 nm.
La patente de los Estados Unidos 7,071,258 describe un proceso para la obtención de placas de grafeno escala nanométrica. Las placas de grafeno comprenden desde una hoja o multiplicidad de hojas de grafito. El grafito esta compuesto de una red hexagonal de dos dimensiones de átomos de carbono y las placas tienen una magnitud de longitud, anchura y espesor de por lo menos uno de ellos menor a 100 nm. El proceso de producción comprende los siguientes pasos: a) carbonización parcial o completa de un precursor polimérico o tratamiento térmico del petróleo o brea de alquitrán para producir un carbón polimérico conteniendo cristalitos de escala micro y nanométrico de grafito, donde cada cristalito comprende una hoja o varias hojas planas de grafito; b) exfoliación de los cristalitos en el carbón polimérico; c) sometimiento mecánico del carbón polimérico que contiene cristalitos exfoliados de grafito. La solicitud de patente de los Estados Unidos 2005/0271574 describe un proceso para la producción de placas de grafenos donde cada placa comprende desde una hoja o multiplicidad de hojas de grafito. El proceso: a) Proporciona un polvo de partículas finas de grafito que comprenden cristalitos de grafito correspondientes a una hoja o normalmente multiplicidad de hojas planas de grafito unidas; b) exfoliación de cristalitos de grafitos; y c) sometimiento de desgaste mecánico con el objeto de reducir al menos una dimensión de las partículas a escala nanométrica, menor a 100 nm.
Breve descripción de las figuras
La Figura 1 es una representación gráfica de grafeno unicapa. La Figura 2 es una representación gráfica de grafeno multicapa.
La Figura 3 es una micrografía de microscopio electrónico de barrido que muestra láminas o placas de grafeno obtenidas por los inventores de este trabajo, usando el método de la presente invención a partir de grafito comercial.
La Figura 4 es una micrografía con las dimensiones en espesor de las láminas o placas nanométricas de grafeno obtenidas durante el desarrollo de la experimentación por el método de la presente invención a partir de grafito comercial.
La Figura 5 es una micrografía de microscopio electrónico de barrido que muestra láminas o placas de grafeno obtenidas por el método de la presente invención a partir de grafito expandido. Descripción detallada de la invención
La presente invención se relaciona con el método de oxidación, intercalación y exfoliación de grafito comercial o cualquier clase de grafito (G) para la obtención de láminas o placas nanométricas de grafeno.
Dichas láminas o placas pueden constituirse en un intervalo de espesor entre 0.34 hasta 100 nm, y con longitud y anchura variable pudiendo llegar a magnitudes de nanómetros hasta mieras, siendo más importante la dimensión del espesor como se muestran en la Figura 4. El material de partida, como se mencionó arriba, es grafito comercial; sin embargo, también puede utilizarse grafito expandido o de cualquier otro tipo.
Para la oxidación se utiliza un agente oxidante inorgánico de tipo persulfato (también conocido como peroxidisulfato) con contraión metálico de sodio (Na+), potasio (K+) o amonio (NH4+). El agente oxidante (AO) se utiliza en una proporción en peso respecto al grafito (AO:G) desde 0.1 :1 hasta 20:1 peso/peso, preferentemente a una relación de 1 : 1 a 8: 1 peso/peso. Ambos materiales se pueden o no premezclar en seco antes de integrarse a un volumen de agua de 10 a 200 partes en peso respecto al peso de agente oxidante; preferentemente se utiliza de 25 a 50 partes en peso de agua respecto al peso de agente oxidante. La mezcla producida es sometida a ultrasonido por un tiempo de 20 a 240 min, de preferencia durante 60 a 120 min. El equipo de sonificación puede ser un baño o un dispositivo con lanza, por tanto, la frecuencia de sonificación para realizar la exfoliación puede ser variable, dependiendo del equipo.
Un dispositivo mezclador intensivo es también factible de utilizarse para facilitar la exfoliación, aunque el uso de ultrasonido es más eficiente. Otros métodos como el empleo de molinos de bolas o el desgaste mecánico también pueden ser factibles para la realización de dicho proceso.
La oxidación se lleva a cabo dentro de una gama de temperaturas de 15 a 150 °C, preferentemente de 30 a 70 °C. Para facilitar la intercalación y exfoliación del grafito se utiliza un surfactante, que puede ser del tipo aniónico, catiónico o no-iónico. Se recomienda el uso de un compuesto aniónico como el dodecilbencen sulfonato de sodio, lauril éter sulfato de sodio, dodecilsulfato de sodio, o cualquier otro preferentemente soluble en agua. La concentración del surfactante está en un intervalo de concentración del 1x10" al 10 peso/peso respecto al agua; se utiliza preferentemente una concentración peso/peso de surfactante de lxl O"3 a 0.1 respecto al contenido de agua. Finalizado el período de oxidación-intercalación- exfoliación se filtran los sólidos, se lava con agua hasta eliminar la espuma y llegar a un pH 7 para posteriormente evaporar el agua residual, elevando la temperatura a entre 70 y 100°C.
Es decir, el método llevado paso a paso es el siguiente: a) En un recipiente se coloca grafito con un agente oxidante inorgánico de tipo persulfato (también conocido como peroxidi sulfato) con contraión metálico de sodio (Na+), potasio (K+) o amonio (NH4+). El agente oxidante (AO) se utiliza en una proporción en peso respecto al grafito (AO:G) desde 0.1 :1 hasta 20:1 peso/peso, preferentemente a una relación de 1 :1 a 8: 1 peso/peso.
b) Ambos materiales se pueden o no premezclar en seco. c) El material de a) se integra a un volumen de agua de 10 a 200 partes en peso respecto al peso de agente oxidante; preferentemente se utiliza de 25 a 50 partes en peso de agua respecto al peso de agente oxidante.
d) La mezcla producida en c) es sometida a ultrasonido por un tiempo de 20 a 240 min, de preferencia durante 60 a 120 min. El equipo de sonificación puede ser un baño o un dispositivo con lanza, por tanto, la frecuencia de sonificación para realizar la exfoliación puede ser variable, dependiendo del equipo. Un dispositivo mezclador intensivo es también factible de utilizarse para facilitar la exfoliación, aunque el uso de ultrasonido es más eficiente. Otros métodos como el empleo de molinos de bolas o el desgaste mecánico también pueden ser factibles para la realización de dicho proceso. La oxidación se lleva a cabo dentro de una gama de temperaturas de 15 a 150 °C, preferentemente de 30 a 70 °C.
e) La oxidación se lleva a cabo dentro de una gama de temperaturas de 15 a 150 °C, preferentemente de 30 a 70 °C.
f) Para facilitar la intercalación y exfoliación del grafito se utiliza un surfactante, que puede ser del tipo amónico, catiónico o noiónico. Se recomienda el uso de un compuesto aniónico como el dodecilbencen sulfonato de sodio, lauril éter sulfato de sodio, dodecilsulfato de sodio, o cualquier otro preferentemente soluble en agua. La concentración del surfactante está en un intervalo de concentración del 1x10" al 10% peso/peso respecto al agua; se utiliza preferentemente una concentración peso/peso de surfactante de 1x10" a 0.1 respecto al contenido de agua.
g) Finalizado el período de oxidación-intercalación-exfoliación se filtran los sólidos, se lava con agua destilada hasta eliminar la espuma y llegar a un pH 7 para posteriormente evaporar el agua residual, elevando la temperatura a entre 70 y 100°C. producto así tratado mostrará una excelente dispersión en medio acuoso, el cual se puede mejorar con la adición de una pequeña cantidad de algún surfactante de los mencionados anteriormente, en las cantidades indicadas en f). El análisis del producto mediante microscopía electrónica de barrido o microscopía electrónica de transmisión muestra láminas o placas de grafeno. Dichas láminas o placas de grafeno presentan un espesor de entre 0.34 hasta 100 nm, y una longitud y anchura variable pudiendo llegar estas a magnitudes que van desde nanómetros hasta mieras, siendo más importante la dimensión del espesor. Ejemplos
1. Oxidación-intercalación-exfoliación de grafito mediante persulfato de amonio:
Se pesaron 0.5 g de grafito y se premezclaron perfectamente con 2.0 g de persulfato de amonio en un mortero. Posteriormente se transfirió la mezcla sólida a un recipiente, al que se le adicionaron 50 mL de agua destilada. Enseguida, se introdujo el sistema en un baño de ultrasonido, previamente temperado a 50 °C, durante 60 min. Al inicio de la aplicación de ultrasonido se adicionaron 0.2 mL de surfactante lauriléter sulfato de sodio (con 27 % de material activo). Luego del tiempo de reacción mencionado anteriormente se filtró el sólido y se lavó con agua hasta eliminar la espuma y llegar a un pH 7. Finalmente, se evaporó el agua residual, elevando la temperatura a entre 70 y 100°C.
2. Oxidación-intercalación-exfoliación de grafito expandido mediante persulfato de potasio:
Se pesaron 0.5 g de grafito expandido y se premezclaron perfectamente con 2.0 g de persulfato de potasio en un mortero. Posteriormente se transfirió la mezcla sólida a un recipiente, al que se le adicionaron 50 mL de agua destilada. Enseguida, se introdujo el sistema en un baño de ultrasonido, previamente temperado a 60 °C, durante 120 min. Al inicio de la aplicación de ultrasonido se adicionaron 0.02 g de surfactante dodecilobencen sulfonato de sodio. Luego del tiempo de reacción se filtró el sólido y se lavó con agua hasta eliminar la espuma y llegar a un pH 7. Finalmente, se evaporó el agua residual, elevando la temperatura a entre 70 y 100°C. El material obtenido de esta experimentación se ilustra en la Figura 5.

Claims

Un método para la oxidación, intercalación y exfoliación de grafito comercial o cualquier clase de grafito para la obtención de láminas o placas nanométricas de grafeno, caracterizado porque comprende los siguientes pasos: a) En un recipiente se coloca grafito con un agente oxidante inorgánico de tipo persulfato (también conocido como peroxidisulfato) con contraión metálico de sodio (Na+), potasio (K+) o amonio (NH4+). El agente oxidante (AO) se utiliza en una proporción en peso respecto al grafito (AO:G) desde 0.1 :1 hasta 20:1 peso/peso, preferentemente a una relación de 1 :1 a 8:1 peso/peso.
b) Ambos materiales se pueden o no premezclar en seco.
c) El material de a) se integra a un volumen de agua de 10 a 200 partes en peso respecto al peso de agente oxidante; preferentemente se utiliza de 25 a 50 partes en peso de agua respecto al peso de agente oxidante.
d) La mezcla producida en c) es sometida a ultrasonido por un tiempo de 20 a 240 min, de preferencia durante 60 a 120 min. El equipo de sonificación puede ser un baño o un dispositivo con lanza, por tanto, la frecuencia de sonificación para realizar la exfoliación puede ser variable, dependiendo del equipo. Un dispositivo mezclador intensivo es también factible de utilizarse para facilitar la exfoliación, aunque el uso de ultrasonido es más eficiente. Otros métodos como el empleo de molinos de bolas o el desgaste mecánico también pueden ser factibles para la realización de dicho proceso.
e) La oxidación se lleva a cabo dentro de una gama de temperaturas de 15 a 150 °C, preferentemente de 30 a 70 °C.
f) Para facilitar la intercalación y exfoliación del grafito se utiliza un surfactante, que puede ser del tipo amónico, catiónico o noiónico. Se recomienda el uso de un compuesto aniónico como el dodecilbencen sulfonato de sodio, lauril éter sulfato de sodio, dodecilsulfato de sodio, o cualquier otro preferentemente soluble en agua. La concentración del surfactante está en un intervalo de concentración del lxl 0"3 al 10% peso/peso respecto al agua; se utiliza preferentemente una concentración peso/peso de surfactante de 1x10" a 0.1 respecto al contenido de agua. g) Finalizado el período de oxidación-intercalación-exfoliación se filtran los sólidos, se lava con agua hasta eliminar la espuma y llegar a un pH 7 para posteriormente evaporar el agua residual.
2. Un método para la oxidación, intercalación y exfoliación de grafito comercial o cualquier clase de grafito para la obtención de láminas o placas nanométricas de grafeno, según la reivindicación 1, caracterizado porque las láminas o placas de grafeno presentan un espesor de entre 0.34 hasta 100 nm, y una longitud y anchura variable pudiendo llegar estas a magnitudes que van desde nanómetros hasta mieras, siendo más importante la dimensión del espesor.
PCT/MX2010/000152 2009-12-15 2010-12-13 Obtención de grafeno vía oxidación en fase acuosa WO2011078639A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2009/013701 2009-12-15
MX2009013701A MX2009013701A (es) 2009-12-15 2009-12-15 Obtencion de grafeno via oxidacion en fase acuosa.

Publications (2)

Publication Number Publication Date
WO2011078639A2 true WO2011078639A2 (es) 2011-06-30
WO2011078639A3 WO2011078639A3 (es) 2011-11-24

Family

ID=44196358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2010/000152 WO2011078639A2 (es) 2009-12-15 2010-12-13 Obtención de grafeno vía oxidación en fase acuosa

Country Status (2)

Country Link
MX (1) MX2009013701A (es)
WO (1) WO2011078639A2 (es)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089214A3 (en) * 2012-12-04 2014-09-04 William Marsh Rice University Carbon nanoparticle additives for wellbore fluid conductivity
EP2964574A4 (en) * 2013-03-08 2017-01-04 Garmor, Inc. Large scale oxidized graphene production for industrial applications
US9828290B2 (en) 2014-08-18 2017-11-28 Garmor Inc. Graphite oxide entrainment in cement and asphalt composite
US9951436B2 (en) 2011-10-27 2018-04-24 Garmor Inc. Composite graphene structures
CN107973289A (zh) * 2017-11-08 2018-05-01 华侨大学 一种硫掺杂石墨烯催化材料及其制备方法
US10351711B2 (en) 2015-03-23 2019-07-16 Garmor Inc. Engineered composite structure using graphene oxide
US10535443B2 (en) 2013-03-08 2020-01-14 Garmor Inc. Graphene entrainment in a host
CN112194125A (zh) * 2020-10-21 2021-01-08 哈尔滨理工大学 天然鳞片石墨常压低温膨胀方法
US10981791B2 (en) 2015-04-13 2021-04-20 Garmor Inc. Graphite oxide reinforced fiber in hosts such as concrete or asphalt
US11038182B2 (en) 2015-09-21 2021-06-15 Garmor Inc. Low-cost, high-performance composite bipolar plate
US11214658B2 (en) 2016-10-26 2022-01-04 Garmor Inc. Additive coated particles for low cost high performance materials
US11482348B2 (en) 2015-06-09 2022-10-25 Asbury Graphite Of North Carolina, Inc. Graphite oxide and polyacrylonitrile based composite
US11791061B2 (en) 2019-09-12 2023-10-17 Asbury Graphite North Carolina, Inc. Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUOXIU WANG ET AL.: 'Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets' CARBON vol. 47, 24 January 2009, pages 1359 - 1364 *
MUSTAFA LOTYA ET AL.: 'Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions' JOURNAL OF THE AMERICAN CHEMICAL SOCIETY vol. 131, no. 10, February 2009, pages 3611 - 3620 *
WUFENG CHEN ET AL.: 'Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves' CARBON vol. 48, 26 November 2009, pages 1146 - 1152 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815583B2 (en) 2011-10-27 2020-10-27 Garmor Inc. Composite graphene structures
US11466380B2 (en) 2011-10-27 2022-10-11 Asbury Graphite Of North Carolina, Inc. Composite graphene structures
US9951436B2 (en) 2011-10-27 2018-04-24 Garmor Inc. Composite graphene structures
EP2928817A4 (en) * 2012-12-04 2016-09-07 Univ Rice William M CARBON NANOPARTICLE ADDITIVES FOR A BOREOUR LIQUID CONDUCTIVITY
WO2014089214A3 (en) * 2012-12-04 2014-09-04 William Marsh Rice University Carbon nanoparticle additives for wellbore fluid conductivity
US11098233B2 (en) 2012-12-04 2021-08-24 William Marsh Rice University Carbonaceous nanoparticles as conductivity enhancement additives to water-in-oil emulsions, oil-in-water emulsions and oil-based wellbore fluids
US10995002B2 (en) 2013-03-08 2021-05-04 University Of Central Florida Research Foundation, Inc. Large scale oxidized graphene production for industrial applications
US9758379B2 (en) 2013-03-08 2017-09-12 University Of Central Florida Research Foundation, Inc. Large scale oxidized graphene production for industrial applications
US20190152785A1 (en) * 2013-03-08 2019-05-23 University Of Central Florida Research Foundation, Inc. Large Scale Oxidized Graphene Production for Industrial Applications
US10535443B2 (en) 2013-03-08 2020-01-14 Garmor Inc. Graphene entrainment in a host
US11361877B2 (en) 2013-03-08 2022-06-14 Asbury Graphite Of North Carolina, Inc. Graphene entrainment in a host
US10287167B2 (en) 2013-03-08 2019-05-14 University Of Central Florida Research Foundation, Inc. Large scale oxidized graphene production for industrial applications
EP2964574A4 (en) * 2013-03-08 2017-01-04 Garmor, Inc. Large scale oxidized graphene production for industrial applications
US10351473B2 (en) 2014-08-18 2019-07-16 Garmor Inc. Graphite oxide entrainment in cement and asphalt composite
US9828290B2 (en) 2014-08-18 2017-11-28 Garmor Inc. Graphite oxide entrainment in cement and asphalt composite
US10351711B2 (en) 2015-03-23 2019-07-16 Garmor Inc. Engineered composite structure using graphene oxide
US10981791B2 (en) 2015-04-13 2021-04-20 Garmor Inc. Graphite oxide reinforced fiber in hosts such as concrete or asphalt
US11482348B2 (en) 2015-06-09 2022-10-25 Asbury Graphite Of North Carolina, Inc. Graphite oxide and polyacrylonitrile based composite
US11038182B2 (en) 2015-09-21 2021-06-15 Garmor Inc. Low-cost, high-performance composite bipolar plate
US11916264B2 (en) 2015-09-21 2024-02-27 Asbury Graphite Of North Carolina, Inc. Low-cost, high-performance composite bipolar plate
US11214658B2 (en) 2016-10-26 2022-01-04 Garmor Inc. Additive coated particles for low cost high performance materials
CN107973289A (zh) * 2017-11-08 2018-05-01 华侨大学 一种硫掺杂石墨烯催化材料及其制备方法
US11791061B2 (en) 2019-09-12 2023-10-17 Asbury Graphite North Carolina, Inc. Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite
CN112194125A (zh) * 2020-10-21 2021-01-08 哈尔滨理工大学 天然鳞片石墨常压低温膨胀方法

Also Published As

Publication number Publication date
MX2009013701A (es) 2011-07-01
WO2011078639A3 (es) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2011078639A2 (es) Obtención de grafeno vía oxidación en fase acuosa
Sattler Handbook of nanophysics: functional nanomaterials
Coleman Liquid exfoliation of defect-free graphene
Karlicky et al. Halogenated graphenes: rapidly growing family of graphene derivatives
US8197888B2 (en) Dispersion, alignment and deposition of nanotubes
Terrones et al. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications
Mandal et al. Theoretical prediction of a new two-dimensional carbon allotrope and NDR behaviour of its one-dimensional derivatives
Zhang et al. Theoretical approaches to graphene and graphene-based materials
Meng et al. Structure and interaction of graphene oxide–cetyltrimethylammonium bromide complexation
Niesner et al. Image-potential states and work function of graphene
Ruoff Personal perspectives on graphene: New graphene-related materials on the horizon
Qi et al. Strain tuning of magnetism in Mn doped MoS2 monolayer
Chahal et al. Microwave synthesis of hematene and other two-dimensional oxides
Hyun et al. Graphene edges and beyond: temperature-driven structures and electromagnetic properties
Genorio et al. Functionalization of graphene nanoribbons
Kumar et al. Magnetically ordered transition-metal-intercalated WSe2
Sani et al. Electronic properties of graphyne and graphdiyne in tight-binding model
Bhuyan et al. A Review of Functionalized Graphene properties and its application
Ouda et al. A facile microwave irradiation synthesis of GO/CNTs hybrids doped with MnO2: structural and magnetic analysis
Wang et al. Electronic and magnetic properties of CrI3 nanoribbons and nanotubes
Han et al. Magneto-electronics, transport properties, and tuning effects of arsenene armchair nanotubes doped with transition metal atoms
Vysikaylo Physical fundamentals of hardening of materials by space charge layers
Kang et al. Adsorption properties of chalcogen atoms on a golden buckyball Au16− from first principles
Liu et al. Two-dimensional assembly of giant molecules
Lundie et al. Ab initio study of structural and electronic properties of partially reduced graphene oxide

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839830

Country of ref document: EP

Kind code of ref document: A2