WO2011078547A2 - Variable capacity compressor - Google Patents

Variable capacity compressor Download PDF

Info

Publication number
WO2011078547A2
WO2011078547A2 PCT/KR2010/009147 KR2010009147W WO2011078547A2 WO 2011078547 A2 WO2011078547 A2 WO 2011078547A2 KR 2010009147 W KR2010009147 W KR 2010009147W WO 2011078547 A2 WO2011078547 A2 WO 2011078547A2
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
discharge
valve body
chamber
refrigerant inlet
Prior art date
Application number
PCT/KR2010/009147
Other languages
French (fr)
Korean (ko)
Other versions
WO2011078547A3 (en
Inventor
이건호
김기범
Original Assignee
두원공과대학교
주식회사 두원전자
이태진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090129438A external-priority patent/KR101601966B1/en
Priority claimed from KR1020090129441A external-priority patent/KR20110072490A/en
Application filed by 두원공과대학교, 주식회사 두원전자, 이태진 filed Critical 두원공과대학교
Publication of WO2011078547A2 publication Critical patent/WO2011078547A2/en
Publication of WO2011078547A3 publication Critical patent/WO2011078547A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/025Check valves with guided rigid valve members the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/0413Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded in the form of closure plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1818Suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure

Definitions

  • the present invention relates to a variable displacement compressor, and more particularly, to a variable displacement compressor that minimizes the difference between the inlet side discharge pressure and the outlet side discharge pressure of the check valve.
  • variable capacity compressor that can change the discharge amount of the refrigerant to obtain a cooling capacity without being regulated by the rotational speed of the engine has been used a lot.
  • variable displacement compressors such as swash plate type, rotary type and scroll type.
  • the swash plate type compressor In the swash plate type compressor, the swash plate provided so that the inclination angle is variable in the crank chamber rotates according to the rotational motion of the rotating shaft, and the piston reciprocates by the rotational motion of the swash plate.
  • the refrigerant in the suction chamber is sucked into the cylinder by the reciprocating motion of the piston, compressed and discharged into the discharge chamber.
  • the inclination angle of the swash plate is changed according to the pressure difference in the crank chamber and the pressure in the suction chamber, and the discharge amount of the refrigerant is changed. Will be controlled.
  • the operation of the capacity control valve is calculated by a control unit in which a signal such as the detected engine speed, the temperature inside or outside the vehicle, the evaporator temperature, or the like is incorporated by the CPU, and based on the result of the calculation, the current By sending it to an electromagnetic coil.
  • a check valve is provided at the discharge port communicating with the discharge chamber to prevent the leakage of the refrigerant during the minimum capacity operation of the compressor.
  • FIG. 1 is a longitudinal sectional view showing a check valve of a variable displacement compressor according to the prior art.
  • the check valve 1 includes a valve housing 2 in which a refrigerant inlet 2a through which discharged refrigerant is introduced and a refrigerant outlet 2b through which discharged refrigerant is discharged are respectively formed. And a valve body 3 for reciprocating the inside of the valve housing 2 to open and close the refrigerant inlet 2a and the refrigerant outlet 2b, and a cover 4 covering the open end of the valve housing 2. And a spring 5 interposed between the cover 4 and the valve body 3.
  • the check valve 1 configured as described above is installed at the discharge port of the compressor to prevent leakage of the refrigerant during the minimum capacity operation (at low pressure discharge).
  • the inlet discharge pressure PdH flowing into the first refrigerant inlet 2a pressurizes the upper portion of the valve body 3 and simultaneously compresses the spring 5 so that the pressure is lowered.
  • the pressure PdL is sent to the next cooling cycle through the refrigerant outlet 2b.
  • the output discharge pressure PdL discharged to the refrigerant discharge port 2b is lower than the inlet discharge pressure PdH flowing into the first refrigerant inlet 2a.
  • the present invention has been made to solve the above-mentioned general problems, and an object of the present invention is to provide a check valve with an inlet discharge pressure of a check valve by actuating a crankcase or a suction chamber pressure that increases or decreases in a direction opposite to the discharge chamber pressure. It is to provide a variable displacement compressor that minimizes the difference between the discharge pressure of the outlet and the outlet.
  • Another object of the present invention is to provide a variable displacement compressor configured to close the check valve by the pressure of the reverse flow refrigerant discharged during the minimum inclination angle of the swash plate to prevent the reverse flow of the discharge refrigerant.
  • a variable displacement compressor including: a discharge flow passage connected to the discharge chamber, the displacement variable compressor having a suction chamber, a discharge chamber, and a crank chamber; And a check valve mounted in the discharge passage to open and close the discharge passage by a differential pressure between the discharge chamber pressure and the crank chamber or suction chamber pressure.
  • the check valve may further include a valve housing having a first refrigerant inlet through which the discharge chamber pressure acts and a refrigerant outlet connected to the first refrigerant inlet, and having an end portion opposite to the first refrigerant inlet; A valve body for opening and closing the first refrigerant inlet; A cover having a second refrigerant inlet through which the crank chamber or suction chamber pressure is applied and covering the open end of the valve housing; And a biasing member interposed between the cover and the valve body.
  • the valve body is composed of a large diameter portion corresponding to the first refrigerant inlet and a small diameter portion corresponding to the second refrigerant inlet.
  • an elastic member is interposed between the large diameter portion and the small diameter portion.
  • the large diameter portion is preferably formed with a seating groove in which the elastic member is seated.
  • the check valve preferably opens the discharge passage when the discharge chamber pressure is larger than the elastic force of the biasing member plus the pressure of the crank chamber or the suction chamber.
  • valve body is preferably composed of a first valve body for opening and closing the first refrigerant inlet and a second valve body corresponding to the second refrigerant inlet.
  • the first valve body is formed with a hydraulic pressure portion to which the discharged backflow refrigerant acts, and the second valve body has a support portion inserted into the hydraulic pressure portion.
  • the hydraulic portion is preferably formed with a guide portion is inserted into the support portion to hold the initial position.
  • the guide portion is preferably an inclined portion that narrows in the insertion direction.
  • the biasing member is seated on the radially outer side of the guide part.
  • crank chamber or the suction chamber is preferably provided with a connection passage for connecting the check valve.
  • variable displacement compressor According to the variable displacement compressor according to the present invention, the difference between the inlet side discharge pressure and the outlet side discharge pressure of the check valve is minimized by acting on the small diameter portion of the valve body to increase or decrease the crankcase or suction chamber pressure in a direction opposite to the discharge chamber pressure. It is effective.
  • the first valve body when the reverse flow refrigerant discharged from the hydraulic portion of the first valve body acts during the minimum inclination angle driving of the swash plate, the first valve body has an effect of preventing the reverse flow of the discharge refrigerant by closing the first refrigerant inlet.
  • FIG. 1 is a longitudinal sectional view showing a check valve of a variable displacement compressor according to the prior art.
  • FIG. 2 is a longitudinal sectional view showing the structure of a variable displacement compressor according to the present invention.
  • FIG. 3 is a side cross-sectional view illustrating a rear housing of the variable displacement compressor of FIG. 2.
  • FIG. 4 is a longitudinal sectional view showing a structure of a check valve according to a first embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a structure of a check valve according to a second embodiment of the present invention.
  • variable displacement swash plate compressor provided with a valve assembly according to the present invention
  • Figure 2 is a longitudinal sectional view showing a structure of a variable displacement compressor according to the present invention
  • Figure 3 is a side cross-sectional view showing a rear housing of the variable displacement compressor of Figure 2
  • Figure 4 is a check according to a first embodiment of the present invention
  • 5 is a longitudinal sectional view showing the structure of a valve
  • FIG. 5 is a longitudinal sectional view showing the structure of a check valve according to a second embodiment of the present invention.
  • variable displacement swash plate type compressor C has a cylinder block 10 having a plurality of cylinder bores 12 formed parallel to the inner circumferential surface in the longitudinal direction, and sealed in front of the cylinder block 10.
  • the front housing 16 is coupled, and the rear housing 18 is hermetically coupled via a valve plate 20 at the rear of the cylinder block 10.
  • the crank chamber 86 is provided inside the front housing 16, and one end of the drive shaft 44 is rotatably supported near the center of the front housing 16, while the other end of the drive shaft 44 is Passed through the crank chamber 86 is supported via a bearing provided in the cylinder block 10.
  • the lug plate 54 and the swash plate 50 are provided around the drive shaft 44.
  • a pair of power transmission support arms 62 each having a linearly perforated guide hole 64 formed at the center thereof are formed to protrude integrally on one surface, and one surface of the swash plate 50 has a ball.
  • the ball 66 of the swash plate 50 slides in the guide hole 64 of the lug plate 54 so that the swash plate 50 can be rotated.
  • the inclination angle is variable.
  • the outer circumferential surface of the swash plate 50 is fitted to the piston 14 so as to be able to slide through the shoe 76.
  • a suction chamber 22 and a discharge chamber 24 are formed in the rear housing 18, and each cylinder bore is provided in the valve plate 20 interposed between the rear housing 18 and the cylinder block 10.
  • the intake valve 32 and the discharge valve 36 are formed in the place corresponding to (12), respectively.
  • the refrigerant in the suction chamber 22 is sucked into the cylinder bore 12, compressed, and discharged to the discharge chamber 24.
  • the pressure in the crank chamber 86 and the suction chamber ( 22) or the inclination angle of the swash plate 50 is changed in accordance with the pressure difference in the discharge chamber 24 to adjust the discharge amount of the refrigerant, which adjusts the pressure of the crank chamber 86 by opening and closing the valve by energization. It is usually implemented by the capacity control valve 200 to adjust the inclination angle of the swash plate 50 to adjust the discharge capacity.
  • a discharge flow path 101 communicating with the discharge chamber 24 is formed in the rear housing 18.
  • the discharge passage 101 is provided with a check valve 100 for discharging the refrigerant compressed at a predetermined differential pressure or more to an external cooling cycle (condenser) and at the same time to prevent the reverse flow of the discharged refrigerant.
  • the discharge port 25 is preferably formed on the discharge side of the discharge passage 101.
  • the rear housing 18 is formed with a connection passage 102 for connecting the pressures Pc and PS of the crank chamber 86 or the suction chamber 22 to act on the check valve 100.
  • the compressor described above is just one example in which the check valve according to the present invention is installed, and is applicable to all other clutch-less displacement variable compressors.
  • the check valve 100 according to the first embodiment of the present invention is mounted in the discharge passage 101, the discharge chamber 24 pressure (Pd) and the crank chamber 86 Alternatively, the check valve 100 according to the present invention, which opens and closes the discharge flow path 101 by the differential pressures of the pressures Pc and Ps of the suction chamber 22, performs the next cooling cycle on the refrigerant discharged from the discharge chamber 24.
  • the valve housing 110, the valve body 120 for reciprocating the inside of the valve housing 110, and the open of the valve housing 120 A cover 130 covering an end portion and a biasing member 140 interposed between the cover 130 and the valve body 120 are included.
  • valve housing 110 is connected to the first refrigerant inlet 111 according to the reciprocating movement of the first refrigerant inlet 111 and the valve body 120 in which the discharge chamber 24 pressure Pd is applied.
  • the refrigerant outlet 112 is formed.
  • the first refrigerant inlet 111 is connected to the discharge chamber 24 by the discharge passage 101
  • the first refrigerant outlet 112 is connected to the discharge outlet 25 by the discharge passage 101.
  • the valve housing 110 is installed in the discharge passage 101.
  • valve body 120 opens and closes the aforementioned first refrigerant inlet 111 by the pressure Pd of the discharge chamber 24.
  • the cover 130 is formed with a second refrigerant inlet 131 in which the crank chamber 86 or the suction chamber 22 pressures Pc and Ps act.
  • the second refrigerant inlet 131 is connected to the connection passage 102.
  • the biasing member 140 is formed of a spring to apply an elastic force in the direction in which the valve body 120 closes the first refrigerant inlet 111.
  • the biasing member 140 may adjust the pressure difference of opening and closing the valve body 120 according to the size of the elastic modulus.
  • valve body 120 corresponds to the first refrigerant inlet 111 and corresponds to the large diameter portion 121 and the second refrigerant inlet 131 on which the discharge chamber 24 pressure Pd acts, and the crank chamber. 86 or a small diameter portion 122 in which the suction chamber 22 pressures Pc and Ps act.
  • the size of the discharge chamber 24 pressure Pd is equal to the elastic force of the biasing member 140 and the pressure Pc of the crank chamber 86 or the suction chamber 22.
  • the discharge passage 101 is opened.
  • the discharge chamber 24 pressure Pd is 100 or more.
  • the check valve 100 is to open the discharge flow path 101.
  • the pressure Pc and Ps of the crank chamber 86 or the suction chamber 22 is equal to the sum of the elastic force of the biasing member 140 and the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22.
  • the difference between the inlet-side discharge pressure PdH and the outlet-side discharge pressure PdL of the check valve 100 may be further reduced.
  • the discharge chamber 24 pressure Pd is actually the biasing member ( If only the force of the elastic force of 10 or more of the 140 is consumed, the check valve 100 is opened. That is, the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22 increase or decrease in a direction opposite to the pressure Pd of the discharge chamber 24, so that the pressure of the crank chamber 86 or the suction chamber 22 is increased. (Pc, Ps) 90 is canceled by the pressure Pd of the discharge chamber 24.
  • crank chamber 86 or the suction chamber pressure Pc acts on the small diameter portion 122 of the valve body 120 even when the elastic force decreases as the compression and swelling of the biasing member 140 are repeated. You can also completely block backflow.
  • FIG. 4 shows that the valve body 120 compresses the biasing member 140 by the discharge chamber 24 pressure Pd, and then cools the compressed refrigerant by opening the first refrigerant inlet 111. 4 (b) is driven at the minimum inclination angle of the swash plate 50 so that the elastic force and the crank chamber 86 pressure Pc of the biasing member 140 are applied to the valve body 120.
  • the valve body 120 acts to close the first refrigerant inlet 111 to prevent backflow of the refrigerant.
  • the large diameter portion 121 and the small diameter portion 122 is interposed between the elastic member 150, the large diameter portion 121 is formed with a seating groove 151 for mounting the elastic member 150.
  • the discharge passage 101 is mounted in the discharge passageway 101, and the pressure Pd of the discharge chamber 24 and the crank chamber 86 or the suction chamber 22 pressures Pc and Ps.
  • the check valve 100 which opens and closes the discharge passage 101 by differential pressure, repeatedly performs a function of sending the refrigerant discharged from the discharge chamber 24 to the next cooling cycle (condenser).
  • the valve housing 110 has a refrigerant connected to the refrigerant inlet 111 according to the reciprocating movement of the first refrigerant inlet 111 and the valve body 120 in which the discharge chamber 24 pressure Pd is applied.
  • An outlet 112 is formed.
  • the first refrigerant inlet 111 is connected to the discharge chamber 24 by the discharge passage 101, and the refrigerant outlet 112 is connected to the discharge outlet 25 by the discharge passage 101. That is, the valve housing 110 is installed in the discharge passage 101.
  • valve body 120 opens and closes the aforementioned first refrigerant inlet 111 by the pressure Pd of the discharge chamber 24.
  • valve body 120 has a reverse flow refrigerant discharged during the driving of the minimum inclination angle of the compressor, which will be described later.
  • the cover 130 is formed with a second refrigerant inlet 131 in which the crank chamber 86 or the suction chamber pressures Pc and Ps act. That is, the second refrigerant inlet 131 is connected to the connection passage 102.
  • the biasing member 140 is formed of a spring to apply an elastic force in the direction in which the valve body 120 closes the first refrigerant inlet 111.
  • the biasing member 140 may adjust the pressure difference of opening and closing the valve body 120 according to the size of the elastic modulus.
  • valve body 120 includes a first valve body 121 that opens and closes the first refrigerant inlet 111, and a second valve body 122 corresponding to the second refrigerant inlet 112.
  • the first and second valve bodies 121 and 122 are separately configured to move, respectively.
  • the biasing member 140 preferably applies an elastic force to the first valve body 121.
  • first valve body 121 is formed with a pressure receiving portion 121a to which discharged backflow refrigerant acts, and the second valve body 122 has a support portion 122a inserted into the hydraulic pressure portion 121a. A) is formed.
  • the hydraulic pressure portion 121a is formed with a guide portion 150 into which the support portion 122a is inserted to hold an initial position, and the guide portion 150 is preferably an inclined portion that narrows in the insertion direction.
  • biasing member 140 is seated on the radially outer side of the guide part 150.
  • the check valve 100 of the present invention prevents the reverse flow of the discharged refrigerant even when the differential pressure is increased as shown in Table 1 below when the reverse flow refrigerant discharged to the hydraulic unit 121a operates. Done.
  • the first valve body 121 by the reverse flow refrigerant discharged to the hydraulic pressure portion 121a of the first valve body 121 when the swash plate 50 is driven at the minimum inclination angle. ) Closes the first refrigerant inlet 111 to prevent backflow of the discharged refrigerant.
  • the elastic force of the biasing member 140 also acts on the first valve body 121.
  • the differential pressure is higher than the above-described [Table 1] and the set pressure by the action of the reverse flow refrigerant discharged to the second valve body 122 and the first valve body 121 and the hydraulic pressure unit 121a reciprocating respectively. In this case, the reverse flow of the discharged refrigerant is completely blocked.
  • the crank chamber 86 or the suction chamber 22 pressures Pc and Ps are transmitted to the second refrigerant inlet 131 to act on the lower portion of the second valve body 122.
  • the second valve body 122 which receives the pressure Pc and Ps of the suction chamber 22, rises, and the support part 122a supports the lower part of the hydraulic pressure part 121a so that the first refrigerant inlet 111 ) Will remain closed.
  • the pressure Pc, Ps of the crank chamber 86 or the suction chamber 22 rises at the time of driving the minimum inclination angle of the swash plate 50, and the pressure Cc of the raised crank chamber 86 or the suction chamber 22 is increased. Ps) is to act on the check valve 100 through the connection flow path (102). At this time, in use of the compressor, the crankcase pressure Pc and the suction chamber pressure Ps become approximately equal.
  • the valve body 120 compresses the biasing member 140 by the pressure Pd of the discharge chamber 24 and then cools the compressed refrigerant by opening the first refrigerant inlet 111.
  • the discharge (FULL OPEN) to the cycle (condenser), Figure 5 (b) is the reverse flow refrigerant discharged to the water pressure portion 121a of the first valve sleeve 121 when driven at the minimum inclination angle of the swash plate 50 It acts to raise only the first valve body 121 to close the first refrigerant inlet 111 (BACK FLOW CLOSE) to prevent the backflow of the refrigerant.
  • BACK FLOW CLOSE the first refrigerant inlet 111
  • the crank chamber 86 or the suction chamber 22 pressures Pc and Ps act on the second valve body 122 so that the support part 122a of the second valve body 122 becomes the first.
  • the pressure receiving portion 121a of the valve body 121 By supporting the pressure receiving portion 121a of the valve body 121 to close the first refrigerant inlet 111 to prevent the backflow of the refrigerant.
  • the check valve 100 it is not necessary to limit the installation position of the check valve 100 as described above, and the check valve 100 if the discharge chamber 24 pressure Pd and the crank chamber 86 pressure Pc can act. Note that the installation location of the can be changed in various ways.

Abstract

The present invention relates to a variable capacity compressor. The variable capacity compressor, comprises: an intake seal, a crank seal and a discharge seal; a discharge outlet connected to said discharge seal and mounted to a discharge passage; and a check valve which opens and closes the discharge passage based on the pressure differentials in the intake seal, crank seal and discharge seal. Accordingly, the differential, between the check valve inlet and outlet pressures and the discharge pressure at the exit, are minimized by allowing the pressures of intake and crank seals to act upon the far-side of the valve body such that the pressure in the direction opposite to the discharge seal, is reduced.

Description

용량가변형 압축기Capacity variable compressor
본 발명은 용량가변형 압축기에 관한 것으로, 더욱 상세하게는 체크밸브의 입구 측 토출압력과 출구 측 토출압력의 차이를 최소화하는 용량가변형 압축기에 관한 것이다. The present invention relates to a variable displacement compressor, and more particularly, to a variable displacement compressor that minimizes the difference between the inlet side discharge pressure and the outlet side discharge pressure of the check valve.
자동차용 공조장치의 냉방 시스템에 포함되는 압축기는 벨트를 통해 엔진에 직접 연결되어 있기 때문에 회전수를 제어할 수 없다. Since the compressor included in the cooling system of the automotive air conditioner is directly connected to the engine through the belt, the rotation speed cannot be controlled.
따라서, 근래에는 엔진의 회전수에 의해 규제되는 경우 없이 냉방 능력을 얻기 위해 냉매의 토출량을 변화시킬 수 있는 용량가변형 압축기가 많이 사용되고 있다. Therefore, in recent years, a variable capacity compressor that can change the discharge amount of the refrigerant to obtain a cooling capacity without being regulated by the rotational speed of the engine has been used a lot.
용량가변형 압축기로는 사판식, 로터리식 및 스크롤식 등 다양한 종류가 개시되어 있다. Various types of variable displacement compressors are disclosed, such as swash plate type, rotary type and scroll type.
이 중 사판식 압축기는, 크랭크실 내에서 경사각이 가변되도록 설치된 사판이 회전축의 회전운동에 따라 회전하고, 상기 사판의 회전운동에 의해 피스톤이 왕복운동하는 방식으로 되어 있다. 이 경우, 상기 피스톤의 왕복운동에 의해 흡입실의 냉매가 실린더 내에 흡입되어 압축된 후 토출실로 배출되는데, 상기 크랭크실 내의 압력과 흡입실 내의 압력 차이에 따라 사판의 경사각이 변화하여 냉매의 토출량이 조절되게 된다. In the swash plate type compressor, the swash plate provided so that the inclination angle is variable in the crank chamber rotates according to the rotational motion of the rotating shaft, and the piston reciprocates by the rotational motion of the swash plate. In this case, the refrigerant in the suction chamber is sucked into the cylinder by the reciprocating motion of the piston, compressed and discharged into the discharge chamber. The inclination angle of the swash plate is changed according to the pressure difference in the crank chamber and the pressure in the suction chamber, and the discharge amount of the refrigerant is changed. Will be controlled.
특히, 전자 솔레노이드식 용량제어밸브를 채택하여 통전에 의해 밸브를 개폐함으로써 크랭크실의 압력을 조정하고, 이를 통해 사판의 경사각을 조정하여 토출용량을 조절하는 것이 보통이다. In particular, it is common to adopt the solenoid type capacity control valve to adjust the pressure of the crankcase by opening and closing the valve by energization, and thereby adjusting the discharge capacity by adjusting the inclination angle of the swash plate.
이때, 용량제어밸브의 가동은, 검지된 엔진의 회전수, 차실 내외의 온도 또는 증발기 온도 등의 신호가 CPU 등을 내장하는 제어부에 의해 연산되고, 그 연산결과에 근거하여 전류가 용량제어밸브의 전자코일로 보내짐으로써 이루어진다. At this time, the operation of the capacity control valve is calculated by a control unit in which a signal such as the detected engine speed, the temperature inside or outside the vehicle, the evaporator temperature, or the like is incorporated by the CPU, and based on the result of the calculation, the current By sending it to an electromagnetic coil.
또한, 토출실과 연통된 토출구에는 체크밸브가 설치되어 압축기의 최소용량 운전시에 냉매의 누출을 방지한다. In addition, a check valve is provided at the discharge port communicating with the discharge chamber to prevent the leakage of the refrigerant during the minimum capacity operation of the compressor.
이하, 도면을 참조하여 종래기술에 따른 체크밸브의 구조에 관하여 설명한다. Hereinafter, a structure of a check valve according to the related art will be described with reference to the drawings.
도 1은 종래기술에 따른 용량가변형 압축기의 체크밸브를 도시한 종단면도이다. 1 is a longitudinal sectional view showing a check valve of a variable displacement compressor according to the prior art.
도 1에 도시된 바와 같이, 종래기술에 따른 체크밸브(1)는, 토출냉매가 유입되는 냉매 유입구(2a)와 토출냉매가 배출되는 냉매 배출구(2b)가 각각 형성되는 밸브하우징(2)과, 상기 밸브하우징(2)의 내부를 왕복 운동하며 상기 냉매 유입구(2a)와 냉매 배출구(2b)를 개폐하는 밸브체(3)와, 상기 밸브하우징(2)의 개방된 단부를 덮는 커버(4) 및 상기 커버(4)와 밸브체(3) 사이에 개재되는 스프링(5)으로 구성된다. As shown in FIG. 1, the check valve 1 according to the related art includes a valve housing 2 in which a refrigerant inlet 2a through which discharged refrigerant is introduced and a refrigerant outlet 2b through which discharged refrigerant is discharged are respectively formed. And a valve body 3 for reciprocating the inside of the valve housing 2 to open and close the refrigerant inlet 2a and the refrigerant outlet 2b, and a cover 4 covering the open end of the valve housing 2. And a spring 5 interposed between the cover 4 and the valve body 3.
이와 같이 구성되는 체크밸브(1)는 압축기의 토출구에 설치되어 최소용량 운전시(저압토출시) 냉매의 누출을 방지하게 된다. The check valve 1 configured as described above is installed at the discharge port of the compressor to prevent leakage of the refrigerant during the minimum capacity operation (at low pressure discharge).
그러나, 종래기술의 체크밸브(1)에 따르면 스프링(5)에 의해 입력 측 토출압력(PdH)과 출력 측 토출압력(PdL)의 압력차가 발생하고, 이는 압축기의 운전조건이 열악해지므로 압축기 성능이 저하되는 문제점이 있었다.  However, according to the check valve 1 of the prior art, the pressure difference between the input side discharge pressure PdH and the output side discharge pressure PdL is generated by the spring 5, which causes the compressor operating conditions to be inferior. There was a problem of this deterioration.
즉, 상기 제1냉매유입구(2a)로 유입되는 입구 측 토출압력(PdH)은 밸브체(3)의 상부를 가압함과 동시에 스프링(5)을 압축시켜서 압력이 낮아지게 되며, 낮아진 출구 측 토출압력(PdL)은 냉매배출구(2b)를 통해 다음 냉각사이클로 보내게 된다.  That is, the inlet discharge pressure PdH flowing into the first refrigerant inlet 2a pressurizes the upper portion of the valve body 3 and simultaneously compresses the spring 5 so that the pressure is lowered. The pressure PdL is sent to the next cooling cycle through the refrigerant outlet 2b.
결국, 상기 냉매배출구(2b)로 토출되는 출력 측 토출압력(PdL)이 제1냉매유입구(2a)로 유입되는 입구 측 토출압력(PdH)에 비해 낮아지는 문제점 있었다. As a result, the output discharge pressure PdL discharged to the refrigerant discharge port 2b is lower than the inlet discharge pressure PdH flowing into the first refrigerant inlet 2a.
본 발명은 전술한 종래의 제반 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 토출실 압력에 반대방향으로 증감하는 크랭크실 또는 흡입실 압력을 체크밸브에 작용함으로써 체크밸브의 입구 측 토출압력과 출구 측 토출압력의 차이를 최소화하는 용량가변형 압축기를 제공하는데 있다. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned general problems, and an object of the present invention is to provide a check valve with an inlet discharge pressure of a check valve by actuating a crankcase or a suction chamber pressure that increases or decreases in a direction opposite to the discharge chamber pressure. It is to provide a variable displacement compressor that minimizes the difference between the discharge pressure of the outlet and the outlet.
본 발명의 다른 목적은 사판의 최소경사각 구동시에 토출된 역류 냉매의 압력에 의해 체크밸브가 닫히도록 구성하여 토출 냉매의 역류를 방지하는 용량가변형 압축기를 제공하는데 있다. Another object of the present invention is to provide a variable displacement compressor configured to close the check valve by the pressure of the reverse flow refrigerant discharged during the minimum inclination angle of the swash plate to prevent the reverse flow of the discharge refrigerant.
상기와 같은 목적을 달성하기 위한 본 발명의 용량가변형 압축기는, 흡입실, 토출실 및 크랭크실이 형성되는 용량가변형 압축기에 있어서, 상기 토출실과 연결되는 토출유로; 상기 토출유로 내에 장착되며 토출실 압력과 크랭크실 또는 흡입실 압력의 차압에 의해 상기 토출유로를 개폐하는 체크밸브;를 포함하는 것을 특징으로 한다. According to one aspect of the present invention, there is provided a variable displacement compressor including: a discharge flow passage connected to the discharge chamber, the displacement variable compressor having a suction chamber, a discharge chamber, and a crank chamber; And a check valve mounted in the discharge passage to open and close the discharge passage by a differential pressure between the discharge chamber pressure and the crank chamber or suction chamber pressure.
또한, 상기 체크밸브는, 상기 토출실 압력이 작용하는 제1냉매유입구와 상기 제1냉매유입구와 연결되는 냉매배출구가 형성되며, 상기 제1냉매유입구와 대향되는 단부가 개방되는 밸브하우징; 상기 제1냉매유입구를 개폐하는 밸브체; 상기 크랭크실 또는 흡입실 압력이 작용하는 제2냉매유입구가 형성되며 상기 밸브하우징의 개방된 단부를 덮는 커버; 및 상기 커버와 밸브체 사이에 개재되는 가세부재;를 포함하는 것을 특징으로 한다. The check valve may further include a valve housing having a first refrigerant inlet through which the discharge chamber pressure acts and a refrigerant outlet connected to the first refrigerant inlet, and having an end portion opposite to the first refrigerant inlet; A valve body for opening and closing the first refrigerant inlet; A cover having a second refrigerant inlet through which the crank chamber or suction chamber pressure is applied and covering the open end of the valve housing; And a biasing member interposed between the cover and the valve body.
그리고, 상기 밸브체는, 상기 제1냉매유입구에 대응되는 대경부 및 상기 제2냉매유입구에 대응되는 소경부로 구성되는 것이 바람직하다. Preferably, the valve body is composed of a large diameter portion corresponding to the first refrigerant inlet and a small diameter portion corresponding to the second refrigerant inlet.
한편, 상기 대경부와 소경부 사이에는 탄성부재가 개재되어 있는 것이 바람직하다. On the other hand, it is preferable that an elastic member is interposed between the large diameter portion and the small diameter portion.
또한, 상기 대경부에는 상기 탄성부재가 안착되는 안착홈이 형성되어 있는 것이 바람직하다. In addition, the large diameter portion is preferably formed with a seating groove in which the elastic member is seated.
그리고, 상기 체크밸브는 토출실 압력의 크기가 가세부재의 탄성력에 크랭크실 또는 흡입실의 압력을 더한 값보다 큰 경우에 상기 토출유로를 개방하는 것이 바람직하다. The check valve preferably opens the discharge passage when the discharge chamber pressure is larger than the elastic force of the biasing member plus the pressure of the crank chamber or the suction chamber.
한편, 상기 밸브체는, 상기 제1냉매유입구를 개폐하는 제1밸브체 및 상기 제2냉매유입구에 대응되는 제2밸브체로 구성되는 것이 바람직하다. On the other hand, the valve body is preferably composed of a first valve body for opening and closing the first refrigerant inlet and a second valve body corresponding to the second refrigerant inlet.
또한, 상기 제1밸브체에는 토출된 역류 냉매가 작용하는 수압부가 형성되며, 상기 제2밸브체에는 상기 수압부에 삽입되는 지지부가 형성되는 것이 바람직하다. In addition, it is preferable that the first valve body is formed with a hydraulic pressure portion to which the discharged backflow refrigerant acts, and the second valve body has a support portion inserted into the hydraulic pressure portion.
그리고, 상기 수압부에는 상기 지지부가 삽입되어 초기 위치를 잡아주는 가이드부가 형성되는 것이 바람직하다. In addition, the hydraulic portion is preferably formed with a guide portion is inserted into the support portion to hold the initial position.
한편, 상기 가이드부는 삽입방향으로 좁아지는 경사부인 것이 바람직하다. On the other hand, the guide portion is preferably an inclined portion that narrows in the insertion direction.
또한, 상기 가이드부의 반경방향 외측에는 상기 가세부재가 안착되어 있는 것이 바람직하다. In addition, it is preferable that the biasing member is seated on the radially outer side of the guide part.
그리고, 상기 크랭크실 또는 흡입실과 체크밸브를 연결하는 연결유로가 구비되는 것이 바람직하다. In addition, the crank chamber or the suction chamber is preferably provided with a connection passage for connecting the check valve.
본 발명에 따른 용량가변형 압축기에 따르면, 토출실 압력에 반대방향으로 증감하는 크랭크실 또는 흡입실 압력을 밸브체의 소경부에 작용함으로써 체크밸브의 입구 측 토출압력과 출구 측 토출압력의 차이를 최소화하는 효과가 있다. According to the variable displacement compressor according to the present invention, the difference between the inlet side discharge pressure and the outlet side discharge pressure of the check valve is minimized by acting on the small diameter portion of the valve body to increase or decrease the crankcase or suction chamber pressure in a direction opposite to the discharge chamber pressure. It is effective.
또한, 사판의 최소경사각 구동시에 제1밸브체의 수압부에 토출된 역류 냉매가 작용함으로써 제1밸브체는 제1냉매유입구를 폐쇄하여 토출 냉매의 역류를 방지하는 효과가 있다. In addition, when the reverse flow refrigerant discharged from the hydraulic portion of the first valve body acts during the minimum inclination angle driving of the swash plate, the first valve body has an effect of preventing the reverse flow of the discharge refrigerant by closing the first refrigerant inlet.
이에 따라, 토출 냉매의 역류가 차단되어 냉매 흐름에 따른 급격한 유동음 및 크랭크실 압력증가로 인한 사판의 내구성이 저하되는 것을 방지한다. Accordingly, the reverse flow of the discharge refrigerant is blocked to prevent the durability of the swash plate due to the rapid flow sound and the crankcase pressure increase due to the refrigerant flow.
도 1은 종래기술에 따른 용량가변형 압축기의 체크밸브를 도시한 종면도이다. 1 is a longitudinal sectional view showing a check valve of a variable displacement compressor according to the prior art.
도 2는 본 발명에 따른 용량가변형 압축기의 구조를 나타내는 종단면도이다. 2 is a longitudinal sectional view showing the structure of a variable displacement compressor according to the present invention.
도 3은 도 2의 용량가변형 압축기의 후방하우징을 도시한 측단면도이다. 3 is a side cross-sectional view illustrating a rear housing of the variable displacement compressor of FIG. 2.
도 4는 본 발명의 제1실시예에 따른 체크밸브의 구조를 나타내는 종단면도이다. 4 is a longitudinal sectional view showing a structure of a check valve according to a first embodiment of the present invention.
도 5는 본 발명의 제2실시예에 따른 체크밸브의 구조를 나타내는 종단면도이다. 5 is a longitudinal sectional view showing a structure of a check valve according to a second embodiment of the present invention.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명에 따른 밸브 어셈블리가 설치된 용량가변형 사판식 압축기의 구조를 개략적으로 설명하도록 한다. First, the structure of the variable displacement swash plate compressor provided with a valve assembly according to the present invention will be described schematically.
도 2는 본 발명에 따른 용량가변형 압축기의 구조를 나타내는 종단면도이고, 도 3은 도 2의 용량가변형 압축기의 후방하우징을 도시한 측단면도이며, 도 4는 본 발명의 제1실시예에 따른 체크밸브의 구조를 나타내는 종단면도이고, 도 5는 본 발명의 제2실시예에 따른 체크밸브의 구조를 나타내는 종단면도이다. Figure 2 is a longitudinal sectional view showing a structure of a variable displacement compressor according to the present invention, Figure 3 is a side cross-sectional view showing a rear housing of the variable displacement compressor of Figure 2, Figure 4 is a check according to a first embodiment of the present invention 5 is a longitudinal sectional view showing the structure of a valve, and FIG. 5 is a longitudinal sectional view showing the structure of a check valve according to a second embodiment of the present invention.
도시한 바와 같이, 용량가변형 사판식 압축기(C)는, 내주면에 길이방향을 따라 평행하게 형성된 다수의 실린더 보어(12)를 가지는 실린더 블럭(10)과, 상기 실린더 블럭(10)의 전방에 밀폐 결합된 전방 하우징(16)과, 상기 실린더 블럭(10)의 후방에 밸브 플레이트(20)를 개재하여 밀폐 결합된 후방 하우징(18)을 포함한다. As shown, the variable displacement swash plate type compressor C has a cylinder block 10 having a plurality of cylinder bores 12 formed parallel to the inner circumferential surface in the longitudinal direction, and sealed in front of the cylinder block 10. The front housing 16 is coupled, and the rear housing 18 is hermetically coupled via a valve plate 20 at the rear of the cylinder block 10.
상기 전방 하우징(16)의 안쪽에는 크랭크실(86)이 마련되며, 전방 하우징(16)의 중심 부근에는 구동축(44)의 일단이 회전가능하게 지지되는 한편, 상기 구동축(44)의 타단은 상기 크랭크실(86)을 통과하여 실린더 블럭(10)에 설치된 베어링을 매개로 하여 지지된다. The crank chamber 86 is provided inside the front housing 16, and one end of the drive shaft 44 is rotatably supported near the center of the front housing 16, while the other end of the drive shaft 44 is Passed through the crank chamber 86 is supported via a bearing provided in the cylinder block 10.
또한, 상기 크랭크실(86) 내에는 구동축(44) 둘레에 러그 플레이트(54)와 사판(50)이 설치되어 있다. In the crank chamber 86, the lug plate 54 and the swash plate 50 are provided around the drive shaft 44.
상기 러그 플레이트(54)에는, 중앙부에 가이드홀(64)이 각각 직선 천공된 한쌍의 동력전달용 지지 암(62)이 일면에 일체로 돌출되게 형성되어 있고, 상기 사판(50)의 일면에는 볼(66)이 형성되어 있어, 상기 러그 플레이트(54)가 회전함에 따라 상기 사판(50)의 볼(66)이 러그 플레이트(54)의 가이드홀(64) 내에서 슬라이딩 이동하면서 사판(50)의 경사각이 가변되게 되어 있다. In the lug plate 54, a pair of power transmission support arms 62 each having a linearly perforated guide hole 64 formed at the center thereof are formed to protrude integrally on one surface, and one surface of the swash plate 50 has a ball. As the lug plate 54 rotates, the ball 66 of the swash plate 50 slides in the guide hole 64 of the lug plate 54 so that the swash plate 50 can be rotated. The inclination angle is variable.
또한, 상기 사판(50)의 외주면은 슈(76)를 개재하여 각 피스톤(14)에 미끄럼이동이 가능하게 끼워진다. In addition, the outer circumferential surface of the swash plate 50 is fitted to the piston 14 so as to be able to slide through the shoe 76.
따라서, 상기 사판(50)이 경사된 상태에서 회전함에 따라, 그 외주면에 슈(76)를 개재하여 끼워진 피스톤(14)들은 상기 실린더 블럭(10)의 각 실린더 보어(12) 내에서 왕복운동하게 된다. Accordingly, as the swash plate 50 rotates in an inclined state, the pistons 14 fitted through the shoe 76 on the outer circumferential surface thereof are reciprocated in each cylinder bore 12 of the cylinder block 10. do.
그리고, 상기 후방 하우징(18)에는 흡입실(22)과 토출실(24)이 각각 형성되어 있고, 후방 하우징(18)과 실린더 블럭(10) 사이에 개재되는 밸브 플레이트(20)에는 각 실린더 보어(12)에 대응하는 곳에 흡입밸브(32)와 토출밸브(36)가 각각 형성되어 있다. In addition, a suction chamber 22 and a discharge chamber 24 are formed in the rear housing 18, and each cylinder bore is provided in the valve plate 20 interposed between the rear housing 18 and the cylinder block 10. The intake valve 32 and the discharge valve 36 are formed in the place corresponding to (12), respectively.
상기 피스톤(14)의 왕복운동에 의해 흡입실(22)의 냉매가 실린더 보어(12) 내에 흡입되어 압축된 후 토출실(24)로 배출되는데, 상기 크랭크실(86) 내의 압력과 흡입실(22) 또는 토출실(24) 내의 압력 차이에 따라 사판(50)의 경사각이 변화하여 냉매의 토출량이 조절되는데, 이는 통전에 의해 밸브를 개폐함으로써 크랭크실(86)의 압력을 조정하고, 이를 통해 사판(50)의 경사각을 조정하여 토출용량을 조절하는 용량제어밸브(200)에 의해 구현되는 것이 보통이다. By the reciprocating motion of the piston 14, the refrigerant in the suction chamber 22 is sucked into the cylinder bore 12, compressed, and discharged to the discharge chamber 24. The pressure in the crank chamber 86 and the suction chamber ( 22) or the inclination angle of the swash plate 50 is changed in accordance with the pressure difference in the discharge chamber 24 to adjust the discharge amount of the refrigerant, which adjusts the pressure of the crank chamber 86 by opening and closing the valve by energization. It is usually implemented by the capacity control valve 200 to adjust the inclination angle of the swash plate 50 to adjust the discharge capacity.
아울러, 상기 후방 하우징(18)에는 토출실(24)과 연통된 토출유로(101)가 형성된다. 이때, 상기 토출유로(101)에는 설정 차압 이상에서 압축된 냉매를 외부 냉각사이클(응축기)로 배출시킴과 동시에 배출된 냉매의 역류를 방지하는 체크밸브(100)가 설치된다. In addition, a discharge flow path 101 communicating with the discharge chamber 24 is formed in the rear housing 18. At this time, the discharge passage 101 is provided with a check valve 100 for discharging the refrigerant compressed at a predetermined differential pressure or more to an external cooling cycle (condenser) and at the same time to prevent the reverse flow of the discharged refrigerant.
또한, 상기 토출유로(101)의 배출 측으로 토출구(25)가 형성되는 것이 바람직하다. In addition, the discharge port 25 is preferably formed on the discharge side of the discharge passage 101.
아울러, 상기 후방 하우징(18)에는 상기 크랭크실(86) 또는 흡입실(22)의 압력(Pc,PS)을 체크밸브(100)를 작용하도록 연결하는 연결유로(102)가 형성된다.  In addition, the rear housing 18 is formed with a connection passage 102 for connecting the pressures Pc and PS of the crank chamber 86 or the suction chamber 22 to act on the check valve 100.
전술한 압축기는 본원 발명에 따른 체크밸브가 설치되는 하나의 예에 불과하며, 그 밖의 다양한 형식의 클러치-리스(clutch-less) 용량가변형 압축기에 모두 적용 가능하다. The compressor described above is just one example in which the check valve according to the present invention is installed, and is applicable to all other clutch-less displacement variable compressors.
이하, 도면을 참조하여 본 발명에 따른 체크밸브(100)를 설명한다.Hereinafter, a check valve 100 according to the present invention will be described with reference to the drawings.
제1실시예First embodiment
도 2 내지 도 4에 도시한 바와 같이, 본 발명의 제1실시예에 따른 체크밸브(100)는, 토출유로(101) 내에 장착되며 토출실(24) 압력(Pd)과 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)의 차압에 의해 상기 토출유로(101)를 개폐하는 본 발명에 따른 체크밸브(100)는, 토출실(24)로부터 토출된 냉매를 다음 냉각 사이클(응축기)로 보내주는 작용을 반복적으로 수행하는 것으로, 크게 밸브하우징(110)과, 상기 밸브하우징(110)의 내측을 왕복 이동하는 밸브체(120)와, 상기 밸브하우징(120)의 개방된 단부를 덮는 커버(130) 및 상기 커버(130)와 밸브체(120) 사이에 개재되는 가세부재(140)를 포함한다. 2 to 4, the check valve 100 according to the first embodiment of the present invention is mounted in the discharge passage 101, the discharge chamber 24 pressure (Pd) and the crank chamber 86 Alternatively, the check valve 100 according to the present invention, which opens and closes the discharge flow path 101 by the differential pressures of the pressures Pc and Ps of the suction chamber 22, performs the next cooling cycle on the refrigerant discharged from the discharge chamber 24. By repeatedly performing the action of sending to the condenser, the valve housing 110, the valve body 120 for reciprocating the inside of the valve housing 110, and the open of the valve housing 120 A cover 130 covering an end portion and a biasing member 140 interposed between the cover 130 and the valve body 120 are included.
먼저, 상기 밸브하우징(110)에는 토출실(24) 압력(Pd)이 작용하는 제1냉매유입구(111)와 상기 밸브체(120)의 왕복 이동에 따라 상기 제1냉매유입구(111)와 연결되는 냉매배출구(112)가 형성된다. First, the valve housing 110 is connected to the first refrigerant inlet 111 according to the reciprocating movement of the first refrigerant inlet 111 and the valve body 120 in which the discharge chamber 24 pressure Pd is applied. The refrigerant outlet 112 is formed.
이때, 상기 제1냉매유입구(111)는 토출유로(101)에 의해 토출실(24)과 연결되며, 상기 제1냉매배출구(112)는 토출유로(101)에 의해 토출구(25)와 연결된다. 즉, 상기 밸브하우징(110)은 토출유로(101) 내에 설치되는 것이다. In this case, the first refrigerant inlet 111 is connected to the discharge chamber 24 by the discharge passage 101, and the first refrigerant outlet 112 is connected to the discharge outlet 25 by the discharge passage 101. . That is, the valve housing 110 is installed in the discharge passage 101.
또한, 상기 밸브체(120)는 토출실(24) 압력(Pd)이 작용하여 상술한 제1냉매유입구(111)를 개폐하게 된다. In addition, the valve body 120 opens and closes the aforementioned first refrigerant inlet 111 by the pressure Pd of the discharge chamber 24.
그리고, 상기 커버(130)에는 크랭크실(86) 또는 흡입실(22) 압력(Pc,Ps)이 작용하는 제2냉매유입구(131)가 형성된다. 즉. 상기 제2냉매유입구는(131) 연결유로(102)와 연결된다. In addition, the cover 130 is formed with a second refrigerant inlet 131 in which the crank chamber 86 or the suction chamber 22 pressures Pc and Ps act. In other words. The second refrigerant inlet 131 is connected to the connection passage 102.
한편, 상기 가세부재(140)는 스프링으로 형성되어 상기 밸브체(120)가 제1냉매유입구(111)를 폐쇄하는 방향으로 탄성력을 인가한다. On the other hand, the biasing member 140 is formed of a spring to apply an elastic force in the direction in which the valve body 120 closes the first refrigerant inlet 111.
이러한 가세부재(140)는 그 탄성계수의 크기에 따라 밸브체(120)가 개폐되는 압력차를 조절할 수 있다. The biasing member 140 may adjust the pressure difference of opening and closing the valve body 120 according to the size of the elastic modulus.
덧붙여, 상기 밸브체(120)는 제1냉매유입구(111)에 대응되며 토출실(24) 압력(Pd)이 작용하는 대경부(121) 및 상기 제2냉매유입구(131)에 대응되며 크랭크실(86) 또는 흡입실(22) 압력(Pc,Ps)이 작용하는 소경부(122)로 구성된다. In addition, the valve body 120 corresponds to the first refrigerant inlet 111 and corresponds to the large diameter portion 121 and the second refrigerant inlet 131 on which the discharge chamber 24 pressure Pd acts, and the crank chamber. 86 or a small diameter portion 122 in which the suction chamber 22 pressures Pc and Ps act.
이와 같이 구성되는 본 발명의 체크밸브(100)에 따르면 토출실(24) 압력(Pd)의 크기가 가세부재(140)의 탄성력에 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)을 더한 값보다 큰 경우에 상기 토출유로(101)를 개방하게 된다. According to the check valve 100 of the present invention configured as described above, the size of the discharge chamber 24 pressure Pd is equal to the elastic force of the biasing member 140 and the pressure Pc of the crank chamber 86 or the suction chamber 22. When larger than Ps), the discharge passage 101 is opened.
예를 들어, 상기 가세부재(140)의 탄성력이 50이고 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)이 50이면, 토출실(24) 압력(Pd)이 100 이상일 때에 체크밸브(100)는 토출유로(101)를 개방하게 되는 것이다. For example, when the elastic force of the biasing member 140 is 50 and the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22 are 50, the discharge chamber 24 pressure Pd is 100 or more. The check valve 100 is to open the discharge flow path 101.
이때, 상기 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)은 토출실 압력(Pd)에 반대방향으로 증감하기 때문에 체크밸브(100)의 입구 측 토출압력(PdH)과 출구 측 토출압력(PdH)의 차이를 최소화하게 된다. At this time, since the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22 increase and decrease in the opposite direction to the discharge chamber pressure Pd, the inlet side discharge pressure PdH and the outlet of the check valve 100 are The difference in the side discharge pressure PdH is minimized.
즉, 토출실(24) 압력(Pd)이 높아지면 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)은 낮아지게 되고, 이로 인해 밸브체(120)의 소경부(122)에 작용하는 압력이 감소함에 따라 제1냉매유입구(111)를 개방하는 밸브체(120)의 하단이동이 수월해지게 되는 것이다. 결국, 상기 밸브체(120)의 대경부(121)에 가해지는 힘이 줄어듦에 따라 체크밸브(100)의 내부를 이동하는 토출실(22) 냉매의 압력손실을 최소화하게 되는 것이다. That is, when the pressure Pd of the discharge chamber 24 is increased, the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22 are lowered, which causes the small diameter portion 122 of the valve body 120 to be lowered. As the pressure acting on the lower end of the valve body 120 opening the first refrigerant inlet 111 will be easier. As a result, as the force applied to the large diameter portion 121 of the valve body 120 decreases, the pressure loss of the refrigerant in the discharge chamber 22 moving inside the check valve 100 is minimized.
한편, 가세부재(140)의 탄성력과 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)의 합에서 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)이 차지하는 비중이 커질수록 체크밸브(100)의 입구 측 토출압력(PdH)과 출구 측 토출압력(PdL)의 차이를 더 줄여줄 수 있다. On the other hand, the pressure Pc and Ps of the crank chamber 86 or the suction chamber 22 is equal to the sum of the elastic force of the biasing member 140 and the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22. As the specific gravity increases, the difference between the inlet-side discharge pressure PdH and the outlet-side discharge pressure PdL of the check valve 100 may be further reduced.
이는, 상기 가세부재(140)의 탄성력은 고정 값이고 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)은 토출실(24) 압력(Pd)에 반대방향으로 가변되는 값이므로 밸브체(120)가 열리는 방향으로의 반력을 줄여줄 수 있는 범위가 늘어나기 때문이다. This is because the elastic force of the biasing member 140 is a fixed value and the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22 vary in the opposite direction to the pressure Pd of the discharge chamber 24. This is because the range that can reduce the reaction force in the direction in which the valve body 120 is opened increases.
예를 들어, 가세부재(140)의 탄성력이 10이고 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)이 90이면 실제로 토출실(24) 압력(Pd)은 상기 가세부재(140)의 탄성력 10 이상만큼의 힘만 소모하면 체크밸브(100)는 개방되는 것이다. 즉, 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)은 토출실(24) 압력(Pd)에 반대방향으로 증감하기에 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps) 90은 토출실(24) 압력(Pd)에 의해 상쇄되는 것이다. For example, when the elastic force of the biasing member 140 is 10 and the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22 are 90, the discharge chamber 24 pressure Pd is actually the biasing member ( If only the force of the elastic force of 10 or more of the 140 is consumed, the check valve 100 is opened. That is, the pressures Pc and Ps of the crank chamber 86 or the suction chamber 22 increase or decrease in a direction opposite to the pressure Pd of the discharge chamber 24, so that the pressure of the crank chamber 86 or the suction chamber 22 is increased. (Pc, Ps) 90 is canceled by the pressure Pd of the discharge chamber 24.
또한, 가세부재(140)의 잦은 압축과 팽챙이 반복됨에 따라 탄성력이 저하되어도 크랭크실(86) 또는 흡입실 압력(Pc)이 밸브체(120)의 소경부(122)에 작용하므로 토출 냉매의 역류를 완벽하게 차단할 수도 있다. In addition, the crank chamber 86 or the suction chamber pressure Pc acts on the small diameter portion 122 of the valve body 120 even when the elastic force decreases as the compression and swelling of the biasing member 140 are repeated. You can also completely block backflow.
한편, 도 4의 (a)는 토출실(24) 압력(Pd)에 의해 밸브체(120)가 가세부재(140)를 압축하며 제1냉매유입구(111)를 개방함으로 압축된 냉매를 다음 냉각사이클(응축기)로 배출하는 것이며, 도 4의 (b)는 사판(50)의 최소경사각으로 구동하여 가세부재(140)의 탄성력과 크랭크실(86) 압력(Pc)이 밸브체(120)에 작용하여 밸브체(120)가 제1냉매유입구(111)를 폐쇄하여 냉매의 역류를 방지하는 것이다. On the other hand, (a) of FIG. 4 shows that the valve body 120 compresses the biasing member 140 by the discharge chamber 24 pressure Pd, and then cools the compressed refrigerant by opening the first refrigerant inlet 111. 4 (b) is driven at the minimum inclination angle of the swash plate 50 so that the elastic force and the crank chamber 86 pressure Pc of the biasing member 140 are applied to the valve body 120. The valve body 120 acts to close the first refrigerant inlet 111 to prevent backflow of the refrigerant.
또한, 상기 대경부(121)와 소경부(122) 사이에는 탄성부재(150)가 개재되며, 상기 대경부(121)에는 상기 탄성부재(150)가 안착되는 안착홈(151)이 형성된다. In addition, the large diameter portion 121 and the small diameter portion 122 is interposed between the elastic member 150, the large diameter portion 121 is formed with a seating groove 151 for mounting the elastic member 150.
제2실시예Second embodiment
도 2 내지 도 3 및 도 5에 도시한 바와 같이, 토출유로(101) 내에 장착되며 토출실(24) 압력(Pd)과 크랭크실(86) 또는 흡입실(22) 압력(Pc,Ps)의 차압에 의해 상기 토출유로(101)를 개폐하는 본 발명에 따른 체크밸브(100)는, 토출실(24)로부터 토출된 냉매를 다음 냉각 사이클(응축기)로 보내주는 작용을 반복적으로 수행하는 것으로, 크게 밸브하우징(110)과, 상기 밸브하우징(110)의 내측을 왕복 이동하는 밸브체(120)와, 상기 밸브하우징(120)의 개방된 단부를 덮는 커버(130) 및 상기 커버(130)와 밸브체(120) 사이에 개재되는 가세부재(140)를 포함한다. As shown in Figs. 2 to 3 and 5, the discharge passage 101 is mounted in the discharge passageway 101, and the pressure Pd of the discharge chamber 24 and the crank chamber 86 or the suction chamber 22 pressures Pc and Ps. The check valve 100 according to the present invention, which opens and closes the discharge passage 101 by differential pressure, repeatedly performs a function of sending the refrigerant discharged from the discharge chamber 24 to the next cooling cycle (condenser). And the valve housing 110, the valve body 120 for reciprocating the inside of the valve housing 110, the cover 130 and the cover 130 covering the open end of the valve housing 120 and And a biasing member 140 interposed between the valve bodies 120.
먼저, 상기 밸브하우징(110)에는 토출실(24) 압력(Pd)이 작용하는 제1냉매유입구(111)와 상기 밸브체(120)의 왕복 이동에 따라 상기 냉매유입구(111)와 연결되는 냉매배출구(112)가 형성된다. First, the valve housing 110 has a refrigerant connected to the refrigerant inlet 111 according to the reciprocating movement of the first refrigerant inlet 111 and the valve body 120 in which the discharge chamber 24 pressure Pd is applied. An outlet 112 is formed.
이때, 상기 제1냉매유입구(111)는 토출유로(101)에 의해 토출실(24)과 연결되며, 상기 냉매배출구(112)는 토출유로(101)에 의해 토출구(25)와 연결된다. 즉, 상기 밸브하우징(110)은 토출유로(101) 내에 설치되는 것이다. In this case, the first refrigerant inlet 111 is connected to the discharge chamber 24 by the discharge passage 101, and the refrigerant outlet 112 is connected to the discharge outlet 25 by the discharge passage 101. That is, the valve housing 110 is installed in the discharge passage 101.
또한, 상기 밸브체(120)는 토출실(24) 압력(Pd)이 작용하여 상술한 제1냉매유입구(111)를 개폐하게 된다. 덧붙여, 상기 밸브체(120)는 압축기의 최소경사각 구동시에 토출된 역류 냉매가 작용하며 상세한 설명은 후술한다. In addition, the valve body 120 opens and closes the aforementioned first refrigerant inlet 111 by the pressure Pd of the discharge chamber 24. In addition, the valve body 120 has a reverse flow refrigerant discharged during the driving of the minimum inclination angle of the compressor, which will be described later.
그리고, 상기 커버(130)에는 크랭크실(86) 또는 흡입실 압력(Pc,Ps)이 작용하는 제2냉매유입구(131)가 형성된다. 즉, 상기 제2냉매유입구는(131) 연결유로(102)와 연결된다. In addition, the cover 130 is formed with a second refrigerant inlet 131 in which the crank chamber 86 or the suction chamber pressures Pc and Ps act. That is, the second refrigerant inlet 131 is connected to the connection passage 102.
한편, 상기 가세부재(140)는 스프링으로 형성되어 상기 밸브체(120)가 제1냉매유입구(111)를 폐쇄하는 방향으로 탄성력을 인가한다. On the other hand, the biasing member 140 is formed of a spring to apply an elastic force in the direction in which the valve body 120 closes the first refrigerant inlet 111.
이러한 가세부재(140)는 그 탄성계수의 크기에 따라 밸브체(120)가 개폐되는 압력차를 조절할 수 있다. The biasing member 140 may adjust the pressure difference of opening and closing the valve body 120 according to the size of the elastic modulus.
덧붙여, 상기 밸브체(120)는 상기 제1냉매유입구(111)를 개폐하는 제1밸브체(121) 및 상기 제2냉매유입구(112)에 대응되는 제2밸브체(122)로 구성되며, 상기 제1,2밸브체(121,122)는 각각 운동하도록 별개로 구성된다. In addition, the valve body 120 includes a first valve body 121 that opens and closes the first refrigerant inlet 111, and a second valve body 122 corresponding to the second refrigerant inlet 112. The first and second valve bodies 121 and 122 are separately configured to move, respectively.
한편, 상기 가세부재(140)는 제1밸브체(121)에 탄성력을 인가하는 것이 바람직하다. On the other hand, the biasing member 140 preferably applies an elastic force to the first valve body 121.
또한, 상기 제1밸브체(121)에는 토출된 역류 냉매가 작용하는 수압부(121a)가 형성되며, 상기 제2밸브체에(122)는 상기 수압부(121a)에 삽입되는 지지부가(122a) 형성된다. In addition, the first valve body 121 is formed with a pressure receiving portion 121a to which discharged backflow refrigerant acts, and the second valve body 122 has a support portion 122a inserted into the hydraulic pressure portion 121a. A) is formed.
더욱이, 상기 수압부(121a)에는 상기 지지부(122a)가 삽입되어 초기 위치를 잡아주는 가이드부(150)가 형성되며, 상기 가이드부(150)는 삽입방향으로 좁아지는 경사부인 것이 바람직하다. In addition, the hydraulic pressure portion 121a is formed with a guide portion 150 into which the support portion 122a is inserted to hold an initial position, and the guide portion 150 is preferably an inclined portion that narrows in the insertion direction.
그리고, 상기 가이드부(150)의 반경방향 외측에는 상기 가세부재(140)가 안착된다. In addition, the biasing member 140 is seated on the radially outer side of the guide part 150.
즉, 상기 수압부(121a)로 토출된 역류 냉매가 작용함으로써 압축기의 최소경사각 구동시에 아래의 [표 1]과 같이 차압이 높아진 경우에도 본 발명의 체크밸브(100)는 토출 냉매의 역류를 방지하게 된다. That is, the check valve 100 of the present invention prevents the reverse flow of the discharged refrigerant even when the differential pressure is increased as shown in Table 1 below when the reverse flow refrigerant discharged to the hydraulic unit 121a operates. Done.
표 1
Figure PCTKR2010009147-appb-T000001
Table 1
Figure PCTKR2010009147-appb-T000001
이와 같이 구성된 본 발명의 체크밸브(100)에 따르면, 사판(50)의 최소경사각 구동시에 제1밸브체(121)의 수압부(121a)에 토출된 역류 냉매가 작용함으로써 제1밸브체(121)는 제1냉매유입구(111)를 폐쇄하여 토출 냉매의 역류를 방지하게 된다. According to the check valve 100 of the present invention configured as described above, the first valve body 121 by the reverse flow refrigerant discharged to the hydraulic pressure portion 121a of the first valve body 121 when the swash plate 50 is driven at the minimum inclination angle. ) Closes the first refrigerant inlet 111 to prevent backflow of the discharged refrigerant.
이때, 상기 가세부재(140)의 탄성력도 제1밸브체(121)에 작용하게 된다. At this time, the elastic force of the biasing member 140 also acts on the first valve body 121.
이에 따라, 토출 냉매의 역류가 차단되어 냉매 흐름에 따른 급격한 유동음 및 크랭크실(86) 압력증가로 인한 사판(50)의 내구성이 저하되는 것을 방지한다. Accordingly, the reverse flow of the discharged refrigerant is blocked to prevent the durability of the swash plate 50 due to the rapid flow sound and the increase in the pressure of the crank chamber 86 due to the refrigerant flow.
즉, 상기 제2밸브체(122)와 각개 왕복 운동하는 제1밸브체(121)와 수압부(121a)로 토출된 역류 냉매가 작용함으로써 상술한 [표 1]과 설정압력이상으로 차압이 높아진 경우에도 토출 냉매의 역류를 완벽하게 차단하게 된다. That is, the differential pressure is higher than the above-described [Table 1] and the set pressure by the action of the reverse flow refrigerant discharged to the second valve body 122 and the first valve body 121 and the hydraulic pressure unit 121a reciprocating respectively. In this case, the reverse flow of the discharged refrigerant is completely blocked.
이후, 설정 차압이 낮아지면 크랭크실(86) 또는 흡입실(22) 압력(Pc,Ps)이 제2냉매유입구(131)로 전달되어 제2밸브체(122)의 하부에 작용하고, 크랭크실(86) 또는 흡입실(22) 압력(Pc,Ps)을 전달받은 상기 제2밸브체(122)는 상승하여 지지부(122a)가 수압부(121a)의 하부를 지지하여 제1냉매유입구(111)의 폐쇄상태를 유지하게 된다. Subsequently, when the set differential pressure is lowered, the crank chamber 86 or the suction chamber 22 pressures Pc and Ps are transmitted to the second refrigerant inlet 131 to act on the lower portion of the second valve body 122. The second valve body 122, which receives the pressure Pc and Ps of the suction chamber 22, rises, and the support part 122a supports the lower part of the hydraulic pressure part 121a so that the first refrigerant inlet 111 ) Will remain closed.
즉, 사판(50)의 최소경사각 구동시에 크랭크실(86) 또는 흡입실(22)의 압력(Pc,Ps)은 상승하고, 상승된 크랭크실(86) 또는 흡입실(22) 압력(Pc,Ps)이 연결유로(102)를 통해 체크밸브(100)에 작용하게 되는 것이다. 이때, 압축기의 사용상, 크랭크실 압력(Pc)과 흡입실 압력(Ps)은 대략 같아진다 That is, the pressure Pc, Ps of the crank chamber 86 or the suction chamber 22 rises at the time of driving the minimum inclination angle of the swash plate 50, and the pressure Cc of the raised crank chamber 86 or the suction chamber 22 is increased. Ps) is to act on the check valve 100 through the connection flow path (102). At this time, in use of the compressor, the crankcase pressure Pc and the suction chamber pressure Ps become approximately equal.
한편, 도 5의 (a)는 토출실(24) 압력(Pd)에 의해 밸브체(120)가 가세부재(140)를 압축하며 제1냉매유입구(111)를 개방함으로 압축된 냉매를 다음 냉각사이클(응축기)로 배출(FULL OPEN)하는 것이며, 도 5의 (b)는 사판(50)의 최소경사각으로 구동시에 상기 제1밸브채(121)의 수압부(121a)에 토출된 역류 냉매가 작용하여 제1밸브체(121)만 상승하여 제1냉매유입구(111)를 폐쇄(BACK FLOW CLOSE)하여 냉매의 역류를 방지하는 것이며. 도 5의 (c)는 제2밸브체(122)에 크랭크실(86) 또는 흡입실(22) 압력(Pc,Ps)이 작용하여 제2밸브체(122)의 지지부(122a)가 제1밸브체(121)의 수압부(121a)를 지지하여 제1냉매유입구(111)를 차단(FULL CLOSE)하여 냉매의 역류를 방지하는 것이다. Meanwhile, in FIG. 5A, the valve body 120 compresses the biasing member 140 by the pressure Pd of the discharge chamber 24 and then cools the compressed refrigerant by opening the first refrigerant inlet 111. The discharge (FULL OPEN) to the cycle (condenser), Figure 5 (b) is the reverse flow refrigerant discharged to the water pressure portion 121a of the first valve sleeve 121 when driven at the minimum inclination angle of the swash plate 50 It acts to raise only the first valve body 121 to close the first refrigerant inlet 111 (BACK FLOW CLOSE) to prevent the backflow of the refrigerant. In FIG. 5C, the crank chamber 86 or the suction chamber 22 pressures Pc and Ps act on the second valve body 122 so that the support part 122a of the second valve body 122 becomes the first. By supporting the pressure receiving portion 121a of the valve body 121 to close the first refrigerant inlet 111 to prevent the backflow of the refrigerant.
이상, 본 발명의 바람직한 실시 예에 대하여 상세히 설명하였으나, 본 발명의 기술적 범위는 전술한 실시 예에 한정되지 않고 특허청구범위에 의하여 해석되어야 할 것이다. 이때, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 고려해야 할 것이다. As mentioned above, although preferred embodiment of this invention was described in detail, the technical scope of this invention is not limited to the above-mentioned embodiment, It should be interpreted by a claim. At this time, one of ordinary skill in the art should consider that many modifications and variations are possible without departing from the scope of the present invention.
예를 들어, 체크밸브(100)의 설치위치를 상술한 바와 같이 한정할 필요는 없으며 토출실(24) 압력(Pd)과 크랭크실(86) 압력(Pc)이 작용할 수 있다면 체크밸브(100)의 설치위치는 다양하게 변경될 수 있음을 밝혀둔다. For example, it is not necessary to limit the installation position of the check valve 100 as described above, and the check valve 100 if the discharge chamber 24 pressure Pd and the crank chamber 86 pressure Pc can act. Note that the installation location of the can be changed in various ways.

Claims (12)

  1. 흡입실, 토출실 및 크랭크실이 형성되는 용량가변형 압축기에 있어서,In a variable displacement compressor in which a suction chamber, a discharge chamber and a crank chamber are formed,
    상기 토출실과 연결되는 토출유로; A discharge passage connected to the discharge chamber;
    상기 토출유로 내에 장착되며 토출실 압력과 크랭크실 또는 흡입실 압력의 차압에 의해 상기 토출유로를 개폐하는 체크밸브;A check valve mounted in the discharge passage to open and close the discharge passage by a pressure difference between a discharge chamber pressure and a crank chamber or suction chamber pressure;
    를 포함하는 것을 특징으로 하는 용량가변형 압축기.A variable capacity compressor comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 체크밸브는,The check valve,
    상기 토출실 압력이 작용하는 제1냉매유입구와 상기 제1냉매유입구와 연결되는 냉매배출구가 형성되며, 상기 제1냉매유입구와 대향되는 단부가 개방되는 밸브하우징;A valve housing having a first refrigerant inlet through which the discharge chamber pressure acts and a refrigerant outlet connected to the first refrigerant inlet, and having an end portion opposed to the first refrigerant inlet;
    상기 제1냉매유입구를 개폐하는 밸브체;A valve body for opening and closing the first refrigerant inlet;
    상기 크랭크실 또는 흡입실 압력이 작용하는 제2냉매유입구가 형성되며 상기 밸브하우징의 개방된 단부를 덮는 커버; 및A cover having a second refrigerant inlet through which the crank chamber or suction chamber pressure is applied and covering the open end of the valve housing; And
    상기 커버와 밸브체 사이에 개재되는 가세부재;를 포함하는 것을 특징으로 하는 용량가변형 압축기.And a biasing member interposed between the cover and the valve body.
  3. 제 2항에 있어서,The method of claim 2,
    상기 밸브체는,The valve body,
    상기 제1냉매유입구에 대응되는 대경부 및 상기 제2냉매유입구에 대응되는 소경부로 구성되는 것을 특징으로 하는 용량가변형 압축기.A variable displacement compressor comprising a large diameter portion corresponding to the first refrigerant inlet and a small diameter portion corresponding to the second refrigerant inlet.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 대경부와 소경부 사이에는 탄성부재가 개재되어 있는 것을 특징으로 하는 용량가변형 압축기.A variable capacity compressor characterized in that an elastic member is interposed between the large diameter portion and the small diameter portion.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 대경부에는 상기 탄성부재가 안착되는 안착홈이 형성되어 있는 것을 특징으로 하는 용량가변형 압축기.The large diameter variable displacement compressor, characterized in that the mounting groove is formed in which the elastic member is seated.
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 체크밸브는 토출실 압력의 크기가 가세부재의 탄성력에 크랭크실 또는 흡입실의 압력을 더한 값보다 큰 경우에 상기 토출유로를 개방하는 것을 특징으로 하는 용량가변형 압축기.And the check valve opens the discharge passage when the discharge chamber pressure is larger than the elastic force of the biasing member plus the pressure of the crank chamber or the suction chamber.
  7. 제 2항에 있어서,The method of claim 2,
    상기 밸브체는,The valve body,
    상기 제1냉매유입구를 개폐하는 제1밸브체 및 상기 제2냉매유입구에 대응되는 제2밸브체로 구성되는 것을 특징으로 하는 용량가변형 압축기.A variable displacement compressor comprising a first valve body for opening and closing the first refrigerant inlet and a second valve body corresponding to the second refrigerant inlet.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 제1밸브체에는 토출된 역류 냉매가 작용하는 수압부가 형성되며, 상기 제2밸브체에는 상기 수압부에 삽입되는 지지부가 형성되는 것을 특징으로 하는 용량가변형 압축기.The variable pressure compressor of claim 1, wherein the first valve body is formed with a hydraulic pressure portion to which the discharged backflow refrigerant acts, and the second valve body has a support portion inserted into the hydraulic pressure portion.
  9. 제 8항에 있어서,The method of claim 8,
    상기 수압부에는 상기 지지부가 삽입되어 초기 위치를 잡아주는 가이드부가 형성되는 것을 특징으로 하는 용량가변형 압축기.The variable pressure type compressor, characterized in that the hydraulic pressure portion is provided with a guide portion is inserted to hold the initial position.
  10. 제 9항에 있어서,The method of claim 9,
    상기 가이드부는 삽입방향으로 좁아지는 경사부인 것을 특징으로 하는 용량가변형 압축기.The guide unit is a variable displacement compressor, characterized in that the inclined portion narrowing in the insertion direction.
  11. 제 9항에 있어서,The method of claim 9,
    상기 가이드부의 반경방향 외측에는 상기 가세부재가 안착되어 있는 것을 특징으로 하는 용량가변형 압축기.The variable displacement compressor, characterized in that the biasing member is seated on the radially outer side of the guide portion.
  12. 제 1항 또는 제 2항 또는 제 7항 중 어느 한 항에 있어서,The method according to claim 1 or 2 or 7,
    상기 크랭크실 또는 흡입실과 체크밸브를 연결하는 연결유로가 구비되는 것을 특징으로 하는 용량가변형 압축기.Capacitively variable compressor characterized in that the connection flow path for connecting the crank chamber or the suction chamber and the check valve.
PCT/KR2010/009147 2009-12-23 2010-12-21 Variable capacity compressor WO2011078547A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020090129438A KR101601966B1 (en) 2009-12-23 2009-12-23 Variable displacement compressor
KR10-2009-0129438 2009-12-23
KR10-2009-0129441 2009-12-23
KR1020090129441A KR20110072490A (en) 2009-12-23 2009-12-23 Variable displacement compressor

Publications (2)

Publication Number Publication Date
WO2011078547A2 true WO2011078547A2 (en) 2011-06-30
WO2011078547A3 WO2011078547A3 (en) 2011-11-10

Family

ID=44196289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009147 WO2011078547A2 (en) 2009-12-23 2010-12-21 Variable capacity compressor

Country Status (1)

Country Link
WO (1) WO2011078547A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013474A (en) * 2000-06-28 2002-01-18 Toyota Industries Corp Variable displacement compressor
JP2005337044A (en) * 2004-05-25 2005-12-08 Sanden Corp Mechanical capacity control valve of variable capacity swash plate compressor
KR20070106860A (en) * 2006-05-01 2007-11-06 한라공조주식회사 Variable capacity type swash plate type compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185645A (en) * 1992-12-18 1994-07-08 Toyoda Gosei Co Ltd Check valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013474A (en) * 2000-06-28 2002-01-18 Toyota Industries Corp Variable displacement compressor
JP2005337044A (en) * 2004-05-25 2005-12-08 Sanden Corp Mechanical capacity control valve of variable capacity swash plate compressor
KR20070106860A (en) * 2006-05-01 2007-11-06 한라공조주식회사 Variable capacity type swash plate type compressor

Also Published As

Publication number Publication date
WO2011078547A3 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2010056002A1 (en) Frequency- variable compressor and control method thereof
WO2018131827A1 (en) Turbo compressor
WO2010011081A1 (en) Compressor and air-conditioner having the same
WO2018038377A1 (en) Intake pulsation damper of swash plate-type compressor
WO2016093499A1 (en) Compressor
WO2011078547A2 (en) Variable capacity compressor
US6192699B1 (en) Variable capacity compressor
WO2012108671A2 (en) Valve plate assembly of compressor
WO2010110537A2 (en) Displacement control valve of variable displacement compressor and assembly method
WO2010137811A2 (en) Capacity control valve of variable capacity compressor
US7000420B2 (en) Compressor
WO2018221902A1 (en) Control valve and variable-capacity compressor
WO2009139559A1 (en) Swash plate compressor
WO2020153705A1 (en) Swash plate type compressor
EP1394409A2 (en) Compressor
WO2019146965A1 (en) Control device of compressor, electronic control valve used for same, electric compressor comprising same
WO2021241911A1 (en) Swash plate compressor
WO2012023771A2 (en) Plate assembly of a compressor valve
WO2020153664A1 (en) Compressor
WO2012008787A2 (en) Capacity control valve for a variable capacity compressor
WO2020059996A1 (en) Compressor and electronic device using same
WO2010058998A2 (en) Swash plate compressor with rotary valve
WO2020122489A1 (en) Swash plate compressor
US20210140419A1 (en) Variable displacement swash plate type compressor
WO2010151019A2 (en) Check valve and compressor having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839744

Country of ref document: EP

Kind code of ref document: A2