WO2019146965A1 - Control device of compressor, electronic control valve used for same, electric compressor comprising same - Google Patents

Control device of compressor, electronic control valve used for same, electric compressor comprising same Download PDF

Info

Publication number
WO2019146965A1
WO2019146965A1 PCT/KR2019/000731 KR2019000731W WO2019146965A1 WO 2019146965 A1 WO2019146965 A1 WO 2019146965A1 KR 2019000731 W KR2019000731 W KR 2019000731W WO 2019146965 A1 WO2019146965 A1 WO 2019146965A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
compressor
hole
suction pressure
chamber
Prior art date
Application number
PCT/KR2019/000731
Other languages
French (fr)
Korean (ko)
Inventor
곽정명
김용희
돔케다니엘
쉐르너시몬
자와드즈키피터
Original Assignee
한온시스템 주식회사
티이 커넥티버티 저머니 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180131392A external-priority patent/KR20190092234A/en
Application filed by 한온시스템 주식회사, 티이 커넥티버티 저머니 게엠베하 filed Critical 한온시스템 주식회사
Priority to US16/963,892 priority Critical patent/US20210033080A1/en
Priority to CN201980005758.5A priority patent/CN111801496B/en
Priority to JP2020539038A priority patent/JP2021511461A/en
Priority to DE112019000570.7T priority patent/DE112019000570T5/en
Publication of WO2019146965A1 publication Critical patent/WO2019146965A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Definitions

  • the present invention relates to a control device for controlling the operation of a compressor, an electronic control valve used therein, and a compressor including the same.
  • a vehicular air conditioning apparatus is provided with a refrigerant compression cycle device for providing cooling and heating.
  • the refrigerant compression-cycle apparatus includes a compressor for compressing and circulating refrigerant, and a variable capacity swash plate type compressor is widely used.
  • Such a variable displacement swash plate type compressor is configured such that the stroke of the piston can be adjusted in accordance with the inclination angle of the swash plate rotating at an adjustable angle with respect to the housing.
  • the inclination angle of the swash plate can be adjusted by the pressure in the crank chamber and the pressure difference in the suction chamber. That is, when the pressure of the crank chamber is increased by introducing high-pressure refrigerant in the discharge chamber into the crank chamber, the swash plate is arranged perpendicular to the main shaft, and the stroke of the piston is reduced. On the contrary, when the pressure of the crank chamber is reduced, the swash plate is inclined and the stroke of the piston increases, and the discharge flow rate of the refrigerant also increases.
  • the crank chamber is always in communication with the suction chamber, and a control valve for controlling the flow rate of the high-pressure refrigerant from the discharge chamber by connecting the crank chamber and the discharge chamber is provided in the swash plate type compressor.
  • the control valve can be divided into a mechanical control valve and an electronic control valve in accordance with the operation mode thereof.
  • the control valve is operated by the pressure difference in the suction chamber, the crank chamber and the discharge chamber without external control.
  • This mechanical control valve is operated with the so-called "internal controlled variable compressor” and controls the temperature of the outlet of the evaporator to be kept at 1 ⁇ 2 °C, so the temperature control is small and the clutch for compressor on / .
  • an electronic control valve is used together with a so-called “external controlled variable compressor ", and includes an operating rod which is driven by an electromagnetic actuator such as a solenoid.
  • the operating rod moves the valve bodies according to on / off of the solenoid, so that not only the discharge chamber, the crank chamber and the suction chamber can be selectively communicated, but also the opening thereof can be adjusted.
  • the external control type variable compressor can control the outlet temperature of the evaporator in the range of 1 to 12 ° C, so that it is possible to optimize the operation according to the cooling load, thereby saving power consumption and operating without clutch Therefore, the manufacturing cost can be reduced.
  • a control unit for controlling the electronic control valve is provided in the air conditioning system of the vehicle.
  • the controller controls the opening degree of the valve in consideration of a room temperature and an external environment condition set by the user, and changes the stroke of the piston to control the indoor space to be maintained at the set temperature.
  • Another object of the present invention is to provide an electronic control valve that can be used in such a control device.
  • Another object of the present invention is to provide a compressor including such an electronic control valve.
  • an engine including a piston reciprocating by a swash plate, a crank chamber accommodating a swash plate mounted to vary a tilt angle with respect to the rotary shaft, A first communication path connecting the suction chamber and the crank chamber, a second communication path connecting the discharge chamber and the crank chamber, and a second communication path connecting the first communication path and the second communication path, A suction pressure sensor for measuring a pressure of the suction chamber; A valve control unit for controlling an opening degree of the first and second communication paths in the control valve by comparing a target suction pressure and a suction pressure value measured from the suction pressure sensor; And a valve driving unit for driving an actuator for moving the valve body of the control valve to a position determined from the valve control unit so as to be a target suction pressure.
  • an electronic apparatus comprising: a casing having a space portion formed therein and having an electronic actuator at one end; A valve body mounted to move within the casing; And a first through hole communicating with a space portion of the casing and a suction chamber of a compressor to which the control valve is mounted; A fourth through-hole communicating with a space of the casing and a discharge chamber of a compressor to which the control valve is mounted; And a second and a third through-hole communicating with a space portion of the casing and a crank chamber of a compressor to which the control valve is mounted, wherein the valve body moves along the longitudinal direction of the valve body, And the third through hole is selectively opened and closed.
  • a control valve as described above; A rear housing in which the control valve is accommodated and in which a suction chamber and a discharge chamber are formed, respectively; A cylinder housing having the plurality of cylinder bores formed in a radial direction and coupled with the rear housing; And a front housing coupled to the cylinder housing and having a crank chamber in which a swash plate is disposed, wherein a first communication path communicating between the crank chamber and the suction chamber is formed in the cylinder housing, the rear housing, And a second communication passage defined by the second through hole and the first through hole and communicating the crank chamber and the discharge chamber is formed by the cylinder housing, the rear housing, the fourth through hole, and the third through hole Is defined in the compressor.
  • the angle of inclination of the swash plate is controlled by opening and closing the flow passage between the discharge chamber and the crank chamber while normally communicating the crank chamber and the suction chamber.
  • the flow rate of the compressed refrigerant can be increased by selectively opening and closing the flow path of the discharge chamber and the crank chamber to control the inclination angle of the swash plate, thereby improving the efficiency of the compressor. That is, since the suction pressure is directly controlled, even if the pressure of the crank chamber is increased by the refrigerant leaking in the compression process, it can be solved by manipulating the control valve, so that the orifice flow path, .
  • FIG. 1 is a cross-sectional view illustrating an internal structure of a swash plate compressor to which an embodiment of an electronic control valve according to the present invention is applied.
  • Fig. 2 is an enlarged cross-sectional view of the control valve shown in Fig. 1.
  • Fig. 3 is an enlarged cross-sectional view of a portion of the valve body in Fig. 2.
  • FIG. 4 is a cross-sectional view showing a state in which the first communication path is completely opened in the embodiment shown in FIG. 2;
  • FIG. 5 is a graph showing changes in degree of opening and closing of the first and second communication paths according to the movement of the valve body in the embodiment shown in FIG. 2;
  • FIG. 6 is a graph showing changes in the suction pressure and the valve opening in the process of increasing the inclination angle of the swash plate in the embodiment shown in FIG.
  • FIG. 7 is a graph showing changes in the suction pressure and the valve opening in the process of reducing the inclination angle of the swash plate in the embodiment shown in FIG.
  • FIG. 8 is a block diagram schematically showing the configuration of an embodiment of a control device for controlling the operation of the compressor shown in Fig.
  • Fig. 9 is a block diagram schematically showing the configuration of another embodiment of the control device for controlling the operation of the compressor shown in Fig. 1.
  • Fig. 9 is a block diagram schematically showing the configuration of another embodiment of the control device for controlling the operation of the compressor shown in Fig. 1.
  • FIG. 10 is a flowchart showing a process of adjusting the suction pressure in the control device shown in FIG.
  • a center bore 11 is formed through a center of a cylinder housing 10 of a swash plate type compressor (hereinafter referred to as a "compressor") according to an embodiment of the present invention.
  • the center bore 11 A plurality of cylinder bores 13 are formed so as to penetrate the cylinder radially.
  • a piston 15 is movably provided inside the cylinder bore 13 to compress the refrigerant in the cylinder bore 13.
  • a front housing 20 is installed at one end of the cylinder housing 10.
  • the front housing 20 cooperates with the cylinder housing 10 to form a crank chamber 21 therein.
  • the rear housing 30 is installed at the other end of the cylinder housing 10, that is, opposite to the front housing 20.
  • a suction chamber (31) is formed in the rear housing (30) to selectively communicate with the cylinder bore (13). At this time, the suction chamber 31 serves to transfer the refrigerant to be compressed into the cylinder bore 13.
  • a discharge chamber (33) is formed in the rear housing (30).
  • the discharge chamber (33) is formed in a region of the rear housing (30) corresponding to the outside of the surface facing the cylinder housing (10).
  • the discharge chamber (33) is a place where refrigerant compressed in the cylinder bore (13) is discharged and temporarily stays.
  • the control valve 100 is disposed at one side of the rear housing 30 and includes a flow path between the crank chamber 21 and the suction chamber 31 and a flow path between the discharge chamber 33 and the crank chamber 21. [ And adjusts the angle of the swash plate 48 to be described later.
  • the rotary shaft 40 is rotatably installed through the center bore 11 of the cylinder housing 10 and the shaft hole 23 of the front housing 20.
  • the rotary shaft (40) is rotated by the driving force transmitted from the engine.
  • the rotary shaft 40 is rotatably mounted on the cylinder housing 10 and the front housing 20 by a bearing 42.
  • the crank chamber 21 is provided with a rotor 44 which passes through the center of the rotating shaft 40 and rotates integrally with the rotating shaft 40. At this time, the rotor 44 is fixed to the rotating shaft 40 in a substantially disk shape, and a hinge arm (not shown) is formed on one surface of the rotor 44.
  • a swash plate (48) is hingedly coupled to the rotor (44) to rotate together with the rotary shaft (40).
  • the swash plate 48 is installed to vary the angle with respect to the rotary shaft 40 in accordance with the discharge capacity of the compressor. In other words, it is in a state of being orthogonal to the longitudinal direction of the rotary shaft 40 or inclined at a predetermined angle with respect to the rotary shaft 40.
  • the swash plate 48 has its edge connected to the pistons 15 via a shoe (not shown). That is, the edge of the swash plate 48 is connected to the connecting portion 17 of the piston 15 through the shoe so that the piston 15 is linearly reciprocated at the cylinder bore 13 by the rotation of the swash plate 48.
  • a semi-leaning spring (not shown) is provided between the rotor 44 and the swash plate 48 to provide an elastic force.
  • the anti-tilt spring is provided around the outer surface of the rotary shaft 40 and provides an elastic force in a direction in which the inclination angle of the swash plate 48 is reduced.
  • a swash plate stopper (58) is formed on one surface of the swash plate (48). The swash plate stopper (58) serves to regulate the degree to which the swash plate (48) inclines with respect to the rotating shaft (40).
  • a pulley assembly 60 is mounted at one end of the rotating shaft 40.
  • the pulley assembly 60 is mounted to receive rotational power through a belt and other power sources such as an engine of a vehicle.
  • the clutch assembly 62 is installed in the pulley assembly 60.
  • the clutch assembly 62 includes a coil and a core 62a provided inside the pulley assembly 60 and an outer side of the pulley assembly 60 As shown in FIG.
  • the clutch assembly may employ any conventionally known type, detailed description thereof will be omitted.
  • the clutch assembly 62 is configured such that the disk 62 is closely contacted according to the current applied to the coil and the core 62a, and the rotational power transmitted to the pulley is transmitted to the rotation shaft 40 do. The greater the applied current, the greater the degree of close contact.
  • the transmitted power is transmitted to the rotating shaft without loss, and when the current is low, only a portion of the transmitted power is transmitted to the rotating shaft. Therefore, the power or torque applied to the rotating shaft for driving the compressor can be controlled according to the degree of application of the current.
  • the control valve 100 is accommodated in a valve receiving portion 34 formed in the rear housing 30 and first to fourth internal flow paths are formed in the valve receiving portion 34 .
  • the first to fourth internal flow paths 35a, 35b, 35c, and 35d are connected to the first through fourth through holes of the control valve, respectively, to be described later.
  • the second through hole 110a1 and the third through hole 110a2 communicate with the inside of the control valve and the crank chamber of the compressor through the first through hole 110c and the suction chamber of the compressor,
  • the fourth through hole 110b is formed to communicate the inside of the control valve and the discharge chamber of the compressor, respectively.
  • the first internal passage 35a communicates with the suction chamber 31 and the fourth internal passage 35d communicates with the discharge chamber 33.
  • the second and third internal flow paths 35b and 35c are connected to the crank chamber 21, which are not connected to each other until they reach the crank chamber.
  • the fourth through-hole control valve casing, the third through-hole, the third inner flow passage 35c, and the crank chamber 21, which are defined by the discharge chamber 33, the fourth inner passage 35d, the fourth through- And a subsequent path is defined as a second communication path P2.
  • These are indicated by arrows in Fig. 1, and the refrigerant flow always occurs in the direction indicated by the arrow due to the pressure difference between the suction chamber, the crank chamber and the discharge chamber.
  • a plurality of O-rings are disposed on the outer circumferential surface of the control valve so as to block the leakage of the refrigerant between the control valve casing and the inner wall of the valve accommodating portion (34).
  • the second and third internal flow passages do not overlap each other until they reach the crank chamber, but in some cases they may be integrated into the rear housing or into the cylinder housing and then extend to the crank chamber Can be considered.
  • the crank chamber and the suction chamber communicate with each other to lower the pressure of the crank chamber, thereby increasing the inclination angle of the swash plate, resulting in an increase in the stroke of the piston.
  • the crank chamber and the discharge chamber are communicated with each other to increase the pressure of the crank chamber, thereby reducing the inclination angle of the swash plate, thereby reducing the stroke of the piston.
  • the control valve 100 includes a casing 110 having a cylindrical shape whose diameter is reduced downward in reference to FIG.
  • a plurality of grooves are formed on the outer circumferential surface of the casing 110, and the O-rings 102 are inserted into the grooves.
  • the O-rings are installed to prevent the refrigerant from leaking into the gap between the casing of the control valve and the inner wall of the valve accommodating portion 34 as described above.
  • a space is formed in the casing 110.
  • the refrigerant in the suction chamber, the crank chamber, and the discharge chamber is selectively introduced into the space according to the operating state of the valve.
  • the casing 110 is provided with second and third through holes 110a1 and 110a2 communicating with the crank chamber 21 at a substantially central portion thereof.
  • the second and third through holes 110a1 and 110a2 communicate with the suction chamber 31
  • a fourth through hole 110b communicating with the discharge chamber 33 is disposed at the lowermost end of the first through hole 110c.
  • the first through third through holes are radially arranged on the side surface of the casing 110, but the fourth through holes are formed at the lower end of the casing 110.
  • This configuration provides an advantage that the length of the casing 110 can be shortened.
  • the fourth through hole may be arranged in the same shape as other through holes.
  • a filter 112 is provided in the fourth through-hole 110b to block foreign substances remaining in the discharge chamber from flowing together with the refrigerant.
  • An electromagnetic actuator (not shown) is installed in the upper end of the casing 110.
  • the electromagnetic actuator generates an electromagnetic force depending on the magnitude of the current applied through the connector 108, which moves the valve body to be described later.
  • the present invention is not limited to the illustrated embodiment, but may be applied to any means capable of controlling the movement by applying a voltage, for example, a piezoelectric element or the like, a means for controlling the movement by applying a rotating magnetic field, For example, a stepper actuator may be used.
  • an elastic means for applying an upward force to the valve body with reference to FIG. 2 is additionally provided together with the electromagnetic actuator. The operation of the elastic means will be described later.
  • the valve body 120 has a substantially cylindrical shape that is vertically movable in a state of being in contact with the inner surface of the casing 110.
  • a needle 122 having a smaller diameter is formed on the bottom surface of the valve body 120.
  • the valve body 120 opposes the second through hole 110a1 and adjusts the opening degree of the second through hole according to the position.
  • the needle 122 opposes the third through hole 110a2 and adjusts the degree of opening of the third through hole according to the position.
  • a tapered surface 122a is formed at the lowermost end of the needle 122.
  • the tapered surface 122a of the needle is elevated toward the third through hole, the opening of the third through hole is increased at a relatively low speed at the beginning of opening after closing, and more rapidly . This not only prevents the pulsation from occurring due to an abrupt increase in opening degree in the early stage of opening control, but also allows the opening degree to be adjusted more precisely.
  • the upper side of the valve body 120 is formed with a tapered surface 124. As a result, the second through hole can be controlled more precisely.
  • first and fourth through-holes may be kept open regardless of the position of the valve body 120, and the second and third through-holes may be opened . This will be described later.
  • valve body 120 is maximally moved upward by the elastic force of the elastic means described above with reference to FIG. 2 when no current is applied to the electromagnetic actuator.
  • the internal pressure Pc of the crank chamber 21 is substantially equal to the discharge pressure Pd of the discharge chamber 33.
  • the valve body 120 moves downward to change the opening degrees of the second and third through holes.
  • the opening degree of the second through hole increases and the opening degree of the third through hole decreases. Accordingly, the first communication path is further opened and the second communication path is closed.
  • the inner space of the casing 110 is formed to have different inner diameters in accordance with the diameter of the valve body and the needle, thereby having a step. Therefore, as shown in FIG. 2, a space 104 is formed between the valve body 120 and the step portion, and a part of the refrigerant and the oil are held in the space 104. They act as resistances that impede movement of the valve body, which not only degrades responsiveness but also requires the actuators to have greater operating force.
  • an internal flow path having an inlet 127 at the lower end (refer to FIGS. 2 and 3) of the valve body 120 and an outlet 126 at the side of the valve body is additionally formed.
  • the internal flow path serves to transfer the refrigerant and oil collected in the space 104 to another space in the casing to reduce the resistance associated with the movement of the valve body.
  • the internal flow path may be further formed in the casing 110.
  • FIG. 4 shows a state in which a current is applied to the control valve so that the valve body is lowered, the second through hole is opened, and the third through hole is closed as described above.
  • the first communication path P1 is opened and the stroke of the piston is increased. That is, as the valve body 120 moves from the upper part to the lower part, the third through-hole is closed and the second through-hole is opened.
  • the horizontal axis represents the moving distance of the valve body, and the vertical axis represents the opening of the first and second communication paths.
  • control valve is operated in an area indicated by a 'control zone', not by using all the zones shown in FIG. Most of the control sections are arranged in a section for controlling the opening and closing of P1. The control method of the control valve and the compressor will be described later.
  • the control unit determines the suction pressure at which the stroke can be obtained and sets it to the target suction pressure.
  • the suction pressure set value may be reduced by a higher control unit provided in the air conditioner of the vehicle, and may be transmitted to the compressor control unit.
  • Information about the target suction pressure value can also be conveyed by the duty cycle of the PWM voltage signal, the current resulting from the PWM duty cycle, or a digital bus such as a LIN or CAN communication.
  • a digital bus such as a LIN or CAN communication.
  • the suction pressure setting value is indicated by a dotted line in Fig.
  • a current is applied to or increased in the electromagnetic actuator according to an instruction from the control unit, and accordingly, the opening degree of the first communication path instantaneously increases.
  • the suction pressure to be measured is lowered.
  • the measurement value can not follow the set value as it is due to the physical limit, and follows up with a certain time delay.
  • the suction pressure temporarily becomes lower than the target value due to the flow characteristics of the refrigerant, and the valve body repeatedly moves up and down, and finally converges to the target value.
  • the control unit determines the suction pressure at which the stroke can be obtained and sets it to the target suction pressure.
  • the suction pressure set value may be increased by a higher control unit provided in the air conditioner of the vehicle, and may be transmitted to the compressor control unit.
  • the suction pressure setting value is indicated by a dotted line in Fig.
  • the current applied to the electromagnetic actuator is reduced or cut off according to an instruction from the control unit, whereby the first communication path is closed and the second communication path is opened .
  • the fact that the valve opening degree graph is in the minus section means that the first communication path is closed and the second communication path is opened.
  • the section for guiding the discharge pressure to the crank chamber is minimized.
  • the amount of the already-compressed refrigerant used for adjusting the swash plate inclination angle is minimized, so that an additional efficiency increase can be expected.
  • the control unit 200 of the air conditioner includes a set temperature input unit 201 that allows a user to set a desired temperature, an outside air temperature sensor 202 that measures the temperature of the outside air, An evaporator outlet temperature sensor 203 for measuring the outlet temperature of the evaporator during the cooling cycle, an internal temperature sensor 204 for measuring the indoor temperature of the vehicle, and a solar radiation sensor 205 for measuring the load by direct sunlight, And controls the operation of the air conditioner based on measured or inputted factors.
  • the control unit 200 further includes an air conditioner door driving unit 210 for controlling an actuator motor 222 for operating a temperature control door provided in the air conditioning system 220. Accordingly, the control unit 200 controls the temperature control door provided in the air conditioner based on the input value and various measured values to control the indoor temperature of the vehicle to be maintained at the input set temperature.
  • the control unit 200 is configured to communicate with the engine control unit 300 mounted on the vehicle through wired / wireless communication means so as to send and receive signals.
  • the engine control unit 300 is connected to the pedal sensor 312 for measuring the degree of depression of the engine 310 and the accelerator pedal, and controls the operation of the engine according to signals measured and generated by the pedal sensor. In this process, the heat generated from the engine can be used to adjust the room temperature by a cooling water circulation circuit (not shown).
  • the compressor control device 400 for controlling the compressor as described above may be provided separately from the air conditioner control unit 200.
  • the compressor control unit 400 is connected to the air conditioner control unit 200 and the engine control unit 300 so as to be able to exchange signals with each other. Based on the measured values provided from the respective control units, As shown in FIG.
  • the compressor control apparatus 400 includes a valve control unit 410 for controlling the suction pressure of the refrigerant discharged through the compressor, a clutch control unit 420 for controlling the operation of the clutch provided in the compressor, A compressor torque management unit 430 for controlling the torque transmitted to the compressor through the control unit 440 and an abnormality detection unit 440 for checking the operation status of the compressor.
  • the valve driving unit 450 controls the control valve on the basis of the signals provided from the valve and the clutch driving unit 460 for operating the clutch.
  • the valve driving unit 450 controls the opening degree of the first and second communication paths by controlling a current applied to the electromagnetic actuator included in the control valve.
  • the clutch driving unit 460 drives the clutches And controls the applied electric current so as to maintain the electromagnetic force in the clutch assembly by a torque transmitted to the rotary shaft (40) of the compressor.
  • valve driving unit and the clutch driving unit control the operation of the compressor in consideration of information transmitted from various control units and management units provided in the controller 400.
  • Each of the control unit and the management unit controls operation of the compressor based on a value measured using the suction pressure sensor 401, the discharge pressure sensor 402 and the speed and stroke sensor 403 of the compressor .
  • the values measured through the sensor include both the suction pressure and the discharge pressure, but as described above, the suction pressure is used to control the stroke of the piston. That is, the stroke of the piston is adjusted by varying the opening degree of the first communication passage in accordance with the difference between the measured suction pressure and the target suction pressure.
  • the compressor control device may be installed in the housing of the compressor, and each of the sensors may be directly mounted on the compressor.
  • the control unit 200 or the engine control unit 300 may be connected to the vehicle through communication means such as CAN or LIN BUS.
  • valve control unit 410 the compressor torque control unit 430, the abnormality detection unit 440, and the valve driving unit 450 'may be provided as part of the air conditioner control unit 200 And a structure in which only the suction pressure sensor and the stroke sensor are disposed in the compressor may be considered.
  • the clutch control section, the compressor torque management section, and the abnormality detection section may be added or excluded as needed.
  • the valve control unit 410 determines the discharge amount, in other words, the stroke of the piston, based on the difference between the suction pressure measured as described above and the target suction pressure, and the valve driving unit is provided with the control valve Thereby controlling the operation of the electromagnetic actuator.
  • the target suction pressure is calculated on the basis of information such as the set temperature and the outside air temperature, which are determined by the air conditioner control unit 200 and transmitted to the compressor control unit 400.
  • 10 is a flowchart illustrating a process of controlling the suction pressure through the valve control unit.
  • the inside air temperature Tp is measured by the air conditioner control unit in which control is started. It is determined whether or not the measured Tp is equal to the predetermined set temperature Ts, and if the same is the same, the after-treatment temperature is measured again after a predetermined time has elapsed. If the measured Tp is different from Ts, it is judged that it is necessary to adjust the inside temperature.
  • the cause of the difference between Tp and Ts is determined, and if it is determined that the input is caused by the user, a new Ts is set as the input temperature. If there is a difference between the set temperature and the inside temperature even though there is no input from the user, it is determined that the change is due to an external cause.
  • Tp and Ts are compared. If Tp is greater than Ts, the target intake pressure Ps is reset to a lower value since cooling is required. If Tp is smaller than Ts, the refrigerant is excessively cooled, so it is necessary to reduce the refrigerant discharge amount of the compressor. Therefore, in this case, the target Ps is reset to a larger value.
  • the control valve After resetting the target Ps, compare it with the actual Ps. When the target Ps is greater than the measured actual Ps, the control valve is controlled to decrease the opening degree of the first communication path since the pressure Ps must be adjusted higher. Specifically, the valve body is moved upward by reference to Fig. If the target Ps is smaller than the measured actual Ps, the control valve is controlled so as to increase the opening degree of the first communication path since Ps must be adjusted lower. Specifically, the valve body is moved downward with reference to Fig. 2
  • the compressor torque management unit calculates the current compressor torque based on the suction pressure, the discharge pressure, the operation speed of the compressor, and the stroke information of the piston. At this time, the torque can be calculated by the following equation.
  • the torque value thus calculated is transmitted to the engine control unit to precisely control the engine load on the compressor torque. Further, the torque value can be used for controlling the clutch. That is, since the current applied to the clutch can be adjusted based on the torque value, the clutch power consumption is controlled according to the compressor torque. Clutch power consumption can be reduced by controlling the engine load with precise engine torque control and by controlling clutch applied current to the compressor torque
  • the abnormality detection unit can be operated at an external command or a predetermined frequency, and it detects an abnormality based on values such as a suction pressure, a discharge pressure, a compressor operation speed, and a stroke of a piston. At this time, the generated data may be transmitted to the engine control unit and used for the operation of the engine.
  • the suction pressure sensor 401 may be disposed at any one of the suction chamber of the compressor, the outlet end of the evaporator, and the refrigerant pipe between the evaporator and the compressor.
  • the target suction pressure can be determined not only by the air conditioner control device 200 of the vehicle but also by the compressor control device 400.
  • the actuator described in the above embodiments is not limited to solenoid actuators, and may be replaced with, for example, a stepper actuator, a direct current actuator, or a piezo electric actuator.

Abstract

The present invention relates to a control device for controlling the operation of a compressor, an electronic control valve used for the same, and a compressor comprising the same. Provided is a control device of a compressor, comprising: a piston which reciprocates by a swash plate; a crankcase for accommodating the swash plate, wherein the swash plate is mounted such that the inclination angle thereof with respect to a rotational shaft is variable; a discharge chamber from which a compressed working fluid is discharged; a suction chamber for suctioning a working fluid to be compressed; a first communication channel for connecting the suction chamber and the crankcase; a second communication channel for connecting the discharge chamber and the crankcase; and a control valve for selectively opening and closing the first and second communication channels, the control device of the compressor further comprising: a suction pressure sensor for measuring the pressure of the suction chamber; a valve control unit for determining a target suction pressure on the basis of a value measured by the suction pressure sensor and a preset temperature; and a valve operation unit for controlling the opening of the control valve to achieve the target suction pressure determined by the valve control unit.

Description

압축기의 제어장치, 그에 사용되는 전자식 제어밸브 및 그를 포함한 전동 압축기A controller of a compressor, an electronic control valve used therein, and an electric compressor
본 발명은 압축기의 동작을 제어하기 위한 제어장치, 그에 사용되는 전자식 제어밸브 및 그를 포함하는 압축기에 관한 것이다.The present invention relates to a control device for controlling the operation of a compressor, an electronic control valve used therein, and a compressor including the same.
통상적으로 차량용 공조장치에는 냉난방을 제공하기 위한 냉매압축 사이클 장치가 구비된다. 상기 냉매압축 사이클 장치는 냉매를 압축하여 순환시키는 압축기가 구비되고, 가변용량형 사판식 압축기가 널리 사용되고 있다.BACKGROUND ART [0002] Conventionally, a vehicular air conditioning apparatus is provided with a refrigerant compression cycle device for providing cooling and heating. The refrigerant compression-cycle apparatus includes a compressor for compressing and circulating refrigerant, and a variable capacity swash plate type compressor is widely used.
이러한 가변용량형 사판식 압축기는 하우징에 대서 조정 가능한 각도를 갖고 회전하는 사판의 경사각에 따라서 피스톤의 스트로크가 조절될 수 있도록 구성된다. 상기 사판의 경사각은 크랭크실 내의 압력과 흡입실 내의 압력차에 의해 조정될 수 있다. 즉, 토출실 내의 고압의 냉매를 크랭크실로 유입시켜서 크랭크실의 압력을 높이면 사판이 주축에 수직하게 배치되어 피스톤의 스트로크는 감소한다. 반대로, 크랭크실의 압력을 줄이면 사판이 경사지게 배치되면서 피스톤의 스트로크가 증가하여 냉매의 토출 유량도 증가하게 된다.Such a variable displacement swash plate type compressor is configured such that the stroke of the piston can be adjusted in accordance with the inclination angle of the swash plate rotating at an adjustable angle with respect to the housing. The inclination angle of the swash plate can be adjusted by the pressure in the crank chamber and the pressure difference in the suction chamber. That is, when the pressure of the crank chamber is increased by introducing high-pressure refrigerant in the discharge chamber into the crank chamber, the swash plate is arranged perpendicular to the main shaft, and the stroke of the piston is reduced. On the contrary, when the pressure of the crank chamber is reduced, the swash plate is inclined and the stroke of the piston increases, and the discharge flow rate of the refrigerant also increases.
크랭크실은 흡입실과 상시 연통되어 있으며, 크랭크실과 토출실을 연결하여 토출실로부터의 고압냉매 유량을 제어하는 제어밸브가 사판식 압축기에 구비되게 된다. 상기 제어밸브는 그 작동방식에 따라서 기계식 제어밸브와 전자식 제어밸브로 구분할 수 있는데, 기계식 제어밸브의 경우 외부의 제어없이 흡입실, 크랭크실 및 토출실에서의 압력차에 의해 작동된다. 이러한 기계식 제어밸브는 소위 "내부제어방식 가변 압축기"와 함께 작동되며, 증발기 출구의 온도가 1 ~ 2℃로 유지되도록 제어하므로 온도제어의 폭이 적고, 압축기의 on/off를 위한 클러치를 별도로 필요로 하는 단점이 있다.The crank chamber is always in communication with the suction chamber, and a control valve for controlling the flow rate of the high-pressure refrigerant from the discharge chamber by connecting the crank chamber and the discharge chamber is provided in the swash plate type compressor. The control valve can be divided into a mechanical control valve and an electronic control valve in accordance with the operation mode thereof. In the case of the mechanical control valve, the control valve is operated by the pressure difference in the suction chamber, the crank chamber and the discharge chamber without external control. This mechanical control valve is operated with the so-called "internal controlled variable compressor" and controls the temperature of the outlet of the evaporator to be kept at 1 ~ 2 ℃, so the temperature control is small and the clutch for compressor on / .
반면에, 전자식 제어밸브는 소위 "외부제어방식 가변 압축기"와 함께 사용되는 것으로서, 내부에 솔레노이드 등의 전자식 액츄에이터에 의해 구동되는 작동 로드를 포함하고 있다. 상기 작동 로드는 솔레노이드의 on/off에 따라서 밸브 몸체들을 이동시키고, 그에 따라 토출실, 크랭크실 및 흡입실이 선택적으로 연통될 수 있을 뿐만 아니라 그 개도도 조절될 수 있다. 이로 인해서, 외부제어방식 가변 압축기는 증발기의 출구 온도를 1 ~ 12℃의 범위로 조절할 수 있어, 냉방 부하에 맞게 최적화된 운전이 가능하여 전력 소모량을 절감할 수 있을 뿐만 아니라 클러치 없이 동작이 가능하기 때문에 제조비용도 절감할 수 있는 장점을 갖는다.On the other hand, an electronic control valve is used together with a so-called "external controlled variable compressor ", and includes an operating rod which is driven by an electromagnetic actuator such as a solenoid. The operating rod moves the valve bodies according to on / off of the solenoid, so that not only the discharge chamber, the crank chamber and the suction chamber can be selectively communicated, but also the opening thereof can be adjusted. As a result, the external control type variable compressor can control the outlet temperature of the evaporator in the range of 1 to 12 ° C, so that it is possible to optimize the operation according to the cooling load, thereby saving power consumption and operating without clutch Therefore, the manufacturing cost can be reduced.
여기서, 상기 전자식 제어밸브를 제어하기 위한 제어부가 차량의 공조 시스템에 구비되게 된다. 상기 제어부는 사용자가 설정한 실내 온도와 외부 환경조건 등을 고려하여 상기 밸브의 개도를 조절하고 그에 따라 피스톤의 스트로크를 변경하여 설정된 온도로 실내 공간이 유지될 수 있도록 제어하게 된다.Here, a control unit for controlling the electronic control valve is provided in the air conditioning system of the vehicle. The controller controls the opening degree of the valve in consideration of a room temperature and an external environment condition set by the user, and changes the stroke of the piston to control the indoor space to be maintained at the set temperature.
최근 환경 규제강화 및 전기자동차의 주행 거리 제한 등의 문제와 연관되어, 자동차에 탑재된 공조장치의 전력 사용량, 특히 압축기에서 소모되는 전력 사용량을 절감할 수 있는 방안에 대한 연구가 지속되고 있다.In recent years, studies have been made on ways to reduce the electric power consumption of the air conditioner mounted on an automobile, in particular, the amount of electric power consumed in the compressor, in connection with the problems such as the enforcement of the environmental regulations and the limitation of the traveling distance of the electric vehicle.
본 발명은 상기와 같은 종래 기술의 단점을 극복하기 위해 안출된 것으로서, 압축기의 동작 상태에 따라 보다 정밀하게 압축기의 동작을 제어할 수 있는 압축기용 제어장치를 제공하는 것을 기술적 과제로 삼고 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a control apparatus for a compressor which can more precisely control the operation of the compressor according to the operating state of the compressor.
본 발명은 또한, 상기와 같은 제어장치에 사용될 수 있는 전자식 제어밸브를 제공하는 것을 또 다른 기술적 과제로 삼고 있다.Another object of the present invention is to provide an electronic control valve that can be used in such a control device.
본 발명은 또한 상기와 같은 전자식 제어벨브를 포함하는 압축기를 제공하는 것을 또 다른 기술적 과제로 삼고 있다.Another object of the present invention is to provide a compressor including such an electronic control valve.
상기와 같은 기술적 과제를 달성하기 위한 본 발명의 일 측면에 의하면, 사판에 의해 왕복 이동하는 피스톤, 회전축에 대한 경사각이 가변되도록 장착되는 사판이 수용되는 크랭크실, 압축된 작동유체가 토출되는 토출실, 압축대상인 작동유체가 흡입되는 흡입실, 상기 흡입실과 크랭크실 사이를 연결하는 제1 연통로, 상기 토출실과 상기 크랭크실 사이를 연결하는 제2 연통로 및 상기 제1 연통로 및 제2 연통로를 선택적으로 개폐하는 제어밸브를 포함하는 압축기의 제어장치로서, 상기 흡입실의 압력을 측정하는 흡입압 센서; 목표 흡입압과 상기 흡입압 센서로부터 측정된 흡입압값을 대비하여 상기 제어밸브 내의 상기 제1 및 제2 연통로의 개도를 제어하는 밸브 제어부; 및 목표 흡입압이 되도록 상기 밸브 제어부로부터 결정된 위치로 상기 제어밸브의 밸브바디를 이동시키는 액츄에이터를 구동하는 밸브 구동부;를 포함하는 압축기의 제어장치가 제공된다.According to an aspect of the present invention, there is provided an engine including a piston reciprocating by a swash plate, a crank chamber accommodating a swash plate mounted to vary a tilt angle with respect to the rotary shaft, A first communication path connecting the suction chamber and the crank chamber, a second communication path connecting the discharge chamber and the crank chamber, and a second communication path connecting the first communication path and the second communication path, A suction pressure sensor for measuring a pressure of the suction chamber; A valve control unit for controlling an opening degree of the first and second communication paths in the control valve by comparing a target suction pressure and a suction pressure value measured from the suction pressure sensor; And a valve driving unit for driving an actuator for moving the valve body of the control valve to a position determined from the valve control unit so as to be a target suction pressure.
본 발명의 또 다른 측면에 의하면, 내부에 공간부가 형성되고, 일측 단부에 전자식 액츄에이터가 구비되는 케이싱; 상기 케이싱의 내부에서 이동하도록 장착되는 밸브 몸체; 및 상기 케이싱의 공간부와 상기 제어밸브가 장착되는 압축기의 흡입실과 연통되는 제1 관통공; 상기 케이싱의 공간부와 상기 제어밸브가 장착되는 압축기의 토출실과 연통되는 제4 관통공; 상기 케이싱의 공간부와 상기 제어밸브가 장착되는 압축기의 크랭크실과 연통되는 제2 및 제3 관통공;을 포함하는 제어밸브로서, 상기 밸브 몸체가 밸브 몸체의 길이 방향을 따라서 이동하면서 상기 제2 또는 제3 관통공이 선택적으로 개폐되는 것을 특징으로 하는 제어밸브가 제공된다.According to another aspect of the present invention, there is provided an electronic apparatus comprising: a casing having a space portion formed therein and having an electronic actuator at one end; A valve body mounted to move within the casing; And a first through hole communicating with a space portion of the casing and a suction chamber of a compressor to which the control valve is mounted; A fourth through-hole communicating with a space of the casing and a discharge chamber of a compressor to which the control valve is mounted; And a second and a third through-hole communicating with a space portion of the casing and a crank chamber of a compressor to which the control valve is mounted, wherein the valve body moves along the longitudinal direction of the valve body, And the third through hole is selectively opened and closed.
본 발명의 또 다른 측면에 의하면, 상기와 같은 제어밸브; 상기 제어밸브가 수용되고 흡입실 및 토출실이 각각 형성되는 후방 하우징; 상기 복수 개의 실린더 보어가 방사상으로 형성되고 상기 후방 하우징과 결합되는 실린더 하우징; 및 상기 실린더 하우징과 결합되고, 내부에 사판이 배치되는 크랭크실을 갖는 전방 하우징;을 포함하는 압축기로서, 상기 크랭크실과 상기 흡입실을 연통시키는 제1 연통로가 상기 실린더 하우징, 상기 후방 하우징, 상기 제2 관통공 및 상기 제1 관통공에 의해 정의되고, 상기 크랭크실과 상기 토출실을 연통시키는 제2 연통로가 상기 실린더 하우징, 상기 후방 하우징, 상기 제4 관통공 및 상기 제3 관통공에 의해 정의되는 것을 특징으로 하는 압축기가 제공된다.According to another aspect of the present invention, there is provided a control valve as described above; A rear housing in which the control valve is accommodated and in which a suction chamber and a discharge chamber are formed, respectively; A cylinder housing having the plurality of cylinder bores formed in a radial direction and coupled with the rear housing; And a front housing coupled to the cylinder housing and having a crank chamber in which a swash plate is disposed, wherein a first communication path communicating between the crank chamber and the suction chamber is formed in the cylinder housing, the rear housing, And a second communication passage defined by the second through hole and the first through hole and communicating the crank chamber and the discharge chamber is formed by the cylinder housing, the rear housing, the fourth through hole, and the third through hole Is defined in the compressor.
상기와 같은 특징을 갖는 본 발명의 측면들에 의하면, 종래에 크랭크실과 흡입실을 상시 연통한 채로 토출실과 크랭크실 사이의 유로를 개폐하여 사판의 경사각을 제어하던 것에 비해서, 크랭크실과 흡입실의 유로와 토출실과 크랭크실의 유로를 선택적으로 개폐하여 사판의 경사각을 제어함으로써 압축된 냉매의 토출량을 증가시킬 수 있으므로 압축기의 효율을 향상시킬 수 있게 된다. 즉, 흡입압력을 직접 제어하게 되므로 압축과정에서 누설되는 냉매에 의해 크랭크실의 압력이 높아지더라도 이를 제어밸브를 조작하여 해소할 수 있어, 종래의 효율저하의 원인이었던 오리피스 유로를 생략하거나 최소화할 수 있게 된다.According to the aspects of the present invention having the above-described features, the angle of inclination of the swash plate is controlled by opening and closing the flow passage between the discharge chamber and the crank chamber while normally communicating the crank chamber and the suction chamber. And the flow rate of the compressed refrigerant can be increased by selectively opening and closing the flow path of the discharge chamber and the crank chamber to control the inclination angle of the swash plate, thereby improving the efficiency of the compressor. That is, since the suction pressure is directly controlled, even if the pressure of the crank chamber is increased by the refrigerant leaking in the compression process, it can be solved by manipulating the control valve, so that the orifice flow path, .
도 1은 본 발명에 따른 전자식 제어밸브의 일 실시예가 적용된 사판식 압축기의 내부 구조를 도시한 단면도이다.1 is a cross-sectional view illustrating an internal structure of a swash plate compressor to which an embodiment of an electronic control valve according to the present invention is applied.
도 2는 도 1에 도시된 제어밸브를 확대하여 도시한 단면도이다.Fig. 2 is an enlarged cross-sectional view of the control valve shown in Fig. 1. Fig.
도 3은 도 2 중 밸브 몸체의 일부를 확대하여 도시한 단면도이다.Fig. 3 is an enlarged cross-sectional view of a portion of the valve body in Fig. 2. Fig.
도 4는 도 2에 도시된 실시예에서 제1 연통로가 완전히 개방된 상태를 도시한 단면도이다.FIG. 4 is a cross-sectional view showing a state in which the first communication path is completely opened in the embodiment shown in FIG. 2;
도 5는 도 2에 도시된 실시예에서 밸브 몸체의 이동에 따른 제1 및 제2 연통로의 개폐 정도의 변화를 도시한 그래프이다.FIG. 5 is a graph showing changes in degree of opening and closing of the first and second communication paths according to the movement of the valve body in the embodiment shown in FIG. 2;
도 6은 도 1에 도시된 실시예에서 사판의 경사각을 증가시키는 과정에서 흡입압력과 밸브 개도의 변화를 도시한 그래프이다.FIG. 6 is a graph showing changes in the suction pressure and the valve opening in the process of increasing the inclination angle of the swash plate in the embodiment shown in FIG.
도 7은 도 1에 도시된 실시예에서 사판의 경사각을 감소시키는 과정에서 흡입압력과 밸브 개도의 변화를 도시한 그래프이다.FIG. 7 is a graph showing changes in the suction pressure and the valve opening in the process of reducing the inclination angle of the swash plate in the embodiment shown in FIG.
도 8은 도 1에 도시된 압축기의 작동을 제어하기 위한 제어장치의 일 실시예의 구성을 개략적으로 도시한 블럭도이다.8 is a block diagram schematically showing the configuration of an embodiment of a control device for controlling the operation of the compressor shown in Fig.
도 9는 도 1에 도시된 압축기의 작동을 제어하기 위한 제어장치의 다른 실시예의 구성을 개략적으로 도시한 블럭도이다.Fig. 9 is a block diagram schematically showing the configuration of another embodiment of the control device for controlling the operation of the compressor shown in Fig. 1. Fig.
도 10은 도 8에 도시된 제어장치에서 흡입압력을 조절하는 과정을 도시한 흐름도이다.10 is a flowchart showing a process of adjusting the suction pressure in the control device shown in FIG.
이하에서는, 첨부된 도면을 참조하여 본 발명에 따른 전자식 제어밸브의 실시예 및 그를 포함하는 사판식 압축기에 대해서 상세하게 설명하도록 한다.Hereinafter, an embodiment of an electronic control valve according to the present invention and a swash plate compressor including the same will be described in detail with reference to the accompanying drawings.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 사판식 압축기(이하, '압축기')의 실린더 하우징(10) 중앙을 관통하여 센터보어(11)가 형성되고, 상기 센터보어(11)를 방사상으로 둘러서 실린더를 관통하도록 다수 개의 실린더보어(13)가 형성된다. 실린더보어(13)의 내부에는 피스톤(15)이 이동 가능하게 설치되어, 실린더보어(13) 내에서 냉매를 압축시킨다.1, a center bore 11 is formed through a center of a cylinder housing 10 of a swash plate type compressor (hereinafter referred to as a "compressor") according to an embodiment of the present invention. The center bore 11 A plurality of cylinder bores 13 are formed so as to penetrate the cylinder radially. A piston 15 is movably provided inside the cylinder bore 13 to compress the refrigerant in the cylinder bore 13. [
한편, 실린더 하우징(10)의 일단에는 전방 하우징(20)이 설치된다. 전방 하우징(20)은 실린더 하우징(10)와 협력하여 내부에 크랭크실(21)을 형성한다.On the other hand, a front housing 20 is installed at one end of the cylinder housing 10. The front housing 20 cooperates with the cylinder housing 10 to form a crank chamber 21 therein.
그리고, 상기 실린더 하우징(10)의 타단, 즉 상기 전방 하우징(20)이 설치된 반대쪽에는 후방 하우징(30)이 설치된다. 후방 하우징(30)에는 실린더보어(13)와 선택적으로 연통되게 흡입실(31)이 형성된다. 이때, 흡입실(31)은 실린더보어(13) 내부로 압축될 냉매를 전달하는 역할을 한다.The rear housing 30 is installed at the other end of the cylinder housing 10, that is, opposite to the front housing 20. A suction chamber (31) is formed in the rear housing (30) to selectively communicate with the cylinder bore (13). At this time, the suction chamber 31 serves to transfer the refrigerant to be compressed into the cylinder bore 13.
후방 하우징(30)에는 토출실(33)이 형성된다. 토출실(33)은 후방 하우징(30) 중 실린더 하우징(10)와 마주보는 면의 외측에 해당하는 영역에 형성된다. 상기 토출실(33)은 상기 실린더보어(13)에서 압축된 냉매가 토출되어 임시로 머무르는 곳이다. 후방 하우징(30)의 일측에는 제어밸브(100)가 구비되는데, 상기 제어밸브(100)는 크랭크실(21)과 흡입실(31) 사이의 유로 및 토출실(33)과 크랭크실(21) 사이 유로의 개도를 조절하여 후술하는 사판(48)의 각도를 조절하는 역할을 한다.A discharge chamber (33) is formed in the rear housing (30). The discharge chamber (33) is formed in a region of the rear housing (30) corresponding to the outside of the surface facing the cylinder housing (10). The discharge chamber (33) is a place where refrigerant compressed in the cylinder bore (13) is discharged and temporarily stays. The control valve 100 is disposed at one side of the rear housing 30 and includes a flow path between the crank chamber 21 and the suction chamber 31 and a flow path between the discharge chamber 33 and the crank chamber 21. [ And adjusts the angle of the swash plate 48 to be described later.
한편, 실린더 하우징(10)의 센터보어(11)와 전방 하우징(20)의 축공(23)을 관통하여 회전 가능하게 회전축(40)이 설치된다. 회전축(40)은 엔진에서 전달되는 구동력에 의해 회전한다. 상기 회전축(40)은 실린더 하우징(10)와 전방 하우징(20)에 베어링(42)에 의해 회전 가능하게 설치된다.The rotary shaft 40 is rotatably installed through the center bore 11 of the cylinder housing 10 and the shaft hole 23 of the front housing 20. The rotary shaft (40) is rotated by the driving force transmitted from the engine. The rotary shaft 40 is rotatably mounted on the cylinder housing 10 and the front housing 20 by a bearing 42.
또한, 회전축(40)이 중앙을 관통하고, 회전축(40)과 일체로 회전하는 로터(44)가 크랭크실(21)에 설치된다. 이때, 로터(44)는 대략 원판상으로 회전축(40)에 고정되어 설치되고, 로터(44)의 일면에는 힌지아암(미도시)이 돌출형성된다.The crank chamber 21 is provided with a rotor 44 which passes through the center of the rotating shaft 40 and rotates integrally with the rotating shaft 40. At this time, the rotor 44 is fixed to the rotating shaft 40 in a substantially disk shape, and a hinge arm (not shown) is formed on one surface of the rotor 44.
상기 회전축(40)에는 사판(48)이 로터(44)와 힌지 결합되어 함께 회전하도록 설치된다. 사판(48)은 압축기의 토출용량에 따라 회전축(40)에 대하여 각도가 가변되게 설치된다. 즉, 상기 회전축(40)의 길이 방향에 대해 직교한 상태 또는 회전축(40)에 대해 소정의 각도로 기울어진 상태 사이에 있도록 된다. 사판(48)은 그 가장자리가 피스톤(15)들과 슈(미도시)를 통해 연결된다. 즉, 피스톤(15)의 연결부(17)에 사판(48)의 가장자리가 슈를 통해 연결되어 사판(48)의 회전에 의해 피스톤(15)이 실린더보어(13)에서 직선 왕복운동하도록 한다.A swash plate (48) is hingedly coupled to the rotor (44) to rotate together with the rotary shaft (40). The swash plate 48 is installed to vary the angle with respect to the rotary shaft 40 in accordance with the discharge capacity of the compressor. In other words, it is in a state of being orthogonal to the longitudinal direction of the rotary shaft 40 or inclined at a predetermined angle with respect to the rotary shaft 40. The swash plate 48 has its edge connected to the pistons 15 via a shoe (not shown). That is, the edge of the swash plate 48 is connected to the connecting portion 17 of the piston 15 through the shoe so that the piston 15 is linearly reciprocated at the cylinder bore 13 by the rotation of the swash plate 48.
한편, 로터(44)와 사판(48) 사이에는 탄성력을 제공하는 반경사스프링(미도시)이 설치된다. 상기 반경사스프링은 회전축(40)의 외면을 둘러 설치되는 것으로, 사판(48)의 경사각이 작아지는 방향으로 탄성력을 제공한다. 사판(48)의 일면에는 사판스토퍼(58)가 돌출 형성된다. 사판스토퍼(58)는 사판(48)이 회전축(40)에 대해 경사지게 기울어지는 정도를 규제하는 역할을 한다.On the other hand, a semi-leaning spring (not shown) is provided between the rotor 44 and the swash plate 48 to provide an elastic force. The anti-tilt spring is provided around the outer surface of the rotary shaft 40 and provides an elastic force in a direction in which the inclination angle of the swash plate 48 is reduced. A swash plate stopper (58) is formed on one surface of the swash plate (48). The swash plate stopper (58) serves to regulate the degree to which the swash plate (48) inclines with respect to the rotating shaft (40).
그리고, 상기 회전축(40)의 일측 단부에 풀리 조립체(60)가 장착된다. 상기 풀리 조립체(60)는 차량의 엔진과 같은 다른 동력원과 벨트를 통해 회전동력을 전달받도록 장착된다. 그리고, 상기 풀리 조립체(60)에 클러치 조립체(62)가 설치되는데, 상기 클러치 조립체(62)는 상기 풀리 조립체(60)의 내부에 설치되는 코일 및 코어(62a)와 풀리 조립체(60)의 외측에 설치되는 디스크(62b)를 포함한다.A pulley assembly 60 is mounted at one end of the rotating shaft 40. The pulley assembly 60 is mounted to receive rotational power through a belt and other power sources such as an engine of a vehicle. The clutch assembly 62 is installed in the pulley assembly 60. The clutch assembly 62 includes a coil and a core 62a provided inside the pulley assembly 60 and an outer side of the pulley assembly 60 As shown in FIG.
여기서, 상기 클러치 조립체는 통상적으로 알려진 임의의 형태의 것을 채용할 수 있으므로 그 상세에 대해서는 설명을 생략하도록 한다. 어느 경우든, 상기 클러치 조립체(62)는 상기 코일 및 코어(62a)에 인가되는 전류에 따라서 상기 디스크(62)가 밀착되고, 그에 따라서 풀리로 전달되는 회전동력이 상기 회전축(40)에도 전달되게 된다. 인가되는 전류가 클수록 밀착되는 정도도 커지므로 전달된 동력이 손실없이 회전축에 전달되고, 전류가 낮으면 전달된 동력의 일부만이 회전축에 전달된다. 따라서, 전류의 인가 정도에 따라서 압축기를 구동하는 회전축에 가해지는 동력, 또는 토크를 제어할 수 있다. Here, since the clutch assembly may employ any conventionally known type, detailed description thereof will be omitted. In any case, the clutch assembly 62 is configured such that the disk 62 is closely contacted according to the current applied to the coil and the core 62a, and the rotational power transmitted to the pulley is transmitted to the rotation shaft 40 do. The greater the applied current, the greater the degree of close contact. Thus, the transmitted power is transmitted to the rotating shaft without loss, and when the current is low, only a portion of the transmitted power is transmitted to the rotating shaft. Therefore, the power or torque applied to the rotating shaft for driving the compressor can be controlled according to the degree of application of the current.
상기 클러치에 전류가 인가되지 않는 경우에는 풀리만이 회전할 뿐 회전축은 회전하지 않는다. 따라서, 불필요한 압축기의 동작을 방지할 수 있어 효율 향상에 도움을 줄 수 있다. 아울러, 상기 사판의 경사각이 커지고 그에 따라 피스톤의 스트로크가 커지면 요구되는 토크도 커지게 되고, 경사각이 작아져서 피스톤의 스트로크가 작아지면 요구되는 토크도 작아지게 된다. 따라서, 사판의 경사각에 따라 전달되는 토크를 적절히 제어하여 압축기에서 소모하는 동력을 최소화할 수 있고, 이는 차량 전체의 효율 상승으로 이어지게 된다.When no current is applied to the clutch, only the pulley rotates but the rotating shaft does not rotate. Therefore, unnecessary operation of the compressor can be prevented, which can help improve the efficiency. In addition, when the inclination angle of the swash plate is increased and thus the stroke of the piston is increased, the required torque is also increased. When the inclination angle is decreased and the stroke of the piston is decreased, the required torque is also decreased. Accordingly, the power transmitted to the compressor can be minimized by appropriately controlling the torque transmitted according to the inclination angle of the swash plate, leading to an increase in efficiency of the entire vehicle.
한편, 상기 제어밸브(100)는 상기 후방 하우징(30)에 형성되는 밸브 수용부(34)의 내부에 수용되며, 상기 밸브 수용부(34)에는 제1 내지 제4의 내부 유로가 형성되어 있다. 상기 제1 내지 제4 내부 유로(35a, 35b, 35c, 35d)는 후술할 제어밸브의 제1 내지 제4 관통공과 각각 연결된다. The control valve 100 is accommodated in a valve receiving portion 34 formed in the rear housing 30 and first to fourth internal flow paths are formed in the valve receiving portion 34 . The first to fourth internal flow paths 35a, 35b, 35c, and 35d are connected to the first through fourth through holes of the control valve, respectively, to be described later.
여기서, 상기 제1 관통공(110c)은 상기 제어밸브의 내부와 압축기의 흡입실을, 제2 관통공(110a1) 및 제3 관통공(110a2)은 제어밸브의 내부와 압축기의 크랭크실을, 제4 관통공(110b)은 제어밸브의 내부와 압축기의 토출실을 각각 연통시키도록 형성된다. 또한, 상기 제1 내부 유로(35a)는 상기 흡입실(31)과 연통되고, 제4 내부 유로(35d)는 토출실(33)과 연통된다. 그리고, 제2 및 제3 내부 유로(35b, 35c)는 상기 크랭크실(21)과 연결되는데, 이들은 크랭크실에 도달하기 전까지는 서로 연결되지 않는다.The second through hole 110a1 and the third through hole 110a2 communicate with the inside of the control valve and the crank chamber of the compressor through the first through hole 110c and the suction chamber of the compressor, The fourth through hole 110b is formed to communicate the inside of the control valve and the discharge chamber of the compressor, respectively. The first internal passage 35a communicates with the suction chamber 31 and the fourth internal passage 35d communicates with the discharge chamber 33. [ The second and third internal flow paths 35b and 35c are connected to the crank chamber 21, which are not connected to each other until they reach the crank chamber.
상기 크랭크실(21) - 제2 내부 유로(35b) - 제2 관통공 - 제어밸브 케이싱 - 제1 관통공 - 제1 내부 유로(35a) - 흡입실(31)로 이어지는 경로를 제1 연통로(P1)라 정의하고, 상기 토출실(33) - 제4 내부 유로(35d) - 제4 관통공 - 제어밸브 케이싱 - 제3 관통공 - 제3 내부 유로(35c) - 크랭크실(21)로 이어지는 경로를 제2 연통로(P2)라 정의한다. 이들은 각각 도 1에 화살표로 표시되어 있으며, 흡입실, 크랭크실 및 토출실의 압력차로 인해서 항상 상기 화살표로 표시된 방향으로 냉매의 흐름이 발생하게 된다. 상기 제어밸브의 외주면에는 복수 개의 오링이 배치되어 제어밸브 케이싱과 상기 밸브 수용부(34)의 내벽 사이에서의 냉매의 누설을 차단하도록 한다.A path leading to the crank chamber 21, the second internal passage 35b, the second through-hole control valve casing, the first through hole, the first internal passage 35a, and the suction chamber 31, The fourth through-hole control valve casing, the third through-hole, the third inner flow passage 35c, and the crank chamber 21, which are defined by the discharge chamber 33, the fourth inner passage 35d, the fourth through- And a subsequent path is defined as a second communication path P2. These are indicated by arrows in Fig. 1, and the refrigerant flow always occurs in the direction indicated by the arrow due to the pressure difference between the suction chamber, the crank chamber and the discharge chamber. A plurality of O-rings are disposed on the outer circumferential surface of the control valve so as to block the leakage of the refrigerant between the control valve casing and the inner wall of the valve accommodating portion (34).
도 1에서 상기 제2 및 제3 내부 유로는 크랭크실에 도달할 때까지 서로 중첩되지 않지만 경우에 따라서는 상기 후방 하우징 내에서, 또는 실린더 하우징의 내에서 하나로 통합된 후 크랭크실까지 연장되는 형태도 고려할 수 있다.In FIG. 1, the second and third internal flow passages do not overlap each other until they reach the crank chamber, but in some cases they may be integrated into the rear housing or into the cylinder housing and then extend to the crank chamber Can be considered.
상기 제1 연통로가 개방되면, 크랭크실과 흡입실이 연통되어 크랭크실의 압력이 낮아지고 그에 따라 사판의 경사각이 증가하고 결과적으로 피스톤의 스트로크가 증가하게 된다. 반대로 제2 연통로가 개방되면 크랭크실과 토출실이 연통되어 크랭크실의 압력이 높아지고 그에 따라 사판의 경사각이 감소되어 피스톤의 스트로크가 감소하게 된다.When the first communication path is opened, the crank chamber and the suction chamber communicate with each other to lower the pressure of the crank chamber, thereby increasing the inclination angle of the swash plate, resulting in an increase in the stroke of the piston. On the other hand, when the second communication path is opened, the crank chamber and the discharge chamber are communicated with each other to increase the pressure of the crank chamber, thereby reducing the inclination angle of the swash plate, thereby reducing the stroke of the piston.
이제 도 2 및 도 3을 참조하여 상기 제어밸브(100)에 대해서 상세하게 설명한다. 도 2를 참조하면, 상기 제어밸브(100)는 도 2 기준으로 하향으로 갈수록 직경이 작아지는 원통형의 형상을 갖는 케이싱(110)을 포함한다. 상기 케이싱(110)의 외주면에는 복수 개의 홈이 형성되고, 상기 홈의 내부에 각각 상술한 오링(102)이 끼워진다. 상기 오링들은 상술한 바와 같이 제어밸브의 케이싱과 밸브 수용부(34)의 내벽 사이의 틈으로 냉매가 누설되는 것을 방지할 수 있도록 설치된다.The control valve 100 will now be described in detail with reference to FIGS. 2 and 3. FIG. Referring to FIG. 2, the control valve 100 includes a casing 110 having a cylindrical shape whose diameter is reduced downward in reference to FIG. A plurality of grooves are formed on the outer circumferential surface of the casing 110, and the O-rings 102 are inserted into the grooves. The O-rings are installed to prevent the refrigerant from leaking into the gap between the casing of the control valve and the inner wall of the valve accommodating portion 34 as described above.
상기 케이싱(110)의 내부에 공간부가 형성되는데, 상기 공간부에는 흡입실, 크랭크실 및 토출실의 냉매가 밸브의 작동 상태에 따라 선택적으로 유입되게 된다. 구체적으로, 상기 케이싱(110)의 대략 중앙에는 상기 크랭크실(21)과 연통되는 제2 및 제3 관통공(110a1, 110a2)이 배치되고, 그 상측에 상기 흡입실(31)과 연통되는 제1 관통공(110c)이 배치되며, 최하단부에는 상기 토출실(33)과 연통되는 제4 관통공(110b)이 배치된다.A space is formed in the casing 110. The refrigerant in the suction chamber, the crank chamber, and the discharge chamber is selectively introduced into the space according to the operating state of the valve. Specifically, the casing 110 is provided with second and third through holes 110a1 and 110a2 communicating with the crank chamber 21 at a substantially central portion thereof. The second and third through holes 110a1 and 110a2 communicate with the suction chamber 31 And a fourth through hole 110b communicating with the discharge chamber 33 is disposed at the lowermost end of the first through hole 110c.
여기서, 상기 제1 내지 제3 관통공들은 상기 케이싱(110)의 측면에 방사상으로 복수 개가 배치된 형태를 갖지만, 제4 관통공은 케이싱(110)의 하측 단부에 형성되는 점에서 차이를 갖는다. 이러한 형태는 케이싱(110)의 길이를 짧게 할 수 있는 장점을 제공하는 것이나, 공간의 제약이 덜한 경우에는 제4 관통공도 다른 관통공과 동일한 형태로 배치할 수도 있다. 상기 제4 관통공(110b)에는 필터(112)가 설치되어 토출실 내에 잔류하는 이물질이 냉매와 함께 유입되는 것을 차단하도록 구성된다.Here, the first through third through holes are radially arranged on the side surface of the casing 110, but the fourth through holes are formed at the lower end of the casing 110. This configuration provides an advantage that the length of the casing 110 can be shortened. However, in the case where the restriction of the space is less, the fourth through hole may be arranged in the same shape as other through holes. A filter 112 is provided in the fourth through-hole 110b to block foreign substances remaining in the discharge chamber from flowing together with the refrigerant.
상기 케이싱(110)의 상단부 내에는 전자기 액츄에이터(미도시)가 설치된다. 상기 전자기 액츄에이터는 커넥터(108)를 통해 인가되는 전류의 크기에 따라 달라지는 전자기력을 발생시키고 이는 후술할 밸브 몸체를 이동시킨다. 다만, 본 발명에서 전자식 액츄에이터는 반드시 도시된 형태에 한하는 것은 아니며, 전압을 가하여 움직임을 제어할 수 있는 임의의 수단, 예를 들어 압전소자 등이나 회전 자기장을 인가하여 움직임을 제어하는 수단, 예를 들어 스테퍼 액츄에이터를 활용하는 예도 고려할 수 있다. 그리고, 상기 전자기 액츄에이터와 함께 상기 밸브 몸체에 도 2를 기준으로 상향의 힘을 가하는 탄성 수단이 추가적으로 구비된다. 상기 탄성 수단의 작동에 대해서는 후술한다.An electromagnetic actuator (not shown) is installed in the upper end of the casing 110. The electromagnetic actuator generates an electromagnetic force depending on the magnitude of the current applied through the connector 108, which moves the valve body to be described later. However, the present invention is not limited to the illustrated embodiment, but may be applied to any means capable of controlling the movement by applying a voltage, for example, a piezoelectric element or the like, a means for controlling the movement by applying a rotating magnetic field, For example, a stepper actuator may be used. In addition, an elastic means for applying an upward force to the valve body with reference to FIG. 2 is additionally provided together with the electromagnetic actuator. The operation of the elastic means will be described later.
상기 밸브 몸체(120)는 상기 케이싱(110)의 내면과 접한 상태에서 상하로 이동 가능하게 배치되는 대략 원통형의 형태를 갖는다. 그리고, 밸브 몸체(120)의 저면에는 보다 작은 직경을 갖는 니들(122)이 형성된다. 상기 밸브 몸체(120)는 상술한 제2 관통공(110a1)과 대향하면서 그 위치에 따라 제2 관통공의 개방 정도를 조절한다. 상기 니들(122)은 상기 제3 관통공(110a2)과 대향하면서 그 위치에 따라 제3 관통공의 개방 정도를 조절한다.The valve body 120 has a substantially cylindrical shape that is vertically movable in a state of being in contact with the inner surface of the casing 110. A needle 122 having a smaller diameter is formed on the bottom surface of the valve body 120. The valve body 120 opposes the second through hole 110a1 and adjusts the opening degree of the second through hole according to the position. The needle 122 opposes the third through hole 110a2 and adjusts the degree of opening of the third through hole according to the position.
상기 니들(122)의 최하측 단부에는 테이퍼면(122a)이 형성된다. 이로 인해서, 상기 제3 관통공에 상기 니들의 테이퍼면(122a)이 상향 접근하면서, 제3 관통공의 개도가 폐쇄후 열리는 초기에는 상대적으로 느린 속도로 증가하고, 이동이 진행될수록 보다 신속하게 증가하게 된다. 이는 개도 조절 초반에 급격하게 개도가 증가하여 맥동이 생기는 것을 방지할 뿐만 아니라, 개도를 보다 정밀하게 조절할 수 있도록 한다. 동일하게, 상기 밸브 몸체(120)의 상측면도 테이퍼면(124)을 갖도록 형성된다. 이로 인해서, 상기 제2 관통공도 보다 정밀한 개도 제어가 가능해진다.A tapered surface 122a is formed at the lowermost end of the needle 122. As a result, the tapered surface 122a of the needle is elevated toward the third through hole, the opening of the third through hole is increased at a relatively low speed at the beginning of opening after closing, and more rapidly . This not only prevents the pulsation from occurring due to an abrupt increase in opening degree in the early stage of opening control, but also allows the opening degree to be adjusted more precisely. Likewise, the upper side of the valve body 120 is formed with a tapered surface 124. As a result, the second through hole can be controlled more precisely.
여기서, 상기 제1 및 제4 관통공은 상기 밸브 몸체(120)의 위치와 무관하게 항상 개방된 상태를 유지하지만, 상기 제2 및 제3 관통공은 밸브 몸체(120)의 위치에 따라서 그 개도를 달리하게 된다. 이에 대해서는 후술한다.Here, the first and fourth through-holes may be kept open regardless of the position of the valve body 120, and the second and third through-holes may be opened . This will be described later.
한편, 상기 밸브 몸체(120)는 상기 전자기 액츄에이터에 전류가 인가되지 않은 상태에서는 상술한 탄성 수단의 탄성력에 의해서 도 2를 기준으로 상측으로 최대한 이동된 상태에 있게 된다. 이러한 상태에서 크랭크실(21)의 내부 압력(Pc)은 토출실(33)의 토출압력(Pd)과 거의 동일한 상태에 있게 된다. 상기 전자기 액츄에이터에 전류가 인가되면 상기 밸브 몸체(120)가 하향으로 이동하면서 상기 제2 및 제3 관통공의 개도에 변화가 있게 된다.Meanwhile, the valve body 120 is maximally moved upward by the elastic force of the elastic means described above with reference to FIG. 2 when no current is applied to the electromagnetic actuator. In this state, the internal pressure Pc of the crank chamber 21 is substantially equal to the discharge pressure Pd of the discharge chamber 33. When an electric current is applied to the electromagnetic actuator, the valve body 120 moves downward to change the opening degrees of the second and third through holes.
구체적으로, 밸브 몸체가 최상단에서 하단으로 이동할수록 제2 관통공의 개도는 증가하고 제3 관통공의 개도는 감소하게 된다. 따라서, 상기 제1 연통로가 더욱 개방되고 제2 연통로는 폐쇄된다. 이때, 상기 케이싱(110)의 내부 공간은 상기 밸브 몸체와 니들의 직경에 맞게 서로 다른 내경을 갖도록 형성되어 있고, 그로 인해서 단턱부를 갖게 된다. 따라서, 도 2에 도시된 바와 같이 상기 밸브 몸체(120)와 단턱부 사이에 공간(104)이 형성되고, 상기 공간(104)에는 냉매 및 오일의 일부가 갖혀 있게 된다. 이들은 상기 밸브 몸체의 이동을 방해하는 저항으로 작용하게 되어 응답성을 해할 뿐만 아니라 액츄에이터가 더 큰 작동력을 가질 것을 요하게 된다.Specifically, as the valve body moves from the top end to the bottom end, the opening degree of the second through hole increases and the opening degree of the third through hole decreases. Accordingly, the first communication path is further opened and the second communication path is closed. At this time, the inner space of the casing 110 is formed to have different inner diameters in accordance with the diameter of the valve body and the needle, thereby having a step. Therefore, as shown in FIG. 2, a space 104 is formed between the valve body 120 and the step portion, and a part of the refrigerant and the oil are held in the space 104. They act as resistances that impede movement of the valve body, which not only degrades responsiveness but also requires the actuators to have greater operating force.
따라서, 도 3에 도시된 바와 같이, 상기 밸브 몸체(120)의 하단부(도 2 및 3 기준)에 입구(127)를 갖고 밸브 몸체의 측면부에 출구(126)를 갖는 내부유로가 추가적으로 형성된다. 상기 내부유로는 상기 공간(104)에 포집된 냉매 및 오일을 케이싱 내의 다른 공간으로 이송시켜서 밸브 몸체의 이동과 관련된 저항을 줄이는 역할을 하게 된다. 상기 내부 유로는 상기 케이싱(110)에 추가 형성될 수 있다.3, an internal flow path having an inlet 127 at the lower end (refer to FIGS. 2 and 3) of the valve body 120 and an outlet 126 at the side of the valve body is additionally formed. The internal flow path serves to transfer the refrigerant and oil collected in the space 104 to another space in the casing to reduce the resistance associated with the movement of the valve body. The internal flow path may be further formed in the casing 110.
도 4는 상술한 바와 같이, 상기 제어밸브에 전류가 인가되어 밸브 몸체가 하강하고, 그에 따라 제2 관통공은 개방되고, 제3 관통공이 폐쇄된 상태를 도시하고 있다. 상기 도 4의 상태에서는 상기 제1 연통로(P1)이 개방되어 피스톤의 스트로크는 증가하게 된다. 즉, 상기 밸브 몸체(120)가 상부에서 하부로 이동할수록 제3 관통공은 폐쇄되고 제2 관통공은 개방된다. 도 5를 참조하면, 가로축은 상기 밸브 몸체의 이동거리를 나타내고 세로축은 제1 및 제2 연통로의 개도를 나타낸다.4 shows a state in which a current is applied to the control valve so that the valve body is lowered, the second through hole is opened, and the third through hole is closed as described above. In the state of FIG. 4, the first communication path P1 is opened and the stroke of the piston is increased. That is, as the valve body 120 moves from the upper part to the lower part, the third through-hole is closed and the second through-hole is opened. Referring to FIG. 5, the horizontal axis represents the moving distance of the valve body, and the vertical axis represents the opening of the first and second communication paths.
좌측 영역에서는 밸브 몸체가 하향으로 이동함에 따라서 제2 연통로(P2)가 점차적으로 폐쇄되는 것을 도시하고 있다. 우측 영역에서는 밸브 몸체가 하향으로 이동함에 따라서 제1 연통로(P1)가 점차적으로 개방되는 것을 도시하고 있다. 상기 원점 부근의 영역에서 제1 및 제2 연통로의 개폐가 역전되는 구간이 발생하게 되는데, 주목할 것은 두 개의 연통로가 동시에 개방되는 구간이 존재하지 않는 점이다.And the second communicating path P2 gradually closes as the valve body moves downward in the left region. And the first communicating path P1 gradually opens as the valve body moves downward in the right region. A section in which the opening and closing of the first and second communication paths are reversed occurs in the region near the origin, and it is noteworthy that there is no section in which the two communication paths are opened at the same time.
만일, 양자가 동시에 개방되는 구간이 존재할 경우 토출실로부터 크랭크실로 유입된 냉매가 사판의 경사각 조절에는 기여하지 못하고 그대로 흡입실로 빠져나가게 되므로 손실이 크게 증가하게 된다. 따라서, 상기 실시예에서는 제1 및 제2 연통로가 동시에 개방되는 구간을 없애서 이러한 손실을 최소화할 수 있도록 하고 있다.If there is a section in which both of them are open at the same time, the refrigerant flowing into the crank chamber from the discharge chamber does not contribute to the adjustment of the inclination angle of the swash plate, and the refrigerant exits to the suction chamber as it is. Accordingly, in the above-described embodiment, it is possible to eliminate the section where the first and second communication paths are opened at the same time, thereby minimizing such loss.
그리고, 상기 실시예에서 상기 제어밸브는 도 5에 도시된 모든 구간을 활용하는 것이 아니라, '제어 구간'으로 표시된 영역에서 작동된다. 대부분의 제어 구간은 P1의 개폐를 조절하는 구간에 배치되어 있다. 상기 제어밸브 및 압축기의 제어방법에 대해서는 후술한다.In this embodiment, the control valve is operated in an area indicated by a 'control zone', not by using all the zones shown in FIG. Most of the control sections are arranged in a section for controlling the opening and closing of P1. The control method of the control valve and the compressor will be described later.
도 6은 피스톤의 스트로크를 증가시키는 과정에서의 흡입압력 변화와 밸브 개도의 변화를 도시한 그래프이다. 사용자의 선택 또는 기타 원인으로 인해서 냉방 부하가 증가한 경우 상술한 바와 같이 피스톤의 스트로크를 증가시켜야 한다. 이를 위해서, 제어부는 해당 스트로크를 얻을 수 있는 흡입압을 결정하고 이를 목표 흡입압으로 설정한다. 또는, 상기 흡입압 설정값은 차량의 공조기에 구비되는 보다 상위의 제어 유닛에 의해 감소되고, 압축기 제어부로 전달될 수도 있다.6 is a graph showing a change in suction pressure and a valve opening degree in the process of increasing the stroke of the piston. If the cooling load increases due to user selection or other causes, the stroke of the piston must be increased as described above. To this end, the control unit determines the suction pressure at which the stroke can be obtained and sets it to the target suction pressure. Alternatively, the suction pressure set value may be reduced by a higher control unit provided in the air conditioner of the vehicle, and may be transmitted to the compressor control unit.
목표 흡입압값에 관한 정보는 PWM 전압 시그널의 듀티 사이클, PWM 듀티 사이클로부터 야기된 전류, 또는 LIN 또는 CAN 통신과 같은 디지털 bus에 의해서도 전달될 수 있다. 물론 이는 예시적인 것이고 반드시 이에 한하는 것은 아니다.Information about the target suction pressure value can also be conveyed by the duty cycle of the PWM voltage signal, the current resulting from the PWM duty cycle, or a digital bus such as a LIN or CAN communication. Of course, this is illustrative and not necessarily so.
*흡입압 설정값은 도 6에서 점선으로 표시된다. 제어가 시작되는 시점에서, 즉 설정값이 보다 낮은 값으로 변경되면 제어부의 지시에 따라 상기 전자기 액츄에이터에 전류가 인가 또는 증가되고 그에 따라서 제1 연통로의 개도가 순간적으로 증가한다.* The suction pressure setting value is indicated by a dotted line in Fig. At the start of control, that is, when the set value is changed to a lower value, a current is applied to or increased in the electromagnetic actuator according to an instruction from the control unit, and accordingly, the opening degree of the first communication path instantaneously increases.
이에 따라서 측정되는 흡입압력이 낮아진다. 다만, 측정값은 물리적 한계로 인해서 설정값을 그대로 추종하지 못하고 어느 정도 시간 지연을 가지면서 추종하게 된다. 아울러, 흡입압은 냉매의 유동 특성상 목표값 보다 일시적으로 낮아지게 되며, 밸브 몸체가 상하향으로 이동을 반복하게 되고 최종적으로는 목표값에 수렴하게 된다.As a result, the suction pressure to be measured is lowered. However, the measurement value can not follow the set value as it is due to the physical limit, and follows up with a certain time delay. In addition, the suction pressure temporarily becomes lower than the target value due to the flow characteristics of the refrigerant, and the valve body repeatedly moves up and down, and finally converges to the target value.
도 7은 상기 피스톤의 스트로크를 감소시키는 과정에서의 흡입압력 변화와 밸브 개도의 변화를 도시한 그래프이다. 사용자의 선택 또는 기타 원인으로 인해서 냉방 부하가 감소한 경우 상술한 바와 같이 피스톤의 스트로크를 감소시켜야 한다. 이를 위해서, 제어부는 해당 스트로크를 얻을 수 있는 흡입압을 결정하고 이를 목표 흡입압으로 설정한다. 또는, 상기 흡입압 설정값은 차량의 공조기에 구비되는 보다 상위의 제어 유닛에 의해 증가되고, 압축기 제어부로 전달될 수도 있다. 흡입압 설정값은 도 7에서 점선으로 표시된다. 제어가 시작되는 시점에서, 즉 설정값이 보다 높은 값으로 변경되면 제어부의 지시에 따라 상기 전자기 액츄에이터에 인가되던 전류가 감소 또는 차단되고 그에 따라서 제1 연통로가 폐쇄되고 제2 연통로가 개방된다. 도 7에서 밸브 개도 그래프가 마이너스 구간에 있는 것은 제1 연통로가 폐쇄되고 제2 연통로가 개방되는 것을 의미한다.7 is a graph showing a change in suction pressure and a valve opening degree in the process of reducing the stroke of the piston. If the cooling load is reduced due to user selection or other causes, the stroke of the piston must be reduced as described above. To this end, the control unit determines the suction pressure at which the stroke can be obtained and sets it to the target suction pressure. Alternatively, the suction pressure set value may be increased by a higher control unit provided in the air conditioner of the vehicle, and may be transmitted to the compressor control unit. The suction pressure setting value is indicated by a dotted line in Fig. At the start of control, that is, when the set value is changed to a higher value, the current applied to the electromagnetic actuator is reduced or cut off according to an instruction from the control unit, whereby the first communication path is closed and the second communication path is opened . 7, the fact that the valve opening degree graph is in the minus section means that the first communication path is closed and the second communication path is opened.
다만, 상기 상태를 지속하면 크랭크실의 압력이 토출압력과 동일하게 되고 그 결과 압축기의 작동이 정지되므로, 흡입압력이 목표값에 도달한 경우에는 액츄에이터에 전류를 다시 인가 또는 증가시켜 적절한 개도를 갖도록 한다. 이 경우에도 밸브의 개도는 목표값을 기준으로 증감을 반복하면서 종국에는 목표값에 수렴하는 거동을 나타낸다.However, if the above condition is maintained, the pressure of the crank chamber becomes equal to the discharge pressure, and as a result, the operation of the compressor is stopped. Therefore, when the suction pressure reaches the target value, do. Even in this case, the opening of the valve repeats the increase and decrease with reference to the target value, and eventually converges to the target value.
종래에는 압축과정에서 실린더와 피스톤 사이에서 누설되는 냉매로 인한 크랭크실의 압력 상승을 해소하기 위해 상시 개방되는 별도의 오리피스 유로를 형성하였고, 이는 효율 저하의 원인으로 작용하였다. 그러나, 상기 실시예에서는 흡입압력을 의도한 바대로 조절하는 것이 가능하므로 상기와 같은 오리피스 유로를 생략하거나 또는 최소화할 수 있어 효율의 저하를 최소화할 수 있게 된다.Conventionally, a separate orifice passage, which is normally opened to solve the pressure rise of the crank chamber due to the refrigerant leaking between the cylinder and the piston during the compression process, is formed, which causes the efficiency reduction. However, in the above embodiment, since the suction pressure can be adjusted as desired, the orifice passage can be omitted or minimized, thereby minimizing the deterioration of the efficiency.
또한, 제어구간이 대부분 제1 연통로의 개도 조절에 치우쳐 있어 토출압을 크랭크실로 유도하는 구간은 최소화되고 있다. 다시 말해서, 이미 압축이 완료된 냉매를 사판 경사각 조절을 위해 사용하는 양을 최소화하고 있어, 추가적인 효율 상승을 기대할 수 있는 것이다.In addition, since the control period is largely deviated to the opening control of the first communication path, the section for guiding the discharge pressure to the crank chamber is minimized. In other words, the amount of the already-compressed refrigerant used for adjusting the swash plate inclination angle is minimized, so that an additional efficiency increase can be expected.
도 8은 상기와 같은 압축기를 제어하기 위한 제어장치를 구비하는 차량용 공기조화기의 제어시스템을 개략적으로 도시한 블럭도이다. 도 8을 참조하면, 공기조화기의 제어부(200)는 사용자가 희망하는 온도를 설정할 수 있도록 하는 설정온도 입력부(201), 외기의 온도를 측정하는 외기 온도센서(202), 공기조화기에 구비되는 냉각사이클 중 증발기의 출구온도를 측정하는 증발기 출구 온도센서(203), 차량의 실내 온도를 측정하는 내기 온도센서(204) 및 직사광선에 의한 부하를 측정하는 일사량 센서(205)를 포함하고, 이들로부터 측정되거나 입력된 인자들을 기초로 공기조화기의 동작을 제어한다.8 is a block diagram schematically showing a control system of a vehicle air conditioner having a control device for controlling the compressor as described above. Referring to FIG. 8, the control unit 200 of the air conditioner includes a set temperature input unit 201 that allows a user to set a desired temperature, an outside air temperature sensor 202 that measures the temperature of the outside air, An evaporator outlet temperature sensor 203 for measuring the outlet temperature of the evaporator during the cooling cycle, an internal temperature sensor 204 for measuring the indoor temperature of the vehicle, and a solar radiation sensor 205 for measuring the load by direct sunlight, And controls the operation of the air conditioner based on measured or inputted factors.
그리고, 상기 제어부(200)는 공기조화 시스템(220)의 내부에 구비되는 온도조절 도어를 작동시키기 위한 액츄에이터 모터(222)를 제어하기 위한 공조기 도어 구동부(210)를 추가적으로 구비한다. 따라서, 상기 제어부(200)는 상술한 입력값 및 각종 측정값에 기초하여 공조기에 구비되는 온도조절 도어를 조절하여 차량의 실내가 입력된 설정온도로 유지되도록 제어하게 된다. 이외에도, 상기 제어부(200)는 차량에 탑재되는 엔진 제어부(300)로부터도 신호를 주고받을 수 있도록 유무선 통신수단을 통해 통신하도록 구성된다.The control unit 200 further includes an air conditioner door driving unit 210 for controlling an actuator motor 222 for operating a temperature control door provided in the air conditioning system 220. Accordingly, the control unit 200 controls the temperature control door provided in the air conditioner based on the input value and various measured values to control the indoor temperature of the vehicle to be maintained at the input set temperature. In addition, the control unit 200 is configured to communicate with the engine control unit 300 mounted on the vehicle through wired / wireless communication means so as to send and receive signals.
상기 엔진 제어부(300)는 엔진(310) 및 가속페달이 눌리는 정도를 측정하는 페달 센서(312)와 연결되어 페달 센서에 의해 측정되고 생성된 신호에 따라서 엔진의 작동을 제어하게 된다. 이 과정에서 엔진으로부터 발생된 열은 냉각수 순환회로(미도시)에 의해 실내 온도를 조절하는데 이용될 수 있다.The engine control unit 300 is connected to the pedal sensor 312 for measuring the degree of depression of the engine 310 and the accelerator pedal, and controls the operation of the engine according to signals measured and generated by the pedal sensor. In this process, the heat generated from the engine can be used to adjust the room temperature by a cooling water circulation circuit (not shown).
한편, 상술한 바와 같은 압축기를 제어하기 위한 압축기 제어장치(400)가 상기 공기조화기 제어부(200)와 별개로 구비될 수 있다. 상기 압축기 제어장치(400)는 상기 공기조화기 제어부(200) 및 상기 엔진 제어부(300)와 연결되어 서로 신호를 주고 받을 수 있도록 구성되고, 이를 통해 각각의 제어부로부터 제공되는 측정값에 기초하여 압축기의 동작을 제어하게 된다.Meanwhile, the compressor control device 400 for controlling the compressor as described above may be provided separately from the air conditioner control unit 200. The compressor control unit 400 is connected to the air conditioner control unit 200 and the engine control unit 300 so as to be able to exchange signals with each other. Based on the measured values provided from the respective control units, As shown in FIG.
구체적으로, 상기 압축기 제어장치(400)는 압축기를 통해 토출되는 냉매의 흡입 압력을 제어하기 위한 밸브 제어부(410), 상기 압축기에 구비되는 클러치의 동작을 제어하기 위한 클러치 제어부(420), 상기 클러치를 통해서 압축기로 전달되는 토크를 제어하기 위한 압축기 토크 관리부(430) 및 압축기의 동작 상황을 점검하는 이상 검출부(440)를 포함한다.Specifically, the compressor control apparatus 400 includes a valve control unit 410 for controlling the suction pressure of the refrigerant discharged through the compressor, a clutch control unit 420 for controlling the operation of the clutch provided in the compressor, A compressor torque management unit 430 for controlling the torque transmitted to the compressor through the control unit 440 and an abnormality detection unit 440 for checking the operation status of the compressor.
그리고, 이들로부터 제공된 신호를 근거로 하여 상기 제어밸브를 제어하는 밸브 구동부(450) 및 상기 클러치를 작동시키기 위한 클러치 구동부(460)를 추가적으로 포함한다. 상기 밸브 구동부(450)는 상기 제어밸브에 구비되는 전자기 액츄에이터에 인가되는 전류를 제어하여 제1 및 제2 연통로의 개도를 제어하고, 상기 클러치 구동부(460)는 상기 클러치 조립체에 구비되는 코일에 인가되는 전류를 압축기의 회전축(40)에 전달되는 토크만큼 클러치 조립체에서 전자기력을 유지할 수 있도록 제어한다.The valve driving unit 450 controls the control valve on the basis of the signals provided from the valve and the clutch driving unit 460 for operating the clutch. The valve driving unit 450 controls the opening degree of the first and second communication paths by controlling a current applied to the electromagnetic actuator included in the control valve. The clutch driving unit 460 drives the clutches And controls the applied electric current so as to maintain the electromagnetic force in the clutch assembly by a torque transmitted to the rotary shaft (40) of the compressor.
이때, 상기 밸브 구동부 및 클러치 구동부는 상기 제어장치(400)에 구비되는 각종 제어부 및 관리부로부터 전달되는 정보들을 종합적으로 고려하여 압축기의 작동을 제어한다. 상기 각각의 제어부 및 관리부는 상기 압축기에 구비되는 흡입압 센서(401), 토출압 센서(402) 및 압축기의 속도 및 스트로크 센서(403)를 이용하여 측정되는 값을 근거로 압축기의 작동을 제어한다.At this time, the valve driving unit and the clutch driving unit control the operation of the compressor in consideration of information transmitted from various control units and management units provided in the controller 400. Each of the control unit and the management unit controls operation of the compressor based on a value measured using the suction pressure sensor 401, the discharge pressure sensor 402 and the speed and stroke sensor 403 of the compressor .
여기서, 센서를 통해 측정되는 값들은 흡입압 및 토출압을 모두 포함하지만, 상술한 바와 같이 상기 피스톤의 스트로크를 제어하는 데에는 흡입압이 이용된다. 즉, 측정된 흡입압과 목표로 하는 흡압압의 차이에 따라서 제1 연통로의 개도를 달리하여 피스톤의 스트로크가 조절되는 것이다.Here, the values measured through the sensor include both the suction pressure and the discharge pressure, but as described above, the suction pressure is used to control the stroke of the piston. That is, the stroke of the piston is adjusted by varying the opening degree of the first communication passage in accordance with the difference between the measured suction pressure and the target suction pressure.
그리고, 상기 압축기 제어장치는 압축기의 하우징에 설치될 수 있으며, 구비되는 각각의 센서들 역시 압축기에 직접 장착될 수 있다. 상기 제어부(200) 또는 엔진 제어부(300)와는 차량에 구비되는 통신 수단, 예를 들어 CAN 또는 LIN BUS 등을 통해 연결될 수 있다. The compressor control device may be installed in the housing of the compressor, and each of the sensors may be directly mounted on the compressor. The control unit 200 or the engine control unit 300 may be connected to the vehicle through communication means such as CAN or LIN BUS.
경우에 따라서는, 도 9에 도시된 바와 같이 상기 밸브 제어부(410), 압축기 토크 관리부(430), 이상 검출부(440) 및 밸브 구동부(450')를 상기 공기조화기 제어부(200)의 일부로서 구성하고, 압축기에는 흡입압 센서와 스트로크 센서만을 배치하는 구성도 고려할 수 있다. 아울러, 도 8에 도시된 예에서 클러치 제어부, 압축기 토크 관리부 및 이상 검출부는 필요에 따라서 추가 또는 제외하는 예도 고려할 수 있다.9, the valve control unit 410, the compressor torque control unit 430, the abnormality detection unit 440, and the valve driving unit 450 'may be provided as part of the air conditioner control unit 200 And a structure in which only the suction pressure sensor and the stroke sensor are disposed in the compressor may be considered. In addition, in the example shown in FIG. 8, the clutch control section, the compressor torque management section, and the abnormality detection section may be added or excluded as needed.
상기 밸브 제어부(410)는 상술한 바와 같이 측정된 흡입압과 목표로 하는 흡입압의 차이에 기초하여 토출량, 다시 말해서 피스톤의 스트로크를 결정하고, 상기 밸브 구동부는 결정된 스트로크에 맞게 상기 제어밸브에 구비되는 전자기 액츄에이터의 동작을 제어하게 된다. 이 과정에서, 목표로 하는 흡입압은 상기 공기조화기 제어부(200)에 의해 결정되고 압축기 제어장치(400)로 전달된 설정 온도 및 외기 온도 등의 정보를 근거로 산출된다. 도 10은 상기 밸브 제어부를 통해서 흡입압이 제어되는 과정을 도시한 흐름도이다.The valve control unit 410 determines the discharge amount, in other words, the stroke of the piston, based on the difference between the suction pressure measured as described above and the target suction pressure, and the valve driving unit is provided with the control valve Thereby controlling the operation of the electromagnetic actuator. In this process, the target suction pressure is calculated on the basis of information such as the set temperature and the outside air temperature, which are determined by the air conditioner control unit 200 and transmitted to the compressor control unit 400. 10 is a flowchart illustrating a process of controlling the suction pressure through the valve control unit.
도 10을 참조하면, 제어가 시작되는 상기 공기조화기 제어부에 의해 내기 온도(Tp)를 측정한다. 측정된 Tp가 기 설정된 설정온도(Ts)와 동일한 지의 여부를 판단한 후 동일한 경우 소정 시간이 경과된 후에 다시 내기 온도를 측정한다. 만일, 측정된 Tp가 Ts와 다른 경우에는 내기 온도의 조절이 필요한 상황인 것으로 판단하게 된다.Referring to FIG. 10, the inside air temperature Tp is measured by the air conditioner control unit in which control is started. It is determined whether or not the measured Tp is equal to the predetermined set temperature Ts, and if the same is the same, the after-treatment temperature is measured again after a predetermined time has elapsed. If the measured Tp is different from Ts, it is judged that it is necessary to adjust the inside temperature.
이때, Tp가 Ts와 차이가 나게 된 원인을 파악하여, 사용자의 입력이 원인으로 판단되면, 입력된 온도를 새로운 Ts를 설정한다. 만일, 사용자의 입력이 없었음에도 불구하고 설정온도와 내기 온도에 차이가 발생하였다면, 외부 원인으로 인한 변동으로 판단한다.At this time, the cause of the difference between Tp and Ts is determined, and if it is determined that the input is caused by the user, a new Ts is set as the input temperature. If there is a difference between the set temperature and the inside temperature even though there is no input from the user, it is determined that the change is due to an external cause.
그 후, Tp와 Ts를 비교한다. 만일, Tp가 Ts보다 크다면 냉방이 필요한 상황이므로 목표로 하는 흡입압(Ps)를 보다 낮은 값으로 재설정한다. 만일, Tp가 Ts 보다 작다면, 과도하게 냉방이 이루어지고 있는 것이므로 압축기의 냉매 토출량을 줄일 필요가 있다. 따라서, 이 경우에는 목표로 하는 Ps를 보다 큰 값으로 재설정한다.Then, Tp and Ts are compared. If Tp is greater than Ts, the target intake pressure Ps is reset to a lower value since cooling is required. If Tp is smaller than Ts, the refrigerant is excessively cooled, so it is necessary to reduce the refrigerant discharge amount of the compressor. Therefore, in this case, the target Ps is reset to a larger value.
이렇게 목표 Ps를 재설정한 후 실제 Ps와 비교한다. 목표 Ps가 측정된 실제 Ps 보다 큰 경우에는 Ps를 보다 높게 조절해야 하므로 상기 제1 연통로의 개도를 감소시키도록 상기 제어밸브를 제어한다. 구체적으로는, 상기 밸브 몸체를 도 2 기준으로 상향으로 이동시킨다. 만일, 목표 Ps가 측정된 실제 Ps 보다 작은 경우에는 Ps를 보다 낮게 조절해야 하므로 상기 제1 연통로의 개도를 증가시키도록 상기 제어밸브를 제어한다. 구체적으로는, 상기 밸브 몸체를 도 2 기준으로 하향으로 이동시킨다After resetting the target Ps, compare it with the actual Ps. When the target Ps is greater than the measured actual Ps, the control valve is controlled to decrease the opening degree of the first communication path since the pressure Ps must be adjusted higher. Specifically, the valve body is moved upward by reference to Fig. If the target Ps is smaller than the measured actual Ps, the control valve is controlled so as to increase the opening degree of the first communication path since Ps must be adjusted lower. Specifically, the valve body is moved downward with reference to Fig. 2
이렇게 제어밸브를 제어한 후 실제 Ps를 재측정하고 목표값에 도달하였는 지를 확인한다. 여전히 양자에 차이가 발생하는 경우 상기 과정을 반복하고, 동일하면 제어를 종료하게 된다.. After controlling the control valve in this way, re-measure the actual Ps and confirm that the target value has been reached. If there is still a difference between them, the above process is repeated. If they are the same, the control is terminated.
상기 압축기 토크 관리부는 상기 흡입압, 토출압, 압축기의 운전속도 및 피스톤의 스트로크 정보를 근거로 하여 현재의 압축기 토크를 연산한다. 이때, 상기 토크는 다음과 같은 식에 의해 연산될 수 있다.The compressor torque management unit calculates the current compressor torque based on the suction pressure, the discharge pressure, the operation speed of the compressor, and the stroke information of the piston. At this time, the torque can be calculated by the following equation.
Figure PCTKR2019000731-appb-M000001
Figure PCTKR2019000731-appb-M000001
이렇게 연산된 토크값은 상 기 엔진 제어부로 전달되어, 압축기 토크에 대한 엔진부하를 정밀하게 제어하게 된다. 또한, 상기 토크값은 상기 클러치의 제어에 이용될 수 있다. 즉, 상기 토크값에 근거하여 클러치에 인가되는 전류를 조절할 수 있으므로 클러치 소비전력을 압축기 토크에 맞게 제어한다. 압축기 토크 계산을 통해 정밀하게 엔진 부하를 제어하여 엔진 효율을 높이고, 압축기 토크에 맞게 클러치 인가 전류를 제어하여 클러치 소비전력을 줄일 수 있다The torque value thus calculated is transmitted to the engine control unit to precisely control the engine load on the compressor torque. Further, the torque value can be used for controlling the clutch. That is, since the current applied to the clutch can be adjusted based on the torque value, the clutch power consumption is controlled according to the compressor torque. Clutch power consumption can be reduced by controlling the engine load with precise engine torque control and by controlling clutch applied current to the compressor torque
한편, 상기 이상 검출부는 외부의 명령 또는 사 전에 설정된 빈도로 작동될 수 있으며, 토크 연산부와 같이 흡입압, 토출압, 압축기 운전속도 및 피스톤의 스트로크 등의 값을 근거로 이상 유무를 검출하게 된다. 이때 생성된 데이터는 엔진 제어부로 전달되어 엔진 의 작동에 사용될 수도 있다.On the other hand, the abnormality detection unit can be operated at an external command or a predetermined frequency, and it detects an abnormality based on values such as a suction pressure, a discharge pressure, a compressor operation speed, and a stroke of a piston. At this time, the generated data may be transmitted to the engine control unit and used for the operation of the engine.
상기 각각의 데이터를 근거로 압축기에 구비되는 제어밸브 또는 클러치 등 의 이상유무를 확인할 수 있으며, 확인 결과 문제가 감지되면 해당 요소에 이상이 있음을 엔진 제어부 또는 차량의 다른 제어부에 전달하여 사용자로 하여금 적절한 조치가 이루어지도록 할 수 있다.If it is determined that there is an abnormality in the control valve or the clutch or the like provided in the compressor based on the respective data, if it is detected that a problem is detected, it is transmitted to the engine control unit or another control unit of the vehicle, Appropriate measures can be taken.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구범위에 기재된 범주내에서 적절하게 변경 가능한 것이다. 예를 들어, 흡입압 센서(401)는 압축기의 흡입실, 증발기의 출구단 및 증발기와 압축기 사이 냉매 파이프 중 어느 한 곳에 배치될 수 있다. 또한, 목표 흡입압은 차량의 공조기용 제어장치(200) 뿐만 아니라 압축기 제어장치(400)에 의해서도 결정할 수 있다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. For example, the suction pressure sensor 401 may be disposed at any one of the suction chamber of the compressor, the outlet end of the evaporator, and the refrigerant pipe between the evaporator and the compressor. In addition, the target suction pressure can be determined not only by the air conditioner control device 200 of the vehicle but also by the compressor control device 400. [
또한, 상기 실시예들에서 설명된 상기 액츄에이터는 솔레노이드 엑츄에이터로만 한정되는 것은 아니며, 예를 들어 스테퍼 액츄에이터, 직류 액츄에이터 또는 피에조일렉트릭 액츄에이터로 대체될 수 있다.Further, the actuator described in the above embodiments is not limited to solenoid actuators, and may be replaced with, for example, a stepper actuator, a direct current actuator, or a piezo electric actuator.

Claims (21)

  1. 사판에 의해 왕복 이동하는 피스톤, 회전축에 대한 경사각이 가변되도록 장착되는 사판이 수용되는 크랭크실, 압축된 작동유체가 토출되는 토출실, 압축대상인 작동유체가 흡입되는 흡입실, 상기 흡입실과 크랭크실 사이를 연결하는 제1 연통로, 상기 토출실과 상기 크랭크실 사이를 연결하는 제2 연통로 및 상기 제1 연통로 및 제2 연통로를 선택적으로 개폐하는 제어밸브를 포함하는 압축기의 제어장치로서,A piston reciprocating by a swash plate, a crank chamber accommodating a swash plate mounted to vary the inclination angle with respect to the rotation axis, a discharge chamber discharging a compressed working fluid, a suction chamber sucking a working fluid to be compressed, A second communication path connecting the discharge chamber and the crank chamber, and a control valve selectively opening and closing the first communication path and the second communication path, the control device comprising:
    상기 흡입실의 압력을 측정하는 흡입압 센서;A suction pressure sensor for measuring a pressure of the suction chamber;
    목표 흡입압과 상기 흡입압 센서로부터 측정된 흡입압값을 대비하여 상기 제어밸브 내의 상기 제1 및 제2 연통로의 개도를 제어하는 밸브 제어부; 및A valve control unit for controlling an opening degree of the first and second communication paths in the control valve by comparing a target suction pressure and a suction pressure value measured from the suction pressure sensor; And
    목표 흡입압이 되도록 상기 밸브 제어부로부터 결정된 위치로 상기 제어밸브의 밸브바디를 이동시키는 액츄에이터를 구동하는 밸브 구동부;를 포함하는 압축기의 제어장치.And a valve driving unit for driving an actuator that moves the valve body of the control valve to a position determined from the valve control unit so as to be a target suction pressure.
  2. 제1항에 있어서,The method according to claim 1,
    차량의 공기조화기 제어시스템으로부터 외기 상태 및 설정된 증발기 출구 온도에 대한 정보가 상기 밸브 제어부로 제공되는 것을 특징으로 하는 압축기의 제어장치.Wherein information on the outdoor air condition and the set evaporator outlet temperature from the air conditioner control system of the vehicle is provided to the valve control unit.
  3. 제1항에 있어서,The method according to claim 1,
    상기 밸브 제어부는 냉방 제공이 필요할 경우 상기 목표 흡입압을 측정된 흡입압보다 낮게 설정하는 것을 특징으로 하는 압축기의 제어장치.Wherein the valve control unit sets the target suction pressure to be lower than the measured suction pressure when cooling is required.
  4. 제3항에 있어서,The method of claim 3,
    상기 밸브 구동부는 목표 흡입압이 측정된 흡입압보다 낮은 경우, 상기 제1 연통로의 개도를 증가시키는 것을 특징으로 하는 압축기의 제어장치.Wherein the valve driving unit increases the opening degree of the first communication path when the target suction pressure is lower than the measured suction pressure.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제1 연통로가 적어도 부분적으로 개방된 경우, 상기 제2 연통로는 폐쇄된 상태에 있는 것을 특징으로 하는 압축기의 제어장치.Wherein when the first communication path is at least partially opened, the second communication path is in a closed state.
  6. 제1항에 있어서,The method according to claim 1,
    차량의 공기조화기 제어시스템과 신호를 주고받기 위한 송수신부를 추가적으로 포함하고, 상기 밸브 제어부 및 밸브 구동부가 상기 차량의 공기조화기 제어시스템과 별도로 구비되는 것을 특징으로 하는 압축기의 제어장치.Further comprising a transmission / reception unit for transmitting / receiving signals to / from the air conditioner control system of the vehicle, wherein the valve control unit and the valve driving unit are provided separately from the air conditioner control system of the vehicle.
  7. 제1항에 있어서,The method according to claim 1,
    상기 밸브 제어부 및 상기 밸브 구동부는 차량의 공기조화기 제어시스템에 통합되어 구비되는 것을 특징으로 하는 압축기의 제어장치.Wherein the valve control unit and the valve driving unit are incorporated in an air conditioner control system of a vehicle.
  8. 제1항에 있어서,The method according to claim 1,
    적어도 상기 압축기의 동작 속도, 토출압력 및 상기 피스톤의 스트로크 중 어느 하나를 감지하기 위한 2차 센싱 수단, 및Secondary sensing means for sensing at least one of an operating speed of the compressor, a discharge pressure, and a stroke of the piston,
    상기 2차 센싱 수단으로부터의 정보 및 측정된 흡입압을 근거로 하여 압축기 구동에 필요한 토크를 결정하는 압축기 토크 관리부,를 추가적으로 포함하는 것을 특징으로 하는 압축기의 제어장치.And a compressor torque management unit for determining a torque required for driving the compressor based on the information from the secondary sensing unit and the measured suction pressure.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 밸브 제어부는 결정된 토크값을 외부의 제어 장치에 제공하는 것을 특징으로 하는 압축기의 제어장치.And the valve control unit provides the determined torque value to an external control device.
  10. 제1항에 있어서,The method according to claim 1,
    적어도 상기 압축기의 동작 속도, 토출압력 및 상기 피스톤의 스트로크 중 어느 하나를 감지하기 위한 2차 센싱 수단, 및Secondary sensing means for sensing at least one of an operating speed of the compressor, a discharge pressure, and a stroke of the piston,
    상기 2차 센싱 수단으로부터의 정보 및 측정된 흡입압을 근거로 하여 압축기의 이상 유무를 판단하는 이상 검출부,를 추가적으로 포함하는 것을 특징으로 하는 압축기의 제어장치.And an abnormality detecting unit for determining whether or not the compressor is abnormal based on the information from the secondary sensing unit and the measured suction pressure.
  11. 제8항에 있어서 ,9. The method of claim 8,
    상기 압축기는 상기 회전축에 선택적으로 회전 토크를 전달하는 전자식 클러치 수단을 추가적으로 포함하며, 상기 압축기 제어장치는Wherein the compressor further comprises an electronic clutch means for selectively transmitting rotational torque to the rotating shaft,
    상기 압축기 토크 관리부에 의해 결정된 토크값에 따라서 선택적으로 상기 회전축에 회전 토크를 전달하여, 상기 전자식 클러치 수단의 동작을 제어하는 클러치 제어부,를 추가적으로 포함하는 것을 특징으로 하는 압축기의 제어장치.And a clutch control unit for selectively transmitting the rotation torque to the rotation shaft according to the torque value determined by the compressor torque management unit to control the operation of the electromagnetic clutch means.
  12. 내부에 공간부가 형성되고, 일측 단부에 전자식 액츄에이터가 구비되는 케이싱;A casing having a space portion formed therein and having an electronic actuator at one end;
    상기 케이싱의 내부에서 이동하도록 장착되는 밸브 몸체; 및A valve body mounted to move within the casing; And
    상기 케이싱의 공간부와 상기 밸브 몸체가 장착되는 압축기의 흡입실과 연통되는 제1 관통공;A first through hole communicating with a space portion of the casing and a suction chamber of a compressor to which the valve body is mounted;
    상기 케이싱의 공간부와 상기 밸브 몸체가 장착되는 압축기의 크랭크실과 연통되는 제2 및 제3 관통공; 및Second and third through holes communicating with a space portion of the casing and a crank chamber of a compressor to which the valve body is mounted; And
    상기 케이싱의 공간부와 상기 밸브 몸체가 장착되는 압축기의 토출실과 연통되는 제4 관통공;A fourth through hole communicating with a space of the casing and a discharge chamber of a compressor to which the valve body is mounted;
    을 포함하는 제어밸브로서,A control valve,
    상기 밸브 몸체가 밸브 몸체의 길이 방향을 따라서 이동하면서 상기 제2 또는 제3 관통공이 선택적으로 개폐되는 것을 특징으로 하는 제어밸브.And the second or third through-hole is selectively opened or closed while the valve body moves along the longitudinal direction of the valve body.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 밸브 몸체의 위치에 관계없이 상기 제1 및 제4 관통공은 개방된 상태를 유지하는 것을 특징으로 하는 제어밸브.Wherein the first and fourth through holes are kept open regardless of the position of the valve body.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 제1 및 4 관통공 중 적어도 하나에 설치되는 적어도 하나의 필터를 추가적으로 포함하는 것을 특징으로 하는 제어밸브 .And at least one filter installed in at least one of the first and fourth through holes.
  15. 제12항에 있어서,13. The method of claim 12,
    상기 공간부는 상대적으로 큰 내경을 갖는 대경부와 상대적으로 작은 내경을 갖는 소경부를 포함하며, 상기 제1 관통공에 상대적으로 인접하여 배치되는 제2 관통공은 상기 대경부에 배치되는 것을 특징으로 하는 제어밸브.Wherein the space portion includes a large diameter portion having a relatively large inner diameter and a small diameter portion having a relatively small inner diameter, and a second through hole disposed relatively adjacent to the first through hole is disposed in the large diameter portion Control valve.
  16. 제15항에 있어서,16. The method of claim 15,
    상기 제4 관통공에 상대적으로 인접하여 배치되는 제3 관통공은 상기 소경부에 배치되는 것을 특징으로 하는 제어밸브.And a third through-hole disposed relatively adjacent to the fourth through-hole is disposed in the small-diameter portion.
  17. 제12항에 있어서,13. The method of claim 12,
    상기 제3 관통공이 적어도 부분적으로 개방된 경우, 상기 제2 관통공은 완전히 폐쇄된 상태를 유지하는 것을 특징으로 하는 제어밸브.And the second through-hole maintains a completely closed state when the third through-hole is at least partially opened.
  18. 제15항에 있어서,16. The method of claim 15,
    상기 밸브 몸체는 상기 대경부와 소경부 의 경계면과 대향하는 단턱부를 포함하고, 상기 단턱부로부터 상기 밸브 몸체의 외측면까지 연장되는 내부 유로가 추가적으로 형성되는 것을 특징으로 하는 제어밸브.Wherein the valve body further includes a stepped portion opposed to an interface between the large diameter portion and the small diameter portion, and an inner flow path extending from the stepped portion to the outer surface of the valve body is additionally formed.
  19. 제15항에 있어서,16. The method of claim 15,
    상기 밸브 몸체는 상기 제2 또는 제3 관통공과 대향하는 면에 테이퍼면을 포함하는 것을 특징으로 하는 제어밸브.Wherein the valve body includes a tapered surface on a surface facing the second or third through-hole.
  20. 제12항 내지 제19항 중 어느 한 항에 따른 제어밸브;A control valve according to any one of claims 12 to 19;
    상기 제어밸브가 수용되고 흡입실 및 토출실이 각각 형성되는 후방 하우징;A rear housing in which the control valve is accommodated and in which a suction chamber and a discharge chamber are formed, respectively;
    상기 복수 개의 실린더 보어가 방사상으로 형성되고 상기 후방 하우징과 결합되는 실린더 하우징; 및A cylinder housing having the plurality of cylinder bores formed in a radial direction and coupled with the rear housing; And
    상기 실린더 하우징과 결합되고, 내부에 사판이 배치되는 크랭크실을 갖는 전방 하우징;을 포함하는 압축기로서,And a front housing coupled to the cylinder housing and having a crank chamber in which a swash plate is disposed,
    상기 흡입실과 상기 크랭크실을 연통시키는 제1 연통로가 상기 실린더 하우징, 상기 후방 하우징, 상기 제2 관통공 및 상기 제1 관통공에 의해 정의되고,A first communication passage for communicating the suction chamber and the crank chamber is defined by the cylinder housing, the rear housing, the second through hole, and the first through hole,
    상기 토출실과 상기 크랭크실을 연통시키는 제2 연통로가 상기 실린더 하우징, 상기 후방 하우징, 상기 제4 관통공 및 상기 제3 관통공에 의해 정의되는 것을 특징으로 하는 압축기.And a second communication passage for communicating the discharge chamber and the crank chamber is defined by the cylinder housing, the rear housing, the fourth through-hole, and the third through-hole.
  21. 제20항에 있어서,21. The method of claim 20,
    상기 제1 연통로와 제2 연통로는 별개로 형성되며, 중복되는 구간을 갖지 않는 것을 특징으로 하는 압축기.Wherein the first communication path and the second communication path are formed separately and do not have overlapping sections.
PCT/KR2019/000731 2018-01-29 2019-01-18 Control device of compressor, electronic control valve used for same, electric compressor comprising same WO2019146965A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/963,892 US20210033080A1 (en) 2018-01-29 2019-01-18 Control device of compressor, electronic control valve used for same, electric compressor comprising same
CN201980005758.5A CN111801496B (en) 2018-01-29 2019-01-18 Control device for compressor, electronic control valve for the control device, and electronic compressor including the electronic control valve
JP2020539038A JP2021511461A (en) 2018-01-29 2019-01-18 Compressor control device, electronic control valve used for it, and electric compressor including it
DE112019000570.7T DE112019000570T5 (en) 2018-01-29 2019-01-18 Compressor control device, electronic control valve for the same, and electric compressor comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0010891 2018-01-29
KR20180010891 2018-01-29
KR1020180131392A KR20190092234A (en) 2018-01-29 2018-10-31 Control system for a compressor, electronic control valve for the same, and compressor with the same
KR10-2018-0131392 2018-10-31

Publications (1)

Publication Number Publication Date
WO2019146965A1 true WO2019146965A1 (en) 2019-08-01

Family

ID=67395576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000731 WO2019146965A1 (en) 2018-01-29 2019-01-18 Control device of compressor, electronic control valve used for same, electric compressor comprising same

Country Status (1)

Country Link
WO (1) WO2019146965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685232B2 (en) * 2019-05-20 2023-06-27 Hyundai Motor Company Electronic control valve for HVAC system of vehicle and control method of HVAC system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209929A (en) * 1996-02-01 1997-08-12 Toyota Autom Loom Works Ltd Variable capacity compressor
JP2000345961A (en) * 1999-06-07 2000-12-12 Toyota Autom Loom Works Ltd Capacity control valve
JP2001153042A (en) * 1999-11-25 2001-06-05 Toyota Autom Loom Works Ltd Air conditioning system and control valve of variable displacement type compressor
JP2005067250A (en) * 2003-08-27 2005-03-17 Zexel Valeo Climate Control Corp Compressor module and vehicular control device using the same
KR20130085334A (en) * 2012-01-19 2013-07-29 (주)대정고분자산업 Electric control valve for variable displacement compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209929A (en) * 1996-02-01 1997-08-12 Toyota Autom Loom Works Ltd Variable capacity compressor
JP2000345961A (en) * 1999-06-07 2000-12-12 Toyota Autom Loom Works Ltd Capacity control valve
JP2001153042A (en) * 1999-11-25 2001-06-05 Toyota Autom Loom Works Ltd Air conditioning system and control valve of variable displacement type compressor
JP2005067250A (en) * 2003-08-27 2005-03-17 Zexel Valeo Climate Control Corp Compressor module and vehicular control device using the same
KR20130085334A (en) * 2012-01-19 2013-07-29 (주)대정고분자산업 Electric control valve for variable displacement compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685232B2 (en) * 2019-05-20 2023-06-27 Hyundai Motor Company Electronic control valve for HVAC system of vehicle and control method of HVAC system

Similar Documents

Publication Publication Date Title
CN1077235C (en) Displacement controlling structure for clutchless variable displacement compressor
WO2015002375A1 (en) Scroll compressor
WO2013109005A1 (en) Electronic control valve for variable capacity compressor
CN1127618C (en) Variable displacement compressor and method for controlling same
US6508071B2 (en) Air conditioner and displacement control valve for variable displacement compressor
WO2019146965A1 (en) Control device of compressor, electronic control valve used for same, electric compressor comprising same
WO2010011081A1 (en) Compressor and air-conditioner having the same
WO2018038377A1 (en) Intake pulsation damper of swash plate-type compressor
CN1303377C (en) Air conditioner
US6519960B2 (en) Air conditioner
WO2010021491A1 (en) Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
CN111801496B (en) Control device for compressor, electronic control valve for the control device, and electronic compressor including the electronic control valve
CN1342839A (en) Control valve for positive displacement compressor
US6647737B2 (en) Air conditioner
WO2018221902A1 (en) Control valve and variable-capacity compressor
WO2017116194A1 (en) Electronic control valve of variable-capacity compressor
WO2010137811A2 (en) Capacity control valve of variable capacity compressor
WO2023136694A1 (en) Variable-displacement swash plate compressor
WO2009139559A1 (en) Swash plate compressor
KR20220142579A (en) Variable capacity swash plate compressor
WO2020122489A1 (en) Swash plate compressor
WO2023287185A2 (en) Variable-capacity swash plate-type compressor control method and variable-capacity swash plate-type compressor controlled thereby
WO2021241911A1 (en) Swash plate compressor
WO2016076667A1 (en) Variable displacement swash plate type compressor
WO2012023771A2 (en) Plate assembly of a compressor valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539038

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19743389

Country of ref document: EP

Kind code of ref document: A1