WO2011078365A1 - Method for manufacturing screw, whirling cutter, and screw manufacturing device - Google Patents

Method for manufacturing screw, whirling cutter, and screw manufacturing device Download PDF

Info

Publication number
WO2011078365A1
WO2011078365A1 PCT/JP2010/073442 JP2010073442W WO2011078365A1 WO 2011078365 A1 WO2011078365 A1 WO 2011078365A1 JP 2010073442 W JP2010073442 W JP 2010073442W WO 2011078365 A1 WO2011078365 A1 WO 2011078365A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
diameter
outer diameter
thread
angle
Prior art date
Application number
PCT/JP2010/073442
Other languages
French (fr)
Japanese (ja)
Inventor
健二 磯部
拓 小池
巨樹 安藤
博道 村田
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN201080059199.5A priority Critical patent/CN102665583B/en
Priority to US13/519,072 priority patent/US20120264528A1/en
Priority to KR1020127015864A priority patent/KR101233863B1/en
Priority to JP2011511181A priority patent/JP4763862B2/en
Publication of WO2011078365A1 publication Critical patent/WO2011078365A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/32Thread cutting; Automatic machines specially designed therefor by milling
    • B23G1/34Thread cutting; Automatic machines specially designed therefor by milling with a cutting bit moving in a closed path arranged eccentrically with respect to the axis of the rotating workpieces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8625Shanks, i.e. parts contacting bone tissue
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G5/00Thread-cutting tools; Die-heads
    • B23G5/18Milling cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G9/00Working screws, bolt heads, or nuts in conjunction with thread cutting, e.g. slotting screw heads or shanks, removing burrs from screw heads or shanks; Finishing, e.g. polishing, any screw-thread
    • B23G9/001Working screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/12Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
    • B26D1/14Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2200/00Details of threading tools
    • B23G2200/10Threading tools comprising cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2240/00Details of equipment for threading other than threading tools, details of the threading process
    • B23G2240/60Thread whirling, i.e. production of a thread by means of an annular tool rotating about an axis not coincident with the axis of the thread being produced

Definitions

  • the present invention relates to a screw manufacturing method using a thread whirling processing method, a waring cutter used in the thread whirling processing method, and a screw manufacturing apparatus. Therefore, the present invention can be applied to the field of manufacturing general screws such as medical screws, worm screws, and metric screws.
  • This cutting method is a method of cutting with a cutting tool while rotating a workpiece, and is suitable for manufacturing a small variety of products.
  • a thread whirling process is known as one of methods for producing medical screws such as implant screws and bone screws (see Patent Document 1). ).
  • This thread whirling is a main rotating tool that holds an annular whirling cutter that is fixed to a tool spindle of a lathe and that can rotate around a rotation axis, and a processing rod (workpiece) that is a raw material for manufacturing screws.
  • This is a method for producing a screw using a spindle.
  • the workpiece held by the main spindle is inserted into the center through hole of the Waring cutter, and the Waring cutter is set at a predetermined angle with respect to the center axis of the workpiece. (Mounting angle) Tilt.
  • the warping cutter is rotated at a rotation speed larger than the rotation speed of the workpiece, and the thread is cut by one or a plurality of inserts. Is the method.
  • the mounting angle set in the above thread whirling process is generally equal to the lead angle in the screw design drawing.
  • the difference between the root diameter and the outer diameter is larger than that of screws used in general machines, and the shape of the screw thread (perpendicular to the direction in which the screws continue). Since there are special circumstances such as the fact that the cross-sectional shape is special, there were the following problems during the processing.
  • thread whirling machining is a machining method using a rotating tool in which the insert is attached toward the center of the whirling cutter and this rotates, so the path of the insert (machining path) interferes with the curve curve of the screw. Because it will do. In other words, it is considered that when the insert enters and leaves the workpiece, the portion that should not be cut is also cut.
  • the present invention has been made in view of these problems, and can solve the problems caused by rolling and cutting, and suppress the interference of the path of the insert when entering and entering the desired curve curve of the screw, It is an object of the present invention to provide a screw manufacturing method by thread whirling having a desired curve curve, a waring cutter used for thread warping, and a screw manufacturing apparatus.
  • D1 ⁇ (screw root diameter + screw outer diameter) / 2 ⁇ + ⁇ T (2) Screw valley diameter ⁇ D1 ⁇ Thread outer diameter (3)
  • ⁇ T> ⁇ (Screw outer diameter ⁇ Thread valley diameter) / 2 ⁇ ⁇ 0.2 ⁇ T ⁇ (Screw Outer Diameter-Screw Valley Diameter) / 2 ⁇ (4)
  • D1 ⁇ 0, ⁇ T ⁇ 0, n is the number of threads In the screw manufacturing method of the present invention, for example, when the lead angle of the medical screw is designed to satisfy the following formula (X) or Even in a special shape, when the workpiece and the cutter member are rotated, the insert is less likely to interfere with
  • ⁇ T indicates the adjustment range of the mounting angle.
  • D1 has a minimum thread valley diameter and a maximum screw outer diameter.
  • ⁇ T screw valley diameter
  • ⁇ T screw outer diameter
  • D1 the outer diameter of the screw
  • ⁇ T (the outer diameter of the screw) ⁇ ⁇ (the diameter of the screw valley + the outer diameter of the screw) / 2 ⁇ .
  • the variation width ⁇ T with respect to ⁇ (the diameter of the thread valley + the outer diameter of the screw) / 2 ⁇ is the maximum value (also referred to as the maximum variation width).
  • the value of D1 between the minimum value and the effective diameter and the value of D1 between the effective diameter and the maximum value will be described.
  • the value of ⁇ T determined in this way can be applied to the above equation (2) to determine the value of D1 between the minimum value and the effective diameter, and the value of D1 between the effective diameter and the maximum value. Then, the obtained D1 can be applied to the above equation (1) to calculate the mounting angle. Further, as shown in Tables 1 to 3 of the first to third embodiments described later, by setting the range of ⁇ T to the above formulas (4) and (5), the insert is less likely to interfere with the medical screw.
  • interference can be prevented from occurring on both sides of the screw outer diameter side surface and the screw base end side (valley side) side surface. Can be rotated. That is, it does not become a big problem when using the manufactured screw.
  • the interference at the time of entering means the interference when the insert enters the screw curve curve when machining the screw
  • the interference at the time of exiting means the interference when the insert goes out of the curve curve of the screw.
  • the present invention it is possible to easily produce a small amount and a wide variety as compared with rolling. Furthermore, as compared with cutting, the machining time can be shortened, and a single workpiece can be continuously machined. Therefore, there is an advantage that it is not necessary to machine them together and machining accuracy is high.
  • the 2nd aspect of this invention can arrange
  • the lead angle and the attachment angle of the worm screw And the mounting angle is obtained by the following formulas (1), (2), (3), (4), and (5).
  • D1 ⁇ (screw root diameter + screw outer diameter) / 2 ⁇ + ⁇ T (2) Screw valley diameter ⁇ D1 ⁇ Thread outer diameter (3)
  • ⁇ T> ⁇ (Screw outer diameter ⁇ Thread valley diameter) / 2 ⁇ ⁇ 0.2 ⁇ T ⁇ (Screw Outer Diameter-Screw Valley Diameter) / 2 ⁇ (4)
  • ⁇ T ⁇ 0 - ⁇ (Screw outer diameter-Thread root diameter) / 2 ⁇ ⁇ T ⁇ - ⁇ (Screw outer diameter-Thread valley diameter) / 2 ⁇ ⁇ 0.2
  • D1 ⁇ 0, ⁇ T ⁇ 0, and n is the number of strips.
  • the present invention is an invention for manufacturing a worm screw, and has the same effect as the first aspect.
  • the screw manufacturing method of the present invention is used.
  • the processing time can be shortened while maintaining the processing accuracy.
  • the 3rd aspect of this invention can arrange
  • the screw manufacturing method for manufacturing the metric screw by inclining the cutter member with respect to the axial center of the workpiece by a predetermined angle (attachment angle) the lead angle of the metric screw and the attachment When the angle is different, the mounting angle is obtained by the following formulas (1), (2), and (3).
  • the present invention is an invention for manufacturing a metric screw, and has the same effect as the first aspect.
  • said D1 can be made into the outer diameter of a screw, or the diameter of the trough of a screw.
  • the sixth aspect of the present invention is the annular waring cutter in which a plurality of inserts are arranged radially and rotatable about the rotation axis, with respect to the axis center of the workpiece for manufacturing a medical screw.
  • the Waring cutter is inclined by a predetermined angle (attachment angle) and the lead angle of the medical screw is different from the attachment angle, the following equations (1), (2), (3), (4), ( 5) is satisfied.
  • the mounting angle is made smaller (shallow) than the lead angle (that is, 0 ⁇ T), it is difficult to hit the side surface of the tip of the screw thread.
  • the mounting angle is larger (deeper) than the lead angle (that is, 0> ⁇ T), it is difficult to hit the side face of the base end of the screw thread.
  • the present invention it is possible to easily produce a small amount and a wide variety as compared with rolling. Furthermore, as compared with cutting, the machining time can be shortened, and a single workpiece can be continuously machined. Therefore, there is an advantage that it is not necessary to machine them together and machining accuracy is high.
  • the seventh aspect of the present invention is the annular waring cutter in which a plurality of inserts are radially arranged and rotatable about the rotation axis, with respect to the axis center of the workpiece for manufacturing the worm screw.
  • the Waring cutter is inclined by a predetermined angle (attachment angle) and the lead angle of the worm screw is different from the attachment angle, the following equations (1), (2), (3), (4), ( 5) is satisfied.
  • Mounting angle tan ⁇ 1 ⁇ n ⁇ pitch / ( ⁇ ⁇ D1) ⁇ (1)
  • D1 ⁇ (screw root diameter + screw outer diameter) / 2 ⁇ + ⁇ T (2) Screw valley diameter ⁇ D1 ⁇ Thread outer diameter (3)
  • ⁇ T> ⁇ (Screw outer diameter ⁇ Thread valley diameter) / 2 ⁇ ⁇ 0.2 ⁇ T ⁇ (Screw Outer Diameter-Screw Valley Diameter) / 2 ⁇ (4)
  • D1 ⁇ 0, ⁇ T ⁇ 0, and n is the number of strips.
  • the present invention is an invention of a Waring cutter for manufacturing a worm screw, and has the same effect as the sixth aspect.
  • the Waring cutter of the present invention for example, when the lead angle of the worm screw is designed to satisfy the above formula (X), when the workpiece or the Waring cutter is rotated, the insert becomes the worm screw. There are effects such as less interference.
  • an annular Waring cutter in which a plurality of inserts are radially arranged and rotatable about a rotation axis, with respect to an axis center of a workpiece for manufacturing a metric screw,
  • the Waring cutter is inclined by a predetermined angle (attachment angle), and the following formulas (1), (2), and (3) are satisfied when the lead angle of the metric screw is different from the attachment angle: To do.
  • the present invention is an invention of a Waring cutter for manufacturing a metric screw, and has the same effect as the sixth aspect.
  • the Waring cutter of the present invention for example, when the lead angle of the metric screw is designed to satisfy the above formula (X), when the workpiece or the Waring cutter is rotated, the insert becomes a metric screw. There are effects such as less interference.
  • the ninth aspect of the present invention is that a plurality of inserts are arranged radially, and an annular waring cutter that can rotate around a rotation axis and a workpiece for manufacturing a medical screw are held coaxially.
  • the Waring cutter is inclined by a predetermined angle (attachment angle) with respect to the axis center of the workpiece, and a lead angle and an attachment angle of the medical screw are When they are different, the following expressions (1), (2), (3), (4), and (5) are satisfied.
  • the mounting angle is made smaller (shallow) than the lead angle (that is, 0 ⁇ T), it is difficult to hit the side surface of the tip of the screw thread.
  • the mounting angle is larger (deeper) than the lead angle (that is, 0> ⁇ T), it is difficult to hit the side face of the base end of the screw thread.
  • the movement path of the insert is prevented from interfering with the curve curve of the desired screw both when entering and entering.
  • a screw having a curve curve can be manufactured.
  • the present invention it is possible to easily produce a small amount and a wide variety as compared with rolling. Furthermore, as compared with cutting, the machining time can be shortened, and a single workpiece can be continuously machined. Therefore, there is an advantage that it is not necessary to machine them together and machining accuracy is high.
  • the tenth aspect of the present invention is that a plurality of inserts are arranged radially, and an annular waring cutter that can rotate around a rotation axis and a workpiece for manufacturing a worm screw are held coaxially. And a main spindle for rotating the main spindle, wherein the Waring cutter is inclined by a predetermined angle (attachment angle) with respect to the axis center of the workpiece, and the lead angle and the attachment angle of the worm screw are If different The following expressions (1), (2), (3), (4), and (5) are satisfied.
  • D1 ⁇ (screw root diameter + screw outer diameter) / 2 ⁇ + ⁇ T (2) Screw valley diameter ⁇ D1 ⁇ Thread outer diameter (3)
  • ⁇ T> ⁇ (Screw outer diameter ⁇ Thread valley diameter) / 2 ⁇ ⁇ 0.2 ⁇ T ⁇ (Screw Outer Diameter-Screw Valley Diameter) / 2 ⁇ (4)
  • D1 ⁇ 0, ⁇ T ⁇ 0, and n is the number of strips.
  • the present invention is an invention of a screw manufacturing apparatus for manufacturing a worm screw, and has the same effect as the ninth aspect.
  • the screw manufacturing apparatus of the present invention for example, when the lead angle of the worm screw is designed to satisfy the above formula (X), when the workpiece or Waring cutter is rotated, the insert becomes the worm screw. There are effects such as making it difficult to interfere with the sound.
  • the present invention is an invention of a screw manufacturing apparatus for manufacturing a metric screw, and has the same effect as the ninth aspect.
  • the screw manufacturing apparatus of the present invention for example, when the lead angle of the metric screw is designed to satisfy the above formula (X), when the workpiece or Waring cutter is rotated, the insert is metric screw. There are effects such as making it difficult to interfere with the sound.
  • examples of the screw that is the subject of the present invention include a normal machine screw and a medical screw, but the present invention is particularly useful for manufacturing a screw having a special shape such as a medical screw. This is a suitable manufacturing method.
  • a normal mechanical screw there are various screws defined in JIS.
  • a metric screw a worm screw, a unified screw, a trapezoidal screw, a sawtooth screw, and the like.
  • Medical screws are screws used in the body of humans and animals.
  • the pitch is larger than that of a normal machine screw (for example, 2.0 mm or more), and the number of threads is larger than that of a single thread.
  • a normal machine screw for example, 2.0 mm or more
  • the number of threads is larger than that of a single thread.
  • a deep screw when the difference between the outer diameter and the valley diameter is large: for example, 2.0 mm or more
  • a large lead angle for example, 15 ° or more
  • FIG. 3A is a front view showing a screw
  • FIG. 3B is an explanatory view showing a part of the screw in an enlarged manner and broken. It is a perspective view which shows the insert used in 1st Embodiment.
  • FIG. 5A is an explanatory diagram showing an interference state when the variation is ⁇ 100% in the first embodiment
  • FIG. 5B is an explanatory diagram showing an interference state when the variation is ⁇ 80%
  • FIG. FIG. 5D is an explanatory diagram showing the state of interference when the variation is ⁇ 40%.
  • FIG. 5A is an explanatory diagram showing an interference state when the variation is ⁇ 100% in the first embodiment
  • FIG. 5B is an explanatory diagram showing an interference state when the variation is ⁇ 80%
  • FIG. 5D is an explanatory diagram showing the state of interference when the variation is ⁇ 40%.
  • FIG. 5D is an explanatory diagram showing the state of interference when the variation is ⁇ 40%.
  • FIG. 6A is an explanatory diagram showing the state of interference when the variation is ⁇ 20% in the first embodiment
  • FIG. 6B is an explanatory diagram showing the state of interference when the variation is 0%
  • FIG. FIG. 6D is an explanatory diagram illustrating the state of interference when the variation is + 40%
  • FIG. 6D is an explanatory diagram illustrating the state of interference when the variation is + 40%
  • 7A is an explanatory diagram illustrating an interference state when the variation is + 60% in the first embodiment
  • FIG. 7B is an explanatory diagram illustrating an interference state when the variation is + 80%
  • FIG. 7C is a variation.
  • FIG. 9A is an explanatory diagram showing the state of interference when the variation is ⁇ 100% in the second embodiment
  • FIG. 9B is an explanatory diagram showing the state of interference when the variation is ⁇ 80%
  • FIG. 9D is an explanatory diagram showing an interference state when the variation is ⁇ 60%
  • FIG. 9D is an explanatory diagram showing an interference state when the variation is ⁇ 40%
  • FIG. 10A is an explanatory diagram showing the state of interference when the variation is ⁇ 20% in the second embodiment
  • FIG. 10B is an explanatory diagram showing the state of interference when the variation is 0%
  • FIG. 10D is an explanatory diagram illustrating the state of interference when the variation is + 40%
  • FIG. 10D is an explanatory diagram illustrating the state of interference when the variation is + 40%
  • 11A is an explanatory diagram illustrating an interference state when the variation is + 60% in the second embodiment
  • FIG. 11B is an explanatory diagram illustrating an interference state when the variation is + 80%
  • FIG. 11C is a variation. It is explanatory drawing which shows the state of interference when making + 100%. It is sectional drawing which shows the cross section along the central axis of the medical screw in 3rd Embodiment.
  • FIG. 13A is an explanatory diagram illustrating an interference state when the variation is + 100% in the third embodiment
  • FIG. 13A is an explanatory diagram illustrating an interference state when the variation is + 100% in the third embodiment
  • FIG. 13B is an explanatory diagram illustrating an interference state when the variation is + 60%
  • FIG. 13C is a variation
  • FIG. 13D is an explanatory diagram showing the state of interference when the variation is + 0%
  • FIG. 14A is an explanatory view showing a worm screw in the fourth embodiment
  • FIG. 14B is a cross-sectional view showing a cross section along the central axis of the worm screw.
  • 15A is an explanatory diagram illustrating an interference state when the variation is + 100% in the fourth embodiment
  • FIG. 15B is an explanatory diagram illustrating an interference state when the variation is + 60%
  • FIG. 15C is a variation
  • FIG. 15D is an explanatory diagram showing the state of interference when the variation is + 0%.
  • FIG. 17A is an explanatory diagram illustrating an interference state when the variation is + 100% in the fifth embodiment
  • FIG. 17B is an explanatory diagram illustrating an interference state when the variation is + 60%
  • FIG. 17C is a variation
  • FIG. 17D is an explanatory diagram showing the state of interference when the variation is + 0%.
  • FIG. 19A is an explanatory diagram showing the state of interference when the variation is + 100% in the sixth embodiment (pitch 0.8)
  • FIG. 19B is an explanation showing the state of interference when the variation is + 0%.
  • FIG. 19C is an explanatory diagram showing the state of interference when the variation is + 100% in the seventh embodiment (pitch 1.0), and FIG. 19D is the state of interference when the variation is + 0%. It is explanatory drawing shown.
  • FIG. 20A is an explanatory diagram illustrating an interference state when the variation is set to + 100% in the eighth embodiment (pitch 1.25), and
  • FIG. 20B is an explanatory diagram illustrating an interference state when the variation is set to + 0%.
  • FIG. 20C is an explanatory diagram showing the state of interference when the variation is + 100% in the ninth embodiment (pitch 1.5), and FIG. 20D is the state of interference when the variation is + 0%. It is explanatory drawing shown.
  • FIG. 20A is an explanatory diagram illustrating an interference state when the variation is set to + 100% in the eighth embodiment (pitch 1.25)
  • FIG. 20B is an explanatory diagram illustrating an interference state when the variation is set to + 0%.
  • FIG. 20C is an explanatory diagram showing the
  • FIG. 21A is an explanatory diagram showing the state of interference when the variation is + 100% in the tenth embodiment (pitch 1.75), and FIG. 21B is an explanation showing the state of interference when the variation is + 0%.
  • FIG. 22A is an explanatory diagram showing the state of interference when the variation is + 100% in the eleventh embodiment (pitch 2.0), and FIG. 22B is an explanation showing the state of interference when the variation is + 60%.
  • FIG. 22C is an explanatory diagram illustrating an interference state when the variation is + 40%
  • FIG. 22D is an explanatory diagram illustrating an interference state when the variation is + 0%. It is explanatory drawing which shows the problem of a prior art.
  • a threaded portion 5 is provided on the surface of a bar material (work) 3 that becomes a medical screw (hereinafter sometimes simply referred to as a screw) 1.
  • a main spindle 7 that rotates while holding the base of the work 3 coaxially, and a Waring cutter 9 that is arranged and rotated at an attachment angle ⁇ (°) with respect to the axial direction of the work 3 are used.
  • the Waring cutter 9 is an annular device that is rotated by a tool spindle (not shown). As shown in FIG. 2, a plurality of inserts 13 such as nine are arranged radially on the annular cutter head 11. is there.
  • each insert 13 is fixed to the cutter head 11 by a fixing screw 15.
  • An apparatus that includes the main spindle 7 and the Waring cutter 9 and manufactures the screw 1 by a thread warping method is referred to as a screw manufacturing apparatus 10.
  • the workpiece 3 is inserted into the central through-hole 17 of the Waring cutter 9 and the Waring cutter 9 is inclined by a predetermined angle (attachment angle ⁇ ) with respect to the central axis of the workpiece 3.
  • the work 3 is rotated in a predetermined direction (A direction in FIGS. 1 and 2) while moving in the axial direction (upward in FIG. 1) at a predetermined speed, and the Waring cutter 9 is rotated along with the rotation of the work 3 Screws are produced by a plurality of inserts 13 by rotating in the same direction at a rotational speed greater than the speed.
  • the rotation center of the Waring cutter 9 and the axis center of the workpiece 3 are arranged so that the workpiece 3 and the insert 13 are in contact (the axis center of the workpiece 3 is directed upward in the figure). Then, when the Waring cutter 9 rotates, the thread portion 5 is formed by the inserts 13 that sequentially contact the workpiece 3.
  • the medical screw 1 manufactured in the present embodiment is a single thread, and here, in order to produce a single thread, an insert 13 having a single cutting portion 19 as shown in FIG. 4 is used.
  • the shape of the insert 13 is a parallelogram shape, but a shape such as a rhombus or a triangle can also be used. A more detailed shape is determined corresponding to the shape of the screw to be manufactured.
  • the mounting angle ⁇ is determined by the shape of the screw 1 to be manufactured. Therefore, first, as shown in FIGS. 3A and 3B, a numerical value specifying the shape of the screw 1 is read from the drawing of the screw 1 to be manufactured (here, a single thread screw).
  • the work 3 is attached and fixed to the rotation center of the main spindle 7, the work 3 is inserted into the central through-hole 17 of the Waring cutter 9, and the Waring is performed with respect to the central axis of the work 3.
  • the cutter 9 is tilted by a mounting angle ⁇ .
  • the mounting angle ⁇ is calculated using the following formulas (1), (2), (3), (4), (5).
  • the attachment angle ⁇ is an angle at which the Waring cutter 9 is tilted with respect to the axial center of the workpiece 3 in the thread whirling process.
  • D1 ⁇ (screw root diameter + screw outer diameter) / 2 ⁇ + ⁇ T (2) Screw valley diameter ⁇ D1 ⁇ Thread outer diameter (3)
  • ⁇ T> ⁇ (Screw outer diameter ⁇ Thread valley diameter) / 2 ⁇ ⁇ 0.2 ⁇ T ⁇ (Screw Outer Diameter-Screw Valley Diameter) / 2 ⁇ (4)
  • ⁇ T ⁇ 0 - ⁇ (Screw outer diameter-Thread root diameter) / 2 ⁇ ⁇ T ⁇ - ⁇ (Screw outer diameter-Thread valley diameter) / 2 ⁇ ⁇ 0.2
  • D1 (mm) ⁇ 0, ⁇ T (mm) ⁇ 0, n is the number of strips.
  • a cylindrical rod made of a titanium alloy with a length of 2.5 m and an outer diameter of ⁇ 8.0 mm was used. .
  • the screw 1 of the target shape shown by the drawing mentioned above according to the following processing conditions is produced.
  • Main spindle rotation speed 10rpm
  • Work advance speed 2.75mm / rev
  • Tool spindle rotation speed 2000 rpm
  • the screw 1 is manufactured by changing the mounting angle ⁇ by changing D1, and at that time, interference (the curve curve of the screw 1 and the movement path of the insert 13 are not affected. The presence or absence of interference) was examined. Specifically, the simulation was performed by a well-known CAD, and the screw 1 was actually manufactured to check the interference state.
  • means “can avoid the interference when entering or exiting completely and can obtain the target screw shape”
  • means “completely appear”.
  • the “target screw shape” is not only an ideal screw shape that follows a screw curve curve, but also a screw that interferes only with either the screw outer diameter side surface or the screw proximal side (valley side) side surface. Shape.
  • the central white portion indicates the shape of the workpiece 3 before processing
  • the central left and right gray portions indicate the processed shapes
  • the gray part (within the ellipse frame) in the central white part indicates a place where interference occurs.
  • ellipses are omitted.
  • the shape of the interference portion is changed from one of the two fan shapes (see, for example, FIG. 6B) to the top and bottom. It changes like a fan shape (see FIG. 5A, for example).
  • the screw 1 having a shape with little (or no) interference when coming out or entering is obtained.
  • the larger the variation of the variation ⁇ 20% ⁇ the more the interference on the screw base side (valley side) can be reduced (the gray portion of the triangle). Is smaller).
  • FIG. 6C is compared with FIG. 6D and FIGS. 7A to 7C, the interference of the screw outer diameter side surface can be reduced (the gray portion of the triangle becomes smaller) as the variation of + is larger than the variation + 20%. I understand.
  • the screw 1 having a shape in which interference between the insert 13 and the curved curve of the screw 1 at the time of entering or entering is reduced by setting the attachment angle ⁇ and the lead angle to different values. Can be suitably obtained. Therefore, interference does not occur on both the screw outer diameter side surface and the screw base end side (valley side) side surface, so that there is no problem in using the manufactured screw 1.
  • the medical screw manufactured in the present embodiment is a double thread, and as shown in FIG. 8, the insert 21 used in the thread warping method for manufacturing the medical screw has two cutting portions 23 and 25. have.
  • typical data for specifying the shape of the screw includes the following data.
  • Total length in the axial direction of the screw 50 mm
  • Axial length of screw part 30mm Screw outer diameter: ⁇ 4.0mm Screw valley diameter: ⁇ 2.4mm
  • the attachment angle ⁇ is calculated using the equations (1), (2), (3), (4), and (5) in the first embodiment.
  • FIGS. 9A to 9D, FIGS. 10A to 10D, and FIGS. 11A to 11C are the same as those in the first embodiment.
  • the double-threaded insert 21 has a blade surface ratio in the width direction compared to the height direction compared to the single-thread threaded insert in order to form two thread portions at a time. Therefore, since the insert 21 and the screw portion are likely to interfere with each other, it is not easy to form a desired screw thread.
  • a screw having a desired shape can be easily manufactured. it can.
  • the screw manufactured in this embodiment is a medical screw 31 having two threads as shown in FIG. Moreover, although not shown in figure, the insert used for the thread-waring processing method which manufactures this medical screw 31 has the shape of two cutting parts.
  • the unit of length in FIG. 12 is mm.
  • typical data for specifying the shape of the screw includes the following data.
  • Total axial length of screw 30mm
  • Axial length of screw part 20mm Screw outer diameter: ⁇ 5.5mm Screw valley diameter: ⁇ 4.0mm
  • Intermediate value of screw ⁇ 4.75mm
  • Pitch 5.35mm
  • Thread lead angle 19.72 °
  • the attachment angle ⁇ is calculated using the equations (1), (2), (3), (4), and (5) in the first embodiment.
  • the screw manufactured in this embodiment is a worm screw (JIS B 1723/3) 35 having two threads as shown in FIGS. 14A and 14B. Further, although not shown, the insert used in the thread warping method for manufacturing the worm screw 35 has two cutting portions.
  • typical data for specifying the shape of the screw includes the following data.
  • the unit of length in FIG. 14B is mm.
  • Total length in the axial direction of the screw 11 mm
  • Axial length of screw part 10mm Screw outer diameter: ⁇ 6mm
  • Intermediate value of screw ⁇ 5.125mm Screw valley diameter: ⁇ 4.25mm
  • Pitch 2.872mm
  • Thread lead angle 10.1141 °
  • the attachment angle ⁇ is calculated using the equations (1), (2), (3), (4), and (5) in the first embodiment.
  • the screw manufactured in the present embodiment is a worm screw (JIS B 1723/3) 41 having three threads as shown in FIG.
  • the insert used in the thread warping method for manufacturing the worm screw 41 has a three-cut shape at the cutting portion.
  • typical data for specifying the shape of the screw includes the following data.
  • the unit of length in FIG. 16 is mm.
  • Total axial length of screw 12mm
  • Axial length of screw part 12mm Screw outer diameter: ⁇ 7mm
  • Intermediate value of screw ⁇ 6.0000mm Screw valley diameter: ⁇ 5.000mm
  • Pitch 4.867mm
  • the screws manufactured in this embodiment are general metric screws 51 and 53 having one thread as shown in FIG.
  • 51 is a male screw
  • 53 is a female screw
  • these metric screws 51 and 53 for example, when the outer diameter of the screw is ⁇ 5 mm, the pitch (p), the height of the peak (H), etc.
  • the relationship is defined as shown in Table 6 below.
  • the insert used for the thread-waring processing method which manufactures this metric screw 51 and 53 has the shape of one mountain of a cutting part.
  • typical data for specifying the shape of a screw includes the following data.
  • Total axial length of screw 15mm
  • Axial length of screw part 10mm Screw outer diameter: ⁇ 5mm
  • Intermediate value of screw ⁇ 4.567mm Screw valley diameter: ⁇ 4.134mm
  • Pitch 0.8mm
  • Thread lead angle 3.19 °
  • the attachment angle ⁇ is calculated using the following formulas (1), (2), and (3).
  • Mounting angle tan ⁇ 1 ⁇ n ⁇ pitch / ( ⁇ ⁇ D1) ⁇ (1)
  • D1 ⁇ (screw root diameter + screw outer diameter) / 2 ⁇ + ⁇ T (2) Screw valley diameter ⁇ D1 ⁇ Thread outer diameter (3)
  • Table 7 shows that screws were manufactured by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 7 below and FIGS. 19A and 19B.
  • the screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 1.0 mm.
  • the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
  • typical data for specifying the shape of the metric screw includes the following data.
  • the screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 1.25 mm.
  • the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
  • typical data for specifying the shape of the metric screw includes the following data.
  • the screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 1.5 mm.
  • the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
  • typical data for specifying the shape of the metric screw includes the following data.
  • the screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 1.75 mm.
  • the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
  • typical data for specifying the shape of the metric screw includes the following data.
  • the screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 2 mm.
  • the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
  • typical data for specifying the shape of the metric screw includes the following data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Forests & Forestry (AREA)
  • Transmission Devices (AREA)
  • Surgical Instruments (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a method for manufacturing a screw which is capable of solving a problem due to rolling or cutting and prevents the movement path of an insert (13) from interfering with a desired curve line of the screw at the time of exiting and entering the curve line, thereby providing an intended curve line to the screw by a thread whirling process. In the method for manufacturing the screw, in the case where a lead angle and an attachment angle (β) of the screw are different from each other, the attachment angle is determined from the following equation. Attachment angle = tan-1{n*pitch/(π*D1)} D1 = {(screw core diameter + screw outside diameter)/2} + ∆T screw core diameter ≤ D1 ≤ screw outside diameter In the case where ∆T > 0 is satisfied, {(screw outside diameter - screw core diameter)/2}*0.2 < ∆T < {(screw outside diameter - screw core diameter)/2} In the case where ∆T < 0 is satisfied, -{(screw outside diameter - screw core diameter)/2} < ∆T < -{(screw outside diameter - screw core diameter)/2}*0.2 where D1≠0, ∆T≠0, and n is the number of threads

Description

ねじの製造方法、ワーリングカッタ、及びねじ製造装置Screw manufacturing method, Waring cutter, and screw manufacturing apparatus 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2009年12月25日に日本国特許庁に出願された日本国特許出願第2009-294915号に基づく優先権を主張するものであり、日本国特許出願第2009-294915号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2009-294915 filed with the Japan Patent Office on December 25, 2009, and the Japanese Patent Application No. 2009-294915 The entire contents are incorporated into this international application.
 本発明は、スレッドワーリング加工方法によるねじの製造方法、スレッドワーリング加工方法に用いられるワーリングカッタ、及びねじ製造装置に関する。従って、本発明は、例えば医療用ねじ、ウォームねじ、メートルねじなど、一般的なねじの製造の分野に適用できる。 The present invention relates to a screw manufacturing method using a thread whirling processing method, a waring cutter used in the thread whirling processing method, and a screw manufacturing apparatus. Therefore, the present invention can be applied to the field of manufacturing general screws such as medical screws, worm screws, and metric screws.
 従来より、一般的なねじ(機械的ねじ)を製造する場合には、例えば転造による方法が知られている。この転造の場合には、特定のねじ形状に対応した転造ダイスを用いるので、単一の製品を大量に製造する場合には好適である。 Conventionally, when a general screw (mechanical screw) is manufactured, for example, a method by rolling is known. In the case of this rolling, a rolling die corresponding to a specific screw shape is used, which is preferable when a single product is manufactured in large quantities.
 また、転造以外には、切削によりねじを製造する方法が知られている。この切削による方法は、ワークを回転させながらバイトで切削するものであり、少量多品種の製品を製造する場合に好適である。 In addition to rolling, a method of manufacturing a screw by cutting is known. This cutting method is a method of cutting with a cutting tool while rotating a workpiece, and is suitable for manufacturing a small variety of products.
 また、これらのねじの製造方法とは別に、例えばインプラントねじやボーンスクリューのような医療用ねじを作製する方法の一つとして、スレッドワーリング(Thread Whirling)加工が知られている(特許文献1参照)。 In addition to these screw manufacturing methods, for example, a thread whirling process is known as one of methods for producing medical screws such as implant screws and bone screws (see Patent Document 1). ).
 このスレッドワーリング加工とは、旋盤のツールスピンドルに固定されて回転軸周りに回転可能な環状のワーリングカッタと、ねじを製造する原材料である加工用のロッド(ワーク)を保持して回転可能なメインスピンドルとを用いて、ねじを作製する方法である。 This thread whirling is a main rotating tool that holds an annular whirling cutter that is fixed to a tool spindle of a lathe and that can rotate around a rotation axis, and a processing rod (workpiece) that is a raw material for manufacturing screws. This is a method for producing a screw using a spindle.
 詳しくは、放射状に複数のインサートが配置されたワーリングカッタを用い、そのワーリングカッタの中央の貫通孔にメインスピンドルに保持されたワークを挿入するとともに、ワークの中心軸に対してワーリングカッタを所定角度(取り付け角)傾ける。そして、その状態で、ワークを所定方向に回転させながら軸方向に進行させ、それとともにワーリングカッタをワークの回転速度より大きな回転速度で回転させて、1又は複数のインサートによってねじを切ってゆく加工方法である。 Specifically, using a Waring cutter in which a plurality of inserts are radially arranged, the workpiece held by the main spindle is inserted into the center through hole of the Waring cutter, and the Waring cutter is set at a predetermined angle with respect to the center axis of the workpiece. (Mounting angle) Tilt. In this state, the workpiece is advanced in the axial direction while rotating the workpiece in a predetermined direction, and at the same time, the warping cutter is rotated at a rotation speed larger than the rotation speed of the workpiece, and the thread is cut by one or a plurality of inserts. Is the method.
 また、上述したスレッドワーリング加工の際に設定する取り付け角は、一般的には、ねじの設計図面のリード角と等しくしていた。 In addition, the mounting angle set in the above thread whirling process is generally equal to the lead angle in the screw design drawing.
米国特許第6877934号公報US Pat. No. 6,877,934
 しかしながら、上述した転造によってねじを製造する場合には、特定のねじ形状に対応した転造ダイスを用いるので、少量多品種の製造には不向きであった。
 また、切削によってねじを製造する場合には、バイトで切削するので、切削負荷により、1パスでは、ねじ山を切削する事が困難であり、複数回に分けてねじ山を形成していく。そのため加工に時間がかかる。特に長いねじを製造する場合には、一度に切削加工をする事は困難であり、数山を形成後、次の数山を形成するといった、順にねじを形成していく必要がある。そのため、繋いで加工するので、繋いだ部分の加工精度が悪いという問題があった。
However, when a screw is manufactured by rolling as described above, a rolling die corresponding to a specific screw shape is used, which is not suitable for manufacturing a small variety of products.
In addition, when a screw is manufactured by cutting, it is cut with a cutting tool. Therefore, it is difficult to cut the thread in one pass due to the cutting load, and the thread is formed in a plurality of times. Therefore, processing takes time. In particular, when manufacturing a long screw, it is difficult to perform cutting at a time, and it is necessary to form the screws in order, such as forming several peaks and then forming the next few peaks. Therefore, since it connects and processes, there existed a problem that the processing precision of the connected part was bad.
 更に、医療用ねじの場合には、一般の機械に使用するねじに比べて、谷の径と外径との差が大きいことや、ねじ山の形状(ねじが連続する方向に対して垂直の断面形状)が特殊であることなどの特別な事情があるので、その加工の際には、下記の様な問題があった。 Furthermore, in the case of medical screws, the difference between the root diameter and the outer diameter is larger than that of screws used in general machines, and the shape of the screw thread (perpendicular to the direction in which the screws continue). Since there are special circumstances such as the fact that the cross-sectional shape is special, there were the following problems during the processing.
 具体的には、上述した様に、スレッドワーリング加工における取り付け角とリード角とを等しくする場合、目的とするワーク形状(ねじ形状)によっては、所望の形状のねじを作製することが困難であった。 Specifically, as described above, when the mounting angle and the lead angle in the thread whirling process are made equal, it is difficult to produce a screw having a desired shape depending on the target work shape (screw shape). It was.
 この目的とするねじ形状を得ることが困難な理由の一つ目は、医療用ねじは特殊な形状であるからである。二つ目は、スレッドワーリング加工は、ワーリングカッタの中心に向かってインサートが取り付けられ、これが回転するという回転工具による加工方法であるので、インサートの移動経路(加工経路)がねじのカーブ曲線に干渉してしまうからである。つまり、インサートがワークに対して出入りする際に、削ってはいけない箇所も削ってしまうからと考えられる。 The first reason why it is difficult to obtain the desired screw shape is that the medical screw has a special shape. Secondly, thread whirling machining is a machining method using a rotating tool in which the insert is attached toward the center of the whirling cutter and this rotates, so the path of the insert (machining path) interferes with the curve curve of the screw. Because it will do. In other words, it is considered that when the insert enters and leaves the workpiece, the portion that should not be cut is also cut.
 言い換えると、切削の上り、下りともに削ってしまう(図23の様にねじの外径側及び谷側ともに三角形のグレー部分=干渉部分がある)ことが問題であった。つまり、干渉が、ねじ外径側側面及びねじ基端側(谷側)側面の両方に生じていると、精度良くねじを締め付けることが困難となり、さらには、ねじのガタツキが生じる原因にもなる。 In other words, it was a problem that both the up and down cuttings were cut (triangular gray portion = interference portion on both the outer diameter side and the valley side of the screw as shown in FIG. 23). In other words, if interference occurs on both the screw outer diameter side surface and the screw base end side (valley side) side surface, it is difficult to tighten the screw with high accuracy, and further, the screw may become loose. .
 しかしながら、干渉が、ねじ外径側側面又はねじ基端側(谷側)側面のどちらかに生じている場合であれば、製造したねじを使用する上で大きな問題となることはない。
 上述した干渉による問題は、医療用ねじのような特殊な形状のねじを製造する場合に顕著に表れるが、同様な問題は、他の一般的なねじにも生じることがある。
However, if the interference occurs on either the screw outer diameter side surface or the screw base end side (valley side) side surface, there is no significant problem in using the manufactured screw.
The above-mentioned problems due to interference appear prominently when manufacturing specially shaped screws such as medical screws, but similar problems may occur with other common screws.
 本発明はこうした問題に鑑みなされたものであり、転造や切削による問題を解決できるとともに、インサートの移動経路が所望のねじのカーブ曲線に出際・入り際ともに干渉することを抑制して、好適に目的とするカーブ曲線を備えたスレッドワーリング加工によるねじの製造方法、スレッドワーリング加工に用いられるワーリングカッタ、及びねじ製造装置を提供することを目的とする。 The present invention has been made in view of these problems, and can solve the problems caused by rolling and cutting, and suppress the interference of the path of the insert when entering and entering the desired curve curve of the screw, It is an object of the present invention to provide a screw manufacturing method by thread whirling having a desired curve curve, a waring cutter used for thread warping, and a screw manufacturing apparatus.
 ・上記目的を達成するためになされた本発明の第1局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のカッタ部材(例えばワーリングカッタ)と、医療用ねじを形成するためのワークを保持して回転可能な保持部(例えばメインスピンドル)と、を用い、前記ワークの軸中心に対して前記カッタ部材を所定角度(取り付け角)傾斜させて、前記医療用ねじを製造するねじの製造方法において、前記医療用ねじのリード角と前記取り付け角とが異なる場合に、前記取り付け角を、下記式(1)、(2)、(3)、(4)、(5)によって求めることを特徴とする。 -1st aspect of this invention made | formed in order to achieve the said objective WHEREIN: Several inserts are arrange | positioned radially, the cyclic | annular cutter member (for example, Waring cutter) which can be rotated centering on a rotating shaft, and a medical screw A holding part (for example, a main spindle) that holds and rotates a workpiece for forming a workpiece, and the cutter member is inclined at a predetermined angle (mounting angle) with respect to the axis center of the workpiece, and the medical In the screw manufacturing method for manufacturing a screw, when the lead angle and the mounting angle of the medical screw are different, the mounting angle is expressed by the following formulas (1), (2), (3), (4), It is obtained by (5).
  取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
 ΔT>0のとき、
 {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
     <{(ねじ外径-ねじの谷の径)/2}     …(4)
 ΔT<0のとき、
 -{(ねじ外径-ねじの谷の径)/2}<ΔT
     <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
   但し、D1≠0、ΔT≠0、nは条数
 本発明のねじの製造方法においては、例えば医療用ねじのリード角が下記式(X)を満たす設計であった場合や医療用ねじ特有の特殊な形状であっても、ワークおよびカッタ部材の回転を行った際に、後述する第1~3実施形態の表1~表3に示す様に、インサートが医療用ねじに干渉し難くなる。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
When ΔT> 0,
{(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
<{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
When ΔT <0,
-{(Screw outer diameter-Thread root diameter) / 2} <ΔT
<-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
However, D1 ≠ 0, ΔT ≠ 0, n is the number of threads In the screw manufacturing method of the present invention, for example, when the lead angle of the medical screw is designed to satisfy the following formula (X) or Even in a special shape, when the workpiece and the cutter member are rotated, the insert is less likely to interfere with the medical screw as shown in Tables 1 to 3 of the first to third embodiments described later.
 具体的には、取り付け角をリード角よりも小さく(浅く)する(つまり0<ΔT)と、特に、ねじ山の先端の側面に当たり難くなる。また、反対に、取り付け角をリード角よりも大きく(深く)する(つまり0>ΔT)と、特に、ねじ山の基端の側面に当たり難くなる。なお、ここで、ΔTとは、取り付け角の調整幅を示している。 Specifically, when the mounting angle is made smaller (shallow) than the lead angle (that is, 0 <ΔT), it is difficult to hit the side surface of the tip of the screw thread. On the other hand, if the mounting angle is larger (deeper) than the lead angle (that is, 0> ΔT), it is difficult to hit the side face of the base end of the screw thread. Here, ΔT indicates the adjustment range of the mounting angle.
 以下に、上述した各式を説明する。
 上記式(3)に示したように、D1はねじの谷の径が最小値、ねじの外径が最大値となる。上記式(2)に示したように、D1=ねじの谷の径のときは、ΔT=(ねじの谷の径)-{(ねじの谷の径+ねじの外径)/2}となる。同様に、D1=ねじの外径のときは、ΔT=(ねじの外径)-{(ねじの谷の径+ねじの外径)/2}となる。よって、D1がねじの谷の径またはねじの外径のときに、{(ねじの谷の径+ねじの外径)/2}に対する変動幅ΔTは最大値(最大変動幅とも言う)となる。
ここで、D1において、最小値と有効径との間のD1の値、有効径と最大値との間のD1の値に関して説明する。
ΔT=最大変動幅のときを変動100%とすることで、変動0~100%のΔTの値を算出することができる。具体的には、変動50%のときには、ΔT=最大変動幅/2となる。このように決定したΔTの値を上記式(2)にあてはめて、最小値と有効径との間のD1の値、有効径と最大値との間のD1の値を決定することができる。そして、得られたD1を上記式(1)にあてはめて、取り付け角を算出することができる。
さらに後述する第1~3実施形態の表1~表3に示す様に、ΔTの範囲を上記式(4)および(5)とすることで、インサートが医療用ねじに干渉し難くなる。
Below, each formula mentioned above is explained.
As shown in the above equation (3), D1 has a minimum thread valley diameter and a maximum screw outer diameter. As shown in the above equation (2), when D1 = the thread valley diameter, ΔT = (screw valley diameter) − {(screw valley diameter + screw outer diameter) / 2}. . Similarly, when D1 = the outer diameter of the screw, ΔT = (the outer diameter of the screw) − {(the diameter of the screw valley + the outer diameter of the screw) / 2}. Therefore, when D1 is the diameter of the thread valley or the outer diameter of the screw, the variation width ΔT with respect to {(the diameter of the thread valley + the outer diameter of the screw) / 2} is the maximum value (also referred to as the maximum variation width). .
Here, regarding D1, the value of D1 between the minimum value and the effective diameter and the value of D1 between the effective diameter and the maximum value will be described.
By setting the time of ΔT = maximum fluctuation range as 100% of fluctuation, the value of ΔT with fluctuation of 0 to 100% can be calculated. Specifically, when the fluctuation is 50%, ΔT = maximum fluctuation width / 2. The value of ΔT determined in this way can be applied to the above equation (2) to determine the value of D1 between the minimum value and the effective diameter, and the value of D1 between the effective diameter and the maximum value. Then, the obtained D1 can be applied to the above equation (1) to calculate the mounting angle.
Further, as shown in Tables 1 to 3 of the first to third embodiments described later, by setting the range of ΔT to the above formulas (4) and (5), the insert is less likely to interfere with the medical screw.
  リード角=tan-1{n×ピッチ/(π×有効径)}…(X)
   但し、有効径={(ねじの谷の径+ねじの外径)/2}、nは条数
 ここで、「n×ピッチ(P)」とは、リード(L)と呼ばれる値であり、ねじが1回転した時に進む距離である。また、前記有効径(D)とは、JIS B0101 1215にて定義されるものであり、リード角は、JIS B0101 1208、にて定義されるものであり、ピッチは、JIS B0101 1206にて定義されるものであり、その他の用語も、それぞれJISに定義される意味を示している。なお、リード角の計算に有効径を用いることは、当業者にとっては、一般的なことである。(以下同様)
 従って、本発明によれば、インサートの移動経路が所望のねじのカーブ曲線に出際・入り際ともに干渉すること抑制して、好適に目的とするカーブ曲線を備えたねじを製造することができる。
Lead angle = tan −1 {n × pitch / (π × effective diameter)} (X)
However, effective diameter = {(diameter of screw valley + external diameter of screw) / 2}, n is the number of threads Here, “n × pitch (P)” is a value called a lead (L), This is the distance traveled when the screw makes one revolution. The effective diameter (D) is defined by JIS B0101 1215, the lead angle is defined by JIS B0101 1208, and the pitch is defined by JIS B0101 1206. Other terms also have meanings defined in JIS. In addition, it is common for those skilled in the art to use an effective diameter for calculation of a lead angle. (The same applies hereinafter)
Therefore, according to the present invention, it is possible to manufacture a screw having a desired curve curve by suppressing the movement path of the insert from interfering with the curve curve of the desired screw both when entering and entering. .
 つまり、本発明では、干渉が、ねじ外径側側面とねじ基端側(谷側)側面との両側に生じることを防止できるので、製造したねじを用いて締め付ける際等に、支障なくねじを回転させることができる。すなわち、製造したねじを使用する上で大きな問題となることはない。 In other words, in the present invention, interference can be prevented from occurring on both sides of the screw outer diameter side surface and the screw base end side (valley side) side surface. Can be rotated. That is, it does not become a big problem when using the manufactured screw.
 ここで、入り際の干渉とは、ねじを加工する際に、インサートがねじのカーブ曲線に入る際の干渉をいい、出際の干渉とは、インサートがねじのカーブ曲線から出る際の干渉をいう。 Here, the interference at the time of entering means the interference when the insert enters the screw curve curve when machining the screw, and the interference at the time of exiting means the interference when the insert goes out of the curve curve of the screw. Say.
 また、本発明では、転造に比べて、少量多品種の製造を容易に行うことができる。更に、切削に比べて、加工時間を短くでき、1つのワークに対して連続して加工できるので、繋いで加工することが不要であり、加工精度が高いという利点がある。 Also, in the present invention, it is possible to easily produce a small amount and a wide variety as compared with rolling. Furthermore, as compared with cutting, the machining time can be shortened, and a single workpiece can be continuously machined. Therefore, there is an advantage that it is not necessary to machine them together and machining accuracy is high.
 ・また、本発明の第2局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のカッタ部材と、ウォームねじを形成するためのワークを保持して回転可能な保持部と、を用い、前記ワークの軸中心に対して前記カッタ部材を所定角度(取り付け角)傾斜させて、ウォームねじを製造するねじの製造方法において、前記ウォームねじのリード角と前記取り付け角とが異なる場合に、前記取り付け角を、下記式(1)、(2)、(3)、(4)、(5)によって求めることを特徴とする。 -Moreover, the 2nd aspect of this invention can arrange | position several inserts radially, and can hold | maintain and rotate the cyclic | annular cutter member which can be rotated centering | focusing on a rotating shaft, and the workpiece | work for forming a worm screw. In a screw manufacturing method for manufacturing a worm screw by inclining the cutter member by a predetermined angle (attachment angle) with respect to the axis center of the workpiece using a holding portion, the lead angle and the attachment angle of the worm screw And the mounting angle is obtained by the following formulas (1), (2), (3), (4), and (5).
  取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
 ΔT>0のとき、
 {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
     <{(ねじ外径-ねじの谷の径)/2}         …(4)
 ΔT<0のとき、
 -{(ねじ外径-ねじの谷の径)/2}<ΔT
     <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
   但し、D1≠0、ΔT≠0、nは条数
 本発明は、ウォームねじを製造する発明であり、前記第1局面と同様な効果を奏する。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
When ΔT> 0,
{(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
<{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
When ΔT <0,
-{(Screw outer diameter-Thread root diameter) / 2} <ΔT
<-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
However, D1 ≠ 0, ΔT ≠ 0, and n is the number of strips. The present invention is an invention for manufacturing a worm screw, and has the same effect as the first aspect.
 つまり、本発明のねじの製造方法においては、例えばリード角が前記式(X)を満たす設計であるウォームねじを製造するため、ワークおよびカッタ部材の回転を行った際に、後述する第4、5実施形態の表4、表5に示す様に、インサートがウォームねじに干渉し難くなる等の効果を奏する。 That is, in the screw manufacturing method of the present invention, for example, when the workpiece and the cutter member are rotated in order to manufacture a worm screw whose lead angle is designed to satisfy the formula (X), As shown in Tables 4 and 5 of the fifth embodiment, there are effects such that the insert is less likely to interfere with the worm screw.
 特に谷の径と外径との差が大きく、ねじ山の形状(ねじが連続する方向に対して垂直の断面形状)が特殊であるウォームねじにおいては、本発明のねじの製造方法を用いることで、加工精度を保ちつつ加工時間を短縮することができる。 In particular, in the case of a worm screw in which the difference between the valley diameter and the outer diameter is large and the thread shape (cross-sectional shape perpendicular to the direction in which the screws are continuous) is special, the screw manufacturing method of the present invention is used. Thus, the processing time can be shortened while maintaining the processing accuracy.
 ・更に、本発明の第3局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のカッタ部材と、メートルねじを形成するためのワークを保持して回転可能な保持部と、を用い、前記ワークの軸中心に対して前記カッタ部材を所定角度(取り付け角)傾斜させて、前記メートルねじを製造するねじの製造方法において、前記メートルねじのリード角と前記取り付け角とが異なる場合に、前記取り付け角を、下記式(1)、(2)、(3)によって求めることを特徴とする。 -Furthermore, the 3rd aspect of this invention can arrange | position several inserts radially, and can hold | maintain and rotate the cyclic | annular cutter member which can be rotated centering | focusing on a rotating shaft, and the workpiece | work for forming a metric screw. In the screw manufacturing method for manufacturing the metric screw by inclining the cutter member with respect to the axial center of the workpiece by a predetermined angle (attachment angle), the lead angle of the metric screw and the attachment When the angle is different, the mounting angle is obtained by the following formulas (1), (2), and (3).
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
   但し、D1≠0、ΔT≠0、nは条数
 本発明は、メートルねじを製造する発明であり、前記第1局面と同様な効果を奏する。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
However, D1 ≠ 0, ΔT ≠ 0, and n is the number of strips. The present invention is an invention for manufacturing a metric screw, and has the same effect as the first aspect.
 つまり、本発明のねじの製造方法においては、例えばリード角が前記式(X)を満たす設計であるメートルを製造するために、ワークおよびカッタ部材の回転を行った際に、後述する第6~11実施形態の表7~表12に示す様に、インサートがメートルねじに干渉し難くなる等の効果を奏する。 That is, in the screw manufacturing method of the present invention, for example, when the workpiece and the cutter member are rotated to manufacture a meter whose lead angle is designed to satisfy the formula (X), As shown in Tables 7 to 12 of the eleventh embodiment, there are effects such that the insert hardly interferes with the metric screw.
 また、後述する実施形態から明かな様に、メートルねじの設計図面におけるリード角が7°を下回ると変動が0%であっても出際・入り際ともに干渉が多い状態とは言えず、検査レベルによっては合格となる可能性がある。しかしながら、7°を上回ると、変動が0%であると、出際・入り際ともに干渉が多くなるので、取り付け角は、前記式(1)、(2)、(3)のようにするのが好ましい。 Further, as will be apparent from the embodiments described later, when the lead angle in the design drawing of the metric screw is less than 7 °, it cannot be said that there is much interference both at the entrance and exit even if the fluctuation is 0%. Depending on the level, there is a possibility of passing. However, if the angle exceeds 7 °, if the fluctuation is 0%, interference increases both when entering and leaving, so the mounting angle should be as in the above formulas (1), (2), and (3). Is preferred.
 ・また、本発明の第4局面では、下記式(6)、(7)の様に設定することができる。
 ΔT>0のとき、
   {(ねじの外径-ねじの谷の径)/2}×0.6≦ΔT
    ≦{(ねじの外径-ねじの谷の径)/2}     …(6)
 ΔT<0のとき、
  -{(ねじの外径-ねじの谷の径)/2}≦ΔT
    ≦-{(ねじの外径-ねじの谷の径)/2}×0.6…(7)
 このように設定することにより、後述する表1~表12から明かな様に、ねじのカーブ曲線とインサートの移動経路との出際・入り際ともに干渉することを一層低減することができる。
-Moreover, in the 4th aspect of this invention, it can set like following formula (6), (7).
When ΔT> 0,
{(Screw outer diameter-Screw valley diameter) / 2} × 0.6 ≦ ΔT
≦ {(Outer diameter of screw−Diameter of screw valley) / 2} (6)
When ΔT <0,
-{(Screw outer diameter-Thread valley diameter) / 2} ≤ΔT
≦-{(Screw outer diameter-Thread valley diameter) / 2} × 0.6 (7)
By setting in this way, as will be apparent from Tables 1 to 12, which will be described later, it is possible to further reduce interference between the curve curve of the screw and the movement path of the insert.
 ・更に、本発明の第5局面においては、前記D1を、ねじの外径又はねじの谷の径とすることができる。
 このように設定することにより、後述する表1~表12から明かな様に、ねじのカーブ曲線とインサートの移動経路との出際又は入り際の干渉を無くすることができる。
-Furthermore, in 5th aspect of this invention, said D1 can be made into the outer diameter of a screw, or the diameter of the trough of a screw.
By setting in this way, as will be apparent from Tables 1 to 12, which will be described later, it is possible to eliminate interference between the curve curve of the screw and the movement path of the insert.
 ・本発明の第6局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタにおいて、医療用ねじを製造するためのワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、前記医療用ねじのリード角と前記取り付け角とが異なる場合に、以下の式(1)、(2)、(3)、(4)、(5)を満たすことを特徴とする。 The sixth aspect of the present invention is the annular waring cutter in which a plurality of inserts are arranged radially and rotatable about the rotation axis, with respect to the axis center of the workpiece for manufacturing a medical screw. When the Waring cutter is inclined by a predetermined angle (attachment angle) and the lead angle of the medical screw is different from the attachment angle, the following equations (1), (2), (3), (4), ( 5) is satisfied.
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
 ΔT>0のとき、
 {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
     <{(ねじ外径-ねじの谷の径)/2}         …(4)
 ΔT<0のとき、
 -{(ねじ外径-ねじの谷の径)/2}<ΔT
     <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
   但し、D1≠0、ΔT≠0、nは条数
 本発明のワーリングカッタを用いて医療用ねじを製造するときに、前記第1局面と同様に、例えば医療用ねじのリード角が前記式(X)を満たす設計であった場合や医療用ねじ特有な特殊な形状であった場合でも、ワークおよびワーリングカッタの回転を行った際に、インサートが医療用ねじに干渉し難くなる。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
When ΔT> 0,
{(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
<{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
When ΔT <0,
-{(Screw outer diameter-Thread root diameter) / 2} <ΔT
<-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
However, D1 <> 0, [Delta] T <> 0, n is the number of threads When manufacturing a medical screw using the Waring cutter of the present invention, as in the first aspect, for example, the lead angle of the medical screw is expressed by the above formula ( Even if the design satisfies X) or a special shape unique to a medical screw, the insert is less likely to interfere with the medical screw when the workpiece and the Waring cutter are rotated.
 具体的には、取り付け角をリード角よりも小さく(浅く)する(つまり0<ΔT)と、特に、ねじ山の先端の側面に当たり難くなる。また、反対に、取り付け角をリード角よりも大きく(深く)する(つまり0>ΔT)と、特に、ねじ山の基端の側面に当たり難くなる。 Specifically, when the mounting angle is made smaller (shallow) than the lead angle (that is, 0 <ΔT), it is difficult to hit the side surface of the tip of the screw thread. On the other hand, if the mounting angle is larger (deeper) than the lead angle (that is, 0> ΔT), it is difficult to hit the side face of the base end of the screw thread.
 従って、本発明のワーリングカッタを用いて医療用ねじを製造する場合には、インサートの移動経路が所望のねじのカーブ曲線に出際・入り際ともに干渉すること抑制して、好適に目的とするカーブ曲線を備えたねじを製造することができる。 Therefore, when manufacturing a medical screw using the Waring cutter of the present invention, it is desirable to suppress the interference of the movement path of the insert with the curve curve of the desired screw both when entering and entering. Screws with curved curves can be produced.
 また、本発明では、転造に比べて、少量多品種の製造を容易に行うことができる。更に、切削に比べて、加工時間を短くでき、1つのワークに対して連続して加工できるので、繋いで加工することが不要であり、加工精度が高いという利点がある。 Also, in the present invention, it is possible to easily produce a small amount and a wide variety as compared with rolling. Furthermore, as compared with cutting, the machining time can be shortened, and a single workpiece can be continuously machined. Therefore, there is an advantage that it is not necessary to machine them together and machining accuracy is high.
  ・また、本発明の第7局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタにおいて、ウォームねじを製造するためのワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、前記ウォームねじのリード角と前記取り付け角とが異なる場合に、以下の式(1)、(2)、(3)、(4)、(5)を満たすことを特徴とする。 The seventh aspect of the present invention is the annular waring cutter in which a plurality of inserts are radially arranged and rotatable about the rotation axis, with respect to the axis center of the workpiece for manufacturing the worm screw. When the Waring cutter is inclined by a predetermined angle (attachment angle) and the lead angle of the worm screw is different from the attachment angle, the following equations (1), (2), (3), (4), ( 5) is satisfied.
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
 ΔT>0のとき、
 {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
     <{(ねじ外径-ねじの谷の径)/2}          …(4)
 ΔT<0のとき、
 -{(ねじ外径-ねじの谷の径)/2}<ΔT
     <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
   但し、D1≠0、ΔT≠0、nは条数
 本発明は、ウォームねじを製造するワーリングカッタの発明であり、前記第6局面と同様な効果を奏する。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
When ΔT> 0,
{(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
<{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
When ΔT <0,
-{(Screw outer diameter-Thread root diameter) / 2} <ΔT
<-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
However, D1 ≠ 0, ΔT ≠ 0, and n is the number of strips. The present invention is an invention of a Waring cutter for manufacturing a worm screw, and has the same effect as the sixth aspect.
 つまり、本発明のワーリングカッタを用いることにより、例えばウォームねじのリード角が前記式(X)を満たす設計であった場合に、ワークやワーリングカッタの回転を行った際に、インサートがウォームねじに干渉し難くなる等の効果を奏する。 That is, by using the Waring cutter of the present invention, for example, when the lead angle of the worm screw is designed to satisfy the above formula (X), when the workpiece or the Waring cutter is rotated, the insert becomes the worm screw. There are effects such as less interference.
 ・更に、本発明の第8局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタにおいて、メートルねじを製造するためのワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、前記メートルねじのリード角と前記取り付け角とが異なる場合に、以下の式(1)、(2)、(3)を満たすことを特徴とする。 Further, according to an eighth aspect of the present invention, in an annular Waring cutter in which a plurality of inserts are radially arranged and rotatable about a rotation axis, with respect to an axis center of a workpiece for manufacturing a metric screw, The Waring cutter is inclined by a predetermined angle (attachment angle), and the following formulas (1), (2), and (3) are satisfied when the lead angle of the metric screw is different from the attachment angle: To do.
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
   但し、D1≠0、ΔT≠0、nは条数
 本発明は、メートルねじを製造するワーリングカッタの発明であり、前記第6局面と同様な効果を奏する。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
However, D1 ≠ 0, ΔT ≠ 0, n is the number of strips. The present invention is an invention of a Waring cutter for manufacturing a metric screw, and has the same effect as the sixth aspect.
 つまり、本発明のワーリングカッタを用いることにより、例えばメートルねじのリード角が前記式(X)を満たす設計であった場合に、ワークやワーリングカッタの回転を行った際に、インサートがメートルねじに干渉し難くなる等の効果を奏する。 That is, by using the Waring cutter of the present invention, for example, when the lead angle of the metric screw is designed to satisfy the above formula (X), when the workpiece or the Waring cutter is rotated, the insert becomes a metric screw. There are effects such as less interference.
 ・本発明の第9局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタと、医療用ねじを製造するためのワークを根元を同軸に保持して回転させるメインスピンドルと、を備えたねじ製造装置において、前記ワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、前記医療用ねじのリード角と前記取り付け角とが異なる場合に、以下の式(1)、(2)、(3)、(4)、(5)を満たすことを特徴とする。 The ninth aspect of the present invention is that a plurality of inserts are arranged radially, and an annular waring cutter that can rotate around a rotation axis and a workpiece for manufacturing a medical screw are held coaxially. In a screw manufacturing apparatus including a main spindle to be rotated, the Waring cutter is inclined by a predetermined angle (attachment angle) with respect to the axis center of the workpiece, and a lead angle and an attachment angle of the medical screw are When they are different, the following expressions (1), (2), (3), (4), and (5) are satisfied.
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
 ΔT>0のとき、
 {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
     <{(ねじ外径-ねじの谷の径)/2}     …(4)
 ΔT<0のとき、
 -{(ねじ外径-ねじの谷の径)/2}<ΔT
     <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
   但し、D1≠0、ΔT≠0、nは条数
 本発明のねじ製造装置を用いて医療用ねじを製造するときに、前記第1局面と同様に、例えば医療用ねじのリード角が前記式(X)を満たす設計であった場合や医療用ねじ特有の特殊な形状であった場合でも、ワークおよびワーリングカッタの回転を行った際に、インサートが医療用ねじに干渉し難くなる。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
When ΔT> 0,
{(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
<{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
When ΔT <0,
-{(Screw outer diameter-Thread root diameter) / 2} <ΔT
<-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
However, D1 <> 0, [Delta] T <> 0, and n is the number of threads When manufacturing a medical screw using the screw manufacturing apparatus of the present invention, the lead angle of the medical screw is, for example, the above formula, as in the first aspect. Even when the design satisfies (X) or a special shape peculiar to medical screws, the insert is less likely to interfere with the medical screws when the workpiece and the Waring cutter are rotated.
 具体的には、取り付け角をリード角よりも小さく(浅く)する(つまり0<ΔT)と、特に、ねじ山の先端の側面に当たり難くなる。また、反対に、取り付け角をリード角よりも大きく(深く)する(つまり0>ΔT)と、特に、ねじ山の基端の側面に当たり難くなる。 Specifically, when the mounting angle is made smaller (shallow) than the lead angle (that is, 0 <ΔT), it is difficult to hit the side surface of the tip of the screw thread. On the other hand, if the mounting angle is larger (deeper) than the lead angle (that is, 0> ΔT), it is difficult to hit the side face of the base end of the screw thread.
 従って、本発明のねじの製造装置を用いて医療用ねじを製造する場合には、インサートの移動経路が所望のねじのカーブ曲線に出際・入り際ともに干渉すること抑制して、好適に目的とするカーブ曲線を備えたねじを製造することができる。 Therefore, when a medical screw is manufactured using the screw manufacturing apparatus of the present invention, it is preferable that the movement path of the insert is prevented from interfering with the curve curve of the desired screw both when entering and entering. A screw having a curve curve can be manufactured.
 また、本発明では、転造に比べて、少量多品種の製造を容易に行うことができる。更に、切削に比べて、加工時間を短くでき、1つのワークに対して連続して加工できるので、繋いで加工することが不要であり、加工精度が高いという利点がある。 Also, in the present invention, it is possible to easily produce a small amount and a wide variety as compared with rolling. Furthermore, as compared with cutting, the machining time can be shortened, and a single workpiece can be continuously machined. Therefore, there is an advantage that it is not necessary to machine them together and machining accuracy is high.
 ・また、本発明の第10局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタと、ウォームねじを製造するためのワークを根元を同軸に保持して回転させるメインスピンドルと、を備えたねじ製造装置において、前記ワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、前記ウォームねじのリード角と前記取り付け角とが異なる場合に、
 以下の式(1)、(2)、(3)、(4)、(5)を満たすことを特徴とする。
The tenth aspect of the present invention is that a plurality of inserts are arranged radially, and an annular waring cutter that can rotate around a rotation axis and a workpiece for manufacturing a worm screw are held coaxially. And a main spindle for rotating the main spindle, wherein the Waring cutter is inclined by a predetermined angle (attachment angle) with respect to the axis center of the workpiece, and the lead angle and the attachment angle of the worm screw are If different
The following expressions (1), (2), (3), (4), and (5) are satisfied.
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
 ΔT>0のとき、
 {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
     <{(ねじ外径-ねじの谷の径)/2}     …(4)
 ΔT<0のとき、
 -{(ねじ外径-ねじの谷の径)/2}<ΔT
     <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
   但し、D1≠0、ΔT≠0、nは条数
 本発明は、ウォームねじを製造するねじ製造装置の発明であり、前記第9局面と同様な効果を奏する。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
When ΔT> 0,
{(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
<{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
When ΔT <0,
-{(Screw outer diameter-Thread root diameter) / 2} <ΔT
<-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
However, D1 ≠ 0, ΔT ≠ 0, and n is the number of strips. The present invention is an invention of a screw manufacturing apparatus for manufacturing a worm screw, and has the same effect as the ninth aspect.
 つまり、本発明のねじ製造装置を用いることにより、例えばウォームねじのリード角が前記式(X)を満たす設計であった場合に、ワークやワーリングカッタの回転を行った際に、インサートがウォームねじに干渉し難くなる等の効果を奏する。 In other words, by using the screw manufacturing apparatus of the present invention, for example, when the lead angle of the worm screw is designed to satisfy the above formula (X), when the workpiece or Waring cutter is rotated, the insert becomes the worm screw. There are effects such as making it difficult to interfere with the sound.
 ・更に、本発明の第11局面は、複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタと、メートルねじを製造するためのワークを根元を同軸に保持して回転させるメインスピンドルと、を備えたねじ製造装置において、前記ワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、前記メートルねじのリード角と前記取り付け角とが異なる場合に、
 以下の式(1)、(2)、(3)を満たすことを特徴とする。
-Furthermore, 11th aspect of this invention arrange | positions several inserts radially, hold | maintains the base for the cyclic | annular Waring cutter which can be rotated centering | focusing on a rotating shaft, and the workpiece | work for manufacturing a metric screw on the same axis | shaft. And a main spindle for rotating the main spindle, wherein the Waring cutter is inclined at a predetermined angle (attachment angle) with respect to the axial center of the workpiece, and the lead angle and the attachment angle of the metric screw are If different
The following expressions (1), (2), and (3) are satisfied.
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
   但し、D1≠0、ΔT≠0、nは条数
 本発明は、メートルねじを製造するねじ製造装置の発明であり、前記第9局面と同様な効果を奏する。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
However, D1 ≠ 0, ΔT ≠ 0, and n is the number of strips. The present invention is an invention of a screw manufacturing apparatus for manufacturing a metric screw, and has the same effect as the ninth aspect.
 つまり、本発明のねじ製造装置を用いることにより、例えばメートルねじのリード角が前記式(X)を満たす設計であった場合に、ワークやワーリングカッタの回転を行った際に、インサートがメートルねじに干渉し難くなる等の効果を奏する。 That is, by using the screw manufacturing apparatus of the present invention, for example, when the lead angle of the metric screw is designed to satisfy the above formula (X), when the workpiece or Waring cutter is rotated, the insert is metric screw. There are effects such as making it difficult to interfere with the sound.
 ここで、本発明の対象となるねじとしては、通常の機械用のねじ、医療用ねじなどが挙げられるが、本発明は、特に医療用ねじの様な特殊な形状のねじを製造するのに好適な製造方法である。 Here, examples of the screw that is the subject of the present invention include a normal machine screw and a medical screw, but the present invention is particularly useful for manufacturing a screw having a special shape such as a medical screw. This is a suitable manufacturing method.
 なお、通常の機械的のねじとしては、JISに規定されている様々なねじが挙げられる。例えば、メートルねじ、ウォームねじ、ユニファイねじ、台形ねじ、のこ歯ねじ、などである。 In addition, as a normal mechanical screw, there are various screws defined in JIS. For example, a metric screw, a worm screw, a unified screw, a trapezoidal screw, a sawtooth screw, and the like.
 また、医療用ねじとは、人間や動物の体内に使用されるねじ(implants)のことである。
 なお、医療用ねじの場合に、ねじとインサートとの干渉が大きくなる場合としては、通常の機械用のねじに比べて、ピッチが大きい場合(例えば2.0mm以上)、1条ねじより条数が多い例えば2条ねじの場合、深いねじ(外径と谷の径との差が大きい場合:例えば2.0mm以上)、目的とするねじのリード角が大きい場合(例えば15°以上)が挙げられる。
Medical screws are screws used in the body of humans and animals.
In the case of a medical screw, when the interference between the screw and the insert is large, the pitch is larger than that of a normal machine screw (for example, 2.0 mm or more), and the number of threads is larger than that of a single thread. For example, in the case of a double thread, a deep screw (when the difference between the outer diameter and the valley diameter is large: for example, 2.0 mm or more), and a case where the target screw has a large lead angle (for example, 15 ° or more). It is done.
スレッドワーリング加工方法による医療用ねじの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the medical screw by the thread | sled Waring processing method. インサートを備えたワーリングカッタを示す説明図である。It is explanatory drawing which shows the Waring cutter provided with the insert. 図3Aは、ねじを示す正面図、図3Bは、ねじの一部を拡大し破断して示す説明図である。FIG. 3A is a front view showing a screw, and FIG. 3B is an explanatory view showing a part of the screw in an enlarged manner and broken. 第1実施形態で用いられるインサートを示す斜視図である。It is a perspective view which shows the insert used in 1st Embodiment. 図5Aは、第1実施形態において変動を-100%とした場合の干渉の状態を示す説明図、図5Bは、変動を-80%とした場合の干渉の状態を示す説明図、図5Cは、変動を-60%とした場合の干渉の状態を示す説明図、図5Dは、変動を-40%とした場合の干渉の状態を示す説明図である。FIG. 5A is an explanatory diagram showing an interference state when the variation is −100% in the first embodiment, FIG. 5B is an explanatory diagram showing an interference state when the variation is −80%, and FIG. FIG. 5D is an explanatory diagram showing the state of interference when the variation is −40%. FIG. 5D is an explanatory diagram showing the state of interference when the variation is −40%. 図6Aは、第1実施形態において変動を-20%とした場合の干渉の状態を示す説明図、図6Bは、変動を0%とした場合の干渉の状態を示す説明図、図6Cは、変動を+20%とした場合の干渉の状態を示す説明図、図6Dは、変動を+40%とした場合の干渉の状態を示す説明図である。FIG. 6A is an explanatory diagram showing the state of interference when the variation is −20% in the first embodiment, FIG. 6B is an explanatory diagram showing the state of interference when the variation is 0%, and FIG. FIG. 6D is an explanatory diagram illustrating the state of interference when the variation is + 40%, and FIG. 6D is an explanatory diagram illustrating the state of interference when the variation is + 40%. 図7Aは、第1実施形態において変動を+60%とした場合の干渉の状態を示す説明図、図7Bは、変動を+80%とした場合の干渉の状態を示す説明図、図7Cは、変動を+100%とした場合の干渉の状態を示す説明図である。7A is an explanatory diagram illustrating an interference state when the variation is + 60% in the first embodiment, FIG. 7B is an explanatory diagram illustrating an interference state when the variation is + 80%, and FIG. 7C is a variation. It is explanatory drawing which shows the state of interference when making + 100%. 第2実施形態で用いられるインサートを示す斜視図である。It is a perspective view which shows the insert used in 2nd Embodiment. 図9Aは、第2実施形態において変動を-100%とした場合の干渉の状態を示す説明図、図9Bは、変動を-80%とした場合の干渉の状態を示す説明図、図9Cは、変動を-60%とした場合の干渉の状態を示す説明図、図9Dは、変動を-40%とした場合の干渉の状態を示す説明図である。FIG. 9A is an explanatory diagram showing the state of interference when the variation is −100% in the second embodiment, FIG. 9B is an explanatory diagram showing the state of interference when the variation is −80%, and FIG. FIG. 9D is an explanatory diagram showing an interference state when the variation is −60%, and FIG. 9D is an explanatory diagram showing an interference state when the variation is −40%. 図10Aは、第2実施形態において変動を-20%とした場合の干渉の状態を示す説明図、図10Bは、変動を0%とした場合の干渉の状態を示す説明図、図10Cは、変動を+20%とした場合の干渉の状態を示す説明図、図10Dは、変動を+40%とした場合の干渉の状態を示す説明図である。FIG. 10A is an explanatory diagram showing the state of interference when the variation is −20% in the second embodiment, FIG. 10B is an explanatory diagram showing the state of interference when the variation is 0%, and FIG. FIG. 10D is an explanatory diagram illustrating the state of interference when the variation is + 40%, and FIG. 10D is an explanatory diagram illustrating the state of interference when the variation is + 40%. 図11Aは、第2実施形態において変動を+60%とした場合の干渉の状態を示す説明図、図11Bは、変動を+80%とした場合の干渉の状態を示す説明図、図11Cは、変動を+100%とした場合の干渉の状態を示す説明図である。11A is an explanatory diagram illustrating an interference state when the variation is + 60% in the second embodiment, FIG. 11B is an explanatory diagram illustrating an interference state when the variation is + 80%, and FIG. 11C is a variation. It is explanatory drawing which shows the state of interference when making + 100%. 第3実施形態における医療用ねじの中心軸に沿った断面を示す断面図である。It is sectional drawing which shows the cross section along the central axis of the medical screw in 3rd Embodiment. 図13Aは、第3実施形態において変動を+100%とした場合の干渉の状態を示す説明図、図13Bは、変動を+60%とした場合の干渉の状態を示す説明図、図13Cは、変動を+40%とした場合の干渉の状態を示す説明図、図13Dは、変動を+0%とした場合の干渉の状態を示す説明図である。FIG. 13A is an explanatory diagram illustrating an interference state when the variation is + 100% in the third embodiment, FIG. 13B is an explanatory diagram illustrating an interference state when the variation is + 60%, and FIG. 13C is a variation. FIG. 13D is an explanatory diagram showing the state of interference when the variation is + 0%. 図14Aは、第4実施形態におけるウォームねじを示す説明図、図14Bは、同ウォームねじの中心軸に沿った断面を示す断面図である。FIG. 14A is an explanatory view showing a worm screw in the fourth embodiment, and FIG. 14B is a cross-sectional view showing a cross section along the central axis of the worm screw. 図15Aは、第4実施形態において変動を+100%とした場合の干渉の状態を示す説明図、図15Bは、変動を+60%とした場合の干渉の状態を示す説明図、図15Cは、変動を+40%とした場合の干渉の状態を示す説明図、図15Dは、変動を+0%とした場合の干渉の状態を示す説明図である。15A is an explanatory diagram illustrating an interference state when the variation is + 100% in the fourth embodiment, FIG. 15B is an explanatory diagram illustrating an interference state when the variation is + 60%, and FIG. 15C is a variation. FIG. 15D is an explanatory diagram showing the state of interference when the variation is + 0%. 第5実施形態におけるウォームねじの中心軸に沿った断面を示す断面図である。It is sectional drawing which shows the cross section along the central axis of the worm screw in 5th Embodiment. 図17Aは、第5実施形態において変動を+100%とした場合の干渉の状態を示す説明図、図17Bは、変動を+60%とした場合の干渉の状態を示す説明図、図17Cは、変動を+40%とした場合の干渉の状態を示す説明図、図17Dは、変動を+0%とした場合の干渉の状態を示す説明図である。FIG. 17A is an explanatory diagram illustrating an interference state when the variation is + 100% in the fifth embodiment, FIG. 17B is an explanatory diagram illustrating an interference state when the variation is + 60%, and FIG. 17C is a variation. FIG. 17D is an explanatory diagram showing the state of interference when the variation is + 0%. 第6実施形態におけるメートルねじの中心軸に沿った断面を示す断面図である。It is sectional drawing which shows the cross section along the central axis of the metric screw in 6th Embodiment. 図19Aは、第6実施形態(ピッチ0.8)において変動を+100%とした場合の干渉の状態を示す説明図、図19Bは、その変動を+0%とした場合の干渉の状態を示す説明図、図19Cは、第7実施形態(ピッチ1.0)において変動を+100%とした場合の干渉の状態を示す説明図、図19Dは、その変動を+0%とした場合の干渉の状態を示す説明図である。FIG. 19A is an explanatory diagram showing the state of interference when the variation is + 100% in the sixth embodiment (pitch 0.8), and FIG. 19B is an explanation showing the state of interference when the variation is + 0%. FIG. 19C is an explanatory diagram showing the state of interference when the variation is + 100% in the seventh embodiment (pitch 1.0), and FIG. 19D is the state of interference when the variation is + 0%. It is explanatory drawing shown. 図20Aは、第8実施形態(ピッチ1.25)において変動を+100%とした場合の干渉の状態を示す説明図、図20Bは、その変動を+0%とした場合の干渉の状態を示す説明図、図20Cは、第9実施形態(ピッチ1.5)において変動を+100%とした場合の干渉の状態を示す説明図、図20Dは、その変動を+0%とした場合の干渉の状態を示す説明図である。FIG. 20A is an explanatory diagram illustrating an interference state when the variation is set to + 100% in the eighth embodiment (pitch 1.25), and FIG. 20B is an explanatory diagram illustrating an interference state when the variation is set to + 0%. FIG. 20C is an explanatory diagram showing the state of interference when the variation is + 100% in the ninth embodiment (pitch 1.5), and FIG. 20D is the state of interference when the variation is + 0%. It is explanatory drawing shown. 図21Aは、第10実施形態(ピッチ1.75)において変動を+100%とした場合の干渉の状態を示す説明図、図21Bは、その変動を+0%とした場合の干渉の状態を示す説明図である。FIG. 21A is an explanatory diagram showing the state of interference when the variation is + 100% in the tenth embodiment (pitch 1.75), and FIG. 21B is an explanation showing the state of interference when the variation is + 0%. FIG. 図22Aは、第11実施形態(ピッチ2.0)において変動を+100%とした場合の干渉の状態を示す説明図、図22Bは、その変動を+60%とした場合の干渉の状態を示す説明図、図22Cは、その変動を+40%とした場合の干渉の状態を示す説明図、図22Dは、その変動を+0%とした場合の干渉の状態を示す説明図である。FIG. 22A is an explanatory diagram showing the state of interference when the variation is + 100% in the eleventh embodiment (pitch 2.0), and FIG. 22B is an explanation showing the state of interference when the variation is + 60%. FIG. 22C is an explanatory diagram illustrating an interference state when the variation is + 40%, and FIG. 22D is an explanatory diagram illustrating an interference state when the variation is + 0%. 従来技術の問題点を示す説明図である。It is explanatory drawing which shows the problem of a prior art.
 1、31、35、41、51、53、61…ねじ
 3…ワーク
 5…ねじ部
 7…メインスピンドル
 9…ワーリングカッタ
 10…ねじ製造装置
 11…カッタヘッド
 13、21…インサート
 17…貫通孔
DESCRIPTION OF SYMBOLS 1, 31, 35, 41, 51, 53, 61 ... Screw 3 ... Work 5 ... Screw part 7 ... Main spindle 9 ... Waring cutter 10 ... Screw manufacturing apparatus 11 ... Cutter head 13, 21 ... Insert 17 ... Through-hole
 以下に本発明の実施形態を図面とともに説明する。
[第1実施形態]
 a)まず、スレッドワーリング加工方法による医療用ねじの製造方法の概略について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
a) First, an outline of a method for manufacturing a medical screw by the thread whirling method will be described.
 図1に示す様に、本実施形態におけるスレッドワーリング加工方法では、医療用ねじ(以下単にねじと記すこともある)1となる棒材(ワーク)3に対して、その表面にねじ部5を形成するために、ワーク3の根元を同軸に保持して回転させるメインスピンドル7と、ワーク3の軸方向に対して取り付け角β(°)だけ傾いて配置され回転するワーリングカッタ9とを用いる。 As shown in FIG. 1, in the thread whirling processing method according to the present embodiment, a threaded portion 5 is provided on the surface of a bar material (work) 3 that becomes a medical screw (hereinafter sometimes simply referred to as a screw) 1. In order to form, a main spindle 7 that rotates while holding the base of the work 3 coaxially, and a Waring cutter 9 that is arranged and rotated at an attachment angle β (°) with respect to the axial direction of the work 3 are used.
 このワーリングカッタ9は、図示しないツールスピンドルによって回転される環状の装置であり、図2に示す様に、環状のカッタヘッド11に放射状に例えば9個等の複数のインサート13が配置されたものである。 The Waring cutter 9 is an annular device that is rotated by a tool spindle (not shown). As shown in FIG. 2, a plurality of inserts 13 such as nine are arranged radially on the annular cutter head 11. is there.
 なお、各インサート13は、固定ねじ15によってカッタヘッド11に固定されている。また、前記メインスピンドル7及びワーリングカッタ9を備え、スレッドワーリング加工方法によってねじ1を製造する装置をねじ製造装置10と称する。 Note that each insert 13 is fixed to the cutter head 11 by a fixing screw 15. An apparatus that includes the main spindle 7 and the Waring cutter 9 and manufactures the screw 1 by a thread warping method is referred to as a screw manufacturing apparatus 10.
 そして、例えば図3A、Bに示す様なねじ1を、スレッドワーリング加工によって、作製する場合には、以下の手順で行う。
 まず、図1に示す様に、メインスピンドル7の回転中心に、棒状のワーク3を挿入する。
Then, for example, when the screw 1 as shown in FIGS. 3A and 3B is manufactured by thread whirling, the following procedure is performed.
First, as shown in FIG. 1, a rod-shaped workpiece 3 is inserted into the rotation center of the main spindle 7.
 次に、ワーリングカッタ9の中央の貫通孔17にワーク3を挿入するとともに、ワーク3の中心軸に対してワーリングカッタ9を所定角度(取り付け角β)傾ける。
 そして、その状態で、ワーク3を所定方向(図1、2のA方向)へ回転させながら軸方向(図1の上方向)に所定速度で進行させ、それとともにワーリングカッタ9をワーク3の回転速度より大きな回転速度で同方向に回転させて、複数のインサート13によってねじを作製する。
Next, the workpiece 3 is inserted into the central through-hole 17 of the Waring cutter 9 and the Waring cutter 9 is inclined by a predetermined angle (attachment angle β) with respect to the central axis of the workpiece 3.
In this state, the work 3 is rotated in a predetermined direction (A direction in FIGS. 1 and 2) while moving in the axial direction (upward in FIG. 1) at a predetermined speed, and the Waring cutter 9 is rotated along with the rotation of the work 3 Screws are produced by a plurality of inserts 13 by rotating in the same direction at a rotational speed greater than the speed.
 詳しくは、図2に示す様に、ワーリングカッタ9の回転中心とワーク3の軸中心とを、ワーク3とインサート13とが接触するように配置(ワーク3の軸中心を同図の上方向に配置)し、ワーリングカッタ9が回転する際に、順次ワーク3に接触する各インサート13によってねじ部5を形成する。 Specifically, as shown in FIG. 2, the rotation center of the Waring cutter 9 and the axis center of the workpiece 3 are arranged so that the workpiece 3 and the insert 13 are in contact (the axis center of the workpiece 3 is directed upward in the figure). Then, when the Waring cutter 9 rotates, the thread portion 5 is formed by the inserts 13 that sequentially contact the workpiece 3.
 なお、本実施例で製造する医療用ねじ1は1条ねじであり、ここでは1条ねじを作製するために、図4に示す様な1つ山の切削部19を有するインサート13を使用する。このインサート13の形状は、平行四辺形の形状であるが、例えば、菱形、三角形などの形状でも対応することができる。さらに詳細な形状は、作製対象のねじの形状に対応して決定される。 The medical screw 1 manufactured in the present embodiment is a single thread, and here, in order to produce a single thread, an insert 13 having a single cutting portion 19 as shown in FIG. 4 is used. . The shape of the insert 13 is a parallelogram shape, but a shape such as a rhombus or a triangle can also be used. A more detailed shape is determined corresponding to the shape of the screw to be manufactured.
 b)次に、取り付け角βの設定方法について説明する。
 前記取り付け角βは、どのような形状のねじ1を作製するかによって定まる。
 そこで、まず、前記図3A、3Bに示す様に、作製するねじ1(ここでは1条ねじ)の図面からねじ1の形状を特定する数値を読み取る。
b) Next, a method for setting the attachment angle β will be described.
The mounting angle β is determined by the shape of the screw 1 to be manufactured.
Therefore, first, as shown in FIGS. 3A and 3B, a numerical value specifying the shape of the screw 1 is read from the drawing of the screw 1 to be manufactured (here, a single thread screw).
 例えば、ねじ1の形状を特定する代表的なデータとしては、下記のデータが挙げられるが、それ以外にも、ねじ部5の3次元の表面形状(カーブ)等を特定するためのデータが挙げられる。なお、ここでは、前記インサート13によって作製するねじ1の数値データを記載してある。 For example, as typical data for specifying the shape of the screw 1, the following data can be given, but in addition to this, data for specifying the three-dimensional surface shape (curve) of the screw portion 5 is given. It is done. Here, numerical data of the screw 1 produced by the insert 13 is described.
  ねじの軸方向の全長 :50.0mm
  ねじ部の軸方向の長さ:30.0mm
  ねじの外径 :φ6.0mm
  ねじの谷の径:φ4.0mm
  ピッチ   :5.0mm
  ねじ山のリード角:17.66°
 なお、取り付け角βとねじ1のリード角とは異なる。つまり、前記式(1)のD1と前記式(X)の有効径とは異なる。
Total axial length of screw: 50.0mm
Axial length of screw part: 30.0mm
Screw outer diameter: φ6.0mm
Screw valley diameter: φ4.0mm
Pitch: 5.0mm
Thread lead angle: 17.66 °
The mounting angle β and the lead angle of the screw 1 are different. That is, D1 in the formula (1) is different from the effective diameter in the formula (X).
 c)次に、スレッドワーリング加工を用いたねじ1の製造方法の具体例について説明する。
 ここでは、上述した寸法を有するねじ1を作製する場合について説明する。
c) Next, a specific example of a method for manufacturing the screw 1 using thread whirling will be described.
Here, the case where the screw 1 having the above-described dimensions is manufactured will be described.
 前記図1に示す様に、メインスピンドル7の回転中心に、ワーク3を取り付けて固定し、ワーリングカッタ9の中央の貫通孔17にワーク3を挿入するとともに、ワーク3の中心軸に対してワーリングカッタ9を取り付け角β傾ける。 As shown in FIG. 1, the work 3 is attached and fixed to the rotation center of the main spindle 7, the work 3 is inserted into the central through-hole 17 of the Waring cutter 9, and the Waring is performed with respect to the central axis of the work 3. The cutter 9 is tilted by a mounting angle β.
 この取り付け角βは、下記式(1)、(2)、(3)、(4)、(5)を用いて算出する。ここで、取り付け角βとは、スレッドワーリング加工の際に、ワーク3の軸中心に対してワーリングカッタ9を傾ける際の角度である。 The mounting angle β is calculated using the following formulas (1), (2), (3), (4), (5). Here, the attachment angle β is an angle at which the Waring cutter 9 is tilted with respect to the axial center of the workpiece 3 in the thread whirling process.
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1  ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径           …(3)
 ΔT>0のとき、
 {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
     <{(ねじ外径-ねじの谷の径)/2}     …(4)
 ΔT<0のとき、
 -{(ねじ外径-ねじの谷の径)/2}<ΔT
     <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
   但し、D1(mm)≠0、ΔT(mm)≠0、nは条数
 なお、ワーク3としては、チタン合金からなる長さ2.5m×外径φ8.0mmの円筒状のロッドを用いた。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
When ΔT> 0,
{(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
<{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
When ΔT <0,
-{(Screw outer diameter-Thread root diameter) / 2} <ΔT
<-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
However, D1 (mm) ≠ 0, ΔT (mm) ≠ 0, n is the number of strips. As the work 3, a cylindrical rod made of a titanium alloy with a length of 2.5 m and an outer diameter of φ8.0 mm was used. .
 そして、下記の加工条件により、上述した図面で示される目的とする形状のねじ1を作製する。
  メインスピンドル回転速度:10rpm
  ワーク前進速度     :2.75mm/rev
  ツールスピンドル回転速度:2000rpm
 具体的には、下記表1に示す様に、D1を変更することによって取り付け角βを変えてねじ1を作製し、その際に、干渉(ねじ1のカーブ曲線とインサート13の移動経路との干渉)の有無を調べた。詳しくは、周知のCADによってシミュレーションを行うとともに、実際にねじ1を作製して干渉の状態を調べた。
And the screw 1 of the target shape shown by the drawing mentioned above according to the following processing conditions is produced.
Main spindle rotation speed: 10rpm
Work advance speed: 2.75mm / rev
Tool spindle rotation speed: 2000 rpm
Specifically, as shown in Table 1 below, the screw 1 is manufactured by changing the mounting angle β by changing D1, and at that time, interference (the curve curve of the screw 1 and the movement path of the insert 13 are not affected. The presence or absence of interference) was examined. Specifically, the simulation was performed by a well-known CAD, and the screw 1 was actually manufactured to check the interference state.
 なお、CADとしては、3次元CAD USG NX4を用いた。
 その結果を、下記表1及び図5A~5D、図6A~6D及び図7A~7Cに示す。
As CAD, three-dimensional CAD USG NX4 was used.
The results are shown in Table 1 below and FIGS. 5A to 5D, FIGS. 6A to 6D, and FIGS. 7A to 7C.
Figure JPOXMLDOC01-appb-T000001
 なお、前記表1において、「変動」とは、中間値(D1=5.00:ΔT=0)からのD1の変動の割合(最大変動幅1.00を100%とした場合)を示し、「変動改」とは、変動200%を100%に換算したものを示し、「変動幅」とは、D1=5.00からの実際の変動の幅(上記ΔTに該当)を示している。
Figure JPOXMLDOC01-appb-T000001
In Table 1, “Fluctuation” indicates the ratio of fluctuation of D1 from the intermediate value (D1 = 5.00: ΔT = 0) (when the maximum fluctuation width of 1.00 is 100%), “Fluctuation modification” indicates that the variation of 200% is converted to 100%, and “variation width” indicates the actual variation width from D1 = 5.00 (corresponding to the above ΔT).
 また、判定結果において、「◎」は「完全に出際又は入り際どちらかの干渉を回避し、ほぼ目的とするねじ形状を得ることが可能なこと」、「○」は「完全に出際又は入り際どちらかの干渉を回避し切れてはいないが、形状不具合と言われないレベルの加工が可能なこと」、「△」は「出際又は入り際どちらかの干渉は多いものの、検査レベルによっては、合格となる可能性があること」、「×」は「出際・入り際ともに干渉が多く、形状不具合と判断される製品しか製造できないこと」を示している。 In addition, in the judgment results, “◎” means “can avoid the interference when entering or exiting completely and can obtain the target screw shape”, and “○” means “completely appear”. "Although interference has not been avoided when entering, it is possible to process at a level that is not said to be a shape defect" and "△" are "inspection although there is much interference either when entering or entering. “Depending on the level, there is a possibility of passing”, and “×” indicates that “manufactured only products that are judged to have a shape defect due to a lot of interference both when entering and leaving.”
 ここで「目的とするねじ形状」とは、ねじカーブ曲線に従う理想的なねじ形状のみならず、ねじ外径側側面又はねじ基端側(谷側)側面のどちらかのみに干渉が見られるねじ形状とする。 Here, the “target screw shape” is not only an ideal screw shape that follows a screw curve curve, but also a screw that interferes only with either the screw outer diameter side surface or the screw proximal side (valley side) side surface. Shape.
 更に、図5A~5D、図6A~6D及び図7A~7Cにおいて、中央の白色部分が加工前のワーク3の形状を示し、中央の左右のグレー部分が加工済みの形状を示し、ワーク3の中央の白色部分における(楕円の枠内の)グレー部分が干渉が生じする箇所を示している。なお、図6D以降では楕円は省略してある。 Further, in FIGS. 5A to 5D, FIGS. 6A to 6D and FIGS. 7A to 7C, the central white portion indicates the shape of the workpiece 3 before processing, the central left and right gray portions indicate the processed shapes, The gray part (within the ellipse frame) in the central white part indicates a place where interference occurs. In FIG. 6D and subsequent figures, ellipses are omitted.
 この表1及び図5A~5D、図6A~6D及び図7A~7Cから明かな様に、D1を変化させて取り付け角βを調節することにより、詳しくは、D1の変動量を大きくして取り付け角βとリード角との差を大きくすることにより(即ち変動を大きくすることにより)、ねじ1のカーブ曲線をかわす形状となり、出際又は入り際どちらかの干渉を小さくすることができることが分かる。 As is clear from Table 1 and FIGS. 5A to 5D, FIGS. 6A to 6D, and FIGS. 7A to 7C, by adjusting the mounting angle β by changing D1, more specifically, mounting by increasing the variation amount of D1. It can be seen that by increasing the difference between the angle β and the lead angle (that is, by increasing the fluctuation), the shape of the curve curve of the screw 1 is changed, and the interference at the time of entering or entering can be reduced. .
 具体的には、例えば図5A~5D及び図6A~6Bに示す様に、変動を大きくすると、干渉部分の形状は上下に広がる形状の2つの扇形(例えば図6B参照)から一方(例えば上方)に広がる扇形(例えば図5A参照)のように変化する。 Specifically, for example, as shown in FIGS. 5A to 5D and FIGS. 6A to 6B, when the fluctuation is increased, the shape of the interference portion is changed from one of the two fan shapes (see, for example, FIG. 6B) to the top and bottom. It changes like a fan shape (see FIG. 5A, for example).
 従って、出際又は入り際どちらかの干渉が小さい(或いは無くした)形状のねじ1が得られることが分かる。
 さらに、図5A~5Dと図6Aを比較して明かな様に、変動-20%より-の変動が大きいほど、ねじ基端側(谷側)の干渉を減らすことができる(三角のグレー部分が小さくなっている)ことがわかる。同様に、図6D及び図7A~7Cと図6Cを比較すると、変動+20%より+の変動が大きいほど、ねじ外径側側面の干渉を減らすことができる(三角のグレー部分が小さくなる)ことがわかる。
Therefore, it can be seen that the screw 1 having a shape with little (or no) interference when coming out or entering is obtained.
Further, as apparent from comparison between FIGS. 5A to 5D and FIG. 6A, the larger the variation of the variation −20% −, the more the interference on the screw base side (valley side) can be reduced (the gray portion of the triangle). Is smaller). Similarly, when FIG. 6C is compared with FIG. 6D and FIGS. 7A to 7C, the interference of the screw outer diameter side surface can be reduced (the gray portion of the triangle becomes smaller) as the variation of + is larger than the variation + 20%. I understand.
 また、図6B(変動0%)から明かな様に、D1が(ねじの谷の径+ねじの外径)/2(つまりΔT=0)の場合には、干渉が、ねじ外径側側面及びねじ基端側(谷側)側面の両方に生じているので、製造したねじを使用する上で問題となる。つまり、干渉が、ねじ外径側側面及びねじ基端側(谷側)側面の両方に生じていると、精度良くねじを締め付けることが困難になり、さらには、ねじのガタツキが生じる原因にもなる。 Further, as is clear from FIG. 6B (variation 0%), when D1 is (screw root diameter + screw outer diameter) / 2 (that is, ΔT = 0), interference occurs on the screw outer diameter side surface. Since it occurs on both of the screw base end side (valley side) side surface, it becomes a problem when the manufactured screw is used. In other words, if interference occurs on both the screw outer diameter side surface and the screw base end side (valley side) side surface, it is difficult to tighten the screw with high accuracy, and further, the screw may become loose. Become.
 e)この様に、本実施形態では、取り付け角βとリード角とを異なる値とすることで、インサート13とねじ1のカーブ曲線との出際又は入り際の干渉が減った形状のねじ1を好適に得ることができる。しいては、干渉が、ねじ外径側側面及びねじ基端側(谷側)側面の両方に生じている訳ではないので、製造したねじ1を使用する上で問題とならない。 e) Thus, in this embodiment, the screw 1 having a shape in which interference between the insert 13 and the curved curve of the screw 1 at the time of entering or entering is reduced by setting the attachment angle β and the lead angle to different values. Can be suitably obtained. Therefore, interference does not occur on both the screw outer diameter side surface and the screw base end side (valley side) side surface, so that there is no problem in using the manufactured screw 1.
 つまり、本実施形態では、干渉が、ねじ外径側側面とねじ基端側(谷側)側面との両側に生じることを防止できるので、製造したねじ1を用いて締め付ける際等に、支障なくねじ1を回転させることができる。 That is, in this embodiment, since interference can be prevented from occurring on both sides of the screw outer diameter side surface and the screw base end side (valley side) side surface, there is no hindrance when tightening with the manufactured screw 1. The screw 1 can be rotated.
 詳しくは、前記表1及び表2から明かな様に、下記の様に設定することにより、ねじ1のカーブ曲線とインサート13の移動経路との出際又は入り際の干渉を、一層低減することができる。 Specifically, as is clear from Tables 1 and 2, the following setting is made to further reduce interference between the curve curve of the screw 1 and the movement path of the insert 13 when entering or leaving. Can do.
 ΔT>0のとき、
   {(ねじの外径-ねじの谷の径)/2}×0.6≦ΔT
         ≦{(ねじの外径-ねじの谷の径)/2}
 ΔT<0のとき、
  -{(ねじの外径-ねじの谷の径)/2}≦ΔT
         ≦-{(ねじの外径-ねじの谷の径)/2}×0.6
 なお、前記(ねじの外径-ねじの谷の径)とは、最大の変動幅を示し、例えば変動が+60%(変動改=+30%)の場合には、ΔT={(ねじの外径-ねじの谷の径)×0.3}となる。
When ΔT> 0,
{(Screw outer diameter-Screw valley diameter) / 2} × 0.6 ≦ ΔT
≦ {(Outer diameter of screw−Diameter of screw valley) / 2}
When ΔT <0,
-{(Screw outer diameter-Thread valley diameter) / 2} ≤ΔT
≦-{(Screw outer diameter-Screw valley diameter) / 2} × 0.6
The above (screw outer diameter−screw valley diameter) indicates the maximum fluctuation range. For example, when the fluctuation is + 60% (variation modification = + 30%), ΔT = {(screw outer diameter -Screw valley diameter) x 0.3}.
 特に、取り付け角βを算出する際のD1を、ねじの外径(変動+100%)又はねじの谷の径(変動-100%)とすることで、インサート13とねじ1のカーブ曲線との出際は入り際どちらかの干渉が無くなる。 In particular, by setting D1 when calculating the mounting angle β to be the outer diameter of the screw (variation + 100%) or the diameter of the thread valley (variation −100%), the curve of the insert 13 and the screw 1 curve can be obtained. When you enter, there is no interference on either side.
 また、医療用ねじのような特殊形状のねじ1であっても、複数パスでの加工ではなく、一度の加工でねじ1を作製できるという利点がある。
[第2実施形態]
 次に、第2実施形態について説明するが、前記第1実施形態と同様な内容の説明は省略する。
Moreover, even if it is the screw 1 of a special shape like a medical screw, there exists an advantage that the screw 1 can be produced by the process of 1 time instead of the process in multiple passes.
[Second Embodiment]
Next, the second embodiment will be described, but the description of the same content as the first embodiment will be omitted.
 本実施形態で製造する医療用ねじは2条ねじであり、図8に示す様に、医療用ねじを製造するスレッドワーリング加工方法に用いるインサート21は、切削部23、25が2つ山の形状を有している。 The medical screw manufactured in the present embodiment is a double thread, and as shown in FIG. 8, the insert 21 used in the thread warping method for manufacturing the medical screw has two cutting portions 23 and 25. have.
 本実施形態においては、ねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。
  ねじの軸方向の全長 :50mm
  ねじ部の軸方向の長さ:30mm
  ねじの外径 :φ4.0mm
  ねじの谷の径:φ2.4mm
  ピッチ   :3.42mm
  ねじ山のリード角:18.79°
 なお、取り付け角βは、前記第1実施形態における式(1)、(2)、(3)、(4)、(5)を用いて算出する。
In the present embodiment, typical data for specifying the shape of the screw includes the following data.
Total length in the axial direction of the screw: 50 mm
Axial length of screw part: 30mm
Screw outer diameter: φ4.0mm
Screw valley diameter: φ2.4mm
Pitch: 3.42mm
Thread lead angle: 18.79 °
The attachment angle β is calculated using the equations (1), (2), (3), (4), and (5) in the first embodiment.
 具体的には、下記表2に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表2及び図9A~9D、図10A~10D及び図11A~11Cに示す。 Specifically, as shown in Table 2 below, screws were produced by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 2 below and FIGS. 9A to 9D, FIGS. 10A to 10D, and FIGS. 11A to 11C.
Figure JPOXMLDOC01-appb-T000002
 なお、表2の言葉の意味や図9A~9D、図10A~10D及び図11A~11Cの色(濃淡)の意味については、前記第1実施形態と同様である。
Figure JPOXMLDOC01-appb-T000002
The meanings of the words in Table 2 and the meanings of the colors (shades) in FIGS. 9A to 9D, FIGS. 10A to 10D, and FIGS. 11A to 11C are the same as those in the first embodiment.
 この表2及び図9A~9D、図10A~10D及び図11A~11Cから明かな様に、前記第1実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is apparent from Table 2 and FIGS. 9A to 9D, FIGS. 10A to 10D, and FIGS. 11A to 11C, as in the first embodiment, by adjusting the mounting angle β by changing D1, It turns out that the interference at the time of entering can be made small.
 従って、本実施形態では、前記第1実施形態と同様な効果を奏する。
 また、2条ねじ加工用のインサート21は、2条のねじ部を一度に形成するために、1条ねじ加工用のインサートと比べて、その刃面は高さ方向に比べて幅方向の割合が大きく、よって、インサート21とねじ部が干渉し易いので、所望のねじ山を形成することが容易ではないが、本実施形態の製造方法により、容易に所望の形状のねじを作製することができる。
Therefore, in this embodiment, the same effect as the first embodiment is obtained.
In addition, the double-threaded insert 21 has a blade surface ratio in the width direction compared to the height direction compared to the single-thread threaded insert in order to form two thread portions at a time. Therefore, since the insert 21 and the screw portion are likely to interfere with each other, it is not easy to form a desired screw thread. However, according to the manufacturing method of this embodiment, a screw having a desired shape can be easily manufactured. it can.
 更に、複数パスでの加工ではなく、一度の加工で2条ねじを作製できるという利点がある。
[第3実施形態]
 次に、第3実施形態について説明するが、前記第2実施形態と同様な内容の説明は省略する。
Furthermore, there is an advantage that a double thread can be manufactured by a single process rather than by a plurality of passes.
[Third Embodiment]
Next, a third embodiment will be described, but a description of the same contents as those of the second embodiment will be omitted.
 本実施形態で製造するねじは、図12に示す様に、ねじ山が2条の医療用ねじ31である。また、図示しないが、この医療用ねじ31を製造するスレッドワーリング加工方法に用いるインサートは、切削部が2つ山の形状を有している。なお、図12の長さの単位はmmである。 The screw manufactured in this embodiment is a medical screw 31 having two threads as shown in FIG. Moreover, although not shown in figure, the insert used for the thread-waring processing method which manufactures this medical screw 31 has the shape of two cutting parts. The unit of length in FIG. 12 is mm.
 本実施形態においては、ねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。
  ねじの軸方向の全長 :30mm
  ねじ部の軸方向の長さ:20mm
  ねじの外径 :φ5.5mm
  ねじの谷の径:φ4.0mm
  ねじの中間値:φ4.75mm
  ピッチ   :5.35mm
  ねじ山のリード角:19.72°
 なお、取り付け角βは、前記第1実施形態における式(1)、(2)、(3)、(4)、(5)を用いて算出する。
In the present embodiment, typical data for specifying the shape of the screw includes the following data.
Total axial length of screw: 30mm
Axial length of screw part: 20mm
Screw outer diameter: φ5.5mm
Screw valley diameter: φ4.0mm
Intermediate value of screw: φ4.75mm
Pitch: 5.35mm
Thread lead angle: 19.72 °
The attachment angle β is calculated using the equations (1), (2), (3), (4), and (5) in the first embodiment.
 具体的には、下記表3に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表3及び図13A~13Dに示す。 Specifically, as shown in Table 3 below, a screw was produced by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 3 below and FIGS. 13A to 13D.
Figure JPOXMLDOC01-appb-T000003
 なお、表13の言葉の意味や図13A~13Dの色(濃淡)の意味については、前記第1実施形態と同様である。
Figure JPOXMLDOC01-appb-T000003
The meanings of the words in Table 13 and the meanings of the colors (shades) in FIGS. 13A to 13D are the same as those in the first embodiment.
 この表13及び図13A~13Dから明かな様に、前記第2実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 13 and FIGS. 13A to 13D, as in the second embodiment, by adjusting D1 and adjusting the mounting angle β, it is possible to reduce interference when entering or leaving. I understand.
 従って、本実施形態では、前記第2実施形態と同様な効果を奏する。このように、ねじの外径・谷の径などの設計よらず、本発明の効果を得ることができる。
[第4実施形態]
 次に、第4実施形態について説明するが、前記第1実施形態と同様な内容の説明は省略する。
Therefore, in this embodiment, the same effect as the second embodiment is obtained. Thus, the effect of the present invention can be obtained regardless of the design of the outer diameter of the screw, the diameter of the valley, and the like.
[Fourth Embodiment]
Next, the fourth embodiment will be described, but the description of the same contents as the first embodiment will be omitted.
 本実施形態で製造するねじは、図14A、14Bに示す様に、ねじ山が2条のウォームねじ(JIS B 1723/3)35である。また、図示しないが、このウォームねじ35を製造するスレッドワーリング加工方法に用いるインサートは、切削部が2つ山の形状を有している。 The screw manufactured in this embodiment is a worm screw (JIS B 1723/3) 35 having two threads as shown in FIGS. 14A and 14B. Further, although not shown, the insert used in the thread warping method for manufacturing the worm screw 35 has two cutting portions.
 本実施形態においては、ねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。なお、図14Bの長さの単位はmmである。
  ねじの軸方向の全長 :11mm
  ねじ部の軸方向の長さ:10mm
  ねじの外径 :φ6mm
  ねじの中間値:φ5.125mm
  ねじの谷の径:φ4.25mm
  ピッチ   :2.872mm
  ねじ山のリード角:10.1141°
 なお、取り付け角βは、前記第1実施形態における式(1)、(2)、(3)、(4)、(5)を用いて算出する。
In the present embodiment, typical data for specifying the shape of the screw includes the following data. Note that the unit of length in FIG. 14B is mm.
Total length in the axial direction of the screw: 11 mm
Axial length of screw part: 10mm
Screw outer diameter: φ6mm
Intermediate value of screw: φ5.125mm
Screw valley diameter: φ4.25mm
Pitch: 2.872mm
Thread lead angle: 10.1141 °
The attachment angle β is calculated using the equations (1), (2), (3), (4), and (5) in the first embodiment.
 具体的には、下記表4に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表4及び図15A~15Dに示す。 Specifically, as shown in Table 4 below, a screw was produced by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 4 below and FIGS. 15A to 15D.
Figure JPOXMLDOC01-appb-T000004
 なお、表4の言葉の意味や図15A~15Dの色(濃淡)の意味については、前記第1実施形態と同様である。
Figure JPOXMLDOC01-appb-T000004
The meanings of the words in Table 4 and the meanings of the colors (shades) in FIGS. 15A to 15D are the same as those in the first embodiment.
 この表4及び図15A~15Dから明かな様に、前記第1実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 4 and FIGS. 15A to 15D, as in the first embodiment, by adjusting the mounting angle β by changing D1, interference at the time of entering or exiting can be reduced. I understand.
 従って、本実施形態では、一般的な2条のウォームねじ35においても、前記第1実施形態と同様な効果を奏する。
[第5実施形態]
 次に、第5実施形態について説明するが、前記第1実施形態と同様な内容の説明は省略する。
Therefore, in the present embodiment, the same effect as that of the first embodiment can be achieved even with a general two-stage worm screw 35.
[Fifth Embodiment]
Next, the fifth embodiment will be described, but the description of the same contents as the first embodiment will be omitted.
 本実施形態で製造するねじは、図16に示す様に、ねじ山が3条のウォームねじ(JIS B 1723/3)41である。また、図示しないが、このウォームねじ41を製造するスレッドワーリング加工方法に用いるインサートは、切削部が3つ山の形状を有している。 The screw manufactured in the present embodiment is a worm screw (JIS B 1723/3) 41 having three threads as shown in FIG. Although not shown, the insert used in the thread warping method for manufacturing the worm screw 41 has a three-cut shape at the cutting portion.
 本実施形態においては、ねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。なお、図16の長さの単位はmmである。
  ねじの軸方向の全長 :12mm
  ねじ部の軸方向の長さ:12mm
  ねじの外径 :φ7mm
  ねじの中間値:φ6.000mm
  ねじの谷の径:φ5.000mm
  ピッチ   :4.867mm
  ねじ山のリード角:14°28′39″
 なお、取り付け角βは、前記第1実施形態における式(1)、(2)、(3)、(4)、(5)を用いて算出する。
In the present embodiment, typical data for specifying the shape of the screw includes the following data. Note that the unit of length in FIG. 16 is mm.
Total axial length of screw: 12mm
Axial length of screw part: 12mm
Screw outer diameter: φ7mm
Intermediate value of screw: φ6.0000mm
Screw valley diameter: φ5.000mm
Pitch: 4.867mm
Thread lead angle: 14 ° 28'39 "
The attachment angle β is calculated using the equations (1), (2), (3), (4), and (5) in the first embodiment.
 具体的には、下記表5に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表5及び図17A~17Dに示す。 Specifically, as shown in Table 5 below, a screw was produced by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 5 below and FIGS. 17A to 17D.
Figure JPOXMLDOC01-appb-T000005
 なお、表5の言葉の意味や図17A~17Dの色(濃淡)の意味については、前記第1実施形態と同様である。
Figure JPOXMLDOC01-appb-T000005
Note that the meanings of the words in Table 5 and the meanings of the colors (shades) in FIGS. 17A to 17D are the same as those in the first embodiment.
 この表5及び図17A~17Dから明かな様に、前記第1実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 5 and FIGS. 17A to 17D, as in the first embodiment, by adjusting the mounting angle β by changing D1, interference at the time of entering or exiting can be reduced. I understand.
 従って、本実施形態では、一般的な3条のウォームねじ41においても、前記第1実施形態と同様な効果を奏する。
[第6実施形態]
 次に、第6実施形態について説明するが、前記第1実施形態と同様な内容の説明は省略する。
Therefore, in the present embodiment, the same effect as that of the first embodiment can be obtained even with a general three-stage worm screw 41.
[Sixth Embodiment]
Next, although the sixth embodiment will be described, description of the same contents as those of the first embodiment will be omitted.
 本実施形態で製造するねじは、図18に示す様に、ねじ山が1条の一般的なメートルねじ51、53である。
 なお、51がおねじで、53がめねじであり、これらのメートルねじ51、53において、例えばねじの外径をφ5mmとした場合の、ピッチ(p)、とがり山の高さ(H)等の関係は、下記表6に示す様に規定されている。
The screws manufactured in this embodiment are general metric screws 51 and 53 having one thread as shown in FIG.
In addition, 51 is a male screw, 53 is a female screw, and in these metric screws 51 and 53, for example, when the outer diameter of the screw is φ5 mm, the pitch (p), the height of the peak (H), etc. The relationship is defined as shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
 また、図示しないが、このメートルねじ51、53を製造するスレッドワーリング加工方法に用いるインサートは、切削部が1つ山の形状を有している。
Figure JPOXMLDOC01-appb-T000006
Moreover, although not shown in figure, the insert used for the thread-waring processing method which manufactures this metric screw 51 and 53 has the shape of one mountain of a cutting part.
 本実施形態においては、ねじ(例えばおねじであるメートルねじ51)の形状を特定する代表的なデータとしては、下記のデータが挙げられる。
  ねじの軸方向の全長 :15mm
  ねじ部の軸方向の長さ:10mm
  ねじの外径 :φ5mm
  ねじの中間値:φ4.567mm
  ねじの谷の径:φ4.134mm
  ピッチ   :0.8mm
  ねじ山のリード角:3.19°
 なお、取り付け角βは、下記式(1)、(2)、(3)を用いて算出する。
In this embodiment, typical data for specifying the shape of a screw (for example, a metric screw 51 which is a male screw) includes the following data.
Total axial length of screw: 15mm
Axial length of screw part: 10mm
Screw outer diameter: φ5mm
Intermediate value of screw: φ4.567mm
Screw valley diameter: φ4.134mm
Pitch: 0.8mm
Thread lead angle: 3.19 °
The attachment angle β is calculated using the following formulas (1), (2), and (3).
  取り付け角=tan-1{n×ピッチ/(π×D1)}  …(1)
  D1   ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
  ねじの谷の径≦D1≦ねじの外径            …(3)
 具体的には、下記表7に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表7及び図19A、19Bに示す。
Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
Specifically, as shown in Table 7 below, screws were manufactured by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 7 below and FIGS. 19A and 19B.
Figure JPOXMLDOC01-appb-T000007
 なお、表7の言葉の意味や図19A、19Bの色(濃淡)の意味については、前記第1実施形態と同様である。
Figure JPOXMLDOC01-appb-T000007
The meanings of the words in Table 7 and the meanings of the colors (shades) in FIGS. 19A and 19B are the same as those in the first embodiment.
 この表7及び図19A、19Bから明かな様に、前記第1実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 7 and FIGS. 19A and 19B, as in the first embodiment, by adjusting D1 and adjusting the mounting angle β, it is possible to reduce interference when entering or leaving. I understand.
 従って、本実施形態では、一般的なメートルねじ51においても、取り付け角βとリード角とを異なる値とすることで、インサートとねじ51のカーブ曲線との出際又は入り際の干渉が減った形状のねじ51を好適に得ることができる。しいては、干渉が、ねじ外径側側面及びねじ基端側(谷側)側面の両方に生じている訳ではないので、製造したねじ51を使用する上で問題とならない。つまり、本実施形態では、干渉が、ねじ外径側側面とねじ基端側(谷側)側面との両側に生じることを防止できるので、製造したねじ51を用いて締め付ける際等に、支障なくねじ51を回転させることができる。
[第7実施形態]
 次に、第7実施形態について説明するが、前記第6実施形態と同様な内容の説明は省略する。
Therefore, in this embodiment, even in the general metric screw 51, by setting the attachment angle β and the lead angle to different values, interference between the insert and the curve curve of the screw 51 is reduced. The screw 51 having a shape can be suitably obtained. Therefore, interference does not occur on both the screw outer diameter side surface and the screw base end side (valley side) side surface, so that there is no problem in using the manufactured screw 51. That is, in this embodiment, since interference can be prevented from occurring on both sides of the screw outer diameter side surface and the screw proximal side (valley side) side surface, there is no problem when tightening with the manufactured screw 51 and the like. The screw 51 can be rotated.
[Seventh Embodiment]
Next, the seventh embodiment will be described, but the description of the same contents as the sixth embodiment will be omitted.
 本実施形態で製造するねじは、前記第6実施形態と同様に、図示しないが、ねじ山が1条の一般的なメートルねじ(おねじ)であり、特に、外径が5mmと同じであるが、ピッチが1.0mmと大きくなっている。 The screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 1.0 mm.
 また、図示しないが、このメートルねじを製造するスレッドワーリング加工方法に用いるインサートは、切削部が1つ山の形状を有している。
 本実施形態においては、メートルねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。
Moreover, although not shown in figure, the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
In this embodiment, typical data for specifying the shape of the metric screw includes the following data.
  ねじの軸方向の全長 :15mm
  ねじ部の軸方向の長さ:10mm
  ねじの外径 :φ5mm
  ねじの中間値:φ4.459mm
  ねじの谷の径:φ3.917mm
  ピッチ   :1.0mm
  ねじ山のリード角:4.08°
 なお、取り付け角βは、前記第6実施形態における式(1)、(2)、(3)を用いて算出する。
Total axial length of screw: 15mm
Axial length of screw part: 10mm
Screw outer diameter: φ5mm
Intermediate value of screw: φ4.459mm
Screw valley diameter: φ3.917mm
Pitch: 1.0mm
Thread lead angle: 4.08 °
The attachment angle β is calculated using the equations (1), (2), and (3) in the sixth embodiment.
 具体的には、下記表8に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表8及び図19C、19Dに示す。 Specifically, as shown in Table 8 below, screws were manufactured by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 8 below and FIGS. 19C and 19D.
Figure JPOXMLDOC01-appb-T000008
 なお、表8の言葉の意味や図19C、19Dの色(濃淡)の意味については、前記第6実施形態と同様である。
Figure JPOXMLDOC01-appb-T000008
The meanings of the words in Table 8 and the meanings of the colors (shades) in FIGS. 19C and 19D are the same as in the sixth embodiment.
 この表8及び図19C、19Dから明かな様に、前記第6実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 8 and FIGS. 19C and 19D, as in the case of the sixth embodiment, by adjusting the mounting angle β by changing D1, interference at the time of entering or exiting can be reduced. I understand.
 従って、本実施形態では、前記第6実施形態と同様な効果を奏する。
[第8実施形態]
 次に、第8実施形態について説明するが、前記第6実施形態と同様な内容の説明は省略する。
Therefore, in the present embodiment, the same effects as in the sixth embodiment are obtained.
[Eighth Embodiment]
Next, the eighth embodiment will be described, but the description of the same contents as the sixth embodiment will be omitted.
 本実施形態で製造するねじは、前記第6実施形態と同様に、図示しないが、ねじ山が1条の一般的なメートルねじ(おねじ)であり、特に、外径が5mmと同じであるが、ピッチが1.25mmと大きくなっている。 The screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 1.25 mm.
 また、図示しないが、このメートルねじを製造するスレッドワーリング加工方法に用いるインサートは、切削部が1つ山の形状を有している。
 本実施形態においては、メートルねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。
Moreover, although not shown in figure, the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
In this embodiment, typical data for specifying the shape of the metric screw includes the following data.
  ねじの軸方向の全長 :15mm
  ねじ部の軸方向の長さ:10mm
  ねじの外径 :φ5mm
  ねじの中間値:φ4.323mm
  ねじの谷の径:φ3.647mm
  ピッチ   :1.25mm
  ねじ山のリード角:5.26°
 なお、取り付け角βは、前記第6実施形態における式(1)、(2)、(3)を用いて算出する。
Total axial length of screw: 15mm
Axial length of screw part: 10mm
Screw outer diameter: φ5mm
Intermediate value of screw: φ4.323mm
Screw valley diameter: φ3.647mm
Pitch: 1.25mm
Thread lead angle: 5.26 °
The attachment angle β is calculated using the equations (1), (2), and (3) in the sixth embodiment.
 具体的には、下記表9に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表9及び図20A、20Bに示す。 Specifically, as shown in Table 9 below, a screw was produced by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 9 below and FIGS. 20A and 20B.
Figure JPOXMLDOC01-appb-T000009
 なお、表9の言葉の意味や図20A、20Bの色(濃淡)の意味については、前記第6実施形態と同様である。
Figure JPOXMLDOC01-appb-T000009
The meanings of the words in Table 9 and the meanings of the colors (shades) in FIGS. 20A and 20B are the same as those in the sixth embodiment.
 この表9及び図20A、20Bから明かな様に、前記第6実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 9 and FIGS. 20A and 20B, as in the case of the sixth embodiment, by adjusting the mounting angle β by changing D1, the interference at the time of entering or exiting can be reduced. I understand.
 従って、本実施形態では、前記第6実施形態と同様な効果を奏する。
[第9実施形態]
 次に、第9実施形態について説明するが、前記第6実施形態と同様な内容の説明は省略する。
Therefore, in the present embodiment, the same effects as in the sixth embodiment are obtained.
[Ninth Embodiment]
Next, a ninth embodiment will be described, but a description of the same contents as in the sixth embodiment will be omitted.
 本実施形態で製造するねじは、前記第6実施形態と同様に、図示しないが、ねじ山が1条の一般的なメートルねじ(おねじ)であり、特に、外径が5mmと同じであるが、ピッチが1.5mmと大きくなっている。 The screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 1.5 mm.
 また、図示しないが、このメートルねじを製造するスレッドワーリング加工方法に用いるインサートは、切削部が1つ山の形状を有している。
 本実施形態においては、メートルねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。
Moreover, although not shown in figure, the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
In this embodiment, typical data for specifying the shape of the metric screw includes the following data.
  ねじの軸方向の全長 :15mm
  ねじ部の軸方向の長さ:10mm
  ねじの外径 :φ5mm
  ねじの中間値:φ4.188mm
  ねじの谷の径:φ3.376mm
  ピッチ   :1.5mm
  ねじ山のリード角:6.5°
 なお、取り付け角βは、前記第6実施形態における式(1)、(2)、(3)を用いて算出する。
Total axial length of screw: 15mm
Axial length of screw part: 10mm
Screw outer diameter: φ5mm
Intermediate value of screw: φ 4.188mm
Screw valley diameter: φ3.376mm
Pitch: 1.5mm
Thread lead angle: 6.5 °
The attachment angle β is calculated using the equations (1), (2), and (3) in the sixth embodiment.
 具体的には、下記表10に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表10及び図20C、20Dに示す。 Specifically, as shown in Table 10 below, a screw was produced by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 10 below and FIGS. 20C and 20D.
Figure JPOXMLDOC01-appb-T000010
 なお、表10の言葉の意味や図20C、20Dの色(濃淡)の意味については、前記第1実施形態と同様である。
Figure JPOXMLDOC01-appb-T000010
The meanings of the words in Table 10 and the meanings of the colors (shades) in FIGS. 20C and 20D are the same as those in the first embodiment.
 この表10及び図20C、20Dから明かな様に、前記第6実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 10 and FIGS. 20C and 20D, as in the sixth embodiment, by adjusting D1 and adjusting the mounting angle β, it is possible to reduce interference at the time of entering or leaving. I understand.
 従って、本実施形態では、前記第6実施形態と同様な効果を奏する。
[第10実施形態]
 次に、第10実施形態について説明するが、前記第6実施形態と同様な内容の説明は省略する。
Therefore, in the present embodiment, the same effects as in the sixth embodiment are obtained.
[Tenth embodiment]
Next, the tenth embodiment will be described, but the description of the same contents as the sixth embodiment will be omitted.
 本実施形態で製造するねじは、前記第6実施形態と同様に、図示しないが、ねじ山が1条の一般的なメートルねじ(おねじ)であり、特に、外径が5mmと同じであるが、ピッチが1.75mmと大きくなっている。 The screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 1.75 mm.
 また、図示しないが、このメートルねじを製造するスレッドワーリング加工方法に用いるインサートは、切削部が1つ山の形状を有している。
 本実施形態においては、メートルねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。
Moreover, although not shown in figure, the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
In this embodiment, typical data for specifying the shape of the metric screw includes the following data.
  ねじの軸方向の全長 :15mm
  ねじ部の軸方向の長さ:10mm
  ねじの外径 :φ5mm
  ねじの中間値:φ4.053mm
  ねじの谷の径:φ3.105mm
  ピッチ   :1.75mm
  ねじ山のリード角:7.83°
 なお、取り付け角βは、前記第6実施形態における式(1)、(2)、(3)を用いて算出する。
Total axial length of screw: 15mm
Axial length of screw part: 10mm
Screw outer diameter: φ5mm
Intermediate value of screw: φ4.053mm
Screw valley diameter: φ 3.105mm
Pitch: 1.75mm
Thread lead angle: 7.83 °
The attachment angle β is calculated using the equations (1), (2), and (3) in the sixth embodiment.
 具体的には、下記表11に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表11及び図21A、21Bに示す。 Specifically, as shown in Table 11 below, a screw was produced by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 11 below and FIGS. 21A and 21B.
Figure JPOXMLDOC01-appb-T000011
 なお、表11の言葉の意味や図21A、21Bの色(濃淡)の意味については、前記第1実施形態と同様である。
Figure JPOXMLDOC01-appb-T000011
The meanings of the words in Table 11 and the meanings of the colors (shades) in FIGS. 21A and 21B are the same as those in the first embodiment.
 この表11及び図21A、21Bから明かな様に、前記第6実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 11 and FIGS. 21A and 21B, as in the case of the sixth embodiment, by adjusting D1 and adjusting the mounting angle β, it is possible to reduce interference when entering or leaving. I understand.
 従って、本実施形態では、前記第6実施形態と同様な効果を奏する。
[第11実施形態]
 次に、第11実施形態について説明するが、前記第6実施形態と同様な内容の説明は省略する。
Therefore, in the present embodiment, the same effects as in the sixth embodiment are obtained.
[Eleventh embodiment]
Next, the eleventh embodiment will be described, but the description of the same contents as the sixth embodiment will be omitted.
 本実施形態で製造するねじは、前記第6実施形態と同様に、図示しないが、ねじ山が1条の一般的なメートルねじ(おねじ)であり、特に、外径が5mmと同じであるが、ピッチが2mmと大きくなっている。 The screw manufactured in this embodiment is a common metric screw (male screw) having a single thread, not shown, as in the sixth embodiment, and the outer diameter is particularly the same as 5 mm. However, the pitch is as large as 2 mm.
 また、図示しないが、このメートルねじを製造するスレッドワーリング加工方法に用いるインサートは、切削部が1つ山の形状を有している。
 本実施形態においては、メートルねじの形状を特定する代表的なデータとしては、下記のデータが挙げられる。
Moreover, although not shown in figure, the insert used for the thread-waring processing method which manufactures this metric thread has the shape of one cutting part.
In this embodiment, typical data for specifying the shape of the metric screw includes the following data.
  ねじの軸方向の全長 :15mm
  ねじ部の軸方向の長さ:10mm
  ねじの外径 :φ5mm
  ねじの中間値:φ3.917mm
  ねじの谷の径:φ2.835mm
  ピッチ   :2mm
  ねじ山のリード角:9.23°
 なお、取り付け角βは、前記第1実施形態における式(1)、(2)、(3)を用いて算出する。
Total axial length of screw: 15mm
Axial length of screw part: 10mm
Screw outer diameter: φ5mm
Intermediate value of screw: φ3.917mm
Screw valley diameter: φ2.835mm
Pitch: 2mm
Thread lead angle: 9.23 °
The attachment angle β is calculated using the equations (1), (2), and (3) in the first embodiment.
 具体的には、下記表12に示す様に、D1を変更することによって取り付け角を変えてねじを作製し、その際に、干渉の有無を調べた。その結果を、下記表12及び図22A~22Dに示す。 Specifically, as shown in Table 12 below, a screw was manufactured by changing the mounting angle by changing D1, and at that time, the presence or absence of interference was examined. The results are shown in Table 12 below and FIGS. 22A to 22D.
Figure JPOXMLDOC01-appb-T000012
 なお、表12の言葉の意味や図22A~22Dの色(濃淡)の意味については、前記第1実施形態と同様である。
Figure JPOXMLDOC01-appb-T000012
The meanings of the words in Table 12 and the meanings of the colors (shades) in FIGS. 22A to 22D are the same as those in the first embodiment.
 この表12及び図22A~22Dから明かな様に、前記第6実施形態と同様に、D1を変化させて取り付け角βを調節することにより、出際又は入り際の干渉を小さくすることができることが分かる。 As is clear from Table 12 and FIGS. 22A to 22D, as in the case of the sixth embodiment, by adjusting D1 and adjusting the mounting angle β, it is possible to reduce interference at the time of going out or entering. I understand.
 従って、本実施形態では、前記第6実施形態と同様な効果を奏する。
 よって、第6実施形態~第11実施形態から明かなように、一般的なメートルねじにおいても、前記第1実施形態と同様な効果を奏する。
Therefore, in the present embodiment, the same effects as in the sixth embodiment are obtained.
Therefore, as is clear from the sixth to eleventh embodiments, the same effects as those of the first embodiment can be obtained even with a general metric screw.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採ることができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, As long as it belongs to the technical scope of this invention, a various form can be taken.

Claims (11)

  1.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のカッタ部材と、
     医療用ねじを形成するためのワークを保持して回転可能な保持部と、
     を用い、
     前記ワークの軸中心に対して前記カッタ部材を所定角度(取り付け角)傾斜させて、前記医療用ねじを製造するねじの製造方法において、
     前記医療用ねじのリード角と前記取り付け角とが異なる場合に、
     前記取り付け角を、下記式(1)、(2)、(3)、(4)、(5)によって求めることを特徴とするねじの製造方法。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
     ΔT>0のとき、
     {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
        <{(ねじ外径-ねじの谷の径)/2}     …(4)
     ΔT<0のとき、
     -{(ねじ外径-ねじの谷の径)/2}<ΔT
        <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
       但し、D1≠0、ΔT≠0、nは条数
    A plurality of inserts arranged radially, and an annular cutter member rotatable around a rotation axis;
    A holding part capable of holding and rotating a work for forming a medical screw; and
    Use
    In the screw manufacturing method for manufacturing the medical screw by inclining the cutter member with respect to the axial center of the workpiece by a predetermined angle (attachment angle),
    When the lead angle of the medical screw and the mounting angle are different,
    The screw manufacturing method, wherein the mounting angle is obtained by the following formulas (1), (2), (3), (4), and (5).
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    When ΔT> 0,
    {(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
    <{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
    When ΔT <0,
    -{(Screw outer diameter-Thread root diameter) / 2} <ΔT
    <-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
  2.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のカッタ部材と、
     ウォームねじを形成するためのワークを保持して回転可能な保持部と、
     を用い、
     前記ワークの軸中心に対して前記カッタ部材を所定角度(取り付け角)傾斜させて、ウォームねじを製造するねじの製造方法において、
     前記ウォームねじのリード角と前記取り付け角とが異なる場合に、
     前記取り付け角を、下記式(1)、(2)、(3)、(4)、(5)によって求めることを特徴とするねじの製造方法。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
     ΔT>0のとき、
     {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
        <{(ねじ外径-ねじの谷の径)/2}         …(4)
     ΔT<0のとき、
     -{(ねじ外径-ねじの谷の径)/2}<ΔT
        <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
       但し、D1≠0、ΔT≠0、nは条数
    A plurality of inserts arranged radially, and an annular cutter member rotatable around a rotation axis;
    A holding part which can hold and rotate a work for forming a worm screw; and
    Use
    In the screw manufacturing method for manufacturing the worm screw by inclining the cutter member with respect to the axial center of the workpiece by a predetermined angle (mounting angle),
    When the lead angle of the worm screw and the mounting angle are different,
    The screw manufacturing method, wherein the mounting angle is obtained by the following formulas (1), (2), (3), (4), and (5).
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    When ΔT> 0,
    {(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
    <{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
    When ΔT <0,
    -{(Screw outer diameter-Thread root diameter) / 2} <ΔT
    <-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
  3.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のカッタ部材と、
     メートルねじを形成するためのワークを保持して回転可能な保持部と、
     を用い、
     前記ワークの軸中心に対して前記カッタ部材を所定角度(取り付け角)傾斜させて、前記メートルねじを製造するねじの製造方法において、
     前記メートルねじのリード角と前記取り付け角とが異なる場合に、
     前記取り付け角を、下記式(1)、(2)、(3)によって求めることを特徴とするねじの製造方法。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
       但し、D1≠0、ΔT≠0、nは条数
    A plurality of inserts arranged radially, and an annular cutter member rotatable around a rotation axis;
    A holding part which can hold and rotate a work for forming a metric screw; and
    Use
    In the screw manufacturing method for manufacturing the metric screw by inclining the cutter member with respect to the axial center of the workpiece by a predetermined angle (mounting angle),
    When the lead angle of the metric screw is different from the mounting angle,
    The screw manufacturing method, wherein the mounting angle is obtained by the following formulas (1), (2), and (3).
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
  4.  前記ΔTを、下記の式(6)、(7)の範囲に設定することを特徴とする請求項1~3のいずれか1項に記載のねじの製造方法。
     ΔT>0のとき、
     {(ねじの外径-ねじの谷の径)/2}×0.6≦ΔT
       ≦{(ねじの外径-ねじの谷の径)/2}     …(6)
     ΔT<0のとき、
     -{(ねじの外径-ねじの谷の径)/2}≦ΔT
       ≦-{(ねじの外径-ねじの谷の径)/2}×0.6…(7)
    The method for manufacturing a screw according to any one of claims 1 to 3, wherein the ΔT is set in a range of the following formulas (6) and (7).
    When ΔT> 0,
    {(Screw outer diameter-Screw valley diameter) / 2} × 0.6 ≦ ΔT
    ≦ {(Outer diameter of screw−Diameter of screw valley) / 2} (6)
    When ΔT <0,
    -{(Screw outer diameter-Thread valley diameter) / 2} ≤ΔT
    ≦-{(Screw outer diameter-Thread valley diameter) / 2} × 0.6 (7)
  5.  前記D1を、ねじの外径又はねじの谷の径とすることを特徴とする請求項1~4のいずれか1項に記載のねじの製造方法。 The method for manufacturing a screw according to any one of claims 1 to 4, wherein the D1 is an outer diameter of a screw or a diameter of a valley of the screw.
  6.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタにおいて、
     医療用ねじを製造するためのワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、
     前記医療用ねじのリード角と前記取り付け角とが異なる場合に、以下の式(1)、(2)、(3)、(4)、(5)を満たすことを特徴とするワーリングカッタ。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
     ΔT>0のとき、
     {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
        <{(ねじ外径-ねじの谷の径)/2}         …(4)
     ΔT<0のとき、
     -{(ねじ外径-ねじの谷の径)/2}<ΔT
        <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
       但し、D1≠0、ΔT≠0、nは条数
    In an annular waring cutter that is arranged radially with a plurality of inserts and is rotatable about a rotation axis,
    Inclining the Waring cutter by a predetermined angle (mounting angle) with respect to the axial center of a workpiece for manufacturing a medical screw,
    A Waring cutter characterized by satisfying the following formulas (1), (2), (3), (4), and (5) when the lead angle and the mounting angle of the medical screw are different.
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    When ΔT> 0,
    {(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
    <{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
    When ΔT <0,
    -{(Screw outer diameter-Thread root diameter) / 2} <ΔT
    <-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
  7.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタにおいて、
     ウォームねじを製造するためのワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、
     前記ウォームねじのリード角と前記取り付け角とが異なる場合に、以下の式(1)、(2)、(3)、(4)、(5)を満たすことを特徴とするワーリングカッタ。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
     ΔT>0のとき、
     {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
        <{(ねじ外径-ねじの谷の径)/2}          …(4)
     ΔT<0のとき、
     -{(ねじ外径-ねじの谷の径)/2}<ΔT
        <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
       但し、D1≠0、ΔT≠0、nは条数
    In an annular waring cutter that is arranged radially with a plurality of inserts and is rotatable about a rotation axis,
    Inclining the Waring cutter by a predetermined angle (attachment angle) with respect to the axis center of the workpiece for manufacturing the worm screw,
    A Waring cutter that satisfies the following expressions (1), (2), (3), (4), and (5) when the lead angle and the mounting angle of the worm screw are different.
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    When ΔT> 0,
    {(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
    <{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
    When ΔT <0,
    -{(Screw outer diameter-Thread root diameter) / 2} <ΔT
    <-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
  8.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタにおいて、
     メートルねじを製造するためのワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、
     前記メートルねじのリード角と前記取り付け角とが異なる場合に、
     以下の式(1)、(2)、(3)を満たすことを特徴とするワーリングカッタ。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
       但し、D1≠0、ΔT≠0、nは条数
    In an annular waring cutter that is arranged radially with a plurality of inserts and is rotatable about a rotation axis,
    Inclining the Waring cutter by a predetermined angle (mounting angle) with respect to the axis center of the workpiece for manufacturing the metric screw,
    When the lead angle of the metric screw is different from the mounting angle,
    A Waring cutter characterized by satisfying the following expressions (1), (2), and (3).
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
  9.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタと、
     医療用ねじを製造するためのワークを根元を同軸に保持して回転させるメインスピンドルと、
     を備えたねじ製造装置において、
     前記ワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、
     前記医療用ねじのリード角と前記取り付け角とが異なる場合に、
     以下の式(1)、(2)、(3)、(4)、(5)を満たすことを特徴とするねじ製造装置。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
     ΔT>0のとき、
     {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
        <{(ねじ外径-ねじの谷の径)/2}     …(4)
     ΔT<0のとき、
     -{(ねじ外径-ねじの谷の径)/2}<ΔT
        <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
       但し、D1≠0、ΔT≠0、nは条数
    A plurality of inserts arranged radially, and an annular waring cutter that can rotate around a rotation axis;
    A main spindle for rotating a work for manufacturing a medical screw while holding the base coaxial;
    In a screw manufacturing apparatus comprising:
    Inclining the Waring cutter by a predetermined angle (attachment angle) with respect to the axis center of the workpiece,
    When the lead angle of the medical screw and the mounting angle are different,
    The screw manufacturing apparatus characterized by satisfy | filling following formula | equation (1), (2), (3), (4), (5).
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    When ΔT> 0,
    {(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
    <{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
    When ΔT <0,
    -{(Screw outer diameter-Thread root diameter) / 2} <ΔT
    <-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
  10.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタと、
     ウォームねじを製造するためのワークを根元を同軸に保持して回転させるメインスピンドルと、
     を備えたねじ製造装置において、
     前記ワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、
     前記ウォームねじのリード角と前記取り付け角とが異なる場合に、
     以下の式(1)、(2)、(3)、(4)、(5)を満たすことを特徴とするねじ製造装置。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
     ΔT>0のとき、
     {(ねじ外径-ねじの谷の径)/2}×0.2<ΔT
        <{(ねじ外径-ねじの谷の径)/2}          …(4)
     ΔT<0のとき、
     -{(ねじ外径-ねじの谷の径)/2}<ΔT
        <-{(ねじ外径-ねじの谷の径)/2}×0.2…(5)
       但し、D1≠0、ΔT≠0、nは条数
    A plurality of inserts arranged radially, and an annular waring cutter that can rotate around a rotation axis;
    A main spindle that rotates the work for manufacturing the worm screw while holding the base coaxially;
    In a screw manufacturing apparatus comprising:
    Inclining the Waring cutter by a predetermined angle (attachment angle) with respect to the axis center of the workpiece,
    When the lead angle of the worm screw and the mounting angle are different,
    The screw manufacturing apparatus characterized by satisfy | filling following formula | equation (1), (2), (3), (4), (5).
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    When ΔT> 0,
    {(Screw outer diameter−Thread valley diameter) / 2} × 0.2 <ΔT
    <{(Screw Outer Diameter-Screw Valley Diameter) / 2} (4)
    When ΔT <0,
    -{(Screw outer diameter-Thread root diameter) / 2} <ΔT
    <-{(Screw outer diameter-Thread valley diameter) / 2} × 0.2 (5)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
  11.  複数のインサートを放射状に配置し、回転軸を中心にして回転可能な環状のワーリングカッタと、
     メートルねじを製造するためのワークを根元を同軸に保持して回転させるメインスピンドルと、
     を備えたねじ製造装置において、
     前記ワークの軸中心に対して、前記ワーリングカッタを所定角度(取り付け角)傾斜させるとともに、
     前記メートルねじのリード角と前記取り付け角とが異なる場合に、
     以下の式(1)、(2)、(3)を満たすことを特徴とするねじ製造装置。
      取り付け角=tan-1{n×ピッチ/(π×D1)} …(1)
      D1 ={(ねじの谷の径+ねじの外径)/2}+ΔT…(2)
      ねじの谷の径≦D1≦ねじの外径          …(3)
       但し、D1≠0、ΔT≠0、nは条数
    A plurality of inserts arranged radially, and an annular waring cutter that can rotate around a rotation axis;
    A main spindle that rotates the workpiece for manufacturing the metric screw while holding the base coaxially;
    In a screw manufacturing apparatus comprising:
    Inclining the Waring cutter by a predetermined angle (attachment angle) with respect to the axis center of the workpiece,
    When the lead angle of the metric screw is different from the mounting angle,
    The screw manufacturing apparatus characterized by satisfy | filling the following formula | equation (1), (2), (3).
    Mounting angle = tan −1 {n × pitch / (π × D1)} (1)
    D1 = {(screw root diameter + screw outer diameter) / 2} + ΔT (2)
    Screw valley diameter ≦ D1 ≦ Thread outer diameter (3)
    However, D1 ≠ 0, ΔT ≠ 0, n is the number of stripes
PCT/JP2010/073442 2009-12-25 2010-12-24 Method for manufacturing screw, whirling cutter, and screw manufacturing device WO2011078365A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080059199.5A CN102665583B (en) 2009-12-25 2010-12-24 Screw manufacturing method, whirling cutter, and screw manufacturing machine
US13/519,072 US20120264528A1 (en) 2009-12-25 2010-12-24 Screw manufacturing method, whirling cutter, and screw manufacturing machine
KR1020127015864A KR101233863B1 (en) 2009-12-25 2010-12-24 Method for manufacturing screw, whirling cutter, and screw manufacturing device
JP2011511181A JP4763862B2 (en) 2009-12-25 2010-12-24 Screw manufacturing method, Waring cutter, and screw manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-294915 2009-12-25
JP2009294915 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078365A1 true WO2011078365A1 (en) 2011-06-30

Family

ID=44195889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073442 WO2011078365A1 (en) 2009-12-25 2010-12-24 Method for manufacturing screw, whirling cutter, and screw manufacturing device

Country Status (5)

Country Link
US (1) US20120264528A1 (en)
JP (1) JP4763862B2 (en)
KR (1) KR101233863B1 (en)
CN (1) CN102665583B (en)
WO (1) WO2011078365A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456570B1 (en) * 2018-03-05 2019-01-23 三菱電機株式会社 Numerical control apparatus and processing method
JP2019181653A (en) * 2018-04-17 2019-10-24 株式会社ツガミ Machine tool
JP7396140B2 (en) 2020-03-18 2023-12-12 三菱マテリアル株式会社 Thread cutting inserts and indexable cutting tools for thread cutting

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115310A1 (en) 2015-09-10 2017-03-16 Hartmetall-Werkzeugfabrik Paul Horn Gmbh whirling tool
CN107971587A (en) * 2016-10-21 2018-05-01 日本特殊陶业株式会社 The cutting insert of chasing and the manufacture method of external thread component in thread-whirling processing
DE102017127307A1 (en) 2017-11-20 2019-05-23 Hartmetall-Werkzeugfabrik Paul Horn Gmbh whirling tool
CN108817560A (en) * 2018-06-22 2018-11-16 扬州旭乐基脚手架有限公司 A kind of multiple thread whirling mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200915A (en) * 1987-02-14 1988-08-19 Citizen Watch Co Ltd Thread cutting method by numerically controlled lathe
JPH1058233A (en) * 1996-08-26 1998-03-03 Dainichi Kinzoku Kogyo Kk Tool holder for whirling machining device
US20040081519A1 (en) * 2002-10-28 2004-04-29 Gainer Ronald John Milling head for thread whirling
JP2008296311A (en) * 2007-05-30 2008-12-11 Nsk Ltd Whirling machining device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016801A (en) * 1974-09-30 1977-04-12 Ingersoll-Rand Company Method for forming threads
DE2546262C3 (en) * 1975-10-16 1978-07-13 Karl 3350 Kreiensen Burgsmueller Tool kit for whirling screw tracks
DE3532282A1 (en) * 1985-09-11 1987-03-19 Gwt Ges Fuer Gewindewirbel & T Apparatus for the whirling or paring of threads, worms and profiles
DE4415236C2 (en) * 1994-04-30 2003-02-27 Leistritz Ag Tool carrier for whirling or peeling external threads, screws and profiles
JP4409182B2 (en) * 2003-02-06 2010-02-03 高周波熱錬株式会社 Manufacturing method of hollow steering rack shaft
EP1930111A1 (en) * 2006-12-04 2008-06-11 Willemin-Macodel S.A. Whirling head and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200915A (en) * 1987-02-14 1988-08-19 Citizen Watch Co Ltd Thread cutting method by numerically controlled lathe
JPH1058233A (en) * 1996-08-26 1998-03-03 Dainichi Kinzoku Kogyo Kk Tool holder for whirling machining device
US20040081519A1 (en) * 2002-10-28 2004-04-29 Gainer Ronald John Milling head for thread whirling
JP2008296311A (en) * 2007-05-30 2008-12-11 Nsk Ltd Whirling machining device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456570B1 (en) * 2018-03-05 2019-01-23 三菱電機株式会社 Numerical control apparatus and processing method
US10877456B2 (en) 2018-03-05 2020-12-29 Mitsubishi Electric Corporation Numerical control apparatus and machining method
JP2019181653A (en) * 2018-04-17 2019-10-24 株式会社ツガミ Machine tool
JP7097220B2 (en) 2018-04-17 2022-07-07 株式会社ツガミ Machine Tools
JP7396140B2 (en) 2020-03-18 2023-12-12 三菱マテリアル株式会社 Thread cutting inserts and indexable cutting tools for thread cutting

Also Published As

Publication number Publication date
CN102665583A (en) 2012-09-12
CN102665583B (en) 2014-01-01
US20120264528A1 (en) 2012-10-18
JP4763862B2 (en) 2011-08-31
KR101233863B1 (en) 2013-02-15
KR20120104256A (en) 2012-09-20
JPWO2011078365A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP4763862B2 (en) Screw manufacturing method, Waring cutter, and screw manufacturing apparatus
US9662728B2 (en) Method and tool for producing a thread in a workpiece
JP7057060B2 (en) Gear material debaring method and equipment
JP5362854B2 (en) Raising tap with inner finish blade
US20220151669A1 (en) Bone Compression Screws And Related Systems And Methods
JP4996694B2 (en) Thread milling
CN102451938B (en) Numerical milling processing threaded cutter, and processing method thereof
JP5368835B2 (en) Longitudinal ground file that is highly durable against damage due to torsion and repeated fatigue
JP6139413B2 (en) Reamer root canal instrument
US11065702B2 (en) Method for forming a thread, in particular an internal thread
JPWO2010049989A1 (en) Spiral tap
JP6407301B2 (en) Gear hob cutter with uneven tooth length
JP6527037B2 (en) Bevel gear with modified shape
CN106825711B (en) The method for milling of enveloping worm hob spiral chip flute
US20220331894A1 (en) Method and tool for creating a through-thread
DE102005010543B4 (en) Tool and method for creating or finishing a thread
JP7018136B2 (en) Excitement tap
CN107813112A (en) Posterior cervical enabling board machining process
DE102019124707B4 (en) Process for generating a thread with a translation unit
CN201841326U (en) Numerical milling processing screw cutter
DE102006036434A1 (en) Thread producing method, involves producing individual thread turn and different thread turns based on defined output angle position of tool and work piece, defined radial position and given axial position of tool and work piece
JP2010032037A (en) Self-tapping insert
KR102127075B1 (en) Processing tool of spiroid bevel gear
WO2021052835A1 (en) Method for creating a thread with a predefined thread pitch in a preformed tap hole in a workpiece
JP2865538B2 (en) Manufacturing method of screw shaft and die for forming male screw

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059199.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011511181

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1201002237

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20127015864

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13519072

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10839593

Country of ref document: EP

Kind code of ref document: A1