WO2011078116A1 - Plant stress reducer and plant stress reduction method using same - Google Patents

Plant stress reducer and plant stress reduction method using same Download PDF

Info

Publication number
WO2011078116A1
WO2011078116A1 PCT/JP2010/072888 JP2010072888W WO2011078116A1 WO 2011078116 A1 WO2011078116 A1 WO 2011078116A1 JP 2010072888 W JP2010072888 W JP 2010072888W WO 2011078116 A1 WO2011078116 A1 WO 2011078116A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
stress
compound
sulfate
reducing agent
Prior art date
Application number
PCT/JP2010/072888
Other languages
French (fr)
Japanese (ja)
Inventor
泰斗 武田
大亮 五十嵐
大悟 岩畑
哲也 関
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2011078116A1 publication Critical patent/WO2011078116A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/02Sulfur; Selenium; Tellurium; Compounds thereof

Definitions

  • the present invention relates to a plant stress relieving agent and a plant stress relieving method containing a sulfuric acid compound and / or an ammonium compound as active ingredients.
  • foliar spraying of various nutrients and chemicals is performed to replenish nutrient components deficient in the soil or to control pests.
  • Many of these nutrients and drugs contain minerals.
  • spraying minerals such as inorganic zinc agents and inorganic copper agents may cause stress on plants, resulting in phytotoxicity.
  • Calcium carbonate is generally used as a measure to reduce phytotoxicity of minerals, but environmental pollution due to high-concentration calcium carbonate has become a problem.
  • the phospholipid (for example, refer patent document 1) is known as a phytotoxicity reduction agent of an inorganic copper agent, it was not known that a sulfate compound and an ammonium compound could reduce stress, such as phytotoxicity.
  • An object of the present invention is to provide a plant stress reducing agent that is effective against plant stress, particularly phytotoxic stress caused by minerals such as inorganic zinc.
  • the present inventors searched for a plant stress reducing substance by minerals, and found that a sulfate compound and an ammonium compound have a high stress reducing effect. That is, it was found that by applying these compounds to plants, suppression of stress-responsive gene expression induction induced by minerals such as inorganic zinc was recognized, and phytotoxicity was remarkably reduced. Moreover, it discovered that it had a high stress reduction effect also with respect to inorganic copper and inorganic iron. Based on the above findings, the present invention has been completed.
  • the present invention is as follows. (1) A plant stress reducing agent containing a sulfuric acid compound, an ammonium compound, or both as active ingredients. (2) The plant stress reducing agent, wherein the plant stress is plant phytotoxic stress. (3) The plant stress reducing agent, wherein the plant phytotoxic stress is phytotoxic stress caused by minerals. (4) The said plant stress reducing agent whose sulfuric acid compound is an inorganic sulfuric acid compound. (5) The said plant stress reducing agent whose ammonium compound is an inorganic ammonium compound. (6) The said plant stress reducing agent containing both a sulfuric acid compound and an anniumum compound.
  • the said plant stress reducing agent whose inorganic sulfuric acid compound or inorganic ammonium compound is magnesium sulfate, ammonium nitrate, or ammonium chloride.
  • the said plant stress reducing agent whose sulfuric acid compound and ammonium compound are fermentation by-products containing ammonium sulfate or a sulfuric acid compound and an ammonium compound.
  • the plant stress reducing agent, wherein the plant phytotoxic stress is phytotoxic stress caused by a zinc compound, a copper compound, or an iron compound.
  • the plant stress reducing agent comprising a sulfuric acid compound and an ammonium compound, each containing 1 mM to 100 mM in terms of sulfuric acid group and ammonium group.
  • the plant stress reducing agent further comprising a mineral that causes plant stress.
  • the said plant stress reducing agent applied to the leaf of a plant, a flower, a root, or a fruit.
  • the said plant stress reducing agent applied to a plant by foliar application.
  • a method for reducing plant stress which comprises applying the plant stress reducing agent to a plant.
  • the method as described above, wherein the plant stress is plant phytotoxicity stress.
  • the plant phytotoxicity stress is a phytotoxicity stress caused by minerals.
  • the method described above, wherein the plant stress reducing agent is applied to a plant by foliar application.
  • the present invention can reduce plant stress, particularly injury stress caused by minerals such as inorganic zinc, inorganic copper, and inorganic iron. Even if it applies to a plant simultaneously with minerals, such as inorganic zinc, the plant stress reducing agent of this invention does not impair the replenishment effect of those minerals. Moreover, in one form of this invention, when fermentation by-products, such as amino acid fermentation, are used as an active ingredient of the plant stress reducing agent of this invention, large-scale preparation is easy and it is economical.
  • (A) C Control (water) 1: 0.159 mM aqueous copper sulfate solution 2: 500-fold diluted glutamic acid fermentation by-product solution containing 0.159 mM copper sulfate 3: 0.635 mM aqueous copper sulfate solution 4: glutamic acid fermentation containing 0.635 mM copper sulfate By-product solution 500-fold diluted solution (B) C: Control zone (water treatment) 1: 0.279 mM Fe (III) -EDT aqueous solution 2: glutamate fermentation by-product solution 500-fold diluted solution containing 0.279 mM Fe (III) -EDTA The figure which shows the zinc sulfate phytotoxicity reduction effect by glutamic acid fermentation byproduct liquid (photograph which shows the form of a living body).
  • the upper part is a 15.3 mM zinc sulfate aqueous solution treatment group, and the lower part is a 50-fold diluted glutamate fermentation by-product solution containing 15.3 mM zinc sulfate sulfate.
  • the bar is 1cm.
  • the plant stress reducing agent of the present invention contains a sulfate compound, an ammonium compound, or both as active ingredients.
  • the sulfate compound is not particularly limited as long as it is a compound having a sulfate group, and examples thereof include inorganic sulfate compounds, preferably inorganic sulfates such as ammonium sulfate and magnesium sulfate.
  • the ammonium compound is not particularly limited as long as it is a compound having an ammonium group (NH 4 + ), and examples thereof include inorganic ammonium compounds, preferably inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, and ammonium chloride.
  • Ammonium sulfate is both a sulfate compound and an ammonium compound, and is included in “both sulfate compound and ammonium compound”.
  • the sulfuric acid compound and the ammonium compound may be purified products, but may be a composition containing these compounds as long as the effects of the present invention are not impaired.
  • a composition include fermentation by-products containing ammonium sulfate, for example, a fermentation by-product liquid obtained by amino acid fermentation such as L-glutamic acid.
  • the microorganisms used for fermentation, the target substance for fermentation, etc. are not particularly limited.
  • the fermentation by-product may be any of a fermented liquid obtained by separating the target substance from the medium, a concentrated liquid or a dried product thereof, or a fraction thereof.
  • the plant stress reducing agent may contain an optional component in addition to the sulfate compound and / or the ammonium compound.
  • optional component examples include a solvent, a carrier, a pH adjusting agent for promoting dissolution of the compound, a spreading agent for enhancing the spreading power to plants, a fertilizer component for enhancing fertilization effect, an agrochemical component, and a binder. , Bulking agents and the like.
  • these components components usually used for agricultural chemicals, fertilizers and the like can be used as long as the effects of the present invention are not impaired.
  • Examples of the solvent include water and alcohol.
  • Examples of the carrier include mineral carriers such as calcium carbonate, diatomaceous earth, pearlite, and plant carriers.
  • a solid or powdery plant stress reducing agent may be dissolved or dispersed in a solvent such as water.
  • the content of the sulfate compound and / or ammonium compound in the plant stress reducing agent is not particularly limited, and can be appropriately set according to the application rate described later.
  • the content of the sulfate compound alone in the plant stress reducing agent is usually 1 to 100 mM, preferably 30 mM to 100 mM, in terms of sulfate group.
  • the content of the ammonium compound alone is usually 1 to 100 mM, preferably 5 mM to 90 mM, in terms of ammonium group.
  • the content of the sulfate group compound and the ammonium compound is usually 1 to 100 mM, preferably 3 to 50 mM, in terms of sulfate group.
  • the compound is usually 1 to 100 mM, preferably 5 to 90 mM, in terms of ammonium group.
  • concentration is a density
  • the plant stress is not particularly limited as long as it can be reduced by the plant stress reducing agent of the present invention.
  • phytotoxic stress that is, stress due to exposure to chemical substances such as minerals and agricultural chemicals, high or low temperature, drying, etc.
  • Environmental stress or stress due to physical injury such as insect damage.
  • the plant stress includes stress that causes a stress response represented by stress responsive gene expression, chlorosis (chlorophyll (chlorophyll) decrease), and necrosis (cell death).
  • stress responsive genes include injury responsive genes such as PR4 and PDF1.2, and HSP. Plant stress can be evaluated by PR4, PDF1.2, or HSP17.6 gene expression analysis, chlorophyll quantification, or the like according to the method described in the Examples.
  • the plant that is the target of the stress relieving agent of the present invention is not particularly limited, and can be applied to cultivated plants in general.
  • cruciferous plants radish, Chinese cabbage, cabbage, Komatsuna, Nanohana, Chingensai, Arabidopsis, etc.
  • leguminous plants pea, soybean, kidney bean, alfalfa, groundnut, broad bean, etc.
  • Plant stress can be reduced by applying a plant stress reducing agent to plants.
  • the method of application is not particularly limited, and examples include spraying on plants, or surface spraying or irrigation on soil. Among these, spraying to a plant body, for example, spraying to a leaf surface, a flower, or a fruit is preferable, and leaf surface spraying is more preferable.
  • the application of chemicals such as nutrients and agricultural chemicals to plants causes stress
  • the plant stress reducing agent may be applied before or after the application of the drug.
  • medical agent causing stress you may mix and apply these chemical
  • the plant stress reducing agent itself may contain a drug causing the stress.
  • agents that cause stress include minerals such as inorganic zinc, inorganic iron, and inorganic copper.
  • the plant stress reducing agent of the present invention is also a safener.
  • concentrations of inorganic zinc, inorganic iron, and inorganic copper that are reduced in phytotoxicity by the use of plant stress reducing agents are, for example, 0.1% (Zn / w / v) or less, 0 to 0.05% (Fe w / v) or less, And 0 to 10 ppm (Cu w / v) or less, but are not limited to these concentrations.
  • the types of inorganic zinc, inorganic iron, and inorganic copper are not limited.
  • zinc sulfate zinc chloride, copper sulfate, copper chloride, chelated iron (Fe (III) -EDTA, etc.), iron chloride (II), chloride Iron (III), iron sulfate (I), iron sulfate (II), etc. are mentioned.
  • zinc sulfate is inorganic zinc, it can also be a part of active ingredient of a plant stress reducing agent.
  • the application amount of the plant stress reducing agent may vary depending on the concentration of the active ingredient, the application time, the frequency of application, the type of plant, the cultivation density, the growth stage, and the like.
  • the application rate is usually 1 to 100 mM in terms of sulfate group, 100 L to 2000 L / ha, preferably 30 mM to 100 mM in 1000 L to 2000 L / ha, and in the case of an ammonia compound alone, ammonia In terms of group, the amount is usually 1 to 100 mM at 100 L to 2000 L / ha, preferably 5 mM to 90 mM at 500 to 1000 L / ha.
  • the sulfate group compounds are usually 1-100 mM in terms of sulfate groups, 100 L to 2000 L / ha, preferably 3 mM to 50 mM, 1000 L to 2000 L / ha.
  • the amount of the ammonia compound is usually 1 to 100 mM in terms of ammonia group, preferably 100 L to 2000 L / ha, and preferably 5 mM to 90 mM in an amount of 500 to 1000 L / ha.
  • the agent causing stress is an inorganic metal sulfate compound
  • the amount of sulfate group derived from the sulfate compound is also included in the application amount.
  • Application time is preferably the time when the plant is exposed to stress, but may be slightly different. Moreover, you may apply the quantity of the said range at once, and may apply in multiple times on the same day.
  • Example 1 Evaluation of suppression of plant stress responsive gene induction by ammonium sulfate using gene expression as an index (1) Cultivation and treatment method of plant A wild type strain (Col-0) was used for Arabidopsis thaliana. An agar medium was used for cultivation, and seeds were sown in a medium in which 1% sucrose and 0.8% agar were added to OptMS inorganic salt culture solution Zn1 / 100 (Table 1) and cultivated for 2 weeks. The petri dish was cultivated 14 strains per petri dish using a 10 cm diameter deep bottom petri dish (Terumo). The plant was cultivated at 23 ° C with a light intensity of about 70 ⁇ mol m -2 s -1 and a light period of 16 hours.
  • Each of the following samples was treated dropwise by 5 ⁇ l on four true leaves of one seedling cultivated for 13 days. Each sample was applied to 6 plants each. Water was used as a control. To each sample, spreader approach BI (Kao Corporation. “Approach” is a registered trademark of the company) was added to a final concentration of 0.1%.
  • Sample 1 1.53 mM zinc sulfate aqueous solution
  • Sample 2 1.53 mM zinc sulfate, 3.8 mM ammonium sulfate aqueous solution
  • Sample 3 1.53 mM zinc sulfate, 7.6 mM ammonium chloride aqueous solution
  • Sample 4 1.53 mM zinc sulfate, 76 mM ammonium chloride aqueous solution
  • Sample 5 1.53 mM Zinc sulfate, 7.6 mM ammonium nitrate aqueous solution
  • Sample 6 1.53 mM zinc sulfate, 76 mM ammonium nitrate aqueous solution
  • Sample 7 1.53 mM zinc sulfate, 3.8 mM magnesium sulfate aqueous solution
  • Sample 8 1.53 mM zinc sulfate, 38 mM magnesium sulfate aqueous solution
  • Quantitative PCR was performed using ABI PRISM-7500 (Applied Biosystems), and the reaction conditions were 95 ° C. for 15 seconds and 60 ° C. for 60 seconds in 40 cycles.
  • the reagent used was Power SYBR Green PCR Master Mix (Applied Biosystems).
  • the primers shown in Table 2 were used for each gene expression analysis primer.
  • the expression level of each gene was expressed as a relative expression level normalized by the expression of ACT2, which is a housekeeping gene.
  • Example 2 Effect of reducing ammonium phytotoxicity of Arabidopsis thaliana by ammonium sulfate (1) Plant cultivation and treatment method In the same manner as in Example 1, an Arabidopsis wild type strain (Col-0) was cultivated. The following samples 1 to 3 were each dropped by 7.5 ⁇ l onto two leaves of one young plant cultivated for 11 days. Each sample was applied to 10 plants each. Water was used as a control. To each sample, spreader approach BI (Kao Corporation) was added to a final concentration of 0.1%.
  • BI Kanao Corporation
  • Sample 1 7.65 mM zinc sulfate aqueous solution
  • Sample 2 7.65 mM zinc sulfate, 3.8 mM ammonium sulfate aqueous solution
  • Sample 3 7.65 mM zinc sulfate, 38 mM ammonium sulfate aqueous solution
  • the evaluation results are shown in FIG.
  • the phytotoxicity (chlorosis) caused by zinc was caused 3 days after the zinc sulfate treatment, but the phytotoxicity was suppressed in the ammonium sulfate mixed section.
  • the effect was concentration-dependent and increased from 3.8 mM to 38 mM.
  • Example 3 Stress-responsive gene induction suppression effect and phytotoxicity reduction effect of Arabidopsis thaliana by L-glutamic acid fermentation by-product solution (1)
  • an Arabidopsis wild type strain (Col-0) was cultivated .
  • Glutamate fermentation by-product solution diluted 500 times (including ammonium sulfate 3.8 mM) is mixed with zinc sulfate to 1.53 mM (sample 2), and 5 ⁇ l is dropped on 4 leaves of 1 seedling grown for 13 days. Processed.
  • a 1.53 mM zinc sulfate aqueous solution was dropped onto the leaves. Each sample was applied to 6 plants each. Water was used as a control.
  • Sample 1 1.53 mM zinc sulfate aqueous solution
  • Sample 2 500-fold diluted solution of glutamic acid fermentation by-product solution containing 1.53 mM zinc sulfate
  • the glutamic acid fermentation by-product liquid was prepared according to the method described in WO2006 / 054566 from Corynebacterium glutamicum as a microorganism and cultured using a CM-Dex medium.
  • This stock solution of glutamic acid fermentation by-product contains about 1.9M ammonium sulfate.
  • the glutamic acid fermentation by-product liquid suppressed stress-responsive gene induction by zinc sulfate.
  • Sample 1 7.65 mM zinc sulfate aqueous solution
  • Sample 2 Glutamic acid fermentation by-product solution containing zinc sulfate, 500-fold diluted
  • Sample 3 Glutamic acid fermentation by-product solution containing 7.65 mM zinc sulfate, 50-fold diluted solution
  • Sample 1 1.53 mM zinc sulfate aqueous solution
  • Sample 2 1.53 mM zinc sulfate, 3.8 mM ammonium sulfate aqueous solution
  • Sample 3 1.53 mM glutamic acid fermentation byproduct solution containing zinc sulfate 50-fold diluted
  • Sample 4 1.53 mM zinc chloride aqueous solution
  • Sample 5 1.53 mM zinc chloride, 3.8 mM ammonium sulfate aqueous solution
  • Sample 6 1.53 mM zinc chloride, glutamic acid fermentation by-product solution 500-fold diluted The results are shown in FIG. It was shown that the effects of ammonium sulfate and glutamic acid fermentation by-product liquids are not limited to zinc sulfate, and that stress-responsive gene induction by zinc chloride is similarly suppressed.
  • Sample 1 0.039 mM copper (II) sulfate pentahydrate aqueous solution
  • Sample 2 500-fold diluted glutamic acid fermentation by-product solution containing 0.039 mM copper (II) sulfate pentahydrate
  • Sample 3 0.157 mM copper (II) sulfate Pentahydrate aqueous solution
  • Sample 4 Diluted 500-fold solution of glutamic acid fermentation by-product containing 0.157 mM copper (II) sulfate pentahydrate
  • Results are shown in FIG. 7A. It was shown that the effect of glutamic acid fermentation by-product liquid is not limited to zinc but suppresses stress-responsive gene induction by copper (copper sulfate).
  • Sample 1 8.95 mM Fe (III) -EDTA aqueous solution
  • Sample 2 Glutamic acid fermentation byproduct solution containing 8.95 mM Fe (III) -EDTA diluted 500 times
  • Results are shown in FIG. 7B. It was shown that the effect of glutamic acid fermentation by-product liquid is not limited to zinc, but suppresses stress-responsive gene induction by iron (Fe (III) -EDTA).
  • Each plant was cultivated using 5 cm square rock wool (manufactured by Nittobo, size V 50 x 50 x 50 mm, without polyethylene film cover).
  • a fertilizer a normal 25% OptMS inorganic salt culture solution (Table 1) was given once a week at the start of cultivation and once a week after the start of the cultivation, and water was given once or twice a week on a different day from the fertilization. Cultivated in a closed greenhouse under natural light.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided is a plant stress reducer that is effective against plant stress, particularly chemical stress resulting from minerals such as inorganic zinc. Also provided is a method that uses said plant stress reducer to reduce plant stress. Plant stress can be reduced by applying, to a plant, a plant stress reducer that contains, as an active ingredient, a sulfated compound and/or an ammonium compound, such as an inorganic sulfated compound, an inorganic ammonium compound, or a fermentation byproduct containing a sulfated compound and an ammonium compound.

Description

植物ストレス軽減剤およびそれを用いた植物ストレス軽減法Plant stress reducing agent and plant stress reducing method using the same
 本発明は、硫酸化合物及び/又はアンモニウム化合物を有効成分として含有する、植物のストレス軽減剤と植物のストレス軽減方法に関するものである。 The present invention relates to a plant stress relieving agent and a plant stress relieving method containing a sulfuric acid compound and / or an ammonium compound as active ingredients.
 農園芸作物栽培においては、土壌で不足する栄養成分を補給するため、あるいは病害虫防除等のために、種々の栄養剤や薬剤の葉面散布が行われている。これらの栄養剤や薬剤には、ミネラル類を含むものも少なくない。しかし、ミネラル類、例えば無機亜鉛剤、無機銅剤等の散布は植物にストレスを与え、その結果薬害が発生することがある。
 ミネラル類の薬害軽減策として、一般的に炭酸カルシウムが使用されているが、高濃度炭酸カルシウムによる環境汚染が問題となっている。また無機銅剤の薬害軽減剤としてはリン脂質(例えば、特許文献1参照)が知られているが、硫酸化合物、及びアンモニウム化合物が、薬害などのストレスを軽減できることは知られていなかった。
In agricultural and horticultural crop cultivation, foliar spraying of various nutrients and chemicals is performed to replenish nutrient components deficient in the soil or to control pests. Many of these nutrients and drugs contain minerals. However, spraying minerals such as inorganic zinc agents and inorganic copper agents may cause stress on plants, resulting in phytotoxicity.
Calcium carbonate is generally used as a measure to reduce phytotoxicity of minerals, but environmental pollution due to high-concentration calcium carbonate has become a problem. Moreover, although the phospholipid (for example, refer patent document 1) is known as a phytotoxicity reduction agent of an inorganic copper agent, it was not known that a sulfate compound and an ammonium compound could reduce stress, such as phytotoxicity.
特開平6-234609号公報JP-A-6-234609
 本発明は、植物のストレス、特に無機亜鉛等のミネラルによる薬害ストレスに対して有効な、植物ストレス軽減剤を提供することを課題とする。 An object of the present invention is to provide a plant stress reducing agent that is effective against plant stress, particularly phytotoxic stress caused by minerals such as inorganic zinc.
 本発明者らは、ミネラル類による植物ストレス軽減物質を探索したところ、硫酸化合物、及びアンモニウム化合物に高いストレス軽減効果があることを発見した。すなわち、これらの化合物を植物に散布することで、無機亜鉛のようなミネラル類によって誘導されるストレス応答性遺伝子発現誘導の抑制が認められ、薬害が顕著に軽減されることを見出した。また、無機銅、無機鉄に対しても、高いストレス軽減効果を有することを見出した。以上の知見に基づいて、本発明は完成された。 The present inventors searched for a plant stress reducing substance by minerals, and found that a sulfate compound and an ammonium compound have a high stress reducing effect. That is, it was found that by applying these compounds to plants, suppression of stress-responsive gene expression induction induced by minerals such as inorganic zinc was recognized, and phytotoxicity was remarkably reduced. Moreover, it discovered that it had a high stress reduction effect also with respect to inorganic copper and inorganic iron. Based on the above findings, the present invention has been completed.
 すなわち、本発明は以下のとおりである。
(1)硫酸化合物もしくはアンモニウム化合物、又はこれらの両方を有効成分として含有する、植物ストレス軽減剤。
(2)植物ストレスが植物薬害ストレスである、前記植物ストレス軽減剤。
(3)前記植物薬害ストレスがミネラルによる薬害ストレスである、前記植物ストレス軽減剤。
(4)硫酸化合物が無機硫酸化合物である、前記植物ストレス軽減剤。
(5)アンモニウム化合物が無機アンモニウム化合物である、前記植物ストレス軽減剤。
(6)硫酸化合物及びアンニモウム化合物の両方を含有する、前記植物ストレス軽減剤。
(7)無機硫酸化合物又は無機アンモニウム化合物が、硫酸マグネシウム、硝酸アンモニウム、又は塩化アンモニウムである、前記植物ストレス軽減剤。
(8)硫酸化合物及びアンモニウム化合物が、硫酸アンモニウム、又は硫酸化合物及びアンモニウム化合物を含有する発酵副生物である、前記植物ストレス軽減剤。
(9)前記植物薬害ストレスが、亜鉛化合物、銅化合物、又は鉄化合物による薬害ストレスである、前記植物ストレス軽減剤。
(10)硫酸化合物及びアンモニウム化合物を、硫酸基及びアンモニウム基換算で、各々1mM~100mM含有する、前記植物ストレス軽減剤。
(11)さらに、植物ストレスの原因となるミネラルを含有する、前記植物ストレス軽減剤。
(12)植物の葉、花、根、又は果実に施用される、前記植物ストレス軽減剤。
(13)葉面散布により植物に施用される、前記植物ストレス軽減剤。
(14)前記植物ストレス軽減剤を植物に施用することを特徴とする、植物のストレスを軽減する方法。
(15)前記植物ストレスが植物薬害ストレスである、前記方法。
(16)前記植物薬害ストレスがミネラルによる薬害ストレスである、前記方法。
(17)前記植物ストレス軽減剤を、葉面散布により植物に施用することを特徴とする、前記方法。
That is, the present invention is as follows.
(1) A plant stress reducing agent containing a sulfuric acid compound, an ammonium compound, or both as active ingredients.
(2) The plant stress reducing agent, wherein the plant stress is plant phytotoxic stress.
(3) The plant stress reducing agent, wherein the plant phytotoxic stress is phytotoxic stress caused by minerals.
(4) The said plant stress reducing agent whose sulfuric acid compound is an inorganic sulfuric acid compound.
(5) The said plant stress reducing agent whose ammonium compound is an inorganic ammonium compound.
(6) The said plant stress reducing agent containing both a sulfuric acid compound and an anniumum compound.
(7) The said plant stress reducing agent whose inorganic sulfuric acid compound or inorganic ammonium compound is magnesium sulfate, ammonium nitrate, or ammonium chloride.
(8) The said plant stress reducing agent whose sulfuric acid compound and ammonium compound are fermentation by-products containing ammonium sulfate or a sulfuric acid compound and an ammonium compound.
(9) The plant stress reducing agent, wherein the plant phytotoxic stress is phytotoxic stress caused by a zinc compound, a copper compound, or an iron compound.
(10) The plant stress reducing agent comprising a sulfuric acid compound and an ammonium compound, each containing 1 mM to 100 mM in terms of sulfuric acid group and ammonium group.
(11) The plant stress reducing agent further comprising a mineral that causes plant stress.
(12) The said plant stress reducing agent applied to the leaf of a plant, a flower, a root, or a fruit.
(13) The said plant stress reducing agent applied to a plant by foliar application.
(14) A method for reducing plant stress, which comprises applying the plant stress reducing agent to a plant.
(15) The method as described above, wherein the plant stress is plant phytotoxicity stress.
(16) The method described above, wherein the plant phytotoxicity stress is a phytotoxicity stress caused by minerals.
(17) The method described above, wherein the plant stress reducing agent is applied to a plant by foliar application.
 本発明により、植物のストレス、特に無機亜鉛、無機銅、無機鉄等のミネラルにより引き起される傷害ストレスを軽減させることができる。本発明の植物ストレス軽減剤は、無機亜鉛等のミネラルと同時に植物に適用しても、それらのミネラルの補給効果を損なわない。
 また、本発明の一形態では、本発明の植物ストレス軽減剤の有効成分として、アミノ酸発酵等の発酵副産物を用いた場合は、大量調製が容易であり、また、経済的である。
The present invention can reduce plant stress, particularly injury stress caused by minerals such as inorganic zinc, inorganic copper, and inorganic iron. Even if it applies to a plant simultaneously with minerals, such as inorganic zinc, the plant stress reducing agent of this invention does not impair the replenishment effect of those minerals.
Moreover, in one form of this invention, when fermentation by-products, such as amino acid fermentation, are used as an active ingredient of the plant stress reducing agent of this invention, large-scale preparation is easy and it is economical.
硫酸亜鉛によるシロイヌナズナストレス応答性遺伝子誘導に対する硫酸アンモニウムの効果を示す図。バーは+標準誤差を示す(以下の図でも同様)。C:対照(水) 1:1.53mM 硫酸亜鉛水溶液 2:1.53mM 硫酸亜鉛、3.8mM 硫酸アンモニウム水溶液The figure which shows the effect of ammonium sulfate with respect to the induction | guidance | derivation of the Arabidopsis stress responsive gene by zinc sulfate. The bar indicates + standard error (the same applies to the following figures). C: Control (water) 1: 1.53 mM zinc sulfate aqueous solution 2: 1.53 mM zinc sulfate sulfate, 3.8 mM ammonium sulfate aqueous solution 塩化亜鉛によるシロイヌナズナストレス応答性遺伝子誘導に対するアンモニウム化合物と硫酸化合物の効果を示す図。C:対照(水) 1:1.53mM 塩化亜鉛水溶液 2:1.53mM 塩化亜鉛、3.8mM 硫酸アンモニウム水溶液 3:1.53mM 塩化亜鉛、7.6mM 塩化アンモニウム水溶液 4:1.53mM 塩化亜鉛、76mM 塩化アンモニウム水溶液 5:1.53mM 塩化亜鉛、7.6mM 硝酸アンモニウム水溶液 6:1.53mM 塩化亜鉛、76mM 硝酸アンモニウム水溶液 7:1.53mM 塩化亜鉛、3.8mM 硫酸マグネシウム水溶液 8:1.53mM 塩化亜鉛、38mM 硫酸マグネシウム水溶液The figure which shows the effect of an ammonium compound and a sulfate compound with respect to the Arabidopsis stress responsive gene induction | guidance | derivation by zinc chloride. C: Control (water) 1: 1.53 mM zinc chloride aqueous solution 2: 1.53 mM zinc chloride chloride, 3.8 mM ammonium sulfate aqueous solution 3: 1.53 mM zinc chloride, 7.6 mM ammonium chloride aqueous solution 4: 1.53 mM zinc chloride ammonium chloride, 76 mM ammonium chloride aqueous solution 5: 1.53 mM zinc chloride, 7.6 mM ammonium nitrate aqueous solution 6: 1.53 mM zinc chloride, 76 mM ammonium nitrate aqueous solution 7: 1.53 mM zinc chloride, 3.8 mM magnesium sulfate aqueous solution 8: 1.53 mM zinc chloride, 38 mM magnesium sulfate aqueous solution 硫酸亜鉛によるシロイヌナズナ薬害(クロロシス)に対する硫酸アンモニウムの効果を示す図。C:対照(水) 1:7.65mM 硫酸亜鉛水溶液 2:7.65mM 硫酸亜鉛、3.8mM 硫酸アンモニウム水溶液 3:7.65mM 硫酸亜鉛、38mM 硫酸アンモニウム水溶液The figure which shows the effect of ammonium sulfate with respect to the Arabidopsis thaliana phytotoxicity (chlorosis) by zinc sulfate. C: Control (water) 1: 7.65 mM zinc sulfate aqueous solution 2: 7.65 mM zinc sulfate aqueous solution, 3.8 mM ammonium sulfate aqueous solution 3: 7.65 mM zinc sulfate sulfate, 38 mM ammonium sulfate aqueous solution 硫酸亜鉛によるシロイヌナズナストレス応答性遺伝子誘導に対するグルタミン酸発酵副生液の効果を示す図。C:対照(水) 1:1.53mM 硫酸亜鉛水溶液 2:1.53mM 硫酸亜鉛を含むグルタミン酸発酵副生液500倍希釈液The figure which shows the effect of glutamic acid fermentation byproduct liquid with respect to the induction | guidance | derivation of the Arabidopsis stress responsive gene by zinc sulfate. C: Control (water) 1: 1.53 mM zinc sulfate aqueous solution 2: 500-fold diluted glutamic acid fermentation by-product solution containing 1.53 mM zinc zinc sulfate 硫酸亜鉛によるシロイヌナズナ薬害(クロロシス)に対するグルタミン酸発酵副生液の効果を示す図。C:対照(水) 1:7.65mM 硫酸亜鉛水溶液 2:7.65mM 硫酸亜鉛を含むグルタミン酸発酵副生液500倍希釈液 3:7.65mM 硫酸亜鉛を含むグルタミン酸発酵副生液50倍希釈液The figure which shows the effect of glutamic acid fermentation byproduct liquid with respect to the Arabidopsis thaliana phytotoxicity (chlorosis) by zinc sulfate. C: Control (water) 1: 7.65 mM zinc sulfate aqueous solution 2: 500-fold diluted glutamate fermentation by-product solution containing 7.65 mM zinc sulfate sulfate 3: 50-fold diluted glutamate fermentation by-product solution containing 7.65 mM zinc sulfate sulfate 硫酸亜鉛と塩化亜鉛によるシロイヌナズナストレス応答性遺伝子誘導に対する硫酸アンモニウムとグルタミン酸発酵副生液の効果を示す図。C:対照(水) 1:1.53mM 硫酸亜鉛水溶液 2:1.53mM 硫酸亜鉛、3.8mM 硫酸アンモニウム水溶液 3:1.53mM 硫酸亜鉛を含むグルタミン酸発酵副生液500倍希釈液 4:1.53mM 塩化亜鉛水溶液 5:1.53mM 塩化亜鉛、3.8mM 硫酸アンモニウム水溶液 6:1.53mM 塩化亜鉛、グルタミン酸発酵副生液500倍希釈液The figure which shows the effect of an ammonium sulfate and glutamic acid fermentation byproduct liquid with respect to the induction | guidance | derivation of the Arabidopsis stress responsive gene by zinc sulfate and zinc chloride. C: Control (water) 1: 1.53 mM zinc sulfate aqueous solution 2: 1.53 mM zinc sulfate sulfate, 3.8 mM ammonium sulfate sulfate aqueous solution 3: 500-fold diluted glutamic acid fermentation by-product solution containing 1.53 mM zinc sulfate sulfate 4: 1.53 mM zinc chloride aqueous solution 5: 1.53 mM zinc chloride, 3.8 mM ammonium sulfate aqueous solution 6: 1.53 mM zinc chloride, 500-fold diluted glutamate fermentation by-product solution 硫酸銅とFe(III)-EDTAによるシロイヌナズナストレス応答性遺伝子誘導に対するグルタミン酸発酵副生液の効果を示す図。(A)C:対照(水) 1:0.159mM硫酸銅水溶液 2:0.159mM硫酸銅を含むグルタミン酸発酵副生液500倍希釈液 3:0.635mM硫酸銅水溶液 4:0.635mM硫酸銅を含むグルタミン酸発酵副生液500倍希釈液 (B)C:対照区(水処理) 1:0.279mM Fe(III)-EDT水溶液 2:0.279mM Fe(III)-EDTAを含むグルタミン酸発酵副生液500倍希釈液The figure which shows the effect of glutamic acid fermentation byproduct liquid with respect to the induction | guidance | derivation of the Arabidopsis stress responsive gene by copper sulfate and Fe (III) -EDTA. (A) C: Control (water) 1: 0.159 mM aqueous copper sulfate solution 2: 500-fold diluted glutamic acid fermentation by-product solution containing 0.159 mM copper sulfate 3: 0.635 mM aqueous copper sulfate solution 4: glutamic acid fermentation containing 0.635 mM copper sulfate By-product solution 500-fold diluted solution (B) C: Control zone (water treatment) 1: 0.279 mM Fe (III) -EDT aqueous solution 2: glutamate fermentation by-product solution 500-fold diluted solution containing 0.279 mM Fe (III) -EDTA グルタミン酸発酵副生液による硫酸亜鉛薬害軽減効果を示す図(生物の形態を示す写真)。A:シロイヌナズナ B:ハクサイ C:キャベツ D:ハツカダイコン E:トウガラシ F:ダイズ 上段は15.3mM 硫酸亜鉛水溶液処理区、下段は15.3mM 硫酸亜鉛を含むグルタミン酸発酵副生液50倍希釈液処理区。バーは1cm。The figure which shows the zinc sulfate phytotoxicity reduction effect by glutamic acid fermentation byproduct liquid (photograph which shows the form of a living body). A: Arabidopsis B: Chinese cabbage C: Cabbage D: Hatsukadaikon E: Pepper F: Soybean The upper part is a 15.3 mM zinc sulfate aqueous solution treatment group, and the lower part is a 50-fold diluted glutamate fermentation by-product solution containing 15.3 mM zinc sulfate sulfate. The bar is 1cm.
 本発明の植物ストレス軽減剤は、硫酸化合物もしくはアンモニウム化合物、又はこれらの両方を有効成分として含有する。 The plant stress reducing agent of the present invention contains a sulfate compound, an ammonium compound, or both as active ingredients.
 本発明において、硫酸化合物とは、硫酸基を有する化合物であれば特に制限されないが、無機硫酸化合物、好ましくは硫酸アンモニウム、硫酸マグネシウム等の無機硫酸塩が挙げられる。 In the present invention, the sulfate compound is not particularly limited as long as it is a compound having a sulfate group, and examples thereof include inorganic sulfate compounds, preferably inorganic sulfates such as ammonium sulfate and magnesium sulfate.
 アンモニウム化合物とは、アンモニウム基(NH4 +)を有する化合物であれば特に制限されないが、無機アンモニウム化合物、好ましくは硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム等の無機アンモニウム塩が挙げられる。 The ammonium compound is not particularly limited as long as it is a compound having an ammonium group (NH 4 + ), and examples thereof include inorganic ammonium compounds, preferably inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, and ammonium chloride.
 硫酸アンモニウムは硫酸化合物でもあり、アンモニウム化合物でもあって、「硫酸化合物及びアンモニウム化合物の両方」に含まれる。 Ammonium sulfate is both a sulfate compound and an ammonium compound, and is included in “both sulfate compound and ammonium compound”.
 硫酸化合物及びアンモニウム化合物は、精製品であってもよいが、本発明の効果を損なわない限り、これらの化合物を含む組成物であってもよい。このような組成物としては、硫酸アンモニウムを含有する発酵副生物、例えばL-グルタミン酸等のアミノ酸発酵で得られる発酵副生液が挙げられる。発酵に用いる微生物、発酵の目的物質等は特に制限されない。発酵副生物は、硫酸化合物及び/又はアンモニウム化合物を含む限り、培地から目的物質を分離した発酵液、その濃縮液もしくは乾固物、又はそれらの分画物等のいずれであってもよい。 The sulfuric acid compound and the ammonium compound may be purified products, but may be a composition containing these compounds as long as the effects of the present invention are not impaired. Examples of such a composition include fermentation by-products containing ammonium sulfate, for example, a fermentation by-product liquid obtained by amino acid fermentation such as L-glutamic acid. The microorganisms used for fermentation, the target substance for fermentation, etc. are not particularly limited. As long as the fermentation by-product contains a sulfate compound and / or an ammonium compound, the fermentation by-product may be any of a fermented liquid obtained by separating the target substance from the medium, a concentrated liquid or a dried product thereof, or a fraction thereof.
 植物ストレス軽減剤は、硫酸化合物及び/又はアンモニウム化合物以外に、任意の成分を含んでいてもよい。このような成分としては、溶媒、担体、前記化合物の溶解を促すためのpH調整剤、植物体への展着力を高めるための展着剤、肥効を高めるための肥料成分、農薬成分、バインダー、増量剤等が挙げられる。これらの成分としては、本発明の効果を損なわない限り、通常農薬、肥料等に用いられている成分を用いることができる。 The plant stress reducing agent may contain an optional component in addition to the sulfate compound and / or the ammonium compound. Examples of such components include a solvent, a carrier, a pH adjusting agent for promoting dissolution of the compound, a spreading agent for enhancing the spreading power to plants, a fertilizer component for enhancing fertilization effect, an agrochemical component, and a binder. , Bulking agents and the like. As these components, components usually used for agricultural chemicals, fertilizers and the like can be used as long as the effects of the present invention are not impaired.
 溶媒としては、水、アルコール等が挙げられる。担体としては、炭酸カルシウム、珪藻土、パーライト等の鉱物系担体や植物系担体が挙げられる。 Examples of the solvent include water and alcohol. Examples of the carrier include mineral carriers such as calcium carbonate, diatomaceous earth, pearlite, and plant carriers.
 また、使用に際して、固体状又は粉体状の植物ストレス軽減剤を、水等の溶媒に溶解又は分散させてもよい。
 植物ストレス軽減剤における硫酸化合物及び/又はアンモニウム化合物の含量は特に制限されず、後述の施用量に応じて適宜設定することができる。例えば、植物ストレス軽減剤における硫酸化合物単独の場合の含量は、硫酸基換算で、通常1~100mM、好ましくは30mM~100mMである。また、アンモニウム化合物単独の場合の含量は、アンモニウム基換算で、通常1~100mM、好ましくは5mM~90mMである。植物ストレス軽減剤が硫酸化合物及びアンモニウム化合物の両方を含む場合は、硫酸基化合物及びアンモニウム化合物の含量は、硫酸基化合物の含量は硫酸基換算で、通常1~100mM 、好ましくは3mM~50mM、アンモニウム化合物はアンモニウム基換算で、通常1~100mM 、好ましくは5~90mMである。尚、前記濃度は、植物ストレス軽減剤が固形又は粉体状の場合は、使用時に溶液にしたときの濃度である。発酵副生液を用いる場合は、硫酸化合物及び/又はアンモニウム化合物の含量が上記範囲となるように適宜希釈することができる。
In use, a solid or powdery plant stress reducing agent may be dissolved or dispersed in a solvent such as water.
The content of the sulfate compound and / or ammonium compound in the plant stress reducing agent is not particularly limited, and can be appropriately set according to the application rate described later. For example, the content of the sulfate compound alone in the plant stress reducing agent is usually 1 to 100 mM, preferably 30 mM to 100 mM, in terms of sulfate group. The content of the ammonium compound alone is usually 1 to 100 mM, preferably 5 mM to 90 mM, in terms of ammonium group. When the plant stress reducing agent contains both a sulfate compound and an ammonium compound, the content of the sulfate group compound and the ammonium compound is usually 1 to 100 mM, preferably 3 to 50 mM, in terms of sulfate group. The compound is usually 1 to 100 mM, preferably 5 to 90 mM, in terms of ammonium group. In addition, the said density | concentration is a density | concentration when it is made into the solution at the time of use, when a plant stress reducing agent is solid or a powder form. When using fermentation byproduct liquid, it can dilute suitably so that the content of a sulfuric acid compound and / or an ammonium compound may become the above-mentioned range.
 植物ストレスとしては、本発明の植物ストレス軽減剤により低減され得るストレスであれば特に制限されず、例えば、薬害ストレス、すなわちミネラル類、農薬等の化学物質の曝露によるストレス、高温もしくは低温、乾燥等の環境ストレス、又は昆虫による食害等の物理的な傷害によるストレスが挙げられる。また、植物ストレスには、ストレス応答性遺伝子発現、クロロシス(クロロフィル(葉緑素)減少)、ネクロシス(細胞死)に代表されるストレス応答を生じさせるストレスが含まれる。ストレス応答性遺伝子としては、PR4、PDF1.2などの傷害応答性遺伝子や、HSPなどが挙げられる。植物ストレスは、実施例記載の方法に従い、PR4、PDF1.2、もしくはHSP17.6遺伝子の発現解析、又はクロロフィル定量等により、評価することが可能である。実施例に示すように、本発明の植物ストレス軽減剤により、ミネラルによるストレスが低減されることが示された。また、植物ストレス軽減剤により、HSPのようなストレス応答性遺伝子の発現が抑制されたことから、薬害のみならず、種々のストレスに対しても効果を有すると考えられる。 The plant stress is not particularly limited as long as it can be reduced by the plant stress reducing agent of the present invention. For example, phytotoxic stress, that is, stress due to exposure to chemical substances such as minerals and agricultural chemicals, high or low temperature, drying, etc. Environmental stress or stress due to physical injury such as insect damage. In addition, the plant stress includes stress that causes a stress response represented by stress responsive gene expression, chlorosis (chlorophyll (chlorophyll) decrease), and necrosis (cell death). Examples of stress responsive genes include injury responsive genes such as PR4 and PDF1.2, and HSP. Plant stress can be evaluated by PR4, PDF1.2, or HSP17.6 gene expression analysis, chlorophyll quantification, or the like according to the method described in the Examples. As shown in the Examples, it was shown that the stress caused by minerals was reduced by the plant stress reducing agent of the present invention. Moreover, since the expression of a stress responsive gene such as HSP was suppressed by the plant stress reducing agent, it is considered to have an effect on various stresses as well as phytotoxicity.
 本発明のストレス軽減剤の対象となる植物は特に制限されず、栽培植物一般を対象とすることができるが、例えば、アブラナ科植物(ダイコン、ハクサイ、キャベツ、コマツナ、ナノハナ、チンゲンサイ、シロイヌナズナなど)、及びマメ科植物(エンドウ、ダイズ、インゲンマメ、アルファルファ、ラッカセイ、ソラマメなど)などが挙げられる。 The plant that is the target of the stress relieving agent of the present invention is not particularly limited, and can be applied to cultivated plants in general. For example, cruciferous plants (radish, Chinese cabbage, cabbage, Komatsuna, Nanohana, Chingensai, Arabidopsis, etc.) And leguminous plants (pea, soybean, kidney bean, alfalfa, groundnut, broad bean, etc.).
 植物ストレス軽減剤を、植物に施用することにより、植物ストレスを軽減させることができる。施用の方法は特に制限されないが、植物体への散布、又は土壌への表面散布もしくは潅注が挙げられる。これらの中では、植物体への散布、例えば葉面、花、又は果実への散布が好ましく、葉面散布がより好ましい。栄養剤や農薬等の薬剤の植物への散布がストレスの原因となる場合は、これらの薬剤の施用と同時に、植物ストレス軽減剤を施用することが好ましい。しかしながら、前記薬剤の施用と前後して植物ストレス軽減剤を施用してもよい。また、ストレスの原因となる薬剤が施用される場合は、これらの薬剤を植物ストレス軽減剤と混合して施用してもよい。また、植物ストレス軽減剤自体が、前記ストレスの原因となる薬剤を含んでいてもよい。 Plant stress can be reduced by applying a plant stress reducing agent to plants. The method of application is not particularly limited, and examples include spraying on plants, or surface spraying or irrigation on soil. Among these, spraying to a plant body, for example, spraying to a leaf surface, a flower, or a fruit is preferable, and leaf surface spraying is more preferable. In the case where the application of chemicals such as nutrients and agricultural chemicals to plants causes stress, it is preferable to apply a plant stress reducing agent simultaneously with the application of these chemicals. However, the plant stress reducing agent may be applied before or after the application of the drug. Moreover, when the chemical | medical agent causing stress is applied, you may mix and apply these chemical | medical agents with a plant stress reducing agent. Further, the plant stress reducing agent itself may contain a drug causing the stress.
 ストレスの原因となる薬剤としては、ミネラル類、例えば無機亜鉛、無機鉄、及び無機銅等が挙げられる。ストレスの原因が薬剤の場合は、本発明の植物ストレス軽減剤は、薬害軽減剤でもある。植物ストレス軽減剤の使用により薬害が軽減される無機亜鉛、無機鉄、及び無機銅の濃度は、例えば、それぞれ0.1% (Zn w/v)以下、0~0.05% (Fe w/v)以下、及び0~10ppm (Cu w/v)以下が挙げられるが、これらの濃度には制限されない。また、無機亜鉛、無機鉄、及び無機銅の種類は限定されず、例えば硫酸亜鉛、塩化亜鉛、硫酸銅、塩化銅、キレート鉄(Fe(III)-EDTAなど)、塩化鉄(II)、塩化鉄(III)、硫酸鉄(I)、硫酸鉄(II)等が挙げられる。尚、硫酸亜鉛は、無機亜鉛であるが、植物ストレス軽減剤の有効成分の一部でもあり得る。 Examples of agents that cause stress include minerals such as inorganic zinc, inorganic iron, and inorganic copper. When the cause of stress is a drug, the plant stress reducing agent of the present invention is also a safener. The concentrations of inorganic zinc, inorganic iron, and inorganic copper that are reduced in phytotoxicity by the use of plant stress reducing agents are, for example, 0.1% (Zn / w / v) or less, 0 to 0.05% (Fe w / v) or less, And 0 to 10 ppm (Cu w / v) or less, but are not limited to these concentrations. The types of inorganic zinc, inorganic iron, and inorganic copper are not limited. For example, zinc sulfate, zinc chloride, copper sulfate, copper chloride, chelated iron (Fe (III) -EDTA, etc.), iron chloride (II), chloride Iron (III), iron sulfate (I), iron sulfate (II), etc. are mentioned. In addition, although zinc sulfate is inorganic zinc, it can also be a part of active ingredient of a plant stress reducing agent.
 植物ストレス軽減剤の施用量は、有効成分の濃度、施用時期、施用回数、植物の種類、栽培密度、生育段階等によっても異なり得る。施用量は、例えば、硫酸化合物単独の場合は、硫酸基換算で、通常1~100mMを100L~2000L/ヘクタール、好ましくは30mM~100mMを1000L~2000L/ヘクタールであり、アンモニア化合物単独の場合はアンモニア基換算で、通常1~100mMを100L~2000L/ヘクタール、好ましくは5mM~90mMを500~1000L/ヘクタールとなる量が好ましい。 The application amount of the plant stress reducing agent may vary depending on the concentration of the active ingredient, the application time, the frequency of application, the type of plant, the cultivation density, the growth stage, and the like. For example, in the case of a sulfate compound alone, the application rate is usually 1 to 100 mM in terms of sulfate group, 100 L to 2000 L / ha, preferably 30 mM to 100 mM in 1000 L to 2000 L / ha, and in the case of an ammonia compound alone, ammonia In terms of group, the amount is usually 1 to 100 mM at 100 L to 2000 L / ha, preferably 5 mM to 90 mM at 500 to 1000 L / ha.
 また、植物ストレス軽減剤が硫酸化合物及びアンモニウム化合物の両方を含む場合は、硫酸基化合物は硫酸基換算で、通常1~100mMを100L~2000L/ヘクタール、好ましくは3mM~50mMを1000L~2000L/ヘクタールであり、アンモニア化合物はアンモニア基換算で、通常1~100mMを100L~2000L/ヘクタール、好ましくは5mM~90mMを500~1000L/ヘクタールとなる量が好ましい。 In addition, when the plant stress reducing agent contains both sulfate compounds and ammonium compounds, the sulfate group compounds are usually 1-100 mM in terms of sulfate groups, 100 L to 2000 L / ha, preferably 3 mM to 50 mM, 1000 L to 2000 L / ha. The amount of the ammonia compound is usually 1 to 100 mM in terms of ammonia group, preferably 100 L to 2000 L / ha, and preferably 5 mM to 90 mM in an amount of 500 to 1000 L / ha.
 尚、ストレスの原因となる薬剤が無機金属の硫酸化合物の場合は、この硫酸化合物に由来する硫酸基の量も、上記施用量に含まれる。 In addition, when the agent causing stress is an inorganic metal sulfate compound, the amount of sulfate group derived from the sulfate compound is also included in the application amount.
 施用時期は、植物がストレスに曝される時期が好ましいが、多少前後してもよい。また、一度に前記範囲の量を施用してもよく、同日に複数回に分けて施用してもよい。 Application time is preferably the time when the plant is exposed to stress, but may be slightly different. Moreover, you may apply the quantity of the said range at once, and may apply in multiple times on the same day.
 次に、本発明の実施例を示すが、本発明の要旨を超えない限り、以下の実施例に制約されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
〔実施例1〕遺伝子発現を指標とした硫酸アンモニウムによる植物ストレス応答性遺伝子誘導抑制の評価
(1)植物体の栽培と処理方法
 シロイヌナズナは、野生型株(Col-0)を用いた。栽培には寒天培地を用い、OptMS無機塩類培養液Zn1/100 (表1)に1%スクロース、0.8%寒天を加えた培地に種子を播種し、2週間栽培した。シャーレは、10cm径の深底シャーレ(テルモ)を用い、シャーレあたり14株を栽培した。日周は16時間明期で光強度はおよそ70μmol m-2 s-1、23℃で栽培した。下記の各試料を、13日間栽培した幼植物1個体の4枚の本葉に、5μlずつ滴下処理した。各試料は、各々6個体の植物に適用した。対照として、水を用いた。各試料には、展着剤アプローチBI(花王(株)。「アプローチ」は同社の登録商標である。)を終濃度0.1%になるように添加した。
[Example 1] Evaluation of suppression of plant stress responsive gene induction by ammonium sulfate using gene expression as an index (1) Cultivation and treatment method of plant A wild type strain (Col-0) was used for Arabidopsis thaliana. An agar medium was used for cultivation, and seeds were sown in a medium in which 1% sucrose and 0.8% agar were added to OptMS inorganic salt culture solution Zn1 / 100 (Table 1) and cultivated for 2 weeks. The petri dish was cultivated 14 strains per petri dish using a 10 cm diameter deep bottom petri dish (Terumo). The plant was cultivated at 23 ° C with a light intensity of about 70 µmol m -2 s -1 and a light period of 16 hours. Each of the following samples was treated dropwise by 5 μl on four true leaves of one seedling cultivated for 13 days. Each sample was applied to 6 plants each. Water was used as a control. To each sample, spreader approach BI (Kao Corporation. “Approach” is a registered trademark of the company) was added to a final concentration of 0.1%.
 試料1:1.53mM 硫酸亜鉛水溶液
 試料2:1.53mM 硫酸亜鉛、3.8mM 硫酸アンモニウム水溶液
 試料3:1.53mM 硫酸亜鉛、7.6mM 塩化アンモニウム水溶液
 試料4:1.53mM 硫酸亜鉛、76mM 塩化アンモニウム水溶液
 試料5:1.53mM 硫酸亜鉛、7.6mM 硝酸アンモニウム水溶液
 試料6:1.53mM 硫酸亜鉛、76mM 硝酸アンモニウム水溶液
 試料7:1.53mM 硫酸亜鉛、3.8mM 硫酸マグネシウム水溶液
 試料8:1.53mM 硫酸亜鉛、38mM 硫酸マグネシウム水溶液
Sample 1: 1.53 mM zinc sulfate aqueous solution Sample 2: 1.53 mM zinc sulfate, 3.8 mM ammonium sulfate aqueous solution Sample 3: 1.53 mM zinc sulfate, 7.6 mM ammonium chloride aqueous solution Sample 4: 1.53 mM zinc sulfate, 76 mM ammonium chloride aqueous solution Sample 5: 1.53 mM Zinc sulfate, 7.6 mM ammonium nitrate aqueous solution Sample 6: 1.53 mM zinc sulfate, 76 mM ammonium nitrate aqueous solution Sample 7: 1.53 mM zinc sulfate, 3.8 mM magnesium sulfate aqueous solution Sample 8: 1.53 mM zinc sulfate, 38 mM magnesium sulfate aqueous solution
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)RT-PCRによる遺伝子発現解析
 遺伝子発現解析は、定量的PCRによって実施した。各試料による処理から5~24時間後に、各々の植物(6個体づつ)の地上部全体からRNeasy Plant Mini Kit (QIAGEN) を用いて全RNAを抽出した。6個体を1サンプルとして、N=3で実験を行った。全RNAをRNase free DNase Set (QIAGEN)を用いてDNase処理した後、逆転写酵素High Capacity cDNA Reverse Transcription Kit (Applied Biosystems)を用いて逆転写を行ない、合成した一本鎖cDNAを鋳型として定量PCRを行なった。
(2) Gene expression analysis by RT-PCR Gene expression analysis was performed by quantitative PCR. Five to 24 hours after treatment with each sample, total RNA was extracted from the entire above-ground part of each plant (6 individuals) using RNeasy Plant Mini Kit (QIAGEN). The experiment was conducted with N = 3 using 6 individuals as one sample. Total RNA is treated with DNase using RNase free DNase Set (QIAGEN), then reverse transcripted with reverse transcriptase High Capacity cDNA Reverse Transcription Kit (Applied Biosystems), and quantitative PCR using synthesized single-stranded cDNA as template Was done.
 定量PCRはABI PRISM 7500 (Applied Biosystems) を用い、反応条件は95℃ 15秒、60℃ 60秒を、40サイクルで行った。試薬はPower SYBR Green PCR Master Mix(Applied Biosystems)を用いた。各遺伝子発現解析用プライマーは表2に記載したものを用いた。各遺伝子の発現量はハウスキーピング遺伝子であるACT2の発現で標準化した相対的発現量で示した。 Quantitative PCR was performed using ABI PRISM-7500 (Applied Biosystems), and the reaction conditions were 95 ° C. for 15 seconds and 60 ° C. for 60 seconds in 40 cycles. The reagent used was Power SYBR Green PCR Master Mix (Applied Biosystems). The primers shown in Table 2 were used for each gene expression analysis primer. The expression level of each gene was expressed as a relative expression level normalized by the expression of ACT2, which is a housekeeping gene.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(3)硫酸アンモニウムによるシロイヌナズナの傷害ストレス抑制効果
 試料1及び2で処理したシロイヌナズナにおける、PR4、PDF1.2、HSP17.6遺伝子の発現を図1に示す。硫酸亜鉛処理後5時間でHSP17.6の発現が、24時間でPR4、PDF1.2遺伝子の発現が誘導されたが、硫酸アンモニウム混合区においては顕著に抑制された。これらの結果により、硫酸アンモニウムが植物の傷害ストレスを抑制することが示された。
(3) Inhibitory stress suppression effect of Arabidopsis thaliana by ammonium sulfate Expression of PR4, PDF1.2, and HSP17.6 gene in Arabidopsis treated with Samples 1 and 2 is shown in FIG. The expression of HSP17.6 was induced 5 hours after the zinc sulfate treatment, and the expression of PR4 and PDF1.2 genes was induced 24 hours, but it was remarkably suppressed in the ammonium sulfate mixed section. These results indicate that ammonium sulfate suppresses plant injury stress.
 また、試料1~8で処理したシロイヌナズナにおける、PR4、PDF1.2遺伝子の発現を図2に示す。硝酸アンモニウム、塩化アンモニウムにも硫酸アンモニウムと同様の効果が見られた。また、硫酸マグネシウムも38mM濃度ではストレス応答性遺伝子の発現を抑制した。硫酸化合物とアンモニウム化合物いずれによっても硫酸亜鉛傷害ストレスを抑制できることが示された。 In addition, the expression of PR4 and PDF1.2 genes in Arabidopsis treated with samples 1 to 8 is shown in FIG. Ammonium nitrate and ammonium chloride showed the same effect as ammonium sulfate. Magnesium sulfate also suppressed the expression of stress responsive genes at 38 mM concentration. It was shown that zinc sulfate injury stress can be suppressed by both sulfate compounds and ammonium compounds.
〔実施例2〕硫酸アンモニウムによるシロイヌナズナの亜鉛薬害軽減効果
(1)植物体の栽培と処理方法
 実施例1と同様にして、イロイヌナズナ野生型株(Col-0)を栽培した。下記の試料1~3を、11日間栽培した幼植物1個体の2枚の葉に7.5μlずつ滴下処理した。各試料は、各々10個体の植物に適用した。対照として、水を用いた。各試料には、展着剤アプローチBI(花王(株))を終濃度0.1%になるように添加した。
[Example 2] Effect of reducing ammonium phytotoxicity of Arabidopsis thaliana by ammonium sulfate (1) Plant cultivation and treatment method In the same manner as in Example 1, an Arabidopsis wild type strain (Col-0) was cultivated. The following samples 1 to 3 were each dropped by 7.5 μl onto two leaves of one young plant cultivated for 11 days. Each sample was applied to 10 plants each. Water was used as a control. To each sample, spreader approach BI (Kao Corporation) was added to a final concentration of 0.1%.
 試料1:7.65mM 硫酸亜鉛水溶液
 試料2:7.65mM 硫酸亜鉛、3.8mM 硫酸アンモニウム水溶液
 試料3:7.65mM 硫酸亜鉛、38mM 硫酸アンモニウム水溶液
Sample 1: 7.65 mM zinc sulfate aqueous solution Sample 2: 7.65 mM zinc sulfate, 3.8 mM ammonium sulfate aqueous solution Sample 3: 7.65 mM zinc sulfate, 38 mM ammonium sulfate aqueous solution
(2)クロロフィル濃度測定
 クロロフィル濃度測定は、Porraら(Porra R. J. et al, Biochim. Biophys. Acta, 1989, 975:384-394)の方法に準じた。各試料による処理から3日後に、各々の植物(10個体づつ)の葉(一個体2葉(第一第二本葉))を2mlチューブに入れて破砕したのち、ミリQ水を200μl入れ、軽くボルテックスミキサにより攪拌した。2枚×10個体(20枚)を1サンプルとし、N=3で実験を行った。次に、アセトン800μlを加え、破砕物をよく懸濁させた。遮光下で24時間静置後、3000rpm、室温で5分遠心分離した。上清を適宜希釈し(約10倍)、分光測定器を用いて、663.6nmと646.6nmの二波長での吸光度をそれぞれ測定した。次式によりクロロフィル濃度(Chls a + b)を計算した。
 Chls a + b = 19.54*A646.6 + 8.29*A663.6 (μM)
(2) Chlorophyll concentration measurement Chlorophyll concentration measurement was in accordance with the method of Porra et al. (Porra R. J. et al, Biochim. Biophys. Acta, 1989, 975: 384-394). Three days after treatment with each sample, each plant (10 individuals) leaves (one individual 2 leaves (first second true leaf)) were crushed in a 2 ml tube, and then 200 μl of Milli-Q water was added. The mixture was gently stirred with a vortex mixer. The experiment was performed with N = 3 using 2 × 10 individuals (20) as one sample. Next, 800 μl of acetone was added to suspend the crushed material well. The mixture was allowed to stand for 24 hours in the dark and then centrifuged at 3000 rpm and room temperature for 5 minutes. The supernatant was appropriately diluted (about 10 times), and the absorbance at two wavelengths of 663.6 nm and 646.6 nm was measured using a spectrophotometer. The chlorophyll concentration (Chls a + b) was calculated by the following formula.
Chls a + b = 19.54 * A646.6 + 8.29 * A663.6 (μM)
 上記評価結果を図3に示す。硫酸亜鉛処理後3日で亜鉛による薬害(クロロシス)が引き起こされたが、硫酸アンモニウム混合区においては、薬害が抑制された。同効果には濃度依存性が見られ、3.8mMから38mMまで効果が増加した。 The evaluation results are shown in FIG. The phytotoxicity (chlorosis) caused by zinc was caused 3 days after the zinc sulfate treatment, but the phytotoxicity was suppressed in the ammonium sulfate mixed section. The effect was concentration-dependent and increased from 3.8 mM to 38 mM.
〔実施例3〕L-グルタミン酸発酵副生液によるシロイヌナズナのストレス応答性遺伝子誘導抑制効果と薬害軽減効果
(1)実施例1と同様にして、イロイヌナズナ野生型株(Col-0)を栽培した。500倍希釈したグルタミン酸発酵副生液(硫酸アンモニウム3.8mMを含む)に硫酸亜鉛を1.53mMになるように混合し(試料2)、13日間栽培した幼植物1個体の4枚の葉に5μlずつ滴下処理した。同様に、1.53mM 硫酸亜鉛水溶液(試料1)を、葉に滴下処理した。各試料は、各々6個体の植物に適用した。対照として、水を用いた。各試料には、展着剤アプローチBI(花王(株))を終濃度0.1%になるように添加した。
 試料1:1.53mM 硫酸亜鉛水溶液
 試料2:1.53mM 硫酸亜鉛を含むグルタミン酸発酵副生液500倍希釈液
[Example 3] Stress-responsive gene induction suppression effect and phytotoxicity reduction effect of Arabidopsis thaliana by L-glutamic acid fermentation by-product solution (1) In the same manner as in Example 1, an Arabidopsis wild type strain (Col-0) was cultivated . Glutamate fermentation by-product solution diluted 500 times (including ammonium sulfate 3.8 mM) is mixed with zinc sulfate to 1.53 mM (sample 2), and 5 μl is dropped on 4 leaves of 1 seedling grown for 13 days. Processed. Similarly, a 1.53 mM zinc sulfate aqueous solution (sample 1) was dropped onto the leaves. Each sample was applied to 6 plants each. Water was used as a control. To each sample, spreader approach BI (Kao Corporation) was added to a final concentration of 0.1%.
Sample 1: 1.53 mM zinc sulfate aqueous solution Sample 2: 500-fold diluted solution of glutamic acid fermentation by-product solution containing 1.53 mM zinc sulfate
 前記グルタミン酸発酵副生液は、微生物としてCorynebacterium glutamicumを使用し、CM-Dex培地を用いて培養を行ったものから、WO2006/054566に記載の方法に準じて調製した。このグルタミン酸発酵副生液の原液は硫酸アンモニウムを約1.9M含有している。 The glutamic acid fermentation by-product liquid was prepared according to the method described in WO2006 / 054566 from Corynebacterium glutamicum as a microorganism and cultured using a CM-Dex medium. This stock solution of glutamic acid fermentation by-product contains about 1.9M ammonium sulfate.
 試料による処理から5~24時間後に、各々の植物(6個体ずつ)の葉(一個体4枚)から実施例1と同様にしてRNAを抽出し、ストレス応答性遺伝子誘導抑制効果を検証した。4枚×6個体(24枚)を1サンプルとし、N=3で実験を行った。 5 to 24 hours after the treatment with the sample, RNA was extracted from the leaves (4 individuals) of each plant (6 individuals) in the same manner as in Example 1, and the effect of suppressing stress-responsive gene induction was verified. The experiment was performed with 4 samples × 6 individuals (24 samples) as one sample and N = 3.
 図4に示す通り、グルタミン酸発酵副生液は硫酸亜鉛によるストレス応答性遺伝子誘導を抑制した。 As shown in FIG. 4, the glutamic acid fermentation by-product liquid suppressed stress-responsive gene induction by zinc sulfate.
(2)また、下記試料を、上記と同様にして栽培した幼植物1個体の2枚の葉に7.5μlずつ滴下処理し、実施例2と同様にしてクロロフィル濃度を測定した。対照として、水を用いた。各試料には、展着剤アプローチBI(花王(株))を終濃度0.1%になるように添加した。2枚を1サンプルとし、N=3で実験を行った。 (2) In addition, 7.5 μl each of the following sample was dropped on two leaves of one young plant grown in the same manner as above, and the chlorophyll concentration was measured in the same manner as in Example 2. Water was used as a control. To each sample, spreader approach BI (Kao Corporation) was added to a final concentration of 0.1%. Two samples were used as one sample, and the experiment was performed with N = 3.
 試料1:7.65mM 硫酸亜鉛水溶液
 試料2:7.65mM 硫酸亜鉛を含むグルタミン酸発酵副生液500倍希釈液
 試料3:7.65mM 硫酸亜鉛を含むグルタミン酸発酵副生液50倍希釈液
Sample 1: 7.65 mM zinc sulfate aqueous solution Sample 2: Glutamic acid fermentation by-product solution containing zinc sulfate, 500-fold diluted Sample 3: Glutamic acid fermentation by-product solution containing 7.65 mM zinc sulfate, 50-fold diluted solution
 結果を図5に示す。いずれの濃度でも、グルタミン酸発酵副生液は、硫酸亜鉛による薬害(クロロシス)を顕著に抑制することが示された。 The results are shown in FIG. At any concentration, it was shown that the glutamic acid fermentation by-product liquid markedly suppresses the phytotoxicity (chlorosis) caused by zinc sulfate.
(3)下記試料を、上記と同様にして栽培した幼植物1個体の4枚の葉に5μlずつ滴下処理し、ストレス応答性遺伝子の発現を調べた。対照として、水を用いた。各試料には、展着剤アプローチBI(花王(株))を終濃度0.1%になるように添加した。4枚を1サンプルとし、N=3で実験を行った。 (3) The following sample was dropped at 4 μl onto 4 leaves of one young plant cultivated in the same manner as described above, and the expression of the stress responsive gene was examined. Water was used as a control. To each sample, spreader approach BI (Kao Corporation) was added to a final concentration of 0.1%. The experiment was performed with 4 samples as one sample and N = 3.
 試料1:1.53mM 硫酸亜鉛水溶液
 試料2:1.53mM 硫酸亜鉛、3.8mM 硫酸アンモニウム水溶液
 試料3:1.53mM 硫酸亜鉛を含むグルタミン酸発酵副生液50倍希釈液
 試料4:1.53mM 塩化亜鉛水溶液
 試料5:1.53mM 塩化亜鉛、3.8mM 硫酸アンモニウム水溶液
 試料6:1.53mM 塩化亜鉛、グルタミン酸発酵副生液500倍希釈液
 結果を図6に示す。硫酸アンモニウムやグルタミン酸発酵副生液の効果は硫酸亜鉛に限定されることなく、塩化亜鉛によるストレス応答性遺伝子誘導も同様に抑制することが示された。
Sample 1: 1.53 mM zinc sulfate aqueous solution Sample 2: 1.53 mM zinc sulfate, 3.8 mM ammonium sulfate aqueous solution Sample 3: 1.53 mM glutamic acid fermentation byproduct solution containing zinc sulfate 50-fold diluted Sample 4: 1.53 mM zinc chloride aqueous solution Sample 5: 1.53 mM zinc chloride, 3.8 mM ammonium sulfate aqueous solution Sample 6: 1.53 mM zinc chloride, glutamic acid fermentation by-product solution 500-fold diluted The results are shown in FIG. It was shown that the effects of ammonium sulfate and glutamic acid fermentation by-product liquids are not limited to zinc sulfate, and that stress-responsive gene induction by zinc chloride is similarly suppressed.
(4)試料を下記試料に変えた以外は、上記と同様にして、ストレス応答性遺伝子の発現を調べた。対照として、水を用いた。各試料には、展着剤アプローチBI(花王(株))を終濃度0.1%になるように添加した。 (4) Except that the sample was changed to the following sample, the expression of the stress responsive gene was examined in the same manner as described above. Water was used as a control. To each sample, spreader approach BI (Kao Corporation) was added to a final concentration of 0.1%.
 試料1:0.039mM硫酸銅(II)五水和物水溶液
 試料2:0.039mM硫酸銅(II)五水和物を含むグルタミン酸発酵副生液500倍希釈液
 試料3:0.157mM硫酸銅(II)五水和物水溶液
 試料4:0.157mM硫酸銅(II)五水和物を含むグルタミン酸発酵副生液500倍希釈液
Sample 1: 0.039 mM copper (II) sulfate pentahydrate aqueous solution Sample 2: 500-fold diluted glutamic acid fermentation by-product solution containing 0.039 mM copper (II) sulfate pentahydrate Sample 3: 0.157 mM copper (II) sulfate Pentahydrate aqueous solution Sample 4: Diluted 500-fold solution of glutamic acid fermentation by-product containing 0.157 mM copper (II) sulfate pentahydrate
 結果を図7Aに示す。グルタミン酸発酵副生液の効果は亜鉛に限定されることなく、銅(硫酸銅)によるストレス応答性遺伝子誘導を抑制することが示された。 Results are shown in FIG. 7A. It was shown that the effect of glutamic acid fermentation by-product liquid is not limited to zinc but suppresses stress-responsive gene induction by copper (copper sulfate).
(5)試料を下記試料に変えた以外は、上記と同様にして、ストレス応答性遺伝子の発現を調べた。対照として、水を用いた。各試料には、展着剤アプローチBIR(花王(株))を終濃度0.1%になるように添加した。硫酸銅、Fe(III)-EDTAの濃度(ppm)は、銅又は鉄換算の濃度である。 (5) Except that the sample was changed to the following sample, the expression of the stress responsive gene was examined in the same manner as described above. Water was used as a control. To each sample, spreader approach BIR (Kao Corporation) was added to a final concentration of 0.1%. The concentration (ppm) of copper sulfate and Fe (III) -EDTA is a concentration in terms of copper or iron.
 試料1:8.95mM Fe(III)-EDTA水溶液
 試料2:8.95mM Fe(III)-EDTAを含むグルタミン酸発酵副生液500倍希釈液
Sample 1: 8.95 mM Fe (III) -EDTA aqueous solution Sample 2: Glutamic acid fermentation byproduct solution containing 8.95 mM Fe (III) -EDTA diluted 500 times
 結果を図7Bに示す。グルタミン酸発酵副生液の効果は亜鉛に限定されることなく、鉄(Fe(III)-EDTA)によるストレス応答性遺伝子誘導を抑制することが示された。 Results are shown in FIG. 7B. It was shown that the effect of glutamic acid fermentation by-product liquid is not limited to zinc, but suppresses stress-responsive gene induction by iron (Fe (III) -EDTA).
〔実施例4〕各種作物におけるグルタミン酸発酵副生液による薬害軽減効果評価
(1)作物の栽培と葉面処理
 アブラナ科(シロイヌナズナ、キャベツ、ハクサイ、ダイコン)、ナス科(トウガラシ)、キク科(シュンギク)、及びマメ科(ダイズ)の植物について、グルタミン酸発酵副生液の薬害軽減効果を調べた。
[Embodiment 4] Evaluation of effect of reducing phytotoxicity by glutamic acid fermentation by-product liquid in various crops (1) Cultivation and foliar treatment of crucifers ) And leguminous plant (soybean) plants, the effect of reducing the phytotoxicity of glutamic acid fermentation by-product liquid was investigated.
 各植物は、5cm角のロックウール(日東紡社製、サイズV 50x50x50mm、ポリエチレンフィルムカバー無し)を用いて栽培した。肥料として通常の25%濃度のOptMS無機塩類培養液(表1)を栽培開始時および開始後週1回与え、施肥と別の日に水を週1~2回与えた。閉鎖系温室において自然光の下で栽培した。播種後第2週と第3週目の各種作物の第1、第2本葉に、15.3mM 硫酸亜鉛水溶液、又は15.3mM 硫酸亜鉛を含むグルタミン酸発酵副生液50倍希釈液をスプレー処理したのち、薬害が生じたタイミングで薬害判定を行った。 Each plant was cultivated using 5 cm square rock wool (manufactured by Nittobo, size V 50 x 50 x 50 mm, without polyethylene film cover). As a fertilizer, a normal 25% OptMS inorganic salt culture solution (Table 1) was given once a week at the start of cultivation and once a week after the start of the cultivation, and water was given once or twice a week on a different day from the fertilization. Cultivated in a closed greenhouse under natural light. After spraying the 1st and 2nd true leaves of various crops in the 2nd and 3rd weeks after sowing with a 15.3 mM zinc sulfate aqueous solution or a 50-fold diluted glutamate fermentation by-product solution containing 15.3 mM zinc sulfate. The phytotoxicity judgment was performed at the timing when the phytotoxicity occurred.
(2)薬害判定
 薬害の程度に応じてインデックスを各実験回で規定し、5段階評価を行った(最も軽度が0、最も重度が4)。評価結果を平均し、数値ごとに4段階に分類した。0~1.4は(-)、1.5~4は(+)、4.1~6.0は(++)、6.1~8.0は(+++)と表記した。
 表3及び図8に示すとおり、アブラナ科植物やマメ科植物において顕著な薬害軽減効果が確認できた。
(2) Determination of phytotoxicity An index was defined for each experimental round according to the degree of phytotoxicity, and a five-level evaluation was performed (the least severe and the most severe 4). The evaluation results were averaged and classified into 4 levels for each numerical value. 0-1.4 was expressed as (-), 1.5-4 as (+), 4.1-6.0 as (++), and 6.1-8.0 as (+++).
As shown in Table 3 and FIG. 8, a remarkable phytotoxicity reduction effect could be confirmed in cruciferous plants and legumes.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (17)

  1.  硫酸化合物もしくはアンモニウム化合物、又はこれらの両方を有効成分として含有する、植物ストレス軽減剤。 A plant stress reducing agent containing a sulfuric acid compound, an ammonium compound, or both as active ingredients.
  2.  植物ストレスが植物薬害ストレスである、請求項1に記載の植物ストレス軽減剤。 The plant stress reducing agent according to claim 1, wherein the plant stress is plant phytotoxic stress.
  3.  前記植物薬害ストレスがミネラルによる薬害ストレスである、請求項2に記載の植物ストレス軽減剤。 The plant stress reducing agent according to claim 2, wherein the plant phytotoxic stress is phytotoxic stress caused by minerals.
  4.  硫酸化合物が無機硫酸化合物である、請求項1~3のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 1 to 3, wherein the sulfuric acid compound is an inorganic sulfuric acid compound.
  5.  アンモニウム化合物が無機アンモニウム化合物である、請求項1~4のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 1 to 4, wherein the ammonium compound is an inorganic ammonium compound.
  6.  硫酸化合物及びアンニモウム化合物の両方を含有する、請求項1~5のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 1 to 5, which contains both a sulfuric acid compound and an ammonium compound.
  7.  無機硫酸化合物又は無機アンモニウム化合物が、硫酸マグネシウム、硝酸アンモニウム、又は塩化アンモニウムである、請求項1~5のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 1 to 5, wherein the inorganic sulfate compound or the inorganic ammonium compound is magnesium sulfate, ammonium nitrate, or ammonium chloride.
  8.  硫酸化合物及びアンモニウム化合物が、硫酸アンモニウム、又は硫酸化合物及びアンモニウム化合物を含有する発酵副生物である、請求項6に記載の植物ストレス軽減剤。 The plant stress reducing agent according to claim 6, wherein the sulfuric acid compound and the ammonium compound are fermentation by-products containing ammonium sulfate or a sulfuric acid compound and an ammonium compound.
  9.  前記植物薬害ストレスが、亜鉛化合物、銅化合物、又は鉄化合物による薬害ストレスである、請求項2~8のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 2 to 8, wherein the plant phytotoxic stress is phytotoxic stress caused by a zinc compound, a copper compound, or an iron compound.
  10.  硫酸化合物及びアンモニウム化合物を、硫酸基及びアンモニウム基換算で、各々1mM~100mM含有する、請求項1~9のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 1 to 9, which contains a sulfuric acid compound and an ammonium compound in an amount of 1 mM to 100 mM in terms of sulfate group and ammonium group, respectively.
  11.  さらに、植物ストレスの原因となるミネラルを含有する、請求項1~10のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 1 to 10, further comprising a mineral that causes plant stress.
  12.  植物の葉、花、根、又は果実に施用される、請求項1~11のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 1 to 11, which is applied to a leaf, flower, root or fruit of a plant.
  13.  葉面散布により植物に施用される、請求項1~11のいずれか一項に記載の植物ストレス軽減剤。 The plant stress reducing agent according to any one of claims 1 to 11, which is applied to plants by foliar spraying.
  14.  請求項1~13のいずれか一項に記載の植物ストレス軽減剤を植物に施用することを特徴とする、植物のストレスを軽減する方法。 A method for reducing plant stress, comprising applying the plant stress reducing agent according to any one of claims 1 to 13 to a plant.
  15.  前記植物ストレスが植物薬害ストレスである、請求項14に記載の方法。 The method according to claim 14, wherein the plant stress is plant phytotoxicity stress.
  16.  前記植物薬害ストレスがミネラルによる薬害ストレスである、請求項15に記載の方法。 The method according to claim 15, wherein the phytotoxic stress is a phytotoxic stress caused by minerals.
  17.  前記植物ストレス軽減剤を、葉面散布により植物に施用することを特徴とする、請求項14~16のいずれか一項に記載の方法。 The method according to any one of claims 14 to 16, wherein the plant stress reducing agent is applied to a plant by foliar spraying.
PCT/JP2010/072888 2009-12-22 2010-12-20 Plant stress reducer and plant stress reduction method using same WO2011078116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-291056 2009-12-22
JP2009291056A JP2013049631A (en) 2009-12-22 2009-12-22 Plant stress reducer and plant stress reduction method using the same

Publications (1)

Publication Number Publication Date
WO2011078116A1 true WO2011078116A1 (en) 2011-06-30

Family

ID=44195642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072888 WO2011078116A1 (en) 2009-12-22 2010-12-20 Plant stress reducer and plant stress reduction method using same

Country Status (2)

Country Link
JP (1) JP2013049631A (en)
WO (1) WO2011078116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160718A (en) * 1978-06-12 1979-12-19 Nat Federation Agric Coop Ass Pharmaceutical intury reducing agent of cuprous sterilizing agent
JPS55162707A (en) * 1979-06-05 1980-12-18 Kumiai Chem Ind Co Ltd Fungicide composition for agriculture and gardening
JP2006282553A (en) * 2005-03-31 2006-10-19 Nippon Nohyaku Co Ltd Agricultural and horticultural fungicide composition and use method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160718A (en) * 1978-06-12 1979-12-19 Nat Federation Agric Coop Ass Pharmaceutical intury reducing agent of cuprous sterilizing agent
JPS55162707A (en) * 1979-06-05 1980-12-18 Kumiai Chem Ind Co Ltd Fungicide composition for agriculture and gardening
JP2006282553A (en) * 2005-03-31 2006-10-19 Nippon Nohyaku Co Ltd Agricultural and horticultural fungicide composition and use method thereof

Also Published As

Publication number Publication date
JP2013049631A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
Barabasz et al. Biological effects of mineral nitrogen fertilization on soil microorganisms
JP5235137B2 (en) Use of proline to improve growth and / or production
JP5790507B2 (en) Cucurbitaceae plant disease resistance enhancer and plant disease control method using the same
JPH11505517A (en) Improve plant yield
JP6415559B2 (en) Compounds and methods for improving plant performance
JP2001190154A (en) Method for culturing crop and agent for improving quality of crop
JP2014001143A (en) Rice plant disease-resistant promoter and rice plant disease control method using the same
CA2029877A1 (en) Phytosanitary agent and its use
AU702833B2 (en) Improving the yield of plants
Patel et al. Effect of gibberellic acid, potassium nitrate and silicic acid on enzymes activity in cowpea (Vigna unguiculata L. Walp) irrigated with saline water
JP2014073993A (en) Improvement agents for the iron utilization ability of plants
RU2738483C1 (en) Pesticide and agrochemical based on fulvic acid chelate form
WO2011078116A1 (en) Plant stress reducer and plant stress reduction method using same
WO2015152702A1 (en) Extracts of agricultural husks used to modify the metabolism of plants
Soren et al. Weed dynamics and yield of rabi maize (Zea mays L.) as influenced by weed management practices
Khairi et al. Low water input confers sustainable rice production without affecting soil, plant physiological and yields parameters
Rajesh et al. Strategies of reducing the toxicity of sugar mill effluent by using biofertilizer inoculants
Moretti et al. Sodium selenate: an environmental-friendly means to control tomato bacterial speck disease. Agronomy. 2022; 12: 1351
Badawi et al. Effect of irrigation intervals and foliar spraying treatments on growth and yield of some rice cultivars
Bulgari Studies of Quality and Nutrient use Efficiency in Vegetable Crops Grown under Different Sustainable Cropping System
Umiyati Allelopathic inhibition of nitrifying bacteria by legumes
Bekuzarova et al. Activation by Para-Aminobenzoic Acid of Sowing Properties of Seeds of Winter Grain Crops and Forage Cereals
Mansie et al. Effect of Nitrogen Fertilization and Spraying with Prepared Calcium Humate-Fulvate and Fungicide on Tomato Yield (Lycopersicon esculentum Mill)
Bekuzarova et al. Activation of cereal seeds by para-aminobenzoic acid
Somda et al. Effects of nitrapyrin, terrazole, and simazine on soil nitrogen transformation and corn growth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP