WO2011077585A1 - Single-chamber type rotary filter - Google Patents

Single-chamber type rotary filter Download PDF

Info

Publication number
WO2011077585A1
WO2011077585A1 PCT/JP2009/071708 JP2009071708W WO2011077585A1 WO 2011077585 A1 WO2011077585 A1 WO 2011077585A1 JP 2009071708 W JP2009071708 W JP 2009071708W WO 2011077585 A1 WO2011077585 A1 WO 2011077585A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
rotary
rotary drum
valve shoe
inner peripheral
Prior art date
Application number
PCT/JP2009/071708
Other languages
French (fr)
Japanese (ja)
Inventor
保寿 田中
匠 金子
尚史 桶谷
Original Assignee
三菱化工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化工機株式会社 filed Critical 三菱化工機株式会社
Priority to PCT/JP2009/071708 priority Critical patent/WO2011077585A1/en
Priority to JP2011547194A priority patent/JP5398847B2/en
Publication of WO2011077585A1 publication Critical patent/WO2011077585A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/06Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums
    • B01D33/073Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/44Regenerating the filter material in the filter
    • B01D33/48Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps

Definitions

  • the present invention relates to a rotary single-chamber filter, and more particularly, to a rotary single-chamber filter that can reduce the amount of gas circulating in the apparatus and can promote energy saving.
  • rotary single-chamber filters There are two types of rotary single-chamber filters: a pressurization type and a depressurization type, each of which has a filtration chamber mainly composed of a single-unit rotary drum.
  • High cleaning efficiency because it can maintain a uniform flow of cleaning liquid throughout the cake.
  • Blow-back air efficiently blows back the filter cloth from the back side, making it easy even with a cake layer that is difficult to filter. It has many advantages such as easy peeling and easy maintenance due to its simple structure, and is used in many fields such as general chemical industry, fertilizer industry, metal industry and food industry.
  • this rotary single-chamber filter has both ends sealed and a large number of filtrate holes (not shown) are formed on the peripheral surface, and an arrow ⁇ is formed by a variable speed reducer (not shown).
  • a rotating drum 1 that rotates in a direction
  • a center pipe 2 that rotatably supports the rotating drum 1
  • a stock solution bat 3 that is disposed below the rotating drum 1, and is disposed in a casing 4. Yes.
  • a filter cloth (not shown) is stretched on the outer peripheral surface of the rotating drum 1 via a filter bridge (not shown), and the lower part of the rotating drum 1 is immersed in the stock solution slurry F filled with the stock solution bat 3.
  • a filtration region is formed, for example, by a pressure difference between the inside and outside of the rotating drum 1 while the rotating drum 1 rotates under a pressurized gas (hereinafter also referred to as “circulating gas” as appropriate) circulating in the casing 4.
  • circulating gas hereinafter also referred to as “circulating gas” as appropriate
  • a cake layer composed of the solid components of the raw slurry F is formed on the surface of the filter cloth, and the filtrate permeates the filter cloth and enters the rotary drum 1, and is rotated by the filtrate pipe 5 connected to the center pipe 2.
  • the filtrate in the drum 1 is led out of the machine by a collecting device (not shown).
  • valve shoes 6 made of a synthetic resin such as tetrafluoroethylene resin are disposed in the rotating drum 1 along the axial direction of the center pipe 2, and a narrow gap is formed on the inner peripheral surface of the rotating drum 1. It is in sliding contact.
  • a plurality of holes are formed in the upper part of the valve shoe 6 along the axial direction of the rotary drum 1, and blow gas or the like is ejected from these holes to peel off the cake layer on the filter cloth and rotate. The drum 1 is washed from the inside to prevent clogging.
  • blow hole of the valve shoe 6 is connected to the center pipe 2 via the valve bar 7, and blow gas such as nitrogen gas supplied to the center pipe 2 is blown from a plurality of holes to peel off the cake layer on the surface of the filter cloth.
  • a filter cloth cleaning spray 8A is disposed outside the rotary drum 1 and slightly below the blow hole of the valve shoe 6, and the cleaning liquid is sprayed from the filter cloth cleaning spray 8A toward the rotary drum 1 at a high speed. The filter cloth after delamination is washed, and impurities on the filter cloth surface are washed and removed.
  • C is a cake peeled from the filter cloth
  • 8B is a cake washing spray disposed outside the rotary drum 1
  • the cake layer formed on the filter cloth is washed with the cake washing spray 8B.
  • Reference numeral 9 denotes a chute for discharging the cake to the outside of the machine
  • reference numeral 10 denotes a gas supply unit for supplying pressurized gas into the casing.
  • the blow gas from the blow holes is indicated by the arrow X in the rotary drum 1.
  • the cake layer is peeled off from the inside of the filter cloth through the filtrate hole and the filter bridge, and the cake C is discharged to the outside through the chute 9.
  • the part from which the cake layer has been peeled is washed with the washing solution from the filter cloth washing spray 8A, and then reaches the stock solution slurry F to perform the next filtration.
  • the filtration capacity can be increased by increasing the rotational speed of the rotary drum 1.
  • the valve shoe 6 is formed by integrating the first valve shoe 6A and the second valve shoe 6B.
  • the arc surface (sliding contact surface) of the lower surface of the valve shoe 6 and the rotary drum 1 are formed.
  • a slit is formed between the inner peripheral surfaces.
  • the valve bar 7 is formed by first and second valve bars 7A and 7B that support the first and second valve shoes 6A and 6B.
  • a part of the pressurized gas such as nitrogen gas circulated outside the rotary drum 1 is transferred from the filter cloth surface of the rotary drum 1 to the inside after the cake layer is peeled off.
  • the valve shoe 6 is provided so as not to permeate, gas leakage is prevented.
  • the rotary drum 1 is formed in a cylindrical shape, it is difficult to form the inner peripheral surface of the rotary drum 1 in a perfect circle shape, and therefore, the thin inner surface of the rotating drum 1 and the arc surface of the valve shoe 6 are narrow.
  • the gap is not constant, and the narrow and narrow gaps are repeated. Further, since the cake layer is separated from the rotary drum 1 at the portion facing the valve shoe 6, the circulating gas is easy to permeate from the filter cloth into the rotary drum 1. For reasons of the shape of the peripheral surface, the slit with the valve shoe 6 becomes wider, the amount of circulating gas leakage increases, and the replenishment amount of the pressurized gas must be increased accordingly.
  • the upper portion of the valve shoe 6A is directly fixed to the upper valve bar 7A, and the lower valve shoe 6B connected and fixed to this is free at one end. There has been a problem that the lower valve shoe 6B is pushed inward of the rotary drum 1 to widen the gap between the inner peripheral surface of the rotary drum 1 and the amount of leakage of the circulating gas further increases.
  • the present invention has been made to solve the above-described problems, and can reduce the amount of circulating gas leakage, thereby reducing the energy consumption of the devices, and thus reducing the size of the devices.
  • An object of the present invention is to provide a rotary single-chamber filter that can be promoted.
  • a rotary single chamber type filter wherein a rotary drum having a filter cloth stretched around an outer peripheral surface via a filter bridge is attached to a center pipe, and a lower part of the rotary drum is used as a stock bat.
  • the stock slurry is immersed and subjected to pressure filtration or suction filtration, and the filtrate is led out of the machine by a filtrate tube connected to the center pipe, and is connected to the center pipe so as to communicate with the inner peripheral surface of the rotating drum.
  • a rotary single-chamber filter that peels off and collects the cake layer formed on the outer surface of the filter cloth by a gas blown from a hole in the upper part of the valve shoe provided through a gap. It is characterized by comprising pressurizing means for pressing a sliding contact surface formed along the inner peripheral surface of the rotating drum against the inner peripheral surface of the rotating drum.
  • the valve shoe has an upper surface opposite to the sliding contact surface connected to the center pipe. It is supported on the lower surface of the valve bar, and when the rotating drum rotates, the sliding contact surface is made to follow the inner peripheral surface of the rotating drum via the pressurizing means. is there.
  • the pressurizing means includes a recessed portion formed on a lower surface of the valve bar, and the valve shoe. And a fluid that supplies a pressurized fluid into the sealed space through a hole formed in the recessed portion and forming a sealed space between the recessed portion and a hole formed in the recessed portion. And a supply means.
  • valve bar and the center vip are connected by a support member according to any one of the first to third aspects. It is characterized by this.
  • (A), (b) is a figure which shows the principal part of the pressurization type rotary single-chamber filter which is one Embodiment of the rotary single-chamber filter of this invention
  • (a) is the figure Sectional drawing and (b) are sectional drawings which expand and show the part enclosed by the circle
  • (A), (b) is a figure which shows the principal part of the valve shoe of the rotary single chamber type filter shown in FIG. 1, (a) is the top view, (b) is the sectional drawing. It is sectional drawing which shows the structure of the conventional pressurization type rotary single chamber type filter. It is sectional drawing which shows the principal part of the rotary single chamber type filter shown in FIG.
  • the rotary single-chamber filter includes, for example, a rotating drum 1, a center pipe 2, a stock solution bat 3, a casing 4, and a filtrate as shown in FIGS. 1 (a) and 1 (b).
  • the tube 5, the valve shoe 6, the valve bar 7, the filter cloth cleaning spray 8 ⁇ / b> A, the cleaning spray 8 ⁇ / b> B, the cake discharge chute 9, and the gas supply unit 10 are configured as a pressurizing rotary single chamber filter. .
  • valve shoe 6 and the valve bar 7 are different in the rotary single-chamber filter of the present embodiment, the following is the same as the conventional one with the valve shoe 6 and the valve bar 7 used in the present embodiment as the center. Corresponding parts will be described with the same reference numerals.
  • the valve shoe 6 is formed of a synthetic resin having a small friction coefficient, such as a tetrafluoroethylene resin, as in the prior art, and is formed so as to be in sliding contact with the rotating drum 1 smoothly.
  • the valve shoe 6 is divided into first, second, and third valve shoes 6A, 6B, and 6C, and the lower surfaces of the valve shoes 6 are the inner periphery of the rotary drum 1 in an initial state. It is formed as a circular arc surface that continues along the surface. Circular protrusions to be described later are formed on the upper surfaces of the second and third valve shoes 6B and 6C. Further, as shown in FIG.
  • the valve bar 7 includes a first valve bar 7A corresponding to the first and second valve shoes 6A, 6B and a second valve bar corresponding to the third valve shoe 6C. It is divided into 7B.
  • the first and second valve bars 7A and 7B are both formed in a flat plate shape, and reinforcing ribs are provided on the upper surfaces of the first and second valve bars 7A and 7B along the circumferential direction of the rotating drum 1 (hereinafter also referred to as “vertical direction”). A plurality are formed.
  • the first valve shoe 6A is joined and integrated with the upper lower surface of the first valve bar 7A by a fastening member (not shown) such as a screw, and the second and third valve shoes 6B and 6C are integrated. Both are attached in a movable state so as to be movable back and forth with respect to the lower surfaces of the first and second valve bars 7A and 7B.
  • the first valve shoe 6A is joined and fixed to the upper part of the lower surface of the first valve bar 7A with a fastening member such as a screw as shown in FIG.
  • the second valve shoe 6B is movably attached to the lower part of the lower surface of the first valve bar 7A.
  • the arc surface of the first valve shoe 6A and the arc surface of the second valve shoe 6B are integrated with the lower surface of the first valve bar 7A as shown in FIG. It is formed as a circular arc surface that continues along the surface.
  • a substantially uniform slit (about 0.2 to 0.3 mm) is formed between the continuous arc surface and the inner peripheral surface of the rotating drum 1, and the second valve shoe 6B rotates as described later. It projects to the drum 1 side so as to fill the slit.
  • the third valve shoe 6C is attached in a movable state over the entire lower surface area of the second valve bar 7B, and is configured according to the second valve shoe 6B. ing.
  • An inclined wall toward the center of the rotating drum 1 is formed at the lower end edge of the first valve bar 7A, and an inclined wall toward the center of the rotating drum 1 is formed at the upper end edge of the second valve bar 7B.
  • the first valve bar 7A and the second valve bar 7B are integrated with each inclined wall via a fastening member 7D such as a bolt.
  • the second valve bar 7B has a lower end connected to the center pipe 2 via a rod-like support member 11, as shown in FIG.
  • the protrusion 6B 1 The protrusion height from the upper surface of the second valve shoe 6B is lower than the upper surface of the first valve shoe 6A as shown in FIGS. 1B and 2B. Further, the first Barububa 7A of the upper part of the thickness and the concave portion 7A 1 of the bottom thickness of the formed substantially the same thickness as shown in (b) of FIG. Therefore, when the first valve shoe 6A and the second valve shoe 6B shown in FIG. 2 (b) is projecting portion 6B 1 attached to the lower surface of the first Barububa 7A is fitted into the concave portion 7A 1, FIG. 1 slit is formed between the bottom surface of the top and recess 7A 1 of the protrusion 6B 1 as shown in (b).
  • O-ring 12 is attached to the peripheral surface of the protruding portion 6B 1 of the second valve shoe 6B as shown in FIG. 1 (b), the protrusion 6B 1 and recess 7A 1 This O-ring 12 The gap formed between them is sealed to form a sealed space.
  • a second gas is supplied from the supply hole 6A2 to the sealed space as shown by a one-dot chain line in FIG. 2 (b).
  • the shoe 6B moves forward from the first valve bar 7A toward the rotating drum 1, and the arc surface of the second valve shoe 6B is pressed against the inner peripheral surface of the rotating drum 1 to make elastic contact with the rotating drum.
  • the supply holes 7A 2 is connected to the pipe via a (not shown) source of pressurized gas (not shown).
  • gas supply source, piping, protrusion 6B 1 of the second valve shoe 6B, and recess 7A 1 of the first valve bar 7A are formed on the rotary drum 1 with the arc surface of the second valve shoe 6B as the sliding surface. It is comprised as a pressurization means for pressing on an inner peripheral surface and making it contact closely.
  • Elongated hole 7A 3 for ejecting the blow gas is formed in the first Barububa 7A as shown by the two-dot chain line in FIG. 2 (a), the first valve shoe 6A along the long hole 7A 3 a plurality of holes 6A 1 is formed. Therefore, the blow gas is jetted toward the rotary drum 1 through a plurality of holes 6A 1 of the first Barububa long hole 7A of 7A 3 and the first valve shoe 6A. Further, the first valve shoe 6A holes 6A 1 for fastening members such as screws are formed with a plurality of, first Barububa 7A internal thread these into a plurality of holes 7A 4 on the top (not shown) Is formed.
  • the 3rd valve shoe 6C and the 2nd valve bar 7B are comprised according to the 2nd valve shoe 6B and the 1st valve bar 7A, as shown to (a) of FIG.
  • the third valve shoe 6C is formed so as to cover the entire lower surface area of the second valve bar 7B.
  • the third valve shoe 6C is also provided with a circular projection 6C1 as in the case of the second valve shoe 6B, and the second valve bar 7B has a first projection.
  • Barububa 7A as well as recess 7B 1 is formed.
  • Projections 6C 1 of the third valve shoe 6C is formed as a piston
  • recess 7B 1 of the second Barububa 7B is formed as a cylinder.
  • the blow gas is via a plurality of holes 6A 1 of the first valve shoe 6A from the long hole 7A 3 of the first Barububa 7A rotation It ejects toward the drum 1, and the cake layer of the rotating drum 1 is peeled off.
  • the cake layer from the rotating drum 1 at the lower side of a plurality of holes 6A 1 of the first valve shoe 6A is peeled off, the circulating gas is easily transmitted into the rotary drum 1.
  • the first valve shoe 6A Since the first valve shoe 6A is fixed to the first valve bar 7A, a slit is held between the first valve shoe 6A and the rotary drum 1, so that the circulating gas leaks from this portion. .
  • the narrow gap between the rotary drum 1 and the first valve shoe 6A is as narrow as about 0.2 to 0.3 mm, the amount of circulating gas leakage at the first valve shoe 6A is small.
  • the circulating gas also attempts to permeate the rotating drum 1 in the second and third valve shoes 6B and 6C below the first valve shoe 6A.
  • the pressurized gas into the sealed space formed by the recessed portion 7A 1 and the O-ring 12 from the supply hole 7A 2 of the first Barububa 7A and the projection 6B 1 of the second valve shoe 6B first Barububa 7A Since the gas is supplied, the pressurized gas advances the second valve shoe 6B toward the inner peripheral surface of the rotating drum 1, fills the slits, and is pressed against the inner peripheral surface of the rotating drum 1 so as to be in close contact with each other. Therefore, the leakage of the circulating gas is suppressed in this part.
  • the pressing force of the second valve shoe 6B does not act to the extent that the rotating drum 1 is braked.
  • the third valve shoe 6C below the second valve shoe 6B is also provided with a pressurizing means. Therefore, the amount of circulating gas leaked from this portion is reduced to, for example, about 50%. As a result, the amount of circulating gas can be reduced by about 30%.
  • the leakage amount of the circulating gas can be reduced in this way, the energy consumption of the equipment used for circulating the pressurized gas can be reduced, or the downsizing of the equipment can be promoted.
  • the second and third valve shoes 6B and 6C can be brought into close contact with the inner peripheral surface of the rotating drum 1 at the same time as the operation is started.
  • the valve shoe 6 since the lower end portion of the second valve bar 7B is supported by the support member 11, the valve shoe 6 does not move to the inside of the rotary drum 1 due to the pressure of the circulating gas, and the second, The third valve shoes 6B and 6C can be brought into close contact with the inner peripheral surface of the rotary drum 1 in a stable state, and the amount of circulating gas leaked can be further reduced.
  • the valve shoe 6 includes the pressurizing means for pressing the arc surface formed along the inner peripheral surface of the rotating drum 1 against the inner peripheral surface of the rotating drum. While the slurry F is filtered, the amount of circulating gas leaked into the rotary drum 1 at the valve shoe 6 can be significantly reduced. Moreover, since the leakage amount of circulating gas can be reduced, the energy consumption of the equipment for circulating the circulating gas can be reduced, or the downsizing of the equipment can be promoted.
  • the pressurizing means includes the recessed portions 7A 1 and 7B 1 formed on the lower surfaces of the first and second valve bars 7A and 7B, and the second and third valve shoes 6B, Protrusions 6B 1 , 6C 1 formed on the upper surface of 6C and fitted into the recessed portions 7A 1 , 7B 1 so as to be movable back and forth to form a sealed space between the recessed portions 7A 1 , 7B 1 , And a gas supply source for supplying pressurized gas into the sealed space from the supply holes 7A 2 and 7B 2 respectively formed in the recessed portions 7A 1 and 7B 1.
  • the amount of circulating gas leakage can be greatly reduced.
  • the second and third valve shoes 6B and 6C are more stable in the rotary drum 1. It can be brought into close contact with the peripheral surface, and the amount of circulating gas can be further reduced.
  • the pressurized gas is supplied to the sealed space formed by the protrusion, the recessed portion and the O-ring as the pressurizing means, but the present invention is limited to such a pressurizing means.
  • a pressurized liquid may be supplied instead of the pressurized gas, and an elastic member such as a spring member may be interposed between the valve shoe and the valve bar.
  • the arcuate surface (sliding contact surface) of the valve shoe may be always pressed against the inner peripheral surface of the rotary drum by a material that itself has elasticity, and the sliding contact surface may be formed of a material having a small friction coefficient.
  • the said embodiment demonstrated the pressurization type rotary single chamber type filter, it can apply similarly to a pressure reduction type rotary single chamber type filter.
  • the rotary single-chamber filter of the present invention can be used in many fields such as general chemical industry, fertilizer industry, metal industry and food industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)

Abstract

Provided is a single-chamber type rotary filter which enables decrease of leakage of a circulated gas and decrease of energy consumption, and further facilitates miniaturization of the instruments. The disclosed single-chamber type rotary filter is equipped with a rotary drum (1) having a filtration function and being attached pivotally to a center pipe (2). The lower portion of the rotary drum (1) is immersed into a source liquid vat (3), and a source liquid slurry (F) is pressure-filtered. The filtrate is discharged out of the filter machine through a filtrate-discharging tube (5) connected to the center pipe. The layer of the cake deposited on the rotary drum (1) is recovered by peeling by a gas blown through holes (6A1) of a first valve shoe (6A) which is connected to the center pipe (2) for communication therewith and is placed to oppose the inner peripheral face of the rotary drum (1) with a small gap. The valve shoe (6) is provided with a pressing means to press the sliding face thereof formed along the inner peripheral face of the rotary drum (1) against the inner peripheral face of the rotary drum (1).

Description

回転式単室型濾過機Rotary single chamber filter
 本発明は、回転式単室型濾過機に関し、更に詳しくは、装置内を循環する気体量を節減することができ、延いては省エネルギーを促進することができる回転式単室型濾過機に関する。 The present invention relates to a rotary single-chamber filter, and more particularly, to a rotary single-chamber filter that can reduce the amount of gas circulating in the apparatus and can promote energy saving.
 回転式単室型濾過機は、濾過室が単室の回転ドラムを主体に構成された加圧式のものと減圧式のものがあり、ドラムの開口率や濾液管の口径が大きいため濾過能力が高いこと、ケーキ全体に均一な洗浄液の流れを保つことができるため洗浄効果が高いこと、ブローバックエアーによって濾布を裏面から効率良く吹き返しを行っているため難濾過性の薄いケーキ層でも容易に剥離できること、しかも構造が簡単であるため故障が少なくメンテナンスが容易であることなどの多くの利点を有するため、一般化学工業、肥料工業、金属工業、食品工業等多くの分野で使用されている。 There are two types of rotary single-chamber filters: a pressurization type and a depressurization type, each of which has a filtration chamber mainly composed of a single-unit rotary drum. High cleaning efficiency because it can maintain a uniform flow of cleaning liquid throughout the cake. Blow-back air efficiently blows back the filter cloth from the back side, making it easy even with a cake layer that is difficult to filter. It has many advantages such as easy peeling and easy maintenance due to its simple structure, and is used in many fields such as general chemical industry, fertilizer industry, metal industry and food industry.
 そこで、従来の加圧式の場合の回転式単室型濾過機について図3、図4を参照しながら説明する。この回転式単室型濾過機は、図3に示すように、両端面が封止され周面に多数の濾液孔(図示せず)が形成され且つ可変減速機(図示せず)によって矢印θ方向へ回転駆動する回転ドラム1と、この回転ドラム1を回転可能に軸支するセンターパイプ2と、回転ドラム1の下方に配設された原液バット3と、を備え、ケーシング4内に配置されている。上記回転ドラム1の外周面にはフィルターブリッジ(図示せず)を介して濾布(図示せず)が張設され、回転ドラム1の下部が原液バット3に満たされた原液スラリーF内に浸漬して濾過領域を形成し、例えばケーシング4内を循環する加圧ガス(以下、適宜「循環ガス」とも称す。)の下で回転ドラム1が回転する間に回転ドラム1の内外の圧力差によって濾過領域で濾布表面に原液スラリーFの固形成分からなるケーキ層が形成されると共に濾液が濾布を透過して回転ドラム1内に侵入し、上記センターパイプ2に接続された濾液管5により回転ドラム1内の濾液を図示しない回収装置によって機外へ導出する。 Therefore, a conventional rotary single-chamber filter in the case of a pressure type will be described with reference to FIGS. As shown in FIG. 3, this rotary single-chamber filter has both ends sealed and a large number of filtrate holes (not shown) are formed on the peripheral surface, and an arrow θ is formed by a variable speed reducer (not shown). A rotating drum 1 that rotates in a direction, a center pipe 2 that rotatably supports the rotating drum 1, and a stock solution bat 3 that is disposed below the rotating drum 1, and is disposed in a casing 4. Yes. A filter cloth (not shown) is stretched on the outer peripheral surface of the rotating drum 1 via a filter bridge (not shown), and the lower part of the rotating drum 1 is immersed in the stock solution slurry F filled with the stock solution bat 3. Thus, a filtration region is formed, for example, by a pressure difference between the inside and outside of the rotating drum 1 while the rotating drum 1 rotates under a pressurized gas (hereinafter also referred to as “circulating gas” as appropriate) circulating in the casing 4. In the filtration region, a cake layer composed of the solid components of the raw slurry F is formed on the surface of the filter cloth, and the filtrate permeates the filter cloth and enters the rotary drum 1, and is rotated by the filtrate pipe 5 connected to the center pipe 2. The filtrate in the drum 1 is led out of the machine by a collecting device (not shown).
 また、上記回転ドラム1内には四フッ化エチレン樹脂等の合成樹脂からなるバルブシュー6がセンターパイプ2の軸方向に沿って複数配設され、回転ドラム1の内周面に細隙を介して摺接している。このバルブシュー6の上部には複数の孔(図示せず)が回転ドラム1の軸方向に沿って形成され、これらの孔からブローガス等を噴出させて濾布上のケーキ層を剥離すると共に回転ドラム1を内側から洗浄してその目詰まりを防止している。 Further, a plurality of valve shoes 6 made of a synthetic resin such as tetrafluoroethylene resin are disposed in the rotating drum 1 along the axial direction of the center pipe 2, and a narrow gap is formed on the inner peripheral surface of the rotating drum 1. It is in sliding contact. A plurality of holes (not shown) are formed in the upper part of the valve shoe 6 along the axial direction of the rotary drum 1, and blow gas or the like is ejected from these holes to peel off the cake layer on the filter cloth and rotate. The drum 1 is washed from the inside to prevent clogging.
 即ち、上記バルブシュー6のブロー用の孔はバルブバー7を介してセンターパイプ2と接続され、センターパイプ2に供給された窒素ガス等のブローガスを複数の孔からブローして濾布表面のケーキ層を剥離する。回転ドラム1の外側でバルブシュー6のブロー用の孔のやや下方には濾布洗浄用スプレイ8Aが配設され、濾布洗浄用スプレイ8Aから回転ドラム1に向けて洗浄液を高速噴射してケーキ層剥離後の濾布を洗浄し、濾布表面の夾雑物を洗浄、除去する。尚、図3において、Cは濾布から剥離したケーキ、8Bは回転ドラム1の外側に配設されたケーキ洗浄用スプレイで、このケーキ洗浄用スプレイ8Bで濾布に形成されたケーキ層を洗浄する。また、9はケーキを機外へ排出するシュート、10は加圧ガスをケーシング内へ供給するガス供給部である。 That is, the blow hole of the valve shoe 6 is connected to the center pipe 2 via the valve bar 7, and blow gas such as nitrogen gas supplied to the center pipe 2 is blown from a plurality of holes to peel off the cake layer on the surface of the filter cloth. To do. A filter cloth cleaning spray 8A is disposed outside the rotary drum 1 and slightly below the blow hole of the valve shoe 6, and the cleaning liquid is sprayed from the filter cloth cleaning spray 8A toward the rotary drum 1 at a high speed. The filter cloth after delamination is washed, and impurities on the filter cloth surface are washed and removed. In FIG. 3, C is a cake peeled from the filter cloth, 8B is a cake washing spray disposed outside the rotary drum 1, and the cake layer formed on the filter cloth is washed with the cake washing spray 8B. To do. Reference numeral 9 denotes a chute for discharging the cake to the outside of the machine, and reference numeral 10 denotes a gas supply unit for supplying pressurized gas into the casing.
 次に、上記回転式単室型濾過機の動作について説明する。ガス供給部10からケーシング4内に供給される加圧ガスによる加圧下で回転ドラム1が図3に示すように反時計方向へ回転すると、その間に回転ドラム1の濾過領域で原液バット3内の原液スラリーFを吸引し、濾布表面に固形成分をケーキ層として形成すると共に回転ドラム1内に濾液が溜まる。濾液は濾液管5からセンターパイプ2内を経由して図示しない回収装置により機外へ導出される。一方、ケーキ層は回転ドラム1の回転に連れて原液スラリーFから外部へ出て徐々に脱液され、ケーキ洗浄用スプレイ8Bの下方を通過する間に洗浄される。図4に示すように回転ドラム1が矢印θ方向に回転するに連れて洗浄後のケーキ層がバルブシュー6に到達すると、ブロー用の孔からのブローガスが矢印Xで示すように回転ドラム1の濾液孔及びフィルターブリッジを経由して濾布の内側から噴出してケーキ層を剥離し、シュート9を介してケーキCを機外へ排出する。ケーキ層が剥離された部分は濾布洗浄用スプレイ8Aからの洗浄液によって洗浄された後、原液スラリーF内に到達し、次の濾過を行う。一連の濾過において、回転ドラム1の回転速度を速くすることによって濾過能力を高めることができる。 Next, the operation of the rotary single chamber filter will be described. When the rotating drum 1 rotates counterclockwise as shown in FIG. 3 under the pressure of the pressurized gas supplied from the gas supply unit 10 into the casing 4, the inside of the stock solution bat 3 is filtered in the filtration region of the rotating drum 1. The stock solution slurry F is sucked to form a solid component as a cake layer on the surface of the filter cloth, and the filtrate is accumulated in the rotary drum 1. The filtrate is led out of the machine from the filtrate pipe 5 through the center pipe 2 by a collecting device (not shown). On the other hand, as the rotating drum 1 rotates, the cake layer comes out of the raw slurry F and is gradually drained, and is washed while passing under the cake washing spray 8B. As shown in FIG. 4, when the cake layer after washing reaches the valve shoe 6 as the rotary drum 1 rotates in the direction of the arrow θ, the blow gas from the blow holes is indicated by the arrow X in the rotary drum 1. The cake layer is peeled off from the inside of the filter cloth through the filtrate hole and the filter bridge, and the cake C is discharged to the outside through the chute 9. The part from which the cake layer has been peeled is washed with the washing solution from the filter cloth washing spray 8A, and then reaches the stock solution slurry F to perform the next filtration. In a series of filtrations, the filtration capacity can be increased by increasing the rotational speed of the rotary drum 1.
 ところで、バルブシュー6は、図4に示すように、第1のバルブシュー6Aと第2のバルブシュー6Bが一体化して形成されており、その下面の円弧面(摺接面)と回転ドラム1の内周面の間に細隙が形成されている。また、バルブバー7は、第1、第2のバルブシュー6A、6Bを支持する第1、第2のバルブバー7A、7Bによって形成されている。 Incidentally, as shown in FIG. 4, the valve shoe 6 is formed by integrating the first valve shoe 6A and the second valve shoe 6B. The arc surface (sliding contact surface) of the lower surface of the valve shoe 6 and the rotary drum 1 are formed. A slit is formed between the inner peripheral surfaces. The valve bar 7 is formed by first and second valve bars 7A and 7B that support the first and second valve shoes 6A and 6B.
 しかしながら、従来の加圧式の回転式単室型濾過機では、回転ドラム1の外側で循環する窒素ガス等の加圧ガスの一部がケーキ層剥離後の回転ドラム1の濾布面から内部へ透過しないようにバルブシュー6を設けてガス漏れを防止しているが、回転ドラム1とバルブシュー6と間に細隙があるため、この細隙から循環ガスが漏洩してしまう。しかも、回転ドラム1は円筒状に形成されているが、その内周面を真円形状に形成することが難しいため、回転する回転ドラム1の内周面とバルブシュー6の円弧面との細隙が一定せず、細隙の広狭が繰り返される。また、バルブシュー6と対向する部分では回転ドラム1からケーキ層が剥離しているため、循環ガスが濾布から回転ドラム1内へ透過しやすく、また、回転ドラム1の部位によっては上述の内周面の形態上の理由からバルブシュー6との細隙が広くなって循環ガスの漏洩量が多くなり、それだけ加圧ガスの補充量を増やさざるを得ない。しかも、バルブシュー6は上部のバルブシュー6Aみが上部のバルブバー7Aに直接固定され、これに接続固定される下部のバルブシュー6Bは片端部が自由状態になっているため、循環ガスの圧力によって下部のバルブシュー6Bが回転ドラム1の内方へ押し込まれて回転ドラム1内周面との細隙が広がって循環ガスの漏洩量が更に増加するという課題があった。 However, in a conventional pressurized rotary single-chamber filter, a part of the pressurized gas such as nitrogen gas circulated outside the rotary drum 1 is transferred from the filter cloth surface of the rotary drum 1 to the inside after the cake layer is peeled off. Although the valve shoe 6 is provided so as not to permeate, gas leakage is prevented. However, since there is a slit between the rotary drum 1 and the valve shoe 6, the circulating gas leaks from this slit. In addition, although the rotary drum 1 is formed in a cylindrical shape, it is difficult to form the inner peripheral surface of the rotary drum 1 in a perfect circle shape, and therefore, the thin inner surface of the rotating drum 1 and the arc surface of the valve shoe 6 are narrow. The gap is not constant, and the narrow and narrow gaps are repeated. Further, since the cake layer is separated from the rotary drum 1 at the portion facing the valve shoe 6, the circulating gas is easy to permeate from the filter cloth into the rotary drum 1. For reasons of the shape of the peripheral surface, the slit with the valve shoe 6 becomes wider, the amount of circulating gas leakage increases, and the replenishment amount of the pressurized gas must be increased accordingly. In addition, the upper portion of the valve shoe 6A is directly fixed to the upper valve bar 7A, and the lower valve shoe 6B connected and fixed to this is free at one end. There has been a problem that the lower valve shoe 6B is pushed inward of the rotary drum 1 to widen the gap between the inner peripheral surface of the rotary drum 1 and the amount of leakage of the circulating gas further increases.
 更に、循環ガスの漏洩量が多かったため、ガスの循環経路に設けられた機器類も比較的大型のものが必要であり、それに伴って消費エネルギーが多大であるという課題もあった。尚、本出願人は、特許文献1において孔からのブローで回転ドラム1からケーキ層を剥離した後の回転ドラム1での目詰りを抑制する技術を提案しているが、目詰まりが抑制される利点がある反面、循環ガスが増えることになる。また、従来の減圧式の濾過機についても同様の課題があった。 Furthermore, since the amount of circulating gas leaked was large, the equipment provided in the gas circulation path was required to be relatively large, and there was a problem that the energy consumption was enormous. In addition, although this applicant has proposed the technique which suppresses clogging in the rotating drum 1 after peeling a cake layer from the rotating drum 1 by the blow from a hole in patent document 1, clogging is suppressed. On the other hand, the circulation gas increases. Moreover, the same subject also existed in the conventional pressure-reducing filter.
特開2002-191912JP 2002-191912 A
 本発明は、上記課題を解決するためになされたもので、循環ガスの漏洩量を削減することができ、もって機器類の消費エネルギーを削減することができ、延いては機器類の小型化を促進することができる回転式単室型濾過機を提供することを目的としている。 The present invention has been made to solve the above-described problems, and can reduce the amount of circulating gas leakage, thereby reducing the energy consumption of the devices, and thus reducing the size of the devices. An object of the present invention is to provide a rotary single-chamber filter that can be promoted.
 本発明の請求項1に記載の回転式単室型濾過機は、フィルターブリッジを介して外周面に濾布を張設した回転ドラムをセンターパイプに軸着し、上記回転ドラムの下部を原液バットに浸漬して原液スラリーを加圧濾過または吸引濾過し、濾液をセンターパイプに接続する濾液管によって機外に導出し、上記センターパイプに連通するように連結され且つ上記回転ドラム内周面との間に細隙を介して設けられたバルブシュー上部の孔からブローされる気体によって上記濾布外面に形成されたケーキ層を剥離して回収する回転式単室型濾過機であって、上記バルブシューは、上記回転ドラムの内周面に沿って形成された摺接面を上記回転ドラムの内周面に押し付ける加圧手段を備えていることを特徴とするものである。 According to a first aspect of the present invention, there is provided a rotary single chamber type filter, wherein a rotary drum having a filter cloth stretched around an outer peripheral surface via a filter bridge is attached to a center pipe, and a lower part of the rotary drum is used as a stock bat. The stock slurry is immersed and subjected to pressure filtration or suction filtration, and the filtrate is led out of the machine by a filtrate tube connected to the center pipe, and is connected to the center pipe so as to communicate with the inner peripheral surface of the rotating drum. A rotary single-chamber filter that peels off and collects the cake layer formed on the outer surface of the filter cloth by a gas blown from a hole in the upper part of the valve shoe provided through a gap. It is characterized by comprising pressurizing means for pressing a sliding contact surface formed along the inner peripheral surface of the rotating drum against the inner peripheral surface of the rotating drum.
 また、本発明の請求項2に記載の回転式単室型濾過機は、請求項1に記載の発明において、上記バルブシューは、上記摺接面の反対側の上面が上記センターパイプに連結されたバルブバーの下面において支持されており、且つ、上記回転ドラムが回転する時に上記加圧手段を介して上記回転ドラムの内周面に即して上記摺接面を追随させることを特徴とするものである。 According to a second aspect of the present invention, in the rotary single-chamber filter according to the first aspect, the valve shoe has an upper surface opposite to the sliding contact surface connected to the center pipe. It is supported on the lower surface of the valve bar, and when the rotating drum rotates, the sliding contact surface is made to follow the inner peripheral surface of the rotating drum via the pressurizing means. is there.
 また、本発明の請求項3に記載の回転式単室型濾過機は、請求項2に記載の発明において、上記加圧手段は、上記バルブバーの下面に形成された凹陥部と、上記バルブシューの上面に形成され且つ上記凹陥部内に嵌入して上記凹陥部との間で密閉空間を形成する突起部と、上記凹陥部に形成された孔から上記密閉空間内に加圧流体を供給する流体供給手段と、を有することを特徴とするものである。 According to a third aspect of the present invention, there is provided the rotary single chamber type filter according to the second aspect, wherein the pressurizing means includes a recessed portion formed on a lower surface of the valve bar, and the valve shoe. And a fluid that supplies a pressurized fluid into the sealed space through a hole formed in the recessed portion and forming a sealed space between the recessed portion and a hole formed in the recessed portion. And a supply means.
 また、本発明の請求項4に記載の回転式単室型濾過機は、請求項1~請求項3のいずれか1項に記載の発明において、上記バルブバーと上記センターバイプを支持部材によって連結したことを特徴とするものである。 According to a fourth aspect of the present invention, in the rotary single-chamber filter according to the first aspect of the present invention, the valve bar and the center vip are connected by a support member according to any one of the first to third aspects. It is characterized by this.
 本発明によれば、循環ガスの漏洩量を削減することができると共に機器類の消費エネルギーを削減することができ、延いては機器類の小型化を促進することができる回転式単室型濾過機を提供することができる。 According to the present invention, it is possible to reduce the amount of circulating gas leakage, reduce the energy consumption of the equipment, and thus promote the downsizing of the equipment. Machine can be provided.
(a)、(b)は、いずれも本発明の回転式単室型濾過機の一実施形態である加圧式の回転式単室型濾過機の要部を示す図で、(a)はその断面図、(b)は(a)の矢印Bで示す丸で囲んだ部分を拡大して示す断面図である。(A), (b) is a figure which shows the principal part of the pressurization type rotary single-chamber filter which is one Embodiment of the rotary single-chamber filter of this invention, (a) is the figure Sectional drawing and (b) are sectional drawings which expand and show the part enclosed by the circle | round | yen shown by the arrow B of (a). (a)、(b)はいずれも図1に示す回転式単室型濾過機のバルブシューの要部を示す図で、(a)はその平面図、(b)はその断面図である。(A), (b) is a figure which shows the principal part of the valve shoe of the rotary single chamber type filter shown in FIG. 1, (a) is the top view, (b) is the sectional drawing. 従来の加圧式の回転式単室型濾過機の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional pressurization type rotary single chamber type filter. 図3に示す回転式単室型濾過機の要部を示す断面図である。It is sectional drawing which shows the principal part of the rotary single chamber type filter shown in FIG.
 1  回転ドラム
 2  センターパイプ
 3  原液バット
 5  濾液管
 6  バルブシュー
 6A 第1のバルブシュー
 6B 第2のバルブシュー
 6B1 突起部
 6C 第3のバルブシュー
 6C1 突起部
 7  バルブバー
 7A 第1のバルブバー
 7A1 凹陥部
 7A2 供給孔
 7B 第2のバルブバー
 7B1 凹陥部
 7B2 供給孔
 11  支持部材
DESCRIPTION OF SYMBOLS 1 Rotating drum 2 Center pipe 3 Stock solution vat 5 Filtrate tube 6 Valve shoe 6A 1st valve shoe 6B 2nd valve shoe 6B 1 projection part 6C 3rd valve shoe 6C 1 projection part 7 Valve bar 7A 1st valve bar 7A 1 recess Part 7A 2 supply hole 7B 2nd valve bar 7B 1 recessed part 7B 2 supply hole 11 Support member
 以下、図1及び図2に示す実施形態に基づいて本発明の回転式単室型濾過機を説明する。 Hereinafter, the rotary single-chamber filter of the present invention will be described based on the embodiment shown in FIG. 1 and FIG.
 本実施形態の回転式単室型濾過機は、例えば図1の(a)、(b)に示すように従来のものと同様に、回転ドラム1、センターパイプ2、原液バット3、ケーシング4、濾液管5、バルブシュー6、バルブバー7、濾布洗浄用スプレイ8A、洗浄用スプレイ8B、ケーキ排出用シュート9及びガス供給部10を備え、加圧式の回転式単室型濾過機として構成されている。 The rotary single-chamber filter according to the present embodiment includes, for example, a rotating drum 1, a center pipe 2, a stock solution bat 3, a casing 4, and a filtrate as shown in FIGS. 1 (a) and 1 (b). The tube 5, the valve shoe 6, the valve bar 7, the filter cloth cleaning spray 8 </ b> A, the cleaning spray 8 </ b> B, the cake discharge chute 9, and the gas supply unit 10 are configured as a pressurizing rotary single chamber filter. .
 而して、本実施形態の回転式単室型濾過機ではバルブシュー6及びバルブバー7の構造が異なるため、以下では本実施形態に用いられるバルブシュー6及びバルブバー7を中心にして従来と同一または相当部分には同一符号を付して説明する。 Thus, since the structure of the valve shoe 6 and the valve bar 7 is different in the rotary single-chamber filter of the present embodiment, the following is the same as the conventional one with the valve shoe 6 and the valve bar 7 used in the present embodiment as the center. Corresponding parts will be described with the same reference numerals.
 バルブシュー6は、例えば従来と同様に四フッ化エチレン樹脂等のように摩擦係数の小さな合成樹脂によって形成され、回転ドラム1に円滑に摺接するように形成されている。このバルブシュー6は、図1の(a)に示すように、第1、第2、第3のバルブシュー6A、6B、6Cに分割され、それぞれの下面が初期状態で回転ドラム1の内周面に沿って連続する円弧面として形成されている。第2、第3のバルブシュー6B、6Cの上面には後述する円形状の突起部が形成されている。また、バルブバー7は、図1の(a)に示すように第1、第2のバルブシュー6A、6Bに対応する第1のバルブバー7Aと、第3のバルブシュー6Cに対応する第2のバルブバー7Bに分割されている。第1、第2のバルブバー7A、7Bはいずれも平板状に形成され、更にそれぞれの上面には回転ドラム1の周方向(以下、「上下方向」とも称す。)に沿って補強用のリブが複数形成されている。第1のバルブシュー6Aは、後述するようにねじ等の締結部材(図示せず)によって第1のバルブバー7Aの上部下面に接合されて一体化し、第2、第3のバルブシュー6B、6Cはいずれも第1、第2のバルブバー7A、7Bの下面に対して進退可能な可動状態に取り付けられている。 The valve shoe 6 is formed of a synthetic resin having a small friction coefficient, such as a tetrafluoroethylene resin, as in the prior art, and is formed so as to be in sliding contact with the rotating drum 1 smoothly. As shown in FIG. 1A, the valve shoe 6 is divided into first, second, and third valve shoes 6A, 6B, and 6C, and the lower surfaces of the valve shoes 6 are the inner periphery of the rotary drum 1 in an initial state. It is formed as a circular arc surface that continues along the surface. Circular protrusions to be described later are formed on the upper surfaces of the second and third valve shoes 6B and 6C. Further, as shown in FIG. 1A, the valve bar 7 includes a first valve bar 7A corresponding to the first and second valve shoes 6A, 6B and a second valve bar corresponding to the third valve shoe 6C. It is divided into 7B. The first and second valve bars 7A and 7B are both formed in a flat plate shape, and reinforcing ribs are provided on the upper surfaces of the first and second valve bars 7A and 7B along the circumferential direction of the rotating drum 1 (hereinafter also referred to as “vertical direction”). A plurality are formed. As will be described later, the first valve shoe 6A is joined and integrated with the upper lower surface of the first valve bar 7A by a fastening member (not shown) such as a screw, and the second and third valve shoes 6B and 6C are integrated. Both are attached in a movable state so as to be movable back and forth with respect to the lower surfaces of the first and second valve bars 7A and 7B.
 第1のバルブシュー6Aは、図1の(a)に示すように第1のバルブバー7Aの下面の上部にねじ等の締結部材によって接合して固定されている。第2のバルブシュー6Bは、第1のバルブバー7Aの下面の下部に可動状態で取り付けられている。第1のバルブシュー6Aの円弧面と第2のバルブシュー6Bの円弧面は、図1の(a)に示すように第1のバルブバー7Aの下面で一体化した状態で回転ドラム1の内周面に沿って連続する円弧面として形成されている。この連続円弧面と回転ドラム1の内周面との間には実質的に均一な細隙(0.2~0.3mm程度)が形成され、第2のバルブシュー6Bが後述するように回転ドラム1側へ突出して細隙を埋めるようになっている。また、第3のバルブシュー6Cは、図1の(a)に示すように、第2のバルブバー7Bの下面全領域に渡って可動状態で取り付けられ、第2のバルブシュー6Bに準じて構成されている。 The first valve shoe 6A is joined and fixed to the upper part of the lower surface of the first valve bar 7A with a fastening member such as a screw as shown in FIG. The second valve shoe 6B is movably attached to the lower part of the lower surface of the first valve bar 7A. The arc surface of the first valve shoe 6A and the arc surface of the second valve shoe 6B are integrated with the lower surface of the first valve bar 7A as shown in FIG. It is formed as a circular arc surface that continues along the surface. A substantially uniform slit (about 0.2 to 0.3 mm) is formed between the continuous arc surface and the inner peripheral surface of the rotating drum 1, and the second valve shoe 6B rotates as described later. It projects to the drum 1 side so as to fill the slit. Further, as shown in FIG. 1A, the third valve shoe 6C is attached in a movable state over the entire lower surface area of the second valve bar 7B, and is configured according to the second valve shoe 6B. ing.
 第1のバルブバー7Aの下端縁には回転ドラム1の中心に向かう傾斜壁が形成され、第2のバルブバー7Bの上端縁には回転ドラム1の中心に向かう傾斜壁が形成されている。第1のバルブバー7Aと第2のバルブバー7Bは、それぞれの傾斜壁をボルト等の締結部材7Dを介して一体化されている。 An inclined wall toward the center of the rotating drum 1 is formed at the lower end edge of the first valve bar 7A, and an inclined wall toward the center of the rotating drum 1 is formed at the upper end edge of the second valve bar 7B. The first valve bar 7A and the second valve bar 7B are integrated with each inclined wall via a fastening member 7D such as a bolt.
 更に、第2のバルブバー7Bは、図1の(a)に示すように、下端部が棒状の支持部材11を介してセンターパイプ2に接続されている。このように支持部材11によってバルブバー7の下端部を支持しているため、回転ドラム1の外側からバルブシュー6に循環ガスの圧力がかかっても、その圧力でバルブシュー6が回転ドラム1の内側へ押し込まれて細隙を拡大しないようにしている。 Furthermore, the second valve bar 7B has a lower end connected to the center pipe 2 via a rod-like support member 11, as shown in FIG. Thus, since the lower end portion of the valve bar 7 is supported by the support member 11, even if the pressure of the circulating gas is applied to the valve shoe 6 from the outside of the rotating drum 1, the valve shoe 6 is brought into the inside of the rotating drum 1 by the pressure. So that the slit is not enlarged.
 次いで、図1、図2を参照しながら第1、第2のバルブシュー6A、6B及び第1のバルブバー7Aの関係について更に詳述する。 Next, the relationship between the first and second valve shoes 6A and 6B and the first valve bar 7A will be described in more detail with reference to FIGS.
 第2のバルブシュー6Bの上面中央部には、図2の(a)、(b)に示すように例えば円形状の扁平な突起部6Bが形成されていると共に第1のバルブバー7Aの下面には突起部6Bが嵌入する円形状の凹陥部7A(図1の(b)参照)が形成され、突起部6Bがピストンとして機能すると共に凹陥部7Aがシリンダとして機能するようにしてある。第1のバルブシュー6Aの円弧面と第2のバルブシュー6Bの円弧面が図1の(a)及び図2の(b)に示すように段差なく連続している状態では、突起部6Bの第2のバルブシュー6Bの上面からの突出高さが図1の(b)及び図2の(b)に示すように第1のバルブシュー6Aの上面より低くなるように形成されている。また、第1のバルブバー7Aの上部の厚みと凹陥部7Aの底面部の厚みとは図1の(b)に示すように実質的に同一肉厚に形成されている。従って、図2の(b)に示す第1のバルブシュー6Aと第2のバルブシュー6Bが第1のバルブバー7Aの下面に取り付けられて突起部6Bが凹陥部7Aに嵌入すると、図1の(b)に示すように突起部6Bの上面と凹陥部7Aの底面の間に細隙が形成される。 The upper central portion of the second valve shoe 6B, the lower surface of the first Barububa 7A with FIG. 2 (a), the circular flat projections 6B 1, for example, as shown in (b) is formed the circular recess 7A 1 (the (b) see FIG. 1) is formed of projections 6B 1 is fitted, so as to recess 7A 1 with projections 6B 1 functions as a piston to function as a cylinder It is. In a state where the arc surface of the first valve shoe 6A and the arc surface of the second valve shoe 6B are continuous without a step as shown in FIGS. 1A and 2B, the protrusion 6B 1 The protrusion height from the upper surface of the second valve shoe 6B is lower than the upper surface of the first valve shoe 6A as shown in FIGS. 1B and 2B. Further, the first Barububa 7A of the upper part of the thickness and the concave portion 7A 1 of the bottom thickness of the formed substantially the same thickness as shown in (b) of FIG. Therefore, when the first valve shoe 6A and the second valve shoe 6B shown in FIG. 2 (b) is projecting portion 6B 1 attached to the lower surface of the first Barububa 7A is fitted into the concave portion 7A 1, FIG. 1 slit is formed between the bottom surface of the top and recess 7A 1 of the protrusion 6B 1 as shown in (b).
 また、図1の(b)に示すように第2のバルブシュー6Bの突起部6Bの周面にはOリング12が装着され、このOリング12によって突起部6Bと凹陥部7Aの間に形成される細隙を封止し、密閉空間を形成している。更に、図1の(a)及び図2の(a)、(b)に示すように第1のバルブバー7Aの凹陥部7Aには密閉空間へ加圧ガスを供給するための供給孔7Aが形成され、図1の(a)に矢印Yで示すように供給孔6Aから密閉空間へ加圧ガスを供給することにより図2の(b)に一点鎖線で示すように第2のバルブシュー6Bが第1のバルブバー7Aから回転ドラム1に向かって前進し、第2のバルブシュー6Bの円弧面が回転ドラム1の内周面に押し付けられて弾力的に接触し、回転時の回転ドラム1の内周面に即して追随する。ここで、供給孔7Aは配管(図示せず)を介して加圧ガスの供給源(図示せず)に接続されている。これらのガス供給源、配管、第2のバルブシュー6Bの突起部6B、第1のバルブバー7Aの凹陥部7Aは、第2のバルブシュー6Bの円弧面を摺接面として回転ドラム1の内周面に押し付けて密に接触させるための加圧手段として構成されている。 Further, O-ring 12 is attached to the peripheral surface of the protruding portion 6B 1 of the second valve shoe 6B as shown in FIG. 1 (b), the protrusion 6B 1 and recess 7A 1 This O-ring 12 The gap formed between them is sealed to form a sealed space. Further, in FIG. 1 (a) and in FIG. 2 (a), the supply for supplying a pressurized gas into the enclosed space in the recess 7A 1 of the first Barububa 7A as shown in (b) hole 7A 2 As shown in FIG. 1 (a) by an arrow Y, a second gas is supplied from the supply hole 6A2 to the sealed space as shown by a one-dot chain line in FIG. 2 (b). The shoe 6B moves forward from the first valve bar 7A toward the rotating drum 1, and the arc surface of the second valve shoe 6B is pressed against the inner peripheral surface of the rotating drum 1 to make elastic contact with the rotating drum. Follow the inner peripheral surface of 1. Here, the supply holes 7A 2 is connected to the pipe via a (not shown) source of pressurized gas (not shown). These gas supply source, piping, protrusion 6B 1 of the second valve shoe 6B, and recess 7A 1 of the first valve bar 7A are formed on the rotary drum 1 with the arc surface of the second valve shoe 6B as the sliding surface. It is comprised as a pressurization means for pressing on an inner peripheral surface and making it contact closely.
 図2の(a)に二点鎖線で示すように第1のバルブバー7Aにはブローガスを噴出させるための長孔7Aが形成され、第1のバルブシュー6Aには長孔7Aに沿って複数の孔6Aが形成されている。従って、ブローガスは、第1のバルブバー7Aの長孔7A及び第1のバルブシュー6Aの複数の孔6Aを経由して回転ドラム1に向けて噴出する。また、第1のバルブシュー6Aにはねじ等の締結部材のための孔6Aが複数形成され、第1のバルブバー7Aの上部にはこれらの複数の孔7Aに雌ねじ(図示せず)が形成されている。 Elongated hole 7A 3 for ejecting the blow gas is formed in the first Barububa 7A as shown by the two-dot chain line in FIG. 2 (a), the first valve shoe 6A along the long hole 7A 3 a plurality of holes 6A 1 is formed. Therefore, the blow gas is jetted toward the rotary drum 1 through a plurality of holes 6A 1 of the first Barububa long hole 7A of 7A 3 and the first valve shoe 6A. Further, the first valve shoe 6A holes 6A 1 for fastening members such as screws are formed with a plurality of, first Barububa 7A internal thread these into a plurality of holes 7A 4 on the top (not shown) Is formed.
 また、第3のバルブシュー6C及び第2のバルブバー7Bは、図1の(a)に示すように、第2のバルブシュー6B及び第1のバルブバー7Aに準じて構成されている。但し、第3のバルブシュー6Cは、第2のバルブバー7Bの下面全領域を覆うように形成されている。従って、第3のバルブシュー6Cにも図1の(a)に示すように第2のバルブシュー6Bと同様に円形状の突起部6Cが形成され、第2のバルブバー7Bには第1のバルブバー7Aと同様に凹陥部7Bが形成されている。第3のバルブシュー6Cの突起部6Cがピストンとして形成され、第2のバルブバー7Bの凹陥部7Bがシリンダとして形成されている。 Moreover, the 3rd valve shoe 6C and the 2nd valve bar 7B are comprised according to the 2nd valve shoe 6B and the 1st valve bar 7A, as shown to (a) of FIG. However, the third valve shoe 6C is formed so as to cover the entire lower surface area of the second valve bar 7B. Accordingly, as shown in FIG. 1A, the third valve shoe 6C is also provided with a circular projection 6C1 as in the case of the second valve shoe 6B, and the second valve bar 7B has a first projection. Barububa 7A as well as recess 7B 1 is formed. Projections 6C 1 of the third valve shoe 6C is formed as a piston, recess 7B 1 of the second Barububa 7B is formed as a cylinder.
 次に、本実施形態の回転式単室型濾過機の動作について説明する。尚、原液スラリーFを濾過し、ケーキ層を回転ドラム1の外側から洗浄するまでは従来と同様であるためその説明は省略し、回転ドラム1からケーキ層を剥離する時のバルブシュー6及びバルブバー7の動作を中心に説明する。 Next, the operation of the rotary single chamber type filter of this embodiment will be described. Since the process until the stock slurry F is filtered and the cake layer is washed from the outside of the rotating drum 1 is the same as that of the prior art, the description thereof is omitted, and the valve shoe 6 and the valve bar when peeling the cake layer from the rotating drum 1 7 will be mainly described.
 回転ドラム1が回転してケーキ層が第1のバルブシュー6Aに達すると、ブローガスは第1のバルブバー7Aの長孔7Aから第1のバルブシュー6Aの複数の孔6Aを経由して回転ドラム1に向けて噴出し、回転ドラム1のケーキ層を剥離する。これにより第1のバルブシュー6Aの複数の孔6Aから下方側では回転ドラム1からケーキ層が剥離されているため、循環ガスが回転ドラム1内に透過しやすくなる。 When the rotary drum 1 cake layer rotates and reaches the first valve shoe 6A, the blow gas is via a plurality of holes 6A 1 of the first valve shoe 6A from the long hole 7A 3 of the first Barububa 7A rotation It ejects toward the drum 1, and the cake layer of the rotating drum 1 is peeled off. Thus for the cake layer from the rotating drum 1 at the lower side of a plurality of holes 6A 1 of the first valve shoe 6A is peeled off, the circulating gas is easily transmitted into the rotary drum 1.
 第1のバルブシュー6Aは第1のバルブバー7Aに固定されているため、第1のバルブシュー6Aと回転ドラム1との間に細隙が保持されているため、循環ガスがこの部分から漏洩する。しかし、回転ドラム1と第1のバルブシュー6A間の細隙は0.2~0.3mm程度と極めて狭いため、第1のバルブシュー6Aの部分での循環ガスの漏洩量は僅かである。 Since the first valve shoe 6A is fixed to the first valve bar 7A, a slit is held between the first valve shoe 6A and the rotary drum 1, so that the circulating gas leaks from this portion. . However, since the narrow gap between the rotary drum 1 and the first valve shoe 6A is as narrow as about 0.2 to 0.3 mm, the amount of circulating gas leakage at the first valve shoe 6A is small.
 第1のバルブシュー6Aの下側の第2、第3のバルブシュー6B、6Cでも循環ガスが回転ドラム1を透過しようとする。しかしながら、第1のバルブバー7Aの供給孔7Aから第2のバルブシュー6Bの突起部6Bと第1のバルブバー7Aの凹陥部7AとOリング12によって形成する密閉空間内に加圧ガスを供給しているため、この加圧ガスが第2のバルブシュー6Bを回転ドラム1の内周面に向けて前進させ、細隙を埋めて回転ドラム1の内周面に押し付けられて密接する。そのため、この部分では循環ガスの漏洩が抑制される。尚、第2のバルブシュー6Bの押し付け力は、回転ドラム1を制動するほどには作用しない。第2のバルブシュー6Bの下側の第3のバルブシュー6Cも第2のバルブシュー6Bと同様に加圧手段を備えているため、この部分からの循環ガスの漏洩量を、例えば50%程度削減することができ、延いては循環ガス量を30%程度削減することができる。 The circulating gas also attempts to permeate the rotating drum 1 in the second and third valve shoes 6B and 6C below the first valve shoe 6A. However, the pressurized gas into the sealed space formed by the recessed portion 7A 1 and the O-ring 12 from the supply hole 7A 2 of the first Barububa 7A and the projection 6B 1 of the second valve shoe 6B first Barububa 7A Since the gas is supplied, the pressurized gas advances the second valve shoe 6B toward the inner peripheral surface of the rotating drum 1, fills the slits, and is pressed against the inner peripheral surface of the rotating drum 1 so as to be in close contact with each other. Therefore, the leakage of the circulating gas is suppressed in this part. Note that the pressing force of the second valve shoe 6B does not act to the extent that the rotating drum 1 is braked. Similarly to the second valve shoe 6B, the third valve shoe 6C below the second valve shoe 6B is also provided with a pressurizing means. Therefore, the amount of circulating gas leaked from this portion is reduced to, for example, about 50%. As a result, the amount of circulating gas can be reduced by about 30%.
 このように循環ガスの漏洩量を削減できることから、加圧ガスを循環させるために使用される機器類の消費エネルギーを削減することができ、あるいは機器類の小型化を促進することができる。 Since the leakage amount of the circulating gas can be reduced in this way, the energy consumption of the equipment used for circulating the pressurized gas can be reduced, or the downsizing of the equipment can be promoted.
 また、従来の回転式単室型濾過機を用いて高温の原液スラリーFを濾過する場合には、予備運転して回転ドラム1等の機器類を原液スラリーFと実質的に同一の温度まで加熱して回転ドラム1等を熱膨張させた後でなければ、バルブシュー6と回転ドラム1の内周面との細隙が広く、大量の循環ガスが漏洩する虞があった。そのため、予備運転から実運転までの時間が無駄になり、稼動効率が悪かった。 In addition, when the high temperature raw slurry F is filtered using a conventional rotary single-chamber filter, preliminary operation is performed to heat the devices such as the rotating drum 1 to substantially the same temperature as the raw slurry F. If the rotary drum 1 or the like is not thermally expanded, the slit between the valve shoe 6 and the inner peripheral surface of the rotary drum 1 is wide, and a large amount of circulating gas may be leaked. Therefore, the time from the preliminary operation to the actual operation was wasted and the operation efficiency was poor.
 これに対して、本実施形態では運転開始と同時に第2、第3のバルブシュー6B、6Cが回転ドラム1の内周面に密接する状態にすることができ、予備運転することなく直に実運転をすることができ、稼動効率を高めることができると共に、運転初期段階からバルブシュー6と回転ドラム1の内周面との細隙からの循環ガスの漏洩を確実に抑制し、防止することができる。 On the other hand, in the present embodiment, the second and third valve shoes 6B and 6C can be brought into close contact with the inner peripheral surface of the rotating drum 1 at the same time as the operation is started. In addition to being able to operate and improve operating efficiency, it is possible to reliably suppress and prevent leakage of circulating gas from the slit between the valve shoe 6 and the inner peripheral surface of the rotary drum 1 from the initial stage of operation. Can do.
 また、本実施形態では、第2のバルブバー7Bの下端部を支持部材11によって支持しているため、バルブシュー6が循環ガスの圧力によって回転ドラム1の内側へ移動することがなく、第2、第3のバルブシュー6B、6Cを安定した状態で回転ドラム1の内周面に密接させることができ、更に循環ガスの漏洩量を削減することができる。 In the present embodiment, since the lower end portion of the second valve bar 7B is supported by the support member 11, the valve shoe 6 does not move to the inside of the rotary drum 1 due to the pressure of the circulating gas, and the second, The third valve shoes 6B and 6C can be brought into close contact with the inner peripheral surface of the rotary drum 1 in a stable state, and the amount of circulating gas leaked can be further reduced.
 以上説明したように本実施形態によれば、バルブシュー6は、回転ドラム1の内周面に沿って形成された円弧面が回転ドラム内周面に押し付ける加圧手段を備えているため、原液スラリーFを濾過する間にバルブシュー6の部分での回転ドラム1内への循環ガスの漏洩量を格段に削減することができる。また、循環ガスの漏洩量を削減することができるため、循環ガスを循環させるための機器類の消費エネルギーを削減することができ、あるいは機器類の小型化を促進することができる。 As described above, according to the present embodiment, the valve shoe 6 includes the pressurizing means for pressing the arc surface formed along the inner peripheral surface of the rotating drum 1 against the inner peripheral surface of the rotating drum. While the slurry F is filtered, the amount of circulating gas leaked into the rotary drum 1 at the valve shoe 6 can be significantly reduced. Moreover, since the leakage amount of circulating gas can be reduced, the energy consumption of the equipment for circulating the circulating gas can be reduced, or the downsizing of the equipment can be promoted.
 また、本実施形態によれば、加圧手段は、第1、第2のバルブバー7A、7Bの下面にそれぞれ形成された凹陥部7A、7Bと、第2、第3のバルブシュー6B、6Cの上面にそれぞれ形成され且つ凹陥部7A、7Bに対して進退動可能に嵌入して凹陥部7A、7Bとの間で密閉空間を形成する突起部6B、6Cと、凹陥部7A、7Bにそれぞれ形成された供給孔7A、7Bから密閉空間内に加圧ガスを供給するガス供給源と、を有するため、簡単な構造で加圧ガスの漏洩量を減少させ、循環ガスの漏洩量を大幅に削減することができる。 Further, according to the present embodiment, the pressurizing means includes the recessed portions 7A 1 and 7B 1 formed on the lower surfaces of the first and second valve bars 7A and 7B, and the second and third valve shoes 6B, Protrusions 6B 1 , 6C 1 formed on the upper surface of 6C and fitted into the recessed portions 7A 1 , 7B 1 so as to be movable back and forth to form a sealed space between the recessed portions 7A 1 , 7B 1 , And a gas supply source for supplying pressurized gas into the sealed space from the supply holes 7A 2 and 7B 2 respectively formed in the recessed portions 7A 1 and 7B 1. The amount of circulating gas leakage can be greatly reduced.
 また、本実施形態によれば、第2のバルブバー7Bの下端部を支持部材11によって支持しているため、第2、第3のバルブシュー6B、6Cをより安定した状態で回転ドラム1の内周面に密接させることができ、更に循環ガス量を削減することができる。 Further, according to the present embodiment, since the lower end portion of the second valve bar 7B is supported by the support member 11, the second and third valve shoes 6B and 6C are more stable in the rotary drum 1. It can be brought into close contact with the peripheral surface, and the amount of circulating gas can be further reduced.
 尚、上記実施形態では、加圧手段として突起部、凹陥部及びOリングによって形成される密閉空間に加圧ガスを供給するようにしているが、本発明はこのような加圧手段に制限されるものではなく、例えば加圧ガスに代えて加圧液体を供給しても良く、また、バルブシューとバルブバーの間にばね部材等の弾力部材を介在させても良く、更に云えば、バルブシュー自体が弾力性を保有する材料によってバルブシューの円弧面(摺接面)を常に回転ドラムの内周面に押し付けるように形成し、摺接面を摩擦係数の小さい材料によって形成しても良い。また、上記実施形態では加圧式の回転式単室型濾過機について説明したが、減圧式の回転式単室型濾過機にも同様に適用することができる。 In the above embodiment, the pressurized gas is supplied to the sealed space formed by the protrusion, the recessed portion and the O-ring as the pressurizing means, but the present invention is limited to such a pressurizing means. For example, a pressurized liquid may be supplied instead of the pressurized gas, and an elastic member such as a spring member may be interposed between the valve shoe and the valve bar. The arcuate surface (sliding contact surface) of the valve shoe may be always pressed against the inner peripheral surface of the rotary drum by a material that itself has elasticity, and the sliding contact surface may be formed of a material having a small friction coefficient. Moreover, although the said embodiment demonstrated the pressurization type rotary single chamber type filter, it can apply similarly to a pressure reduction type rotary single chamber type filter.
 本発明の回転式単室型濾過機は、一般化学工業、肥料工業、金属工業、食品工業等多くの分野で利用することができる。 The rotary single-chamber filter of the present invention can be used in many fields such as general chemical industry, fertilizer industry, metal industry and food industry.

Claims (4)

  1.  フィルターブリッジを介して外周面に濾布を張設した回転ドラムをセンターパイプに軸着し、上記回転ドラムの下部を原液バットに浸漬して原液スラリーを加圧濾過または吸引濾過し、濾液をセンターパイプに接続する濾液管によって機外に導出し、上記センターパイプに連通するように連結され且つ上記回転ドラム内周面との間に細隙を介して設けられたバルブシュー上部の孔からブローされる気体によって上記濾布外面に形成されたケーキ層を剥離して回収する回転式単室型濾過機であって、上記バルブシューは、上記回転ドラムの内周面に沿って形成された摺接面を上記回転ドラムの内周面に押し付ける加圧手段を備えていることを特徴とする回転式単室型濾過機。 A rotating drum with a filter cloth stretched on the outer peripheral surface through a filter bridge is attached to the center pipe, the lower part of the rotating drum is immersed in a stock solution vat, and the stock solution slurry is pressure filtered or suction filtered, and the filtrate is fed to the center pipe. By a gas blown from a hole in the upper part of the valve shoe, which is led out of the machine by a connected filtrate pipe, connected so as to communicate with the center pipe, and provided between the inner peripheral surface of the rotary drum and a slit. A rotary single-chamber filter for peeling and collecting a cake layer formed on the outer surface of the filter cloth, wherein the valve shoe has a sliding contact surface formed along an inner peripheral surface of the rotary drum as described above. A rotary single-chamber filter having pressurizing means for pressing against an inner peripheral surface of a rotary drum.
  2.  上記バルブシューは、上記摺接面の反対側の上面が上記センターパイプに連結されたバルブバーの下面において支持されており、且つ、上記回転ドラムが回転する時に上記加圧手段を介して上記回転ドラムの内周面に即して上記摺接面を追随させることを特徴とする請求項1に記載の回転式単室型濾過機。 The valve shoe has an upper surface opposite to the sliding contact surface supported by a lower surface of a valve bar connected to the center pipe, and when the rotating drum rotates, the rotating drum rotates through the pressurizing means. The rotary single-chamber filter according to claim 1, wherein the sliding contact surface follows the inner peripheral surface.
  3.  上記加圧手段は、上記バルブバーの下面に形成された凹陥部と、上記バルブシューの上面に形成され且つ上記凹陥部内に嵌入して上記凹陥部との間で密閉空間を形成する突起部と、上記凹陥部に形成された孔から上記密閉空間内に加圧流体を供給する流体供給手段と、を有することを特徴とする請求項2に記載の回転式単室型濾過機。 The pressurizing means includes a recessed portion formed on the lower surface of the valve bar, a protrusion formed on the upper surface of the valve shoe and fitted into the recessed portion to form a sealed space between the recessed portion, The rotary single-chamber filter according to claim 2, further comprising fluid supply means for supplying a pressurized fluid into the sealed space from a hole formed in the recessed portion.
  4.  上記バルブバーと上記センターバイプを支持部材によって連結したことを特徴とする請求項1~請求項3のいずれか1項に記載の回転式単室型濾過機。 The rotary single-chamber filter according to any one of claims 1 to 3, wherein the valve bar and the center vip are connected by a support member.
PCT/JP2009/071708 2009-12-26 2009-12-26 Single-chamber type rotary filter WO2011077585A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/071708 WO2011077585A1 (en) 2009-12-26 2009-12-26 Single-chamber type rotary filter
JP2011547194A JP5398847B2 (en) 2009-12-26 2009-12-26 Rotary single chamber filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071708 WO2011077585A1 (en) 2009-12-26 2009-12-26 Single-chamber type rotary filter

Publications (1)

Publication Number Publication Date
WO2011077585A1 true WO2011077585A1 (en) 2011-06-30

Family

ID=44195142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071708 WO2011077585A1 (en) 2009-12-26 2009-12-26 Single-chamber type rotary filter

Country Status (2)

Country Link
JP (1) JP5398847B2 (en)
WO (1) WO2011077585A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132513A (en) * 1980-12-24 1982-08-16 Kloeckner Humboldt Deutz Ag Vacuum drum filter
JPH0544208U (en) * 1991-11-14 1993-06-15 三菱化工機株式会社 Rotary single chamber filter
JPH06502347A (en) * 1990-10-11 1994-03-17 ベイカー ヒューズ インコーポレイテッド Rotary filter with external adjustment of the blow-off valve
JP2002020324A (en) * 2000-07-05 2002-01-23 Mitsubishi Gas Chem Co Inc Method for recovering crystal from slurry
JP2002336610A (en) * 2001-05-14 2002-11-26 Mitsubishi Kakoki Kaisha Ltd Rotary single chamber type filter and cleaning method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132513A (en) * 1980-12-24 1982-08-16 Kloeckner Humboldt Deutz Ag Vacuum drum filter
JPH06502347A (en) * 1990-10-11 1994-03-17 ベイカー ヒューズ インコーポレイテッド Rotary filter with external adjustment of the blow-off valve
JPH0544208U (en) * 1991-11-14 1993-06-15 三菱化工機株式会社 Rotary single chamber filter
JP2002020324A (en) * 2000-07-05 2002-01-23 Mitsubishi Gas Chem Co Inc Method for recovering crystal from slurry
JP2002336610A (en) * 2001-05-14 2002-11-26 Mitsubishi Kakoki Kaisha Ltd Rotary single chamber type filter and cleaning method thereof

Also Published As

Publication number Publication date
JP5398847B2 (en) 2014-01-29
JPWO2011077585A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
KR102504657B1 (en) Pressurizing centrifugal dehydrator
JP5603338B2 (en) Mirror polishing apparatus, pressure head thereof, and mirror polishing method
JP2008290142A (en) Screw press
JP5398847B2 (en) Rotary single chamber filter
US6668600B1 (en) Distribution device for a device for dewatering pulp
JP2006223946A (en) Filter press apparatus and slurry pressing method of slurry in the same
CN102847616A (en) Distributing device of piston-pusher centrifuge
JP2010214346A (en) Filter cloth washing apparatus, filter press and filter cloth washing method
JP2009034745A (en) Retainer ring for cmp apparatus
JP6347328B2 (en) Filtration surface regeneration system in screw press
KR200452308Y1 (en) Auto-cleaning filter system
KR101550187B1 (en) Carrier head of chemical mechanical polishing apparatus
JP5043819B2 (en) Method and device for peeling cake on filter cloth
CN205903990U (en) Can clear away centrifuge drum on remaining filter cake layer
EP2147148A4 (en) Apparatus and method for washing pulp in a rotatable drum
CN105189860B (en) For washing and/or the equipment of dewa-tered pulp and insert for preventing the rewetting of pulp
CN211329366U (en) Novel device suitable for amoxicillin filters
JP2020502192A (en) CTA solvent exchange method
CN208712379U (en) A kind of mechanical washing device
TWI604897B (en) Closed circular blade for plastic device
JP2007021453A (en) Remaining filtrate recovery system used for rotary strainer and method for recovering remaining filtrate
KR101065042B1 (en) Fixing Structure of separation apparatus
JP4742659B2 (en) Coating method and coating apparatus
EA043521B1 (en) ROTATING FILTER AND RELATED FILTRATION METHOD
CN205628316U (en) Novel separation of long carbon chain binary acid crystallization liquid is with pressurization rotary drum centrifuge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852600

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547194

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852600

Country of ref document: EP

Kind code of ref document: A1