WO2011076025A1 - 多载波闭环功率控制装置及方法 - Google Patents

多载波闭环功率控制装置及方法 Download PDF

Info

Publication number
WO2011076025A1
WO2011076025A1 PCT/CN2010/077167 CN2010077167W WO2011076025A1 WO 2011076025 A1 WO2011076025 A1 WO 2011076025A1 CN 2010077167 W CN2010077167 W CN 2010077167W WO 2011076025 A1 WO2011076025 A1 WO 2011076025A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
signal
digital signal
closed
compensation
Prior art date
Application number
PCT/CN2010/077167
Other languages
English (en)
French (fr)
Inventor
刘兵
陶俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10838588.1A priority Critical patent/EP2512192B1/en
Publication of WO2011076025A1 publication Critical patent/WO2011076025A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a multi-carrier closed-loop power control apparatus and method. Background technique
  • the maximum transmit power of the wireless communication base station must be controlled, so the static power level of the base station needs to be set, and the static power level of the base station determines the coverage of the cell. After the static power level of the base station is set, if the base station transmit power variation causes interference to neighboring cell users, the transmit power becomes smaller, the cell coverage becomes smaller.
  • the main components used in the RF circuit are analog devices, and the gain thereof is The characteristics have a great relationship with temperature and frequency. In summary, the transmit power of the base station must be accurately controlled.
  • a closed loop power control technique is generally used for power control of a single carrier.
  • the prior art uses a narrow-band closed-loop power control method to separate each carrier signal from the coupled output of the antenna port, and performs closed-loop power control for each carrier signal.
  • the second technique of the prior art is to directly perform power control on the multi-carrier signal, but the feedback comparison and the closed-loop power control are all implemented in the analog part.
  • the prior art scheme needs to separate each carrier signal, and performs closed-loop power control on each carrier signal separately, which increases processing complexity.
  • the feedback comparison and closed-loop power control of the prior art scheme are implemented in the analog part, and the closed-loop power control performance is greatly affected by the characteristics of the analog device, which reduces the accuracy of the power control. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a multi-carrier closed-loop power control device, method and base station, which can reduce the complexity of wideband multi-carrier closed-loop power control and improve the accuracy of power control.
  • the invention provides a multi-carrier closed-loop power control device, the device comprising:
  • a downlink digital processing module configured to acquire a first multi-carrier digital signal, and perform closed-loop power compensation on the first multi-carrier digital signal by using a multi-carrier feedback digital signal to obtain a second multi-carrier digital signal;
  • a feedback analog channel module configured to acquire the multi-carrier feedback digital signal according to the multi-carrier output signal, where the multi-carrier output signal is a signal obtained by processing the second multi-carrier digital signal in an analog domain.
  • the downlink digital processing module includes:
  • a multi-carrier digital signal output sub-module configured to acquire a first multi-carrier digital signal according to the input two or more carrier baseband signals
  • a power calculation and compensation algorithm sub-module configured to obtain a closed-loop compensation value according to the input signal of each carrier baseband signal and the multi-carrier feedback digital signal;
  • a first calculation submodule configured to perform closed loop power compensation on the first multicarrier digital signal according to the closed loop compensation value to obtain a second multicarrier digital signal.
  • the multi-carrier digital signal output sub-module includes:
  • a digital upconverter corresponding to the carrier baseband signal for digitally up-converting two or more global mobile communication system (GSM) carrier baseband signals;
  • GSM global mobile communication system
  • An adder configured to combine the compensated two or more GSM carrier baseband signals, to obtain the A multi-carrier digital signal.
  • the multi-carrier digital signal output sub-module includes:
  • a digital upconverter corresponding to the carrier baseband signal, configured to perform digital up-conversion on two or more input GSM carrier baseband signals and two or more universal mobile communication system (UMTS) carrier baseband signals respectively;
  • UMTS universal mobile communication system
  • a multiplier for performing analog channel gain flatness compensation on each GSM carrier baseband signal according to a GSM transmission compensation coefficient table; and performing analog channel gain flatness compensation on each UMTS carrier baseband signal according to a UMTS transmission compensation coefficient table and a static power setting Static power compensation; an adder, configured to combine the compensated two or more GSM carrier baseband signals and two or more UMTS carrier baseband signals to obtain the first multicarrier digital signal.
  • the feedback analog channel module includes:
  • An RF channel configured to frequency shift the multi-carrier output signal to obtain an intermediate frequency or baseband analog signal
  • an analog-to-digital converter configured to perform analog-to-digital conversion on the intermediate frequency or baseband analog signal to obtain a multi-carrier digital feedback signal, and transmit the multi-carrier digital feedback signal to the downlink digital processing module.
  • the device further includes: a downlink analog channel module, configured to perform digital-to-analog conversion, frequency shifting, and static power level adjustment on the second multi-carrier digital signal to obtain a multi-carrier output signal.
  • a downlink analog channel module configured to perform digital-to-analog conversion, frequency shifting, and static power level adjustment on the second multi-carrier digital signal to obtain a multi-carrier output signal.
  • the power calculation and compensation algorithm sub-module is specifically configured to calculate the average transmit power of each carrier according to the input carrier baseband signals, and sum the average transmit power of each carrier to obtain the total power, and obtain the total power.
  • the static power level adjustment compensation is obtained, and the ideal multi-carrier average transmission power is obtained;
  • the feedback average power is calculated according to the multi-carrier feedback digital signal, and after the feedback average power is obtained, the feedback channel gain and temperature compensation and the calibration correction are performed, and the actual multi-carrier emission average is obtained. Power; the ideal multi-carrier average transmit power and actual multi-carrier transmission
  • the average power of the shots is compared to obtain the closed loop compensation value.
  • the invention provides a multi-carrier closed-loop power control method, the method comprising:
  • the multi-carrier output signal is a signal obtained by processing the second multi-carrier digital signal by an analog domain.
  • the acquiring the first multi-carrier digital signal according to the input two or more carrier baseband signals includes:
  • the analog channel gain flatness compensation is performed on each GSM carrier through the GSM transmission compensation coefficient table;
  • the acquiring the first multi-carrier digital signal according to the input two or more carrier baseband signals includes:
  • the analog channel gain flatness compensation is performed on each GSM carrier by the GSM transmission compensation coefficient table, and the analog channel gain flatness compensation and static power compensation are performed on each UMTS carrier by the UMTS transmission compensation coefficient table and static power compensation;
  • the first multicarrier digital signal is obtained.
  • the acquiring the multi-carrier feedback digital signal according to the multi-carrier output signal includes: Performing frequency shifting on the multi-carrier output signal to obtain an intermediate frequency or baseband analog signal; performing analog-to-digital conversion on the intermediate frequency or baseband analog signal to obtain the multi-carrier digital feedback signal.
  • the closed-loop power compensation is performed on the first multi-carrier digital signal by using a multi-carrier feedback digital signal, and the second multi-carrier digital signal is obtained by:
  • the method further includes:
  • the closed loop compensation value obtained according to the input signal baseband signal and the signal power of the multicarrier feedback digital signal includes:
  • the average transmission power of each carrier is calculated, and after obtaining the average transmission power of each carrier, the total power is obtained, and then the static power level is adjusted to obtain an ideal multi-carrier average transmission power;
  • the feedback average power is calculated, and after the feedback average power is obtained, the feedback channel gain and temperature compensation and the calibration correction are performed, and the actual multi-carrier emission average power is obtained;
  • the ideal multi-carrier average transmit power is compared with the actual multi-carrier transmit average power to obtain the closed-loop compensation value.
  • the GSM transmit compensation coefficient table provides each GSM carrier analog channel gain flatness compensation
  • the UMTS transmit compensation coefficient table and the static power setting provide each UMTS carrier analog channel gain flatness compensation and static power compensation.
  • the obtained first multi-carrier digital signal is directly subjected to closed-loop power compensation in the digital part to obtain a second multi-carrier digital signal, which does not need to separate each carrier signal, thereby reducing the complexity of multi-carrier closed-loop power control; Closed-loop power control in the digital part avoids the disadvantage of implementing closed-loop power control in the analog part and improves the accuracy of multi-carrier power control.
  • FIG. 1 is a block diagram of a closed loop power control of a conventional narrowband base station in the prior art
  • FIG. 2 is a schematic flowchart of a multi-carrier closed-loop power control method according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a multi-carrier closed-loop power control apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a GSM multi-carrier base station according to an embodiment of the present invention
  • Schematic diagram of a power controlled multi-carrier closed-loop power control device
  • FIG. 5 is a schematic flowchart of performing closed loop power control according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a multi-carrier closed-loop power control apparatus for power control of a GSM/UMTS dual-mode base station according to an embodiment of the present invention. detailed description
  • the embodiments of the present invention provide a method for reducing the complexity of wideband multi-carrier closed-loop power control and improving power in the prior art for power control of a multi-carrier base station, which has high complexity and low power control accuracy.
  • a multi-carrier closed-loop power control method and apparatus for controlling accuracy are provided.
  • the multi-carrier closed-loop power control method of the embodiment of the present invention includes: Step 201: Acquire a first multi-carrier digital signal according to two or more input carrier baseband signals. number;
  • Step 202 Perform closed-loop power compensation on the first multi-carrier digital signal by using the multi-carrier feedback digital signal to obtain a second multi-carrier digital signal.
  • Step 203 Acquire the multi-carrier feedback digital signal according to the multi-carrier output signal, where the multi-carrier output signal is a signal obtained by processing the second multi-carrier digital signal by using an analog domain.
  • the input two or more carrier baseband signals are baseband signals after dynamic power control.
  • the input two or more GSM carrier baseband signals are digitally up-converted, and the GSM transmission compensation coefficient table is used for each GSM carrier on the digitally converted GSM carrier baseband signal.
  • the analog channel gain flatness is compensated; the compensated two or more GSM carrier baseband signals are combined to obtain the first multi-carrier digital signal; when the input is more than two GSM carrier baseband signals and two or more universal mobile communication systems
  • the input two or more GSM carrier baseband signals and two or more UMTS multicarrier digital signals are digitally up-converted, and passed on the digitally up-converted GSM carrier baseband signal.
  • the GSM transmission compensation coefficient table compensates the gain flatness of each GSM carrier analog channel, and on the digitally up-converted UMTS carrier baseband signal, the UMTS transmission compensation coefficient table and the static power setting are used to simulate channel gain flatness of each UMTS carrier.
  • the static power is compensated; the two compensations of the UMTS carrier can be compensated by a compensation coefficient; combining the compensated two or more GSM carrier baseband signals and two or more UMTS multi-carrier digital signals to obtain a first multi-carrier digital signal;
  • the GSM transmit compensation coefficient table provides GSM carrier analog channel gain flatness compensation, and the UMTS transmit compensation coefficient table and static power settings provide UMTS carrier analog channel gain flatness compensation and static power compensation, wherein the UMTS transmit compensation coefficient table provides Each UMTS carrier analog channel gain is flat Compensation; static power compensation is provided to set the attenuation of the static power GSM downlink analog channel; two kinds of UMTS carriers to compensate by a compensation factor to compensate; GSM transmitting compensation coefficient table and a transmit compensation coefficient table UMTS via external
  • the CPU provides, or is implemented by, a memory.
  • step 202 a closed-loop compensation value is obtained according to the input signal of each carrier baseband signal and the multi-carrier feedback digital signal, and the first multi-carrier digital signal is multiplied by the closed-loop compensation value to obtain a second multi-carrier.
  • Digital signal
  • the IQ signal or the real signal may be used to calculate the average transmit power of each carrier, and after obtaining the average transmit power of each carrier, the total power may be obtained after summing, and then the static power level is adjusted.
  • the average power of the carrier transmission specifically: According to the multi-carrier feedback digital signal, it can be an IQ signal or a real signal, and the feedback average power is calculated.
  • the feedback average power needs to be de DC.
  • the calculation, other calculations are similar to the ideal multi-carrier average transmission power. After the feedback average power is obtained, the feedback channel gain and temperature compensation and calibration correction are performed, that is, the actual multi-carrier emission average power is obtained; further, in order to ensure the ideal
  • the multi-carrier average transmit power is the same as the signal corresponding to the actual multi-carrier transmit average power, and the multi-carrier feedback digital signal needs to be time-aligned.
  • the ideal multi-carrier average transmit power is compared with the actual multi-carrier transmit average power to obtain closed-loop compensation. a value, multiplying the first multi-carrier digital signal obtained in step 201 by the closed-loop compensation value, to obtain a closed-loop compensated second multi-carrier digital signal;
  • the carrier baseband signals described in this step may be two or more GSM carrier baseband signals, or may be two or more GSM carrier baseband signals and two or more UMTS carrier baseband signals.
  • Step 203 Perform frequency shifting on the multi-carrier output signal to obtain an intermediate frequency or baseband analog signal, and perform analog-to-digital conversion on the intermediate frequency or baseband analog signal to obtain a multi-carrier feedback digital signal.
  • Step 202 The multi-carrier feedback digital signal can be used to perform closed-loop power compensation on the first multi-carrier digital signal to obtain a second multi-carrier digital signal.
  • the closed-loop power control is directly performed on the multi-carrier digital signal, and it is not necessary to separate each carrier signal, thereby reducing the complexity of multi-carrier power control; and performing closed-loop power control in the digital part, thereby avoiding implementing closed-loop power in the analog part.
  • the shortcomings of control improve the accuracy of multi-carrier power control.
  • the embodiment can also perform closed-loop power control on the dual-mode multi-carrier signal.
  • the multi-carrier closed-loop power control apparatus of the embodiment of the present invention includes: a downlink digital processing module 301, configured to acquire a first multi-carrier digital signal, and use the multi-carrier feedback digital signal to the first multi-carrier digital signal. The signal performs closed-loop power compensation to obtain a second multi-carrier digital signal;
  • the feedback analog channel module 303 is configured to obtain the multi-carrier feedback digital signal according to the multi-carrier output signal, where the multi-carrier output signal is a signal obtained by processing the second multi-carrier digital signal by the analog domain.
  • the multi-carrier closed-loop power control apparatus of this embodiment can perform power control on a GSM multi-carrier base station
  • FIG. 4 is a schematic structural diagram of a multi-carrier closed-loop power control apparatus for performing power control on a GSM multi-carrier base station, wherein the downlink digital processing module 301 includes:
  • the multi-carrier digital signal output sub-module 420 is configured to acquire the first GSM multi-carrier digital signal according to the input of the two or more GSM carrier baseband signals;
  • the power calculation and compensation algorithm sub-module 410 is configured to obtain a closed-loop compensation value according to the input signal power of each GSM carrier baseband signal and the GSM multi-carrier feedback digital signal;
  • the first calculating sub-module 407 is configured to perform closed-loop power compensation on the first GSM multi-carrier digital signal according to the closed-loop compensation value to obtain a closed-loop compensated second GSM multi-carrier digital signal. As shown in FIG. 4, the first calculation sub-module 407 can be a multiplier. Further, the multi-carrier digital signal output sub-module 420 includes:
  • a digital upconverter 404 corresponding to the GSM carrier baseband signal, configured to perform digital up-conversion on the input two or more GSM carrier baseband signals;
  • a multiplier 409 configured to perform analog channel gain flatness compensation on each GSM carrier according to a GSM transmit compensation coefficient table on the GSM carrier baseband signal;
  • the adder 405 is configured to combine the compensated two or more GSM carrier baseband signals to obtain a first GSM multi-carrier digital signal.
  • the multi-carrier closed-loop power control device further includes a downlink analog channel module 302, and the downlink analog channel module 302 includes:
  • the digital-to-analog converter 411 is configured to perform digital-to-analog conversion on the closed-loop compensated second multi-carrier digital signal output by the first calculating sub-module 407 to obtain an analog multi-carrier signal;
  • the first RF channel 412 is configured to perform amplification and frequency shifting on the analog multi-carrier signal to obtain a broadband multi-carrier RF signal;
  • the controllable attenuator 413 is used for static power level adjustment of the broadband multi-carrier radio frequency signal; compared with the static power adjustment in the digital part, the advantage of the static channel adjustment of the analog channel is that the dynamic range of the transmitted signal can be improved;
  • An amplifier 414 configured to amplify the broadband multi-carrier radio frequency signal
  • the duplexer 415 is configured to filter the amplified broadband multi-carrier radio frequency signal to obtain a multi-carrier output signal
  • An antenna 416 is configured to transmit the multi-carrier output signal.
  • the feedback analog channel module 303 includes:
  • a second RF channel 418 configured to frequency shift the multi-carrier output signal output by the duplexer 415 to obtain an intermediate frequency or baseband analog signal
  • An analog-to-digital converter 417 is configured to perform analog-to-digital conversion on the intermediate frequency or baseband analog signal to obtain a multi-carrier digital feedback signal, and transmit the multi-carrier digital feedback signal to power calculation and compensation calculation Method sub-module 410.
  • each GSM carrier baseband signal that has passed the dynamic power control enters the digital up-converter 404, performs digital up-conversion, and uses the multiplier 409 to transmit the compensation coefficient table in the GSM carrier through the GSM.
  • the second GSM multi-carrier digital signal obtained by the closed-loop compensation is sent to the digital-to-analog converter 411 to enter the downlink analog channel 302, and the digital-to-analog converter 411 performs digital-to-analog conversion on the second GSM multi-carrier digital signal to become an analog multi-carrier signal.
  • the first RF channel 412 is input for amplification and frequency shifting, and then enters a controllable attenuator 413, which implements GSM static power level adjustment, and static power adjustment in the analog portion can be utilized to the digital-to-analog converter 411. Large dynamic range to increase the dynamic range of the downlink transmit signal.
  • the amplified wideband multi-carrier RF signal is then passed through the high power amplifier 414, filtered by the duplexer 415, and transmitted from the antenna 416.
  • the feedback analog channel 303 performs frequency shifting on the second RF channel 418 by the multi-carrier output signal outputted by the duplexer 415 to obtain an intermediate frequency or baseband analog signal, and performs analog-to-digital conversion by the analog-to-digital converter 417 to obtain a multi-carrier feedback digital signal.
  • the power calculation and compensation algorithm sub-module 410 is provided to the downstream digital processing module 301.
  • the power calculation and compensation algorithm sub-module 4 needs to calculate two power values, one is the ideal multi-carrier average transmission power of the input GSM carrier baseband signal, that is, the target power value; the other is output according to the analog-to-digital converter 417
  • the actual multi-carrier transmit average power obtained by the multi-carrier digital feedback signal, which is the actual power value of the downlink transmission, and the two powers are compared to obtain a closed-loop compensation value.
  • the purpose of closed-loop compensation is to keep the actual transmit power and the target power value consistent. Since the transmit channel gain is a slow-changing process, the two powers in one cycle (such as the minute) can be separately averaged to obtain two average powers.
  • Step 501 Calculate an ideal multi-carrier average transmit power e ra ge_ 3 ⁇ 4wer _ /i e fl/; that is, calculate an ideal multi-carrier transmit average power, power calculation and compensation algorithm sub-module
  • the attenuator 413 of the pseudo channel module 302 is implemented instead of the digital portion before the ideal power calculation, so ⁇ ⁇ wrage _ 3 ⁇ 4wer _Z3 ⁇ 4g to/ (0 is then static power level adjustment compensation, where static power level adjustment compensation
  • the value of Statz'c-Power is determined by the GSM static power level, which is 10" / 1Q , and finally the ideal multi-carrier average transmit power is obtained.
  • Average _ Power _ Ideal ⁇ Average _ Power _ Digitalii 110 2 ⁇ " /10 step 502, calculate the actual multi-carrier transmit average power A ge _ Power _ Actual; power calculation and compensation algorithm sub-module 410 according to the input multi-carrier number
  • the feedback signal IQ signal or real signal
  • the feedback average power is calculated to obtain Average-Powe:, since the DC component exists in the sample signal output from the analog-to-digital converter 417, it is required to calculate the power of the multi-carrier digital feedback signal.
  • the other operations are similar to the steps 501.
  • the multi-carrier digital feedback signal function needs to be delayed aligned.
  • the actual multi-carrier transmission average power calculation input is the feedback analog channel module.
  • the gain of the feedback analog channel must fluctuate very little, but this is difficult to implement. Therefore, the gain of the feedback analog channel must be compensated when calculating the actual transmit power. It is necessary to compensate the gain flatness, compensate the temperature gain change, and have different base stations.
  • the feedback channel gain variation can be obtained by finding the compensation coefficient table provided by the external CPU or stored in the memory to obtain the compensation coefficient of the feedback analog channel. Get feedback channel gain compensation and calibration after erage _ /3 ⁇ 4wer— Fee ⁇ ac t! ⁇ , ? p has ⁇ 1 j ⁇ vera S e _ Power _ Actual .
  • the calibration value of the power value is to ensure that the results of Average _ Power _ Ideal and Average _ Power _ Actual are consistent when the channel gain is normal, and the value remains unchanged after the determination;
  • Step 503 Calculate a closed loop compensation value ⁇ .
  • the power calculation and compensation algorithm sub-module 410 outputs a closed-loop compensation value ⁇
  • the first calculation sub-module 407 performs closed-loop power compensation on the first multi-carrier digital signal according to the closed-loop compensation value to obtain a closed-loop compensated second multi-carrier digital signal.
  • the power calculation and compensation algorithm sub-module 410 re-executes according to the first multi-carrier digital signal output by the adder 405 and the multi-carrier digital feedback signal output from the feedback analog channel 303.
  • the first calculation sub-module 407 performs closed-loop power compensation on the first multi-carrier digital signal according to the new closed-loop compensation value, and obtains the second multi-carrier digital signal, and repeats steps 501 to 503.
  • the closed-loop compensation value is calculated for each closed-loop compensation value update period.
  • the multi-carrier closed-loop power control apparatus of this embodiment can also perform power control on the GSM/UMTS dual-mode base station, as shown in FIG. 6 is a schematic structural diagram of a multi-carrier closed-loop power control apparatus for power control of a GSM/UMTS dual-mode base station, and The device shown in FIG. 4 differs only in the multi-carrier digital signal output sub-module 420.
  • the multi-carrier digital signal output sub-module 420 includes: a digital up-converter 404 corresponding to the GSM carrier baseband signal and the UMTS carrier baseband signal, For performing digital up-conversion on two or more input GSM carrier baseband signals and two or more UMTS carrier baseband signals;
  • a multiplier 409 configured to perform analog channel gain flatness compensation on each digital GSM carrier according to a GSM transmit compensation coefficient table on the digitally converted GSM carrier baseband signal; and on the digitally up-converted UMTS carrier baseband signal, according to UMTS transmit compensation coefficient table and static power setting for analog channel gain flatness compensation and static power compensation for each UMTS carrier;
  • An adder 405, configured to combine the compensated two or more GSM carrier baseband signals and two or more UMTS carrier baseband signals to obtain a first multicarrier digital signal
  • the first calculation sub-module 407 can be a multiplier
  • the input two or more UMTS carrier baseband signals and the two or more GSM carrier baseband signals are baseband signals subjected to dynamic power control, and when performing power control on the GSM/UMTS dual-mode base station, the GSM carrier baseband signal and the UMTS carrier baseband The signal is input to the corresponding digital up-converter 404 for digital up-conversion. After each GSM carrier baseband signal and the UMTS carrier baseband signal pass through the digital up-converter 404, the multiplier 409 performs an analog channel on each GMS carrier through the corresponding GMS transmission compensation coefficient table.
  • the subsequent other processes are the same as the workflow of the multi-carrier closed-loop power control device shown in Figure 4.
  • GSM carrier and UMTS are required
  • the independent power adjustment of the carrier keeps the gain of the downlink analog channel unchanged, and the two carriers independently implement dynamic power adjustment after the digital part, and then perform dual mode combining.
  • the GSM carrier if all the power adjustments are implemented in the digital part, it will affect the signal-to-noise ratio of the transmitted signal in the low power situation, so the GSM static power level adjustment is still implemented by the controllable attenuator 413 of the downlink analog channel 302. However, this will affect the transmit power of the UMTS carrier.
  • the multiplier 409 must be used to perform static power compensation on the UMTS carrier digital signal to compensate for the attenuation of the GSM static power setting for the downlink analog channel, wherein the static power level adjustment compensation value is static by GSM.
  • the power level is determined as io" /1Q .
  • the closed-loop power control of the multi-carrier digital signal is directly performed in the digital part, which reduces the complexity of the multi-carrier power control, and overcomes the disadvantage that the power control precision is not high due to the power closed-loop control in the analog part; Part of the compensation of the analog feedback channel gain is achieved, which further improves the accuracy of the closed-loop power control.
  • the apparatus provided in this embodiment can also implement independent power adjustment of the GSM/UMTS dual mode, and perform closed loop power control on the GSM/UMTS dual mode base station.
  • the method embodiment is corresponding to the device embodiment, and the portion not described in detail in the method embodiment may refer to the description of the relevant part in the device embodiment, and the partial reference method not described in detail in the device embodiment.
  • the description of the relevant parts in the embodiment can be.
  • the steps of the foregoing embodiments may be implemented by a program to instruct related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium includes a disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM). Wait.
  • sequence numbers of the steps are not used to limit the sequence of the steps.
  • the steps of the steps are changed without any creative work. It is also within the scope of the invention.
  • the above is a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. It should be considered as the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

多栽波闭环功率控制装置及方法 技术领域
本发明涉及移动通信领域, 特别涉及一种多载波闭环功率控制装置及 方法。 背景技术
全 ί求移动通讯系统 ( Global System for Mobile Communications , 以下筒 称 GSM )无线通信基站的最大发射功率必须受到控制, 所以需要设置基站 的静态功率等级, 基站的静态功率等级决定了小区覆盖范围。 当基站的静 态功率等级设定好之后, 如果基站发射功率变大会对邻近小区用户造成干 扰, 发射功率变小则小区覆盖范围变小, 另外, 射频电路使用的主要器件 都是模拟器件, 其增益特性跟温度、 频率有很大的关系, 综上所述, 必须 对基站的发射功率进行精确控制。
如图 1所示, 传统窄带 GSM基站中, 一般釆用闭环功率控制技术, 针 对单个载波进行功率控制。 对于多载波 GSM基站的功率控制, 现有技术一 采用类似窄带的闭环功率控制方法, 从天线口的耦合输号中分离出每个载 波信号, 对每个载波信号分别进行闭环功率控制。 现有技术二是对多载波 信号直接进行功率控制, 但反馈比较和闭环功率控制都是在模拟部分实现。
但是发明人发现上述对多载波基站进行功率控制的技术方案存在以下 缺陷: 现有技术一的方案需要分离出每个载波信号, 对每个载波信号分别 进行闭环功率控制, 增加了处理的复杂度; 现有技术二的方案的反馈比较 和闭环功率控制都是在模拟部分实现, 闭环功率控制性能受模拟器件特性 影响较大, 降低了功率控制的精度。 发明内容
本发明要解决的技术问题是提供一种多载波闭环功率控制装置、 方法 及基站, 能够降低宽带多载波闭环功率控制的复杂度, 并提高功率控制的 精度。
为解决上述技术问题, 本发明的实施例提供技术方案如下:
本发明提供的一种多载波闭环功率控制装置, 该装置包括:
下行数字处理模块, 用于获取第一多载波数字信号, 并利用多载波反 馈数字信号对所述第一多载波数字信号进行闭环功率补偿, 得到第二多载 波数字信号;
反馈模拟通道模块, 用于根据多载波输出信号获取所述多载波反馈数 字信号, 所述多载波输出信号为所述第二多载波数字信号经模拟域处理后 得到的信号。
上述方案中, 所述下行数字处理模块包括:
多载波数字信号输出子模块, 用于根据输入的两个以上载波基带信号 获取第一多载波数字信号;
功率计算和补偿算法子模块, 用于根据输入的各载波基带信号和所述 多载波反馈数字信号的信号功率得到闭环补偿值;
第一计算子模块, 用于根据所述闭环补偿值对所述第一多载波数字信 号进行闭环功率补偿, 得到第二多载波数字信号。
上述方案中, 所述多载波数字信号输出子模块包括:
对应所述载波基带信号的数字上变频器, 用于对输入的两个以上全球 移动通讯系统(GSM )载波基带信号进行数字上变换;
乘法器, 用于根据 GSM发射补偿系数表对各 GSM载波进行模拟通道 增益平坦度补偿;
加法器, 用于合并补偿后的两个以上 GSM载波基带信号, 得到所述第 一多载波数字信号。
上述方案中, 所述多载波数字信号输出子模块包括:
对应所述载波基带信号的数字上变频器, 用于对输入的两个以上 GSM 载波基带信号和两个以上通用移动通信系统(UMTS )载波基带信号分别进 行数字上变换;
乘法器, 用于根据 GSM发射补偿系数表对各 GSM载波基带信号进行 模拟通道增益平坦度补偿; 并根据 UMTS发射补偿系数表和静态功率设置 对各 UMTS载波基带信号进行模拟通道增益平坦度补偿和静态功率补偿; 加法器, 用于合并补偿后的两个以上 GSM 载波基带信号和两个以上 UMTS载波基带信号, 得到所述第一多载波数字信号。
上述方案中, 所述反馈模拟通道模块包括:
射频通道, 用于将所述多载波输出信号进行频率搬移得到中频或基带 模拟信号;
模数转换器, 用于对所述中频或基带模拟信号进行模数转换, 得到多 载波数字反馈信号, 并将所述多载波数字反馈信号传输给所述下行数字处 理模块。
上述方案中, 所述装置还包括: 下行模拟通道模块, 用于对所述第二 多载波数字信号进行数模转换、 频率搬移及静态功率等级调整得到多载波 输出信号。
上述方案中, 所述功率计算和补偿算法子模块具体用于根据输入的各 载波基带信号进行各载波平均发射功率的计算, 对各载波平均发射功率求 和得到总功率, 在得到总功率后进行静态功率等级调整补偿, 得到理想多 载波平均发射功率; 根据多载波反馈数字信号进行反馈平均功率计算, 得 到反馈平均功率后, 进行反馈通道增益和温度补偿以及定标修正, 得到实 际多载波发射平均功率; 将所述理想多载波平均发射功率和实际多载波发 射平均功率进行比较, 得到所述闭环补偿值。
本发明提供的一种多载波闭环功率控制方法, 该方法包括:
根据输入的两个以上载波基带信号获取第一多载波数字信号; 利用多载波反馈数字信号对所述第一多载波数字信号进行闭环功率补 偿, 得到第二多载波数字信号;
根据多载波输出信号获取所述多载波反馈数字信号, 所述多载波输出 信号为所述第二多载波数字信号经模拟域处理后得到的信号。
上述方案中, 所述根据输入的两个以上载波基带信号获取第一多载波 数字信号包括:
对输入的两个以上 GSM载波基带信号进行数字上变换;
通过 GSM发射补偿系数表对各 GSM载波进行模拟通道增益平坦度补 偿;
合并数字上变换后的两个以上 GSM载波基带信号,得到所述第一多载 波数字信号。
上述方案中, 所述根据输入的两个以上载波基带信号获取第一多载波 数字信号包括:
对输入的两个以上 GSM载波基带信号和两个以上 UMTS载波基带信 号分别进行数字上变换;
通过 GSM发射补偿系数表对各 GSM载波进行模拟通道增益平坦度补 偿, 并通过 UMTS发射补偿系数表和静态功率补偿对各 UMTS载波进行模 拟通道增益平坦度补偿和静态功率补偿;
合并补偿后的两个以上 GSM载波基带信号和两个以上 UMTS多载波 数字信号, 得到第一多载波数字信号。
上述方案中, 所述根据多载波输出信号获取所述多载波反馈数字信号 包括: 将所述多载波输出信号进行频率搬移得到中频或基带模拟信号; 对所述中频或基带模拟信号进行模数转换, 得到所述多载波数字反馈 信号。
上述方案中, 所述利用多载波反馈数字信号对所述第一多载波数字信 号进行闭环功率补偿, 得到第二多载波数字信号包括:
根据输入的各载波基带信号和所述多载波反馈数字信号的信号功率得 到闭环补偿值;
将所述第一多载波数字信号与所述闭环补偿值相乘, 得到第二多载波 数字信号。
上述方案中, 所述方法还包括:
对所述第二多载波数字信号进行数模转换、 频率搬移及静态功率等级 调整得到多载波输出信号。
上述方案中, 所述根据输入的各载波基带信号和所述多载波反馈数字 信号的信号功率得到闭环补偿值包括:
根据输入的各载波基带信号, 进行各载波平均发射功率计算, 得到各 载波平均发射功率后, 求和得到总功率, 再进行静态功率等级调整, 得到 理想多载波平均发射功率;
根据多载波反馈数字信号进行反馈平均功率计算, 得到反馈平均功率 后, 进行反馈通道增益和温度补偿以及定标修正, 得到实际多载波发射平 均功率;
将所述理想多载波平均发射功率和实际多载波发射平均功率进行比 较, 得到所述闭环补偿值。
上述方案中, 所述 GSM发射补偿系数表提供各 GSM载波模拟通道增 益平坦度补偿, 所述 UMTS发射补偿系数表和静态功率设置提供各 UMTS 载波模拟通道增益平坦度补偿和静态功率补偿。 本发明的实施例具有以下有益效果:
上述方案中, 对获取的第一多载波数字信号在数字部分直接进行闭环 功率补偿得到第二多载波数字信号, 不需要分离出每个载波信号, 降低了 多载波闭环功率控制的复杂度; 同时在数字部分进行闭环功率控制, 避免 了在模拟部分实现闭环功率控制的缺点, 提高了多载波功率控制的精度。
附图说明
图 1为现有技术的传统窄带基站闭环功率控制框图;
图 2为本发明的实施例多载波闭环功率控制方法的流程示意图; 图 3为本发明的实施例多载波闭环功率控制装置的结构示意图; 图 4为本发明的实施例对 GSM多载波基站进行功率控制的多载波闭环 功率控制装置的结构示意图;
图 5为本发明的实施例进行闭环功率控制的流程示意图;
图 6为本发明的实施例对 GSM/UMTS双模基站进行功率控制的多载波 闭环功率控制装置的结构示意图。 具体实施方式
为使本发明的实施例要解决的技术问题、 技术方案和优点更加清楚, 下面将结合附图及具体实施例进行详细描述。
本发明的实施例针对现有对多载波基站进行功率控制的技术中, 复杂 度较高以及功率控制精度较低的问题, 提供一种能够降低宽带多载波闭环 功率控制的复杂度, 并提高功率控制的精度的多载波闭环功率控制方法及 装置。
如图 2所示, 本发明实施例的多载波闭环功率控制方法, 包括: 步骤 201、 根据输入的两个以上载波基带信号获取第一多载波数字信 号;
步骤 202、利用多载波反馈数字信号对第一多载波数字信号进行闭环功 率补偿, 得到第二多载波数字信号;
步骤 203、根据多载波输出信号获取上述多载波反馈数字信号, 该多载 波输出信号为第二多载波数字信号经模拟域处理后得到的信号。
步骤 201 中, 输入的两个以上载波基带信号为动态功率控制后的基带 信号。当输入的为两个以上 GSM载波基带信号时,对输入的两个以上 GSM 载波基带信号进行数字上变换, 在数字上变换后的 GSM载波基带信号上, 通过 GSM发射补偿系数表对各 GSM载波模拟通道增益平坦度进行补偿; 合并补偿后的两个以上 GSM载波基带信号, 得到第一多载波数字信号; 当 输入的为两个以上 GSM 载波基带信号和两个以上通用移动通信系统
( UMTS , Universal Mobile Telecommunications System )载波基带信号时, 对输入的两个以上 GSM载波基带信号和两个以上 UMTS多载波数字信号 进行数字上变换, 在数字上变换后的 GSM载波基带信号上, 通过 GSM发 射补偿系数表对各 GSM载波模拟通道增益平坦度进行补偿,并在数字上变 换后的 UMTS载波基带信号上, 通过 UMTS发射补偿系数表和静态功率设 置对各 UMTS载波模拟通道增益平坦度和静态功率进行补偿; UMTS载波 的这两种补偿可以通过一个补偿系数补偿;合并补偿后的两个以上 GSM载 波基带信号和两个以上 UMTS多载波数字信号,得到第一多载波数字信号; 所述 GSM发射补偿系数表提供各 GSM载波模拟通道增益平坦度补偿, 所述 UMTS发射补偿系数表和静态功率设置提供各 UMTS载波模拟通道增 益平坦度补偿和静态功率补偿,其中, UMTS发射补偿系数表提供各 UMTS 载波模拟通道增益平坦度补偿;静态功率设置补偿的是 GSM静态功率设置 对下行模拟通道的衰减; UMTS 载波的两种补偿可以通过一个补偿系数补 偿; 所述的 GSM发射补偿系数表和 UMTS发射补偿系数表可以通过外部 CPU提供, 或者通过存储器来实现。
步骤 202 中, 根据输入的各载波基带信号和所述多载波反馈数字信号 的信号功率得到闭环补偿值, 将所述第一多载波数字信号与所述闭环补偿 值相乘, 得到第二多载波数字信号;
具体的, 根据输入的各载波基带信号, 可以是 IQ信号或者实信号, 进 行各载波平均发射功率计算, 得到各载波平均发射功率后, 求和即可得到 总功率, 再进行静态功率等级调整, 得到理想多载波平均发射功率; 其中, 计算各载波平均发射功率时可以选择有下行功率的 Burst对信号幅度平方 求累计平均, 累计平均的点数由闭环补偿系数更新周期决定; 本步骤还计 算实际多载波发射平均功率, 具体的: 根据多载波反馈数字信号, 可以是 IQ信号或者实信号, 进行反馈平均功率计算, 由于 ADC釆样信号中存在 直流分量, 所以反馈平均功率计算的时候需要进行去直流运算, 其它计算 同理想多载波平均发射功率类似, 得到反馈平均功率后, 进行反馈通道增 益和温度补偿以及定标修正, 即得到实际多载波发射平均功率; 进一步的, 为了保证理想多载波平均发射功率和实际多载波发射平均功率对应的信号 一样, 需要对多载波反馈数字信号做延时对齐操作; 对理想多载波平均发 射功率和实际多载波发射平均功率进行比较, 得到闭环补偿值, 将步骤 201 得到的第一多载波数字信号与该闭环补偿值相乘, 就可以得到闭环补偿后 的第二多载波数字信号;
本步骤所述的各载波基带信号可以是两个以上 GSM载波基带信号,也 可以是两个以上 GSM载波基带信号和两个以上 UMTS载波基带信号。
对闭环补偿后的第二多载波数字信号进行数模转换, 得到模拟多载波 信号, 对模拟多载波信号进行放大及频率搬移, 得到宽带多载波射频信号, 再对宽带多载波射频信号进行静态功率等级调整, 经高功率放大器得到放 大后的宽带多载波射频信号, 经双工器进行滤波得到多载波输出信号, 由 天线将该多载波输出信号发射出去。 步骤 203 将多载波输出信号进行频率 搬移得到中频或基带模拟信号, 对该中频或基带模拟信号进行模数转换, 得到多载波反馈数字信号。 步骤 202 就可以利用该多载波反馈数字信号对 第一多载波数字信号进行闭环功率补偿, 得到第二多载波数字信号。
本实施例对多载波数字信号直接进行闭环功率控制, 不需要分离出每 个载波信号, 降低了多载波功率控制的复杂度; 同时在数字部分进行闭环 功率控制, 避免了在模拟部分实现闭环功率控制的缺点, 提高了多载波功 率控制的精度。 另外本实施例还可以对双模多载波信号进行闭环功率控制。
如图 3所示, 本发明实施例的多载波闭环功率控制装置, 包括: 下行数字处理模块 301 , 用于获取第一多载波数字信号, 并利用多载波 反馈数字信号对该第一多载波数字信号进行闭环功率补偿, 得到第二多载 波数字信号;
反馈模拟通道模块 303 ,用于根据多载波输出信号获取上述多载波反馈 数字信号, 上述多载波输出信号为第二多载波数字信号经模拟域处理后得 到的信号。
本实施例的多载波闭环功率控制装置可以对 GSM 多载波基站进行功 率控制,如图 4所示为对 GSM多载波基站进行功率控制的多载波闭环功率 控制装置结构示意图, 其中, 下行数字处理模块 301包括:
多载波数字信号输出子模块 420, 用于根据输入的两个以上 GSM载波 基带信号获取第一 GSM多载波数字信号;
功率计算和补偿算法子模块 410, 用于根据输入的各 GSM载波基带信 号和 GSM多载波反馈数字信号的信号功率得到闭环补偿值;
第一计算子模块 407, 用于根据上述闭环补偿值对第一 GSM多载波数 字信号进行闭环功率补偿, 得到闭环补偿后的第二 GSM多载波数字信号。 如图 4所示, 第一计算子模块 407可以为一乘法器。 进一步地, 多载波数字信号输出子模块 420包括:
对应 GSM载波基带信号的数字上变频器 404, 用于对输入的两个以上 GSM载波基带信号进行数字上变换;
乘法器 409, 用于在 GSM载波基带信号上, 根据 GSM发射补偿系数 表对各 GSM载波进行模拟通道增益平坦度补偿;
加法器 405 , 用于合并补偿后的两个以上 GSM载波基带信号, 得到第 一 GSM多载波数字信号。
其中, 该多载波闭环功率控制装置还包括下行模拟通道模块 302, 下行 模拟通道模块 302包括:
数模转换器 411 ,用于对第一计算子模块 407输出的闭环补偿后的第二 多载波数字信号进行数模转换, 得到模拟多载波信号;
第一射频通道 412, 用于对模拟多载波信号进行放大及频率搬移, 得到 宽带多载波射频信号;
可控的衰减器 413, 用于对宽带多载波射频信号进行静态功率等级调 整; 相对于在数字部分实现静态功率调整, 模拟通道实现静态功率调整的 优点是可以提高发射信号的动态范围;
放大器 414, 用于对宽带多载波射频信号进行放大;
双工器 415 ,用于对放大后的宽带多载波射频信号进行滤波得到多载波 输出信号;
天线 416, 用于将多载波输出信号发射出去。
其中, 反馈模拟通道模块 303包括:
第二射频通道 418 ,用于将双工器 415输出的多载波输出信号进行频率 搬移得到中频或基带模拟信号;
模数转换器 417, 用于对上述中频或基带模拟信号进行模数转换, 得到 多载波数字反馈信号, 并将多载波数字反馈信号传输给功率计算和补偿算 法子模块 410。
下面对图 4所示装置的工作流程进行介绍, 首先各经过动态功率控制 的 GSM载波基带信号进入数字上变频器 404, 进行数字上变换, 利用乘法 器 409通过 GSM发射补偿系数表在 GSM载波基带信号上对各 GSM载波 进行模拟通道增益平坦度补偿; 并经加法器 405进行合并得到第一 GSM多 载波数字信号,第一 GSM多载波数字信号经第一计算子模块 407进行闭环 功率补偿, 得到闭环补偿后的第二 GSM多载波数字信号, 送给数模转换器 411进入下行模拟通道 302, 数模转换器 411对第二 GSM多载波数字信号 进行数模转换, 变成模拟多载波信号, 然后进入第一射频通道 412 进行放 大及频率搬移, 之后进入可控的衰减器 413 , 该衰减器实现 GSM静态功功 率等级调整, 在模拟部分进行静态功率调整可以利用到数模转换器 411 较 大的动态范围,提高下行发射信号的动态范围。然后经过高功率放大器 414, 得到放大后的宽带多载波射频信号, 经双工器 415进行滤波, 从天线 416 发射出去。 反馈模拟通道 303将双工器 415输出的多载波输出信号在第二 射频通道 418进行频率搬移, 得到中频或基带模拟信号, 经模数转换器 417 进行模数转换, 得到多载波反馈数字信号, 提供给下行数字处理模块 301 中的功率计算和补偿算法子模块 410。
功率计算和补偿算法子模块 410, 需计算两个功率值, 一个是输入的 GSM载波基带信号的理想多载波平均发射功率, 也就是目标功率值; 另外 一个是根据模数转换器 417输出的多载波数字反馈信号得到的实际多载波 发射平均功率, 这个是下行发射的实际功率值, 并将这两个功率进行比较, 得到闭环补偿值。 闭环补偿的目的是使实际发射功率和目标功率值保持一 致, 由于发射通道增益是一个慢变过程, 可以对一个周期内 (如分钟级) 的两个功率分别进行计算平均, 得到两个平均功率, 根据这两个功率的差 得到下个周期的闭环补偿值。 图 5 所示为实现多载波闭环功率控制的流程示意图。 首先设置初始闭 环补偿值 =1 , 才艮据该初始闭环补偿值得到闭环补偿后的第二多载波数字 信号, 并经反馈模拟通道模块 303 输出多载波数字反馈信号, 之后的流程 包括:
步骤 501、 计算理想多载波平均发射功率 erage_ ¾wer _ /i efl/; 也就是计算理想的多载波发射平均功率, 功率计算和补偿算法子模块
410根据输入的各载波基带信号, 可以是 IQ信号或者实信号, 进行各载波 平 均 发 射 功 率 的 计 算 , 得 到 各 载 波 平 均 发 射 功 率 Av rage _ Power _ Digital (/); i = l - k ^ 对各载波平均发射功率求和即可得到总功 率 ί A ge— Po _Digital(i) , 因为本实施例中静态功率调整是通过下行模 =1
拟通道模块 302的衰减器 413 实现的, 而不是在理想功率计算之前的数字 部分实现, 所以得到 έ ^wrage _ ¾wer _Z¾g to/(0后再进行静态功率等级调整 补偿,其中静态功率等级调整补偿值 Statz'c— Power 由 GSM静态功率 等级 " 决定, 为 10"/1Q , 最后得到理想多 载波平均发射功率 Average _ Power _ Ideal .
Average _ Power _ Ideal =∑ Average _ Power _ Digitalii) 1102·"/10 步骤 502、 计算实际多载波发射平均功率 A ge _ Power _ Actual; 功率计算和补偿算法子模块 410根据输入的多载波数字反馈信号 (IQ 信号或者实信号), 进行反馈平均功率计算得到 Average— Powe :, 由 于模数转换器 417输出的釆样信号中存在直流分量, 所以在多载波数字反 馈信号功率计算的时候需要进行去直流运算, 其它运算同步骤 501 类似, 为了保证两个功率计算对应的信号一样, 需要对多载波数字反馈信号功做 延时对齐操作。 实际多载波发射平均功率计算的输入是反馈模拟通道模块
303 输出的多载波数字反馈信号, 在基站工作温度范围内及工作频率范围 内, 反馈模拟通道的增益必须波动很小, 但是这个实现起来困难, 所以在 计算实际发射功率时必须对反馈模拟通道的增益进行补偿, 需要补偿增益 平坦度, 补偿温度增益变化, 还有不同基站的反馈通道增益变化, 可以通 过查找外部 CPU提供的或存储器存储的补偿系数表来获得反馈模拟通道的 补偿系数。 得到 erage _ /¾wer— Fee^ac t后进行反馈通道增益补偿以及定标 !^正, ? p得^1 j ^veraSe _ Power _ Actual .
Average― Power― Actual
, n „ , ^ Average Power Digital (f) s(.、2 ,
= Average _ Power _ Feedback · > = = ·σ(ζ) · φ
― ― i=i Average _ Power _ Ideal
其中^ ;0;^ = i ~ 为反馈通道载波^'的补偿系数, 包含该载波的通道增 益补偿以及温度补偿 (幅度补偿值); ^为理想多载波平均发射功率值和实 际多载波发射平均功率值的定标修正值, 目的是保证通道增益正常时 Average _ Power _ Ideal和 Average _ Power _ Actual计算结果一致, 该值确定后保 持不变;
步骤 503、 计算闭环补偿值〃。
按照 μ = ] Average _ Power _ Ideal /Average _ Power _ Actual计算闭环^卜偿 值 。
之后功率计算和补偿算法子模块 410输出闭环补偿值^ ^, 第一计算子 模块 407根据闭环补偿值 对第一多载波数字信号进行闭环功率补偿, 得 到闭环补偿后的第二多载波数字信号。
在下一闭环补偿值更新周期, 例如可以为下一分钟, 功率计算和补偿 算法子模块 410再根据加法器 405输出的第一多载波数字信号和反馈模拟 通道 303 输出的多载波数字反馈信号重新进行计算, 得到下一周期的闭环 补偿值 ^,第一计算子模块 407根据新的闭环补偿值 ^对第一多载波数字信 号进行闭环功率补偿得到第二多载波数字信号, 重复步骤 501〜503 ,在每个 闭环补偿值更新周期对闭环补偿值进行计算。 本实施例的多载波闭环功率控制装置还可以对 GSM/UMTS 双模基站 进行功率控制,如图 6所示为对 GSM/UMTS双模基站进行功率控制的多载 波闭环功率控制装置结构示意图, 与图 4所示装置的不同仅在于多载波数 字信号输出子模块 420,本实施例中,多载波数字信号输出子模块 420包括: 对应 GSM载波基带信号和 UMTS载波基带信号的数字上变频器 404, 用于对输入的两个以上 GSM载波基带信号和两个以上 UMTS载波基带信 号进行数字上变换;
乘法器 409,用于在数字上变换后的 GSM载波基带信号上,根据 GSM 发射补偿系数表对各 GSM载波进行模拟通道增益平坦度补偿; 并在数字上 变换后的 UMTS载波基带信号上, 根据 UMTS发射补偿系数表和静态功率 设置对各 UMTS载波进行模拟通道增益平坦度补偿和静态功率补偿;
加法器 405, 用于合并补偿后的两个以上 GSM载波基带信号和两个以 上 UMTS载波基带信号, 得到第一多载波数字信号;
如图 6所示, 第一计算子模块 407可以为一乘法器;
其中, 输入的两个以上 UMTS载波基带信号和两个以上 GSM载波基 带信号都是经过动态功率控制的基带信号,在对 GSM/UMTS双模基站进行 功率控制时, GSM载波基带信号和 UMTS载波基带信号输入相应数字上变 频器 404, 进行数字上变换, 各 GSM载波基带信号及 UMTS载波基带信号 经过数字上变频器 404之后,乘法器 409通过对应的 GMS发射补偿系数表 对各 GMS载波进行模拟通道增益平坦度补偿、 及通过 UMTS发射补偿系 数表和静态功率设置对各 UMTS载波进行模拟通道增益平坦度补偿和静态 功率补偿, 之后通过第一加法器 405对各补偿后的载波基带信号进行合并, 得到第一多载波数字信号。 后续的其他流程同图 4 所示的多载波闭环功率 控制装置的工作流程。
对 GSM/UMTS双模基站进行功率控制, 需要实现 GSM载波和 UMTS 载波的独立功率调整, 本实施例中保持下行模拟通道的增益不变, 两种载 波在数字部分独立实现动态功率调整后再进行双模合并。对于 GSM载波来 说, 若所有的功率调整都在数字部分实现, 会影响小功率情况时下发射信 号的信噪比,所以 GSM的静态功率等级调整仍通过下行模拟通道 302的可 控衰减器 413实现, 但是这样会影响到 UMTS载波的发射功率, 所以必须 使用乘法器 409对 UMTS载波数字信号进行静态功率补偿, 补偿 GSM静 态功率设置对下行模拟通道的衰减, 其中静态功率等级调整补偿值由 GSM 静态功率等级"决定, 为 io"/1Q
本实施例对多载波数字信号直接在数字部分进行闭环功率控制, 降低 了多载波功率控制的复杂度, 同时克服在模拟部分实现功率闭环控制导致 功率控制精度不高的缺点; 本实施例在数字部分实现模拟反馈通道增益的 补偿, 进一步提高了闭环功率控制的精度。 此外通过本实施例提供的装置 还可以实现 GSM/UMTS双模的独立功率调整, 对 GSM/UMTS双模基站进 行闭环功率控制。
所述方法实施例是与所述装置实施例相对应的, 在方法实施例中未详 细描述的部分参照装置实施例中相关部分的描述即可, 在装置实施例中未 详细描述的部分参照方法实施例中相关部分的描述即可。
本领域普通技术人员可以理解, 实现上述实施例方法中的全部或部分 步骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一 计算机可读取存储介质中, 该程序在执行时, 包括如上述方法实施例的步 骤,所述的存储介质,如:磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM ) 等。
在本发明各方法实施例中, 所述各步骤的序号并不能用于限定各步骤 的先后顺序, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提 下, 对各步骤的先后变化也在本发明的保护范围之内。 以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改 进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1. 一种多载波闭环功率控制装置, 其特征在于, 该装置包括: 下行数字处理模块, 用于获取第一多载波数字信号, 并利用多载波反 馈数字信号对所述第一多载波数字信号进行闭环功率补偿, 得到第二多载 波数字信号;
反馈模拟通道模块, 用于根据多载波输出信号获取所述多载波反馈数 字信号, 所述多载波输出信号为所述第二多载波数字信号经模拟域处理后 得到的信号。
2. 根据权利要求 1所述的多载波闭环功率控制装置, 其特征在于, 所 述下行数字处理模块包括:
多载波数字信号输出子模块, 用于根据输入的两个以上载波基带信号 获取第一多载波数字信号;
功率计算和补偿算法子模块, 用于根据输入的各载波基带信号和所述 多载波反馈数字信号的信号功率得到闭环补偿值;
第一计算子模块, 用于根据所述闭环补偿值对所述第一多载波数字信 号进行闭环功率补偿, 得到第二多载波数字信号。
3. 根据权利要求 2所述的多载波闭环功率控制装置, 其特征在于, 所 述多载波数字信号输出子模块包括:
对应所述载波基带信号的数字上变频器, 用于对输入的两个以上全球 移动通讯系统(GSM )载波基带信号进行数字上变换;
乘法器, 用于根据 GSM发射补偿系数表对各 GSM载波进行模拟通道 增益平坦度补偿;
加法器, 用于合并补偿后的两个以上 GSM载波基带信号, 得到所述第 一多载波数字信号。
4. 根据权利要求 2所述的多载波闭环功率控制装置, 其特征在于, 所 述多载波数字信号输出子模块包括:
对应所述载波基带信号的数字上变频器, 用于对输入的两个以上 GSM 载波基带信号和两个以上通用移动通信系统(UMTS )载波基带信号分别进 行数字上变换;
乘法器, 用于根据 GSM发射补偿系数表对各 GSM载波进行模拟通道 增益平坦度补偿; 并根据 UMTS 发射补偿系数表和静态功率设置对各 UMTS载波进行模拟通道增益平坦度补偿和静态功率补偿;
加法器, 用于合并补偿后的两个以上 GSM 载波基带信号和两个以上 UMTS载波基带信号, 得到所述第一多载波数字信号。
5. 根据权利要求 1所述的多载波闭环功率控制装置, 其特征在于, 所 述反馈模拟通道模块包括:
射频通道, 用于将所述多载波输出信号进行频率搬移得到中频或基带 模拟信号;
模数转换器, 用于对所述中频或基带模拟信号进行模数转换, 得到多 载波数字反馈信号, 并将所述多载波数字反馈信号传输给所述下行数字处 理模块。
6. 根据权利要求 1至 5任一项所述的多载波闭环功率控制装置, 其特 征在于, 所述装置还包括:
下行模拟通道模块, 用于对所述第二多载波数字信号进行数模转换、 频率搬移及静态功率等级调整得到多载波输出信号。
7. 根据权利要求 6所述的多载波闭环功率控制装置, 其特征在于, 所 述功率计算和补偿算法子模块具体用于根据输入的各载波基带信号进行各 载波平均发射功率的计算, 对各载波平均发射功率求和得到总功率, 在得 到总功率后进行静态功率等级调整补偿, 得到理想多载波平均发射功率; 根据多载波反馈数字信号进行反馈平均功率计算, 得到反馈平均功率后, 进行反馈通道增益和温度补偿以及定标修正, 得到实际多载波发射平均功 率; 将所述理想多载波平均发射功率和实际多载波发射平均功率进行比较, 得到所述闭环补偿值。
8. 一种多载波闭环功率控制方法, 其特征在于, 该方法包括: 根据输入的两个以上载波基带信号获取第一多载波数字信号; 利用多载波反馈数字信号对所述第一多载波数字信号进行闭环功率补 偿, 得到第二多载波数字信号;
根据多载波输出信号获取所述多载波反馈数字信号, 所述多载波输出 信号为所述第二多载波数字信号经模拟域处理后得到的信号。
9. 根据权利要求 8所述的多载波闭环功率控制方法, 其特征在于, 所 述根据输入的两个以上载波基带信号获取第一多载波数字信号包括:
对输入的两个以上 GSM载波基带信号进行数字上变换;
通过 GSM发射补偿系数表对各 GSM载波进行模拟通道增益平坦度补 偿;
合并数字上变换后的两个以上 GSM载波基带信号,得到所述第一多载 波数字信号。
10. 根据权利要求 8所述的多载波闭环功率控制方法, 其特征在于, 所 述根据输入的两个以上载波基带信号获取第一多载波数字信号包括:
对输入的两个以上 GSM载波基带信号和两个以上 UMTS载波基带信 号分别进行数字上变换;
通过 GSM发射补偿系数表对各 GSM载波进行模拟通道增益平坦度补 偿, 并通过 UMTS发射补偿系数表和静态功率补偿对各 UMTS载波进行模 拟通道增益平坦度补偿和静态功率补偿;
合并补偿后的两个以上 GSM载波基带信号和两个以上 UMTS多载波 数字信号, 得到第一多载波数字信号。
11 . 根据权利要求 8 所述的多载波闭环功率控制方法, 其特征在于, 所述根据多载波输出信号获取所述多载波反馈数字信号包括:
将所述多载波输出信号进行频率搬移得到中频或基带模拟信号; 对所述中频或基带模拟信号进行模数转换, 得到所述多载波数字反馈 信号。
12. 根据权利要求 8所述的多载波闭环功率控制方法, 其特征在于, 所 述利用多载波反馈数字信号对所述第一多载波数字信号进行闭环功率补 偿, 得到第二多载波数字信号包括:
根据输入的各载波基带信号和所述多载波反馈数字信号的信号功率得 到闭环补偿值;
将所述第一多载波数字信号与所述闭环补偿值相乘, 得到第二多载波 数字信号。
13. 根据权利要求 8至 12任一项所述的多载波闭环功率控制方法, 其 特征在于, 所述方法还包括:
对所述第二多载波数字信号进行数模转换、 频率搬移及静态功率等级 调整得到多载波输出信号。
14. 根据权利要求 12所述的多载波闭环功率控制方法, 其特征在于, 所述根据输入的各载波基带信号和所述多载波反馈数字信号的信号功率得 到闭环补偿值包括:
根据输入的各载波基带信号, 进行各载波平均发射功率计算, 得到各 载波平均发射功率后, 求和得到总功率, 再进行静态功率等级调整, 得到 理想多载波平均发射功率;
根据多载波反馈数字信号进行反馈平均功率计算, 得到反馈平均功率 后, 进行反馈通道增益和温度补偿以及定标修正, 得到实际多载波发射平 均功率; 将所述理想多载波平均发射功率和实际多载波发射平均功率进行比 较, 得到所述闭环补偿值。
15. 根据权利要求 9所述的多载波闭环功率控制方法, 其特征在于, 所 述 GSM发射补偿系数表提供各 GSM载波模拟通道增益平坦度补偿, 所述 UMTS发射补偿系数表和静态功率设置提供各 UMTS载波模拟通道增益平 坦度补偿和静态功率补偿。
PCT/CN2010/077167 2009-12-21 2010-09-20 多载波闭环功率控制装置及方法 WO2011076025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10838588.1A EP2512192B1 (en) 2009-12-21 2010-09-20 Multi-carrier closed-loop power control device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102587777A CN101711053B (zh) 2009-12-21 2009-12-21 多载波闭环功率控制装置及方法
CN200910258777.7 2009-12-21

Publications (1)

Publication Number Publication Date
WO2011076025A1 true WO2011076025A1 (zh) 2011-06-30

Family

ID=42403806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077167 WO2011076025A1 (zh) 2009-12-21 2010-09-20 多载波闭环功率控制装置及方法

Country Status (3)

Country Link
EP (1) EP2512192B1 (zh)
CN (1) CN101711053B (zh)
WO (1) WO2011076025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867042A (zh) * 2020-12-31 2021-05-28 京信网络系统股份有限公司 增益控制方法、装置、基站和存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711053B (zh) * 2009-12-21 2012-11-28 中兴通讯股份有限公司 多载波闭环功率控制装置及方法
CN103716096B (zh) * 2012-09-29 2016-06-15 京信通信系统(中国)有限公司 直放站载波波动校准方法和装置
CN106341356B (zh) * 2015-07-10 2020-01-21 中兴通讯股份有限公司 下行载波平坦度补偿方法及装置
CN107863973A (zh) * 2016-09-22 2018-03-30 深圳市中兴微电子技术有限公司 一种功率定标方法和装置
CN108135028B (zh) * 2018-02-27 2022-08-19 中兴通讯股份有限公司 一种功率控制方法、装置及通信节点
CN111398674B (zh) * 2020-03-30 2022-05-03 西南科技大学 超宽带功率电平测量和控制电路
CN114286291B (zh) * 2021-12-10 2022-09-02 上海交通大学 基于多载波无线通信系统的空中计算方法、系统和介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333636A (zh) * 2000-07-06 2002-01-30 华为技术有限公司 一种宽带gsm多载波闭环功率控制方法及其装置
EP1793509A1 (en) * 2005-12-01 2007-06-06 Alcatel Lucent Transmit power control for a communication system
CN101711053A (zh) * 2009-12-21 2010-05-19 中兴通讯股份有限公司 多载波闭环功率控制装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8730698A (en) * 1998-06-29 2000-01-17 Nokia Networks Oy Power control in a multi-carrier radio transmitter
US7062289B2 (en) * 2001-02-27 2006-06-13 Huawei Technologies Co., Ltd. Method and apparatus of multi-carrier power control of base station in broad-band digital mobile communication system
CN101378275B (zh) * 2008-09-28 2012-04-04 华为技术有限公司 多载波控制方法、多载波削峰模块和基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333636A (zh) * 2000-07-06 2002-01-30 华为技术有限公司 一种宽带gsm多载波闭环功率控制方法及其装置
EP1793509A1 (en) * 2005-12-01 2007-06-06 Alcatel Lucent Transmit power control for a communication system
CN101711053A (zh) * 2009-12-21 2010-05-19 中兴通讯股份有限公司 多载波闭环功率控制装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2512192A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867042A (zh) * 2020-12-31 2021-05-28 京信网络系统股份有限公司 增益控制方法、装置、基站和存储介质

Also Published As

Publication number Publication date
CN101711053A (zh) 2010-05-19
EP2512192A4 (en) 2014-08-20
EP2512192A1 (en) 2012-10-17
CN101711053B (zh) 2012-11-28
EP2512192B1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP5274747B2 (ja) 通信装置のための利得制御
WO2011076025A1 (zh) 多载波闭环功率控制装置及方法
US8433263B2 (en) Wireless communication unit, integrated circuit and method of power control of a power amplifier therefor
JP5864176B2 (ja) スプリアス放射打ち消しのためのシステムおよび方法
US8055217B2 (en) Adaptive complex gain predistorter for a transmitter
JP3502087B2 (ja) ハイブリッド歪補償方法およびハイブリッド歪補償装置
EP2296412B1 (en) Wireless communication unit and power control system thereof
US20130077556A1 (en) Setting gains in an interference cancellation repeater based on path loss
JP2000201089A (ja) 無線装置、無線装置における送信電力制御方法および記録媒体
EP1980032B1 (en) Wireless subscriber communication unit and method of power control with back-off therefor
WO2020113946A1 (en) I/q imbalance compensation
US20230106513A1 (en) Polar Transmitter with FeedThrough Compensation
WO2012075773A1 (zh) 功率校准控制方法及装置
JP2006270797A (ja) 歪み補償装置及び歪み補償方法
JP5441817B2 (ja) 送信回路及び送信方法
US9392551B2 (en) Apparatus and method for matching antenna impedance in wireless communication system
JP5122361B2 (ja) 歪み補償機能を備えた増幅装置
WO2021203670A1 (zh) 一种信号处理方法和接收机
JP2002290166A (ja) 増幅装置
KR100628741B1 (ko) 이동통신 시스템에서의 디지털 컴바인 멀티 캐리어 전송장치 및 그 방법
JP2008098781A (ja) 通信装置
EP2541767B1 (en) Method and system for power control of a wireless communication device
JP5925729B2 (ja) 無線通信装置および干渉軽減制御方法
Li et al. A 130nm CMOS direct conversion transmitter for WCDMA
JP2010004362A (ja) 歪み補償機能を備えた増幅装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010838588

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE