WO2011075859A1 - Pompe volumétrique alternative a membrane pour usage médical - Google Patents

Pompe volumétrique alternative a membrane pour usage médical Download PDF

Info

Publication number
WO2011075859A1
WO2011075859A1 PCT/CH2010/000318 CH2010000318W WO2011075859A1 WO 2011075859 A1 WO2011075859 A1 WO 2011075859A1 CH 2010000318 W CH2010000318 W CH 2010000318W WO 2011075859 A1 WO2011075859 A1 WO 2011075859A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
movable member
membrane
piston
pump according
Prior art date
Application number
PCT/CH2010/000318
Other languages
English (en)
Inventor
Jean-Denis Rochat
Original Assignee
Jean-Denis Rochat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jean-Denis Rochat filed Critical Jean-Denis Rochat
Priority to EP10807428A priority Critical patent/EP2515970A1/fr
Priority to US13/518,487 priority patent/US9050408B2/en
Publication of WO2011075859A1 publication Critical patent/WO2011075859A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14224Diaphragm type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive

Definitions

  • the present invention relates to an alternative volumetric diaphragm pump for pumping liquids in the context of medical use.
  • a pump may be an enteral or parenteral pump, typically a portable infusion pump, in particular a single-use metering pump whose flow rate is determined in advance.
  • the miniaturized diaphragm and single-use medical pumps are essentially made up of two separate parts that mate removably.
  • Denominated driving part the first of these parts consists of a reusable module provided with a drive system, for example piston.
  • This piston allows to actuate an elastic membrane which is truly a flexible portion of the wall of a chamber of a pump body.
  • the latter forms the second so-called removable portion of the pump.
  • This part is in the form of a cassette through which the liquid to be pumped passes and therefore comprises at the inlet a feed pipe located upstream of the membrane and at the outlet a discharge pipe disposed downstream of the membrane .
  • Each of these conduits is connected to a tubing which is connected upstream to a bag containing a liquid and downstream to a catheter.
  • the cassette can be easily associated or removed from the driving part, generally by sliding.
  • the drive system of the so-called alternative displacement pumps is typically obtained by the reciprocating movement of a piston actuator.
  • the driving force may be that of, for example, an electromagnet traversed by a current.
  • the magnetic field is preferably channeled by a magnetic circuit.
  • the latter is often formed by a pot surrounding the coil and by a pole piece which closes the upper part of this pot. Solidarity of the piston and by the same movement, the pole piece defines with the upper part of the pot a gap whose thickness varies depending on the position of the piston along its stroke. In the rest position, the piston exerts only a slight pressure against the diaphragm of the pump body and the gap is maximum.
  • This position defines the starting point of a pumping cycle where the membrane is also in its rest position and releases a maximum volume in the chamber of the pump body. Thanks to the magnetic field that can generate the solenoid, the pole piece is then attracted by the pot until coming to lean against the upper part of the latter. The displacement of the membrane then reduces the volume of the chamber of the pump body and generates an overpressure on this membrane. The pressure exerted by the latter on the liquid makes it possible to empty the chamber by expelling the liquid out of the pump body via the discharge pipe.
  • the membrane initiates its return to its initial position by elastic relaxation, the volume of the chamber increases again gradually until returning to its maximum initial value. During this return phase, a depression settles in the chamber which generates the influx of a new volume of liquid through the upstream duct. Non-return valves prevent the flow of liquid in the wrong direction during the compression and intake phases.
  • the feed stream follows a characteristic curve which makes it possible to determine the precise moment when the pole piece came to rest against the pot. From this moment, the useful supply current of the coil is interrupted to allow the raising of the piston to its initial rest position thus completing a complete cycle of pumping.
  • the return of the piston and the pole piece in its rest position is typically effected by means of a leaf spring whose return force is sufficient to overcome the friction forces and the weight of the moving assembly.
  • the pole piece acquires an increasing acceleration to be stopped in its race by the stop that constitutes the upper face of the pot.
  • the impact of the pole piece generates undesirable nuisances, particularly at frequencies of pumping up to 8 to 50 cycles per second.
  • a highly compressible damping member made for example of a resilient material such as foam
  • this means does not, however, give satisfaction because of its significant wear observed over a long period of operation of the pump and the loss of precision in volume that it would generate.
  • Another drawback arising from the pumps described above lies in the lack of safety for the patient. Their use may present a number of dangers for the latter because of several malfunctions, the main ones being the following:
  • downstream occlusion occurring, for example, when a valve is kept in the closed position or when the access path to the patient is obstructed
  • the pumps of this type do not allow to be qualified as sufficiently reliable. This is particularly understandable when the life of the patient depends on it.
  • the reliability of any device can be effective only by a superabundance of controls or means of detecting the various possible anomalies.
  • Such devices may be for example a drop detection system which makes it possible to detect the moment when the infusion bag is empty thanks to an optical control system which fits on the drip chamber.
  • Another apparatus could be that for detecting the appearance of air by means of an ultrasonic detection member disposed around the tubing.
  • a pressure sensing system consisting of a pressure sensor (strain gauge, inductive sensor) which is the subject of an integrated device within the tubing and which prevents an occlusion.
  • the object of the present invention aims to overcome at least in part the aforementioned problems and disadvantages by integrating within the pump additional continuous measurement means which allow, at each pumping cycle, to obtain additional measurements from another type that are characteristic of the instantaneous state of the pump.
  • these data can be exploited on the one hand as superabundant control measures to increase and attest the reliability of the pump, and on the other hand as measures that can be exploited by means of servocontrol of the position of the pump.
  • movable member of the pump between the two ends of its race, to control its movement.
  • the subject of the present invention is an alternative volumetric diaphragm pump for medical use according to claim 1.
  • the addition of such embedded means in the pump gives the latter a simple, unique and compact set which avoids the use of the use of several additional devices to ensure patient safety.
  • the processing of additional data independent of the measurements made on the current or the supply voltage of the coil makes it possible to control the movement of all the movable members of the pump (membrane, piston, polar part), outside their two most distant opposite positions.
  • the object of the present invention makes it possible to increase the autonomy of the pumps operating with battery or battery and to reduce the wear and nuisances generated mainly by the repeated movements of the pole piece.
  • Such nuisances can be not only sound type but also be formed of a shock wave propagated in the tubes by the movement of the piston. This phenomenon causes jolts in the pipes connected to the pump body.
  • the small size and high autonomy of the pumps according to the subject of the present invention make them perfectly suitable for ambulatory application while ensuring easy and reliable use and installation.
  • Figure 1 is an elevational view in vertical section of the pump according to the invention.
  • FIG. 2 is a diagram illustrating the means implemented to process and exploit the signals characteristic of the instantaneous state of the pump.
  • FIG. 3 is a graph showing, on a full pumping cycle and in a normal situation, a first characteristic curve of the position of the movable member of FIG. the pump and a second characteristic curve of the supply current absorbed by the driving part of the pump.
  • this illustrates an alternative volumetric diaphragm pump 1, in particular a single-use pump, used in the medical field for drawing liquids from a reservoir and injecting it into a living body (human or animal) by means of tubing and a catheter.
  • liquids may typically be blood solutions or medicated solutes.
  • this disposable pump is formed of two distinct parts, namely a reusable driving part 10 and a disposable pump body 20 removably attached to the driving part, for example to the using a sliding system (not shown).
  • the driving part 10 essentially comprises an electromagnetic actuator 11.
  • the latter is formed of at least one coil 12 arranged in a magnetic circuit preferably constituted by a pot 13.
  • the pot 13 is made in three parts. , 13a, 13b, 13c from one or more ferromagnetic materials to be able to better channel the magnetic flux generated by the coil.
  • the source of electrical energy can be embedded in the pump 1, for example in the form of a battery or a battery, or be kept outside the pump 1. In the latter case, connecting means will be provided to be able to connect the pump to its source of energy.
  • a piston 14 forming the central element of a movable member 15 in linear cyclic displacement.
  • the guide of the movable member, in particular of the piston 14, is obtained by two bearings 16a, 16b preferably made of a non-magnetic material, self-lubricating.
  • the bearings and the piston are preferably made of low-temperature materials. coefficient of friction, such as ceramic and hard metal.
  • the upper part of the movable member consists of a pole piece 17 made integral with the piston 14 and which determines with said pot 13 a gap ⁇ whose thickness varies according to the position of the movable member on its axis of displacement 15 '.
  • a compensation member 19 is arranged in the driving part bearing against the pole piece 17. This member forces, at all times, the movable part 15 to be in contact With the elastic membrane 22.
  • this compensation member 19 consists of a compression spring sized to deliver a very light force, just enough to perform its function. This force is slightly greater than the weight of the movable member 15 plus the friction forces in the bearings 16a, 16b.
  • the second main part of the pump 1 is constituted by a pump body 20 in the form of a removable cassette comprising a chamber within which there is a membrane 22.
  • this prestressed membrane is intended to be in contact with a liquid that may be contained in the chamber.
  • the peripheral portion 22a of the membrane is connected to the pump body so that the membrane 22 can, by itself, constitute an expandable portion of the wall of the chamber pump body.
  • the central portion dedicated to 1 1 actuation of the membrane comprises a boss 22b establishing a reinforcement useful for transmitting, to a thinned portion 22c of the membrane, the force exerted by the piston 14 on the latter.
  • the membrane can be translated, by elastic deformation, from a normal rest position to an adjacent position by the transmission of work carried by the piston.
  • the lower end portion of the piston 14 will preferably be in direct abutment against the outer surface of the membrane, at the right of the boss 22b.
  • a first check valve 23, of the non-return type, is arranged at the inlet of the chamber, upstream of the diaphragm 22. This valve aims to close the internal end of an intake duct 24 and thus prevent any liquid discharge on the inlet side of the pump body.
  • a second valve 25 of the same type, without necessarily being identical, is disposed downstream of the membrane in order to prevent any gravity flow through a discharge pipe 26 situated at the outlet of the pump body, when the pump is not operated. Note however that the function to prevent gravity flow could be attributed to the first valve 23 rather than the second valve 25.
  • the prestressing applied to the membrane 22 is dimensioned so that it is sufficient to be able on its own to bring the movable member back into the rest position.
  • the elastic force inherent in the membrane which manifests itself when it is deformed, is calculated in order to be able to suck up a new volume of liquid to be pumped, to overcome the weight of the movable member 15 added with the forces of friction and the force exerted by the compensating organ 19. It will then be even to be able to push the movable member 15 to its initial position without resorting to a complementary means.
  • the converter 31 having in this case the task of transforming the incoming signal 33 characteristic of the measurement of the current I of the coil.
  • the object of the present invention also incorporates means 40 for continuously measuring the position of the movable member 15 on its axis of displacement 15 '.
  • these means 40 consist of electro-optical elements comprising a transmitter 41 generating an energy flux, for example a luminous flux, a receiver 42 providing a response signal 43 whose intensity is characteristic of the position of the movable member 15 along its stroke. They are supplemented by means 45 for processing and analyzing the signal 43, as illustrated in FIG.
  • the transmitter 41 and the receiver 42 are located on either side of the movable member 15 and vis-à-vis one another so that at least a part the energy flow emitted by the transmitter 41 can be picked up by the receiver 42.
  • the position of the movable member 15 is determined by the variation of the intensity of the response signal 43 which is generated by the displacement of a shutter 18. Solidarity of the movable member 15, the shutter 18 is intended to partially interpose between the transmitter and the receiver by penetrating through the energy flow in order to influence the amount of energy received by the receiver 42.
  • the shutter 18 obstructs the energy flow more importantly than when the membrane and the movable member 15 are in their opposite adjacent position, namely that where the gap ⁇ is reduced to its minimum value.
  • the obstruction caused by the compensation member 19 is considered negligible or invariable.
  • the width of the emission zone emanating from the transmitter 41 will be slightly greater than the length of the travel of the mobile member 15.
  • the transmitter consists of a light emitting diode (LED) and the receiver of a phototransistor sensitive to the wavelength range of the transmitter. More preferably, the emission and reception spectrum of these electro-optical means will be located in the infrared range. However, it will be understood that other wavelengths, in particular those in the visible range, could be used. Also, although means 40 were presented as means of analog nature and electro-optical type, it will be agreed that means of another kind could also be used (for example laser or ultrasound, or even digital by means of an optical encoder).
  • the means 30 making it possible to detect out-of-tolerance variations of the intensity I of the current before generating an alarm signal 35 as well as the means 45 for processing and analyzing the signal 43 can be physically constituted by the same organs or be integrated into common organs.
  • the members 31 and 32 are simultaneously dedicated to the tasks of the means 30 and 45 and can be considered as constituting both of these means simultaneously. It would indeed be unnecessary to provide the arrangement of two microprocessors 32, one for processing the signals 33 characteristic of the intensity of the current I and the other for processing the signals 43 of position of the movable member, while a single microprocessor is perfectly capable of simultaneously performing these two tasks.
  • separate means 30 and 45 could nevertheless be envisaged.
  • this represents a graph illustrating a first characteristic curve of the position of the movable member 15 and a second curve characteristic of the feed stream I absorbed by the driving part 10 of the pump.
  • the curves extend over a complete pumping cycle.
  • the situations illustrated in these figures are representative of normal operating conditions of the pump. The beginning of the cycle is represented by the instant to which the supply current I of the coil 12 is zero and the air gap ⁇ is at its maximum value 5 ma ' x . This situation corresponds to that shown in Figure 1 where the movable member 15 is in its highest position. Between the instant to and the instant ti, the member 15 remained stationary despite the energization of the coil.
  • the membrane By resuming its initial shape, the membrane will generate a relaxing effect which, between times t and ts will result in a short acceleration due to the return of the energy released by the membrane, followed by a deceleration between ts and At this last moment, the movable member 15 is immobilized and has reached its initial rest position.
  • the movement of the movable member 15 can be controlled in its stroke between its two distal positions.
  • the intensity of the supply current of the coil is varied in order to modify the behavior of the movable member throughout its travel.
  • the effect of this variation will be to dampen the end-of-travel arrival of the movable member and thus to prevent the nuisance that it could cause.
  • Control of the movement of this member, and hence of the flow rate of the pump is advantageously rendered minute thanks to means 45 for processing and rapidly analyzing the position signal 43.
  • the microprocessor 32 of the means 45 is able to control the means 50 dedicated to the servocontrol of the electromagnetic actuator 11 to control the movable member 15. Thanks to measurements that can be made continuously on the duration of each cycle, it is found that the means 30, 40 are not limited in any way to deliver an all-or-nothing type of information but allow to obtain a real continuous measurement of the state in which the electromagnetic actuator is located. the pump.
  • the processing and analysis means of the pump have additional measures which, with the measurements 33 of the supply current of the actuator 11, make it possible to diversify the checks carried out during the operation of the pump and thereby increase its reliability as much as the safety of the patient.
  • the microprocessor 32 will generate alarm signals 35 when the characteristic values of the current and / or the position of the movable member are outside acceptable ranges defined in advance.
  • the range of the tolerance ranges associated with measurements 33, 43 need not be constant but may instead vary, for example depending on the importance of certain selected measurement times.
  • the alarm signals indicate the presence of at least one malfunction detected by the pump.
  • Such malfunctions will typically be the appearance of air in the infusion lines, an upstream occlusion, a downstream occlusion, an upstream disconnection of the tubing, a disconnection downstream or the lack or incorrect arrangement of the cassette in the driving part.
  • an upstream occlusion the initial starting position of the next cycle will be modified, which will generate a position signal 43 different from that which should normally be generated in the initial position.
  • the maximum amplitude of the position signal 43 can not be reached or will be equaled only tardily because the membrane will be braked or stopped in its movement.
  • the position signal 43 will adopt a specific value characteristic of a minimum thickness of the gap.
  • the signals 33, 43 can not only be used as control data for the operation of the pump, but can also be used to control the movable member 15 between the two distal positions which define its travel.
  • the signals 33 and 43 can either be chosen independently of one another, or can be combined by the microprocessor 32 or else be used in a complementary way by the latter.
  • the alarm signal 35 may thus result from one or other of these possibilities.
  • the microprocessor 32 will preferentially use the exploitation of the two signals 33 and 43.
  • the means 30, 45 and 50 make it possible to process and exploit the signals 33, 43 characteristics of the instantaneous state of the pump to ensure its proper functioning and increase patient safety.
  • the electromagnetic actuator 11 could consist of a rotary motor, for example a direct current motor, incorporating means for transforming a rotary movement into a cyclic linear movement applied to the piston 14. Such means transformations typically obtainable by a cam or connecting rod system.
  • the means 40 for determining the instantaneous position of the movable member 15 could then include an optical sensor or a Hall effect encoder on the engine.
  • this motor could consist of a step-by-step actuator making it possible to transform an electrical signal (pulse or train of driving pulses) into a displacement (angular or linear).
  • the means 40 useful for measuring the instantaneous position of the movable member 15 could advantageously consist of counting means steps or half-steps of the engine, namely electronic calculation means for counting the control pulses to determine the instantaneous position of the piston.
  • the electromagnetic actuator 11 could be constituted by other types of actuators, among which we will mention the linear electrodynamic actuator of the "voice-coil" type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Reciprocating Pumps (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

Pompe (1) volumétrique alternative à membrane, destinée à des liquides et à un usage médical, comprenant une partie motrice (10) au sein de laquelle se trouvent un actuateur électromagnétique (11) intégrant au moins une bobine (12) et activant un piston (14) d'un organe (15) mobile en déplacement cyclique linéaire. La pompe comprend un corps de pompe (20) au sein duquel se trouve une membrane (22) précontrainte pouvant être translatée par déformation élastique d'une position normale de repos vers une position adjacente par transmission du travail d'un piston (14). Elle intègre des moyens (30) pour détecter des variations hors tolérances de l'intensité du courant d'alimentation par des mesures (33), des moyens (40) pour mesurer en continu la position de l'organe mobile (15) et des moyens de traitement et d'analyse (30; 45), desdites mesures, pouvant générer au moins un signal d'alarme (35) attestant la détection d'au moins un dysfonctionnement de la pompe.

Description

POMPE VOLUMETRIQUE ALTERNATIVE A MEMBRANE POUR USAGE MEDICAL
La présente invention se rapporte à une pompe volumétrique alternative à membrane, destinée au pompage de liquides dans le cadre d'un usage médical. Une telle pompe peut être une pompe entérale ou parentérale, typiquement une pompe à perfusion portable, en particulier une pompe doseuse à usage unique dont le débit est déterminé par avance.
Les pompes médicales miniaturisées à membrane et à usage unique sont pour l'essentiel formées de deux parties distinctes s ' accouplant de manière amovible. Dénommée partie motrice, la première de ces parties est constituée d'un module réutilisable pourvu d'un système d'entraînement, par exemple à piston. Ce piston permet d'actionner une membrane élastique qui constitue véritablement une portion flexible de la paroi d'une chambre d'un corps de pompe. Ce dernier forme la seconde partie dite amovible de la pompe. Cette partie se présente sous la forme d'une cassette par laquelle transite le liquide à pomper et comprend donc à l'entrée un conduit d'amenée situé en amont de la membrane et à la sortie un conduit de refoulement disposé en aval de la membrane. Chacun de ces conduits est raccordé à une tubulure qui est raccordée en amont à une poche contenant un liquide et en aval à un cathéter. La cassette peut être aisément associée ou retirée de la partie motrice, généralement par coulissement . Une fois assemblées, ces deux parties forment une pompe particulièrement légère dont les dimensions hors tout sont typiquement de l'ordre de 50 x 50 x 25 mm seulement.
Comme décrit et illustré dans le document EP1967223, le système d'entraînement des pompes volumétriques dites alternatives est typiquement obtenu par le mouvement de va- et-vient d'un actuateur à piston. La force motrice pourra être celle, par exemple, d'un électro-aimant parcouru par un courant. Afin de pouvoir tirer pleinement partie de la force générée, le champ magnétique est de préférence canalisé par un circuit magnétique. Ce dernier est souvent formé par un pot entourant la bobine et par une pièce polaire qui ferme la partie supérieure de ce pot. Solidaire du piston et par la- même de son mouvement, la pièce polaire définit avec la partie supérieure du pot un entrefer dont l'épaisseur varie en fonction de la- position du piston le long de sa course. En position de repos, le piston n'exerce qu'une faible pression contre la membrane du corps de pompe et l'entrefer est maximum. Cette position définit le point de départ d'un cycle de pompage où la membrane se trouve également dans sa position de repos et libère un volume maximum dans la chambre du corps de pompe. Grâce au champ magnétique que peut générer le solénoïde, la pièce polaire se trouve ensuite attirée par le pot jusqu'à venir s'accoler contre la partie supérieure de ce dernier. Le déplacement de la membrane réduit alors le volume de la chambre du corps de pompe et génère une surpression sur cette membrane. La pression exercée par celle-ci sur le liquide permet de vider la chambre en expulsant le liquide hors du corps de pompe par le conduit de refoulement. Lorsque la membrane amorce son retour en sa position initiale par relaxation élastique, le volume de la chambre s'accroît à nouveau progressivement jusqu'à reprendre sa valeur initiale maximum. Durant cette phase de retour, une dépression s'installe dans la chambre ce qui génère l'afflux d'un nouveau volume de liquide par le conduit amont. Des clapets anti-retour permettent d'empêcher l'écoulement du liquide dans le mauvais sens durant les phases de compression et d'admission.
Dans la phase de rapprochement de la pièce polaire jusqu'à son accolement contre le pot, le courant d'alimentation suit une courbe caractéristique qui permet de déterminer l'instant précis où la pièce polaire est arrivée en appui contre le pot. Dès cet instant, le courant utile d'alimentation de la bobine est interrompu pour permettre la remontée du piston à sa position initiale de repos en bouclant ainsi un cycle complet de pompage. Le retour du piston et de la pièce polaire dans sa position de repos s'opère typiquement par le biais d'une lamelle ressort dont la force de rappel est suffisante pour vaincre les forces de frottement et le poids de l'ensemble mobile.
L'un des inconvénients de ce dispositif d'entraînement réside dans le fait que le mouvement du piston n'est pas contrôlé dans sa course entre ses deux positions distales. Comme son mouvement influence directement celui de la membrane, le volume de liquide que celle-ci est capable de pomper ne peut être garanti avec une grande précision. Il s'ensuit que le débit de la pompe est susceptible de fluctuer de façon incontrôlable.
Par ailleurs, devenant libre dans son mouvement aussitôt que le courant d'alimentation est établi dans la bobine, la pièce polaire acquière une accélération croissante jusqu'à être stoppée dans sa course par la butée que constitue la face supérieure du pot. Malgré la relative courte longueur de cette course, typiquement comprise entre 0,2 à 2 mm, de préférence de l'ordre de 0,5 mm, l'impact de la pièce polaire génère des nuisances peu souhaitables, en particulier à des fréquences de pompage atteignant 8 à 50 cycles par seconde. Bien qu'il ait été pensé d'amortir le choc de la partie mobile contre le pot par l'agencement d'un organe amortisseur fortement compressible, réalisé par exemple en un matériau résilient tel que de la mousse, ce moyen ne donne toutefois pas satisfaction en raison de son usure important constatée sur une longue période de fonctionnement de la pompe et de la perte de précision en volume que cela engendrerait. Un autre inconvénient découlant des pompes décrites précédemment réside dans le manque de sécurité pour le patient. Leur utilisation peut présenter un certain nombre de dangers pour ce dernier en raison de plusieurs dysfonctionnements dont les principaux sont les suivants:
- apparition d'air dans la ligne de perfusion,
- occlusion amont survenant par exemple lorsque la tubulure est coudée ou que la poche de perfusion est vide,
- occlusion aval survenant par exemple lors du maintien en position fermée d'un robinet ou lorsque la voie d'accès au patient est obstruée,
- déconnexion amont de la tubulure,
- déconnexion de la tubulure en aval du corps de pompe,
- absence ou disposition incorrecte de la cassette dans la partie motrice.
Dans le premier et le quatrième cas, à savoir lors d'apparition d'air ou d'une déconnexion amont (engendrant une aspiration d'air), l'effort que doit fournir la pompe devient moindre du fait que le pompage de l'air requiert moins de force que le pompage d'un liquide de perfusion. Ainsi, le courant absorbé par la bobine diminue également (environ - 20%) pour une tension d'alimentation qui reste constante.
Dans le cas d'une occlusion amont, la force intrinsèque de la membrane élastique n'est plus suffisante pour que celle-ci puisse revenir à sa position initiale de repos. De ce fait, la position initiale de départ du cycle suivant sera modifiée. Ceci aura pour principal effet de réduire la valeur de l'entrefer. Ainsi, le courant absorbé par la bobine au début du cycle suivant sera bien en deçà de la valeur normale (environ -75% ) .
En présence d'une occlusion aval, c'est le phénomène inverse qui se produit. En raison de la surpression aval, la membrane est freinée voire stoppée dans son mouvement avant même d'atteindre sa position de travail la plus distante de sa position de repos. Ce regain d'effort se manifeste par une augmentation significative (environ +25%) du courant d'alimentation de la bobine.
Dans l'avant dernier cas de figure, à savoir celui de la déconnexion aval située en particulier à proximité du corps de pompe, une diminution brutale de la pression survient en aval de la membrane. Cette baisse de pression implique une réduction de l'effort que doit fournir la membrane ce qui se traduit par une diminution du courant absorbé par la bobine.
Dans les dispositifs connus à ce jour, la détection d'une variation du courant d'alimentation en dehors d'une plage de tolérance prédéfinie (typiquement ± 5% de la valeur du courant normal à un instant donné) engendre l'émission d'un signal d'alarme informant aussitôt le patient ou le clinicien de l'avènement soudain d'une anomalie. Dans pareil situation, des mesures adéquates doivent être prises aussitôt pour assurer la thérapie souvent essentielle du patient, voire la survie de ce dernier.
En n'ayant recours qu'à la seule détection d'une variation hors normes du courant d'alimentation sans autre moyens de détection additionnel, les pompes de ce type ne permettent pas d'être qualifiées comme suffisamment fiables. Ceci se comprend particulièrement quand la vie du patient en dépend. La fiabilité de tout dispositif ne peut être effective que par une surabondance de contrôles ou de moyens de détection des différentes anomalies possibles.
Dans ce but, il est connu de proposer l'agencement d'appareils additionnels disposés sur la tubulure du circuit d'alimentation ou de refoulement de la pompe. De tels appareils peuvent être par exemple un système de détection de gouttes qui permet de détecter le moment où la poche de perfusion est vide grâce à un système de contrôle optique qui s'insère sur la chambre à goutte. Un autre appareil pourrait être celui visant à détecter l'apparition d'air au moyen d'un organe de détection par ultrasons disposé autour de la tubulure. On citera encore un système de détection de pression constitué par un capteur de pression (jauge de contrainte, capteur inductif) faisant l'objet d'un dispositif intégré au sein de la tubulure et qui permet de prévenir une occlusion .
L'inconvénient communs à tous ces systèmes additionnels réside dans le fait qu'ils augmentent singulièrement le nombre d'appareillages qu'il devient nécessaire de mettre en place pour pouvoir assurer un fonctionnement fiable de la pompe et obtenir des moyens de contrôle surabondants sur les possibles dysfonctionnements de cette dernière.
Le but de la présente invention vise à pallier au moins en partie les problèmes et inconvénients précités en intégrant au sein de la pompe des moyens additionnels de mesure continuelle qui permettent, à chaque cycle de pompage, d'obtenir des mesures supplémentaires d'un autre type qui soient caractéristiques de l'état instantané de la pompe. Par ce biais, ces données peuvent être exploitées d'une part comme mesures de contrôle surabondantes pour accroître et attester la fiabilité de la pompe, et d'autre part comme mesures pouvant être exploitées par des moyens d'asservissement de la position de l'organe mobile de la pompe, entre les deux extrémités de sa course, pour en contrôler son mouvement.
A cet effet, la présente invention a pour objet une pompe volumétrique alternative à membrane pour usage médical selon la revendication 1.
Avantageusement, l'adjonction de tels moyens embarqués dans la pompe confère à cette dernière un ensemble simple, unique et compact qui évite le recours à l'utilisation de plusieurs dispositifs annexes pour garantir la sécurité du patient. De plus, le traitement de données additionnelles et indépendantes des mesures effectuées sur le courant ou la tension d'alimentation de la bobine, permet de contrôler le mouvement de l'ensemble des organes mobiles de la pompe (membrane, piston, partie polaire) , en dehors de leurs deux positions opposées les plus éloignées. Avantageusement encore, l'objet de la présente invention permet d'augmenter 1 ' autonomie des pompes fonctionnant à batterie ou à pile et de réduire l'usure et les nuisances générées principalement par les mouvements répétés de la pièce polaire. De telles nuisances peuvent être non seulement de type sonore mais également être formées d'une onde de choc propagée dans les tubulures par le mouvement du piston. Ce phénomène engendre des secousses dans les tubulures reliées au corps de pompe.
En outre le faible encombrement et la grande autonomie des pompes conformes à l'objet de la présente invention les rendent parfaitement adaptées à une application ambulatoire tout en garantissant une utilisation et une installation simple et fiable.
D'autres avantages et spécificités apparaîtront à la lumière de la description qui va suivre et qui se réfère à un mode de réalisation préféré de l'objet de l'invention, pris à titre nullement limitatif et illustré schématiquement et à titre d'exemple par les figures annexées dans lesquelles:
La figure 1 est une vue en élévation et en coupe verticale de la pompe selon l'invention.
La figure 2 est un schéma illustrant les moyens mis en œuvre pour traiter et exploiter les signaux caractéristiques de l'état instantané de la pompe.
La figure 3 est un graphique représentant, sur un cycle complet de pompage et en situation normale, une première courbe caractéristique de la position de l'organe mobile de la pompe et une seconde courbe caractéristique du courant d'alimentation absorbé par la partie motrice de la pompe.
En référence à la figure 1, celle-ci illustre une pompe 1 volumétrique alternative à membrane, en particulier une pompe à usage unique, utilisée dans le domaine médical pour aspirer des liquides depuis un réservoir et l'injecter dans un corps vivant (humain ou animal) au moyen d'une tubulure et d'un cathéter. Ces liquides peuvent être typiquement des solutions sanguines ou des solutés médicamenteux.
Comme on peut le constater, cette pompe à usage unique est formée de deux parties distinctes, à savoir d'une partie motrice 10 réutilisable et d'un corps de pompe 20 à usage unique rapporté de manière amovible à la partie motrice, par exemple au moyen d'un système à coulisse (non illustré).
La partie motrice 10 comprend essentiellement un actuateur électromagnétique 11. Ce dernier est formé d'au moins une bobine 12 agencée dans un circuit magnétique constitué de préférence par un pot 13. Selon le mode de réalisation préféré, le pot 13 est réalisé en trois parties, 13a, 13b, 13c à partir d'un ou de plusieurs matériaux ferromagnétiques pour pouvoir canaliser au mieux le flux magnétique généré par la bobine. La source d'énergie électrique, non représentée dans cette figure, peut être embarquée au sein de la pompe 1, par exemple sous la forme d'une pile ou d'une batterie, ou être maintenue à l'extérieur de la pompe 1. Dans ce dernier cas, des moyens de connexion seront prévus pour pouvoir relier la pompe à sa source d ' énergie .
Au centre de la bobine se trouve un piston 14 formant l'élément central d'un organe 15 mobile en déplacement cyclique linéaire. Le guidage de l'organe mobile, en particulier du piston 14, est obtenu par deux paliers 16a, 16b réalisés de préférence en un matériau amagnétique, autolubrifiant. Dans le but de réduire autant que possible les frottements dans les paliers et d'éviter des effets indésirables lors de son déplacement (forces perturbatrices, courant de Foucault) , on notera que les paliers et le piston sont de préférence réalisés dans des matériaux à faible coefficient de frottement, comme par exemple la céramique et le métal dur. Suivant le mode de réalisation préféré de l'invention, la partie supérieure de l'organe mobile est constituée d'une pièce polaire 17 rendue solidaire du piston 14 et qui détermine avec ledit pot 13 un entrefer δ dont l'épaisseur varie en fonction de la position de l'organe mobile sur son axe de déplacement 15'.
Pour garantir le bon fonctionnement de la pompe dans n'importe quelle position, un organe de compensation 19 est agencé dans la partie motrice en appui contre la pièce polaire 17. Cet organe contraint, en tout temps, la partie mobile 15 à être en contact avec la membrane élastique 22. Selon le mode de réalisation préféré de l'invention, cet organe de compensation 19 est constitué d'un ressort de compression dimensionné pour délivrer une force très légère, juste suffisante pour remplir sa fonction. Cette force est légèrement supérieure au poids de l'organe mobile 15 additionné des forces de frottements dans les paliers 16a, 16b.
La seconde partie principale de la pompe 1 est constituée par un corps de pompe 20 se présentant sous la forme d'une cassette amovible comprenant une chambre au sein de laquelle se trouve une membrane 22. De nature élastique, cette membrane précontrainte est destinée à être en contact avec un liquide pouvant être contenu dans la chambre. La partie périphérique 22a de la membrane est reliée au corps de pompe de sorte à ce que la membrane 22 puisse, par elle-même, constituer une portion extensible de la paroi de la chambre du corps de pompe. Selon le mode de réalisation préféré, la partie centrale dédiée à 11 actionnement de la membrane comprend un bossage 22b établissant un renfort utile pour transmettre, à une partie amincie 22c de la membrane, la force exercée par le piston 14 sur cette dernière. Ainsi, la membrane peut être translatée, par déformation élastique, d'une position normale dite de repos en une position adjacente par la transmission du travail véhiculé par le piston. A cet effet, la partie terminale inférieure du piston 14 sera de préférence en appui direct contre la surface extérieure de la membrane, au droit du bossage 22b.
Un premier clapet 23, de type anti-retour, est agencé à l'entrée de la chambre, en amont de la membrane 22. Ce clapet vise à fermer l'extrémité interne d'un conduit d'admission 24 et à empêcher ainsi tout refoulement de liquide du côté de l'entrée du corps de pompe. Un second clapet 25 du même type, sans être nécessairement identique, est disposé en aval de la membrane afin d'empêcher tout écoulement gravitaire au travers d'un conduit de refoulement 26 situé à la sortie du corps de pompe, lorsque la pompe n'est pas actionnée. On mentionnera toutefois que la fonction visant à empêcher tout écoulement gravitaire pourrait être attribuée au premier clapet 23 plutôt qu'au second clapet 25.
Selon l'invention, la précontrainte appliquée à la membrane 22 est dimensionnée de sorte à ce qu'elle soit suffisante pour pouvoir à elle seule ramener l'organe mobile en position de repos. En d'autres termes, la force élastique inhérente à la membrane, qui se manifeste lorsque celle-ci est déformée, est calculée pour pouvoir aspirer un nouveau volume de liquide à pomper, vaincre le poids de l'organe mobile 15 additionné des forces de frottement et de la force exercée par l'organe de compensation 19. Elle sera alors à même de pouvoir repousser l'organe mobile 15 vers sa position initiale sans avoir recours à un moyen complémentaire.
En référence à la figure 2, celle-ci illustre des moyens 30 permettant d'une part de détecter des variations hors tolérances de l'intensité I du courant d'alimentation de la bobine, et d'autre part de générer au moins un signal d'alarme 35 et, si nécessaire, d'interrompre aussitôt ce courant. La détection et le traitement de ces possibles variations de courant hors tolérances s ' effectue lors de chaque cycle du piston, typiquement au moyen d'un convertisseur 31 analogique/digital et d'une unité de traitement et de commande telle qu'un microprocesseur 32. Le convertisseur 31 ayant dans ce cas pour tâche de transformer le signal entrant 33 caractéristique de la mesure du courant I de la bobine.
En plus de ces premiers moyens, l'objet de la présente invention intègre également des moyens 40 permettant de mesurer en continu la position de l'organe mobile 15 sur son axe de déplacement 15'. Tels qu'illustrés principalement à la figure 1, ces moyens 40 sont constitués d'éléments électrooptiques comprenant un émetteur 41 générant un flux énergétique, par exemple un flux lumineux, un récepteur 42 fournissant un signal de réponse 43 dont l'intensité est caractéristique de la position de l'organe mobile 15 le long de sa course. Ils sont complétés par un moyen 45 de traitement et d'analyse du signal 43, tel qu'illustré à la figure 2.
Selon le mode de réalisation préféré, l'émetteur 41 et le récepteur 42 sont situés de part et d'autre de l'organe mobile 15 et en vis-à-vis l'un de l'autre afin qu'au moins une partie du flux énergétique émis par l'émetteur 41 puisse être captée par le récepteur 42. La position de l'organe mobile 15 est déterminée par la variation de l'intensité du signal de réponse 43 qui est engendrée par le déplacement d'un obturateur 18. Solidaire de l'organe mobile 15, cet obturateur 18 vise à s'interposer partiellement entre l'émetteur et le récepteur en pénétrant au travers du flux énergétique afin d'influencer la quantité d'énergie reçue par le récepteur 42. Lorsque la membrane 22, et par là même l'organe mobile 15, se trouvent en position initiale de repos, comme illustré à la figure 1, l'obturateur 18 obstrue le flux énergétique d'une façon plus importante que lorsque la membrane et l'organe mobile 15 se trouvent dans leur position adjacente opposée, à savoir celle où l'entrefer δ est réduit à sa valeur minimale. A noter que l'obstruction causée par l'organe de compensation 19 est considérée comme négligeable ou invariable. Typiquement, la largeur de la zone d'émission émanant de l'émetteur 41 sera légèrement plus grande que la longueur de la course de l'organe mobile 15. En mesurant continuellement le signal de réponse 43 et en connaissant les valeurs correspondantes de ce signal aux deux positions distales de l'organe mobile 15, il devient alors possible de déterminer en temps réel la position de cet organe ou en d'autres termes la position du piston 14 et par là même la position de la membrane 22. Le signal 43 peut donc être qualifié de signal de position de l'organe mobile de la pompe .
Selon la version préférée de l'invention, l'émetteur est constitué d'une diode électroluminescente (LED) et le récepteur d'un phototransistor sensible à la gamme de longueur d'onde de l'émetteur. De préférence encore, le spectre d'émission et de réception de ces moyens électrooptiques sera situé dans le domaine de l'infrarouge. Toutefois, on comprendra que d'autres longueurs d'ondes, notamment celles du domaine du visible, pourraient être utilisées. Aussi, bien que les moyens 40 aient été présentés comme étant des moyens de nature analogique et de type électro-optiques, on conviendra que des moyens d'un autre genre pourraient également être employés (par exemple à laser ou à ultrasons, voire numérique au moyen d'un codeur optique) .
En revenant à la figure 2, on constatera que les moyens 30 permettant de détecter des variations hors tolérances de l'intensité I du courant avant de générer un signal d'alarme 35 ainsi que le moyen 45 de traitement et d'analyse du signal 43 peuvent être physiquement constitués par les mêmes organes ou être intégrés dans des organes communs. Dans le présent cas, les organes 31 et 32 sont dédiés simultanément aux tâches des moyens 30 et 45 et peuvent être considérés comme constituant simultanément ces deux moyens. Il serait en effet inutile de prévoir l'agencement de deux microprocesseurs 32, l'un pour traiter les signaux 33 caractéristiques de l'intensité du courant I et l'autre pour traiter les signaux 43 de position de l'organe mobile, alors qu'un seul microprocesseur est parfaitement à même de réaliser simultanément ces deux tâches. Toutefois, on mentionnera que des moyens distincts 30 et 45 pourraient néanmoins être envisagés.
D'autres moyens 50 destinés à asservir la position de l'organe mobile 15 le long de son axe de déplacement 15' peuvent encore être associés à la pompe 1, comme illustré dans la figure 2. Ces moyens 50 visent essentiellement à exploiter les signaux 33, 43 de manière à contrôler le mouvement de 1 ' actuateur électromagnétique 11, en particulier le mouvement de l'organe mobile 15, donc celui de la membrane 22, au cours de son déplacement sur son axe 15'.
En référence à la figure 3, celle-ci représente un graphique illustrant une première courbe caractéristique de la position de l'organe mobile 15 et une seconde courbe caractéristique du courant d'alimentation I absorbé par la partie motrice 10 de la pompe. En abscisse, les courbes s'étendent sur un cycle complet de pompage. Les situations illustrées dans ces figures sont représentatives de conditions normales de fonctionnement de la pompe. Le début du cycle est représenté par l'instant to où le courant d'alimentation I de la bobine 12 est nul et où l'entrefer δ se trouve à sa valeur maximum 5ma'x. Cette situation correspond à celle représentée à figure 1 où l'organe mobile 15 se trouve dans sa position la plus élevée. Entre l'instant to et l'instant ti, l'organe 15 est resté immobile malgré la mise sous tension de la bobine. Ceci découle principalement de l'intervalle de temps nécessaire à la bobine pour créer un champ magnétique suffisant à compter de sa mise sous tension et se traduit par un pic de courant atteignant passagèrement une valeur maximum Imax. Cette valeur est également due à l'épaisseur maximum de l'entrefer à cet instant. Entre les instants ti et t2, la vitesse de l'organe mobile, attiré en direction du pot 13 par le flux magnétique, est rendue relativement constante par réduction progressive du courant dans le même intervalle jusqu'à atteindre la valeur Ιχ en t2. A cet instant, la valeur δι de l'entrefer est suffisamment faible pour que l'énergie cinétique emmagasinée par l'organe mobile, de par son inertie, puisse compenser une réduction plus soudaine du courant atteignant une valeur minimale I2. Il s'ensuit une décélération progressive de l'organe mobile entre les instants t2 et t3 durant lesquels le courant est progressivement rehaussé jusqu'à une valeur I3. L'intervalle de temps t3-t4 correspond à la situation où l'organe mobile 15 est arrivé en bout de course. L'entrefer δ est alors réduit à sa valeur minimum ômin- Toutefois, un courant d'une intensité I3 est encore nécessaire pour pouvoir retenir l'organe mobile dans cette position en s 'opposant à la force de rappel utile, générée par l'élasticité intrinsèque de la membrane 22. A partir de l'instant t4, le mobile amorce alors sa remontée en direction de sa position initiale. Le courant peut alors être totalement interrompu jusqu'à la fin du cycle. En reprenant sa forme initiale, la membrane va générer un effet de détente qui, entre les instants t et ts va se traduire par une brève accélération due à la restitution de l'énergie libérée par la membrane, suivie d'une décélération entre ts et te- En ce dernier instant l'organe mobile 15 est immobilisé et a atteint sa position initiale de repos.
En variante, il serait également possible d'influencer le mouvement de l'organe mobile durant sa phase de retour dans sa position initiale, par exemple en instaurant un pic de courant (illustré en trait interrompu à la figure 3) au voisinage des instants t5 et t 6 - De nombreux paramètres influencent directement les valeurs de courant aux différents instants évoqués, durant un même cycle de fonctionnement. Pour l'essentiel, ces paramètres correspondent à la valeur de l'entrefer, à la perméabilité des matériaux de l'organe mobile et de son circuit magnétique, à l'induction de la bobine, à la masse de l'organe mobile et aux frottements dans les paliers. Aussi, on précisera que, selon différents cas de figure, la valeur I2 pourrait être nulle, les valeurs Ι χ et i3 pourraient être égales, et l'entrefer minimum ômin pourrait être réduit à zéro.
Avantageusement, on constate principalement que le mouvement de l'organe mobile 15 peut être contrôlé dans sa course entre ses deux positions distales. Par anticipation, on constate que l'intensité du courant d'alimentation de la bobine est variée en vue de modifier le comportement de l'organe mobile tout au long sa course. En particulier, l'effet de cette variation visera à amortir l'arrivée en bout de course de l'organe mobile et à prévenir ainsi les nuisances que celui-ci pourrait engendrer. La maîtrise du mouvement de cet organe, et par là même du débit de la pompe, est avantageusement rendue minutieuse grâce au moyen 45 de traitement et d'analyse rapide du signal de position 43.
Comme illustré à la figure 2, le microprocesseur 32 du moyen 45 est à même de commander le moyen 50 dédié à l'asservissement de 1 ' actuateur électromagnétique 11 pour en contrôler l'organe mobile 15. Grâce à des mesures pouvant être effectuées continuellement sur la durée de chaque cycle, on constate que les moyens 30, 40 ne se limitent nullement à délivrer une information de type tout ou rien mais permettent d'obtenir une réelle mesure en continu de l'état dans lequel se trouve l' actuateur électromagnétique de la pompe.
Grâce aux mesures 43 caractéristiques de la position de l'organe mobile 15, les moyens de traitement et d'analyse de la pompe disposent de mesures supplémentaires qui, avec les mesures 33 du courant d'alimentation de 1 ' actuateur 11, permettent de diversifier les contrôles effectués durant le fonctionnement de la pompe et d'accroître ainsi autant sa fiabilité que la sécurité du patient.
Dans ce but, le microprocesseur 32 générera des signaux d'alarme 35 lorsque les valeurs caractéristiques du courant et/ou de la position de l'organe mobile sont situées en dehors de plages admissibles définies par avance. On notera que l'étendue des plages de tolérance associées aux mesures 33, 43, n'a nul besoin d'être constante mais peut au contraire varier, par exemple en fonction de l'importance de certains instants de mesure choisis.
Les signaux d'alarme attestent la présence d'au moins un dysfonctionnement détecté par la pompe. De tels dysfonctionnements seront typiquement l'apparition d'air dans les lignes de perfusion, une occlusion amont, une occlusion aval, une déconnexion amont de la tubulure, une déconnexion aval ou encore l'absence ou la disposition incorrecte de la cassette dans la partie motrice. Dans le cas d'une occlusion amont, la position initiale de départ du cycle suivant sera modifiée ce qui engendrera un signal de position 43 différent de celui qui devrait être généré normalement en position initiale. En cas d'occlusion aval, l'amplitude maximale du signal de position 43 ne pourra être atteinte ou ne sera égalée que tardivement du fait que la membrane sera freinée voire stoppée dans son mouvement. Si la cassette est absente du reste de la pompe ou s'y trouve mal introduite, la force engendrée par l'élasticité de la membrane ne pourra pas produire son effet visant à repousser l'organe mobile- vers sa position initiale de repos. De ce fait, le signal de position 43 adoptera une valeur spécifique, caractéristique d'une épaisseur minimale de l'entrefer.
Avantageusement, on constate que les signaux 33, 43 permettent non seulement d'être exploités comme données de contrôle du fonctionnement de la pompe, mais peuvent également être employés pour asservir l'organe mobile 15 entre les deux positions distales qui définissent sa course.
On relève également que pour commander l'asservissement de l'organe mobile et/ou générer les alarmes, les signaux 33 et 43 peuvent soit être choisis indépendamment l'un de l'autre, soit être combinés par le microprocesseur 32 ou encore être utilisés de façon complémentaire par ce dernier.
Le signal d'alarme 35 peut ainsi découler de l'une ou l'autre de ces possibilités. Pour pouvoir bénéficier d'un degré de fiabilité élevé résultant du traitement d'une surabondance de mesures, le microprocesseur 32 aura préférentiellement recours à l'exploitation des deux signaux 33 et 43.
De manière générale, on constate que les moyens 30, 45 et 50 permettent de traiter et d'exploiter les signaux 33, 43 caractéristiques de l'état instantané de la pompe pour assurer son bon fonctionnement et accroître la sécurité du patient .
En variante, on mentionnera encore que l'actuateur électromagnétique 11 pourrait être constitué d'un moteur rotatif, par exemple à courant continu, intégrant des moyens de transformation d'un mouvement rotatif en un mouvement linéaire cyclique appliqué au piston 14. De tels moyens de transformations pouvant être obtenus typiquement par un système de came ou de bielle. Les moyens 40 visant à déterminer la position instantanée de l'organe mobile 15 pourraient alors inclure un capteur optique ou un codeur à effet Hall sur le moteur.
Dans une autre variante, ce moteur pourrait être constitué d'un actionneur pas-à-pas permettant de transformer un signal électrique (impulsion ou train d'impulsions de pilotage) en un déplacement (angulaire ou linéaire) . Dans ce cas, les moyens 40 utiles à la mesure de la position instantanée de l'organe mobile 15 pourraient être avantageusement constitués de moyens de décomptage des pas ou des demi-pas de ce moteur, à savoir de moyens électroniques de calcul permettant de compter les impulsions de commande pour déterminer la position instantanée du piston.
L'actuateur électromagnétique 11 pourrait encore être constitué par d'autres types d' actionneurs, parmi lesquels on mentionnera encore l' actionneur électrodynamique linéaire de type "voice-coil" .

Claims

REVENDICATIONS
1. Pompe (1) volumétrique alternative à membrane, destinée au pompage de liquides dans le cadre d'un usage médical, comprenant d'une part une partie motrice (10) au sein de laquelle se trouvent:
un actuateur électromagnétique (11) formé d'un circuit magnétique intégrant au moins une bobine (12) et activant un piston (14) d'un organe (15) mobile en déplacement cyclique linéaire,
et d'autre part un corps de pompe (20) amovible au sein duquel se trouvent:
une membrane (22) précontrainte pouvant être translatée par déformation élastique d'une position normale de repos vers une position adjacente par transmission du travail issu du piston (14), un premier clapet (23) anti-retour agencé en amont de ladite membrane (22) pour fermer l'extrémité interne d'un conduit d'admission (24) à l'entrée du corps de pompe (20) et empêcher tout refoulement de liquide, un second clapet (25) anti-retour agencé en aval de la membrane (22), l'un desdits clapets (23, 25) étant également destiné à empêcher tout écoulement gravitaire au travers d'un conduit de refoulement (26) situé à la sortie dudit corps de pompe (20) ,
ladite pompe (1) comprend en outre des moyens (30) pour détecter à chaque cycle des variations hors tolérances de l'intensité du courant d'alimentation de l' actuateur (11) à partir de mesures (33) de ce courant,
caractérisée en ce qu'elle comprend également des moyens (40) pour effectuer en continu des mesures (43) de la position instantanée de l'organe (15) mobile le long de son axe de déplacement (15') et des moyens de traitement et d'analyse (30; 45) desdites mesures (33, 43) pouvant générer au moins un signal d'alarme (35) attestant la détection d'au moins un dysfonctionnement de la pompe.
2. Pompe selon la revendication 1, caractérisée en ce qu'elle comprend en outre des moyens (50), commandés par au moins un desdits moyens de traitement et d'analyse (30; 45), pour asservir la position de l'organe mobile (15) tout au long de son axe de déplacement (15').
3. Pompe selon la revendication 1, caractérisée en ce qu'elle comprend un organe de compensation (19) qui délivre, en direction de la membrane (22), une force d'intensité légèrement supérieure à la somme du poids de la partie mobile
(15) et des forces de frottements associées à l'organe mobile
(15) .
4. Pompe selon la revendication 1 ou 3, caractérisée en ce que la précontrainte appliquée à la membrane (22) est suffisante pour pouvoir aspirer un nouveau volume de liquide à pomper et ramener l'organe mobile (15) en position de repos.
5. Pompe selon la revendication 1, caractérisée en ce que lesdits moyens (40) utiles à la mesure de la position instantanée de l'organe mobile (15) sont constitués de moyens électro-optiques comprenant un émetteur (41) générant un flux énergétique et d'un récepteur (42) fournissant un signal de réponse (43) dont l'intensité varie en fonction de la position de l'organe mobile (15) le long de sa course.
6. Pompe selon la revendication 5, caractérisée en ce que la variation de l'intensité dudit signal de réponse (43) est obtenue par le déplacement d'un obturateur (18), associé à l'organe mobile (15), pouvant s'interposer entre l'émetteur (41) et le récepteur (42) pour influencer la quantité d'énergie reçue par le récepteur (42).
7. Pompe selon la revendication 1, caractérisée en ce que le corps de pompe (20) est constitué d'une cassette amovible à usage unique.
8. Pompe selon la revendication 1, caractérisé en ce que le circuit magnétique comprend un pot (13) en matériau ferromagnétique ceinturant ladite bobine (12) pour en canaliser le flux magnétique ainsi qu'une pièce polaire (17) solidaire du piston (14) qui détermine avec ledit pot (13) un entrefer (δ) dont l'épaisseur varie en fonction de la position de l'organe mobile (15) sur son axe de déplacement (15' ) .
9. Pompe selon la revendication 1, caractérisée en ce que le piston (14) est guidé en déplacement par des paliers (16a, 16b) amagnétiques et en ce que ce piston (14) et ces paliers (16a, 16b) sont réalisés dans des matériaux à faible coefficient de frottement, comme la céramique et le métal dur .
10. Pompe selon la revendication 1, caractérisée en ce que 1 ' actuateur électromagnétique (11) est constitué d'un moteur rotatif intégrant des moyens de transformation d'un mouvement rotatif en un mouvement linéaire cyclique appliqué au piston ( 14 ) .
11. Pompe selon la revendication 1, caractérisée en ce que l' actuateur électromagnétique (11) est constitué d'un moteur pas-à-pas linéaire ou rotatif et en ce que lesdits moyens (40) utiles à la mesure de la position instantanée de l'organe mobile (15) sont constitués de moyens de comptage des pas dudit moteur.
PCT/CH2010/000318 2009-12-23 2010-12-20 Pompe volumétrique alternative a membrane pour usage médical WO2011075859A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10807428A EP2515970A1 (fr) 2009-12-23 2010-12-20 Pompe volumétrique alternative a membrane pour usage médical
US13/518,487 US9050408B2 (en) 2009-12-23 2010-12-20 Reciprocating positive-displacement diaphragm pump for medical use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1981/09 2009-12-23
CH01981/09A CH702437A1 (fr) 2009-12-23 2009-12-23 Pompe volumetrique alternative a membrane pour usage medical.

Publications (1)

Publication Number Publication Date
WO2011075859A1 true WO2011075859A1 (fr) 2011-06-30

Family

ID=43646144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2010/000318 WO2011075859A1 (fr) 2009-12-23 2010-12-20 Pompe volumétrique alternative a membrane pour usage médical

Country Status (4)

Country Link
US (1) US9050408B2 (fr)
EP (1) EP2515970A1 (fr)
CH (1) CH702437A1 (fr)
WO (1) WO2011075859A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360004B2 (en) * 2012-11-15 2016-06-07 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Progressive pump force regulation
US9855186B2 (en) 2014-05-14 2018-01-02 Aytu Women's Health, Llc Devices and methods for promoting female sexual wellness and satisfaction
US9490681B1 (en) 2015-09-18 2016-11-08 Ingersoll-Rand Company Pulsed air to electric generator
EP3429654B1 (fr) * 2016-03-17 2020-11-11 Medela Holding AG Pompe aspirante medicale
DE102016008783A1 (de) * 2016-07-22 2018-01-25 Knf Flodos Ag Oszillierende Verdrängerpumpe mit elektrodynamischem Antrieb und Verfahren zu deren Betrieb
JP6480612B1 (ja) * 2018-01-25 2019-03-13 日東工器株式会社 電磁往復動流体装置
CN109303937B (zh) * 2018-11-02 2023-04-14 重庆医科大学附属第三医院(捷尔医院) 左心引流管的自动减压调节装置
DE112020005701T5 (de) * 2019-11-19 2022-09-29 Sony Group Corporation Ansteuerungsverfahren für einen piezoelektrischen aktuator, ansteuerungsschaltung für einen piezoelektrischen aktuator und ansteuerungssystem für einen piezoelektrischen aktuator
KR102182592B1 (ko) * 2020-03-10 2020-11-24 이건형 실린더 펌프
CN111658548B (zh) * 2020-06-03 2023-03-14 上海安洁电子设备有限公司 一种营养泵的阻塞检测装置、检测方法及营养泵
CN115137513B (zh) * 2022-07-01 2024-02-23 东莞市因范生活科技有限公司 一种冲牙器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016488A1 (fr) * 1999-09-01 2001-03-08 Liquid Metronics Incorporated Procede et appareil de commande de pompe
WO2007058579A1 (fr) * 2005-11-15 2007-05-24 Johan Stenberg Système de commande pour pompes électromagnétiques
EP1967223A1 (fr) 2007-03-08 2008-09-10 Jean-Denis Rochat Pompe de nutrition enterale parenterale ou de perfusion
EP1970081A1 (fr) * 2007-03-12 2008-09-17 Jean-Denis Rochat Unité de pompage de nutrition entérale ou parentérale ou de perfusion
US20090112155A1 (en) * 2007-10-30 2009-04-30 Lifescan, Inc. Micro Diaphragm Pump

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669937A (en) * 1950-06-23 1954-02-23 Presentey Shelley Reciprocating pump
US3366067A (en) * 1966-04-25 1968-01-30 Kocolowski Michael Pump assembly
US3416461A (en) * 1966-09-01 1968-12-17 Hills Mccanna Co Diaphragm pump
CA1046845A (fr) * 1975-06-04 1979-01-23 Walbro Corporation Pompe a membrane pour carburant
US4152098A (en) * 1977-01-03 1979-05-01 Clark Ivan P Micropump
US4290040A (en) * 1979-09-17 1981-09-15 Feightner L Clark Electromagnetic actuator having preloaded spring means
US4370107A (en) * 1980-01-04 1983-01-25 Kenneth J. Landis Spring biased fluid pump
DE3202069C2 (de) * 1982-01-23 1984-05-03 Chemie Und Filter Gmbh, Verfahrenstechnik Kg, 6900 Heidelberg "Membranpumpe, insbesondere Dosierpumpe"
DE3202148C2 (de) * 1982-01-23 1984-02-09 Chemie Und Filter Gmbh, Verfahrenstechnik Kg, 6900 Heidelberg Membranpumpe, insbesondere Dosierpumpe
CA1233363A (fr) * 1984-06-01 1988-03-01 Robert E. Fischell Pompe a diaphragme a clapet unique, a insensibilite aux conditions ambiantes amelioree
US4607627A (en) * 1984-09-10 1986-08-26 Teledyne Industries, Inc. Solenoid-actuated hygienic appliance
US4636149A (en) * 1985-05-13 1987-01-13 Cordis Corporation Differential thermal expansion driven pump
US4874299A (en) * 1987-04-08 1989-10-17 Life Loc, Inc. High precision pump
US4966533A (en) * 1987-07-14 1990-10-30 Kabushiki Kaisha Nagano Keiki Seisakusho Vacuum pump with rotational sliding piston support
US5284425A (en) * 1992-11-18 1994-02-08 The Lee Company Fluid metering pump
US5957669A (en) * 1995-06-15 1999-09-28 United States Filter Corporation Diaphragm pump including improved drive mechanism and pump head
JP3449113B2 (ja) * 1996-03-29 2003-09-22 株式会社島津製作所 液体クロマトグラフ用送液装置
US6280147B1 (en) * 1998-10-13 2001-08-28 Liquid Metronics Incorporated Apparatus for adjusting the stroke length of a pump element
US6174136B1 (en) * 1998-10-13 2001-01-16 Liquid Metronics Incorporated Pump control and method of operating same
DE19920181A1 (de) * 1999-05-03 2000-11-09 Fev Motorentech Gmbh Verfahren zur Regelung der Ankerauftreffgeschwindigkeit an einem elektromagnetischen Aktuator durch eine kennfeldgestützte Regelung der Bestromung
DE10161132A1 (de) * 2001-12-12 2003-06-26 Siemens Ag Membranpumpe mit integriertem Drucksensor
US20030110939A1 (en) * 2001-12-19 2003-06-19 Ingersoll-Rand Company Partially preloaded pump diaphragms
DE10162773A1 (de) * 2001-12-20 2003-07-10 Knf Flodos Ag Sursee Dosierpumpe
US7087036B2 (en) * 2002-05-24 2006-08-08 Baxter International Inc. Fail safe system for operating medical fluid valves
US6758657B1 (en) * 2002-06-20 2004-07-06 The Gorman-Rupp Company Electromagnetically driven diaphragm pump
US7360999B2 (en) * 2002-10-16 2008-04-22 Abbott Laboratories Means for using single force sensor to supply all necessary information for determination of status of medical pump
JP2007504396A (ja) * 2003-09-02 2007-03-01 ヒドラウリク・リンク ゲゼルシャフト ミット ベシュレンクテル ハフツング ディーゼルエンジンのための排ガス後処理媒体、特に尿素水溶液を搬送するためのポンプ
DE102005039772A1 (de) * 2005-08-22 2007-03-08 Prominent Dosiertechnik Gmbh Magnetdosierpumpe
JP2007281192A (ja) * 2006-04-06 2007-10-25 Shinano Kenshi Co Ltd ソレノイドおよびこれを用いたポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016488A1 (fr) * 1999-09-01 2001-03-08 Liquid Metronics Incorporated Procede et appareil de commande de pompe
WO2007058579A1 (fr) * 2005-11-15 2007-05-24 Johan Stenberg Système de commande pour pompes électromagnétiques
EP1967223A1 (fr) 2007-03-08 2008-09-10 Jean-Denis Rochat Pompe de nutrition enterale parenterale ou de perfusion
EP1970081A1 (fr) * 2007-03-12 2008-09-17 Jean-Denis Rochat Unité de pompage de nutrition entérale ou parentérale ou de perfusion
US20090112155A1 (en) * 2007-10-30 2009-04-30 Lifescan, Inc. Micro Diaphragm Pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2515970A1 *

Also Published As

Publication number Publication date
EP2515970A1 (fr) 2012-10-31
US20120315157A1 (en) 2012-12-13
US9050408B2 (en) 2015-06-09
CH702437A1 (fr) 2011-06-30

Similar Documents

Publication Publication Date Title
EP2515970A1 (fr) Pompe volumétrique alternative a membrane pour usage médical
EP0869283B1 (fr) Pompe péristaltique
EP0959912B1 (fr) Generateur de pression pour dispositif d'assistance cardiaque a contrepression
FR2710962A1 (fr) Electro-vanne et nouveau type d'appareil de massage mettant en Óoeuvre une telle électro-vanne.
EP0801742A1 (fr) Dispositif de controle de l'ecoulement d'un liquide dans une conduite tubulaire et notamment dans une pompe peristaltique
FR3028749A1 (fr) Systeme occlusif implantable
FR2905429A1 (fr) Dispositif de delivrance d'un liquide comportant une pompe et une valve
WO1993021976A1 (fr) Systeme de pompe a perfusion sans frottements
CA2727631A1 (fr) Dispositif de reglage du taux de compression a levee de bille pour moteur a taux de compression variable
CA2324045A1 (fr) Seringue sans aiguille pour l'injection sous-cutanee de poudres medicamenteuses
EP2515971A1 (fr) Pompe doseuse a membrane a usage medical
US20130045115A1 (en) Two-stage linear peristaltic pump mechanism
WO2021043843A1 (fr) Système et dispositif de distribution d'un produit
FR2906165A1 (fr) Systeme d'emission d'ultrasons et machine de traitement par ultrasons integrant ledit systeme
EP2841129B1 (fr) Systeme de boucle fermee de controle du reflux d'une injection fluidique
CA2687069C (fr) Actionneur alternatif a asservissement en boucle fermee
EP2131895B1 (fr) Pompe de nutrition enterale parenterale ou de perfusion
EP0511124A1 (fr) Pompe vibrante à rendement amélioré
FR2778338A1 (fr) Dispositif d'injection a debit controle et en ambulatoire d'un medicament sous forme liquide
FR2978668A1 (fr) Dispositif avertisseur de fin de perfusion
FR2738911A1 (fr) Compteur de fluide ameliore comportant un entrainement magnetique du type a repulsion
FR2689015A1 (fr) Dispositif de commande d'une pompe de perfusion de liquides médicaux.
EP2006543A1 (fr) Dispositif de circulation de fluide
FR2466653A1 (fr) Verin de positionnement, notamment a electro-aimant alternatif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010807428

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13518487

Country of ref document: US