WO2011075693A1 - Modular and cooperative medical devices and related systems and methods - Google Patents
Modular and cooperative medical devices and related systems and methods Download PDFInfo
- Publication number
- WO2011075693A1 WO2011075693A1 PCT/US2010/061137 US2010061137W WO2011075693A1 WO 2011075693 A1 WO2011075693 A1 WO 2011075693A1 US 2010061137 W US2010061137 W US 2010061137W WO 2011075693 A1 WO2011075693 A1 WO 2011075693A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- body segment
- segment
- medical device
- cylindrical component
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 27
- 230000013011 mating Effects 0.000 claims description 21
- 230000008878 coupling Effects 0.000 claims description 12
- 238000010168 coupling process Methods 0.000 claims description 12
- 238000005859 coupling reaction Methods 0.000 claims description 12
- 238000001727 in vivo Methods 0.000 abstract description 11
- 210000003815 abdominal wall Anatomy 0.000 description 9
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000012636 effector Substances 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000002357 laparoscopic surgery Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- AGTSLBSSVVJZMX-UHFFFAOYSA-N C(C1)C1C1CCCC1 Chemical compound C(C1)C1C1CCCC1 AGTSLBSSVVJZMX-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012977 invasive surgical procedure Methods 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00283—Type of minimally invasive operation with a device releasably connected to an inner wall of the abdomen during surgery, e.g. an illumination source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/302—Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
Definitions
- the embodiments disclosed herein relate to various medical devices and related components, including robotic and/or in vivo medical devices and related components.
- Certain embodiments include various modular medical devices, including modular in vivo and/or robotic devices. Other embodiments relate to modular medical devices in which the various modular components are segmented components or components that are coupled to each other. Further embodiment relate to methods of operating the above devices, including methods of using various of the devices cooperatively.
- Invasive surgical procedures are essential for addressing various medical conditions. When possible, minimally invasive procedures such as laparoscopy are preferred.
- FIG. 1A is a perspective view of a modular medical device, according to another embodiment.
- FIG. IB is a perspective bottom view of the device of FIG. 1A.
- FIG. 2A is a perspective top view of the device of FIG. 1A.
- FIG. 2B is a perspective side view of the device of FIG. 1A.
- FIG. 2C is a perspective close-up view of a portion of the device of FIG. 1A.
- FIG. 3 is a perspective bottom view of the device of FIG. 1A.
- FIG. 4 is a perspective side view of the device of FIG. 1A.
- FIG. 5 is a top view of the device of FIG. 1A.
- FIG. 6 is a perspective view of modular medical device control and visualization system, according to one embodiment. 80761-395640
- FIG. 7 is a perspective view of a modular medical device, according to one embodiment.
- FIGS. 8A-8C are schematic representations of various magnetic attachment mechanisms, according to various embodiments.
- FIG. 9 is a perspective view of the device of FIG. 1A.
- FIG. 10 is a schematic representation of various forces associated with the device of FIG. 1A, according to one embodiment.
- FIG. 1 1 is a schematic representation of various forces associated with the device of FIG. 1A, according to another embodiment.
- FIG. 12A is a schematic representation of various forces associated with a robotic device.
- FIG. 12B is a schematic representation of various forces associated with another robotic device, according to one embodiment.
- FIG. 13 is a schematic representation of various forces associated with another robotic device, according to another embodiment.
- FIG. 14 is a schematic representation of various forces associated with yet another robotic device, according to a further embodiment.
- the various systems and devices disclosed herein relate to devices for use in medical procedures and systems. More specifically, various embodiments relate to various modular or combination medical devices, including modular in vivo and robotic devices and related methods and systems, while other embodiments relate to various cooperative medical devices, including cooperative in vivo and robotic devices and related methods and systems.
- Certain device implementations disclosed in the applications listed above can be positioned within a body cavity of a patient, including certain devices that can be positioned against or substantially adjacent to an interior cavity wall, and related systems.
- An "in vivo device” as used herein means any device that can be positioned, operated, or controlled at least in part by a user while being positioned within a body cavity of a patient, including any device that is positioned substantially against or adjacent to a wall of a body cavity of a patient, further including any such device that is internally actuated (having no external source of motive force), and additionally including any device that may be used
- robot and “robotic device” shall refer to any device that can perform a task either automatically or in response to a command.
- both “combination device” and “modular device” shall mean any medical device having modular or interchangeable components that can be arranged in a variety of different configurations.
- the modular components and combination devices disclosed herein also include segmented triangular or quadrangular-shaped combination devices. These devices, which are made up of modular components (also referred to herein as “segments") that are connected to create the triangular or quadrangular configuration, can provide leverage and/or stability during use while also providing for substantial payload space within the device that can be used for larger components or more operational components.
- these triangular or quadrangular devices can be positioned inside the body cavity of a patient in the same fashion as those devices discussed and disclosed above.
- FIGS. 1A-7 depict a multi-segmented medical device 10, in accordance with one implementation.
- the device 10 is a robotic device 10 and further can be an in vivo device 10.
- This device embodiment 10 as shown includes three segments 12A, 12B, 14. Segments 12A and 12B are manipulator segments, while segment 14 is a command and imaging segment.
- the three segments can be any combination of segments with any combination of components and capabilities.
- the device could have one manipulator segment, one command and imaging segment, and a sensor segment.
- the various segments can be any type of module, including any of those modules described above with respect to other modular components discussed herein.
- segments 12A, 12B are rotatably coupled with the segment 14 via joints or hinges 16A, 16B. More specifically, segment 12A is rotatable relative to segment 14 about joint 16A around an axis as indicated by arrow B in FIG. IB, while segment 12B is rotatable relative to segment 14 about joint 16B around an axis as indicated by arrow C in FIG. IB.
- the device 10 has at least two configurations.
- One configuration is an extended or insertion configuration as shown in FIG. 1 A in which the three segments 12A, 12B, 14 are aligned along the same axis.
- the other configuration is a triangle configuration as shown in FIG. IB in which the manipulator segments 12 A, 12B are each coupled to the segment 14 via the joints 16A, 16B and further are coupled to each other at a coupleable connection 18 at the ends of the segments 12A, 12B opposite the joints 16A, 16B.
- each of the manipulator segments 12A, 12B in this particular embodiment has an operational arm 20, 22 (respectively).
- Each arm 20, 22 is moveably coupled to its respective segment 12A, 12B at a joint 24A, 24B (respectively) (as best shown in FIG. 4).
- segment 14 has a pair of imaging components (each also referred to herein as a "camera") 26A, 26B (as best shown in FIG. 3).
- each arm 20, 22 is configured to rotate at its joint 24A, 24B in relation to its segment 12A, 12B to move between an undeployed position in which it is disposed within its segment 12A, 12B as shown in FIG. IB and a deployed position as shown in FIG. 2A.
- arm 20 is rotatable relative to segment 12A about joint 24A in 80761-395640 the direction shown by G in FIG. 4, while arm 22 is rotatable relative to segment 12B about joint 24B in the direction shown by H in FIG. 4.
- the arms 20, 22 are moveable in relation to the segments 12A, 12B in any known fashion and by any known mechanism.
- each arm 20, 22 has three components: a proximal portion 20A, 22A, a distal portion 20B, 22B, and an operational component 20C, 22C coupled with the distal portion 20B, 22B, respectively.
- the distal portion 20B, 22B of each arm 20, 22 extends and retracts along the arm axis in relation to the proximal portion 20A, 22A while also rotating around that axis in relation to the proximal portion 20A, 22A. That is, distal portion 20B of arm 20 can move back and forth laterally as shown by the letter K in FIG.
- distal portion 22B of arm 22 can move back and forth laterally as shown by the letter L in FIG. 4 and further can rotate relative to the proximal portion 22A as indicated by the letter I.
- the operational components 20C, 22C (also referred to herein as "end effectors") depicted in FIG. 2A are a grasper 20C and a cautery hook 22C.
- the operational component(s) used with the device 10 or any embodiment herein can be any known operational component for use with a medical device, including any of the operational components discussed above with other medical device embodiments and further including any operational components described in the applications incorporated above.
- only one of the two arms 20, 22 has an operational component.
- neither arm has an operational component.
- each arm 20, 22 comprises one unitary component or more than two components. It is further understood that the arms 20, 22 can be any kind of pivotal or moveable arm for use with a medical device which may or may not have operational components coupled or otherwise associated with them. For example, the arms 20, 22 can have a structure or configuration similar to those additional arm embodiments discussed elsewhere herein or in any of the applications incorporated above. In a further alternative, the device 10 has only one arm. In a further alternative, the device 10 has no arms. In such alternative implementations, the segment(s) not having an arm can have other components associated with or coupled with the segment(s) such as sensors or other types of components that do not require an arm for operation.
- the segment 14 of the embodiment depicted in FIG. 3 has a pair of cameras 26A, 26B.
- the segment 14 can have a single camera or more than two cameras.
- any known imaging component for medical devices 80761-395640 including in vivo devices, can be used with the devices disclosed herein and further can be positioned anywhere on any of the segments or on the arms of the devices.
- the segment 14 as best shown in FIG. 3 can also include a lighting component 28.
- the segment 14 has four lighting components 28.
- the segment 14 can have any number of lighting components 28 or no lighting components.
- the device 10 can have one or more lighting
- each of the segments 12A, 12B, 14 has two cylindrical components - an outer cylindrical component and an inner cylindrical component - that are rotatable in relation to each other. More specifically, the segment 12A has an outer cylindrical component 30A and an inner cylindrical component 30B that rotates relative to the outer component 3 OA around an axis indicated by arrow F in FIG. 3. Similarly, the segment 12B has an outer cylindrical component 32A and an inner cylindrical component 32B that rotates relative to the outer component 32 A around an axis indicated by arrow E in FIG. 3. Further, the segment 14 has an outer cylindrical component 34A and an inner cylindrical component 34B that rotates relative to the outer component 34A around an axis indicated by arrow D in FIG. 3.
- any segment having such rotatable components can provide for enclosing any arms, cameras, or any other operational components within any of the segments.
- any segment having such rotatable components provide for two segment configurations: an open configuration and a closed configuration. More specifically, segment 12A has an outer cylindrical component 3 OA with an opening 36 as shown in FIG. 3 through which the arm 20 can move between its deployed and undeployed positions.
- segment 12B has an outer cylindrical component 32A with an opening 38 as shown in FIG. 3 through which the arm 22 can move between its deployed and undeployed positions.
- segment 14 has an outer cylindrical component 34A with an opening 40 as shown in FIG. 3 through which the imaging component(s) 26A, 26B can capture images of a procedural or target area adjacent to or near the device 10.
- FIG. IB depicts the segments 12 A, 12B, 14 in their closed configurations. That is, each of the inner cylindrical components 30B, 32B, 34B are positioned in relation to the respective outer cylindrical component 30A, 32A, 34A such that each opening 36, 38, 40, respectively, is at least partially closed by the inner component 30B, 32B, 34B such that the 80761-395640 interior of each segment 12A, 12B, 14 is at least partially inaccessible from outside the segment.
- inner cylindrical component 30B of segment 12A is positioned in relation to outer cylindrical component 3 OA such that the arm 20 is at least partially enclosed within the segment 12A.
- the inner cylindrical component 30B is configured such that when it is in the closed position as shown in FIG. IB, it closes off the opening 36 entirely.
- the inner cylindrical component 30B in the closed position fluidically seals the interior of the segment 12A from the exterior.
- inner cylindrical component 32B of segment 12B is positioned in relation to the outer cylindrical component 32A such that the arm 22 is at least partially enclosed within the segment 12B.
- the inner cylindrical component 32B is configured such that when it is in the closed position as shown in FIG. IB, it closes off the opening 38 entirely.
- the inner cylindrical component 32B in the closed position fluidically seals the interior of the segment 12B from the exterior.
- inner cylindrical component 34B of segment 14 is positioned in relation to the outer cylindrical component 34A such that the imaging component(s) is not positioned within the opening 40.
- the inner cylindrical component 34B is configured such that when it is in the closed position as shown in FIG. IB, the imaging component(s) and any lighting component(s) are completely hidden from view and not exposed to the exterior of the segment 14.
- the inner cylindrical component 34B in the closed position fluidically seals the interior of the segment 14 from the exterior.
- FIGS. 2A and 3 depict the segments 12A, 12B, 14 in their open configurations.
- each of the inner cylindrical components 30B, 32B, 34B are positioned such that the openings 36, 38, 40 are open.
- the inner cylindrical components 30B, 32B, 34B can thus be actuated to move between their closed and their open positions and thereby convert the device 10 between a closed or non-operational configuration (in which the operational components such as the arms 20, 22 and/or the imaging components 26 and/or the lighting components 28 are inoperably disposed within the segments 12A, 12B, 14) and an open or operational configuration (in which the operational components are accessible through the openings 36, 38, 40 and thus capable of operating).
- a closed or non-operational configuration in which the operational components such as the arms 20, 22 and/or the imaging components 26 and/or the lighting components 28 are inoperably disposed within the segments 12A, 12B, 14
- an open or operational configuration in which the operational components are accessible through the openings 36, 38, 40 and thus capable of operating.
- the device 10 can be in its closed or non-operational configuration during insertion into a patient's body and/or to a target area and then can be converted into the open or operational configuration by causing the inner cylindrical components 30B, 32B, 34B to rotate into the open configurations.
- one or more or all of the segments do not have inner and outer components that rotate in relation to each other.
- the various embodiments of the device 10 disclosed herein include appropriate actuation components to generate the force necessary to operate the arms and/or the rotatable cylinders in the segments.
- the actuation components are motors.
- segment 12A has a motor (not shown) operably coupled with the arm 20 and configured to power the movements of the arm 20.
- segment 12B also has a motor (not shown) operably coupled with the arm 22 and configured to power the movements of the arm 20.
- each of the segments 12A, 12B, 14 also have motors (not shown) operably coupled to one or both of the inner and outer cylinder of each segment to power the rotation of the cylinders in relation to each other.
- each segment can have one motor to power all drivable elements (arms, cylinders, etc.) associated with that segment. Alternatively, a separate motor can be provided for each drivable element.
- the joints 16A, 16B are configured to urge the segments 12A, 12B from the insertion configuration of FIG. 1A into the triangular configuration of FIG. IB. That is, the joints 16A, 16B have torsion springs or some other known mechanism for urging the segments 12 A, 12B to rotate around their joints 16A, 16B.
- FIG. 2C depicts one embodiment in which the joint 16A has torsion springs 42 that are configured to urge segment 12A toward the triangular configuration.
- the device 10 in the insertion configuration as shown in FIG. 1A can be inserted into a patient's body through an incision, a trocar port, or natural orifice in the direction indicated by arrow A.
- the device 10 can be inserted in the other direction as well.
- the joints 16A, 16B with the torsion springs urge the segments 12A, 12B from their insertion position to their triangular position.
- the segments 12A, 12B contact each other to form joint 18, the two segments are coupled together with mating components that semi- lock the segments 12 A, 12B together.
- the two segments 12 A, 12B can only be separated at the joint 18 by a force sufficient to overcome the semi- lock.
- Any such known 80761-395640 mating component or coupling component, including any mechanical or magnetic mating component(s), can be incorporated into the device 10 for this purpose.
- the device 10 can be in its insertion configuration during insertion into the patient. As the device 10 enters the target cavity and exits the port or incision, the torsion springs or other mechanisms at the joints 16A, 16B cause the two segments 12A, 12B to move toward each other until they couple to form the triangular configuration.
- the device 10 can then be attached to the abdominal wall by some method such as an external magnetic handle.
- the device 10 can be positioned anywhere in the cavity of the patient as desired by the user. The device 10 is then used to perform some sort of procedure.
- the device 10 can be retracted from the cavity.
- the surgeon uses a grasping or retrieval tool such as a Endo Babcock grasper made by Covidien in Mansfield, MA, to attach to or otherwise grasp the ball 44 at the joint 18 and apply sufficient force to overcome the semi-lock of the joint 18.
- a grasping or retrieval tool such as a Endo Babcock grasper made by Covidien in Mansfield, MA, to attach to or otherwise grasp the ball 44 at the joint 18 and apply sufficient force to overcome the semi-lock of the joint 18.
- any retrieval component can be positioned at the end of segment 12A or elsewhere on the device 10 for grasping or otherwise coupling to for purposes of removing the device 10 from the patient's body.
- the force urges the segments 12A, 12B away from each other, thereby making it possible for the surgeon to pull the ball 44 through a port or incision and out of the patient, thereby forcing the device 10 into its insertion configuration.
- FIG. 2B depicts a side view of the device 10 according to one embodiment that shows the payload space available in segment 12B.
- segment 12B and its coupled arm 22 have payload spaces 46, 48, 50, 52, 54 that can be used to accommodate motors, operational components, sensors, magnets (as described below) or any other type of component that could be useful for a procedural device.
- each segment 12A, 12B, 14 can have such payload spaces.
- the segments 12A, 12B, 14 allow for maximization of the payload space available across the segments 12A, 12B, 14 by distributing the components such as motors, operational components, or magnets to maximize their effectiveness while minimizing the amount of 80761-395640 space required by each such component. For example, it might maximize effectiveness of the device 10 while minimizing the utilized space to have one large motor in one segment that provides force for operation of components in more than one segment.
- an external controller is also provided that transmits signals to the device 10 to control the device 10 and receives signals from the device 10.
- the controller communicates with the device 10 wirelessly.
- the controller and the device 10 are coupled via a flexible communication component such as a cord or wire (also referred to as a "tether") that extends between the device 10 and the controller.
- the attachment components are one or more magnets, disposed within the device, that communicate magnetically with one or more magnets positioned outside the patient's body.
- the device magnets can be positioned on or in the device in any suitable configuration.
- the device magnets in one embodiment can be positioned within the segments 12A, 12B, 14 at positions 56, 58, 60 as shown in FIG. 5.
- the external magnets can be used outside the body to position and/or move the device 10 inside the body.
- console 70 depicted in FIG. 6.
- the console 70 has a display 72 and magnets 74 and is positioned outside the patient such that the magnets 74 can be in magnetic communication with the device magnets (not shown) disposed within or otherwise coupled with the device 10.
- the console 70 can be used to move the device 10 by moving the console 70 outside the body such that the device 10 is urged to move inside the body, because the console magnets 10 are magnetically coupled with the device magnets (not shown) within the device 10 such that the device 10 remains substantially fixed in relation to the console 70.
- the triangular (and quandrangular) devices disclosed and described in relation to FIGS. 1A-7 can be used in conjunction with any of the external controller or visualization components and systems disclosed and discussed above and in the applications incorporated above. 80761-395640
- the segmented device 10 provides greater stability and operability for the device 10 in comparison to other in vivo devices. That is, a device having more than one segment such as device 10 provides for a configuration with a larger "footprint" for the device 10, thereby resulting in greater stability and leverage during use of the device 10. For example, the device 10 with the triangular configuration in FIG.
- the device 10 can have at least three magnets (not shown) disposed at the three corners of the triangular configuration such that when the device 10 is magnetically positioned against the interior cavity wall, the arms of the device 10 can apply greater force to the target tissues while maintaining the position of the device 10 than a corresponding single cylindrical device body.
- FIG. 7 depicts a device 80 having a quadrangular configuration with four segments.
- devices are contemplated herein having any number of segments ranging from two segments to any number of segments that can be used for a device that can be positioned inside a patient's body.
- a device incorporating the components and structures disclosed herein could have six or eight segments or more.
- a mechanical rod or elongate member having a cross-section of any shape or configuration could be used to support the robot.
- the elongate member could be rigid or flexible.
- the robot could also be placed at the end of other instruments and manual tools as well as at the end of another robot.
- the attachment mechanism includes magnets. Attaching the robot with magnets can be accomplished in many different ways; some are shown in FIGS. 8A-8C. This can include a magnet external to the patient that is placed against the abdominal wall. This magnet then interacts with the robot to support the robot and hold it in place. The external magnet can interact with a high permeability material on the inside of the patient and attached to the robot as shown in FIG. 8A. The roles could also be reversed and the high permeability material could also be external to the patient and the magnet could be internal.
- the external magnet can also interact with a second magnet inside the patient and attached to the robot. This can be done so that opposite poles of the magnet attract using a single pole on each magnet (as shown in FIG. 8B) or by using both poles on each magnet (as shown in FIG. 8C). 80761-395640
- the magnet (or high permeability material) associated with the robot does not even need to be attached to the robot. It only needs to interact in such a way as to create a force to stabilize the robot (this stability is described below). For example, when a piece of paper is attached to a refrigerator with a magnet, the magnet is not attached to the paper, but it does create a force that stabilizes the paper on the refrigerator. A similar approach could be used with the robot.
- any number of magnets (0, 1 , 2, 3, ) can be used to attach the robot.
- One obvious approach would be to place a magnet in each corner (or in each segment) of the triangle of the robot, with a trio of external magnets being used external to the patient.
- the triangle (or other open or closed polygons (from 2 sides on up)) is especially well suited to be supported by several different combinations of magnets.
- a single magnet can be used inside the triangle since the shape of the triangle will provide multi axis support to react the force applied by this single magnet. This is further described in the next section.
- a "V" configuration or other polygon could give similar support.
- Certain embodiments disclosed herein relate to maximization of stability of the various device embodiments while positioned inside the patient's body.
- a single magnet 90 is attached to the robot 10 so that it is attracted to a magnet 92 on the outside of the patient.
- the magnet 90 on the robot produces a force on the robot 10 in the upward direction.
- a simplified Free Body Diagram showing a simplified interpretation of the reaction forces is shown in FIG. 10.
- the magnet 90 produces an upward force on the body of the robot 10 (assumed rigid) F m .
- the weight of the robot 10, W is also shown acting at the center of mass of the robot 10.
- Each corner of the robot is labeled A, B, and C and reaction forces are shown at each corner (FA, FB, FC).
- FH, F L H end effector forces
- the stability of the robot 10 in FIG. 10 created by the single magnet 90 can be determined using various mathematical techniques.
- One example of such techniques is set forth in Papadopoulos, E. and Rey, D., "A New Measure of Tipover Stability Margin for Mobile Manipulators," Proc. of the IEEE International Conference on Robotics and
- FIG. 1 A simplified example is shown in FIG. 1 1.
- the robot 10 is assumed mass-less and is not applying forces with its end effectors. It can be clearly seen that a large magnetic force, FM, produces moment about the line AB that will cause the robot to rotate into the abdominal wall and therefore make a stable configuration for the robot. The same is true about lines BC and CA.
- FIG. 1 1 is further exemplified by the two possible configurations shown in FIGS. 12A and 12B.
- the robot 94 in FIG. 12A could be created by simply using one segment of the triangle configuration as shown back in FIG. 10 (with attachment magnets at A and B).
- FIG. 12 A there are two attachment points (A and B) that hold the robot 94 to the upper abdominal wall (one segment).
- the robot's end effector (or hand) 96 applies a force in an arbitrary direction, there will be non-zero moments about the contact line AB. This will cause the robot 94 to rotate about the line AB and could result in some instability.
- FIG. 12 depicts a device 98 that contains additional structure as represented by point C.
- hand forces Fnand
- Fc reaction force at point C
- moments can be balanced and a stable configuration produced when other 80761-395640 lines of contact are considered (BC & AC in this case, with other possibilities described below).
- discrete points A, B, & C
- any line segment AB for example
- FIG. 13 shows a configuration similar to FIG. 11 , but the "triangle" in FIG. 13 is in an "open” configuration 100 in which point A now becomes two points (A and A').
- This configuration 100 will also produce stability if the moments about all contact lines (AB, BC, CA' and A'A) "pushes" the robot into the abdominal wall rather than “peeling" it away.
- FIG. 14 depicts another example of a multi-sided polygon 102 that uses a single magnet for stable attachment.
- the same analysis used above applies here and can be used to show that the robot 102 can be stable.
- the stability provided by a single magnet as described with the configurations discussed above can also occur for shapes other than polygons. For example, a "V" or "T” configuration could be used. The shapes could be open or closed.
- the robot could have a magnet at one corner of the robot and two pieces of high permeability material at the other two corners (or sides). Or the robot could have two magnets and one piece of high permeability material, or other combinations.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Robotics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manipulator (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10838323.3A EP2512754A4 (en) | 2009-12-17 | 2010-12-17 | Modular and cooperative medical devices and related systems and methods |
CA2784883A CA2784883A1 (en) | 2009-12-17 | 2010-12-17 | Modular and cooperative medical devices and related systems and methods |
JP2012544922A JP2013514835A (en) | 2009-12-17 | 2010-12-17 | Modular and collaborative medical devices and related systems and methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28762809P | 2009-12-17 | 2009-12-17 | |
US61/287,628 | 2009-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011075693A1 true WO2011075693A1 (en) | 2011-06-23 |
Family
ID=44167730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/061137 WO2011075693A1 (en) | 2009-12-17 | 2010-12-17 | Modular and cooperative medical devices and related systems and methods |
Country Status (5)
Country | Link |
---|---|
US (1) | US8894633B2 (en) |
EP (1) | EP2512754A4 (en) |
JP (1) | JP2013514835A (en) |
CA (1) | CA2784883A1 (en) |
WO (1) | WO2011075693A1 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013052137A2 (en) | 2011-10-03 | 2013-04-11 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
ITFI20120132A1 (en) * | 2012-06-22 | 2013-12-23 | Scuola Superiore Di Studi Universit Ari E Di Perfe | DEVICE FOR ANCHORING ROBOTIC UNITS |
US8891924B2 (en) | 2012-04-26 | 2014-11-18 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
US9743987B2 (en) | 2013-03-14 | 2017-08-29 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
US9757187B2 (en) | 2011-06-10 | 2017-09-12 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US9883911B2 (en) | 2006-06-22 | 2018-02-06 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
US9888966B2 (en) | 2013-03-14 | 2018-02-13 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US9956043B2 (en) | 2007-07-12 | 2018-05-01 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and procedures |
US10111711B2 (en) | 2011-07-11 | 2018-10-30 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US10179033B2 (en) | 2012-04-26 | 2019-01-15 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US10219870B2 (en) | 2012-05-01 | 2019-03-05 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
US10307199B2 (en) | 2006-06-22 | 2019-06-04 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices and related methods |
US10335024B2 (en) | 2007-08-15 | 2019-07-02 | Board Of Regents Of The University Of Nebraska | Medical inflation, attachment and delivery devices and related methods |
US10342561B2 (en) | 2014-09-12 | 2019-07-09 | Board Of Regents Of The University Of Nebraska | Quick-release end effectors and related systems and methods |
US10376322B2 (en) | 2014-11-11 | 2019-08-13 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
US10470828B2 (en) | 2012-06-22 | 2019-11-12 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
US10582973B2 (en) | 2012-08-08 | 2020-03-10 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US10667883B2 (en) | 2013-03-15 | 2020-06-02 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US10702347B2 (en) | 2016-08-30 | 2020-07-07 | The Regents Of The University Of California | Robotic device with compact joint design and an additional degree of freedom and related systems and methods |
US10722319B2 (en) | 2016-12-14 | 2020-07-28 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
US10751136B2 (en) | 2016-05-18 | 2020-08-25 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
US10806538B2 (en) | 2015-08-03 | 2020-10-20 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US10966700B2 (en) | 2013-07-17 | 2021-04-06 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
US11013564B2 (en) | 2018-01-05 | 2021-05-25 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
US11051894B2 (en) | 2017-09-27 | 2021-07-06 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
US11173617B2 (en) | 2016-08-25 | 2021-11-16 | Board Of Regents Of The University Of Nebraska | Quick-release end effector tool interface |
US11284958B2 (en) | 2016-11-29 | 2022-03-29 | Virtual Incision Corporation | User controller with user presence detection and related systems and methods |
US11357595B2 (en) | 2016-11-22 | 2022-06-14 | Board Of Regents Of The University Of Nebraska | Gross positioning device and related systems and methods |
US11883065B2 (en) | 2012-01-10 | 2024-01-30 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and insertion |
US11903658B2 (en) | 2019-01-07 | 2024-02-20 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7960935B2 (en) | 2003-07-08 | 2011-06-14 | The Board Of Regents Of The University Of Nebraska | Robotic devices with agent delivery components and related methods |
JP5475662B2 (en) | 2007-08-15 | 2014-04-16 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Modular and segmented medical devices and related systems |
US8888792B2 (en) | 2008-07-14 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US9138207B2 (en) | 2009-05-19 | 2015-09-22 | Teleflex Medical Incorporated | Methods and devices for laparoscopic surgery |
CA2784883A1 (en) | 2009-12-17 | 2011-06-23 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
EP3251604B1 (en) | 2010-01-20 | 2020-04-22 | EON Surgical Ltd. | System of deploying an elongate unit in a body cavity |
US8721539B2 (en) | 2010-01-20 | 2014-05-13 | EON Surgical Ltd. | Rapid laparoscopy exchange system and method of use thereof |
US8968267B2 (en) | 2010-08-06 | 2015-03-03 | Board Of Regents Of The University Of Nebraska | Methods and systems for handling or delivering materials for natural orifice surgery |
EP2615980B1 (en) | 2010-09-19 | 2017-08-16 | EON Surgical Ltd. | Micro laparoscopy devices and deployments thereof |
US9427255B2 (en) | 2012-05-14 | 2016-08-30 | Ethicon Endo-Surgery, Inc. | Apparatus for introducing a steerable camera assembly into a patient |
US10098527B2 (en) * | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
CA2946595A1 (en) | 2014-05-05 | 2015-11-12 | Vicarious Surgical Inc. | Virtual reality surgical device |
EP3579736B1 (en) | 2017-02-09 | 2024-09-04 | Vicarious Surgical Inc. | Virtual reality surgical tools system |
WO2019055681A1 (en) | 2017-09-14 | 2019-03-21 | Vicarious Surgical Inc. | Virtual reality surgical camera system |
CN111166394A (en) * | 2020-02-12 | 2020-05-19 | 西安交通大学医学院第一附属医院 | In-vivo self-assembly magnetic anchoring device for stab-reducing laparoscopic cholecystectomy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090048612A1 (en) * | 2007-08-15 | 2009-02-19 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
Family Cites Families (327)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870264A (en) * | 1973-03-26 | 1975-03-11 | William I Robinson | Stand |
DE2339827B2 (en) | 1973-08-06 | 1977-02-24 | A6 In 3-02 | DENTAL EQUIPMENT |
US4258716A (en) * | 1978-02-06 | 1981-03-31 | The University Of Melbourne | Microsurgical instruments |
JPS5519124A (en) | 1978-07-27 | 1980-02-09 | Olympus Optical Co | Camera system for medical treatment |
US4246661A (en) | 1979-03-15 | 1981-01-27 | The Boeing Company | Digitally-controlled artificial hand |
JPS58132490A (en) * | 1982-01-29 | 1983-08-06 | 株式会社日立製作所 | Transmitting mechanism of angle |
US5307447A (en) | 1982-10-29 | 1994-04-26 | Kabushiki Kaisha Toshiba | Control system of multi-joint arm robot apparatus |
GB2130889B (en) | 1982-11-26 | 1986-06-18 | Wolf Gmbh Richard | Rectoscope |
JPS6076986A (en) | 1983-09-30 | 1985-05-01 | 株式会社東芝 | Robot |
DE3536747A1 (en) * | 1984-10-15 | 1986-04-24 | Tokico Ltd., Kawasaki, Kanagawa | Joint mechanism |
DE3525806A1 (en) * | 1985-07-19 | 1987-01-29 | Kuka Schweissanlagen & Roboter | TRANSMISSION HEAD FOR MANIPULATORS |
DE3545068A1 (en) | 1985-12-19 | 1987-06-25 | Kuka Schweissanlagen & Roboter | TRANSMISSION HEAD FOR MANIPULATORS |
DE3612498A1 (en) | 1986-04-14 | 1987-10-29 | Norske Stats Oljeselskap | SELF-DRIVING VEHICLE FOR PIPELINES |
JP2591968B2 (en) | 1987-12-28 | 1997-03-19 | 株式会社日立製作所 | Industrial robot wrist |
US5187796A (en) * | 1988-03-29 | 1993-02-16 | Computer Motion, Inc. | Three-dimensional vector co-processor having I, J, and K register files and I, J, and K execution units |
US5019968A (en) | 1988-03-29 | 1991-05-28 | Yulan Wang | Three-dimensional vector processor |
US5108140A (en) | 1988-04-18 | 1992-04-28 | Odetics, Inc. | Reconfigurable end effector |
US4896015A (en) * | 1988-07-29 | 1990-01-23 | Refractive Laser Research & Development Program, Ltd. | Laser delivery system |
US4897014A (en) | 1988-09-06 | 1990-01-30 | Harbor Branch Oceanographic Institution, Inc. | Device for interchange of tools |
US5271384A (en) | 1989-09-01 | 1993-12-21 | Mcewen James A | Powered surgical retractor |
US5201325A (en) | 1989-09-01 | 1993-04-13 | Andronic Devices Ltd. | Advanced surgical retractor |
US5562448A (en) | 1990-04-10 | 1996-10-08 | Mushabac; David R. | Method for facilitating dental diagnosis and treatment |
JP2914388B2 (en) | 1990-04-17 | 1999-06-28 | 株式会社ユアサコーポレーション | Polymer solid electrolyte |
IT1241621B (en) * | 1990-10-04 | 1994-01-25 | Comau Spa | ARTICULATED ROBOT |
IT1241622B (en) * | 1990-10-04 | 1994-01-25 | Comau Spa | ROBOT WRIST |
US5176649A (en) * | 1991-01-28 | 1993-01-05 | Akio Wakabayashi | Insertion device for use with curved, rigid endoscopic instruments and the like |
US5217003A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5172639A (en) | 1991-03-26 | 1992-12-22 | Gas Research Institute | Cornering pipe traveler |
US5370134A (en) | 1991-05-29 | 1994-12-06 | Orgin Medsystems, Inc. | Method and apparatus for body structure manipulation and dissection |
US5632761A (en) | 1991-05-29 | 1997-05-27 | Origin Medsystems, Inc. | Inflatable devices for separating layers of tissue, and methods of using |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5284096A (en) * | 1991-08-06 | 1994-02-08 | Osaka Gas Company, Limited | Vehicle for use in pipes |
US5674030A (en) | 1991-08-27 | 1997-10-07 | Sika Equipment Ag. | Device and method for repairing building branch lines in inacessible sewer mains |
JP2526537B2 (en) | 1991-08-30 | 1996-08-21 | 日本電装株式会社 | Pipe energy supply system |
JP3583777B2 (en) | 1992-01-21 | 2004-11-04 | エス・アール・アイ・インターナシヨナル | Teleoperator system and telepresence method |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
US6731988B1 (en) | 1992-01-21 | 2004-05-04 | Sri International | System and method for remote endoscopic surgery |
US5263382A (en) | 1992-04-13 | 1993-11-23 | Hughes Aircraft Company | Six Degrees of freedom motion device |
US5297443A (en) * | 1992-07-07 | 1994-03-29 | Wentz John D | Flexible positioning appendage |
US5657429A (en) * | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US7074179B2 (en) | 1992-08-10 | 2006-07-11 | Intuitive Surgical Inc | Method and apparatus for performing minimally invasive cardiac procedures |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5754741A (en) | 1992-08-10 | 1998-05-19 | Computer Motion, Inc. | Automated endoscope for optimal positioning |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5515478A (en) | 1992-08-10 | 1996-05-07 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5588442A (en) | 1992-08-12 | 1996-12-31 | Scimed Life Systems, Inc. | Shaft movement control apparatus and method |
US5458131A (en) | 1992-08-25 | 1995-10-17 | Wilk; Peter J. | Method for use in intra-abdominal surgery |
US5297536A (en) * | 1992-08-25 | 1994-03-29 | Wilk Peter J | Method for use in intra-abdominal surgery |
US5769640A (en) | 1992-12-02 | 1998-06-23 | Cybernet Systems Corporation | Method and system for simulating medical procedures including virtual reality and control method and system for use therein |
US5353807A (en) | 1992-12-07 | 1994-10-11 | Demarco Thomas J | Magnetically guidable intubation device |
CA2112271A1 (en) | 1992-12-28 | 1994-06-29 | Kiichi Suyama | Intrapipe work robot apparatus and method of measuring position of intrapipe work robot |
WO1994015655A2 (en) | 1993-01-07 | 1994-07-21 | Medical Innovations Corporation | Gastrostomy catheter system |
US6832996B2 (en) * | 1995-06-07 | 2004-12-21 | Arthrocare Corporation | Electrosurgical systems and methods for treating tissue |
US5363935A (en) | 1993-05-14 | 1994-11-15 | Carnegie Mellon University | Reconfigurable mobile vehicle with magnetic tracks |
US5791231A (en) | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
US5441494A (en) | 1993-07-29 | 1995-08-15 | Ethicon, Inc. | Manipulable hand for laparoscopy |
US5382885A (en) * | 1993-08-09 | 1995-01-17 | The University Of British Columbia | Motion scaling tele-operating system with force feedback suitable for microsurgery |
US5728599A (en) * | 1993-10-28 | 1998-03-17 | Lsi Logic Corporation | Printable superconductive leadframes for semiconductor device assembly |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
JP3476878B2 (en) | 1993-11-15 | 2003-12-10 | オリンパス株式会社 | Surgical manipulator |
US5458598A (en) | 1993-12-02 | 1995-10-17 | Cabot Technology Corporation | Cutting and coagulating forceps |
AU7601094A (en) | 1993-12-15 | 1995-07-03 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5436542A (en) | 1994-01-28 | 1995-07-25 | Surgix, Inc. | Telescopic camera mount with remotely controlled positioning |
US5471515A (en) | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
US5620417A (en) | 1994-07-07 | 1997-04-15 | Cardiovascular Imaging Systems Incorporated | Rapid exchange delivery catheter |
US5623582A (en) | 1994-07-14 | 1997-04-22 | Immersion Human Interface Corporation | Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects |
US6463361B1 (en) | 1994-09-22 | 2002-10-08 | Computer Motion, Inc. | Speech interface for an automated endoscopic system |
US6646541B1 (en) | 1996-06-24 | 2003-11-11 | Computer Motion, Inc. | General purpose distributed operating room control system |
US7053752B2 (en) | 1996-08-06 | 2006-05-30 | Intuitive Surgical | General purpose distributed operating room control system |
US6071274A (en) | 1996-12-19 | 2000-06-06 | Ep Technologies, Inc. | Loop structures for supporting multiple electrode elements |
US5653705A (en) | 1994-10-07 | 1997-08-05 | General Surgical Innovations, Inc. | Laparoscopic access port for surgical instruments or the hand |
US5645520A (en) | 1994-10-12 | 1997-07-08 | Computer Motion, Inc. | Shape memory alloy actuated rod for endoscopic instruments |
US5814062A (en) | 1994-12-22 | 1998-09-29 | Target Therapeutics, Inc. | Implant delivery assembly with expandable coupling/decoupling mechanism |
GB2301187B (en) * | 1995-05-22 | 1999-04-21 | British Gas Plc | Method of and apparatus for locating an anomaly in a duct |
US5657584A (en) | 1995-07-24 | 1997-08-19 | Rensselaer Polytechnic Institute | Concentric joint mechanism |
US6714841B1 (en) * | 1995-09-15 | 2004-03-30 | Computer Motion, Inc. | Head cursor control interface for an automated endoscope system for optimal positioning |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US6283951B1 (en) * | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5855583A (en) * | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US6699177B1 (en) * | 1996-02-20 | 2004-03-02 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5971976A (en) | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US5895417A (en) | 1996-03-06 | 1999-04-20 | Cardiac Pathways Corporation | Deflectable loop design for a linear lesion ablation apparatus |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6652480B1 (en) | 1997-03-06 | 2003-11-25 | Medtronic Ave., Inc. | Methods for reducing distal embolization |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6544276B1 (en) | 1996-05-20 | 2003-04-08 | Medtronic Ave. Inc. | Exchange method for emboli containment |
US5807377A (en) | 1996-05-20 | 1998-09-15 | Intuitive Surgical, Inc. | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6911916B1 (en) | 1996-06-24 | 2005-06-28 | The Cleveland Clinic Foundation | Method and apparatus for accessing medical data over a network |
US6496099B2 (en) | 1996-06-24 | 2002-12-17 | Computer Motion, Inc. | General purpose distributed operating room control system |
US6642836B1 (en) | 1996-08-06 | 2003-11-04 | Computer Motion, Inc. | General purpose distributed operating room control system |
US6364888B1 (en) | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
US6520951B1 (en) * | 1996-09-13 | 2003-02-18 | Scimed Life Systems, Inc. | Rapid exchange catheter with detachable hood |
IT1285533B1 (en) | 1996-10-22 | 1998-06-08 | Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant Anna | ENDOSCOPIC ROBOT |
US6286514B1 (en) | 1996-11-05 | 2001-09-11 | Jerome Lemelson | System and method for treating select tissue in a living being |
US6293282B1 (en) | 1996-11-05 | 2001-09-25 | Jerome Lemelson | System and method for treating select tissue in living being |
US6058323A (en) | 1996-11-05 | 2000-05-02 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US5845646A (en) | 1996-11-05 | 1998-12-08 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US6132441A (en) | 1996-11-22 | 2000-10-17 | Computer Motion, Inc. | Rigidly-linked articulating wrist with decoupled motion transmission |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
US6332880B1 (en) | 1996-12-19 | 2001-12-25 | Ep Technologies, Inc. | Loop structures for supporting multiple electrode elements |
US6066090A (en) | 1997-06-19 | 2000-05-23 | Yoon; Inbae | Branched endoscope system |
US6714839B2 (en) * | 1998-12-08 | 2004-03-30 | Intuitive Surgical, Inc. | Master having redundant degrees of freedom |
JP3342021B2 (en) | 1997-10-17 | 2002-11-05 | サーコン コーポレーション | Medical device system that penetrates tissue |
US6240312B1 (en) | 1997-10-23 | 2001-05-29 | Robert R. Alfano | Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment |
FR2771280B1 (en) | 1997-11-26 | 2001-01-26 | Albert P Alby | RESILIENT VERTEBRAL CONNECTION DEVICE |
US7090683B2 (en) | 1998-02-24 | 2006-08-15 | Hansen Medical, Inc. | Flexible instrument |
US6692485B1 (en) * | 1998-02-24 | 2004-02-17 | Endovia Medical, Inc. | Articulated apparatus for telemanipulator system |
US6810281B2 (en) | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US20020095175A1 (en) | 1998-02-24 | 2002-07-18 | Brock David L. | Flexible instrument |
US7371210B2 (en) * | 1998-02-24 | 2008-05-13 | Hansen Medical, Inc. | Flexible instrument |
US6309403B1 (en) | 1998-06-01 | 2001-10-30 | Board Of Trustees Operating Michigan State University | Dexterous articulated linkage for surgical applications |
US6030365A (en) * | 1998-06-10 | 2000-02-29 | Laufer; Michael D. | Minimally invasive sterile surgical access device and method |
US6352503B1 (en) * | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
DE69940850D1 (en) | 1998-08-04 | 2009-06-18 | Intuitive Surgical Inc | Articular device for positioning a manipulator for robotic surgery |
US6468265B1 (en) * | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6554790B1 (en) | 1998-11-20 | 2003-04-29 | Intuitive Surgical, Inc. | Cardiopulmonary bypass device and method |
US6951535B2 (en) | 2002-01-16 | 2005-10-04 | Intuitive Surgical, Inc. | Tele-medicine system that transmits an entire state of a subsystem |
US6398726B1 (en) | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6852107B2 (en) * | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6162171A (en) | 1998-12-07 | 2000-12-19 | Wan Sing Ng | Robotic endoscope and an autonomous pipe robot for performing endoscopic procedures |
USD441076S1 (en) | 1998-12-08 | 2001-04-24 | Intuitive Surgical, Inc. | Adaptor for a medical instrument |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6309397B1 (en) | 1999-12-02 | 2001-10-30 | Sri International | Accessories for minimally invasive robotic surgery and methods |
US6799065B1 (en) | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
USD441862S1 (en) | 1998-12-08 | 2001-05-08 | Intuitive Surgical, Inc. | Portion of an interface for a medical instrument |
US6620173B2 (en) | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
US7125403B2 (en) | 1998-12-08 | 2006-10-24 | Intuitive Surgical | In vivo accessories for minimally invasive robotic surgery |
US6770081B1 (en) | 2000-01-07 | 2004-08-03 | Intuitive Surgical, Inc. | In vivo accessories for minimally invasive robotic surgery and methods |
US6720988B1 (en) | 1998-12-08 | 2004-04-13 | Intuitive Surgical, Inc. | Stereo imaging system and method for use in telerobotic systems |
USD444555S1 (en) | 1998-12-08 | 2001-07-03 | Intuitive Surgical, Inc. | Interface for a medical instrument |
US6493608B1 (en) | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
USD438617S1 (en) * | 1998-12-08 | 2001-03-06 | Intuitive Surgical, Inc. | Portion of an adaptor for a medical instrument |
US6451027B1 (en) | 1998-12-16 | 2002-09-17 | Intuitive Surgical, Inc. | Devices and methods for moving an image capture device in telesurgical systems |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US8636648B2 (en) * | 1999-03-01 | 2014-01-28 | West View Research, Llc | Endoscopic smart probe |
US6159146A (en) | 1999-03-12 | 2000-12-12 | El Gazayerli; Mohamed Mounir | Method and apparatus for minimally-invasive fundoplication |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6565554B1 (en) | 1999-04-07 | 2003-05-20 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
US6820653B1 (en) | 1999-04-12 | 2004-11-23 | Carnegie Mellon University | Pipe inspection and repair system |
US6292678B1 (en) | 1999-05-13 | 2001-09-18 | Stereotaxis, Inc. | Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US6788018B1 (en) | 1999-08-03 | 2004-09-07 | Intuitive Surgical, Inc. | Ceiling and floor mounted surgical robot set-up arms |
US6454775B1 (en) | 1999-12-06 | 2002-09-24 | Bacchus Vascular Inc. | Systems and methods for clot disruption and retrieval |
US6661571B1 (en) | 1999-09-21 | 2003-12-09 | Olympus Optical Co., Ltd. | Surgical microscopic system |
US7217240B2 (en) | 1999-10-01 | 2007-05-15 | Intuitive Surgical, Inc. | Heart stabilizer |
US6936001B1 (en) | 1999-10-01 | 2005-08-30 | Computer Motion, Inc. | Heart stabilizer |
US6817972B2 (en) | 1999-10-01 | 2004-11-16 | Computer Motion, Inc. | Heart stabilizer |
US6491691B1 (en) | 1999-10-08 | 2002-12-10 | Intuitive Surgical, Inc. | Minimally invasive surgical hook apparatus and method for using same |
US6206903B1 (en) * | 1999-10-08 | 2001-03-27 | Intuitive Surgical, Inc. | Surgical tool with mechanical advantage |
US6312435B1 (en) | 1999-10-08 | 2001-11-06 | Intuitive Surgical, Inc. | Surgical instrument with extended reach for use in minimally invasive surgery |
JP3326472B2 (en) | 1999-11-10 | 2002-09-24 | 独立行政法人 航空宇宙技術研究所 | Articulated robot |
US6702805B1 (en) | 1999-11-12 | 2004-03-09 | Microdexterity Systems, Inc. | Manipulator |
US6548982B1 (en) | 1999-11-19 | 2003-04-15 | Regents Of The University Of Minnesota | Miniature robotic vehicles and methods of controlling same |
US6591239B1 (en) | 1999-12-09 | 2003-07-08 | Steris Inc. | Voice controlled surgical suite |
US6817975B1 (en) | 2000-01-14 | 2004-11-16 | Intuitive Surgical, Inc. | Endoscope |
US7039453B2 (en) | 2000-02-08 | 2006-05-02 | Tarun Mullick | Miniature ingestible capsule |
AU2001249308A1 (en) | 2000-03-24 | 2001-10-15 | Johns Hopkins University | Peritoneal cavity device and method |
US6468203B2 (en) | 2000-04-03 | 2002-10-22 | Neoguide Systems, Inc. | Steerable endoscope and improved method of insertion |
US6837846B2 (en) * | 2000-04-03 | 2005-01-04 | Neo Guide Systems, Inc. | Endoscope having a guide tube |
US6610007B2 (en) | 2000-04-03 | 2003-08-26 | Neoguide Systems, Inc. | Steerable segmented endoscope and method of insertion |
US6984203B2 (en) * | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US6974411B2 (en) | 2000-04-03 | 2005-12-13 | Neoguide Systems, Inc. | Endoscope with single step guiding apparatus |
US6508413B2 (en) * | 2000-04-06 | 2003-01-21 | Siemens Westinghouse Power Corporation | Remote spray coating of nuclear cross-under piping |
US6450104B1 (en) | 2000-04-28 | 2002-09-17 | North Carolina State University | Modular observation crawler and sensing instrument and method for operating same |
US6645196B1 (en) | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
FR2812067B1 (en) | 2000-07-18 | 2003-05-16 | Commissariat Energie Atomique | MOBILE ROBOT ABLE TO WORK IN PIPES OR OTHER NARROW PASSAGES |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US6902560B1 (en) | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
US6726699B1 (en) | 2000-08-15 | 2004-04-27 | Computer Motion, Inc. | Instrument guide |
US6860877B1 (en) * | 2000-09-29 | 2005-03-01 | Computer Motion, Inc. | Heart stabilizer support arm |
US6475215B1 (en) | 2000-10-12 | 2002-11-05 | Naim Erturk Tanrisever | Quantum energy surgical device and method |
CA2429040C (en) | 2000-11-27 | 2010-06-08 | Tyco Healthcare Group Lp | Tissue sampling and removal apparatus and method |
DE60143909D1 (en) | 2000-11-28 | 2011-03-03 | Intuitive Surgical Operations | Z AND VASCULAR CLOSURE |
JP4655175B2 (en) | 2000-12-19 | 2011-03-23 | ソニー株式会社 | MANIPULATOR SYSTEM, MASTER MANIPULATOR, SLAVE MANIPULATOR, CONTROL METHOD THEREOF, AND RECORDING MEDIUM |
US6840938B1 (en) * | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
US6934589B2 (en) | 2000-12-29 | 2005-08-23 | Medtronic, Inc. | System and method for placing endocardial leads |
US7519421B2 (en) | 2001-01-16 | 2009-04-14 | Kenergy, Inc. | Vagal nerve stimulation using vascular implanted devices for treatment of atrial fibrillation |
KR100380181B1 (en) * | 2001-02-10 | 2003-04-11 | 한국과학기술연구원 | Micro Robot for Test the Large Intestines |
US6871563B2 (en) * | 2001-02-26 | 2005-03-29 | Howie Choset | Orientation preserving angular swivel joint |
ES2249599T3 (en) | 2001-03-07 | 2006-04-01 | Carnegie Mellon University | ROBOTIZED SYSTEM TO INSPECT GAS DRIVES. |
US6512345B2 (en) * | 2001-03-30 | 2003-01-28 | The Regents Of The University Of Michigan | Apparatus for obstacle traversion |
US6774597B1 (en) | 2001-03-30 | 2004-08-10 | The Regents Of The University Of Michigan | Apparatus for obstacle traversion |
US6870343B2 (en) * | 2001-03-30 | 2005-03-22 | The University Of Michigan | Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness |
WO2002082979A2 (en) | 2001-04-18 | 2002-10-24 | Bbms Ltd. | Navigating and maneuvering of an in vivo vechicle by extracorporeal devices |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US6687571B1 (en) * | 2001-04-24 | 2004-02-03 | Sandia Corporation | Cooperating mobile robots |
KR100413058B1 (en) | 2001-04-24 | 2003-12-31 | 한국과학기술연구원 | Micro Robotic Colonoscope with Motor Locomotion |
KR100426613B1 (en) | 2001-05-19 | 2004-04-08 | 한국과학기술연구원 | Micro robot driving system |
KR100402920B1 (en) | 2001-05-19 | 2003-10-22 | 한국과학기술연구원 | Micro robot |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
CA2451824C (en) * | 2001-06-29 | 2015-02-24 | Intuitive Surgical, Inc. | Platform link wrist mechanism |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
US20050083460A1 (en) | 2001-07-16 | 2005-04-21 | Nippon Sheet Glass Co., Ltd. | Semi-transmitting mirror-possessing substrate, and semi-transmitting type liquid crystal display apparatus |
JP4744026B2 (en) * | 2001-07-30 | 2011-08-10 | オリンパス株式会社 | Capsule endoscope and capsule endoscope system |
US6676684B1 (en) * | 2001-09-04 | 2004-01-13 | Intuitive Surgical, Inc. | Roll-pitch-roll-yaw surgical tool |
US6728599B2 (en) * | 2001-09-07 | 2004-04-27 | Computer Motion, Inc. | Modularity system for computer assisted surgery |
US6764441B2 (en) | 2001-09-17 | 2004-07-20 | Case Western Reserve University | Peristaltically self-propelled endoscopic device |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
EP1437977B1 (en) | 2001-10-02 | 2014-05-21 | ArthroCare Corporation | Apparatus for electrosurgical removal and digestion of tissue |
US6835173B2 (en) | 2001-10-05 | 2004-12-28 | Scimed Life Systems, Inc. | Robotic endoscope |
US7210364B2 (en) | 2001-10-17 | 2007-05-01 | Fathi Hassan Ghorbel | Autonomous robotic crawler for in-pipe inspection |
US7182025B2 (en) * | 2001-10-17 | 2007-02-27 | William Marsh Rice University | Autonomous robotic crawler for in-pipe inspection |
US6730021B2 (en) | 2001-11-07 | 2004-05-04 | Computer Motion, Inc. | Tissue spreader with force measurement, force indication or force limitation |
KR100417163B1 (en) | 2001-11-12 | 2004-02-05 | 한국과학기술연구원 | Micro capsule robot |
US7294146B2 (en) | 2001-12-03 | 2007-11-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
US6839612B2 (en) * | 2001-12-07 | 2005-01-04 | Institute Surgical, Inc. | Microwrist system for surgical procedures |
US6793653B2 (en) | 2001-12-08 | 2004-09-21 | Computer Motion, Inc. | Multifunctional handle for a medical robotic system |
US20030114731A1 (en) | 2001-12-14 | 2003-06-19 | Cadeddu Jeffrey A. | Magnetic positioning system for trocarless laparoscopic instruments |
US6780191B2 (en) | 2001-12-28 | 2004-08-24 | Yacmur Llc | Cannula system |
US6676660B2 (en) | 2002-01-23 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Feedback light apparatus and method for use with an electrosurgical instrument |
US7967816B2 (en) * | 2002-01-25 | 2011-06-28 | Medtronic, Inc. | Fluid-assisted electrosurgical instrument with shapeable electrode |
WO2003068055A2 (en) | 2002-02-11 | 2003-08-21 | Arthrocare Corporation | Electrosurgical apparatus and methods for laparoscopy |
ATE333066T1 (en) | 2002-03-05 | 2006-08-15 | Wagner Wilhelm Wiwa | DEVICE AND METHOD FOR INNER COATING OF A PIPE |
US7206626B2 (en) * | 2002-03-06 | 2007-04-17 | Z-Kat, Inc. | System and method for haptic sculpting of physical objects |
US7831292B2 (en) | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
US20030179308A1 (en) | 2002-03-19 | 2003-09-25 | Lucia Zamorano | Augmented tracking using video, computed data and/or sensing technologies |
JP3869291B2 (en) | 2002-03-25 | 2007-01-17 | オリンパス株式会社 | Capsule medical device |
JP3917885B2 (en) | 2002-04-08 | 2007-05-23 | オリンパス株式会社 | Capsule endoscope system |
US6860346B2 (en) * | 2002-04-19 | 2005-03-01 | Regents Of The University Of Minnesota | Adjustable diameter wheel assembly, and methods and vehicles using same |
US20030230372A1 (en) | 2002-06-13 | 2003-12-18 | Kurt Schmidt | Method for placing objects on the inner wall of a placed sewer pipe and device for carrying out said method |
US6801325B2 (en) | 2002-06-25 | 2004-10-05 | Intuitive Surgical, Inc. | Method and devices for inspecting and calibrating of stereoscopic endoscopes |
US6776165B2 (en) * | 2002-09-12 | 2004-08-17 | The Regents Of The University Of California | Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles |
JP4133188B2 (en) | 2002-10-07 | 2008-08-13 | 株式会社ハーモニック・ドライブ・システムズ | Robot hand finger unit |
US7794494B2 (en) | 2002-10-11 | 2010-09-14 | Boston Scientific Scimed, Inc. | Implantable medical devices |
JP3700848B2 (en) | 2002-10-23 | 2005-09-28 | Necエンジニアリング株式会社 | Micro light source position measuring device |
US6936003B2 (en) | 2002-10-29 | 2005-08-30 | Given Imaging Ltd | In-vivo extendable element device and system, and method of use |
JP4148763B2 (en) | 2002-11-29 | 2008-09-10 | 学校法人慈恵大学 | Endoscopic surgery robot |
JP3686947B2 (en) | 2002-12-09 | 2005-08-24 | 国立大学法人 東京大学 | High-rigid forceps tip structure for active forceps and active forceps including the same |
DE602004015729D1 (en) * | 2003-02-11 | 2008-09-25 | Olympus Corp | ABOUT TUBE |
US7083615B2 (en) | 2003-02-24 | 2006-08-01 | Intuitive Surgical Inc | Surgical tool having electrocautery energy supply conductor with inhibited current leakage |
US7105000B2 (en) | 2003-03-25 | 2006-09-12 | Ethicon Endo-Surgery, Inc. | Surgical jaw assembly with increased mechanical advantage |
JP3752494B2 (en) * | 2003-03-31 | 2006-03-08 | 株式会社東芝 | Master-slave manipulator, control device and control method thereof |
JP4329394B2 (en) | 2003-04-30 | 2009-09-09 | 株式会社島津製作所 | Small photographing device |
DE10323216B3 (en) | 2003-05-22 | 2004-12-23 | Siemens Ag | Endoscope apparatus has cameras which are provided at respective ends of endoscope capsule, such that one of camera is tilted or rotated to change photography range |
US7121781B2 (en) | 2003-06-11 | 2006-10-17 | Intuitive Surgical | Surgical instrument with a universal wrist |
JP4532188B2 (en) | 2003-06-30 | 2010-08-25 | カール−ツアイス−スチフツング | Holding device, in particular for medical optical instruments, with means for compensating the load rotational moment |
GB0315479D0 (en) | 2003-07-02 | 2003-08-06 | Paz Adrian | Virtual ports devices |
US7042184B2 (en) * | 2003-07-08 | 2006-05-09 | Board Of Regents Of The University Of Nebraska | Microrobot for surgical applications |
US7960935B2 (en) | 2003-07-08 | 2011-06-14 | The Board Of Regents Of The University Of Nebraska | Robotic devices with agent delivery components and related methods |
US20080058989A1 (en) * | 2006-04-13 | 2008-03-06 | Board Of Regents Of The University Of Nebraska | Surgical camera robot |
US7126303B2 (en) | 2003-07-08 | 2006-10-24 | Board Of Regents Of The University Of Nebraska | Robot for surgical applications |
US20100081875A1 (en) | 2003-07-15 | 2010-04-01 | EndoRobotics Inc. | Surgical Device For Minimal Access Surgery |
US7066879B2 (en) | 2003-07-15 | 2006-06-27 | The Trustees Of Columbia University In The City Of New York | Insertable device and system for minimal access procedure |
JP2005074031A (en) | 2003-09-01 | 2005-03-24 | Pentax Corp | Capsule endoscope |
JP4128505B2 (en) | 2003-09-05 | 2008-07-30 | オリンパス株式会社 | Capsule endoscope |
JP4128504B2 (en) | 2003-09-05 | 2008-07-30 | オリンパス株式会社 | Capsule endoscope |
US7993384B2 (en) * | 2003-09-12 | 2011-08-09 | Abbott Cardiovascular Systems Inc. | Delivery system for medical devices |
DE10343494B4 (en) * | 2003-09-19 | 2006-06-14 | Siemens Ag | Magnetically navigable device for use in the field of medical endoscopy |
US7594815B2 (en) * | 2003-09-24 | 2009-09-29 | Toly Christopher C | Laparoscopic and endoscopic trainer including a digital camera |
US7789825B2 (en) | 2003-09-29 | 2010-09-07 | Ethicon Endo-Surgery, Inc. | Handle for endoscopic device |
US20050096502A1 (en) | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
US7147650B2 (en) | 2003-10-30 | 2006-12-12 | Woojin Lee | Surgical instrument |
JP2007510470A (en) | 2003-11-07 | 2007-04-26 | カーネギー・メロン・ユニバーシテイ | Minimally invasive intervention robot |
US7429259B2 (en) | 2003-12-02 | 2008-09-30 | Cadeddu Jeffrey A | Surgical anchor and system |
US7625338B2 (en) | 2003-12-31 | 2009-12-01 | Given Imaging, Ltd. | In-vivo sensing device with alterable fields of view |
US7566300B2 (en) | 2004-04-15 | 2009-07-28 | Wilson-Cook Medical, Inc. | Endoscopic surgical access devices and methods of articulating an external accessory channel |
US7857767B2 (en) | 2004-04-19 | 2010-12-28 | Invention Science Fund I, Llc | Lumen-traveling device |
US9801527B2 (en) | 2004-04-19 | 2017-10-31 | Gearbox, Llc | Lumen-traveling biological interface device |
US20070244520A1 (en) | 2004-04-19 | 2007-10-18 | Searete Llc | Lumen-traveling biological interface device and method of use |
US7998060B2 (en) | 2004-04-19 | 2011-08-16 | The Invention Science Fund I, Llc | Lumen-traveling delivery device |
AU2005267378A1 (en) | 2004-06-24 | 2006-02-02 | Suture Robotics, Inc. | Semi-robotic suturing device |
US7892230B2 (en) | 2004-06-24 | 2011-02-22 | Arthrocare Corporation | Electrosurgical device having planar vertical electrode and related methods |
US20050288555A1 (en) | 2004-06-28 | 2005-12-29 | Binmoeller Kenneth E | Methods and devices for illuminating, vievwing and monitoring a body cavity |
WO2006005075A2 (en) | 2004-06-30 | 2006-01-12 | Amir Belson | Apparatus and methods for capsule endoscopy of the esophagus |
US20060046226A1 (en) * | 2004-08-27 | 2006-03-02 | Bergler Hans J | Dental imaging system and method of use |
CA2586276A1 (en) | 2004-11-08 | 2006-05-18 | The Johns Hopkins University | Bioptome |
US8128680B2 (en) | 2005-01-10 | 2012-03-06 | Taheri Laduca Llc | Apparatus and method for deploying an implantable device within the body |
US20060152591A1 (en) | 2005-01-13 | 2006-07-13 | Sheng-Feng Lin | Automatic focus mechanism of an image capturing device |
US7763015B2 (en) | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US7785251B2 (en) | 2005-04-22 | 2010-08-31 | Wilk Patent, Llc | Port extraction method for trans-organ surgery |
US20060241570A1 (en) | 2005-04-22 | 2006-10-26 | Wilk Patent, Llc | Intra-abdominal medical method |
US7762960B2 (en) | 2005-05-13 | 2010-07-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US20080183033A1 (en) | 2005-05-27 | 2008-07-31 | Bern M Jonathan | Endoscope Propulsion System and Method |
JP2009501563A (en) | 2005-07-14 | 2009-01-22 | エンハンスド・メデイカルシステム・エルエルシー | Robot for minimizing invasive procedures |
US20070106113A1 (en) | 2005-11-07 | 2007-05-10 | Biagio Ravo | Combination endoscopic operative delivery system |
US7761137B2 (en) | 2005-12-16 | 2010-07-20 | Suros Surgical Systems, Inc. | Biopsy site marker deployment device |
US7762825B2 (en) | 2005-12-20 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Electro-mechanical interfaces to mount robotic surgical arms |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7785333B2 (en) | 2006-02-21 | 2010-08-31 | Olympus Medical Systems Corp. | Overtube and operative procedure via bodily orifice |
EP1815949A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
US20060253109A1 (en) | 2006-02-08 | 2006-11-09 | David Chu | Surgical robotic helping hand system |
WO2007111571A1 (en) | 2006-03-27 | 2007-10-04 | Nanyang Technological University | Surgical robotic system for flexible endoscopy |
US8585733B2 (en) | 2006-04-19 | 2013-11-19 | Vibrynt, Inc | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US7862573B2 (en) | 2006-04-21 | 2011-01-04 | Darois Roger E | Method and apparatus for surgical fastening |
US7731727B2 (en) | 2006-04-26 | 2010-06-08 | Lsi Solutions, Inc. | Medical instrument to place a pursestring suture, open a hole and pass a guidewire |
EP2012697A4 (en) | 2006-04-29 | 2010-07-21 | Univ Texas | Devices for use in transluminal and endoluminal surgery |
CA3068216C (en) * | 2006-06-22 | 2023-03-07 | Board Of Regents Of The University Of Nebraska | Magnetically coupleable robotic devices and related methods |
US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
US8679096B2 (en) | 2007-06-21 | 2014-03-25 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
EP2040634B1 (en) | 2006-07-13 | 2014-06-11 | Bovie Medical Corporation | Surgical sealing and cutting apparatus |
US8551114B2 (en) | 2006-11-06 | 2013-10-08 | Human Robotics S.A. De C.V. | Robotic surgical device |
WO2008076194A2 (en) | 2006-11-13 | 2008-06-26 | Raytheon Sarcos Llc | Serpentine robotic crawler |
US7935130B2 (en) | 2006-11-16 | 2011-05-03 | Intuitive Surgical Operations, Inc. | Two-piece end-effectors for robotic surgical tools |
US7655004B2 (en) * | 2007-02-15 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US8591399B2 (en) | 2007-04-25 | 2013-11-26 | Karl Storz Endovision, Inc. | Surgical method utilizing transluminal endoscope and instruments |
DE102007031957A1 (en) * | 2007-07-10 | 2009-01-22 | Pierburg Gmbh | Combined non-return and control valve |
WO2009014917A2 (en) * | 2007-07-12 | 2009-01-29 | Board Of Regents Of The University Of Nebraska | Methods and systems of actuation in robotic devices |
US20090076536A1 (en) * | 2007-08-15 | 2009-03-19 | Board Of Regents Of The University Of Nebraska | Medical inflation, attachment, and delivery devices and related methods |
EP2217132B1 (en) | 2007-11-02 | 2013-05-15 | The Trustees of Columbia University in the City of New York | Insertable surgical imaging device |
US20090305210A1 (en) | 2008-03-11 | 2009-12-10 | Khurshid Guru | System For Robotic Surgery Training |
US8020741B2 (en) | 2008-03-18 | 2011-09-20 | Barosense, Inc. | Endoscopic stapling devices and methods |
US8328802B2 (en) | 2008-03-19 | 2012-12-11 | Covidien Ag | Cordless medical cauterization and cutting device |
WO2009120992A2 (en) | 2008-03-27 | 2009-10-01 | St. Jude Medical, Arrial Fibrillation Division Inc. | Robotic castheter system input device |
US8727966B2 (en) | 2008-03-31 | 2014-05-20 | Intuitive Surgical Operations, Inc. | Endoscope with rotationally deployed arms |
WO2009144729A1 (en) | 2008-05-28 | 2009-12-03 | Technion Research & Development Foundation Ltd. | Laparoscopic camera array |
US20100010294A1 (en) * | 2008-07-10 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Temporarily positionable medical devices |
WO2010009292A1 (en) * | 2008-07-18 | 2010-01-21 | Boston Scientific Scimed, Inc. | Endoscope with guide |
WO2010022088A1 (en) * | 2008-08-18 | 2010-02-25 | Encision, Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
US20100069710A1 (en) * | 2008-09-02 | 2010-03-18 | Ken Yamatani | treatment method |
US8834353B2 (en) * | 2008-09-02 | 2014-09-16 | Olympus Medical Systems Corp. | Medical manipulator, treatment system, and treatment method |
JP5115425B2 (en) | 2008-09-24 | 2013-01-09 | 豊田合成株式会社 | Group III nitride semiconductor light emitting device |
CA2776320C (en) | 2008-10-07 | 2017-08-29 | The Trustees Of Columbia University In The City Of New York | Systems, devices, and method for providing insertable robotic sensory and manipulation platforms for single port surgery |
ITFI20080201A1 (en) | 2008-10-20 | 2010-04-21 | Scuola Superiore Di Studi Universit Ari E Di Perfe | ENDOLUMINAL ROBOTIC SYSTEM |
EP2286756B1 (en) | 2009-08-21 | 2013-04-03 | Novineon Healthcare Technology Partners Gmbh | Surgical manipulator means |
CA2784883A1 (en) | 2009-12-17 | 2011-06-23 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
IT1399603B1 (en) | 2010-04-26 | 2013-04-26 | Scuola Superiore Di Studi Universitari E Di Perfez | ROBOTIC SYSTEM FOR MINIMUM INVASIVE SURGERY INTERVENTIONS |
US8968267B2 (en) * | 2010-08-06 | 2015-03-03 | Board Of Regents Of The University Of Nebraska | Methods and systems for handling or delivering materials for natural orifice surgery |
EP3714821A1 (en) | 2011-06-10 | 2020-09-30 | Board of Regents of the University of Nebraska | Surgical end effector |
-
2010
- 2010-12-17 CA CA2784883A patent/CA2784883A1/en not_active Abandoned
- 2010-12-17 WO PCT/US2010/061137 patent/WO2011075693A1/en active Application Filing
- 2010-12-17 JP JP2012544922A patent/JP2013514835A/en active Pending
- 2010-12-17 US US12/971,917 patent/US8894633B2/en not_active Expired - Fee Related
- 2010-12-17 EP EP10838323.3A patent/EP2512754A4/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090048612A1 (en) * | 2007-08-15 | 2009-02-19 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9883911B2 (en) | 2006-06-22 | 2018-02-06 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
US10376323B2 (en) | 2006-06-22 | 2019-08-13 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
US10307199B2 (en) | 2006-06-22 | 2019-06-04 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices and related methods |
US10959790B2 (en) | 2006-06-22 | 2021-03-30 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
US10695137B2 (en) | 2007-07-12 | 2020-06-30 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and procedures |
US9956043B2 (en) | 2007-07-12 | 2018-05-01 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and procedures |
US10335024B2 (en) | 2007-08-15 | 2019-07-02 | Board Of Regents Of The University Of Nebraska | Medical inflation, attachment and delivery devices and related methods |
US10350000B2 (en) | 2011-06-10 | 2019-07-16 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
US9757187B2 (en) | 2011-06-10 | 2017-09-12 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
US11832871B2 (en) | 2011-06-10 | 2023-12-05 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
US11065050B2 (en) | 2011-06-10 | 2021-07-20 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
US11595242B2 (en) | 2011-07-11 | 2023-02-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
US10111711B2 (en) | 2011-07-11 | 2018-10-30 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US11032125B2 (en) | 2011-07-11 | 2021-06-08 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
US11909576B2 (en) | 2011-07-11 | 2024-02-20 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
WO2013052137A2 (en) | 2011-10-03 | 2013-04-11 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
EP3730031A1 (en) * | 2011-10-03 | 2020-10-28 | Board of Regents of the University of Nebraska | Robotic surgical devices and systems |
EP2882330A4 (en) * | 2011-10-03 | 2016-03-23 | Univ Nebraska | Robotic surgical devices, systems and related methods |
US11883065B2 (en) | 2012-01-10 | 2024-01-30 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and insertion |
US10065323B2 (en) | 2012-04-26 | 2018-09-04 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US8891924B2 (en) | 2012-04-26 | 2014-11-18 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US9020640B2 (en) | 2012-04-26 | 2015-04-28 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US10179033B2 (en) | 2012-04-26 | 2019-01-15 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US9789613B2 (en) | 2012-04-26 | 2017-10-17 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US11819299B2 (en) | 2012-05-01 | 2023-11-21 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
US11529201B2 (en) | 2012-05-01 | 2022-12-20 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
US10219870B2 (en) | 2012-05-01 | 2019-03-05 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
US11484374B2 (en) | 2012-06-22 | 2022-11-01 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
ITFI20120132A1 (en) * | 2012-06-22 | 2013-12-23 | Scuola Superiore Di Studi Universit Ari E Di Perfe | DEVICE FOR ANCHORING ROBOTIC UNITS |
US10470828B2 (en) | 2012-06-22 | 2019-11-12 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US10624704B2 (en) | 2012-08-08 | 2020-04-21 | Board Of Regents Of The University Of Nebraska | Robotic devices with on board control and related systems and devices |
US11617626B2 (en) | 2012-08-08 | 2023-04-04 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
US11051895B2 (en) | 2012-08-08 | 2021-07-06 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US10582973B2 (en) | 2012-08-08 | 2020-03-10 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US11832902B2 (en) | 2012-08-08 | 2023-12-05 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US11806097B2 (en) | 2013-03-14 | 2023-11-07 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
US9888966B2 (en) | 2013-03-14 | 2018-02-13 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US12070282B2 (en) | 2013-03-14 | 2024-08-27 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US9743987B2 (en) | 2013-03-14 | 2017-08-29 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
US10743949B2 (en) | 2013-03-14 | 2020-08-18 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US10603121B2 (en) | 2013-03-14 | 2020-03-31 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
US11633253B2 (en) | 2013-03-15 | 2023-04-25 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US10667883B2 (en) | 2013-03-15 | 2020-06-02 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US10966700B2 (en) | 2013-07-17 | 2021-04-06 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
US11826032B2 (en) | 2013-07-17 | 2023-11-28 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
US10342561B2 (en) | 2014-09-12 | 2019-07-09 | Board Of Regents Of The University Of Nebraska | Quick-release end effectors and related systems and methods |
US11576695B2 (en) | 2014-09-12 | 2023-02-14 | Virtual Incision Corporation | Quick-release end effectors and related systems and methods |
US12096999B2 (en) | 2014-11-11 | 2024-09-24 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
US10376322B2 (en) | 2014-11-11 | 2019-08-13 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
US11406458B2 (en) | 2014-11-11 | 2022-08-09 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
US10806538B2 (en) | 2015-08-03 | 2020-10-20 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US11872090B2 (en) | 2015-08-03 | 2024-01-16 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US11826014B2 (en) | 2016-05-18 | 2023-11-28 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
US10751136B2 (en) | 2016-05-18 | 2020-08-25 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
US11173617B2 (en) | 2016-08-25 | 2021-11-16 | Board Of Regents Of The University Of Nebraska | Quick-release end effector tool interface |
US10702347B2 (en) | 2016-08-30 | 2020-07-07 | The Regents Of The University Of California | Robotic device with compact joint design and an additional degree of freedom and related systems and methods |
US11357595B2 (en) | 2016-11-22 | 2022-06-14 | Board Of Regents Of The University Of Nebraska | Gross positioning device and related systems and methods |
US11813124B2 (en) | 2016-11-22 | 2023-11-14 | Board Of Regents Of The University Of Nebraska | Gross positioning device and related systems and methods |
US12109079B2 (en) | 2016-11-22 | 2024-10-08 | Board Of Regents Of The University Of Nebraska | Gross positioning device and related systems and methods |
US11701193B2 (en) | 2016-11-29 | 2023-07-18 | Virtual Incision Corporation | User controller with user presence detection and related systems and methods |
US12114953B2 (en) | 2016-11-29 | 2024-10-15 | Virtual Incision Corporation | User controller with user presence detection and related systems and methods |
US11284958B2 (en) | 2016-11-29 | 2022-03-29 | Virtual Incision Corporation | User controller with user presence detection and related systems and methods |
US11786334B2 (en) | 2016-12-14 | 2023-10-17 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
US10722319B2 (en) | 2016-12-14 | 2020-07-28 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
US11051894B2 (en) | 2017-09-27 | 2021-07-06 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
US11974824B2 (en) | 2017-09-27 | 2024-05-07 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
US11950867B2 (en) | 2018-01-05 | 2024-04-09 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
US11504196B2 (en) | 2018-01-05 | 2022-11-22 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
US11013564B2 (en) | 2018-01-05 | 2021-05-25 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
US11903658B2 (en) | 2019-01-07 | 2024-02-20 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
Also Published As
Publication number | Publication date |
---|---|
US20110237890A1 (en) | 2011-09-29 |
US8894633B2 (en) | 2014-11-25 |
EP2512754A1 (en) | 2012-10-24 |
JP2013514835A (en) | 2013-05-02 |
EP2512754A4 (en) | 2016-11-30 |
CA2784883A1 (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8894633B2 (en) | Modular and cooperative medical devices and related systems and methods | |
US8974440B2 (en) | Modular and cooperative medical devices and related systems and methods | |
US20210344554A1 (en) | Robotic Surgical Devices, Systems and Related Methods | |
US9579163B2 (en) | Robotic platform for mini-invasive surgery | |
US20200330170A1 (en) | Methods, Systems, and Devices for Surgical Access and Procedures | |
US20180153631A1 (en) | Multifunctional Operational Component for Robotic Devices | |
EP2303141B1 (en) | Tool for minimally invasive surgery | |
US8891924B2 (en) | Magnetic-anchored robotic system | |
US9089352B2 (en) | Surgical robot system having tool for minimally invasive surgery | |
Tortora et al. | A modular magnetic platform for natural orifice transluminal endoscopic surgery | |
Hu et al. | In-vivo pan/tilt endoscope with integrated light source | |
Zhang et al. | Cooperative robotic assistant for laparoscopic surgery: CoBRASurge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10838323 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2784883 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012544922 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2010838323 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010838323 Country of ref document: EP |