WO2011075595A1 - Maize event dp-043a47-3 and methods for detection thereof - Google Patents

Maize event dp-043a47-3 and methods for detection thereof Download PDF

Info

Publication number
WO2011075595A1
WO2011075595A1 PCT/US2010/060846 US2010060846W WO2011075595A1 WO 2011075595 A1 WO2011075595 A1 WO 2011075595A1 US 2010060846 W US2010060846 W US 2010060846W WO 2011075595 A1 WO2011075595 A1 WO 2011075595A1
Authority
WO
WIPO (PCT)
Prior art keywords
corn
plant
dna
event
seq
Prior art date
Application number
PCT/US2010/060846
Other languages
French (fr)
Inventor
Scott Diehn
Albert L. Lu
Timothy M. Nowatzki
Douglas Stuart Nubel
Iii James Calvin Register
Christopher Jay Scelonge
M. Alejandra Pascual Villanelo
Gregory James Young
Joshua K. Young
Cathy Xiaoyan Zhong
Original Assignee
Pioneer Hi-Bred International, Inc.
E. I. Dupont De Nemours & Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi-Bred International, Inc., E. I. Dupont De Nemours & Company filed Critical Pioneer Hi-Bred International, Inc.
Publication of WO2011075595A1 publication Critical patent/WO2011075595A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Definitions

  • Embodiments of the present invention relate to the field of plant molecular biology, specifically embodiment of the invention relate to DNA constructs for conferring insect resistance to a plant.
  • Embodiments of the invention more specifically relate to insect resistant corn plant event DP-043A47-3 and to assays for detecting the presence of corn event DP-043A47-3 in a sample and
  • An embodiment of this invention relates to the insect resistant corn (Zea mays) plant DP-043A47-3, also referred to as "maize line DP-043A47-3,” “maize event DP-043A47-3,” and “43A47 maize,” and to the DNA plant expression construct of corn plant DP-043A47-3 and the detection of the transgene/flanking insertion region in corn plant DP-043A47-3 and progeny thereof.
  • Corn is an important crop and is a primary food source in many areas of the world. Damage caused by insect pests is a major factor in the loss of the world's corn crops, despite the use of protective measures such as chemical pesticides. In view of this, insect resistance has been genetically engineered into crops such as corn in order to control insect damage and to reduce the need for traditional chemical pesticides.
  • One group of genes which have been utilized for the production of transgenic insect resistant crops is the delta-endotoxin group from Bacillus thuringiensis (Bt). Delta-endotoxins have been successfully expressed in crop plants such as cotton, potatoes, rice, sunflower, as well as corn, and have proven to provide excellent control over insect pests. (Perlak, F.J et al.
  • Embodiments of this invention relate to methods for producing and selecting an insect resistant monocot crop plant. More specifically, a DNA construct is provided that when expressed in plant cells and plants confers resistance to insects. According to one aspect of the invention, a DNA construct, capable of introduction into and replication in a host cell, is provided that when expressed in plant cells and plants confers insect resistance to the plant cells and plants.
  • Maize event DP-043A47-3 was produced by Agrobacterium- mediated transformation with plasmid PHP271 18. This event contains the cry ⁇ F, cr 34Ab1 , cr 35Ab1 , and pat gene cassettes, which confer resistance to certain lepidopteran and coleopteran pests, as well as tolerance to phosphinothricin.
  • the first cassette contains a truncated version of the cry ⁇ F gene from Bacillus thuringiensis var. aizawai.
  • the insertion of the cry ⁇ F gene confers resistance to damage by lepidopteran pests.
  • the Cry1 F protein (SEQ ID NO: 1 ) is comprised of 605 amino acids and has a molecular weight of approximately 68 kDa.
  • the expression of the cry ⁇ F gene is controlled by the maize polyubiquitin promoter (Christensen et al. (1992) Plant Mol. Biol. 1 18(4):675-89), providing constitutive expression of the Cry1 F protein in maize.
  • This region also includes the 5' untranslated region (UTR) and intron associated with the native polyubiquitin promoter.
  • the terminator for the cry ⁇ F gene is the poly(A) addition signal from Open Reading Frame 25 (ORF 25) of the Agrobacterium tumefaciens Ti plasmid pTi15955 (Barker et al. (1983) Plant Mol. Biol. 2:335-350).
  • the second cassette contains the cry34Ab1 gene isolated from Bacillus thuringiensis strain PS149B1 (U.S. Pat. Nos. 6,127,180; 6,624,145 and 6,340,593).
  • the Cry34Ab1 protein (SEQ ID NO: 2) is 123 amino acid residues in length and has a molecular weight of approximately 14 kDa.
  • the expression of the cr 34Ab1 gene is controlled by a second copy of the maize polyubiquitin promoter with 5' UTR and intron (Christensen et al., 1992, supra).
  • the terminator for the cr 34Ab1 gene is the pin ⁇ terminator (Keil et al. (1986) Nucleic Acids Res. 14:5641 -5650; An et al. (1989) Plant Cell 1 :1 15-22).
  • the third gene cassette contains the cr 35Ab1 gene, also isolated from Bacillus thuringiensis strain PS149B1 (U.S. Pat. Nos. 6,083,499; 6,548,291 and 6,340,593).
  • the Cry35Ab1 protein (SEQ ID NO: 3) has a length of 383 amino acids and a molecular weight of approximately 44 kDa. Simultaneous expression of the Cry34Ab1 and Cry35Ab1 proteins in the plant confers resistance to coleopteran insects.
  • the expression of the cr 35Ab1 gene is controlled by the Triticum aestivum (wheat) peroxidase promoter and leader sequence (Hertig et al. (1991 ) Plant Mol. Biol. 16:171 -174).
  • the terminator for the cr 35Ab1 gene is a second copy of the p/ ' nll terminator (Keil et al., 1986, supra; An et al., 1989, supra).
  • the fourth and final gene cassette contains a version of the phosphinothricin acetyl transferase gene from Streptomyces viridochromogenes ⁇ pat) that has been optimized for expression in maize.
  • the pat gene expresses the phosphinothricin acetyl transferase enzyme (PAT) that confers tolerance to phosphinothricin.
  • the PAT protein (SEQ ID NO: 4) is 183 amino acids residues in length and has a molecular weight of approximately 21 kDa. Expression of the pat gene is controlled by the promoter and terminator regions from the CaMV 35S transcript (Franck et al. (1980) Cell 21 :285-294; Odell et al. (1985) Nature 313:810-812; Pietrzak, et al. (1986) Nucleic Acids Res. 14(14):5857-5868). Plants containing the DNA constructs are also provided.
  • compositions and methods are provided for identifying a novel corn plant designated DP-043A47-3.
  • the methods are based on primers or probes which specifically recognize the 5' and/or 3' flanking sequence of DP-043A47-3.
  • DNA molecules are provided that comprise primer sequences that when utilized in a PCR reaction will produce amplicons unique to the transgenic event DP-043A47-3.
  • the corn plant and seed comprising these molecules is an embodiment of this invention.
  • kits utilizing these primer sequences for the identification of the DP-043A47-3 event are provided.
  • An additional embodiment of the invention relates to the specific flanking sequence of DP-043A47-3 described herein, which can be used to develop specific identification methods for DP-043A47-3 in biological samples.
  • the invention relates to the 5' and/or 3' flanking regions of DP-043A47-3 which can be used for the development of specific primers and probes.
  • a further embodiment of the invention relates to identification methods for the presence of DP-043A47-3 in biological samples based on the use of such specific primers or probes.
  • methods of detecting the presence of DNA corresponding to the corn event DP-043A47-3 in a sample comprise: (a) contacting the sample comprising DNA with a DNA primer set, that when used in a nucleic acid amplification reaction with genomic DNA extracted from corn event DP-043A47-3 produces an amplicon that is diagnostic for corn event DP-043A47-3; (b) performing a nucleic acid
  • methods of detecting the presence of a DNA molecule corresponding to the DP-043A47-3 event in a sample comprising : (a) contacting the sample comprising DNA extracted from a corn plant with a DNA probe molecule that hybridizes under stringent hybridization conditions with DNA extracted from corn event DP-043A47-3 and does not hybridize under the stringent hybridization conditions with a control corn plant DNA; (b) subjecting the sample and probe to stringent hybridization
  • a method for detecting the presence of a DNA molecule corresponding to the DP-043A47-3 event in a sample consisting of (a) contacting the sample comprising DNA extracted from a corn plant with a DNA probe molecule that consists of sequences that are unique to the event, e.g. junction sequences, wherein said DNA probe molecule hybridizes under stringent hybridization conditions with DNA extracted from corn event DP-043A47-3 and does not hybridize under the stringent hybridization conditions with a control corn plant DNA; (b) subjecting the sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the DNA.
  • a kit and methods for identifying event DP-043A47-3 in a biological sample which detects a DP-043A47-3 specific region are provided.
  • DNA molecules are provided that comprise at least one junction sequence of DP-043A47-3; wherein a junction sequence spans the junction between
  • heterologous DNA inserted into the genome and the DNA from the corn cell flanking the insertion site, i.e. flanking DNA, and is diagnostic for the DP-043A47-3 event.
  • methods of producing an insect resistant corn plant that comprise the steps of : (a) sexually crossing a first parental corn line comprising the expression cassettes of the invention, which confers resistance to insects, and a second parental corn line that lacks insect resistance, thereby producing a plurality of progeny plants; and (b) selecting a progeny plant that is insect resistant.
  • Such methods may optionally comprise the further step of back-crossing the progeny plant to the second parental corn line to producing a true-breeding corn plant that is insect resistant.
  • a further embodiment of the invention provides a method of producing a corn plant that is resistant to insects comprising transforming a corn cell with the DNA construct PHP271 1 8, growing the transformed corn cell into a corn plant, selecting the corn plant that shows resistance to insects, and further growing the corn plant into a fertile corn plant.
  • the fertile corn plant can be self pollinated or crossed with compatible corn varieties to produce insect resistant progeny.
  • kits for identifying maize event DP-043A47-3 in biological samples comprising a first primer which specifically recognizes the 5' or 3' flanking region of DP-043A47- 3, and a second primer which specifically recognizes a sequence within the foreign DNA of DP-043A47-3, or within the flanking DNA, for use in a PCR identification protocol.
  • a further embodiment of the invention relates to a kit for identifying event DP-043A47-3 in biological samples, which kit comprises a specific probe having a sequence which corresponds or is complementary to, a sequence having between 80% and 1 00% sequence identity with a specific region of event DP-043A47-3. The sequence of the probe corresponds to a specific region comprising part of the 5' or 3' flanking region of event DP-043A47-3.
  • the methods and kits encompassed by the embodiments of the present invention can be used for different purposes such as, but not limited to the following : to identify event DP-043A47-3 in plants, plant material or in products such as, but not limited to, food or feed products (fresh or processed) comprising, or derived from plant material; additionally or alternatively, the methods and kits can be used to identify transgenic plant material for purposes of segregation between transgenic and non-transgenic material; additionally or alternatively, the methods and kits can be used to determine the quality of plant material comprising maize event DP-043A47-3.
  • the kits may also contain the reagents and materials necessary for the performance of the detection method.
  • a further embodiment of this invention relates to the DP-043A47-3 corn plant or its parts, including, but not limited to, pollen, ovules, vegetative cells, the nuclei of pollen cells, and the nuclei of egg cells of the corn plant DP-043A47-3 and the progeny derived thereof.
  • the corn plant and seed of DP-043A47-3 from which the DNA primer molecules provide a specific amplicon product is an embodiment of the invention.
  • FIG. 1 Schematic diagram of plasmid PHP271 18 with genetic elements indicated and ⁇ III restriction enzyme sites. Plasmid size is 54910 bp.
  • FIG. 2 Schematic diagram of the T-DNA indicating the cr ⁇ F, cr 34Ab1 , cr 35Ab1 , and pat genes (arrows) along with their respective regulatory elements. ⁇ III restriction enzyme sites within the T-DNA are indicated. The size of the T- DNA is 1 1978 bp.
  • FIG. 3 Schematic Diagram of the Transformation and Development of DP- 043A47-3.
  • FIG. 4 Western corn rootworm (WCRW) larvae developmental effects in the sublethal seedling assay employing maize hybrid seedlings in the same genetic background: DP-043A47-3 maize with an isoline as a negative control. Results are based on three replicates. Graphic profiles show the percent of larvae in each of three instars at 17 days post egg hatch. A shift towards instar 3 indicates a decrease in efficacy.
  • FIG. 5. Schematic representation of of 43A47 maize showing the genetic elements of the PHP271 18 insertion and the 5' and 3' flanking genomic regions. Shown below the elements are the relative positions of the six PCR fragments that were sequenced to generate the 43A47 maize consensus sequence. The T-DNA insert contains a 54 bp and 12 bp deletion on the right and left border respectively.
  • T-DNA The transfer DNA portion of the Agrobacterium
  • compositions of this disclosure include seed deposited as Patent Deposit No. PTA-1 1509 and plants, plant cells, and seed derived therefrom. Applicant(s) have made a deposit of at least 2500 seeds of maize event DP-043A47-3 with the American Type Culture Collection (ATCC), Manassas, VA 201 10-2209 USA, on November 24, 2010 and the deposits were assigned ATCC Deposit No. PTA- 1 1509. These deposits will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. These deposits were made merely as a convenience for those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. ⁇ 1 12.
  • Applicant(s) have no authority to waive any restrictions imposed by law on the transfer of biological material or its transportation in commerce. Applicant(s) do not waive any infringement of their rights granted under this patent or rights applicable to event DP-043A47-3 under the Plant Variety Protection Act (7 USC 2321 et seq.). Unauthorized seed multiplication prohibited. The seed may be regulated.
  • corn means Zea mays or maize and includes all plant varieties that can be bred with corn, including wild maize species.
  • DP-043A47-3 specific refers to a nucleotide sequence which is suitable for discriminatively identifying event DP-043A47-3 in plants, plant material, or in products such as, but not limited to, food or feed products (fresh or processed) comprising, or derived from plant material.
  • insect resistant and “impacting insect pests” refers to effecting changes in insect feeding, growth, and/or behavior at any stage of development, including but not limited to: killing the insect; retarding growth; preventing reproductive capability; inhibiting feeding; and the like.
  • the terms “pesticidal activity” and “insecticidal activity” are used synonymously to refer to activity of an organism or a substance (such as, for example, a protein) that can be measured by numerous parameters including, but not limited to, pest mortality, pest weight loss, pest attraction, pest repellency, and other behavioral and physical changes of a pest after feeding on and/or exposure to the organism or substance for an appropriate length of time.
  • a substance such as, for example, a protein
  • protecidal proteins are proteins that display pesticidal activity by themselves or in combination with other proteins.
  • Coding sequence refers to a nucleotide sequence that codes for a specific amino acid sequence.
  • the terms “encoding” or “encoded” when used in the context of a specified nucleic acid mean that the nucleic acid comprises the requisite information to guide translation of the nucleotide sequence into a specified protein. The information by which a protein is encoded is specified by the use of codons.
  • a nucleic acid encoding a protein may comprise non-translated sequences (e.g., introns) within translated regions of the nucleic acid or may lack such intervening non-translated sequences (e.g., as in cDNA).
  • Gene refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence.
  • Native gene refers to a gene as found in nature with its own regulatory sequences.
  • Chimeric gene refers any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature.
  • Endogenous gene refers to a native gene in its natural location in the genome of an organism.
  • Form refers to material not normally found in the location of interest.
  • foreign DNA may comprise both recombinant DNA as well as newly introduced, rearranged DNA of the plant.
  • a “foreign” gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes.
  • a “transgene” is a gene that has been introduced into the genome by a transformation procedure. The site in the plant genome where a recombinant DNA has been inserted may be referred to as the "insertion site” or "target site”.
  • insert DNA refers to the heterologous DNA within the expression cassettes used to transform the plant material while “flanking DNA” can exist of either genomic DNA naturally present in an organism such as a plant, or foreign (heterologous) DNA introduced via the transformation process which is extraneous to the original insert DNA molecule, e.g. fragments associated with the transformation event.
  • a “flanking region” or “flanking sequence” as used herein refers to a sequence of at least 20 bp, preferably at least 50 bp, and up to 5000 bp, which is located either immediately upstream of and contiguous with or
  • Transformants will also contain unique junctions between a piece of heterologous insert DNA and genomic DNA, or two (2) pieces of genomic DNA, or two (2) pieces of heterologous DNA.
  • a "junction" is a point where two (2) specific DNA fragments join. For example, a junction exists where insert DNA joins flanking DNA. A junction point also exists in a transformed organism where two (2) DNA fragments join together in a manner that is modified from that found in the native organism.
  • junction DNA refers to DNA that comprises a junction point.
  • Two junction sequences set forth in this disclosure are the junction point between the maize genomic DNA and the 5' end of the insert as set forth in SEQ ID NO: 21 , and the junction point between the 3' end of the insert and maize genomic DNA as set forth in SEQ ID NO: 22.
  • heterologous in reference to a nucleic acid is a nucleic acid that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention.
  • a promoter operably linked to a heterologous nucleotide sequence can be from a species different from that from which the nucleotide sequence was derived, or, if from the same species, the promoter is not naturally found operably linked to the nucleotide sequence.
  • a heterologous protein may originate from a foreign species, or, if from the same species, is substantially modified from its original form by deliberate human intervention.
  • regulatory sequences refer to nucleotide sequences located upstream
  • Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
  • Promoter refers to a nucleotide sequence capable of controlling the expression of a coding sequence or functional RNA.
  • a coding sequence is located 3' to a promoter sequence.
  • the promoter sequence consists of proximal and more distal upstream elements, the latter elements are often referred to as enhancers.
  • an “enhancer” is a nucleotide sequence that can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic nucleotide segments.
  • promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters that cause a nucleic acid fragment to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg (1989) Biochemistry of Plants 15:1 -82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, nucleic acid fragments of different lengths may have identical promoter activity.
  • translation leader sequence refers to a nucleotide sequence located between the promoter sequence of a gene and the coding sequence.
  • the translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence.
  • the translation leader sequence may affect numerous parameters including, processing of the primary transcript to mRNA, mRNA stability and/or translation efficiency. Examples of translation leader sequences have been described (Turner and Foster (1 995) Mol. Biotechnol.
  • the "3' non-coding sequences” refer to nucleotide sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression.
  • the polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor.
  • the use of different 3' non-coding sequences is exemplified by Ingelbrecht et al. (1989) Plant Cell 1 :671 -680.
  • a “protein” or “polypeptide” is a chain of amino acids arranged in a specific order determined by the coding sequence in a polynucleotide encoding the polypeptide.
  • a DNA construct is an assembly of DNA molecules linked together that provide one or more expression cassettes.
  • the DNA construct may be a plasmid that is enabled for self replication in a bacterial cell and contains various endonuclease enzyme restriction sites that are useful for introducing DNA molecules that provide functional genetic elements, i.e., promoters, introns, leaders, coding sequences, 3' termination regions, among others; or a DNA construct may be a linear assembly of DNA molecules, such as an expression cassette.
  • the expression cassette contained within a DNA construct comprises the necessary genetic elements to provide transcription of a messenger RNA.
  • the expression cassette can be designed to express in prokaryote cells or eukaryotic cells. Expression cassettes of the embodiments of the present invention are designed to express in plant cells.
  • the DNA molecules of embodiments of the invention are provided in expression cassettes for expression in an organism of interest.
  • the cassette will include 5' and 3' regulatory sequences operably linked to a coding sequence.
  • Operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. Operably linked is intended to indicate a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence.
  • the cassette may additionally contain at least one additional gene to be co-transformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes or multiple DNA constructs.
  • the expression cassette will include in the 5' to 3' direction of transcription: a transcriptional and translational initiation region, a coding region, and a
  • the transcriptional initiation region i.e., the promoter
  • the transcriptional initiation region may be native or analogous, or foreign or heterologous to the host organism. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence.
  • the expression cassettes may additionally contain 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation.
  • transgenic includes any cell, cell line, callus, tissue, plant part, or plant, the genotype of which has been altered by the presence of a heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual
  • transgenic does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.
  • a transgenic "event” is produced by transformation of plant cells with a heterologous DNA construct(s), including a nucleic acid expression cassette that comprises a transgene of interest, the regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant, and selection of a particular plant characterized by insertion into a particular genome location.
  • An event is characterized phenotypically by the expression of the transgene.
  • an event is part of the genetic makeup of a plant.
  • the term “event” also refers to progeny produced by a sexual outcross between the transformant and another variety that include the heterologous DNA.
  • vent also refers to DNA from the original transformant comprising the inserted DNA and flanking sequence immediately adjacent to the inserted DNA that would be expected to be transferred to a progeny that receives inserted DNA including the transgene of interest as the result of a sexual cross of one parental line that includes the inserted DNA (e.g., the original transformant and progeny resulting from selfing) and a parental line that does not contain the inserted DNA.
  • An insect resistant DP-043A47-3 corn plant can be bred by first sexually crossing a first parental corn plant consisting of a corn plant grown from the transgenic DP-043A47-3 corn plant and progeny thereof derived from
  • steps can further include the back-crossing of the first insect resistant progeny plant or the second insect resistant progeny plant to the second parental corn plant or a third parental corn plant, thereby producing a corn plant that is resistant to insects.
  • the term "plant” includes reference to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds, plant cells, and progeny of same.
  • Parts of transgenic plants understood to be within the scope of the invention comprise, for example, plant cells, protoplasts, tissues, callus, embryos as well as flowers, stems, fruits, leaves, and roots originating in transgenic plants or their progeny previously transformed with a DNA molecule of the invention and therefore consisting at least in part of transgenic cells, are also an embodiment of the present invention.
  • plant cell includes, without limitation, seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores.
  • the class of plants that can be used in the methods of the invention is generally as broad as the class of higher plants amenable to transformation techniques, including both
  • Transformation refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms. Examples of methods of plant transformation include Agrobacterium- mediated transformation (De Blaere et al. (1987) Meth. Enzymol. 143:277) and particle-accelerated or “gene gun” transformation technology (Klein et al. (1987) Nature (London) 327:70-73; U.S. Patent No. 4,945,050, incorporated herein by reference). Additional transformation methods are disclosed below.
  • isolated polynucleotides of the invention can be incorporated into recombinant constructs, typically DNA constructs, which are capable of introduction into and replication in a host cell.
  • a construct can be a vector that includes a replication system and sequences that are capable of transcription and translation of a polypeptide-encoding sequence in a given host cell.
  • vectors suitable for stable transfection of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al., (1985; Supp.
  • plant expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker.
  • plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive,
  • RNA processing signal a transcription termination site, and/or a polyadenylation signal.
  • transgenic plants can also be mated to produce offspring that contain two independently segregating added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes.
  • Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation. Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several references, e.g., Fehr, in Breeding Methods for Cultivar Development, Wilcos J. ed., American Society of Agronomy, Madison Wis. (1987).
  • a “probe” is an isolated nucleic acid to which is attached a conventional detectable label or reporter molecule, e.g., a radioactive isotope, ligand,
  • Probes according to the present invention include not only deoxyribonucleic or ribonucleic acids but also polyamides and other probe materials that bind specifically to a target DNA sequence and can be used to detect the presence of that target DNA sequence.
  • Primer pairs of the invention refer to their use for amplification of a target nucleic acid sequence, e.g., by PCR or other conventional nucleic-acid amplification methods.
  • PCR or “polymerase chain reaction” is a technique used for the amplification of specific DNA segments (see, U.S. Patent Nos. 4,683,195 and 4,800,159; herein incorporated by reference).
  • Probes and primers are of sufficient nucleotide length to bind to the target DNA sequence specifically in the hybridization conditions or reaction conditions determined by the operator. This length may be of any length that is of sufficient length to be useful in a detection method of choice. Generally, 1 1 nucleotides or more in length, 18 nucleotides or more, and 22 nucleotides or more, are used.
  • Probes and primers hybridize specifically to a target sequence under high stringency hybridization conditions.
  • Probes and primers according to embodiments of the present invention may have complete DNA sequence similarity of contiguous nucleotides with the target sequence, although probes differing from the target DNA sequence and that retain the ability to hybridize to target DNA sequences may be designed by conventional methods.
  • Probes can be used as primers, but are generally designed to bind to the target DNA or RNA and are not used in an amplification process.
  • Specific primers can be used to amplify an integration fragment to produce an amplicon that can be used as a "specific probe" for identifying event DP- 043A47-3 in biological samples.
  • the probe is hybridized with the nucleic acids of a biological sample under conditions which allow for the binding of the probe to the sample, this binding can be detected and thus allow for an indication of the presence of event DP-043A47-3 in the biological sample.
  • the specific probe is a sequence which, under optimized conditions, hybridizes specifically to a region within the 5' or 3' flanking region of the event and also comprises a part of the foreign DNA contiguous therewith.
  • the specific probe may comprise a sequence of at least 80%, between 80 and 85%, between 85 and 90%, between 90 and 95%, and between 95 and 100% identical (or complementary) to a specific region of the event.
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as the PCR primer analysis tool in Vector NTI version 6 (Informax Inc., Bethesda MD); PrimerSelect (DNASTAR Inc., Madison, Wl); and Primer (Version 0.5 ® , 1991 , Whitehead Institute for Biomedical Research, Cambridge, Mass.). Additionally, the sequence can be visually scanned and primers manually identified using guidelines known to one of skill in the art.
  • kits refers to a set of reagents for the purpose of performing the method embodiments of the invention, more particularly, the identification of event DP-043A47-3 in biological samples.
  • the kit of the invention can be used, and its components can be specifically adjusted, for purposes of quality control (e.g. purity of seed lots), detection of event DP-043A47-3 in plant material, or material comprising or derived from plant material, such as but not limited to food or feed products.
  • Plant material as used herein refers to material which is obtained or derived from a plant.
  • Primers and probes based on the flanking DNA and insert sequences disclosed herein can be used to confirm (and, if necessary, to correct) the disclosed sequences by conventional methods, e.g., by re-cloning and sequencing such sequences.
  • the nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from a transgenic event in a sample.
  • Nucleic acid molecules or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances.
  • two nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure.
  • a nucleic acid molecule is said to be the "complement” of another nucleic acid molecule if they exhibit complete complementarity.
  • molecules are said to exhibit "complete complementarity” when every nucleotide of one of the molecules is complementary to a nucleotide of the other.
  • Two molecules are said to be “minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency” conditions.
  • the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high- stringency” conditions.
  • T m The thermal melting point
  • T m 81 .5 °C + 16.6 (log M) + 0.41 (%GC) - 0.61 (% form) - 500/L; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs.
  • T m is reduced by about 1 °C for each 1 % of mismatching; thus, T m , hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity.
  • the T m can be decreased 10 °C.
  • stringent conditions are selected to be about 5 °C lower than the T m for the specific sequence and its complement at a defined ionic strength and pH.
  • severely stringent conditions can utilize a hybridization and/or wash at 1 , 2, 3, or 4 °C lower than the T m ;
  • moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10 °C lower than the T m ;
  • low stringency conditions can utilize a hybridization and/or wash at 1 1 , 12, 13, 14, 15, or 20 °C lower than the T m .
  • hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T m of less than 45 °C (aqueous solution) or 32 °C (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature can be used.
  • a substantially homologous sequence is a nucleic acid molecule that will specifically hybridize to the complement of the nucleic acid molecule to which it is being compared under high stringency conditions.
  • stringent conditions will be those in which the salt concentration is less than about 1 .5 M Na ion, typically about 0.01 to 1 .0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 °C for short probes (e.g., 10 to 50 nucleotides) and at least about 60 °C for long probes (e.g., greater than 50 nucleotides).
  • Stringent conditions may also be achieved with the addition of a destabilizing agent such as formamide.
  • Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1 M NaCI, 1 % SDS at 37 °C, and a wash in 0.5X to 1 X SSC at 55 to 60 °C.
  • Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCI, 1 % SDS at 37 °C, and a wash in 0.1 X SSC at 60 to 65 °C.
  • a nucleic acid of the invention may specifically hybridize to one or more of the nucleic acid molecules unique to the DP-043A47-3 event or complements thereof or fragments of either under moderately stringent conditions.
  • Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0); the ALIGN PLUS program (version 3.0, copyright 1997); and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 10 (available from Accelrys, 9685 Scranton Road, San Diego, CA 92121 , USA). Alignments using these programs can be performed using the default parameters.
  • the BLAST family of programs which can be used for database similarity searches includes: BLASTN for nucleotide query sequences against nucleotide database sequences; BLASTX for nucleotide query sequences against protein database sequences; BLASTP for protein query sequences against protein database sequences; TBLASTN for protein query sequences against nucleotide database sequences; and TBLASTX for nucleotide query sequences against nucleotide database sequences. See, Ausubel, et al., (1995). Alignment may also be performed manually by visual inspection.
  • Gapped BLAST in BLAST 2.0
  • PSI-BLAST in BLAST 2.0
  • the default parameters of the respective programs e.g., BLASTN for nucleotide sequences, BLASTX for proteins
  • sequence identity or “identity” in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window.
  • percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule.
  • sequences differ in conservative substitutions the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution.
  • Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity.” Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1 . The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).
  • percentage of sequence identity means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
  • stringent conditions are conditions that permit the primer pair to hybridize only to the target nucleic-acid sequence to which a primer having the corresponding wild-type sequence (or its complement) would bind and preferably to produce a unique amplification product, the amplicon, in a DNA thermal amplification reaction.
  • amplified DNA refers to the product of nucleic acid amplification of a target nucleic acid sequence that is part of a nucleic acid template.
  • DNA extracted from the corn plant tissue sample may be subjected to a nucleic acid amplification method using a DNA primer pair that includes a first primer derived from flanking sequence adjacent to the insertion site of inserted heterologous DNA, and a second primer derived from the inserted heterologous DNA to produce an amplicon that is diagnostic for the presence of the event DNA.
  • the second primer may be derived from the flanking sequence.
  • the amplicon is of a length and has a sequence that is also diagnostic for the event.
  • the amplicon may range in length from the combined length of the primer pairs plus one nucleotide base pair to any length of amplicon producible by a DNA amplification protocol.
  • primer pairs can be derived from flanking sequence on both sides of the inserted DNA so as to produce an amplicon that includes the entire insert nucleotide sequence of the PHP271 18 expression construct as well as the sequence flanking the transgenic insert.
  • a member of a primer pair derived from the flanking sequence may be located a distance from the inserted DNA sequence, this distance can range from one nucleotide base pair up to the limits of the amplification reaction, or about 20,000 bp.
  • the use of the term "amplicon" specifically excludes primer dimers that may be formed in the DNA thermal amplification reaction.
  • Nucleic acid amplification can be accomplished by any of the various nucleic acid amplification methods known in the art, including PCR. A variety of
  • PCR amplification methods are known in the art and are described, inter alia, in U.S. Pat. Nos. 4,683,195 and 4,683,202 and in Innis et al., (1990) supra.
  • PCR amplification methods have been developed to amplify up to 22 Kb of genomic DNA and up to 42 Kb of bacteriophage DNA (Cheng et al., Proc. Natl. Acad. Sci. USA 91 :5695- 5699, 1994). These methods as well as other methods known in the art of DNA amplification may be used in the practice of the embodiments of the present invention. It is understood that a number of parameters in a specific PCR protocol may need to be adjusted to specific laboratory conditions and may be slightly modified and yet allow for the collection of similar results. These adjustments will be apparent to a person skilled in the art.
  • the amplicon produced by these methods may be detected by a plurality of techniques, including, but not limited to, Genetic Bit Analysis (Nikiforov, et al.
  • a DNA oligonucleotide is designed which overlaps both the adjacent flanking DNA sequence and the inserted DNA sequence.
  • the oligonucleotide is immobilized in wells of a microwell plate.
  • a single-stranded PCR product can be hybridized to the immobilized oligonucleotide and serve as a template for a single base extension reaction using a DNA polymerase and labeled ddNTPs specific for the expected next base.
  • Readout may be fluorescent or ELISA-based. A signal indicates presence of the insert/flanking sequence due to successful amplification, hybridization, and single base extension.
  • Another detection method is the pyrosequencing technique as described by Winge (2000) Innov. Pharma. Tech. 00:18-24.
  • an oligonucleotide is designed that overlaps the adjacent DNA and insert DNA junction.
  • oligonucleotide is hybridized to a single-stranded PCR product from the region of interest (one primer in the inserted sequence and one in the flanking sequence) and incubated in the presence of a DNA polymerase, ATP, sulfurylase, luciferase, apyrase, adenosine 5' phosphosulfate and luciferin.
  • dNTPs are added individually and the incorporation results in a light signal which is measured.
  • a light signal indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single or multi-base extension.
  • Fluorescence polarization as described by Chen et al., (1999) Genome Res. 9:492-498 is also a method that can be used to detect an amplicon of the invention.
  • an oligonucleotide is designed which overlaps the flanking and inserted DNA junction.
  • the oligonucleotide is hybridized to a single-stranded PCR product from the region of interest (one primer in the inserted DNA and one in the flanking DNA sequence) and incubated in the presence of a DNA polymerase and a fluorescent-labeled ddNTP. Single base extension results in incorporation of the ddNTP. Incorporation can be measured as a change in polarization using a fluorometer.
  • a change in polarization indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single base extension.
  • Taqman PE Applied Biosystems, Foster City, Calif.
  • a FRET oligonucleotide probe is designed which overlaps the flanking and insert DNA junction.
  • the FRET probe and PCR primers are cycled in the presence of a thermostable polymerase and dNTPs.
  • Hybridization of the FRET probe results in cleavage and release of the fluorescent moiety away from the quenching moiety on the FRET probe.
  • a fluorescent signal indicates the presence of the
  • flanking/transgene insert sequence due to successful amplification
  • Molecular beacons have been described for use in sequence detection as described in Tyangi et al. (1996) Nature Biotech. 14:303-308. Briefly, a FRET oligonucleotide probe is designed that overlaps the flanking and insert DNA junction. The unique structure of the FRET probe results in it containing secondary structure that keeps the fluorescent and quenching moieties in close proximity.
  • the FRET probe and PCR primers are cycled in the presence of a thermostable polymerase and dNTPs.
  • hybridization of the FRET probe to the target sequence results in the removal of the probe secondary structure and spatial separation of the fluorescent and quenching moieties.
  • a fluorescent signal results. A fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and
  • a hybridization reaction using a probe specific to a sequence found within the amplicon is yet another method used to detect the amplicon produced by a PCR reaction.
  • Maize event DP-043A47-3 is effective against insect pests including insects selected from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera,
  • Insects of the order Lepidoptera include, but are not limited to, armyworms, cutworms, loopers, and heliothines in the family Noctuidae: Agrotis ipsilon Hufnagel (black cutworm); A. orthogonia Morrison (western cutworm); A. segetum Denis & Schiffermuller (turnip moth); A. subterranea Fabricius (granulate cutworm);
  • zea Boddie corn earworm or cotton bollworm
  • Heliothis virescens Fabricius tobacco budworm
  • Hypena scabra Fabricius green cloverworm
  • Hyponeuma taltula Schaus ⁇ Mamestra configurata Walker (bertha armyworm)
  • M. brassicae Linnaeus cabbage moth
  • Melanchra picta Harris zebra caterpillar
  • Mods latipes Guenee small mocis moth
  • Pseudoplusia includens ⁇ N alker (soybean looper); Richia albicosta Smith (Western bean cutworm) ;Spodoptera frugiperda JE Smith (fall armyworm); S. exigua Hubner (beet armyworm); S. litura Fabricius (tobacco cutworm, cluster caterpillar);
  • Trichoplusia n/ Hubner Trichoplusia n/ Hubner (cabbage looper); borers, casebearers, webworms, coneworms, and skeletonizers from the families Pyralidae and Crambidae such as Achroia grisella Fabricius (lesser wax moth); Amyelois transitella Walker (naval orangeworm); Anagasta kuehniella Zeller (Mediterranean flour moth); Cadra cautella Walker (almond moth); Chilo partellus Swinhoe (spotted stalk borer); C. suppressalis ⁇ N alker (striped stem/rice borer); C. terrenellus Pagenstecher
  • saccharalis Fabricius (surgarcane borer); Elasmopalpus lignosellus Zeller (lesser cornstalk borer); Eoreuma loftini Dyar (Mexican rice borer); Ephestia elutella Hubner (tobacco (cacao) moth); Galleria mellonella Linnaeus (greater wax moth); Hedylepta accepta Butler (sugarcane leafroller); Herpetogramma licarsisalis Walker (sod webworm); Homoeosoma electellum Hulst (sunflower moth);
  • Loxostege sticticalis Linnaeus (beet webworm); Maruca testulalis Geyer (bean pod borer); Orthaga thyrisalis ⁇ N alker (tea tree web moth); Ostrinia nubilalis Hubner (European corn borer); Plodia interpunctella Hubner (Indian meal moth); Scirpophaga incertulas Walker (yellow stem borer); Udea rubigalis Guenee (celery leaftier); and leaf rollers, budworms, seed worms, and fruit worms in the family Tortricidae Acleris gloverana Walsingham (Western blackheaded budworm); A.
  • Argyrotaenia spp. Bonagota salubricola Meyrick (Brazilian apple leafroller);
  • Choristoneura spp. Cochylis hospes Walsingham (banded sunflower moth); Cydia latiferreana Walsingham (filbertworm); C. pomonella Linnaeus (codling moth); Endopiza viteana Clemens (grape berry moth); Eupoecilia ambiguella Hubner (vine moth); Grapholita molesta Busck (oriental fruit moth); Lobesia botrana Denis & Schiffermuller (European grape vine moth); Platynota flavedana Clemens
  • Selected other agronomic pests in the order Lepidoptera include, but are not limited to, Alsophila pometaria Harris (fall cankerworm); Anarsia lineatella Zeller (peach twig borer); Anisota senatoria J.E. Smith (orange striped oakworm);
  • Antheraea pernyi Guerin-Meneville (Chinese Oak Silkmoth); Bombyx mori
  • Linnaeus (Silkworm); Bucculatrix thurberiella Busck (cotton leaf perforator); Colias eurytheme Boisduval (alfalfa caterpillar); Datana integerrima Grote & Robinson (walnut caterpillar); Dendrolimus sibiricus Tschetwerikov (Siberian silk moth), Ennomos subsignaria Hubner (elm spanworm); Erannis tiliaria Harris (linden looper); Erechthias flavistriata Walsingham (sugarcane bud moth); Euproctis chrysorrhoea Linnaeus (browntail moth); Harrisina americana Guerin-Meneville (grapeleaf skeletonizer); Heliothis subflexa Guenee; Hemileuca oliviae Cockrell (range caterpillar); Hyphantria cunea Drury (fall webworm); Keiferia lycopersicella Wals
  • Malacosoma spp. Manduca quinquemaculata Haworth (five spotted hawk moth, tomato hornworm); M. sexta Haworth (tomato hornworm, tobacco hornworm); Operophtera brumata Linnaeus (winter moth); Orgyia spp.
  • Paleacrita vernata Peck spring cankerworm
  • Papilio cresphontes Cramer giant swallowtail, orange dog
  • Phryganidia californica Packard California oakworm
  • Phyllocnistis citrella Stainton citrus leafminer
  • Phyllonorycter blancardella Fabricius spotted tentiform leaf miner
  • Pieris brassicae Linnaeus large white butterfly
  • P. rapae Linnaeus small white butterfly
  • P. napi Linnaeus green veined white butterfly
  • Platyptilia carduidactyla Riley artichoke plume moth
  • Tineola bisselliella Hummel (webbing clothesmoth); Tuta absolutea Meyrick (tomato leafminer) and Yponomeuta padella Linnaeus (ermine moth).
  • larvae and adults of the order Coleoptera including weevils from the families Anthribidae, Bruchidae, and Curculionidae including, but not limited to: Anthonomus grandis Boheman (boll weevil); Cylindrocopturus adspersus LeConte (sunflower stem weevil); Diaprepes abbreviatus Linnaeus (Diaprepes root weevil); Hypera punctata Fabricius (clover leaf weevil);
  • Lissorhoptrus oryzophilus Kuschel (rice water weevil); Metamasius hemipterus hemipterus Linnaeus (West Indian cane weevil); M. hemipterus sericeus Olivier (silky cane weevil); Sitophilus granarius Linnaeus (granary weevil); S. oryzae Linnaeus (rice weevil); Smicronyx fulvus LeConte (red sunflower seed weevil); S. sordidus LeConte (gray sunflower seed weevil); Sphenophorus maidis Chittenden (maize billbug); S. livis Vaurie (sugarcane weevil); Rhabdoscelus obscurus
  • Boisduval New Guinea sugarcane weevil
  • flea beetles cucumber beetles, rootworms, leaf beetles, potato beetles, and leafminers in the family Chrysomelidae including, but not limited to: Chaetocnema ectypa Horn (desert corn flea beetle); C. pulicaria Melsheimer (corn flea beetle); Colaspis brunnea Fabricius (grape colaspis); Diabrotica barberi Smith & Lawrence (northern corn rootworm,); D.
  • Leafminers Agromyza parvicornis Loew corn blotch leafminer
  • midges including, but not limited to: Contarinia sorghicola Coquillett (sorghum midge); Mayetiola destructor Say (Hessian fly); Neolasioptera murtfeldtiana Felt, (sunflower seed midge);
  • Sitodiplosis mosellana Gehin wheat midge
  • fruit flies Tephritidae
  • Oscinella frit Linnaeus frit flies
  • maggots including, but not limited to: Delia spp. including Delia platura Meigen (seedcorn maggot); D. coarctata Fallen (wheat bulb fly); Fannia canicularis Linnaeus, F.
  • femoralis Stein (lesser house flies); Meromyza americana Fitch (wheat stem maggot); Musca domestica Linnaeus (house flies); Stomoxys calcitrans Linnaeus (stable flies)); face flies, horn flies, blow flies, Chrysomya spp. ; Phormia spp. ; and other muscoid fly pests, horse flies Tabanus spp. ; bot flies Gastrophilus spp. ; Oestrus spp. ; cattle grubs Hypoderma spp. ; deer flies Chrysops spp.
  • insects of interest are those of the order Hemiptera such as, but not limited to, the following families: Adelgidae, Aleyrodidae, Aphididae, Asterolecaniidae, Cercopidae, Cicadellidae, Cicadidae, Cixiidae, Coccidae,
  • Coreidae Dactylopiidae, Delphacidae, Diaspididae, Eriococcidae, Flatidae, Fulgoridae, Issidae, Lygaeidae, Margarodidae, Membracidae, Miridae, Ortheziidae, Pentatomidae, Phoenicococcidae, Phylloxeridae, Pseudococcidae, Psyllidae, Pyrrhocoridae and Tingidae.
  • Agronomically important members from the order Hemiptera include, but are not limited to: Acrosternum hilare Say (green stink bug); Acyrthisiphon pisum Harris (pea aphid); Adelges spp. (adelgids); Adelphocoris rapidus Say (rapid plant bug); Anasa tristis De Geer (squash bug); Aphis craccivora Koch (cowpea aphid); A. fabae Scopoli (black bean aphid); A. gossypii Glover (cotton aphid, melon aphid); A. maidiradicis Forbes (corn root aphid); A.
  • pratensis Linnaeus (common meadow bug); L. rugulipennis Poppius (European tarnished plant bug); Macrosiphum euphorbiae Thomas (potato aphid); Macrosteles quadrilineatus Forbes (aster leaf hopper); Magicicada septendecim Linnaeus
  • root aphids and gall aphids Peregrinus maidis Ash mead (corn planthopper); Perkinsiella saccharicida Kirkaldy (sugarcane delphacid); Phylloxera devastatrix Pergande (pecan phylloxera); Planococcus citri Risso (citrus mealybug); Plesiocoris rugicollis Fallen (apple capsid); Poecilocapsus lineatus Fabricius (four-lined plant bug);
  • Pseudatomoscelis seriatus Reuter cotton fleahopper
  • Pseudococcus spp. other mealybug complex
  • Pulvinaria elongata Newstead cottony grass scale
  • Pyrilla perpusilla ⁇ N alker sugarcane leaf hopper
  • Pyrrhocoridae spp. Quadraspidiotus perniciosus Comstock (San Jose scale); Reduviidae spp.; Rhopalosiphum maidis Fitch (corn leaf aphid); R.
  • Sogatella furcifera Horvath (white-backed planthopper); Sogatodes oryzicola Muir (rice delphacid); Spanagonicus albofasciatus Reuter (whitemarked fleahopper); Therioaphis maculata Buckton (spotted alfalfa aphid); Tinidae spp.; Toxoptera aurantii Boyer de Fonscolombe (black citrus aphid); and T. citricida Kirkaldy (brown citrus aphid); Trialeurodes abutiloneus (bandedwinged whitefly) and T.
  • Insect pests of the order Thysanura are of interest, such as Lepisma saccharina Linnaeus (silverfish); Thermobia domestica Packard (firebrat).
  • Additional arthropod pests covered include: spiders in the order Araneae such as Loxosceles reclusa Gertsch & Mulaik (brown recluse spider); and the
  • Latrodectus mactans Fabricius black widow spider
  • centipedes in the order Scutigeromorpha such as Scutigera coleoptrata Linnaeus (house centipede).
  • insect pests of the order Isoptera are of interest, including those of the termitidae family, such as, but not limited to, Cornitermes cumulans Kollar,
  • Cylindrotermes nordenskioeldi Holmgren and Pseudacanthotermes militaris Hagen (sugarcane termite); as well as those in the Rhinotermitidae family including, but not limited to Heterotermes tenuis Hagen.
  • Insects of the order Thysanoptera are also of interest, including but not limited to thrips, such as Stenchaetothrips minutus van Deventer (sugarcane thrips).
  • Maize event DP-043A47-3 was produced by Agrobacterium- mediated
  • This event contains the cry ⁇ F, cr 34Ab1 , cr 35Ab1 , and pat gene cassettes, which confer resistance to certain lepidopteran and coleopteran pests.
  • the first cassette contains a truncated version of the cr l F gene from Bt var. aizawai.
  • the insertion of the cry ⁇ F gene confers resistance to damage by lepidopteran pests, including ECB and FAW.
  • the Cry1 F protein (SEQ ID NO: 1 ) is comprised of 605 amino acids and has a molecular weight of approximately 68 kDa.
  • the expression of the cr ⁇ F gene is controlled by the maize polyubiquitin promoter (Christensen et al., 1992, supra), providing constitutive expression of
  • the Cry1 F protein in maize also includes the 5' UTR and intron associated with the native polyubiquitin promoter.
  • the terminator for the cr ⁇ F gene is the poly(A) addition signal from open reading frame 25 (ORF 25) of the Agrobacterium tumefaciens ⁇ A. tumefaciens) Ti plasmid pTi15955 (Barker et al., 1983, supra).
  • the second cassette contains the cry34Ab1 gene isolated from Bt strain
  • the Cry34Ab1 protein (SEQ ID NO: 2) is 123 amino acid residues in length and has a molecular weight of approximately 14 kDa.
  • the expression of the cry34Ab1 gene is controlled by a second copy of the maize polyubiquitin promoter with 5' UTR and intron (Christensen et al., 1992, supra).
  • the terminator for the cr 34Ab1 gene is the p/ ' nll terminator (Keil et al., 1 986, supra; An et al., 1 989, supra).
  • the third gene cassette contains the cr 35Ab1 gene, also isolated from Bt strain PS149B1 (U.S. Pat. Nos. 6,083,499; 6,548,291 and 6,340,593).
  • Cry35Ab1 protein (SEQ I D NO: 3) has a length of 383 amino acids and a molecular weight of approximately 44 kDa. Simultaneous expression of the Cry34Ab1 and Cry35Ab1 proteins in the plant confers resistance to coleopteran insects, including WCRW.
  • the expression of the cr 35Ab1 gene is controlled by the Triticum aestivum (wheat) peroxidase promoter and leader sequence (Hertig et al., 1 991 , supra).
  • the terminator for the cr 35Ab1 gene is a second copy of the p/ ' nl l terminator (Keil et al., 1 986, supra; An et al., 1 989, supra).
  • the fourth and final gene cassette contains a version of the pat gene from
  • Streptomyces viridochromogenes that has been optimized for expression in maize.
  • the pat gene expresses PAT, which confers tolerance to phosphinothricin
  • the PAT protein (SEQ I D NO: 4) is 1 83 amino acids residues in length and has a molecular weight of approximately 21 kDa.
  • pat gene is controlled by the promoter and terminator regions from the CaMV 35S transcript (Franck et al., 1980, supra; Odell et al., 1 985, supra;
  • Immature embryos of maize (Zea mays L.) were aseptically removed from the developing caryopsis nine to eleven days after pollination and inoculated with A. tumefaciens strain LBA4404 containing plasmid PHP271 1 8 ( Figure 1 ), essentially as described in Zhao (U.S. Patent No. 5,981 ,840, the contents of which are hereby incorporated by reference).
  • the T-DNA region of PHP271 1 8 is shown in Figure 2. After three to six days of embryo and Agrobacterium co-cultivation on solid culture medium with no selection, the embryos were then transferred to a medium without herbicide selection but containing carbenicillin.
  • TO plantlets were analyzed for the presence of certain Agrobacterium binary vector backbone sequences by PCR (data not shown). Plants that were determined to be single copy for the inserted genes and negative for Agrobacterium backbone sequences were selected for further greenhouse propagation. These selected TO plants were screened for trait efficacy and protein expression by conducting numerous bioassays (See Example 5). The TO plants meeting all criteria were advanced and crossed to inbred lines to produce seed for further testing. A schematic overview of the transformation and event development is presented in Figure 3.
  • Genomic DNA from leaf tissue of test seed from 43A47 maize and a control substance was isolated and subjected to qualitative PCR amplification using a construct-specific primer pair.
  • the PCR products were separated on an agarose gel to confirm the presence of the inserted construct in the genomic DNA isolated from the test seed, and the absence of the inserted construct in the genomic DNA isolated from the control seed.
  • a reference standard (PCR Markers; Promega Corporation Catalog #G3161 ) was used to determine the PCR product size.
  • the reliability of the construct-specific PCR method was assessed by repeating the experiment three times. The sensitivity of the PCR amplification was evaluated by various dilutions of the genomic DNA from 43A47 maize.
  • Test and control leaf samples were harvested from plants grown at the DuPont Experimental Station (Wilmington, DE) from seed obtained from Pioneer Hi-Bred (Johnston, IA). Genomic DNA extractions from the test and control leaf tissues were performed using a standard urea extraction protocol. All genomic DNA samples were quantified using a PicoGreen® assay (Molecular Probes, Eugene, OR).
  • Genomic DNA samples isolated from leaf tissue of 43A47 maize and control samples were subjected to PCR amplification (Roche High Fidelity PCR Master Kit, Roche Catalog # 12140314001 ) utilizing a construct-specific primer pair (SEQ ID NOs: 7 and 8) which spans the maize ORF 25 terminator and the ubiquitin promoter (See Figure 2), and allows for the unique identification of the inserted T- DNA in 43A47 maize.
  • a second primer set (SEQ ID NOs: 9 and 10) was used to amplify the endogenous maize invertase gene (GenBank accession number
  • AF171874.1 as a positive control for PCR amplification.
  • the PCR target site and size of the expected PCR product for each primer set are shown in Table 2.
  • PCR reagents and reaction conditions are shown in Table 3. In this study, 50 ng of leaf genomic DNA was used in all PCR reactions.
  • a PCR product of approximately 300 bp in size amplified by the construct- specific primer set (SEQ ID NOs: 7 and 8) was observed in PCR reactions using plasmid PHP271 18 (10 ng) as a template and all 43A47 maize DNA samples, but absent in all control maize samples and the no-template control. This experiment was repeated three times, and similar results were obtained. Results observed for DNA extracts from five 43A47 maize plants and five control maize plants
  • concentrations of a single DNA sample from 43A47 maize were diluted in non- genetically modified control DNA, resulting in 43A47 maize DNA amounts ranging from 500 fg, 5 pg, 10 pg, 50 pg, 100 pg, 5 00 pg, 5 ng, and 50 ng (the total amount of genomic DNA in all PCR samples was 50 ng).
  • Each dilution was subjected to PCR amplification as previously conducted. Based on this analysis, the limit of detection (LOD) was determined to be approximately 100 pg of 43A47 maize DNA in 50 ng of total DNA, or 0.2% 43A47 maize DNA.
  • test plants contained the inserted T-DNA from plasmid PHP271 18, as evident by the presence of the construct-specific target band in all test plant samples analyzed, and the absence in the non-genetically modified control plants. This result was reproducible.
  • Test and control plants both contained the endogenous maize invertase gene.
  • the sensitivity of the analysis under the conditions described is approximately 100 pg of 43A47 maize genomic DNA in 50 ng of total genomic DNA or 0.2% 43A47 maize genomic DNA.
  • DNA fragments were separated on agarose gels, depurinated, denatured, and neutralized in situ, and transferred to a nylon membrane in 20x SSC buffer using the method as described for TURBOBLOTTERTM Rapid Downward Transfer System (Schleicher & Schuell). Following transfer to the membrane, the DNA was bound to the membrane by ultraviolet light crosslinking.
  • the restriction enzyme ⁇ III was selected for Southern analysis of integrity, as there are three sites located within the T-DNA ( Figure 2). Approximately 1 -3 ⁇ g of genomic DNA was digested with Hind III and separated by size on an agarose gel. As a positive control, approximately 15 pg of plasmid containing the
  • PHP271 18 T-DNA was spiked into a control plant DNA sample, digested and included on the agarose gel. A negative control was also included to verify background hybridization of the probe to the maize genome.
  • fragments homologous to the cry ⁇ F, cr 34Ab1 , cr 35Ab1 , and pat genes were generated by PCR from plasmid containing the PHP271 18 T-DNA, size separated on an agarose gel, and purified using a QIAquick® gel extraction kit (Qiagen). All DNA probes were subsequently generated from the fragments using the
  • the labeled probes were hybridized to the target DNA on the nylon membranes for detection of the specific fragments using the MiracleHyb® Hybridization Solution essentially as described by the manufacturer (Stratagene). Washes after hybridization were carried out at high stringency. Blots were exposed to X-ray film at -80°C for one or more time points to detect hybridizing fragments.
  • the cr ⁇ F probe was expected to hybridize to a fragment of 3891 bp.
  • the cr 34Ab1 , cr 35Ab1 , and pat gene probes were expected to hybridize to a fragment of 7769 bp. Fragments from the test samples matching the expected sizes, as well as matching the bands in the plasmid control sample, would confirm the integrity of the inserted T-DNA and the presence of each gene.
  • cry ⁇ F and pat probes were used in Southern blot hybridizations to evaluate the copy number of the insertions in 43A47 maize.
  • the restriction enzyme Bel I was selected for Southern analysis of copy number, as there is a single site located within the T-DNA ( Figure 2).
  • genomic DNA from individual plants of the T1 generation of event 43A47 was digested with Bel I and separated by size on an agarose gel.
  • a plasmid containing the PHP271 18 T-DNA was spiked into a control plant DNA sample, digested and included on the agarose gel to serve as a positive
  • Probes for the cry ⁇ F and pat genes were also labeled by a PCR reaction incorporating a digoxigenin (DIG) labeled nucleotide, [DIG-1 1 ]-dUTP, into the fragment.
  • DIG digoxigenin
  • PCR labeling of isolated fragments was carried out according to the procedures supplied in the PCR DIG Probe Synthesis Kit (Roche).
  • the DIG-labeled probes were hybridized to the Bel I Southern blots of the T1 generation of the 43A47 event. Probes were hybridized to the target DNA for detection of the specific fragments using DIG Easy Hyb solution (Roche) essentially as described by manufacturer. Post-hybridization washes were carried out at high stringency. DIG-labeled probes hybridized to the bound fragments were detected using the CDP-Star Chemiluminescent Nucleic Acid Detection System (Roche). Blots were exposed to X-ray film at room temperature for one or more time points to detect hybridizing fragments. Membranes were stripped of hybridized probe following the manufacturer's recommendation prior to hybridization with additional probes.
  • the restriction enzyme Bel I having a single restriction site within the T-DNA ( Figure 2), was selected to confirm the presence of a single PHP271 18 T-DNA insertion in 43A47 maize.
  • the site for Bel I is located at bp 2546 of the T-DNA ( Figure 2) and will yield fragments of greater than about 2500 bp and 9400 bp for a single inserted T-DNA.
  • Hybridization with the pat probe would indicate the number of copies of this element found in the event based on the number of hybridizing bands (e.g., one hybridizing band indicates one copy of the element).
  • the pat probe would hybridize to the fragment of greater than 9400 bp. Because the Bel I restriction enzyme site is within the cry ⁇ F gene, the cryl F probe is expected to hybridize to both fragments and result in two bands for a single T-DNA insertion ( Figure 2).
  • cry34Ab1 and cry35Ab1 genes are located on the same fragment as the pat gene and part of the cry ⁇ F gene, and between the cryl F and pat genes on the T-DNA, by extension this also demonstrates that this event is likely to contain a single copy of each of these genes.
  • the sequence of the insert and genomic border regions was determined to confirm the integrity of the inserted DNA and to characterize the genomic sequence flanking the insertion site that is uniquely present in 43A47 maize.
  • 14,354 bp of 43A47 maize genomic sequence was confirmed, comprising 987 bp of the 5' genomic border sequence, 1 ,455 bp of the 3' genomic border sequence, and 1 1 ,912 bp of inserted T-DNA from PHP271 18.
  • the inserted T-DNA in 43A47 maize was found to have a 54 bp deletion on the Right Border (RB) end and a 12 bp deletion on the Left Border (LB) end. All remaining sequence is intact and identical to that of plasmid PHP271 18.
  • the 5' and 3' genomic border regions of 43A47 maize were verified to be of maize origin by PCR amplification and sequencing of the genomic border regions from both 43A47 maize and control maize plants.
  • Seed containing event DP-043A47-3 was obtained from a T1 S2 generation of 43A47 maize.
  • the 43A47 maize seed was planted in growth chambers at the DuPont Experimental Station (Wilmington, DE) to produce plant tissues used for this study. One seed was planted per pot, and the pot was uniquely identified. All plants were grown with light, temperature, and water regulated for healthy plant growth. Leaf samples were collected from the control and 43A47 maize plants. For each individual plant, leaf material was collected in a pre-labeled bag, placed on dry ice, and then transferred to an ultra low freezer ( ⁇ -55°C) following collection. All samples were maintained frozen until tissue processing.
  • ⁇ -55°C ultra low freezer
  • the PhusionTM Hot Start High-Fidelity DNA polymerase kit (Finnzymes Oy, Espoo, Finland) was used for all PCR, with the exception of the GenomeWalkerTM reactions.
  • the 5xHF Buffer (provided with the kit) was used with a 0.2 ⁇ dNTP, -0.4 ⁇ primers, and approximately 50-100 ng of DNA template.
  • Each PCR product was visualized under UV light following electrophoresis on an agarose gel.
  • PCR products used for analysis were purified using either the QIAquick PCR Purification Kit, QIAquick gel extraction kit, MinElute PCR Purification Kit (Qiagen, Valencia, CA), or the illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare, Piscataway, NJ).
  • GenomeWalkerTM Universal Kit (Clonetech Laboratories, Inc., Mountain View, CA) was used for PCR-based DNA walking on the 5' and 3' flanking genomic regions in 43A47 maize. PCR was performed on seven GenomeWalker libraries, which consist of genomic DNA fragments created by restriction enzyme digestion (Dral, EcoRV, Sspl, Pvull, Psil, Hpal, Stul) of the 43A47 maize genomic DNA followed by ligation to the 48 bp GenomeWalkerTM adapter, using the 50 ⁇
  • PCR products and plasmids were submitted for sequencing to the Dupont Agricultural Biotechnology (DABT) sequencing facility in Wilmington, DE.
  • DBT Dupont Agricultural Biotechnology
  • Sequencing reactions were run using the ABI BigDye v3.1 terminator chemistry and analyzed on an ABI 3730x1 (Applied Biosystems) capillary sequencer. Base calls and quality scores were assigned using the KBTM Basecaller software v1 .2 from ABI (Applied Biosystems). SequencherTM software (v4.8) from Gene Codes Corporation (Ann Arbor, Michigan) was used to assemble and analyze the trace files. All chromatograms received from the sequencing facility were manually inspected and any nucleotide positions within an individual read that could not be confidently called were annotated as ' ⁇ .' Low quality data and vector sequence was trimmed from the 5' and 3' ends before assembling. Sequence annotation was performed by comparing the 43A47 maize consensus sequence with the
  • the 5' flanking genomic region was amplified from a GenomeWalkerTM library, created by the Dral digestion of the 43A47 maize genomic DNA, using the insert-specific primer set forth in SEQ ID NO: 1 1 , which lies on the T-DNA backbone near the right border, and the nested adapter primer 2 (AP2) from the GenomeWalkerTM Universal Kit. This amplification produced a fragment of approximately 1 kb in size which was gel isolated, cloned, and sequenced. This fragment contained 987 bp of sequence on the 5' flanking genomic region.
  • the 3' flanking genomic region was amplified from a GenomeWalkerTM library, created by the Psil digestion of the 43A47 maize genomic DNA, using the insert-specific primer set forth in SEQ ID NO: 19, which lies on the T-DNA backbone near the left border, and the AP2 primer. This amplification produced a 1 .7 kb fragment which was gel isolated, cloned, and sequenced. This fragment contained 1 ,455 bp of sequence on the 3' flanking genomic region.
  • the 1 1 ,912 bp PHP271 18 T-DNA insert sequence was generated by four overlapping PCR products (See Figure 5).
  • the primer pairs for each of the PCR products are listed in Table 6 and positions are shown in Figure 5.
  • the sequences and sequence identifier numbers of the primers used are shown in Table 7.
  • Each resulting PCR product from maize 43A47 was cloned and sequenced.
  • a 43A47 maize consensus sequence (SEQ ID NO: 6) was created by assembling all the sequence reads from all six of the PCR fragments generated from the insert and flanking genomic regions. The 43A47 maize consensus was then aligned and compared directly to the PHP271 18 T-DNA. This comparison revealed that 54 base pairs on the right border (RB) and 12 base pairs on the left border (LB) of the T-DNA had been deleted in 43A47 maize. The deletion of the RB and LB sequence is a common occurrence in Agrobacterium- mediated
  • each plant was manually infested with approximately 1 00 ECB neonate larvae 3 times (300 larvae total) over
  • leaf damage ratings (based on a 9 - 1 visual rating scale where 9 indicates no damage and 1 indicates maximum damage) were taken on 8 consecutive plants per plot (total of 24 plants per genetic background, per entry) and means were calculated for each treatment.
  • First generation ECB foliar feeding results on DP-043A47-3 are shown in Table 8.
  • ECB2 damage For trials characterizing ECB2 damage, the same plants infested above for ECB1 were manually infested again later in the growing season with approximately 1 00 ECB neonate larvae (300 larvae total) per plant 3 times over approximately one week beginning at the R1 growth stage, when approximately 50% of the plants were shedding pollen. At approximately 50-60 days after the last infestation, stalks of 8 consecutive plants per plot (total of 24 plants per genetic background, per entry) were split from the top of the 4th internode above the primary ear to the base of the plant. The total length of ECB stalk tunneling (ECBXCM) was then measured in centimeters and recorded for each plant.
  • ECBXCM total length of ECB stalk tunneling
  • Tunnels 1 cm or less were considered entrance holes (larvae was not able to establish in the stalk) and were not included in the total cm of tunneling. Means (total cm of tunneling) were calculated for each treatment.
  • the ECB2 stalk feeding results for DP-043A47-3 are shown in Table 9.
  • Root damage caused by WCRW was also investigated. Plants at approximately the V2 growth stage were manually infested with approximately 500 WCRW eggs applied into the soil on each side of the plant ( ⁇ 1 ,000 eggs/plant total). Additionally, plots were planted in fields that had a high probability of containing a natural infestation of WCRW. Plant roots were evaluated at
  • DP-043A47-3 maize was evaluated in the lab-based sub-lethal seedling assay (SSA) (U.S. Publication No. 2006/01 04904 the contents of which is hereby incorporated by reference).
  • the SSA allowed for a comparison of the efficacy of DP-043A47-3 maize to an unprotected control (near isoline) without the confounding effects of the field environment.
  • the SSA technique involves exposing a population of neonate WCRW to maize seedlings containing either one of the DP-043A47-3 event or non-transgenic (negative control) maize seedlings. Larvae were exposed for a period of 17 days from the date of initial egg hatch.
  • the experimental unit for the SSA was a single plastic container with dimensions of 23 x 30 x 1 0 cm (Pactiv Corp., Lake Forest, IL).
  • Entries were arranged in a randomized complete block with 3 replications per entry.
  • SSA setup involved placing 1 1 5 kernels into each container with 225 mL of a 1 % thiophanate-methyl fungicide solution and 1 000 mL of Metro-Mix 200 plant growth media (Scotts-Sierra Horticultural Products Company, Marysville, OH).
  • Metro-Mix 200 plant growth media Scotts-Sierra Horticultural Products Company, Marysville, OH.
  • WCRW eggs were infested onto the surface of each container at a rate of 1 ,000 eggs per container.
  • WCRW eggs were pre-incubated at 25 °C so that initial egg hatch was timed to occur 5-7 days after container setup.
  • Infested containers were held in a walk-in environmental chamber with settings of 25 °C, 65% relative humidity, and 14:1 0 light:dark cycle. Larvae were extracted from the containers 1 7 days post-egg hatch using a Burlese funnel system. A random subsample of 30 larvae per container were selected and their head capsules measured under a dissecting microscope to categorize each into 1 of 3 instars. Data collected includes the age structure of the larval population determined from the number of larvae in each of three potential instars. Histograms that graphically displayed the age distribution of larvae for each entry were plotted and visually compared as shown in Figure 4.
  • leaf tissue sample was collected in each block at the V9 stage. All samples were collected from impartially selected, healthy, representative plants for each event. Each leaf sample was obtained by selecting the youngest leaf that had emerged at least 8 inches (20 cm, visible tissue) from the whorl. If this leaf was damaged or otherwise unhealthy, the next leaf below it was sampled. The leaf was pruned (cut) from the plant approximately 8 inches (20 cm) from the leaf tip. The leaf sample (including midrib) was cut into ⁇ 1 inch (2.5 cm) pieces and placed in a 50-ml sample vial. The samples were then placed on dry ice until transferred to a freezer ( ⁇ -10 °C). Samples were shipped frozen and stored at ⁇ -10 °C upon arrival. All tissue samples were lyophilized, under vacuum, until dry. The lyophilized leaf samples were finely homogenized in preparation for analysis. Samples were stored frozen between processing steps.
  • the Cry1 F, Cry34Ab1 and PAT ELISA kits employed were obtained from EnviroLogix, Inc. (Portland, ME), and the Cry35Ab1 ELISA kit employed was obtained from Acadia Bioscience, LLC (Portland, ME).
  • the ELISA method for each of these four proteins utilized a sequential "sandwich" format to determine the concentration of the protein in sample extracts. Standards (analyzed in triplicate wells) and diluted sample extracts (analyzed in duplicate wells) were incubated in plate pre-coated with an antibody specific to a single protein chosen from Cry1 F, Cry34Ab1 , Cry35Ab1 or PAT. Following incubation, unbound substances were washed from the plate.
  • HRP horseradish peroxidase
  • SoftMax® Pro software was used to perform the calculations required to convert the OD values obtained by the plate reader to protein concentrations.
  • a standard curve was included on each ELISA plate.
  • the equation for the standard curve was generated by the software, which used a quadratic fit to relate the mean OD values obtained for the standards to the respective standard concentration (ng/mL).
  • the quadratic regression equation was applied as follows:
  • the LLOQ in ng/mg sample weight, was calculated as follows
  • reportable assay LLOQ 2.3 ng/mL
  • extraction volume 0.6 mL
  • sample target weight 10 mg
  • the proteins Cry1 F, Cry34Ab1 , Cry35Ab1 , and PAT were detected in V9 leaf tissue of 43A47 maize at the concentrations set forth in Table 13 below.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pest Control & Pesticides (AREA)
  • Mycology (AREA)
  • Insects & Arthropods (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Catching Or Destruction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DP-043A47-3 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided.

Description

MAIZE EVENT DP-043A47-3 AND METHODS FOR
DETECTION THEREOF
FIELD OF INVENTION
Embodiments of the present invention relate to the field of plant molecular biology, specifically embodiment of the invention relate to DNA constructs for conferring insect resistance to a plant. Embodiments of the invention more specifically relate to insect resistant corn plant event DP-043A47-3 and to assays for detecting the presence of corn event DP-043A47-3 in a sample and
compositions thereof. BACKGROUND OF INVENTION
An embodiment of this invention relates to the insect resistant corn (Zea mays) plant DP-043A47-3, also referred to as "maize line DP-043A47-3," "maize event DP-043A47-3," and "43A47 maize," and to the DNA plant expression construct of corn plant DP-043A47-3 and the detection of the transgene/flanking insertion region in corn plant DP-043A47-3 and progeny thereof.
Corn is an important crop and is a primary food source in many areas of the world. Damage caused by insect pests is a major factor in the loss of the world's corn crops, despite the use of protective measures such as chemical pesticides. In view of this, insect resistance has been genetically engineered into crops such as corn in order to control insect damage and to reduce the need for traditional chemical pesticides. One group of genes which have been utilized for the production of transgenic insect resistant crops is the delta-endotoxin group from Bacillus thuringiensis (Bt). Delta-endotoxins have been successfully expressed in crop plants such as cotton, potatoes, rice, sunflower, as well as corn, and have proven to provide excellent control over insect pests. (Perlak, F.J et al. (1990) Bio/Technology 8:939-943; Perlak, F.J. et al. (1993) Plant Mol. Biol. 22:313-321 ; Fujimoto, H. et al. (1993) Bio/Technology 1 1 :1 151 -1 155; Tu et al. (2000) Nature Biotechnology 18:1 101 -1 104; PCT publication WO 01 /13731 ; and Bing, J.W. et al. (2000) Efficacy of Cry1 F Transgenic Maize, 14th Biennial International Plant Resistance to Insects Workshop, Fort Collins, CO). The expression of foreign genes in plants is known to be influenced by their location in the plant genome, perhaps due to chromatin structure (e.g.,
heterochromatin) or the proximity of transcriptional regulatory elements (e.g., enhancers) close to the integration site (Weising et al. (1988) Ann. Rev. Genet. 22:421 -477). At the same time the presence of the transgene at different locations in the genome will influence the overall phenotype of the plant in different ways. For this reason, it is often necessary to screen a large number of events in order to identify an event characterized by optimal expression of an introduced gene of interest. For example, it has been observed in plants and in other organisms that there may be a wide variation in levels of expression of an introduced gene among events. There may also be differences in spatial or temporal patterns of expression, for example, differences in the relative expression of a transgene in various plant tissues, that may not correspond to the patterns expected from transcriptional regulatory elements present in the introduced gene construct. For this reason, it is common to produce hundreds to thousands of different events and screen those events for a single event that has desired transgene expression levels and patterns for commercial purposes. An event that has desired levels or patterns of transgene expression is useful for introgressing the transgene into other genetic backgrounds by sexual outcrossing using conventional breeding methods. Progeny of such crosses maintain the transgene expression characteristics of the original
transformant. This strategy is used to ensure reliable gene expression in a number of varieties that are well adapted to local growing conditions.
It would be advantageous to be able to detect the presence of a particular event in order to determine whether progeny of a sexual cross contain a transgene of interest. In addition, a method for detecting a particular event would be helpful for complying with regulations requiring the pre-market approval and labeling of foods derived from recombinant crop plants, for example, or for use in
environmental monitoring, monitoring traits in crops in the field, or monitoring products derived from a crop harvest, as well as for use in ensuring compliance of parties subject to regulatory or contractual terms.
It is possible to detect the presence of a transgene by any nucleic acid detection method known in the art including, but not limited to, the polymerase chain reaction (PCR) or DNA hybridization using nucleic acid probes. These detection methods generally focus on frequently used genetic elements, such as promoters, terminators, marker genes, etc., because for many DNA constructs, the coding region is interchangeable. As a result, such methods may not be useful for discriminating between different events, particularly those produced using the same DNA construct or very similar constructs unless the DNA sequence of the flanking DNA adjacent to the inserted heterologous DNA is known. For example, an event- specific PCR assay is described in U.S. Patent No. 6,395,485 for the detection of elite event GAT-ZM1 . Accordingly, it would be desirable to have a simple and discriminative method for the identification of event DP-043A47-3. SUMMARY OF INVENTION
Embodiments of this invention relate to methods for producing and selecting an insect resistant monocot crop plant. More specifically, a DNA construct is provided that when expressed in plant cells and plants confers resistance to insects. According to one aspect of the invention, a DNA construct, capable of introduction into and replication in a host cell, is provided that when expressed in plant cells and plants confers insect resistance to the plant cells and plants. Maize event DP-043A47-3 was produced by Agrobacterium- mediated transformation with plasmid PHP271 18. This event contains the cry\ F, cr 34Ab1 , cr 35Ab1 , and pat gene cassettes, which confer resistance to certain lepidopteran and coleopteran pests, as well as tolerance to phosphinothricin.
Specifically, the first cassette contains a truncated version of the cry\ F gene from Bacillus thuringiensis var. aizawai. The insertion of the cry\ F gene confers resistance to damage by lepidopteran pests. The Cry1 F protein (SEQ ID NO: 1 ) is comprised of 605 amino acids and has a molecular weight of approximately 68 kDa. The expression of the cry\ F gene is controlled by the maize polyubiquitin promoter (Christensen et al. (1992) Plant Mol. Biol. 1 18(4):675-89), providing constitutive expression of the Cry1 F protein in maize. This region also includes the 5' untranslated region (UTR) and intron associated with the native polyubiquitin promoter. The terminator for the cry\ F gene is the poly(A) addition signal from Open Reading Frame 25 (ORF 25) of the Agrobacterium tumefaciens Ti plasmid pTi15955 (Barker et al. (1983) Plant Mol. Biol. 2:335-350).
The second cassette contains the cry34Ab1 gene isolated from Bacillus thuringiensis strain PS149B1 (U.S. Pat. Nos. 6,127,180; 6,624,145 and 6,340,593). The Cry34Ab1 protein (SEQ ID NO: 2) is 123 amino acid residues in length and has a molecular weight of approximately 14 kDa. The expression of the cr 34Ab1 gene is controlled by a second copy of the maize polyubiquitin promoter with 5' UTR and intron (Christensen et al., 1992, supra). The terminator for the cr 34Ab1 gene is the pin\\ terminator (Keil et al. (1986) Nucleic Acids Res. 14:5641 -5650; An et al. (1989) Plant Cell 1 :1 15-22).
The third gene cassette contains the cr 35Ab1 gene, also isolated from Bacillus thuringiensis strain PS149B1 (U.S. Pat. Nos. 6,083,499; 6,548,291 and 6,340,593). The Cry35Ab1 protein (SEQ ID NO: 3) has a length of 383 amino acids and a molecular weight of approximately 44 kDa. Simultaneous expression of the Cry34Ab1 and Cry35Ab1 proteins in the plant confers resistance to coleopteran insects. The expression of the cr 35Ab1 gene is controlled by the Triticum aestivum (wheat) peroxidase promoter and leader sequence (Hertig et al. (1991 ) Plant Mol. Biol. 16:171 -174). The terminator for the cr 35Ab1 gene is a second copy of the p/'nll terminator (Keil et al., 1986, supra; An et al., 1989, supra).
The fourth and final gene cassette contains a version of the phosphinothricin acetyl transferase gene from Streptomyces viridochromogenes {pat) that has been optimized for expression in maize. The pat gene expresses the phosphinothricin acetyl transferase enzyme (PAT) that confers tolerance to phosphinothricin. The PAT protein (SEQ ID NO: 4) is 183 amino acids residues in length and has a molecular weight of approximately 21 kDa. Expression of the pat gene is controlled by the promoter and terminator regions from the CaMV 35S transcript (Franck et al. (1980) Cell 21 :285-294; Odell et al. (1985) Nature 313:810-812; Pietrzak, et al. (1986) Nucleic Acids Res. 14(14):5857-5868). Plants containing the DNA constructs are also provided.
According to another embodiment of the invention, compositions and methods are provided for identifying a novel corn plant designated DP-043A47-3. The methods are based on primers or probes which specifically recognize the 5' and/or 3' flanking sequence of DP-043A47-3. DNA molecules are provided that comprise primer sequences that when utilized in a PCR reaction will produce amplicons unique to the transgenic event DP-043A47-3. The corn plant and seed comprising these molecules is an embodiment of this invention. Further, kits utilizing these primer sequences for the identification of the DP-043A47-3 event are provided. An additional embodiment of the invention relates to the specific flanking sequence of DP-043A47-3 described herein, which can be used to develop specific identification methods for DP-043A47-3 in biological samples. More particularly, the invention relates to the 5' and/or 3' flanking regions of DP-043A47-3 which can be used for the development of specific primers and probes. A further embodiment of the invention relates to identification methods for the presence of DP-043A47-3 in biological samples based on the use of such specific primers or probes.
According to another embodiment of the invention, methods of detecting the presence of DNA corresponding to the corn event DP-043A47-3 in a sample are provided. Such methods comprise: (a) contacting the sample comprising DNA with a DNA primer set, that when used in a nucleic acid amplification reaction with genomic DNA extracted from corn event DP-043A47-3 produces an amplicon that is diagnostic for corn event DP-043A47-3; (b) performing a nucleic acid
amplification reaction, thereby producing the amplicon; and (c) detecting the amplicon.
According to another embodiment of the invention, methods of detecting the presence of a DNA molecule corresponding to the DP-043A47-3 event in a sample, such methods comprising : (a) contacting the sample comprising DNA extracted from a corn plant with a DNA probe molecule that hybridizes under stringent hybridization conditions with DNA extracted from corn event DP-043A47-3 and does not hybridize under the stringent hybridization conditions with a control corn plant DNA; (b) subjecting the sample and probe to stringent hybridization
conditions; and (c) detecting hybridization of the probe to the DNA. More
specifically, a method for detecting the presence of a DNA molecule corresponding to the DP-043A47-3 event in a sample, such methods, consisting of (a) contacting the sample comprising DNA extracted from a corn plant with a DNA probe molecule that consists of sequences that are unique to the event, e.g. junction sequences, wherein said DNA probe molecule hybridizes under stringent hybridization conditions with DNA extracted from corn event DP-043A47-3 and does not hybridize under the stringent hybridization conditions with a control corn plant DNA; (b) subjecting the sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the DNA.
In addition, a kit and methods for identifying event DP-043A47-3 in a biological sample which detects a DP-043A47-3 specific region are provided. DNA molecules are provided that comprise at least one junction sequence of DP-043A47-3; wherein a junction sequence spans the junction between
heterologous DNA inserted into the genome and the DNA from the corn cell flanking the insertion site, i.e. flanking DNA, and is diagnostic for the DP-043A47-3 event.
According to another embodiment of the invention, methods of producing an insect resistant corn plant that comprise the steps of : (a) sexually crossing a first parental corn line comprising the expression cassettes of the invention, which confers resistance to insects, and a second parental corn line that lacks insect resistance, thereby producing a plurality of progeny plants; and (b) selecting a progeny plant that is insect resistant. Such methods may optionally comprise the further step of back-crossing the progeny plant to the second parental corn line to producing a true-breeding corn plant that is insect resistant.
A further embodiment of the invention provides a method of producing a corn plant that is resistant to insects comprising transforming a corn cell with the DNA construct PHP271 1 8, growing the transformed corn cell into a corn plant, selecting the corn plant that shows resistance to insects, and further growing the corn plant into a fertile corn plant. The fertile corn plant can be self pollinated or crossed with compatible corn varieties to produce insect resistant progeny.
Another embodiment of the invention further relates to a DNA detection kit for identifying maize event DP-043A47-3 in biological samples. The kit comprises a first primer which specifically recognizes the 5' or 3' flanking region of DP-043A47- 3, and a second primer which specifically recognizes a sequence within the foreign DNA of DP-043A47-3, or within the flanking DNA, for use in a PCR identification protocol. A further embodiment of the invention relates to a kit for identifying event DP-043A47-3 in biological samples, which kit comprises a specific probe having a sequence which corresponds or is complementary to, a sequence having between 80% and 1 00% sequence identity with a specific region of event DP-043A47-3. The sequence of the probe corresponds to a specific region comprising part of the 5' or 3' flanking region of event DP-043A47-3.
The methods and kits encompassed by the embodiments of the present invention can be used for different purposes such as, but not limited to the following : to identify event DP-043A47-3 in plants, plant material or in products such as, but not limited to, food or feed products (fresh or processed) comprising, or derived from plant material; additionally or alternatively, the methods and kits can be used to identify transgenic plant material for purposes of segregation between transgenic and non-transgenic material; additionally or alternatively, the methods and kits can be used to determine the quality of plant material comprising maize event DP-043A47-3. The kits may also contain the reagents and materials necessary for the performance of the detection method.
A further embodiment of this invention relates to the DP-043A47-3 corn plant or its parts, including, but not limited to, pollen, ovules, vegetative cells, the nuclei of pollen cells, and the nuclei of egg cells of the corn plant DP-043A47-3 and the progeny derived thereof. The corn plant and seed of DP-043A47-3 from which the DNA primer molecules provide a specific amplicon product is an embodiment of the invention.
The foregoing and other aspects of the invention will become more apparent from the following detailed description and accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 . Schematic diagram of plasmid PHP271 18 with genetic elements indicated and Ηίηά III restriction enzyme sites. Plasmid size is 54910 bp.
FIG. 2. Schematic diagram of the T-DNA indicating the cr \ F, cr 34Ab1 , cr 35Ab1 , and pat genes (arrows) along with their respective regulatory elements. Ηίηά III restriction enzyme sites within the T-DNA are indicated. The size of the T- DNA is 1 1978 bp.
FIG. 3. Schematic Diagram of the Transformation and Development of DP- 043A47-3.
FIG. 4. Western corn rootworm (WCRW) larvae developmental effects in the sublethal seedling assay employing maize hybrid seedlings in the same genetic background: DP-043A47-3 maize with an isoline as a negative control. Results are based on three replicates. Graphic profiles show the percent of larvae in each of three instars at 17 days post egg hatch. A shift towards instar 3 indicates a decrease in efficacy. FIG. 5. Schematic representation of of 43A47 maize showing the genetic elements of the PHP271 18 insertion and the 5' and 3' flanking genomic regions. Shown below the elements are the relative positions of the six PCR fragments that were sequenced to generate the 43A47 maize consensus sequence. The T-DNA insert contains a 54 bp and 12 bp deletion on the right and left border respectively.
Figure is not drawn to scale.
DETAILED DESCRIPTION
The following definitions and methods are provided to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Definitions of common terms in molecular biology may also be found in Rieger et al., Glossary of Genetics: Classical and Molecular, 5th edition, Springer- Verlag; New York, 1991 ; and Lewin, Genes V, Oxford University Press: New York, 1994. The nomenclature for DNA bases as set forth at 37 CFR §1 .822 is used.
The following table sets forth abbreviations used throughout this document, and in particular in the Examples section.
Table of Abbreviations
Figure imgf000010_0001
pat phosphinothricin acetyl transferase gene
PAT Protein from phosphinothricin acetyl transferase gene
PCR Polymerase chain reaction
pin\\ Proteinase inhibitor II gene from Solanum tuberosum
RB Right T-DNA border
T-DNA The transfer DNA portion of the Agrobacterium
transformation plasmid between the Left and Right
Borders that is expected to be transferred to the plant genome
UTR Untranslated region
ECB European corn borer (Ostrinia nubilalis)
FAW Fall armyworm (Spodoptera frugiperda)
WCRW western corn rootworm (Diabrotica virgifera virgifera)
Compositions of this disclosure include seed deposited as Patent Deposit No. PTA-1 1509 and plants, plant cells, and seed derived therefrom. Applicant(s) have made a deposit of at least 2500 seeds of maize event DP-043A47-3 with the American Type Culture Collection (ATCC), Manassas, VA 201 10-2209 USA, on November 24, 2010 and the deposits were assigned ATCC Deposit No. PTA- 1 1509. These deposits will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. These deposits were made merely as a convenience for those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §1 12. The seeds deposited with the ATCC on November 24, 2010 were taken from the deposit maintained by Pioneer Hi-Bred International, Inc., 7250 NW 62nd Avenue, Johnston, Iowa 50131 -1000. Access to this deposit will be available during the pendency of the application to the Commissioner of Patents and
Trademarks and persons determined by the Commissioner to be entitled thereto upon request. Upon allowance of any claims in the application, the Applicant(s) will make available to the public, pursuant to 37 C.F.R. § 1 .808, sample(s) of the deposit of at least 2500 seeds of hybrid maize with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 201 10-2209. This deposit of seed of maize event DP-043A47-3 will be maintained in the ATCC depository, which is a public depository, for a period of 30 years, or 5 years after the most recent request, or for the enforceable life of the patent, whichever is longer, and will be replaced if it becomes nonviable during that period. Additionally, Applicant(s) have satisfied all the requirements of 37 C.F.R. §§1 .801 - 1 .809, including providing an indication of the viability of the sample upon deposit.
Applicant(s) have no authority to waive any restrictions imposed by law on the transfer of biological material or its transportation in commerce. Applicant(s) do not waive any infringement of their rights granted under this patent or rights applicable to event DP-043A47-3 under the Plant Variety Protection Act (7 USC 2321 et seq.). Unauthorized seed multiplication prohibited. The seed may be regulated.
As used herein, the term "comprising" means "including but not limited to." As used herein, the term "corn" means Zea mays or maize and includes all plant varieties that can be bred with corn, including wild maize species.
As used herein, the term "DP-043A47-3 specific" refers to a nucleotide sequence which is suitable for discriminatively identifying event DP-043A47-3 in plants, plant material, or in products such as, but not limited to, food or feed products (fresh or processed) comprising, or derived from plant material.
As used herein, the terms "insect resistant" and "impacting insect pests" refers to effecting changes in insect feeding, growth, and/or behavior at any stage of development, including but not limited to: killing the insect; retarding growth; preventing reproductive capability; inhibiting feeding; and the like.
As used herein, the terms "pesticidal activity" and "insecticidal activity" are used synonymously to refer to activity of an organism or a substance (such as, for example, a protein) that can be measured by numerous parameters including, but not limited to, pest mortality, pest weight loss, pest attraction, pest repellency, and other behavioral and physical changes of a pest after feeding on and/or exposure to the organism or substance for an appropriate length of time. For example
"pesticidal proteins" are proteins that display pesticidal activity by themselves or in combination with other proteins.
"Coding sequence" refers to a nucleotide sequence that codes for a specific amino acid sequence. As used herein, the terms "encoding" or "encoded" when used in the context of a specified nucleic acid mean that the nucleic acid comprises the requisite information to guide translation of the nucleotide sequence into a specified protein. The information by which a protein is encoded is specified by the use of codons. A nucleic acid encoding a protein may comprise non-translated sequences (e.g., introns) within translated regions of the nucleic acid or may lack such intervening non-translated sequences (e.g., as in cDNA).
"Gene" refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences. "Chimeric gene" refers any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. "Endogenous gene" refers to a native gene in its natural location in the genome of an organism. "Foreign" refers to material not normally found in the location of interest. Thus "foreign DNA" may comprise both recombinant DNA as well as newly introduced, rearranged DNA of the plant. A "foreign" gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes. A "transgene" is a gene that has been introduced into the genome by a transformation procedure. The site in the plant genome where a recombinant DNA has been inserted may be referred to as the "insertion site" or "target site".
As used herein, "insert DNA" refers to the heterologous DNA within the expression cassettes used to transform the plant material while "flanking DNA" can exist of either genomic DNA naturally present in an organism such as a plant, or foreign (heterologous) DNA introduced via the transformation process which is extraneous to the original insert DNA molecule, e.g. fragments associated with the transformation event. A "flanking region" or "flanking sequence" as used herein refers to a sequence of at least 20 bp, preferably at least 50 bp, and up to 5000 bp, which is located either immediately upstream of and contiguous with or
immediately downstream of and contiguous with the original foreign insert DNA molecule. Transformation procedures leading to random integration of the foreign DNA will result in transformants containing different flanking regions characteristic and unique for each transformant. When recombinant DNA is introduced into a plant through traditional crossing, its flanking regions will generally not be changed. Transformants will also contain unique junctions between a piece of heterologous insert DNA and genomic DNA, or two (2) pieces of genomic DNA, or two (2) pieces of heterologous DNA. A "junction" is a point where two (2) specific DNA fragments join. For example, a junction exists where insert DNA joins flanking DNA. A junction point also exists in a transformed organism where two (2) DNA fragments join together in a manner that is modified from that found in the native organism. "Junction DNA" refers to DNA that comprises a junction point. Two junction sequences set forth in this disclosure are the junction point between the maize genomic DNA and the 5' end of the insert as set forth in SEQ ID NO: 21 , and the junction point between the 3' end of the insert and maize genomic DNA as set forth in SEQ ID NO: 22.
As used herein, "heterologous" in reference to a nucleic acid is a nucleic acid that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous nucleotide sequence can be from a species different from that from which the nucleotide sequence was derived, or, if from the same species, the promoter is not naturally found operably linked to the nucleotide sequence. A heterologous protein may originate from a foreign species, or, if from the same species, is substantially modified from its original form by deliberate human intervention.
"Regulatory sequences" refer to nucleotide sequences located upstream
(5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
"Promoter" refers to a nucleotide sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. The promoter sequence consists of proximal and more distal upstream elements, the latter elements are often referred to as enhancers. Accordingly, an "enhancer" is a nucleotide sequence that can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic nucleotide segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters that cause a nucleic acid fragment to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg (1989) Biochemistry of Plants 15:1 -82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, nucleic acid fragments of different lengths may have identical promoter activity.
The "translation leader sequence" refers to a nucleotide sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect numerous parameters including, processing of the primary transcript to mRNA, mRNA stability and/or translation efficiency. Examples of translation leader sequences have been described (Turner and Foster (1 995) Mol. Biotechnol.
3:225-236).
The "3' non-coding sequences" refer to nucleotide sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor. The use of different 3' non-coding sequences is exemplified by Ingelbrecht et al. (1989) Plant Cell 1 :671 -680.
A "protein" or "polypeptide" is a chain of amino acids arranged in a specific order determined by the coding sequence in a polynucleotide encoding the polypeptide.
A DNA construct is an assembly of DNA molecules linked together that provide one or more expression cassettes. The DNA construct may be a plasmid that is enabled for self replication in a bacterial cell and contains various endonuclease enzyme restriction sites that are useful for introducing DNA molecules that provide functional genetic elements, i.e., promoters, introns, leaders, coding sequences, 3' termination regions, among others; or a DNA construct may be a linear assembly of DNA molecules, such as an expression cassette. The expression cassette contained within a DNA construct comprises the necessary genetic elements to provide transcription of a messenger RNA. The expression cassette can be designed to express in prokaryote cells or eukaryotic cells. Expression cassettes of the embodiments of the present invention are designed to express in plant cells.
The DNA molecules of embodiments of the invention are provided in expression cassettes for expression in an organism of interest. The cassette will include 5' and 3' regulatory sequences operably linked to a coding sequence.
Operably linked" means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. Operably linked is intended to indicate a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. The cassette may additionally contain at least one additional gene to be co-transformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes or multiple DNA constructs.
The expression cassette will include in the 5' to 3' direction of transcription: a transcriptional and translational initiation region, a coding region, and a
transcriptional and translational termination region functional in the organism serving as a host. The transcriptional initiation region (i.e., the promoter) may be native or analogous, or foreign or heterologous to the host organism. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. The expression cassettes may additionally contain 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation.
It is to be understood that as used herein the term "transgenic" includes any cell, cell line, callus, tissue, plant part, or plant, the genotype of which has been altered by the presence of a heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual
propagation from the initial transgenic. The term "transgenic" as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.
A transgenic "event" is produced by transformation of plant cells with a heterologous DNA construct(s), including a nucleic acid expression cassette that comprises a transgene of interest, the regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant, and selection of a particular plant characterized by insertion into a particular genome location. An event is characterized phenotypically by the expression of the transgene. At the genetic level, an event is part of the genetic makeup of a plant. The term "event" also refers to progeny produced by a sexual outcross between the transformant and another variety that include the heterologous DNA. Even after repeated back-crossing to a recurrent parent, the inserted DNA and flanking DNA from the transformed parent is present in the progeny of the cross at the same chromosomal location. The term "event" also refers to DNA from the original transformant comprising the inserted DNA and flanking sequence immediately adjacent to the inserted DNA that would be expected to be transferred to a progeny that receives inserted DNA including the transgene of interest as the result of a sexual cross of one parental line that includes the inserted DNA (e.g., the original transformant and progeny resulting from selfing) and a parental line that does not contain the inserted DNA.
An insect resistant DP-043A47-3 corn plant can be bred by first sexually crossing a first parental corn plant consisting of a corn plant grown from the transgenic DP-043A47-3 corn plant and progeny thereof derived from
transformation with the expression cassettes of the embodiments of the present invention that confers insect resistance, and a second parental corn plant that lacks insect resistance, thereby producing a plurality of first progeny plants; and then selecting a first progeny plant that is resistant to insects; and selfing the first progeny plant, thereby producing a plurality of second progeny plants; and then selecting from the second progeny plants an insect resistant plant. These steps can further include the back-crossing of the first insect resistant progeny plant or the second insect resistant progeny plant to the second parental corn plant or a third parental corn plant, thereby producing a corn plant that is resistant to insects. As used herein, the term "plant" includes reference to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds, plant cells, and progeny of same. Parts of transgenic plants understood to be within the scope of the invention comprise, for example, plant cells, protoplasts, tissues, callus, embryos as well as flowers, stems, fruits, leaves, and roots originating in transgenic plants or their progeny previously transformed with a DNA molecule of the invention and therefore consisting at least in part of transgenic cells, are also an embodiment of the present invention.
As used herein, the term "plant cell" includes, without limitation, seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores. The class of plants that can be used in the methods of the invention is generally as broad as the class of higher plants amenable to transformation techniques, including both
monocotyledonous and dicotyledonous plants.
"Transformation" refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms. Examples of methods of plant transformation include Agrobacterium- mediated transformation (De Blaere et al. (1987) Meth. Enzymol. 143:277) and particle-accelerated or "gene gun" transformation technology (Klein et al. (1987) Nature (London) 327:70-73; U.S. Patent No. 4,945,050, incorporated herein by reference). Additional transformation methods are disclosed below.
Thus, isolated polynucleotides of the invention can be incorporated into recombinant constructs, typically DNA constructs, which are capable of introduction into and replication in a host cell. Such a construct can be a vector that includes a replication system and sequences that are capable of transcription and translation of a polypeptide-encoding sequence in a given host cell. A number of vectors suitable for stable transfection of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al., (1985; Supp. 1987) Cloning Vectors: A Laboratory Manual, Weissbach and Weissbach (1989) Methods for Plant Molecular Biology, (Academic Press, New York); and Flevin et al., (1990) Plant Molecular Biology Manual, (Kluwer Academic Publishers). Typically, plant expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive,
environmentally- or developmentally-regulated, or cell- or tissue-specific
expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.
It is also to be understood that two different transgenic plants can also be mated to produce offspring that contain two independently segregating added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation. Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several references, e.g., Fehr, in Breeding Methods for Cultivar Development, Wilcos J. ed., American Society of Agronomy, Madison Wis. (1987).
A "probe" is an isolated nucleic acid to which is attached a conventional detectable label or reporter molecule, e.g., a radioactive isotope, ligand,
chemiluminescent agent, or enzyme. Such a probe is complementary to a strand of a target nucleic acid, in the case of the present invention, to a strand of isolated DNA from corn event DP-043A47-3 whether from a corn plant or from a sample that includes DNA from the event. Probes according to the present invention include not only deoxyribonucleic or ribonucleic acids but also polyamides and other probe materials that bind specifically to a target DNA sequence and can be used to detect the presence of that target DNA sequence.
"Primers" are isolated nucleic acids that are annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a polymerase, e.g., a DNA polymerase. Primer pairs of the invention refer to their use for amplification of a target nucleic acid sequence, e.g., by PCR or other conventional nucleic-acid amplification methods. "PCR" or "polymerase chain reaction" is a technique used for the amplification of specific DNA segments (see, U.S. Patent Nos. 4,683,195 and 4,800,159; herein incorporated by reference).
Probes and primers are of sufficient nucleotide length to bind to the target DNA sequence specifically in the hybridization conditions or reaction conditions determined by the operator. This length may be of any length that is of sufficient length to be useful in a detection method of choice. Generally, 1 1 nucleotides or more in length, 18 nucleotides or more, and 22 nucleotides or more, are used.
Such probes and primers hybridize specifically to a target sequence under high stringency hybridization conditions. Probes and primers according to embodiments of the present invention may have complete DNA sequence similarity of contiguous nucleotides with the target sequence, although probes differing from the target DNA sequence and that retain the ability to hybridize to target DNA sequences may be designed by conventional methods. Probes can be used as primers, but are generally designed to bind to the target DNA or RNA and are not used in an amplification process.
Specific primers can be used to amplify an integration fragment to produce an amplicon that can be used as a "specific probe" for identifying event DP- 043A47-3 in biological samples. When the probe is hybridized with the nucleic acids of a biological sample under conditions which allow for the binding of the probe to the sample, this binding can be detected and thus allow for an indication of the presence of event DP-043A47-3 in the biological sample. Such identification of a bound probe has been described in the art. In an embodiment of the invention the specific probe is a sequence which, under optimized conditions, hybridizes specifically to a region within the 5' or 3' flanking region of the event and also comprises a part of the foreign DNA contiguous therewith. The specific probe may comprise a sequence of at least 80%, between 80 and 85%, between 85 and 90%, between 90 and 95%, and between 95 and 100% identical (or complementary) to a specific region of the event.
Methods for preparing and using probes and primers are described, for example, in Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1 -3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989
(hereinafter, "Sambrook et al., 1989"); Ausubel et al. eds., Current Protocols in Molecular Biology, , Greene Publishing and Wiley-lnterscience, New York, 1995 (with periodic updates) (hereinafter, "Ausubel et al., 1995"); and Innis et al., PCR Protocols: A Guide to Methods and Applications, Academic Press: San Diego, 1990. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as the PCR primer analysis tool in Vector NTI version 6 (Informax Inc., Bethesda MD); PrimerSelect (DNASTAR Inc., Madison, Wl); and Primer (Version 0.5®, 1991 , Whitehead Institute for Biomedical Research, Cambridge, Mass.). Additionally, the sequence can be visually scanned and primers manually identified using guidelines known to one of skill in the art.
A "kit" as used herein refers to a set of reagents for the purpose of performing the method embodiments of the invention, more particularly, the identification of event DP-043A47-3 in biological samples. The kit of the invention can be used, and its components can be specifically adjusted, for purposes of quality control (e.g. purity of seed lots), detection of event DP-043A47-3 in plant material, or material comprising or derived from plant material, such as but not limited to food or feed products. "Plant material" as used herein refers to material which is obtained or derived from a plant.
Primers and probes based on the flanking DNA and insert sequences disclosed herein can be used to confirm (and, if necessary, to correct) the disclosed sequences by conventional methods, e.g., by re-cloning and sequencing such sequences. The nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from a transgenic event in a sample. Nucleic acid molecules or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances. As used herein, two nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure.
A nucleic acid molecule is said to be the "complement" of another nucleic acid molecule if they exhibit complete complementarity. As used herein, molecules are said to exhibit "complete complementarity" when every nucleotide of one of the molecules is complementary to a nucleotide of the other. Two molecules are said to be "minimally complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency" conditions. Similarly, the molecules are said to be "complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high- stringency" conditions. Conventional stringency conditions are described by Sambrook et al., 1989, and by Haymes et al., In: Nucleic Acid Hybridization, a Practical Approach, IRL Press, Washington, D.C. (1985), departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure. In order for a nucleic acid molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double- stranded structure under the particular solvent and salt concentrations employed.
In hybridization reactions, specificity is typically the function of post- hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. The thermal melting point (Tm) is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. For DNA-DNA hybrids, the Tm can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem.
138:267-284: Tm = 81 .5 °C + 16.6 (log M) + 0.41 (%GC) - 0.61 (% form) - 500/L; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. Tm is reduced by about 1 °C for each 1 % of mismatching; thus, Tm, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90% identity are sought, the Tm can be decreased 10 °C. Generally, stringent conditions are selected to be about 5 °C lower than the Tm for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1 , 2, 3, or 4 °C lower than the Tm; moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10 °C lower than the Tm; low stringency conditions can utilize a hybridization and/or wash at 1 1 , 12, 13, 14, 15, or 20 °C lower than the Tm.
Using the equation, hybridization and wash compositions, and desired Tm, those of ordinary skill will understand that variations in the stringency of
hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a Tm of less than 45 °C (aqueous solution) or 32 °C (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and
Molecular Biology— Hybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, New York); and Ausubel et al., eds. (1995) and Sambrook et al. (1989). As used herein, a substantially homologous sequence is a nucleic acid molecule that will specifically hybridize to the complement of the nucleic acid molecule to which it is being compared under high stringency conditions.
Appropriate stringency conditions which promote DNA hybridization, for example, 6X sodium chloride/sodium citrate (SSC) at about 45 QC, followed by a wash of 2X SSC at 50 QC, are known to those skilled in the art or can be found in Ausubel et al. (1995), 6.3.1 -6.3.6. Typically, stringent conditions will be those in which the salt concentration is less than about 1 .5 M Na ion, typically about 0.01 to 1 .0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 °C for short probes (e.g., 10 to 50 nucleotides) and at least about 60 °C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of a destabilizing agent such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCI, 1 % SDS (sodium dodecyl sulphate) at 37 °C, and a wash in 1 X to 2X SSC (20X SSC = 3.0 M NaCI/0.3 M trisodium citrate) at 50 to 55 °C.
Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1 M NaCI, 1 % SDS at 37 °C, and a wash in 0.5X to 1 X SSC at 55 to 60 °C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCI, 1 % SDS at 37 °C, and a wash in 0.1 X SSC at 60 to 65 °C. A nucleic acid of the invention may specifically hybridize to one or more of the nucleic acid molecules unique to the DP-043A47-3 event or complements thereof or fragments of either under moderately stringent conditions.
Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) CABIOS 4:1 1 -17; the local homology algorithm of Smith et al. (1981 ) Adv. Appl. Math. 2:482; the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453; the search-for-similarity-method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877.
Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0); the ALIGN PLUS program (version 3.0, copyright 1997); and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 10 (available from Accelrys, 9685 Scranton Road, San Diego, CA 92121 , USA). Alignments using these programs can be performed using the default parameters.
The CLUSTAL program is well described by Higgins and Sharp, Gene 73: 237-244 (1988); Higgins and Sharp, CABIOS 5: 151 -153 (1989); Corpet, et al., Nucleic Acids Research 16: 10881 -90 (1988); Huang, et al., Computer
Applications in the Biosciences 8: 155-65 (1992), and Pearson, et al., Methods in Molecular Biology 24: 307-331 (1994). The ALIGN and the ALIGN PLUS programs are based on the algorithm of Myers and Miller (1988) supra. The BLAST programs of Altschul et al. (1990) J. Mol. Biol. 215:403 are based on the algorithm of Karlin and Altschul (1990) supra. The BLAST family of programs which can be used for database similarity searches includes: BLASTN for nucleotide query sequences against nucleotide database sequences; BLASTX for nucleotide query sequences against protein database sequences; BLASTP for protein query sequences against protein database sequences; TBLASTN for protein query sequences against nucleotide database sequences; and TBLASTX for nucleotide query sequences against nucleotide database sequences. See, Ausubel, et al., (1995). Alignment may also be performed manually by visual inspection.
To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used.
As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity." Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1 . The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).
As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
Regarding the amplification of a target nucleic acid sequence (e.g., by PCR) using a particular amplification primer pair, "stringent conditions" are conditions that permit the primer pair to hybridize only to the target nucleic-acid sequence to which a primer having the corresponding wild-type sequence (or its complement) would bind and preferably to produce a unique amplification product, the amplicon, in a DNA thermal amplification reaction.
The term "specific for (a target sequence)" indicates that a probe or primer hybridizes under stringent hybridization conditions only to the target sequence in a sample comprising the target sequence. As used herein, "amplified DNA" or "amplicon" refers to the product of nucleic acid amplification of a target nucleic acid sequence that is part of a nucleic acid template. For example, to determine whether a corn plant resulting from a sexual cross contains transgenic event genomic DNA from the corn plant of the invention, DNA extracted from the corn plant tissue sample may be subjected to a nucleic acid amplification method using a DNA primer pair that includes a first primer derived from flanking sequence adjacent to the insertion site of inserted heterologous DNA, and a second primer derived from the inserted heterologous DNA to produce an amplicon that is diagnostic for the presence of the event DNA. Alternatively, the second primer may be derived from the flanking sequence. The amplicon is of a length and has a sequence that is also diagnostic for the event. The amplicon may range in length from the combined length of the primer pairs plus one nucleotide base pair to any length of amplicon producible by a DNA amplification protocol. Alternatively, primer pairs can be derived from flanking sequence on both sides of the inserted DNA so as to produce an amplicon that includes the entire insert nucleotide sequence of the PHP271 18 expression construct as well as the sequence flanking the transgenic insert. A member of a primer pair derived from the flanking sequence may be located a distance from the inserted DNA sequence, this distance can range from one nucleotide base pair up to the limits of the amplification reaction, or about 20,000 bp. The use of the term "amplicon" specifically excludes primer dimers that may be formed in the DNA thermal amplification reaction.
Nucleic acid amplification can be accomplished by any of the various nucleic acid amplification methods known in the art, including PCR. A variety of
amplification methods are known in the art and are described, inter alia, in U.S. Pat. Nos. 4,683,195 and 4,683,202 and in Innis et al., (1990) supra. PCR amplification methods have been developed to amplify up to 22 Kb of genomic DNA and up to 42 Kb of bacteriophage DNA (Cheng et al., Proc. Natl. Acad. Sci. USA 91 :5695- 5699, 1994). These methods as well as other methods known in the art of DNA amplification may be used in the practice of the embodiments of the present invention. It is understood that a number of parameters in a specific PCR protocol may need to be adjusted to specific laboratory conditions and may be slightly modified and yet allow for the collection of similar results. These adjustments will be apparent to a person skilled in the art. The amplicon produced by these methods may be detected by a plurality of techniques, including, but not limited to, Genetic Bit Analysis (Nikiforov, et al.
Nucleic Acid Res. 22:4167-4175, 1994) where a DNA oligonucleotide is designed which overlaps both the adjacent flanking DNA sequence and the inserted DNA sequence. The oligonucleotide is immobilized in wells of a microwell plate.
Following PCR of the region of interest (using one primer in the inserted sequence and one in the adjacent flanking sequence) a single-stranded PCR product can be hybridized to the immobilized oligonucleotide and serve as a template for a single base extension reaction using a DNA polymerase and labeled ddNTPs specific for the expected next base. Readout may be fluorescent or ELISA-based. A signal indicates presence of the insert/flanking sequence due to successful amplification, hybridization, and single base extension.
Another detection method is the pyrosequencing technique as described by Winge (2000) Innov. Pharma. Tech. 00:18-24. In this method an oligonucleotide is designed that overlaps the adjacent DNA and insert DNA junction. The
oligonucleotide is hybridized to a single-stranded PCR product from the region of interest (one primer in the inserted sequence and one in the flanking sequence) and incubated in the presence of a DNA polymerase, ATP, sulfurylase, luciferase, apyrase, adenosine 5' phosphosulfate and luciferin. dNTPs are added individually and the incorporation results in a light signal which is measured. A light signal indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single or multi-base extension.
Fluorescence polarization as described by Chen et al., (1999) Genome Res. 9:492-498 is also a method that can be used to detect an amplicon of the invention. Using this method an oligonucleotide is designed which overlaps the flanking and inserted DNA junction. The oligonucleotide is hybridized to a single-stranded PCR product from the region of interest (one primer in the inserted DNA and one in the flanking DNA sequence) and incubated in the presence of a DNA polymerase and a fluorescent-labeled ddNTP. Single base extension results in incorporation of the ddNTP. Incorporation can be measured as a change in polarization using a fluorometer. A change in polarization indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single base extension. Taqman (PE Applied Biosystems, Foster City, Calif.) is described as a method of detecting and quantifying the presence of a DNA sequence and is fully understood in the instructions provided by the manufacturer. Briefly, a FRET oligonucleotide probe is designed which overlaps the flanking and insert DNA junction. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking genomic sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Hybridization of the FRET probe results in cleavage and release of the fluorescent moiety away from the quenching moiety on the FRET probe. A fluorescent signal indicates the presence of the
flanking/transgene insert sequence due to successful amplification and
hybridization.
Molecular beacons have been described for use in sequence detection as described in Tyangi et al. (1996) Nature Biotech. 14:303-308. Briefly, a FRET oligonucleotide probe is designed that overlaps the flanking and insert DNA junction. The unique structure of the FRET probe results in it containing secondary structure that keeps the fluorescent and quenching moieties in close proximity. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Following successful PCR amplification, hybridization of the FRET probe to the target sequence results in the removal of the probe secondary structure and spatial separation of the fluorescent and quenching moieties. A fluorescent signal results. A fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and
hybridization.
A hybridization reaction using a probe specific to a sequence found within the amplicon is yet another method used to detect the amplicon produced by a PCR reaction.
Maize event DP-043A47-3 is effective against insect pests including insects selected from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera,
Mallophaga, Homoptera, Hemiptera, Orthoptera, Thysanoptera, Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc., particularly Coleoptera and Lepidoptera.
Insects of the order Lepidoptera include, but are not limited to, armyworms, cutworms, loopers, and heliothines in the family Noctuidae: Agrotis ipsilon Hufnagel (black cutworm); A. orthogonia Morrison (western cutworm); A. segetum Denis & Schiffermuller (turnip moth); A. subterranea Fabricius (granulate cutworm);
Alabama argillacea Hubner (cotton leaf worm); Anticarsia gemmatalis Hubner (velvetbean caterpillar); Athetis mindara Barnes and McDunnough (rough skinned cutworm); Earias insulana Boisduval (spiny bollworm); E. vittella Fabricius (spotted bollworm); Egira (Xylomyges) curialis Grote (citrus cutworm); Euxoa messoria Harris (darksided cutworm); Helicoverpa armigera Hubner (American bollworm); H. zea Boddie (corn earworm or cotton bollworm); Heliothis virescens Fabricius (tobacco budworm); Hypena scabra Fabricius (green cloverworm); Hyponeuma taltula Schaus; {Mamestra configurata Walker (bertha armyworm); M. brassicae Linnaeus (cabbage moth); Melanchra picta Harris (zebra caterpillar); Mods latipes Guenee (small mocis moth); Pseudaletia unipuncta Haworth (armyworm);
Pseudoplusia includens \N alker (soybean looper); Richia albicosta Smith (Western bean cutworm) ;Spodoptera frugiperda JE Smith (fall armyworm); S. exigua Hubner (beet armyworm); S. litura Fabricius (tobacco cutworm, cluster caterpillar);
Trichoplusia n/ Hubner (cabbage looper); borers, casebearers, webworms, coneworms, and skeletonizers from the families Pyralidae and Crambidae such as Achroia grisella Fabricius (lesser wax moth); Amyelois transitella Walker (naval orangeworm); Anagasta kuehniella Zeller (Mediterranean flour moth); Cadra cautella Walker (almond moth); Chilo partellus Swinhoe (spotted stalk borer); C. suppressalis \N alker (striped stem/rice borer); C. terrenellus Pagenstecher
(sugarcane stem borer); Corcyra cephalonica Stainton (rice moth); Crambus caliginosellus Clemens (corn root webworm); C. teterrellus Zincken (bluegrass webworm); Cnaphalocrocis medinalis Guenee (rice leaf roller); Desmia funeralis Hubner (grape leaffolder); Diaphania hyalinata Linnaeus (melon worm); D. nitidalis Stoll (pickleworm); Diatraea flavipennella Box; D. grandiosella Dyar (southwestern corn borer), D. saccharalis Fabricius (surgarcane borer); Elasmopalpus lignosellus Zeller (lesser cornstalk borer); Eoreuma loftini Dyar (Mexican rice borer); Ephestia elutella Hubner (tobacco (cacao) moth); Galleria mellonella Linnaeus (greater wax moth); Hedylepta accepta Butler (sugarcane leafroller); Herpetogramma licarsisalis Walker (sod webworm); Homoeosoma electellum Hulst (sunflower moth);
Loxostege sticticalis Linnaeus (beet webworm); Maruca testulalis Geyer (bean pod borer); Orthaga thyrisalis \N alker (tea tree web moth); Ostrinia nubilalis Hubner (European corn borer); Plodia interpunctella Hubner (Indian meal moth); Scirpophaga incertulas Walker (yellow stem borer); Udea rubigalis Guenee (celery leaftier); and leaf rollers, budworms, seed worms, and fruit worms in the family Tortricidae Acleris gloverana Walsingham (Western blackheaded budworm); A. variana Fernald (Eastern blackheaded budworm); Adoxophyes orana Fischer von Rosslerstamm (summer fruit tortrix moth); Archips spp. including A. argyrospila Walker (fruit tree leaf roller) and A. rosana Linnaeus (European leaf roller);
Argyrotaenia spp. ; Bonagota salubricola Meyrick (Brazilian apple leafroller);
Choristoneura spp.; Cochylis hospes Walsingham (banded sunflower moth); Cydia latiferreana Walsingham (filbertworm); C. pomonella Linnaeus (codling moth); Endopiza viteana Clemens (grape berry moth); Eupoecilia ambiguella Hubner (vine moth); Grapholita molesta Busck (oriental fruit moth); Lobesia botrana Denis & Schiffermuller (European grape vine moth); Platynota flavedana Clemens
(variegated leafroller); P. stultana Walsingham (omnivorous leafroller); Spilonota ocellana Denis & Schiffermuller (eyespotted bud moth); and Suleima helianthana Riley (sunflower bud moth).
Selected other agronomic pests in the order Lepidoptera include, but are not limited to, Alsophila pometaria Harris (fall cankerworm); Anarsia lineatella Zeller (peach twig borer); Anisota senatoria J.E. Smith (orange striped oakworm);
Antheraea pernyi Guerin-Meneville (Chinese Oak Silkmoth); Bombyx mori
Linnaeus (Silkworm); Bucculatrix thurberiella Busck (cotton leaf perforator); Colias eurytheme Boisduval (alfalfa caterpillar); Datana integerrima Grote & Robinson (walnut caterpillar); Dendrolimus sibiricus Tschetwerikov (Siberian silk moth), Ennomos subsignaria Hubner (elm spanworm); Erannis tiliaria Harris (linden looper); Erechthias flavistriata Walsingham (sugarcane bud moth); Euproctis chrysorrhoea Linnaeus (browntail moth); Harrisina americana Guerin-Meneville (grapeleaf skeletonizer); Heliothis subflexa Guenee; Hemileuca oliviae Cockrell (range caterpillar); Hyphantria cunea Drury (fall webworm); Keiferia lycopersicella Walsingham (tomato pinworm); Lambdina fiscellaria fiscellaria Hulst (Eastern hemlock looper); L. fiscellaria lugubrosa Hulst (Western hemlock looper); Leucoma salicis Linnaeus (satin moth); Lymantria dispar Linnaeus (gypsy moth);
Malacosoma spp.; Manduca quinquemaculata Haworth (five spotted hawk moth, tomato hornworm); M. sexta Haworth (tomato hornworm, tobacco hornworm); Operophtera brumata Linnaeus (winter moth); Orgyia spp. ; Paleacrita vernata Peck (spring cankerworm); Papilio cresphontes Cramer (giant swallowtail, orange dog); Phryganidia californica Packard (California oakworm); Phyllocnistis citrella Stainton (citrus leafminer); Phyllonorycter blancardella Fabricius (spotted tentiform leaf miner); Pieris brassicae Linnaeus (large white butterfly); P. rapae Linnaeus (small white butterfly); P. napi Linnaeus (green veined white butterfly); Platyptilia carduidactyla Riley (artichoke plume moth); Plutella xylostella Linnaeus
(diamondback moth); Pectinophora gossypiella Saunders (pink bollworm); Pontia protodice Boisduval & Leconte (Southern cabbageworm); Sabulodes aegrotata Guenee (omnivorous looper); Schizura concinna J.E. Smith (red humped caterpillar); Sitotroga cerealella Olivier (Angoumois grain moth); Telchin licus Drury (giant sugarcane borer); Thaumetopoea pityocampa Schiffermuller (pine
processionary caterpillar); Tineola bisselliella Hummel (webbing clothesmoth); Tuta absoluta Meyrick (tomato leafminer) and Yponomeuta padella Linnaeus (ermine moth).
Of interest are larvae and adults of the order Coleoptera including weevils from the families Anthribidae, Bruchidae, and Curculionidae including, but not limited to: Anthonomus grandis Boheman (boll weevil); Cylindrocopturus adspersus LeConte (sunflower stem weevil); Diaprepes abbreviatus Linnaeus (Diaprepes root weevil); Hypera punctata Fabricius (clover leaf weevil);
Lissorhoptrus oryzophilus Kuschel (rice water weevil); Metamasius hemipterus hemipterus Linnaeus (West Indian cane weevil); M. hemipterus sericeus Olivier (silky cane weevil); Sitophilus granarius Linnaeus (granary weevil); S. oryzae Linnaeus (rice weevil); Smicronyx fulvus LeConte (red sunflower seed weevil); S. sordidus LeConte (gray sunflower seed weevil); Sphenophorus maidis Chittenden (maize billbug); S. livis Vaurie (sugarcane weevil); Rhabdoscelus obscurus
Boisduval (New Guinea sugarcane weevil); flea beetles, cucumber beetles, rootworms, leaf beetles, potato beetles, and leafminers in the family Chrysomelidae including, but not limited to: Chaetocnema ectypa Horn (desert corn flea beetle); C. pulicaria Melsheimer (corn flea beetle); Colaspis brunnea Fabricius (grape colaspis); Diabrotica barberi Smith & Lawrence (northern corn rootworm,); D.
undecimpunctata howardi Barber (southern corn rootworm); D. virgifera virgifera LeConte (western corn rootworm); Leptinotarsa decemlineata Say (Colorado potato beetle); Oulema melanopus Linnaeus (cereal leaf beetle); Phyllotreta cruciferae Goeze (corn flea beetle); Zygogramma exclamationis Fabricius (sunflower beetle); beetles from the family Coccinellidae including, but not limited to: Epilachna varivestis Mulsant (Mexican bean beetle); chafers and other beetles from the family Scarabaeidae including, but not limited to: Antitrogus parvulus Britton (Childers cane grub); Cyclocephala borealis Arrow (northern masked chafer, white grub ; C. immaculata Olivier (southern masked chafer, white grub ; Dermolepida albohirtum Waterhouse (Greyback cane beetle); Euetheola humilis rugiceps LeConte
(sugarcane beetle); Lepidiota frenchi Blackburn (French's cane grub); Tomarus gibbosus De Geer (carrot beetle); T. subtropicus Blatchley (sugarcane grub);
Phyllophaga crinita Burmeister (white grub); P. latifrons LeConte (June beetle); Popillia japonica Newman (Japanese beetle); Rhizotrogus majalis Razoumowsky (European chafer); carpet beetles from the family Dermestidae; wireworms from the family Elateridae, Eleodes spp., Melanotus spp. including M. communis Gyllenhal (wireworm); Conoderus spp. ; Limonius spp. ; Agriotes spp. ; Ctenicera spp. ; Aeolus spp. ; bark beetles from the family Scolytidae; beetles from the family
Tenebrionidae; beetles from the family Cerambycidae such as, but not limited to, Migdolus fryanus Westwood (longhorn beetle); and beetles from the Buprestidae family including, but not limited to, Aphanisticus cochinchinae seminulum
Obenberger (leaf-mining buprestid beetle).
Adults and immatures of the order Diptera are of interest, including leafminers Agromyza parvicornis Loew (corn blotch leafminer); midges including, but not limited to: Contarinia sorghicola Coquillett (sorghum midge); Mayetiola destructor Say (Hessian fly); Neolasioptera murtfeldtiana Felt, (sunflower seed midge);
Sitodiplosis mosellana Gehin (wheat midge); fruit flies (Tephritidae), Oscinella frit Linnaeus (frit flies); maggots including, but not limited to: Delia spp. including Delia platura Meigen (seedcorn maggot); D. coarctata Fallen (wheat bulb fly); Fannia canicularis Linnaeus, F. femoralis Stein (lesser house flies); Meromyza americana Fitch (wheat stem maggot); Musca domestica Linnaeus (house flies); Stomoxys calcitrans Linnaeus (stable flies)); face flies, horn flies, blow flies, Chrysomya spp. ; Phormia spp. ; and other muscoid fly pests, horse flies Tabanus spp. ; bot flies Gastrophilus spp. ; Oestrus spp. ; cattle grubs Hypoderma spp. ; deer flies Chrysops spp. ; Melophagus ovinus Linnaeus (keds); and other Brachycera, mosquitoes Aedes spp. ; Anopheles spp. ; Culex spp. ; black flies Prosimulium spp. ; Simulium spp. ; biting midges, sand flies, sciarids, and other Nematocera.
Included as insects of interest are those of the order Hemiptera such as, but not limited to, the following families: Adelgidae, Aleyrodidae, Aphididae, Asterolecaniidae, Cercopidae, Cicadellidae, Cicadidae, Cixiidae, Coccidae,
Coreidae, Dactylopiidae, Delphacidae, Diaspididae, Eriococcidae, Flatidae, Fulgoridae, Issidae, Lygaeidae, Margarodidae, Membracidae, Miridae, Ortheziidae, Pentatomidae, Phoenicococcidae, Phylloxeridae, Pseudococcidae, Psyllidae, Pyrrhocoridae and Tingidae.
Agronomically important members from the order Hemiptera include, but are not limited to: Acrosternum hilare Say (green stink bug); Acyrthisiphon pisum Harris (pea aphid); Adelges spp. (adelgids); Adelphocoris rapidus Say (rapid plant bug); Anasa tristis De Geer (squash bug); Aphis craccivora Koch (cowpea aphid); A. fabae Scopoli (black bean aphid); A. gossypii Glover (cotton aphid, melon aphid); A. maidiradicis Forbes (corn root aphid); A. pomi De Geer (apple aphid); A. spiraecola Patch (spirea aphid); Aulacaspis tegalensis Zehntner (sugarcane scale); Aulacorthum solani Kalten bach (foxglove aphid); Bemisia tabaci Gennadius
(tobacco whitefly, sweetpotato whitefly); B. argentifolii Bellows & Perring (silverleaf whitefly); Blissus leucopterus leucopterus Say (chinch bug); Blostomatidae spp.; Brevicoryne brassicae Linnaeus (cabbage aphid); Cacopsylla pyricola Foerster (pear psylla); Calocoris norvegicus Gmelin (potato capsid bug); Chaetosiphon fragaefolii Cockerel I (strawberry aphid); Cimicidae spp. ; Coreidae spp.; Corythuca gossypii Fabricius (cotton lace bug); Cyrtopeltis modesta Distant (tomato bug); C. notatus Distant (suckfly); Deois flavopicta Stal (spittlebug); Dialeurodes citri Ashmead (citrus whitefly); Diaphnocoris chlorionis Say (honeylocust plant bug); Diuraphis noxia Kurdjumov/Mordvilko (Russian wheat aphid); Duplachionaspis divergens Green (armored scale); Dysaphis plantaginea Paaserini (rosy apple aphid); Dysdercus suturellus Herrich-Schaffer (cotton stainer); Dysmicoccus boninsis Kuwana (gray sugarcane mealybug); Empoasca fabae Harris (potato leaf hopper); Eriosoma lanigerum Hausmann (woolly apple aphid); Erythroneoura spp. (grape leafhoppers); Eumetopina flavipes Muir (Island sugarcane
planthopper); Eurygaster spp.; Euschistus servus Say (brown stink bug); E.
variolarius Palisot de Beauvois (one-spotted stink bug); Graptostethus spp.
(complex of seed bugs); and Hyalopterus pruni Geoffroy (mealy plum aphid); Icerya purchasi Maskell (cottony cushion scale); Labopidicola allii Knight (onion plant bug); Laodelphax striatellus Fallen (smaller brown planthopper); Leptoglossus corculus Say (leaf -footed pine seed bug); Leptodictya tabida Herrich-Schaeffer (sugarcane lace bug); Lipaphis erysimi Kalten bach (turnip aphid); Lygocoris pabulinus Linnaeus (common green capsid); Lygus lineolaris Palisot de Beauvois (tarnished plant bug); L. Hesperus Knight (Western tarnished plant bug); L.
pratensis Linnaeus (common meadow bug); L. rugulipennis Poppius (European tarnished plant bug); Macrosiphum euphorbiae Thomas (potato aphid); Macrosteles quadrilineatus Forbes (aster leaf hopper); Magicicada septendecim Linnaeus
(periodical cicada); Mahanarva fimbriolata Stal (sugarcane spittlebug); M. posticata Stal (little cicada of sugarcane); Melanaphis sacchari Zehntner (sugarcane aphid); Melanaspis glomerata Green (black scale); Metopolophium dirhodum \N alker (rose grain aphid); Myzus persicae Sulzer (peach-potato aphid, green peach aphid); Nasonovia ribisnigri Mosley (lettuce aphid); Nephotettix cinticeps Uhler (green leaf hopper); N. nigropictus Stal (rice leaf hopper); Nezara viridula Linnaeus
(southern green stink bug); Nilaparvata lugens Stal (brown planthopper); Nysius ericae Schilling (false chinch bug); Nysius raphanus Howard (false chinch bug); Oebalus pugnax Fabricius (rice stink bug); Oncopeltus fasciatus Dallas (large milkweed bug); Orthops campestris Linnaeus; Pemphigus spp. (root aphids and gall aphids); Peregrinus maidis Ash mead (corn planthopper); Perkinsiella saccharicida Kirkaldy (sugarcane delphacid); Phylloxera devastatrix Pergande (pecan phylloxera); Planococcus citri Risso (citrus mealybug); Plesiocoris rugicollis Fallen (apple capsid); Poecilocapsus lineatus Fabricius (four-lined plant bug);
Pseudatomoscelis seriatus Reuter (cotton fleahopper); Pseudococcus spp. (other mealybug complex); Pulvinaria elongata Newstead (cottony grass scale); Pyrilla perpusilla \N alker (sugarcane leaf hopper); Pyrrhocoridae spp.; Quadraspidiotus perniciosus Comstock (San Jose scale); Reduviidae spp.; Rhopalosiphum maidis Fitch (corn leaf aphid); R. padi Linnaeus (bird cherry-oat aphid); Saccharicoccus sacchari Cockerell (pink sugarcane mealybug); Scaptocoris castanea Perty (brown root stink bug); Schizaphis graminum Rondani (greenbug); Sipha flava Forbes (yellow sugarcane aphid); Sitobion avenae Fabricius (English grain aphid);
Sogatella furcifera Horvath (white-backed planthopper); Sogatodes oryzicola Muir (rice delphacid); Spanagonicus albofasciatus Reuter (whitemarked fleahopper); Therioaphis maculata Buckton (spotted alfalfa aphid); Tinidae spp.; Toxoptera aurantii Boyer de Fonscolombe (black citrus aphid); and T. citricida Kirkaldy (brown citrus aphid); Trialeurodes abutiloneus (bandedwinged whitefly) and T.
vaporariorum Westwood (greenhouse whitefly); Trioza diospyri Ash mead
(persimmon psylla); and Typhlocyba pomaria McAtee (white apple leafhopper). Also included are adults and larvae of the order Acari (mites) such as Aceria tosichella Keifer (wheat curl mite); Panonychus ulmi Koch (European red mite); Petrobia latens Muller (brown wheat mite); Steneotarsonemus bancrofti Michael (sugarcane stalk mite); spider mites and red mites in the family Tetranychidae, Oligonychus grypus Baker & Pritchard, O. indicus Hirst (sugarcane leaf mite), O. pratensis Banks (Banks grass mite), O. stickneyi McGregor (sugarcane spider mite); Tetranychus urticae Koch (two spotted spider mite); T. mcdanieli McGregor (McDaniel mite); T. cinnabarinus Boisduval (carmine spider mite); T. turkestani Ugarov & Nikolski (strawberry spider mite), flat mites in the family Tenuipalpidae, Brevipalpus lewisi McGregor (citrus flat mite); rust and bud mites in the family Eriophyidae and other foliar feeding mites and mites important in human and animal health, i.e. dust mites in the family Epidermoptidae, follicle mites in the family Demodicidae, grain mites in the family Glycyphagidae, ticks in the order Ixodidae. Ixodes scapularis Say (deer tick); /. holocyclus Neumann (Australian paralysis tick); Dermacentor variabilis Say (American dog tick); Amblyomma americanum Linnaeus (lone star tick); and scab and itch mites in the families Psoroptidae, Pyemotidae, and Sarcoptidae.
Insect pests of the order Thysanura are of interest, such as Lepisma saccharina Linnaeus (silverfish); Thermobia domestica Packard (firebrat).
Additional arthropod pests covered include: spiders in the order Araneae such as Loxosceles reclusa Gertsch & Mulaik (brown recluse spider); and the
Latrodectus mactans Fabricius (black widow spider); and centipedes in the order Scutigeromorpha such as Scutigera coleoptrata Linnaeus (house centipede). In addition, insect pests of the order Isoptera are of interest, including those of the termitidae family, such as, but not limited to, Cornitermes cumulans Kollar,
Cylindrotermes nordenskioeldi Holmgren and Pseudacanthotermes militaris Hagen (sugarcane termite); as well as those in the Rhinotermitidae family including, but not limited to Heterotermes tenuis Hagen. Insects of the order Thysanoptera are also of interest, including but not limited to thrips, such as Stenchaetothrips minutus van Deventer (sugarcane thrips).
Embodiments of the present invention are further defined in the following Examples. It should be understood that these Examples are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the embodiments of the invention to adapt it to various usages and conditions. Thus, various modifications of the embodiments of the invention, in addition to those shown and described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
The disclosure of each reference set forth herein is incorporated herein by reference in its entirety. EXAMPLES
Example 1. Transformation of Maize by Agrobacterium transformation and Regeneration of Transgenic Plants Containing the Cryl F, Cry34Ab1 ,
Cry35Ab1 (Cry34/35Ab1 ) and Pat Genes
Maize event DP-043A47-3 was produced by Agrobacterium- mediated
transformation with plasmid PHP271 18. This event contains the cry\ F, cr 34Ab1 , cr 35Ab1 , and pat gene cassettes, which confer resistance to certain lepidopteran and coleopteran pests.
Specifically, the first cassette contains a truncated version of the cr l F gene from Bt var. aizawai. The insertion of the cry\ F gene confers resistance to damage by lepidopteran pests, including ECB and FAW. The Cry1 F protein (SEQ ID NO: 1 ) is comprised of 605 amino acids and has a molecular weight of approximately 68 kDa. The expression of the cr \ F gene is controlled by the maize polyubiquitin promoter (Christensen et al., 1992, supra), providing constitutive expression of
Cry1 F protein in maize. This region also includes the 5' UTR and intron associated with the native polyubiquitin promoter. The terminator for the cr \ F gene is the poly(A) addition signal from open reading frame 25 (ORF 25) of the Agrobacterium tumefaciens {A. tumefaciens) Ti plasmid pTi15955 (Barker et al., 1983, supra).
The second cassette contains the cry34Ab1 gene isolated from Bt strain
PS149B1 (U.S. Pat. Nos. 6,127,180; 6,624,145 and 6,340,593). The Cry34Ab1 protein (SEQ ID NO: 2) is 123 amino acid residues in length and has a molecular weight of approximately 14 kDa. The expression of the cry34Ab1 gene is controlled by a second copy of the maize polyubiquitin promoter with 5' UTR and intron (Christensen et al., 1992, supra). The terminator for the cr 34Ab1 gene is the p/'nll terminator (Keil et al., 1 986, supra; An et al., 1 989, supra).
The third gene cassette contains the cr 35Ab1 gene, also isolated from Bt strain PS149B1 (U.S. Pat. Nos. 6,083,499; 6,548,291 and 6,340,593). The
Cry35Ab1 protein (SEQ I D NO: 3) has a length of 383 amino acids and a molecular weight of approximately 44 kDa. Simultaneous expression of the Cry34Ab1 and Cry35Ab1 proteins in the plant confers resistance to coleopteran insects, including WCRW. The expression of the cr 35Ab1 gene is controlled by the Triticum aestivum (wheat) peroxidase promoter and leader sequence (Hertig et al., 1 991 , supra). The terminator for the cr 35Ab1 gene is a second copy of the p/'nl l terminator (Keil et al., 1 986, supra; An et al., 1 989, supra).
The fourth and final gene cassette contains a version of the pat gene from
Streptomyces viridochromogenes that has been optimized for expression in maize.
The pat gene expresses PAT, which confers tolerance to phosphinothricin
(glufosinate-ammonium). The PAT protein (SEQ I D NO: 4) is 1 83 amino acids residues in length and has a molecular weight of approximately 21 kDa.
Expression of the pat gene is controlled by the promoter and terminator regions from the CaMV 35S transcript (Franck et al., 1980, supra; Odell et al., 1 985, supra;
Pietrzak, et al., 1 986, supra). Plants containing the DNA constructs are also provided. A description of the genetic elements in the PHP271 18 T-DNA (set forth in SEQ I D NO: 5) and their sources are described further in Table 1 .
Table 1 : Genetic Elements in the T-DNA Region of Plasmid PHP27118
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Immature embryos of maize (Zea mays L.) were aseptically removed from the developing caryopsis nine to eleven days after pollination and inoculated with A. tumefaciens strain LBA4404 containing plasmid PHP271 1 8 (Figure 1 ), essentially as described in Zhao (U.S. Patent No. 5,981 ,840, the contents of which are hereby incorporated by reference). The T-DNA region of PHP271 1 8 is shown in Figure 2. After three to six days of embryo and Agrobacterium co-cultivation on solid culture medium with no selection, the embryos were then transferred to a medium without herbicide selection but containing carbenicillin. After three to five days on this medium, embryos were then transferred to selective medium that was stimulatory to maize somatic embryogenesis and contained bialaphos for selection of cells expressing the pat transgene. The medium also contained carbenicillin to kill any remaining Agrobacterium. After six to eight weeks on the selective medium, healthy, growing calli that demonstrated resistance to bialaphos were identified. The putative transgenic calli were subsequently regenerated to produce TO plantlets. Samples were taken from the TO plantlets for PCR analysis to verify the presence and copy number of the inserted cry\ F, cr 35Ab1 , cry34Ab1 , and/or pat genes. Maize event DP-043A47-3 was confirmed to contain a single copy of the T- DNA (See Examples 2 and 3). In addition to this analysis, the TO plantlets were analyzed for the presence of certain Agrobacterium binary vector backbone sequences by PCR (data not shown). Plants that were determined to be single copy for the inserted genes and negative for Agrobacterium backbone sequences were selected for further greenhouse propagation. These selected TO plants were screened for trait efficacy and protein expression by conducting numerous bioassays (See Example 5). The TO plants meeting all criteria were advanced and crossed to inbred lines to produce seed for further testing. A schematic overview of the transformation and event development is presented in Figure 3.
Example 2. Identification of Maize Event DP-043A47-3
Genomic DNA from leaf tissue of test seed from 43A47 maize and a control substance (seed from a non-genetically modified maize with a genetic background representative of the event background) was isolated and subjected to qualitative PCR amplification using a construct-specific primer pair. The PCR products were separated on an agarose gel to confirm the presence of the inserted construct in the genomic DNA isolated from the test seed, and the absence of the inserted construct in the genomic DNA isolated from the control seed. A reference standard (PCR Markers; Promega Corporation Catalog #G3161 ) was used to determine the PCR product size. The reliability of the construct-specific PCR method was assessed by repeating the experiment three times. The sensitivity of the PCR amplification was evaluated by various dilutions of the genomic DNA from 43A47 maize.
Test and control leaf samples (V5-V7 leaf stage) were harvested from plants grown at the DuPont Experimental Station (Wilmington, DE) from seed obtained from Pioneer Hi-Bred (Johnston, IA). Genomic DNA extractions from the test and control leaf tissues were performed using a standard urea extraction protocol. All genomic DNA samples were quantified using a PicoGreen® assay (Molecular Probes, Eugene, OR).
Genomic DNA samples isolated from leaf tissue of 43A47 maize and control samples were subjected to PCR amplification (Roche High Fidelity PCR Master Kit, Roche Catalog # 12140314001 ) utilizing a construct-specific primer pair (SEQ ID NOs: 7 and 8) which spans the maize ORF 25 terminator and the ubiquitin promoter (See Figure 2), and allows for the unique identification of the inserted T- DNA in 43A47 maize. A second primer set (SEQ ID NOs: 9 and 10) was used to amplify the endogenous maize invertase gene (GenBank accession number
AF171874.1 ) as a positive control for PCR amplification. The PCR target site and size of the expected PCR product for each primer set are shown in Table 2. PCR reagents and reaction conditions are shown in Table 3. In this study, 50 ng of leaf genomic DNA was used in all PCR reactions.
Table 2: PCR Genomic DNA Target Site and Expected Size of PCR Products
Figure imgf000041_0001
Table 3: PCR Reagents and Reaction Conditions
Figure imgf000041_0002
ddH2O: double-distilled water
* Roche High Fidelity Master Mix
A PCR product of approximately 300 bp in size amplified by the construct- specific primer set (SEQ ID NOs: 7 and 8) was observed in PCR reactions using plasmid PHP271 18 (10 ng) as a template and all 43A47 maize DNA samples, but absent in all control maize samples and the no-template control. This experiment was repeated three times, and similar results were obtained. Results observed for DNA extracts from five 43A47 maize plants and five control maize plants
corresponded closely with the expected PCR product size (287 bp) for samples containing 43A47 maize genomic DNA. A PCR product approximately 220 bp in size was observed for both 43A47 maize and control maize samples following PCR reaction with the primer set (SEQ ID NOs: 9 and 10) for detection of the
endogenous maize invertase gene. These results corresponded closely with the expected PCR product size (225 bp) for genomic DNA samples containing the maize endogenous invertase gene. The endogenous target band was not observed in the no-template control.
In order to assess the sensitivity of the PCR amplification, various
concentrations of a single DNA sample from 43A47 maize were diluted in non- genetically modified control DNA, resulting in 43A47 maize DNA amounts ranging from 500 fg, 5 pg, 10 pg, 50 pg, 100 pg, 5 00 pg, 5 ng, and 50 ng (the total amount of genomic DNA in all PCR samples was 50 ng). Each dilution was subjected to PCR amplification as previously conducted. Based on this analysis, the limit of detection (LOD) was determined to be approximately 100 pg of 43A47 maize DNA in 50 ng of total DNA, or 0.2% 43A47 maize DNA.
In conclusion, qualitative PCR analysis utilizing a construct-specific primer set for 43A47 maize confirmed that the test plants contained the inserted T-DNA from plasmid PHP271 18, as evident by the presence of the construct-specific target band in all test plant samples analyzed, and the absence in the non-genetically modified control plants. This result was reproducible. Test and control plants both contained the endogenous maize invertase gene. The sensitivity of the analysis under the conditions described is approximately 100 pg of 43A47 maize genomic DNA in 50 ng of total genomic DNA or 0.2% 43A47 maize genomic DNA.
Example 3. Southern Blot Analysis of DP-043A47-3 maize for Integrity and Copy Number
Southern blot analysis was used to confirm the integrity and copy number of the inserted T-DNA from PHP271 18 and to confirm the presence of the cr \ F, cr 34Ab1 , cry35Ab1 , and pat gene cassettes in 43A47 maize.
Five individual plants from the T1 generation of 43A47 maize were selected for Southern blot analysis. Young leaf material was harvested from the 43A47 maize (test) and non-transgenic maize (control) plants and was immediately placed on dry ice. The frozen samples were lyophilized and genomic DNA was extracted from the test and control tissues using a CTAB extraction method.
Following restriction enzyme digestions as detailed below, the DNA fragments were separated on agarose gels, depurinated, denatured, and neutralized in situ, and transferred to a nylon membrane in 20x SSC buffer using the method as described for TURBOBLOTTER™ Rapid Downward Transfer System (Schleicher & Schuell). Following transfer to the membrane, the DNA was bound to the membrane by ultraviolet light crosslinking.
Integrity
The restriction enzyme Ηίηά III was selected for Southern analysis of integrity, as there are three sites located within the T-DNA (Figure 2). Approximately 1 -3 μg of genomic DNA was digested with Hind III and separated by size on an agarose gel. As a positive control, approximately 15 pg of plasmid containing the
PHP271 18 T-DNA was spiked into a control plant DNA sample, digested and included on the agarose gel. A negative control was also included to verify background hybridization of the probe to the maize genome.
Four probes homologous to the cry\ F, cr 34Ab1 , cr 35Ab1 , and pat genes on the PHP271 18 T-DNA (for gene elements, see Figure 2) were used for
hybridization to confirm the presence of the genes. In order to develop the probes, fragments homologous to the cry\ F, cr 34Ab1 , cr 35Ab1 , and pat genes were generated by PCR from plasmid containing the PHP271 18 T-DNA, size separated on an agarose gel, and purified using a QIAquick® gel extraction kit (Qiagen). All DNA probes were subsequently generated from the fragments using the
Rediprime™ II DNA Labeling System (Amersham) which performs random prime labeling with [32P]dCTP.
The labeled probes were hybridized to the target DNA on the nylon membranes for detection of the specific fragments using the MiracleHyb® Hybridization Solution essentially as described by the manufacturer (Stratagene). Washes after hybridization were carried out at high stringency. Blots were exposed to X-ray film at -80°C for one or more time points to detect hybridizing fragments.
Because the Hind III enzyme sites were known within the T-DNA, exact expected band sizes were determined for each of the probes (Table 4, Figure 2). For an intact copy of the T-DNA, the cr \ F probe was expected to hybridize to a fragment of 3891 bp. The cr 34Ab1 , cr 35Ab1 , and pat gene probes were expected to hybridize to a fragment of 7769 bp. Fragments from the test samples matching the expected sizes, as well as matching the bands in the plasmid control sample, would confirm the integrity of the inserted T-DNA and the presence of each gene.
The results of the Southern blot analysis with Ηίηά III and the cr \ F, cr 34Ab1 , cr 35Ab1 , and pat gene probes confirmed the expected fragment sizes and, thus, confirmed that the T-DNA inserted intact into each of the events and that each of the genes was present.
A band of approximately 4 kb was observed with the cr \ F probe which is consistent with the expected fragment size. A similar fragment of approximately 4 kb was observed in the plasmid positive control lane, which was presumed to be the expected band of 3891 bp. Based on equivalent migration of the hybridizing band in the events to the band in the plasmid positive control, it was confirmed that the portion of the T-DNA containing cry\ F had inserted intact in 43A47 maize.
In the hybridization with the cr 34Ab1 probe, a band of approximately 8 kb was observed in the event and also in the plasmid positive control. The hybridizing band in the plasmid positive control lane was presumed to be the expected band of 7769 bp. Because the hybridizing band in the event had migrated equivalently with this band, it was confirmed that this portion of the T-DNA containing cr 34Ab1 was inserted intact.
Similarly, hybridizations with cr 35Ab1 and pat hybridized to the same 7769 bp fragment in the plant and plasmid positive control as expected. These results confirmed that the portion of the T-DNA containing the cr 35Ab1 and pat genes had inserted intact.
This Southern blot analysis confirms that 43A47 maize contains an intact copy of the T-DNA from PHP271 18 containing the cryl F, cry34Ab1 , cry35Ab1 , and pat genes. Table 4: Summary of Expected and Observed Hybridization Fragments on Southern Blots for 43A47 Maize DNA digested with Hind III
Figure imgf000045_0001
1 Expected fragment sizes based on map of PHP271 18 T-DNA (Figure 2).
2 All observed fragments migrated equivalently with the plasmid positive control and, therefore, were confirmed to represent the intact portion of the PHP271 18 T- DNA.
Copy Number
The cry\ F and pat probes were used in Southern blot hybridizations to evaluate the copy number of the insertions in 43A47 maize.
The restriction enzyme Bel I was selected for Southern analysis of copy number, as there is a single site located within the T-DNA (Figure 2).
Approximately 3 μg of genomic DNA from individual plants of the T1 generation of event 43A47 was digested with Bel I and separated by size on an agarose gel. A plasmid containing the PHP271 18 T-DNA was spiked into a control plant DNA sample, digested and included on the agarose gel to serve as a positive
hybridization control. Negative control maize DNA was also included to verify background hybridization of the probe to the maize genome. DNA Molecular Weight Marker VII, digoxigenin (DIG) labeled (Roche, Indianapolis, IN), was included on Bel I blots as a size standard for hybridizing fragments.
Probes for the cry\ F and pat genes were also labeled by a PCR reaction incorporating a digoxigenin (DIG) labeled nucleotide, [DIG-1 1 ]-dUTP, into the fragment. PCR labeling of isolated fragments was carried out according to the procedures supplied in the PCR DIG Probe Synthesis Kit (Roche).
The DIG-labeled probes were hybridized to the Bel I Southern blots of the T1 generation of the 43A47 event. Probes were hybridized to the target DNA for detection of the specific fragments using DIG Easy Hyb solution (Roche) essentially as described by manufacturer. Post-hybridization washes were carried out at high stringency. DIG-labeled probes hybridized to the bound fragments were detected using the CDP-Star Chemiluminescent Nucleic Acid Detection System (Roche). Blots were exposed to X-ray film at room temperature for one or more time points to detect hybridizing fragments. Membranes were stripped of hybridized probe following the manufacturer's recommendation prior to hybridization with additional probes.
The restriction enzyme Bel I, having a single restriction site within the T-DNA (Figure 2), was selected to confirm the presence of a single PHP271 18 T-DNA insertion in 43A47 maize. The site for Bel I is located at bp 2546 of the T-DNA (Figure 2) and will yield fragments of greater than about 2500 bp and 9400 bp for a single inserted T-DNA. Hybridization with the pat probe would indicate the number of copies of this element found in the event based on the number of hybridizing bands (e.g., one hybridizing band indicates one copy of the element). The pat probe would hybridize to the fragment of greater than 9400 bp. Because the Bel I restriction enzyme site is within the cry\ F gene, the cryl F probe is expected to hybridize to both fragments and result in two bands for a single T-DNA insertion (Figure 2).
The results of the Southern blot analysis with Bel I and the cry\ F and pat gene probes for 43A47 maize are summarized in Table 5. Table 5: Summary of Expected and Observed Hybridization Fragments on Southern Blots for Bel I digests of 43A47 Maize
Figure imgf000046_0001
1 Expected fragment sizes based on map of PHP271 18 T-DNA (Figure 2).
2 All observed fragment sizes are approximated based on the migration of the DIG VII molecular weight marker.
3 Two fragments are expected with the cry\ F probe due to the location of the Bel I restriction site within the cry\ F gene. The results of the Southern blot analysis of 43A47 maize with Bel I digestion and the cry\ F probe showed two bands as expected, one band of greater than 8.6 kb and a second band of approximately 4 kb. Two bands are expected for a single insertion due to the location of the Bel I site within the cry\ F gene, so these results indicate that there is a single copy of cryl F in 43A47 maize. The results of the Southern
blot analysis of 43A47 maize with Bel I digestion and the pat probe showed a single band of greater than 8.6 kb that matched the size of the larger cry\ F band as expected. These results indicate that there is also a single insertion of the pat gene in maize event 43A47.
As the cry34Ab1 and cry35Ab1 genes are located on the same fragment as the pat gene and part of the cry\ F gene, and between the cryl F and pat genes on the T-DNA, by extension this also demonstrates that this event is likely to contain a single copy of each of these genes.
Example 4. Sequencing Characterization of Insert and Genomic Border Regions of Maize Event DP-043A47-3
The sequence of the insert and genomic border regions was determined to confirm the integrity of the inserted DNA and to characterize the genomic sequence flanking the insertion site that is uniquely present in 43A47 maize. In total, 14,354 bp of 43A47 maize genomic sequence was confirmed, comprising 987 bp of the 5' genomic border sequence, 1 ,455 bp of the 3' genomic border sequence, and 1 1 ,912 bp of inserted T-DNA from PHP271 18. The inserted T-DNA in 43A47 maize was found to have a 54 bp deletion on the Right Border (RB) end and a 12 bp deletion on the Left Border (LB) end. All remaining sequence is intact and identical to that of plasmid PHP271 18. The 5' and 3' genomic border regions of 43A47 maize were verified to be of maize origin by PCR amplification and sequencing of the genomic border regions from both 43A47 maize and control maize plants.
Seed containing event DP-043A47-3 was obtained from a T1 S2 generation of 43A47 maize. The 43A47 maize seed was planted in growth chambers at the DuPont Experimental Station (Wilmington, DE) to produce plant tissues used for this study. One seed was planted per pot, and the pot was uniquely identified. All plants were grown with light, temperature, and water regulated for healthy plant growth. Leaf samples were collected from the control and 43A47 maize plants. For each individual plant, leaf material was collected in a pre-labeled bag, placed on dry ice, and then transferred to an ultra low freezer (<-55°C) following collection. All samples were maintained frozen until tissue processing.
DNA was extracted from ground frozen leaf samples (1 -2 gram quantities) using a standard Urea Extraction Buffer procedure. Following the extraction, the DNA was visualized on an agarose gel to confirm quality, and quantified using the NanoDrop 2000 Spectrophotometer (ThermoScientific, Wilmington, DE).
The Phusion™ Hot Start High-Fidelity DNA polymerase kit (Finnzymes Oy, Espoo, Finland) was used for all PCR, with the exception of the GenomeWalker™ reactions. The 5xHF Buffer (provided with the kit) was used with a 0.2 μΜ dNTP, -0.4 μΜ primers, and approximately 50-100 ng of DNA template. Each PCR product was visualized under UV light following electrophoresis on an agarose gel. PCR products used for analysis were purified using either the QIAquick PCR Purification Kit, QIAquick gel extraction kit, MinElute PCR Purification Kit (Qiagen, Valencia, CA), or the illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare, Piscataway, NJ).
The GenomeWalker™ Universal Kit (Clonetech Laboratories, Inc., Mountain View, CA) was used for PCR-based DNA walking on the 5' and 3' flanking genomic regions in 43A47 maize. PCR was performed on seven GenomeWalker libraries, which consist of genomic DNA fragments created by restriction enzyme digestion (Dral, EcoRV, Sspl, Pvull, Psil, Hpal, Stul) of the 43A47 maize genomic DNA followed by ligation to the 48 bp GenomeWalker™ adapter, using the 50χ
Advantage 2 polymerase mix (Clontech Laboratories, Inc.).
PCR generated fragments were cloned using the Zero Blunt TOPO PCR
Cloning Kit (Invitrogen, Carlsbad, CA). All plasmids were isolated using the
QIAprep Spin Miniprep Kit (Qiagen) and the presence of the correct insert was confirmed by restriction enzyme digestion with EcoRI.
PCR products and plasmids were submitted for sequencing to the Dupont Agricultural Biotechnology (DABT) sequencing facility in Wilmington, DE.
Sequencing reactions were run using the ABI BigDye v3.1 terminator chemistry and analyzed on an ABI 3730x1 (Applied Biosystems) capillary sequencer. Base calls and quality scores were assigned using the KB™ Basecaller software v1 .2 from ABI (Applied Biosystems). Sequencher™ software (v4.8) from Gene Codes Corporation (Ann Arbor, Michigan) was used to assemble and analyze the trace files. All chromatograms received from the sequencing facility were manually inspected and any nucleotide positions within an individual read that could not be confidently called were annotated as 'Ν.' Low quality data and vector sequence was trimmed from the 5' and 3' ends before assembling. Sequence annotation was performed by comparing the 43A47 maize consensus sequence with the
PHP271 18 T-DNA fragment using the Sequencher™ software.
The 5' flanking genomic region was amplified from a GenomeWalker™ library, created by the Dral digestion of the 43A47 maize genomic DNA, using the insert-specific primer set forth in SEQ ID NO: 1 1 , which lies on the T-DNA backbone near the right border, and the nested adapter primer 2 (AP2) from the GenomeWalker™ Universal Kit. This amplification produced a fragment of approximately 1 kb in size which was gel isolated, cloned, and sequenced. This fragment contained 987 bp of sequence on the 5' flanking genomic region.
The 3' flanking genomic region was amplified from a GenomeWalker™ library, created by the Psil digestion of the 43A47 maize genomic DNA, using the insert-specific primer set forth in SEQ ID NO: 19, which lies on the T-DNA backbone near the left border, and the AP2 primer. This amplification produced a 1 .7 kb fragment which was gel isolated, cloned, and sequenced. This fragment contained 1 ,455 bp of sequence on the 3' flanking genomic region.
The 1 1 ,912 bp PHP271 18 T-DNA insert sequence was generated by four overlapping PCR products (See Figure 5). The primer pairs for each of the PCR products are listed in Table 6 and positions are shown in Figure 5. The sequences and sequence identifier numbers of the primers used are shown in Table 7. Each resulting PCR product from maize 43A47 was cloned and sequenced.
Table 6. Primer Pairs Used in PCR Amplification to Characterize the Insert and Flanking Genomic Regions of 43A47 Maize
Figure imgf000049_0001
Nucleotide position relative to the 43A47 maize consensus sequence set forth in SEQ ID NO: 6. Positions are inclusive.
A 43A47 maize consensus sequence (SEQ ID NO: 6) was created by assembling all the sequence reads from all six of the PCR fragments generated from the insert and flanking genomic regions. The 43A47 maize consensus was then aligned and compared directly to the PHP271 18 T-DNA. This comparison revealed that 54 base pairs on the right border (RB) and 12 base pairs on the left border (LB) of the T-DNA had been deleted in 43A47 maize. The deletion of the RB and LB sequence is a common occurrence in Agrobacterium- mediated
transformation and is to be expected (Kim et ai, (2007) Plant J. 51 :779-791 ). The remaining portion of the T-DNA insert was found to be intact and identical to the PHP271 18.
Table 7. Sequences of the Primers Used in PCR Amplification
Figure imgf000050_0001
Example 5. Insect efficacy of maize event DP-043A47-3
Efficacy data was generated on DP-043A47-3 maize. Field testing compared DP-043A47-3 maize in two genetic backgrounds to a negative control (isoline) in the same backgrounds. Efficacy testing included: first generation ECB (ECB1 ) foliage damage and second generation ECB (ECB2) stalk damage at four locations, WCRW root damage at three locations, and FAW foliar damage at one location. At each location, single-row plots were planted in a randomized complete block with three replications (20 kernels/plot x 12 entries x 3 replicates = 1 experiment/location). All plants were tissue sampled after emergence to confirm the presence of the event by event-specific PCR. Any negatives were culled and each plot thinned to a target stand of 1 0-1 5 evenly spaced plants per plot.
For trials characterizing ECB1 damage, each plant was manually infested with approximately 1 00 ECB neonate larvae 3 times (300 larvae total) over
approximately one week beginning at approximately the V5 growth stage.
Approximately three weeks after the last successful infestation, leaf damage ratings (based on a 9 - 1 visual rating scale where 9 indicates no damage and 1 indicates maximum damage) were taken on 8 consecutive plants per plot (total of 24 plants per genetic background, per entry) and means were calculated for each treatment. First generation ECB foliar feeding results on DP-043A47-3 are shown in Table 8.
Table 8. Efficacy of DP-043A47-3 Maize Against First Generation ECB Larvae
Figure imgf000051_0001
"Damage ratings on individual plants were determined using the following visual rating scale:
9. No visible leaf injury or a small amount of pin or fine shot-hole type injury on few leaves.
8. Small amount of shot-hole type lesions on a few leaves. 7. Shot-hole injury common on several leaves.
6. Several leaves with shot-hole and elongated lesions (Lesions <0.5" in length). 5. Several leaves with elongated lesions (Lesions 0.5" to 1 .0" in length).
4. Several leaves with elongated lesions (Lesions >1 .0" in length).
3. Long lesions (>1 .0") common on about one-half the leaves.
2. Long lesions (>1 .0") common on about two-thirds the leaves.
1 . Most of the leaves with long lesions.
"Within a location, means with the same letter are not significantly different (Fisher's Protected LSD test, P > 0.05).
For trials characterizing ECB2 damage, the same plants infested above for ECB1 were manually infested again later in the growing season with approximately 1 00 ECB neonate larvae (300 larvae total) per plant 3 times over approximately one week beginning at the R1 growth stage, when approximately 50% of the plants were shedding pollen. At approximately 50-60 days after the last infestation, stalks of 8 consecutive plants per plot (total of 24 plants per genetic background, per entry) were split from the top of the 4th internode above the primary ear to the base of the plant. The total length of ECB stalk tunneling (ECBXCM) was then measured in centimeters and recorded for each plant. Tunnels 1 cm or less were considered entrance holes (larvae was not able to establish in the stalk) and were not included in the total cm of tunneling. Means (total cm of tunneling) were calculated for each treatment. The ECB2 stalk feeding results for DP-043A47-3 are shown in Table 9.
Table 9. Efficacy of DP-043A47-3 Maize Against Second Generation ECB Larvae
Figure imgf000053_0001
"Within a location, means with the same letter are not significantly different (Fisher's Protected LSD test, P > 0.05).
Root damage caused by WCRW was also investigated. Plants at approximately the V2 growth stage were manually infested with approximately 500 WCRW eggs applied into the soil on each side of the plant (~1 ,000 eggs/plant total). Additionally, plots were planted in fields that had a high probability of containing a natural infestation of WCRW. Plant roots were evaluated at
approximately the R2 growth stage. Five consecutive plants per plot (total 45 plants per genetic background, per entry) were removed from the plot and washed with pressurized water. The root damage was rated using the 0-3 node injury scale (CRWNIS) (Oleson, et al. (2005) J. Econ Entomol. 98(1 ):1 -8) and means were calculated for each treatment. Mean root damage ratings from WCRW feeding are shown in Table 10. Table 10. Efficacy of DP-043A47-3 Maize Against WCR Larvae
Figure imgf000054_0001
"Damage ratings on individual plant root masses were determined using 0-3 Node Injury Scale (Oleson et al. 2005, supra).
Within a location, means with the same letter are not significantly different (Fisher's
Protected LSD test, P > 0.05).
For the FAW efficacy testing, individual plants were manually infested with approximately 75 neonates at approximately the V5 growth stage. Leaves were scored for damage on 8 consecutive plants per plot (total of 24 plants per genetic background, per entry) (FAWLF based on a 9-1 visual rating scale where 9 indicates no damage and 1 indicates maximum damage approximately two weeks after the last successful inoculation and means were calculated for each treatment. Mean damage ratings characterizing FAW foliar feeding on DP-043A47-3 are shown in Table 1 1 .
Table 11. Efficacy of DP-043A47-3 Maize Against FAW Larvae
Figure imgf000054_0002
"Damage ratings on individual plants were determined using the following visual rating scale:
9. No damage to pinhole lesions present on whorl leaves. 8. Pinholes and small circular lesions present on whorl leaves.
7. Small circular lesions and a few small elongated (rectangular shaped) lesions up to 0.5" in length present on whorl and furl leaves.
6. Several small elongated lesions 0.5" to 1 " in length on a few whorl and furl leaves. 5. Several large elongated lesions greater than 1 " in length present on a few whorl and furl leaves and/or a few small to mid-sized uniform to irregular shaped holes (basement membrane consumed) in whorl and furl leaves.
4. Several large elongated lesions present on several whorl and furl leaves and/or several large uniform to irregular shaped holes in whorl and furl leaves.
3. Many elongated lesions of all sizes present on several whorl leaves plus several large uniform to irregular shaped holes in whorl and furl leaves.
2. Many elongated lesions of all sizes present on most whorl and furl leaves plus many mid to large-sized uniform to irregular shaped holes in whorl and furl leaves.
1 . Whorl and furl leaves almost totally destroyed.
"Within a location, means with the same letter are not significantly different (Fisher's Protected LSD test, P > 0.05).
In addition to field efficacy studies, DP-043A47-3 maize was evaluated in the lab-based sub-lethal seedling assay (SSA) (U.S. Publication No. 2006/01 04904 the contents of which is hereby incorporated by reference). The SSA allowed for a comparison of the efficacy of DP-043A47-3 maize to an unprotected control (near isoline) without the confounding effects of the field environment. The SSA technique involves exposing a population of neonate WCRW to maize seedlings containing either one of the DP-043A47-3 event or non-transgenic (negative control) maize seedlings. Larvae were exposed for a period of 17 days from the date of initial egg hatch. The experimental unit for the SSA was a single plastic container with dimensions of 23 x 30 x 1 0 cm (Pactiv Corp., Lake Forest, IL).
Entries were arranged in a randomized complete block with 3 replications per entry. For each entry, SSA setup involved placing 1 1 5 kernels into each container with 225 mL of a 1 % thiophanate-methyl fungicide solution and 1 000 mL of Metro-Mix 200 plant growth media (Scotts-Sierra Horticultural Products Company, Marysville, OH). Immediately after adding the Metro-Mix, WCRW eggs were infested onto the surface of each container at a rate of 1 ,000 eggs per container. WCRW eggs were pre-incubated at 25 °C so that initial egg hatch was timed to occur 5-7 days after container setup. Infested containers were held in a walk-in environmental chamber with settings of 25 °C, 65% relative humidity, and 14:1 0 light:dark cycle. Larvae were extracted from the containers 1 7 days post-egg hatch using a Burlese funnel system. A random subsample of 30 larvae per container were selected and their head capsules measured under a dissecting microscope to categorize each into 1 of 3 instars. Data collected includes the age structure of the larval population determined from the number of larvae in each of three potential instars. Histograms that graphically displayed the age distribution of larvae for each entry were plotted and visually compared as shown in Figure 4.
The pest spectrum for DP-043A47-3 maize is listed in Table 1 2. Table 12. Insect Pests That Are Controlled or Suppressed by DP-043A47-3 Maize Expressing Cryl F, Cry34Ab1 , and Crv35Ab1
Figure imgf000056_0001
Example 6. Protein Expression and Concentration
Generation of plant material
43A47 maize from the PH4RF x BC3F3 generation was grown in five locations in the United States and Canada. Each site employed a randomized complete block design containing four blocks, with each block separated by a buffer distance of at least 36 inches (0.9 m). Each entry was planted in 2-row plots bordered on each side by 1 row of border seed.
Leaf tissue collection and processing
One leaf tissue sample was collected in each block at the V9 stage. All samples were collected from impartially selected, healthy, representative plants for each event. Each leaf sample was obtained by selecting the youngest leaf that had emerged at least 8 inches (20 cm, visible tissue) from the whorl. If this leaf was damaged or otherwise unhealthy, the next leaf below it was sampled. The leaf was pruned (cut) from the plant approximately 8 inches (20 cm) from the leaf tip. The leaf sample (including midrib) was cut into <1 inch (2.5 cm) pieces and placed in a 50-ml sample vial. The samples were then placed on dry ice until transferred to a freezer (<-10 °C). Samples were shipped frozen and stored at <-10 °C upon arrival. All tissue samples were lyophilized, under vacuum, until dry. The lyophilized leaf samples were finely homogenized in preparation for analysis. Samples were stored frozen between processing steps.
Protein Concentration Determinations
Concentrations of the Cry1 F, Cry34Ab1 , Cry35Ab1 , and PAT proteins were determined using specific quantitative ELISA methods. Protein Extraction
Aliquots of processed leaf tissue samples were weighed into 1 .2 ml_ tubes at the target weight of 10 mg. Each sample analyzed for Cry1 F, Cry34Ab1 , Cry35Ab1 , and PAT protein concentrations was extracted in 0.6 ml_ of chilled PBST
(Phosphate Buffered Saline plus Tween-20). Following centrifugation, supernatants were removed, diluted, and analyzed.
Determination of CrylF, Cry34Ab1 and PAT Protein Concentration
The Cry1 F, Cry34Ab1 and PAT ELISA kits employed were obtained from EnviroLogix, Inc. (Portland, ME), and the Cry35Ab1 ELISA kit employed was obtained from Acadia Bioscience, LLC (Portland, ME). The ELISA method for each of these four proteins utilized a sequential "sandwich" format to determine the concentration of the protein in sample extracts. Standards (analyzed in triplicate wells) and diluted sample extracts (analyzed in duplicate wells) were incubated in plate pre-coated with an antibody specific to a single protein chosen from Cry1 F, Cry34Ab1 , Cry35Ab1 or PAT. Following incubation, unbound substances were washed from the plate. A different specific antibody for the respective selected protein, conjugated to the enzyme horseradish peroxidase (HRP), was added to the plate and incubated. Then, unbound substances were washed from the plate leaving the bound protein "sandwiched" between the antibody coated on the plate and the antibody-HRP conjugate. Detection of the bound antibody-protein complex was accomplished by the addition of substrate, which generated a colored product in the presence of HRP. The reaction was stopped with an acid solution and the optical density (OD) of each well was determined using plate reader. An average of the results from duplicate wells was used to determine the concentration of the Cry1 F, Cry34Ab1 , Cry35Ab1 or PAT protein in ng/mg sample dry weight.
Calculations for Determining Protein Concentrations
SoftMax® Pro software was used to perform the calculations required to convert the OD values obtained by the plate reader to protein concentrations.
1. Standard Curve
A standard curve was included on each ELISA plate. The equation for the standard curve was generated by the software, which used a quadratic fit to relate the mean OD values obtained for the standards to the respective standard concentration (ng/mL). The quadratic regression equation was applied as follows:
y = Cx2 + Bx + A
where x = known standard concentration and y = respective mean absorbance value (OD).
2. Sample Concentration
Interpolation of the sample concentration (ng/ml) was accomplished by solving for x in the above equation using values for A, B, and C determined by the standard curve.
e.g. Curve Parameters: A = 0.0476, B = 0. 4556, C = -0.01910, and sample OD 1 .438
, _ . -G.45S6÷, 0.45562 - 4:r-0.G1910)f0.0476-1.438) , ,
Sample Concentration = ::—— = 3.6 ng/mL
^ 2 i 0.01910 ; a Sample concentration values were adjusted for the dilution factor expressed as 1 :N Adjusted Concentration = Sample Concentration x Dilution Factor e.g. Sample Concentration = 3.6 ng/mL and Dilution Factor = 1 :10
Adjusted Concentration = 3.6 ng/mL x 10 = 36 ng/mL
Adjusted sample concentration values were converted from ng/mL to ng/mg sample weight as
follows:
ng/mg Sample Weight = ng/mL x Extraction Volume (mL)/Sample Weight
(mg)
e.g. Concentration = 36 ng/mL, Extraction Volume = 0.60 ml, and
Sample Weight = 10.0 mg
ng/mg Sample Weight = 36 ng/mg x 0.60 mL/10.0 mg = 2.2 ng/mg
3. Lower Limit of Quantitation (LLOQ)
The LLOQ, in ng/mg sample weight, was calculated as follows
e.g. for PAT in leaf: reportable assay LLOQ = 2.3 ng/mL, extraction volume = 0.6 mL, and sample target weight = 10 mg
2.3 ng/mL x 0.6 mL = 0.14 ng/mg sample weight
LLOQ =
10 m
Results
The proteins Cry1 F, Cry34Ab1 , Cry35Ab1 , and PAT were detected in V9 leaf tissue of 43A47 maize at the concentrations set forth in Table 13 below.
Table 13: Protein Concentrations in 43A47 Maize
Figure imgf000059_0001
* The LLOQ for Cry1 F and PAT was 0.14 ng/mg Dry Weight; the LLOQ for
Cry34Ab1 and Cry35Ab1 were 0.16ng/mg Dry Weight Having illustrated and described the principles of the present invention, it should be apparent to persons skilled in the art that the invention can be modified in arrangement and detail without departing from such principles. We claim all modifications that are within the spirit and scope of the appended claims.
All publications and published patent documents cited in this specification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Claims

WHAT IS CLAIMED IS:
1 . A DNA construct comprising: a first, second, third and fourth expression cassette, wherein said first expression cassette in operable linkage comprises:
(a) a maize ubiquitin promoter;
(b) a 5' untranslated exon of a maize ubiquitin gene;
(c) a maize ubiquitin first intron;
(d) a Cryl F encoding DNA molecule; and
(e) a poly(A) addition signal from ORF 25 terminator; said second expression cassette in operable linkage comprises:
(1 ) a maize ubiquitin promoter;
(2) a 5' untranslated exon of a maize ubiquitin gene;
(3) a maize ubiquitin first intron;
(4) a Cry34Ab1 encoding DNA molecule; and
(5) a Pinll transcriptional terminator;
said third expression cassette comprising in operable linkage
(i) a wheat peroxidase promoter;
(ii) a Cry35Ab1 encoding DNA molecule; and
(iii) a Pinll transcriptional terminator; and
said fourth expression cassette comprising in operable linkage
(a) a CaMV 35S promoter;
(b) a pat encoding DNA molecule; and
(c) a 3' transcriptional terminator from CaMV 35S.
2. A plant comprising the DNA construct of claim 1 .
3. A plant of claim 2, wherein said plant is a corn plant.
4. A plant comprising the sequence set forth in SEQ ID NO: 6.
5. A corn plant comprising the genotype of the corn event DP-043A47-3, wherein said genotype comprises the nucleotide sequence set forth in SEQ ID NO: 21 , and SEQ ID NO: 22.
6. The corn plant of claim 5, wherein said genotype comprises the nucleotide sequence set forth in SEQ ID NO: 21 .
7. The corn plant of claim 5, wherein said genotype comprises the nucleotide sequence set forth in SEQ ID NO: 22.
8. A corn event DP-043A47-3, wherein a representative sample of seed of said corn event has been deposited with American Type Culture Collection (ATCC) with Accession No. PTA-1 1509.
9. Plant parts of the corn event of claim 8.
10. Seed comprising corn event DP-043A47-3, wherein said seed comprises a DNA molecule selected from the group consisting of SEQ ID NO: 21 and SEQ ID NO: 22, wherein a representative sample of corn event DP-043A47-3 seed of has been deposited with American Type Culture Collection (ATCC) with Accession No. PTA- 1 1509.
1 1 . A corn plant, or part thereof, grown from the seed of claim 10.
12. A transgenic seed produced from the corn plant of claim 1 1 comprising event DP-043A47-3.
13. A transgenic corn plant, or part thereof, grown from the seed of claim 12.
14. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 6; SEQ ID NO: 21 ; SEQ ID NO: 22, and full length complements thereof.
15. An amplicon comprising the nucleic acid sequence selected from the group consisting of SEQ ID NO: 21 , SEQ ID NO: 22 and full length complements thereof.
16. A biological sample derived from corn event DP-043A47-3 plant, tissue, or seed, wherein said sample comprises a nucleotide sequence which is or is
complementary to a sequence selected from the group consisting of SEQ ID NO: 21 and SEQ ID NO: 22, wherein said nucleotide sequence is detectable in said sample using a nucleic acid amplification or nucleic acid hybridization method, wherein a representative sample of said corn event DP-043A47-3 seed of has been deposited with American Type Culture Collection (ATCC) with Accession No. PTA-1 1509.
17. The biological sample of claim 16, wherein said biological sample comprise plant, tissue, or seed of transgenic corn event DP-043A47-3.
18. The biological sample of claim 17, wherein said biological sample is a DNA sample extracted from the transgenic corn plant event DP-043A47-3, and wherein said DNA sample comprises one or more of the nucleotide sequences selected from the group consisting of SEQ ID NO: 21 , SEQ ID NO: 22, and the complement thereof.
19. The biological sample of claim 18, wherein said biological sample is selected from the group consisting of corn flour, corn meal, corn syrup, corn oil, corn starch, and cereals manufactured in whole or in part to contain corn by-products.
20. An extract derived from corn event DP-043A47-3 plant, tissue, or seed and comprising a nucleotide sequence which is or is complementary to a sequence selected from the group consisting of SEQ ID NO: 21 and SEQ ID NO: 22, wherein a representative sample of said corn event DP-043A47-3 seed has been deposited with American Type Culture Collection (ATCC) with Accession No. PTA-1 1509.
21 . The extract of claim 20, wherein said nucleotide sequence is detectable in said extract using a nucleic acid amplification or nucleic acid hybridization method.
22. The extract of claim 21 , wherein said extract comprises plant, tissue, or seed of transgenic corn plant event DP-043A47-3.
23. The extract of claim 22, further comprising a composition selected from the group consisting of corn flour, corn meal, corn syrup, corn oil, corn starch, and cereals manufactured in whole or in part to contain corn by-products, wherein said composition comprises a detectable amount of said nucleotide sequence.
24. A method of producing hybrid corn seeds comprising: (a) planting seeds of a first inbred corn line comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 21 , SEQ ID NO: 22 and seeds of a second inbred line having a different genotype;
(b) cultivating corn plants resulting from said planting until time of flowering;
(c) emasculating said flowers of plants of one of the corn inbred lines;
(d) sexually crossing the two different inbred lines with each other; and
(e) harvesting the hybrid seed produced thereby.
25. The method according to claim 24, wherein the plants of the first inbred corn line are the female parents.
26. The method according to claim 24, wherein the plants of first inbred corn line are the male parents.
27. A method for producing a corn plant resistant to lepidopteran pests comprising:
(a) sexually crossing a first parent corn plant with a second parent corn plant, wherein said first or second parent corn plant comprises event DP- 043A47-3 DNA, thereby producing a plurality of first generation progeny plants;
(b) selecting a first generation progeny plant that is resistant to lepidopteran insect infestation;
(c) selfing the first generation progeny plant, thereby producing a plurality of second generation progeny plants; and
(d) selecting from the second generation progeny plants, a plant that is resistant to lepidopteran pests;
wherein the second generation progeny plants comprise the DNA construct according to claim 1 .
28. A method of producing hybrid corn seeds comprising:
(a) planting seeds of a first inbred corn line comprising the DNA construct of claim 1 and seeds of a second inbred line having a genotype different from the first inbred corn line; (b) cultivating corn plants resulting from said planting until time of flowering;
(c) emasculating said flowers of plants of one of the corn inbred lines;
(d) sexually crossing the two different inbred lines with each other; and
(e) harvesting the hybrid seed produced thereby.
29. The method of claim 28 further comprising the step of backcrossing the second generation progeny plant of step (d) that comprises corn event DP-043A47-3 DNA to the parent plant that lacks the corn event DP-043A47-3 DNA, thereby producing a backcross progeny plant that is resistant to at least western corn rootworm.
30. A method for producing a corn plant resistant to at least corn rootworm, said method comprising:
(a) sexually crossing a first parent corn plant with a second parent corn plant, wherein said first or second parent corn plant is a corn event DP- 043A47-3 plant, thereby producing a plurality of first generation progeny plants;
(b) selecting a first generation progeny plant that is resistant to at least corn rootworm infestation;
(c) backcrossing the first generation progeny plant of step (b) with the parent plant that lacks corn event DP-043A47-3 DNA, thereby producing a plurality of backcross progeny plants; and
(d) selecting from the backcross progeny plants, a plant that is resistant to at least corn rootworm infestation;
wherein the selected backcross progeny plant of step (d) comprises SEQ ID NO: 6.
31 . The method according to claim 28, wherein the plants of the first inbred corn line are the female parents or male parents.
32. Hybrid seed produced by the method of claim 28.
33. A method of detecting the presence of a nucleic acid molecule that is unique to event DP-043A47-3 in a sample comprising corn nucleic acids, the method
comprising:
(a) contacting the sample with a pair of primers that, when used in a nucleic-acid amplification reaction with genomic DNA from event DP-043A47-3 produces an amplicon that is diagnostic for event DP-043A47-3;
(b) performing a nucleic acid amplification reaction, thereby producing the amplicon; and
(c) detecting the amplicon.
34. A pair of polynucleotide primers comprising a first polynucleotide primer and a second polynucleotide primer which function together in the presence of a event DP- 043A47-3 DNA template in a sample to produce an amplicon diagnostic for event DP- 043A47-3.
35. The pair of polynucleotide primers according to claim 34, wherein the sequence of the first polynucleotide primer is or is complementary to a corn plant genome sequence flanking the point of insertion of a heterologous DNA sequence inserted into the corn plant genome of event DP-043A47-3, and the sequence of the second polynucleotide primer is or is complementary to the heterologous DNA sequence inserted into the genome of event DP-043A47-3.
36. The pair of polynucleotide primers according to claim 35, wherein
(a) the first polynucleotide primer comprises at least 10 contiguous nucleotides of a nucleotide sequence selected from the group consisting of nucleotides 1 -987 of SEQ ID NO: 6, nucleotides 12900-14354 of SEQ ID NO: 6, and the complements thereof; and
(b) the second polynucleotide primer comprises at least 10 contiguous nucleotides from nucleotides 988-12899 of SEQ ID NO: 6, or the complements thereof.
37. The pair of polynucleotide primers according to claim 36, wherein (a) the first polynucleotide primer comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 19 and SEQ ID NO: 20, and the complements thereof; and
(b) the second polynucleotide primer comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 1 -18, and the
complements thereof.
38. The primer pair of claim 36, wherein said first primer and said second primer are at least 18 nucleotides.
39. The primer pair of claim 36, wherein said first primer and said second primer are at least 24 nucleotides.
40. A method of detecting the presence of DNA corresponding to the DP-043A47- 3 event in a sample, the method comprising:
(a) contacting the sample comprising maize DNA with a polynucleotide probe that hybridizes under stringent hybridization conditions with DNA from maize event DP-043A47-3 and does not hybridize under said stringent hybridization conditions with a non- DP-043A47-3 maize plant DNA;
(b) subjecting the sample and probe to stringent hybridization conditions; and
(c) detecting hybridization of the probe to the DNA;
wherein detection of hybridization indicates the presence of the DP-043A47-3 event.
41 . A kit for detecting nucleic acids that are unique to event DP-043A47-3 comprising at least one nucleic acid molecule of sufficient length of contiguous polynucleotides to function as a primer or probe in a nucleic acid detection method, and which upon amplification of or hybridization to a target nucleic acid sequence in a sample followed by detection of the amplicon or hybridization to the target sequence, are diagnostic for the presence of nucleic acid sequences unique to event DP- 043A47-3 in the sample.
42. The kit according to claim 41 , wherein the nucleic acid molecule comprises a nucleotide sequence from SEQ ID NO: 6.
43. The kit according to claim 42, wherein the nucleic acid molecule is a primer selected from the group consisting of SEQ ID NOs: 1 1 -20, and the complements thereof.
PCT/US2010/060846 2009-12-17 2010-12-16 Maize event dp-043a47-3 and methods for detection thereof WO2011075595A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US28750409P 2009-12-17 2009-12-17
US61/287,504 2009-12-17
US41371310P 2010-11-15 2010-11-15
US61/413,713 2010-11-15

Publications (1)

Publication Number Publication Date
WO2011075595A1 true WO2011075595A1 (en) 2011-06-23

Family

ID=43466468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/060846 WO2011075595A1 (en) 2009-12-17 2010-12-16 Maize event dp-043a47-3 and methods for detection thereof

Country Status (3)

Country Link
US (1) US20110154526A1 (en)
AR (1) AR079532A1 (en)
WO (1) WO2011075595A1 (en)

Cited By (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072696A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
WO2012072489A1 (en) 2010-11-29 2012-06-07 Bayer Cropscience Ag Alpha,beta-unsaturated imines
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012126938A2 (en) 2011-03-23 2012-09-27 Bayer Cropscience Ag Active compound combinations
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012171914A1 (en) 2011-06-14 2012-12-20 Bayer Intellectual Property Gmbh Use of an enaminocarbonyl compound in combination with a biological control agent
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013110594A1 (en) 2012-01-25 2013-08-01 Bayer Intellectual Property Gmbh Active compound combinations containing fluopyram and biological control agent
WO2013110591A1 (en) 2012-01-25 2013-08-01 Bayer Intellectual Property Gmbh Active compounds combination containing fluopyram bacillus and biologically control agent
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013149018A1 (en) * 2012-03-30 2013-10-03 Pioneer Hi-Bred International, Inc. Maize event dp-004114-3 and methods for detection thereof
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
EP2662370A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole benzofuranyl carboxamides
EP2662362A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole indanyl carboxamides
EP2662361A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol indanyl carboxamides
EP2662360A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole indanyl carboxamides
EP2662364A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole tetrahydronaphthyl carboxamides
EP2662363A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole biphenylcarboxamides
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014019983A1 (en) 2012-07-31 2014-02-06 Bayer Cropscience Ag Compositions comprising a pesticidal terpene mixture and an insecticide
WO2014043435A1 (en) 2012-09-14 2014-03-20 Bayer Cropscience Lp Hppd variants and methods of use
EP2719280A1 (en) 2012-10-11 2014-04-16 Bayer CropScience AG Use of N-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014086764A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and a fungicide
WO2014086749A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086747A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and a fungicide
WO2014086753A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising biological control agents
WO2014086750A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086759A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising biological control agents
WO2014086748A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and a fungicide
WO2014086758A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014116989A1 (en) * 2013-01-25 2014-07-31 Pioneer Hi-Bred International, Inc. Maize event dp-032218-9 and methods for detection thereof
WO2014116854A1 (en) * 2013-01-25 2014-07-31 Pioneer Hi-Bred International, Inc. Maize event dp-033121-3 and methods for detection thereof
WO2014124361A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and another biological control agent
WO2014124369A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and a fungicide
WO2014124379A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and an insecticide
WO2014138339A2 (en) 2013-03-07 2014-09-12 Athenix Corp. Toxin genes and methods for their use
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
EP2885970A1 (en) 2013-12-21 2015-06-24 Bayer CropScience AG Fungicide compositions comprising compound I, at least one succinate dehydrogenase (SDH) inhibitor and at least one triazole fungicide
WO2015112182A1 (en) * 2013-01-25 2015-07-30 Pioneer Hi-Bred International, Inc. Maize event dp-032218-9 and methods for detection thereof
WO2015138394A2 (en) 2014-03-11 2015-09-17 Bayer Cropscience Lp Hppd variants and methods of use
WO2015160618A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and a biological control agent
WO2015160620A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and an insecticide
WO2015160619A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and a fungicide
EP2997825A1 (en) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
EP3097782A1 (en) 2015-05-29 2016-11-30 Bayer CropScience Aktiengesellschaft Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents
WO2017042259A1 (en) 2015-09-11 2017-03-16 Bayer Cropscience Aktiengesellschaft Hppd variants and methods of use
EP3205210A1 (en) 2012-05-30 2017-08-16 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide selected from inhibitors of the succinate dehydrogenase
EP3243387A2 (en) 2012-05-30 2017-11-15 Bayer CropScience Aktiengesellschaft Compositions comprising a biological control agent and an insecticide
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
EP3281526A1 (en) 2012-05-30 2018-02-14 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
EP3292764A2 (en) 2012-05-30 2018-03-14 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide selected from inhibitors of the respiratory chain at complex iii
EP3300603A2 (en) 2012-05-30 2018-04-04 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
EP3318128A2 (en) 2012-05-30 2018-05-09 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
WO2018098214A1 (en) 2016-11-23 2018-05-31 Bayer Cropscience Lp Axmi669 and axmi991 toxin genes and methods for their use
WO2018136604A1 (en) 2017-01-18 2018-07-26 Bayer Cropscience Lp Bp005 toxin gene and methods for its use
WO2018136611A1 (en) 2017-01-18 2018-07-26 Bayer Cropscience Lp Use of bp005 for the control of plant pathogens
EP3360418A1 (en) 2012-05-30 2018-08-15 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
EP3363289A2 (en) 2012-05-30 2018-08-22 Bayer CropScience Aktiengesellschaft Compositions comprising a biological control agent and an insecticide
WO2018165091A1 (en) 2017-03-07 2018-09-13 Bayer Cropscience Lp Hppd variants and methods of use
WO2018195256A1 (en) 2017-04-21 2018-10-25 Bayer Cropscience Lp Method of improving crop safety
WO2019020283A1 (en) 2017-07-27 2019-01-31 Basf Se Use of herbicidal compositions based on l-glufosinate in tolerant field crops
WO2019068811A1 (en) 2017-10-06 2019-04-11 Bayer Aktiengesellschaft Compositions comprising fluopyram and tioxazafen
WO2019083808A1 (en) 2017-10-24 2019-05-02 Basf Se Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean
WO2019083810A1 (en) 2017-10-24 2019-05-02 Basf Se Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean
WO2019233863A1 (en) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles
EP3701796A1 (en) 2019-08-08 2020-09-02 Bayer AG Active compound combinations
EP3708565A1 (en) 2020-03-04 2020-09-16 Bayer AG Pyrimidinyloxyphenylamidines and the use thereof as fungicides
WO2020231751A1 (en) 2019-05-10 2020-11-19 Bayer Cropscience Lp Active compound combinations
WO2021013720A1 (en) 2019-07-23 2021-01-28 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021013721A1 (en) 2019-07-22 2021-01-28 Bayer Aktiengesellschaft 5-amino substituted pyrazoles and triazoles as pest control agents
WO2021013719A1 (en) 2019-07-23 2021-01-28 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021022069A1 (en) 2019-08-01 2021-02-04 Bayer Cropscience Lp Method of improving cold stress tolerance and crop safety
WO2021058659A1 (en) 2019-09-26 2021-04-01 Bayer Aktiengesellschaft Rnai-mediated pest control
WO2021064075A1 (en) 2019-10-02 2021-04-08 Bayer Aktiengesellschaft Active compound combinations comprising fatty acids
WO2021069567A1 (en) 2019-10-09 2021-04-15 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021069569A1 (en) 2019-10-09 2021-04-15 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021089673A1 (en) 2019-11-07 2021-05-14 Bayer Aktiengesellschaft Substituted sulfonyl amides for controlling animal pests
WO2021097162A1 (en) 2019-11-13 2021-05-20 Bayer Cropscience Lp Beneficial combinations with paenibacillus
WO2021099303A1 (en) 2019-11-18 2021-05-27 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021099271A1 (en) 2019-11-18 2021-05-27 Bayer Aktiengesellschaft Active compound combinations comprising fatty acids
WO2021105091A1 (en) 2019-11-25 2021-06-03 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
US11066424B2 (en) 2018-08-18 2021-07-20 Boragen, Inc. Solid forms of substituted benzoxaborole and compositions thereof
WO2021155084A1 (en) 2020-01-31 2021-08-05 Pairwise Plants Services, Inc. Suppression of shade avoidance response in plants
WO2021165195A1 (en) 2020-02-18 2021-08-26 Bayer Aktiengesellschaft Heteroaryl-triazole compounds as pesticides
WO2021211926A1 (en) 2020-04-16 2021-10-21 Pairwise Plants Services, Inc. Methods for controlling meristem size for crop improvement
WO2021209490A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Cyclaminephenylaminoquinolines as fungicides
WO2021213978A1 (en) 2020-04-21 2021-10-28 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents
WO2021224220A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Pyridine (thio)amides as fungicidal compounds
WO2021224323A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021228734A1 (en) 2020-05-12 2021-11-18 Bayer Aktiengesellschaft Triazine and pyrimidine (thio)amides as fungicidal compounds
WO2021233861A1 (en) 2020-05-19 2021-11-25 Bayer Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
EP3915971A1 (en) 2020-12-16 2021-12-01 Bayer Aktiengesellschaft Phenyl-s(o)n-phenylamidines and the use thereof as fungicides
WO2021245087A1 (en) 2020-06-04 2021-12-09 Bayer Aktiengesellschaft Heterocyclyl pyrimidines and triazines as novel fungicides
WO2021247477A1 (en) 2020-06-02 2021-12-09 Pairwise Plants Services, Inc. Methods for controlling meristem size for crop improvement
WO2021249995A1 (en) 2020-06-10 2021-12-16 Bayer Aktiengesellschaft Azabicyclyl-substituted heterocycles as fungicides
WO2021255118A1 (en) 2020-06-18 2021-12-23 Bayer Aktiengesellschaft Composition for use in agriculture
WO2021255169A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255089A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides
WO2021255071A1 (en) 2020-06-18 2021-12-23 Bayer Aktiengesellschaft 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection
WO2021257775A1 (en) 2020-06-17 2021-12-23 Pairwise Plants Services, Inc. Methods for controlling meristem size for crop improvement
WO2021255170A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255091A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazoles and their derivatives as fungicides
EP3929189A1 (en) 2020-06-25 2021-12-29 Bayer Animal Health GmbH Novel heteroaryl-substituted pyrazine derivatives as pesticides
WO2022002818A1 (en) 2020-07-02 2022-01-06 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2022033991A1 (en) 2020-08-13 2022-02-17 Bayer Aktiengesellschaft 5-amino substituted triazoles as pest control agents
WO2022053453A1 (en) 2020-09-09 2022-03-17 Bayer Aktiengesellschaft Azole carboxamide as pest control agents
WO2022058327A1 (en) 2020-09-15 2022-03-24 Bayer Aktiengesellschaft Substituted ureas and derivatives as new antifungal agents
EP3974414A1 (en) 2020-09-25 2022-03-30 Bayer AG 5-amino substituted pyrazoles and triazoles as pesticides
WO2022129190A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides
WO2022129200A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops
WO2022129188A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft 1,2,4-oxadiazol-3-yl pyrimidines as fungicides
WO2022129196A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Heterobicycle substituted 1,2,4-oxadiazoles as fungicides
EP4036083A1 (en) 2021-02-02 2022-08-03 Bayer Aktiengesellschaft 5-oxy substituted heterocycles as pesticides
WO2022173885A1 (en) 2021-02-11 2022-08-18 Pairwise Plants Services, Inc. Methods and compositions for modifying cytokinin oxidase levels in plants
WO2022182834A1 (en) 2021-02-25 2022-09-01 Pairwise Plants Services, Inc. Methods and compositions for modifying root architecture in plants
WO2022207494A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022207496A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022233777A1 (en) 2021-05-06 2022-11-10 Bayer Aktiengesellschaft Alkylamide substituted, annulated imidazoles and use thereof as insecticides
WO2022238391A1 (en) 2021-05-12 2022-11-17 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents
WO2022266271A1 (en) 2021-06-17 2022-12-22 Pairwise Plants Services, Inc. Modification of growth regulating factor family transcription factors in soybean
WO2022271892A1 (en) 2021-06-24 2022-12-29 Pairwise Plants Services, Inc. Modification of hect e3 ubiquitin ligase genes to improve yield traits
WO2023278651A1 (en) 2021-07-01 2023-01-05 Pairwise Plants Services, Inc. Methods and compositions for enhancing root system development
WO2023017120A1 (en) 2021-08-13 2023-02-16 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2023019188A1 (en) 2021-08-12 2023-02-16 Pairwise Plants Services, Inc. Modification of brassinosteroid receptor genes to improve yield traits
WO2023023496A1 (en) 2021-08-17 2023-02-23 Pairwise Plants Services, Inc. Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants
WO2023025682A1 (en) 2021-08-25 2023-03-02 Bayer Aktiengesellschaft Novel pyrazinyl-triazole compounds as pesticides
EP4144739A1 (en) 2021-09-02 2023-03-08 Bayer Aktiengesellschaft Anellated pyrazoles as parasiticides
WO2023034891A1 (en) 2021-09-02 2023-03-09 Pairwise Plants Services, Inc. Methods and compositions for improving plant architecture and yield traits
WO2023034731A1 (en) 2021-08-30 2023-03-09 Pairwise Plants Services, Inc. Modification of ubiquitin binding peptidase genes in plants for yield trait improvement
WO2023049720A1 (en) 2021-09-21 2023-03-30 Pairwise Plants Services, Inc. Methods and compositions for reducing pod shatter in canola
WO2023060152A2 (en) 2021-10-07 2023-04-13 Pairwise Plants Services, Inc. Methods for improving floret fertility and seed yield
WO2023060028A1 (en) 2021-10-04 2023-04-13 Pairwise Plants Services, Inc. Methods for improving floret fertility and seed yield
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds
WO2023099445A1 (en) 2021-11-30 2023-06-08 Bayer Aktiengesellschaft Bis(hetero)aryl thioether oxadiazines as fungicidal compounds
WO2023108035A1 (en) 2021-12-09 2023-06-15 Pairwise Plants Services, Inc. Methods for improving floret fertility and seed yield
WO2023147526A1 (en) 2022-01-31 2023-08-03 Pairwise Plants Services, Inc. Suppression of shade avoidance response in plants
WO2023148030A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in corn
WO2023148028A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests
WO2023168217A1 (en) 2022-03-02 2023-09-07 Pairwise Plants Services, Inc. Modification of brassinosteroid receptor genes to improve yield traits
WO2023192838A1 (en) 2022-03-31 2023-10-05 Pairwise Plants Services, Inc. Early flowering rosaceae plants with improved characteristics
WO2023196886A1 (en) 2022-04-07 2023-10-12 Pairwise Plants Services, Inc. Methods and compositions for improving resistance to fusarium head blight
WO2023205714A1 (en) 2022-04-21 2023-10-26 Pairwise Plants Services, Inc. Methods and compositions for improving yield traits
WO2023215809A1 (en) 2022-05-05 2023-11-09 Pairwise Plants Services, Inc. Methods and compositions for modifying root architecture and/or improving plant yield traits
WO2023215704A1 (en) 2022-05-02 2023-11-09 Pairwise Plants Services, Inc. Methods and compositions for enhancing yield and disease resistance
WO2023213670A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine
WO2023213626A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms
US11834466B2 (en) 2017-11-30 2023-12-05 5Metis, Inc. Benzoxaborole compounds and formulations thereof
EP4295688A1 (en) 2022-09-28 2023-12-27 Bayer Aktiengesellschaft Active compound combination
WO2024006792A1 (en) 2022-06-29 2024-01-04 Pairwise Plants Services, Inc. Methods and compositions for controlling meristem size for crop improvement
WO2024006679A1 (en) 2022-06-27 2024-01-04 Pairwise Plants Services, Inc. Methods and compositions for modifying shade avoidance in plants
WO2024006791A1 (en) 2022-06-29 2024-01-04 Pairwise Plants Services, Inc. Methods and compositions for controlling meristem size for crop improvement
WO2024030984A1 (en) 2022-08-04 2024-02-08 Pairwise Plants Services, Inc. Methods and compositions for improving yield traits
WO2024036240A1 (en) 2022-08-11 2024-02-15 Pairwise Plants Services, Inc. Methods and compositions for controlling meristem size for crop improvement
WO2024054880A1 (en) 2022-09-08 2024-03-14 Pairwise Plants Services, Inc. Methods and compositions for improving yield characteristics in plants
WO2024068520A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068517A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068518A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068519A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
EP4385327A1 (en) 2022-12-15 2024-06-19 Kimitec Group S.L. Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants
WO2024137438A2 (en) 2022-12-19 2024-06-27 BASF Agricultural Solutions Seed US LLC Insect toxin genes and methods for their use
WO2024173622A1 (en) 2023-02-16 2024-08-22 Pairwise Plants Services, Inc. Methods and compositions for modifying shade avoidance in plants
WO2024182658A1 (en) 2023-03-02 2024-09-06 Pairwise Plants Services, Inc. Methods and compositions for modifying shade avoidance in plants
WO2024186950A1 (en) 2023-03-09 2024-09-12 Pairwise Plants Services, Inc. Modification of brassinosteroid signaling pathway genes for improving yield traits in plants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016069564A1 (en) 2014-10-27 2016-05-06 Newleaf Symbiotics, Inc. Methods and compositions for controlling corn rootworm

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA92121A (en) 1904-11-07 1905-03-14 William Waid Paddock Pressure filter
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
US6083499A (en) 1996-04-19 2000-07-04 Mycogen Corporation Pesticidal toxins
WO2001013731A1 (en) 1999-08-23 2001-03-01 Mycogen Corporation Methods of controlling cutworm pests
US6340593B1 (en) 1998-10-23 2002-01-22 Mycogen Corporation Plant-optimized polynucleotides encoding approximately 15 kDa and approximately 45 kDa pesticidal proteins
US6395485B1 (en) 2000-01-11 2002-05-28 Aventis Cropscience N.V. Methods and kits for identifying elite event GAT-ZM1 in biological samples
US20060104904A1 (en) 2004-11-12 2006-05-18 Pioneer Hi-Bred International, Inc. Method of evaluating plant protection
WO2008080166A2 (en) * 2006-12-22 2008-07-03 Pioneer Hi-Bred International, Inc. Resistance management strategies for transgenic crops
US20110002209A1 (en) 2009-07-03 2011-01-06 Microsoft Corporation Optical medium with added descriptor to reduce counterfeiting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004236718C1 (en) * 2003-05-02 2010-06-10 Corteva Agriscience Llc Corn event TC1507 and methods for detection thereof
EP1794308B1 (en) * 2004-09-29 2013-08-28 Pioneer-Hi-Bred International, Inc. Corn event das-59122-7 and methods for detection thereof

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA92121A (en) 1904-11-07 1905-03-14 William Waid Paddock Pressure filter
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683202B1 (en) 1985-03-28 1990-11-27 Cetus Corp
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683195B1 (en) 1986-01-30 1990-11-27 Cetus Corp
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US6083499A (en) 1996-04-19 2000-07-04 Mycogen Corporation Pesticidal toxins
US6127180A (en) 1996-04-19 2000-10-03 Mycogen Corporation Pesticidal toxins
US6548291B1 (en) 1996-04-19 2003-04-15 Mycogen Corporation Pesticidal toxins
US6624145B1 (en) 1996-04-19 2003-09-23 Mycogen Corporation Pesticidal toxins
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
US6340593B1 (en) 1998-10-23 2002-01-22 Mycogen Corporation Plant-optimized polynucleotides encoding approximately 15 kDa and approximately 45 kDa pesticidal proteins
WO2001013731A1 (en) 1999-08-23 2001-03-01 Mycogen Corporation Methods of controlling cutworm pests
US6395485B1 (en) 2000-01-11 2002-05-28 Aventis Cropscience N.V. Methods and kits for identifying elite event GAT-ZM1 in biological samples
US20060104904A1 (en) 2004-11-12 2006-05-18 Pioneer Hi-Bred International, Inc. Method of evaluating plant protection
WO2008080166A2 (en) * 2006-12-22 2008-07-03 Pioneer Hi-Bred International, Inc. Resistance management strategies for transgenic crops
US20110002209A1 (en) 2009-07-03 2011-01-06 Microsoft Corporation Optical medium with added descriptor to reduce counterfeiting

Non-Patent Citations (56)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1995, GREENE PUBLISHING AND WILEY-INTERSCIENCE
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389
AN ET AL., PLANT CELL, vol. 1, 1989, pages 115 - 22
APPENZELLER LAURA M ET AL: "Subchronic feeding study with genetically modified stacked trait lepidopteran and coleopteran resistant (DAS-empty set 15empty set 07-1xDAS-59122-7) maize grain in Sprague-Dawley rats", FOOD AND CHEMICAL TOXICOLOGY, vol. 47, no. 7, July 2009 (2009-07-01), pages 1512 - 1520, XP026157644, ISSN: 0278-6915, DOI: 10.1016/j.fct.2009.03.041 *
BARKER ET AL., PLANT MOL. BIOL., vol. 2, 1983, pages 335 - 350
BING, J.W. ET AL.: "Efficacy of Cry1 F Transgenic Maize, 14th Biennial International Plant Resistance to Insects Workshop", 2000, FORT COLLINS, CO
BRAVO A ET AL: "How to cope with insect resistance to Bt toxins?", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 26, no. 10, 1 October 2008 (2008-10-01), pages 573 - 579, XP025406825, ISSN: 0167-7799, [retrieved on 20080814], DOI: DOI:10.1016/J.TIBTECH.2008.06.005 *
CHEN ET AL., GENOME RES., vol. 9, 1999, pages 492 - 498
CHENG ET AL., PROC. NATL. ACAD. SCI. USA, vol. 91, 1994, pages 5695 - 5699
CHRISTENSEN ET AL., PLANT MOL. BIOL., vol. 118, no. 4, 1992, pages 675 - 89
CORPET ET AL., NUCLEIC ACIDS RESEARCH, vol. 16, 1988, pages 10881 - 90
DE BLAERE ET AL., METH. ENZYMOL., vol. 143, 1987, pages 277
FEHR: "Breeding Methods for Cultivar Development", 1987, AMERICAN SOCIETY OF AGRONOMY
FLEVIN ET AL.: "Plant Molecular Biology Manual", 1990, KLUWER ACADEMIC PUBLISHERS
FRANCK ET AL., CELL, vol. 21, 1980, pages 285 - 294
FUJIMOTO, H. ET AL., BIOLTECHNOLOGY, vol. 11, 1993, pages 1151 - 1155
HAYMES ET AL.: "Nucleic Acid Hybridization, a Practical Approach", 1985, IRL PRESS, WASHINGTON, D.C.
HERMAN ET AL: "Compositional assessment of event DAS-59122-7 maize using substantial equivalence", REGULATORY TOXICOLOGY AND PHARMACOLOGY, ACADEMIC PRESS,NEW YORK, NY, US, vol. 47, no. 1, 21 November 2006 (2006-11-21), pages 37 - 47, XP005727130, ISSN: 0273-2300, DOI: DOI:10.1016/J.YRTPH.2006.08.007 *
HERTIG ET AL., PLANT MOL. BIOL., vol. 16, 1991, pages 171 - 174
HIGGINS; SHARP, CABIOS, vol. 5, 1989, pages 151 - 153
HIGGINS; SHARP, GENE, vol. 73, 1988, pages 237 - 244
HUANG ET AL., COMPUTER APPLICATIONS IN THE BIOSCIENCES, vol. 8, 1992, pages 155 - 65
INGELBRECHT ET AL., PLANT CELL, vol. 1, 1989, pages 671 - 680
INNIS ET AL.: "PCR Protocols: A Guide to Methods and Applications", 1990, ACADEMIC PRESS
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877
KEIL ET AL., NUCLEIC ACIDS RES., vol. 14, 1986, pages 5641 - 5650
KIM ET AL., PLANT J., vol. 51, 2007, pages 779 - 791
KLEIN ET AL., NATURE (LONDON), vol. 327, 1987, pages 70 - 73
LEWIN: "Genes V", 1994, OXFORD UNIVERSITY PRESS: NEW YORK
LIPMAN, PROC. NATL. ACAD. SCI., vol. 85, 1988, pages 2444 - 2448
MYERS; MILLER, CABIOS, vol. 4, 1988, pages 11 - 17
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
NIKIFOROV ET AL., NUCLEIC ACID RES., vol. 22, 1994, pages 4167 - 4175
ODELL ET AL., NATURE, vol. 313, 1985, pages 810 - 812
OKAMURO; GOLDBERG, BIOCHEMISTRY OF PLANTS, vol. 15, 1989, pages 1 - 82
OLESON ET AL., J. ECON ENTOMOL., vol. 98, no. 1, 2005, pages 1 - 8
PEARSON ET AL., METHODS IN MOLECULAR BIOLOGY, vol. 24, 1994, pages 307 - 331
PERLAK, F.J ET AL., BIOLTECHNOLOGY, vol. 8, 1990, pages 939 - 943
PERLAK, F.J. ET AL., PLANT MOL. BIOL., vol. 22, 1993, pages 313 - 321
PIETRZAK ET AL., NUCLEIC ACIDS RES., vol. 14, no. 14, 1986, pages 5857 - 5868
POUWELS ET AL.: "Cloning Vectors: A Laboratory Manual", 1985
RIEGER ET AL.: "Glossary of Genetics: Classical and Molecular", 1991, SPRINGER-VERLAG
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", vol. 1, 1989, COLD SPRING HARBOR LABORATORY PRESS
SMITH ET AL., ADV. APPL. MATH., vol. 2, 1981, pages 482
TIJSSEN: "Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes", 1993, ELSEVIER
TU ET AL., NATURE BIOTECHNOLOGY, vol. 18, 2000, pages 1101 - 1104
TURNER; FOSTER, MOL. BIOTECHNOL., vol. 3, 1995, pages 225 - 236
TYANGI ET AL., NATURE BIOTECH., vol. 14, 1996, pages 303 - 308
WAHL, BIOCHEM., vol. 138, 1984, pages 267 - 284
WEISING ET AL., ANN. REV. GENET., vol. 22, 1988, pages 421 - 477
WEISSBACH; WEISSBACH: "Methods for Plant Molecular Biology", 1989, ACADEMIC PRESS
WENDY CRAIG ET AL: "An overview of general features of risk assessments of genetically modified crops", EUPHYTICA, KLUWER ACADEMIC PUBLISHERS, DO, vol. 164, no. 3, 10 January 2008 (2008-01-10), pages 853 - 880, XP019641884, ISSN: 1573-5060, DOI: DOI:10.1007/S10681-007-9643-8 *
WINGE, INNOV. PHARMA. TECH., vol. 00, 2000, pages 18 - 24
WU X ET AL: "Susceptibility of Cry1Ab-resistant and -susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins", JOURNAL OF INVERTEBRATE PATHOLOGY, SAN DIEGO, CA, US, vol. 100, no. 1, 1 January 2009 (2009-01-01), pages 29 - 34, XP025796654, ISSN: 0022-2011, [retrieved on 20081014], DOI: DOI:10.1016/J.JIP.2008.10.003 *

Cited By (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072489A1 (en) 2010-11-29 2012-06-07 Bayer Cropscience Ag Alpha,beta-unsaturated imines
US9055743B2 (en) 2010-11-29 2015-06-16 Bayer Intellectual Property Gmbh Alpha, beta-unsaturated imines
EP3103340A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
EP3103334A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
WO2012072696A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients
EP3103338A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
EP3092900A1 (en) 2010-12-01 2016-11-16 Bayer Intellectual Property GmbH Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients
EP3103339A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
EP3295797A1 (en) 2011-03-23 2018-03-21 Bayer Intellectual Property GmbH Active compound combinations
EP3292760A1 (en) 2011-03-23 2018-03-14 Bayer Intellectual Property GmbH Active compound combinations
WO2012126938A2 (en) 2011-03-23 2012-09-27 Bayer Cropscience Ag Active compound combinations
EP3292761A1 (en) 2011-03-23 2018-03-14 Bayer Intellectual Property GmbH Active compound combinations
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2997825A1 (en) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound
WO2012171914A1 (en) 2011-06-14 2012-12-20 Bayer Intellectual Property Gmbh Use of an enaminocarbonyl compound in combination with a biological control agent
US9241493B2 (en) 2011-06-14 2016-01-26 Bayer Intellectual Property Gmbh Use of an enaminocarbonyl compound in combination with a biological control agent
US10538774B2 (en) 2011-08-22 2020-01-21 Basf Agricultural Solutions Seed, Us Llc Methods and means to modify a plant genome
US9670496B2 (en) 2011-08-22 2017-06-06 Bayer Cropscience N.V. Methods and means to modify a plant genome
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013110594A1 (en) 2012-01-25 2013-08-01 Bayer Intellectual Property Gmbh Active compound combinations containing fluopyram and biological control agent
WO2013110591A1 (en) 2012-01-25 2013-08-01 Bayer Intellectual Property Gmbh Active compounds combination containing fluopyram bacillus and biologically control agent
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013149018A1 (en) * 2012-03-30 2013-10-03 Pioneer Hi-Bred International, Inc. Maize event dp-004114-3 and methods for detection thereof
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
US9725772B2 (en) 2012-04-24 2017-08-08 Pioneer Hi-Bred International, Inc. Maize event DP-004114-3 and methods for detection thereof
CN104411828A (en) * 2012-04-24 2015-03-11 先锋国际良种公司 Maize event dp-004114-3 and methods for detection thereof
US10407688B2 (en) 2012-04-24 2019-09-10 Pioneer Hi-Bred International, Inc. Maize event DP-004114-3 and methods for detection thereof
EA034330B1 (en) * 2012-04-24 2020-01-29 Пайонир Хай-Бред Интернэшнл, Инк. Method for detection of dna conferring insect resistance to a corn plant
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
EP2662370A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole benzofuranyl carboxamides
EP2662363A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole biphenylcarboxamides
EP2662364A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole tetrahydronaphthyl carboxamides
EP2662360A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole indanyl carboxamides
EP2662361A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol indanyl carboxamides
EP2662362A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
EP3360418A1 (en) 2012-05-30 2018-08-15 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
EP3292764A2 (en) 2012-05-30 2018-03-14 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide selected from inhibitors of the respiratory chain at complex iii
EP3488700A1 (en) 2012-05-30 2019-05-29 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
EP3205210A1 (en) 2012-05-30 2017-08-16 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide selected from inhibitors of the succinate dehydrogenase
EP3409120A1 (en) 2012-05-30 2018-12-05 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
EP3243387A2 (en) 2012-05-30 2017-11-15 Bayer CropScience Aktiengesellschaft Compositions comprising a biological control agent and an insecticide
EP3363289A2 (en) 2012-05-30 2018-08-22 Bayer CropScience Aktiengesellschaft Compositions comprising a biological control agent and an insecticide
EP3281526A1 (en) 2012-05-30 2018-02-14 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
EP3318128A2 (en) 2012-05-30 2018-05-09 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
EP3300603A2 (en) 2012-05-30 2018-04-04 Bayer CropScience Aktiengesellschaft Composition comprising a biological control agent and a fungicide
WO2014019983A1 (en) 2012-07-31 2014-02-06 Bayer Cropscience Ag Compositions comprising a pesticidal terpene mixture and an insecticide
EP3424322A1 (en) 2012-07-31 2019-01-09 Bayer CropScience Aktiengesellschaft Compositions comprising a pesticidal terpene mixture and an insecticide
EP3173477A1 (en) 2012-09-14 2017-05-31 Bayer Cropscience LP Hppd variants and methods of use
EP3683307A2 (en) 2012-09-14 2020-07-22 BASF Agricultural Solutions Seed US LLC Hppd variants and methods of use
WO2014043435A1 (en) 2012-09-14 2014-03-20 Bayer Cropscience Lp Hppd variants and methods of use
WO2014056956A1 (en) 2012-10-11 2014-04-17 Bayer Cropscience Ag Use of n-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi
EP2719280A1 (en) 2012-10-11 2014-04-16 Bayer CropScience AG Use of N-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014079789A1 (en) 2012-11-23 2014-05-30 Bayer Cropscience Ag Active compound combinations
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014086758A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086764A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and a fungicide
WO2014086749A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086753A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising biological control agents
WO2014086750A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
EP3318129A1 (en) 2012-12-03 2018-05-09 Bayer CropScience Aktiengesellschaft Method for pest control by applying a combination of paecilomyces lilacinus and fluopyram
WO2014086748A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and a fungicide
WO2014086747A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and a fungicide
WO2014086759A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising biological control agents
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2015112182A1 (en) * 2013-01-25 2015-07-30 Pioneer Hi-Bred International, Inc. Maize event dp-032218-9 and methods for detection thereof
US20150361447A1 (en) * 2013-01-25 2015-12-17 Pioneer Hi-Breed International, Inc. Maize event dp-032218-9 and methods for detection thereof
WO2014116989A1 (en) * 2013-01-25 2014-07-31 Pioneer Hi-Bred International, Inc. Maize event dp-032218-9 and methods for detection thereof
WO2014116854A1 (en) * 2013-01-25 2014-07-31 Pioneer Hi-Bred International, Inc. Maize event dp-033121-3 and methods for detection thereof
WO2014124375A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising gougerotin and a biological control agent
WO2014124373A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising gougerotin and an insecticide
WO2014124368A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising gougerotin and a fungicide
WO2014124379A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and an insecticide
WO2014124369A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and a fungicide
WO2014124361A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and another biological control agent
WO2014138339A2 (en) 2013-03-07 2014-09-12 Athenix Corp. Toxin genes and methods for their use
EP3626828A2 (en) 2013-03-07 2020-03-25 BASF Agricultural Solutions Seed US LLC Toxin genes and methods for their use
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
EP2885970A1 (en) 2013-12-21 2015-06-24 Bayer CropScience AG Fungicide compositions comprising compound I, at least one succinate dehydrogenase (SDH) inhibitor and at least one triazole fungicide
WO2015138394A2 (en) 2014-03-11 2015-09-17 Bayer Cropscience Lp Hppd variants and methods of use
WO2015160618A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and a biological control agent
WO2015160620A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and an insecticide
WO2015160619A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and a fungicide
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
WO2016193073A1 (en) 2015-05-29 2016-12-08 Bayer Cropscience Aktiengesellschaft Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents
EP3097782A1 (en) 2015-05-29 2016-11-30 Bayer CropScience Aktiengesellschaft Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents
WO2017042259A1 (en) 2015-09-11 2017-03-16 Bayer Cropscience Aktiengesellschaft Hppd variants and methods of use
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018098214A1 (en) 2016-11-23 2018-05-31 Bayer Cropscience Lp Axmi669 and axmi991 toxin genes and methods for their use
WO2018136611A1 (en) 2017-01-18 2018-07-26 Bayer Cropscience Lp Use of bp005 for the control of plant pathogens
WO2018136604A1 (en) 2017-01-18 2018-07-26 Bayer Cropscience Lp Bp005 toxin gene and methods for its use
WO2018165091A1 (en) 2017-03-07 2018-09-13 Bayer Cropscience Lp Hppd variants and methods of use
WO2018195256A1 (en) 2017-04-21 2018-10-25 Bayer Cropscience Lp Method of improving crop safety
WO2019020283A1 (en) 2017-07-27 2019-01-31 Basf Se Use of herbicidal compositions based on l-glufosinate in tolerant field crops
WO2019068811A1 (en) 2017-10-06 2019-04-11 Bayer Aktiengesellschaft Compositions comprising fluopyram and tioxazafen
WO2019083810A1 (en) 2017-10-24 2019-05-02 Basf Se Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean
WO2019083808A1 (en) 2017-10-24 2019-05-02 Basf Se Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean
US11834466B2 (en) 2017-11-30 2023-12-05 5Metis, Inc. Benzoxaborole compounds and formulations thereof
WO2019233863A1 (en) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles
US11236115B2 (en) 2018-08-18 2022-02-01 5Metis, Inc. Solid forms of substituted benzoxaborole and compositions thereof
US11560393B2 (en) 2018-08-18 2023-01-24 5Metis, Inc. Solid forms of substituted benzoxaborole and compositions thereof
US12098159B2 (en) 2018-08-18 2024-09-24 5Metis, Inc. Solid forms of substituted benzoxaborole and compositions thereof
US11066424B2 (en) 2018-08-18 2021-07-20 Boragen, Inc. Solid forms of substituted benzoxaborole and compositions thereof
WO2020231751A1 (en) 2019-05-10 2020-11-19 Bayer Cropscience Lp Active compound combinations
WO2021013721A1 (en) 2019-07-22 2021-01-28 Bayer Aktiengesellschaft 5-amino substituted pyrazoles and triazoles as pest control agents
WO2021013720A1 (en) 2019-07-23 2021-01-28 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021013719A1 (en) 2019-07-23 2021-01-28 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021022069A1 (en) 2019-08-01 2021-02-04 Bayer Cropscience Lp Method of improving cold stress tolerance and crop safety
EP3701796A1 (en) 2019-08-08 2020-09-02 Bayer AG Active compound combinations
WO2021058659A1 (en) 2019-09-26 2021-04-01 Bayer Aktiengesellschaft Rnai-mediated pest control
WO2021064075A1 (en) 2019-10-02 2021-04-08 Bayer Aktiengesellschaft Active compound combinations comprising fatty acids
WO2021069569A1 (en) 2019-10-09 2021-04-15 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021069567A1 (en) 2019-10-09 2021-04-15 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021089673A1 (en) 2019-11-07 2021-05-14 Bayer Aktiengesellschaft Substituted sulfonyl amides for controlling animal pests
WO2021097162A1 (en) 2019-11-13 2021-05-20 Bayer Cropscience Lp Beneficial combinations with paenibacillus
WO2021099303A1 (en) 2019-11-18 2021-05-27 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021099271A1 (en) 2019-11-18 2021-05-27 Bayer Aktiengesellschaft Active compound combinations comprising fatty acids
WO2021105091A1 (en) 2019-11-25 2021-06-03 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021155084A1 (en) 2020-01-31 2021-08-05 Pairwise Plants Services, Inc. Suppression of shade avoidance response in plants
WO2021165195A1 (en) 2020-02-18 2021-08-26 Bayer Aktiengesellschaft Heteroaryl-triazole compounds as pesticides
EP3708565A1 (en) 2020-03-04 2020-09-16 Bayer AG Pyrimidinyloxyphenylamidines and the use thereof as fungicides
WO2021211926A1 (en) 2020-04-16 2021-10-21 Pairwise Plants Services, Inc. Methods for controlling meristem size for crop improvement
WO2021209490A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Cyclaminephenylaminoquinolines as fungicides
WO2021213978A1 (en) 2020-04-21 2021-10-28 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents
WO2021224323A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021224220A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Pyridine (thio)amides as fungicidal compounds
WO2021228734A1 (en) 2020-05-12 2021-11-18 Bayer Aktiengesellschaft Triazine and pyrimidine (thio)amides as fungicidal compounds
WO2021233861A1 (en) 2020-05-19 2021-11-25 Bayer Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
WO2021247477A1 (en) 2020-06-02 2021-12-09 Pairwise Plants Services, Inc. Methods for controlling meristem size for crop improvement
WO2021245087A1 (en) 2020-06-04 2021-12-09 Bayer Aktiengesellschaft Heterocyclyl pyrimidines and triazines as novel fungicides
WO2021249995A1 (en) 2020-06-10 2021-12-16 Bayer Aktiengesellschaft Azabicyclyl-substituted heterocycles as fungicides
WO2021257775A1 (en) 2020-06-17 2021-12-23 Pairwise Plants Services, Inc. Methods for controlling meristem size for crop improvement
WO2021255071A1 (en) 2020-06-18 2021-12-23 Bayer Aktiengesellschaft 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection
WO2021255118A1 (en) 2020-06-18 2021-12-23 Bayer Aktiengesellschaft Composition for use in agriculture
WO2021255169A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255091A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazoles and their derivatives as fungicides
WO2021255089A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides
WO2021255170A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
EP3929189A1 (en) 2020-06-25 2021-12-29 Bayer Animal Health GmbH Novel heteroaryl-substituted pyrazine derivatives as pesticides
WO2021259997A1 (en) 2020-06-25 2021-12-30 Bayer Animal Health Gmbh Novel heteroaryl-substituted pyrazine derivatives as pesticides
WO2022002818A1 (en) 2020-07-02 2022-01-06 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2022033991A1 (en) 2020-08-13 2022-02-17 Bayer Aktiengesellschaft 5-amino substituted triazoles as pest control agents
WO2022053453A1 (en) 2020-09-09 2022-03-17 Bayer Aktiengesellschaft Azole carboxamide as pest control agents
WO2022058327A1 (en) 2020-09-15 2022-03-24 Bayer Aktiengesellschaft Substituted ureas and derivatives as new antifungal agents
EP3974414A1 (en) 2020-09-25 2022-03-30 Bayer AG 5-amino substituted pyrazoles and triazoles as pesticides
EP3915971A1 (en) 2020-12-16 2021-12-01 Bayer Aktiengesellschaft Phenyl-s(o)n-phenylamidines and the use thereof as fungicides
WO2022129196A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Heterobicycle substituted 1,2,4-oxadiazoles as fungicides
WO2022129200A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops
WO2022129190A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides
WO2022129188A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft 1,2,4-oxadiazol-3-yl pyrimidines as fungicides
EP4036083A1 (en) 2021-02-02 2022-08-03 Bayer Aktiengesellschaft 5-oxy substituted heterocycles as pesticides
WO2022173885A1 (en) 2021-02-11 2022-08-18 Pairwise Plants Services, Inc. Methods and compositions for modifying cytokinin oxidase levels in plants
WO2022182834A1 (en) 2021-02-25 2022-09-01 Pairwise Plants Services, Inc. Methods and compositions for modifying root architecture in plants
WO2022207494A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022207496A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022233777A1 (en) 2021-05-06 2022-11-10 Bayer Aktiengesellschaft Alkylamide substituted, annulated imidazoles and use thereof as insecticides
WO2022238391A1 (en) 2021-05-12 2022-11-17 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents
WO2022266271A1 (en) 2021-06-17 2022-12-22 Pairwise Plants Services, Inc. Modification of growth regulating factor family transcription factors in soybean
WO2022271892A1 (en) 2021-06-24 2022-12-29 Pairwise Plants Services, Inc. Modification of hect e3 ubiquitin ligase genes to improve yield traits
WO2023278651A1 (en) 2021-07-01 2023-01-05 Pairwise Plants Services, Inc. Methods and compositions for enhancing root system development
WO2023019188A1 (en) 2021-08-12 2023-02-16 Pairwise Plants Services, Inc. Modification of brassinosteroid receptor genes to improve yield traits
WO2023017120A1 (en) 2021-08-13 2023-02-16 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2023023496A1 (en) 2021-08-17 2023-02-23 Pairwise Plants Services, Inc. Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants
WO2023025682A1 (en) 2021-08-25 2023-03-02 Bayer Aktiengesellschaft Novel pyrazinyl-triazole compounds as pesticides
WO2023034731A1 (en) 2021-08-30 2023-03-09 Pairwise Plants Services, Inc. Modification of ubiquitin binding peptidase genes in plants for yield trait improvement
WO2023034891A1 (en) 2021-09-02 2023-03-09 Pairwise Plants Services, Inc. Methods and compositions for improving plant architecture and yield traits
EP4144739A1 (en) 2021-09-02 2023-03-08 Bayer Aktiengesellschaft Anellated pyrazoles as parasiticides
WO2023049720A1 (en) 2021-09-21 2023-03-30 Pairwise Plants Services, Inc. Methods and compositions for reducing pod shatter in canola
WO2023060028A1 (en) 2021-10-04 2023-04-13 Pairwise Plants Services, Inc. Methods for improving floret fertility and seed yield
WO2023060152A2 (en) 2021-10-07 2023-04-13 Pairwise Plants Services, Inc. Methods for improving floret fertility and seed yield
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds
WO2023099445A1 (en) 2021-11-30 2023-06-08 Bayer Aktiengesellschaft Bis(hetero)aryl thioether oxadiazines as fungicidal compounds
WO2023108035A1 (en) 2021-12-09 2023-06-15 Pairwise Plants Services, Inc. Methods for improving floret fertility and seed yield
WO2023147526A1 (en) 2022-01-31 2023-08-03 Pairwise Plants Services, Inc. Suppression of shade avoidance response in plants
WO2023148030A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in corn
WO2023148028A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests
WO2023168217A1 (en) 2022-03-02 2023-09-07 Pairwise Plants Services, Inc. Modification of brassinosteroid receptor genes to improve yield traits
WO2023192838A1 (en) 2022-03-31 2023-10-05 Pairwise Plants Services, Inc. Early flowering rosaceae plants with improved characteristics
WO2023196886A1 (en) 2022-04-07 2023-10-12 Pairwise Plants Services, Inc. Methods and compositions for improving resistance to fusarium head blight
WO2023205714A1 (en) 2022-04-21 2023-10-26 Pairwise Plants Services, Inc. Methods and compositions for improving yield traits
WO2023215704A1 (en) 2022-05-02 2023-11-09 Pairwise Plants Services, Inc. Methods and compositions for enhancing yield and disease resistance
WO2023213670A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine
WO2023213626A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms
WO2023215809A1 (en) 2022-05-05 2023-11-09 Pairwise Plants Services, Inc. Methods and compositions for modifying root architecture and/or improving plant yield traits
WO2024006679A1 (en) 2022-06-27 2024-01-04 Pairwise Plants Services, Inc. Methods and compositions for modifying shade avoidance in plants
WO2024006792A1 (en) 2022-06-29 2024-01-04 Pairwise Plants Services, Inc. Methods and compositions for controlling meristem size for crop improvement
WO2024006791A1 (en) 2022-06-29 2024-01-04 Pairwise Plants Services, Inc. Methods and compositions for controlling meristem size for crop improvement
WO2024030984A1 (en) 2022-08-04 2024-02-08 Pairwise Plants Services, Inc. Methods and compositions for improving yield traits
WO2024036240A1 (en) 2022-08-11 2024-02-15 Pairwise Plants Services, Inc. Methods and compositions for controlling meristem size for crop improvement
WO2024054880A1 (en) 2022-09-08 2024-03-14 Pairwise Plants Services, Inc. Methods and compositions for improving yield characteristics in plants
EP4295688A1 (en) 2022-09-28 2023-12-27 Bayer Aktiengesellschaft Active compound combination
WO2024068517A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068518A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068519A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068520A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
EP4385327A1 (en) 2022-12-15 2024-06-19 Kimitec Group S.L. Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants
WO2024126688A1 (en) 2022-12-15 2024-06-20 Kimitec Biogroup S.L Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants
WO2024137438A2 (en) 2022-12-19 2024-06-27 BASF Agricultural Solutions Seed US LLC Insect toxin genes and methods for their use
WO2024173622A1 (en) 2023-02-16 2024-08-22 Pairwise Plants Services, Inc. Methods and compositions for modifying shade avoidance in plants
WO2024182658A1 (en) 2023-03-02 2024-09-06 Pairwise Plants Services, Inc. Methods and compositions for modifying shade avoidance in plants
WO2024186950A1 (en) 2023-03-09 2024-09-12 Pairwise Plants Services, Inc. Modification of brassinosteroid signaling pathway genes for improving yield traits in plants

Also Published As

Publication number Publication date
US20110154526A1 (en) 2011-06-23
AR079532A1 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US20220002821A1 (en) Maize event dp-004114-3 and methods for detection thereof
US20110154526A1 (en) Maize event DP-043A47-3 and methods for detection thereof
US20110154525A1 (en) Maize event DP-040416-8 and methods for detection thereof
US20110154524A1 (en) Maize event DP-032316-8 and methods for detection thereof
US20150361446A1 (en) Maize event dp-033121-3 and methods for detection thereof
US20200385749A1 (en) Maize event dp-004114-3 and methods for detection thereof
US20100210460A1 (en) Blended refuge deployment via manipulation during hybrid seed production
CN107075520A (en) The enhanced plant of pest-resistant performance and the construct and method for being related to insect-resistance gene
WO2015112182A1 (en) Maize event dp-032218-9 and methods for detection thereof
US20230220407A1 (en) Maize event dp-004114-3 and methods for detection thereof
US20220243220A1 (en) Biotic stress tolerant plants and methods
BR112012014665B1 (en) DNA CONSTRUCTION, METHOD FOR OBTAINING A TRANSFORMED PLANT, ISOLATED NUCLEIC ACID MOLECULE, AMPLICON, METHODS FOR PRODUCING HYBRID CORN SEEDS, FOR PRODUCING A CORN PLANT RESISTANT TO LEPIDOPTERA PESTS, FOR PRODUCING A CORN PLANT RESISTANT TO LESS THAN CORN CHRISOMELID, FOR DETECTING THE PRESENCE OF A NUCLEIC ACID MOLECULE, FOR DETECTING THE PRESENCE OF DNA AND KIT FOR DETECTING NUCLEIC ACIDS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791038

Country of ref document: EP

Kind code of ref document: A1