WO2011074558A1 - 核スピン偏極検出装置および核スピン偏極検出方法 - Google Patents

核スピン偏極検出装置および核スピン偏極検出方法 Download PDF

Info

Publication number
WO2011074558A1
WO2011074558A1 PCT/JP2010/072438 JP2010072438W WO2011074558A1 WO 2011074558 A1 WO2011074558 A1 WO 2011074558A1 JP 2010072438 W JP2010072438 W JP 2010072438W WO 2011074558 A1 WO2011074558 A1 WO 2011074558A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear spin
spin polarization
nuclear
level separation
dimensional quantum
Prior art date
Application number
PCT/JP2010/072438
Other languages
English (en)
French (fr)
Inventor
洪武 劉
▲凱▼▲鋒▼ ▲楊▼
平山 祥郎
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to US13/516,380 priority Critical patent/US9310449B2/en
Priority to JP2011546122A priority patent/JP5569945B2/ja
Priority to EP10837584.1A priority patent/EP2515134A4/en
Publication of WO2011074558A1 publication Critical patent/WO2011074558A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/323Detection of MR without the use of RF or microwaves, e.g. force-detected MR, thermally detected MR, MR detection via electrical conductivity, optically detected MR
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66984Devices using spin polarized carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/30Sample handling arrangements, e.g. sample cells, spinning mechanisms
    • G01R33/307Sample handling arrangements, e.g. sample cells, spinning mechanisms specially adapted for moving the sample relative to the MR system, e.g. spinning mechanisms, flow cells or means for positioning the sample inside a spectrometer

Definitions

  • the present invention relates to a nuclear spin polarization detection device and a nuclear spin polarization detection method.
  • spin angular momentum One of the internal degrees of freedom of stationary microscopic particles is spin angular momentum. Many atomic nuclei also have this spin angular momentum.
  • the spin angular momentum of a nucleus is in an unpolarized state that is normally oriented in all directions with equal probability under thermal equilibrium unless it becomes an extremely low temperature of less than 50 mK.
  • nuclei have nuclear spins of a certain size, so if the nuclear spins can be polarized, more detailed information on the dynamics can be obtained.
  • nuclear magnetic resonance which is used in a wide range of fields as a non-destructive and high-precision analysis technique, has a lower sensitivity than other analysis methods, so that higher sensitivity is desired.
  • Non-Patent Document 1 As a method for controlling the nuclear spin, there is a method using the so-called quantum Hall effect.
  • a magnetic field is applied perpendicularly to the two-dimensional surface of a GaAs-based two-dimensional quantum well, and nuclear spin polarization is detected from the characteristics of the fractional quantum Hall effect and integer quantum Hall effect that occur at that time.
  • a method is disclosed (Non-Patent Document 1).
  • Non-Patent Document 2 and Non-Patent Document 3 disclose techniques using circularly polarized light for nuclear spin control of a GaAs two-dimensional system (Non-Patent Documents 2 and 3).
  • Non-Patent Document 1 includes a method for detecting nuclear spin polarization using the breakdown of the integer quantum Hall effect, and a domain structure based on quantum Hall ferromagnetism in a fractional quantum Hall effect region such as a filling rate of 2/3.
  • the method is roughly divided into methods for detecting nuclear spin polarization.
  • the nuclear spin polarization detection method using the breakdown of the integer quantum Hall effect is effective for a GaAs-based two-dimensional quantum structure having a small effective g factor, but a two-dimensional structure such as InSb having a large g factor. There is a problem that it cannot be applied to quantum structures.
  • Non-Patent Document 2 and Non-Patent Document 3 also have a problem that the polarization of nuclear spins cannot be detected unless light is used.
  • InSb has a narrow band gap compared to GaAs and the like, and far-infrared light with a wavelength of several ⁇ m is required for control using circularly polarized light. Therefore, it is difficult to apply.
  • nuclear spin control using circularly polarized light requires a different light source depending on the material such as InSb, InAs, and InGaAs, which complicates the apparatus and is disadvantageous in terms of cost. For this reason, there is no report that nuclear spin control using circularly polarized light could be applied to a two-dimensional quantum structure such as InSb.
  • the present invention has been made in view of the above problems, and the object of the present invention is applicable to many narrow-gap semiconductor two-dimensional quantum structures such as InSb having a large g factor and a normal mobility.
  • the object is to provide an all-electric nuclear spin polarization device.
  • the two-dimensional quantum structure is tilted in a magnetic field to cross the Landau level separation and the Zeeman level separation, and the nuclear spin of the two-dimensional quantum structure is polarized.
  • a nuclear spin polarization detecting device characterized in that it detects the polarization of a nuclear spin at a portion where the intersection intersects Landau level separation and Zeeman level separation. .
  • a nuclear magnetic resonance apparatus having the nuclear spin polarization detection apparatus according to the first aspect is obtained.
  • a quantum computer having the nuclear magnetic resonance apparatus described in the second aspect is obtained.
  • the nuclear spin of the two-dimensional quantum structure is polarized.
  • C and (d) for detecting the polarization of the nuclear spin at the portion where (a) intersects, (d) is obtained.
  • a nuclear spin polarization device applicable to a two-dimensional quantum structure having a normal mobility and a large g factor.
  • FIG. 1 is a schematic diagram showing a nuclear spin polarization device 1.
  • FIG. 2 is a diagram illustrating a two-dimensional quantum structure as a measurement target of the nuclear spin polarization device 1.
  • FIG. 3 is a flowchart showing the operation of the nuclear spin polarization device 1. It is a schematic diagram for demonstrating S102 of FIG. It is a figure for demonstrating S103 of FIG. It is a figure which shows the example of a measurement of the resistance change of the intersection part of Landau level separation and Zeeman level separation. It is a figure which shows the example of a measurement of the resistance change of the intersection part of Landau level separation and Zeeman level separation. It is a figure which shows the example of a measurement of the resistance change of the intersection part of Landau level separation and Zeeman level separation. It is a figure which shows the example of a measurement of the resistance change of the intersection part of Landau level separation and Zeeman level separation.
  • a nuclear spin polarization apparatus 1 has a chamber 2, and a known actuator or the like that holds and tilts a sample 3 having a two-dimensional quantum structure having a large g factor in the magnetic field in the chamber 2.
  • a tilting device 5 is provided as an intersection.
  • a coil 7 is wound so as to cover the outside of the sample 3, and a power source 9 is connected to the coil 7. That is, an alternating magnetic field can be applied to the sample 3 by flowing an alternating current I rf using the power source 9 to the coil 7.
  • the nuclear spin polarization device 1 has a power source 11 (polarization part) for passing a current through the sample 3 and a resistance measuring device 13 for measuring a resistance change when the current is passed.
  • the nuclear spin polarization device 1 of the present invention is a device that polarizes nuclear spins of a two-dimensional quantum structure having a large g factor such as InSb, InAs, InGaAs, etc.
  • the two-dimensional quantum structure is, for example, as shown in FIG. 1B.
  • the structure has an InSb quantum well sandwiched between AlInSb barriers.
  • a sample 3 having a two-dimensional quantum structure such as InSb, InAs, or InGaAs is placed in the nuclear spin polarization apparatus 1 and a magnetic field is applied.
  • a DC magnetic field is applied in the vertical direction in FIG. 1A using a superconducting magnet (not shown) outside the chamber 2. That is, the sample 3 is placed in a magnetic field (S101).
  • the magnetic field strength is about 8T, for example.
  • Landau level separation is determined only by the value of the vertical magnetic field, whereas Zeeman level separation is determined not only by the vertical magnetic field but also by the total magnetic field including the parallel magnetic field.
  • a g factor more than a structure having a relatively large electron g factor such as InSb two-dimensional quantum well, for example, GaAs (g factor is about 0.5), such as InSb (g factor is about 30 or more).
  • a quantum structure using a material having a large A it is possible to cross different spin states of different Landau levels by tilting the sample 3.
  • the relationship between the vertical magnetic field and the longitudinal resistance (quantum Hall effect) for each tilt angle is measured, and a portion where a new peak appears is a known detection device (selection unit) such as a computer. ) To detect.
  • the inclination angle in FIG. 4 means an inclination angle when the state of the sample 3 in a state where the two-dimensional electron surface in the sample 3 is perpendicular to the magnetic field application direction is an angle of 0 degree (at an inclination angle of 90 °). The magnetic field is completely parallel to the two-dimensional surface).
  • the change in the resistance value is detected by the resistance measuring device 13 to read (detect) the nuclear spin polarization.
  • the above is the nuclear spin polarization and detection method.
  • the nuclear spin polarization apparatus 1 creates a situation in which the Landau level separation and the Zeeman level separation of the sample 3 are equal in a magnetic field, crosses different spin states, and Nuclear spin polarization is detected from resistance change due to polarization.
  • the nuclear spin polarization device 1 can detect nuclear spin polarization of a two-dimensional quantum structure.
  • the resistance change at the intersection was measured with the resistance measuring device 13. Specifically, an oscillating magnetic field corresponding to the resonance frequency of the In nucleus and the Sb nucleus was applied to the sample 3 by flowing an alternating current through the coil 7 wound outside the sample 3.
  • NMR nuclear magnetic resonance
  • the nuclear spin of the InSb two-dimensional quantum structure has been described.
  • the present invention is not particularly limited to this, and naturally, a two-dimensional quantum structure having a large g factor such as InAs or InGaAs is also used. Can be applied.
  • the nuclear spin detection device of the present invention can be applied to NMR, a quantum computer using NMR, or a semiconductor strain detection device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 本発明の課題は、g因子が大きく、移動度も普通の値を有する、InSbなどの多くの狭ギャップ半導体二次元量子構造に適用可能な全電気的な核スピン偏極装置を提供することにある。本発明の核スピン偏極装置1は、磁場中で試料のランダウ準位分離とゼーマン準位分離が等しい状況を作り、異なるスピン状態を交差させ、交差点の核スピン偏極による抵抗変化から核スピン偏極を検出する。

Description

核スピン偏極検出装置および核スピン偏極検出方法
 本発明は核スピン偏極検出装置および核スピン偏極検出方法に関する。
 静止している微視的粒子の内部自由度の1つにスピン角運動量がある。多くの原子の原子核もこのスピン角運動量を有する。原子核のスピン角運動量は、50mK未満の極低温にならない限り、熱平衡下では、通常あらゆる方向に等確率で向いている無偏極の状態にある。
 多くの原子核は、一定の大きさの核スピンを持つので、核スピンの偏極ができれば、ダイナミクスについてより詳細な情報を得ることができる。
 このため、例えば、核物理等の分野で核スピンの偏極度(核スピンの揃い方の度合い)を上げることが望まれる。
 また、非破壊かつ高精度な分析手法として幅広い分野で活用されている核磁気共鳴(NMR)は他の分析方法に較べて感度が低いため、その高感度化が望まれている。
 このNMRの信号強度は、核スピンの偏極度に依存しているので、核スピンの偏極度を上げることが望まれる。
 さらには、核スピンの応用としてスピンFET(Field Effect Transistor)や量子コンピュータが提案されており、核スピンを制御することが重要となってきている。
 核スピンの制御方法としては、いわゆる量子ホール効果を利用したものがある。 
 例えば非特許文献1には、GaAs系二次元量子井戸の二次元面に垂直に磁場を加え、その際に生じる分数量子ホール効果の特性や整数量子ホール効果の特性から核スピン偏極を検出する方法が開示されている(非特許文献1)。
 また、他の核スピンの制御方法としては、円偏光を用いたものがある。 
 例えば、非特許文献2および非特許文献3には、GaAs二次元系の核スピン制御に円偏光を用いた技術が開示されている(非特許文献2、非特許文献3)。
Y. Hirayama, G. Yusa, K. Hashimoto, N. Kumada, T. Ota, and K. Muraki, "Electron-spin / nuclear-spin interactions and NMR in semiconductors", Semicond. Sci. Technol. 24, 023001 (2009) [Topical Review]. D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics and Quantum Computation, chapter 5 (Berlin: Springer, 2002). H. Sanada, Y. Kondo, S. Matsuzaka, K. Morita, C. Y. Hu, Y. Ohno, and H. Ohno, "Optical Pump-Probe Measurements of Local Nuclear Spin Coherence in Semiconductor Quantum Wells", Phys. Rev. Lett. 96, 067602 (2006).
 非特許文献1記載の技術は、整数量子ホール効果のブレークダウンを用いて核スピン偏極を検出する方法と、充填率2/3など分数量子ホール効果領域での量子ホール強磁性によるドメイン構造を用いて、核スピン偏極を検出する方法に大別される。
 しかしながら、整数量子ホール効果のブレークダウンを用いた核スピン偏極検出方法は、実効的なg因子の小さいGaAs系の二次元量子構造には有効であるが、g因子の大きなInSbなどの二次元量子構造には適用できないという問題があった。
 一方、分数量子ホール効果領域を利用した核スピン偏極検出方法も、分数量子ホール効果が高移動度のGaAs系二次元系でしか観測されないため、InSbなどの通常の移動度を示す二次元量子構造には応用できないという問題があった。
 また、非特許文献2、非特許文献3記載の技術も、光を用いないと核スピンを偏極検出できないという問題があった。さらに、InSbはGaAs等と比較してバンドギャップが狭く、円偏光を用いた制御には波長数μmという遠赤外光が必要であるため、光源、偏光素子などすべてが通常の波長帯に比して適用が困難である。さらに、円偏光を用いた核スピン制御は、InSb、InAs、InGaAsと材料によって異なる光源が必要になるため、装置が複雑化し、コスト面でも不利である。そのため、円偏光を用いた核スピン制御を、InSbなどの二次元量子構造に適用できたという報告はない。
 本発明は上記課題に鑑みてなされたものであり、本発明の目的は、g因子が大きく、移動度も普通の値を有する、InSbなどの多くの狭ギャップ半導体二次元量子構造に適用可能な全電気的な核スピン偏極装置を提供することにある。
 本発明の第1の態様によれば、二次元量子構造を磁場中で傾斜させてランダウ準位分離とゼーマン準位分離を交差させる交差部と、前記二次元量子構造の核スピンを偏極させる偏極部と、を有し、前記交差部がランダウ準位分離とゼーマン準位分離を交差させた部分の核スピンの偏極を検出することを特徴とする核スピン偏極検出装置が得られる。
 本発明の第2の態様によれば、第1の態様に記載の核スピン偏極検出装置を有することを特徴とする核磁気共鳴装置が得られる。
 本発明の第3の態様によれば、第2の態様に記載の核磁気共鳴装置を有することを特徴とする量子コンピュータが得られる。
 本発明の第4の態様によれば、二次元量子構造を磁場中で傾斜させてランダウ準位分離とゼーマン準位分離を交差させる(a)と、前記二次元量子構造の核スピンを偏極させる(c)と、前記(a)が交差させた部分の核スピンの偏極を検出する(d)と、を有することを特徴とする核スピン偏極検出方法が得られる。
 本発明によれば、移動度が普通の値でg因子が大きい二次元量子構造に適用可能な核スピン偏極装置を提供することができる。
核スピン偏極装置1を示す概略図である。 核スピン偏極装置1の測定対象としての二次元量子構造を示す図である。 核スピン偏極装置1の動作を示すフローチャートである。 図2のS102を説明するための模式図である。 図2のS103を説明するための図である。 ランダウ準位分離とゼーマン準位分離の交差部分の抵抗変化の測定例を示す図である。 ランダウ準位分離とゼーマン準位分離の交差部分の抵抗変化の測定例を示す図である。 ランダウ準位分離とゼーマン準位分離の交差部分の抵抗変化の測定例を示す図である。
 以下、図面に基づき、本発明の実施形態を詳細に説明する。
 まず、図1Aおよび図1Bを参照して、本実施形態に係る核スピン偏極装置1の構造について簡単に説明する。
 図1Aに示すように、核スピン偏極装置1はチャンバ2を有し、チャンバ2内にはg因子が大きい二次元量子構造を有する試料3を磁場中で保持・傾斜させる公知のアクチュエータ等の傾斜装置5が交差部として設けられている。さらに、試料3の外側を覆うようにコイル7が巻き回されており、コイル7には電源9が接続されている。即ち、コイル7に電源9を用いて交流電流Irfを流すことで、試料3に交流磁場を印加することができる。
 また、核スピン偏極装置1は試料3に電流を流すための電源11(偏極部)および電流を流した際の抵抗変化を測定するための抵抗測定器13を有している。
 なお、本発明の核スピン偏極装置1はInSb、InAs、InGaAs等のg因子が大きい二次元量子構造の核スピンを偏極する装置であり、二次元量子構造は、例えば図1Bに示すようにAlInSbバリアに挟まれたInSb量子井戸を有する構造である。
 次に、核スピン偏極装置1を用いた核スピンの偏極および検出方法について図2を参照して説明する。
 まず、図2に示すように、InSb、InAs、InGaAs等の二次元量子構造を有する試料3を核スピン偏極装置1内に配置し、磁場を加える。具体的には、チャンバ2の外側にある図示しない超伝導マグネット等を用いて、直流磁場を図1Aの上下方向に加える。即ち、試料3を磁場中に配置する(S101)。
磁場強度は例えば8T程度である。
 (a)次に、図2に示すように、試料3を傾斜装置5を用いて磁場中で傾斜させ、ランダウ準位分離とゼーマン準位分離が等しい状況を作り、異なるスピン状態を交差させる(S102)。
 ここで、図3を参照してS102をより詳細に説明する。
 図3に示すように、ランダウ準位分離は垂直磁場の値のみで決まるのに対し、ゼーマン準位分離は垂直磁場だけでなく、平行磁場も含めた全磁場で決まる。
 そのため、InSb二次元系量子井戸のように、相対的に電子のg因子が大きい構造、例えばInSb(g因子が30以上)のように、GaAs(g因子は0.5程度)よりもg因子が大きい物質を用いた量子構造では、試料3を傾斜させることにより、異なるランダウ準位の異なるスピン状態を交差させることができる。
 (b)次に、図2に示すように、交差状態の電気的特性を調べ、交差時に異なるスピン状態のドメインが形成されている交差状態を選ぶ(S103)。
 具体的には図4に示すように、傾斜角毎の垂直磁場と縦抵抗の関係(量子ホール効果)を測定し、新たなピークが現れている部分をコンピュータ等の公知の検出装置(選択部)で検出する。
 即ち、図4では傾斜角度58°~59°付近で0番目(基底状態)のランダウ順位の下向きスピンと一番目のランダウ順位の上向きスピンの交差が生じており、ν=2の領域に現れる新たなピークが、交差点で二つの異なるスピン状態のドメインが形成されていることを示している。
 なお、図4における傾斜角は、試料3中の二次元電子面が磁場印加方向に垂直な状態での試料3の状態を角度0度とした場合の傾斜角を意味する(傾斜角度90°で磁場が二次元面に完全に平行になる)。
 (c)次に、図2に示すように、試料3に電源11を用いて電流を流すことにより核スピンを偏極する(S104)。
 具体的には、通常の量子ホール効果測定に用いる電流の10~100倍の電流を流す。
 (d)次に、図2に示すように、試料3の核スピン偏極を読み出す(S105)。
 具体的には、交差点の抵抗値は核スピンの偏極によりわずかに変化するため、この抵抗値の変化を抵抗測定器13で検出することにより、核スピン偏極を読み出す(検出する)。
 以上が核スピンの偏極および検出方法である。
 このように、本実施形態によれば、核スピン偏極装置1は磁場中で試料3のランダウ準位分離とゼーマン準位分離が等しい状況を作り、異なるスピン状態を交差させ、交差点の核スピン偏極による抵抗変化から核スピン偏極を検出している。 
 そのため、核スピン偏極装置1は二次元量子構造の核スピン偏極を検出可能である。
 以下、実施例に基づき、本発明をさらに詳細に説明する。
 図1Aに示す核スピン偏極装置1を用いてInSbの核スピン偏極の検出を試みた。 
 具体的な手順は以下の通りである。
 [試料の作製]
 まず、核スピン偏極の検出対象として、図1Bに示すような構造を有するInSb二次元量子構造を用意した。
 次に、図1Bに示したInSb二次元量子構造にフォトリソグラフィプロセスを用いて幅40μm、電圧測定端子間の長さ170μmのホールバー構造を作製し、これを試料3とした。
 [核スピン偏極]
 次に、作製した試料3を核スピン偏極装置1内に載置し、磁場を加えた。本実施例では、磁場を0~15Tまで変化させながらチャンバ2の外側にある図示しない超伝導マグネット等を用いて直流磁場を図1Aの上下方向に印加し、傾斜装置5を用いて試料3を回転させて、傾斜角度を変えては磁場を変化させて、磁気抵抗効果を測定した。
 次に、上記の実験結果を参考にして、ランダウ準位分離とゼーマン準位分離が等しい状況が傾斜角度57.3°~60.8°付近で実現できることを確認し、この範囲で垂直磁場と縦抵抗の関係の詳細(量子ホール効果の詳細)を測定した。なお、測定時の温度は、公知の冷却装置を用いて100mKとした。
 すると、実際に、図4に示すように、角度58°~59°付近で新たなピークが検出され、ν=2の領域で0番目(基底状態)のランダウ順位の下向きスピンと一番目のランダウ順位の上向きスピンの交差が生じており、二つの異なるスピン状態のドメインが形成されていることが分かった。
 次に、核スピンを偏極させるため、電源11を用いて試料3に1.4μAの電流を流した。
 次に、交差点の抵抗変化を抵抗測定器13で測定した。 
 具体的には、試料3の外側に巻いたコイル7に交流電流を流すことで、In核ならびにSb核の共鳴周波数に対応する振動磁場を試料3に加えた。
 その結果、図5A~Cに示すように、交差点の抵抗値が減少していることが分かった。
 これは、核スピンの偏極により増大した抵抗値がIn核ならびにSb核の共鳴周波数に対応する振動磁場を与えたことにより減少したことを意味しており、即ち、核スピンの偏極が検出されたことを示している。この結果と電流を流した時の時間による抵抗値の変化や、共鳴周波数による抵抗変化後のゆっくりした抵抗値の変化を併せて考えることで、抵抗変化が核スピン偏極度を反映していること、逆にいえば、核スピン偏極度が抵抗で検出可能であることを確認できた。
 また、図5A~Cに示す結果から、InSb二次元量子構造において、高感度抵抗検出核磁気共鳴(NMR)が実現できたことが分かった。
 以上の結果より、核スピン偏極装置1を用いてInSbの核スピン偏極の検出が可能であることが分かった。
 上述した実施例ではInSb二次元量子構造の核スピンを検出した場合について説明したが、本発明は特にこれに限定されることなく、InAs、InGaAs等のg因子の大きな二次元量子構造にも当然適用することができる。
 また、本発明の核スピン検出装置は、NMRやNMRを利用した量子コンピュータ、あるいは半導体のひずみ検出装置に適用できる。
1     核スピン偏極装置
2     チャンバ
3     試料
5     傾斜装置
7     コイル
9     電源
11    電源
13    抵抗測定器

Claims (13)

  1.  二次元量子構造を磁場中で傾斜させてランダウ準位分離とゼーマン準位分離を交差させる交差部と、
     前記二次元量子構造の核スピンを偏極させる偏極部と、
     を有し、
     前記交差部がランダウ準位分離とゼーマン準位分離を交差させた部分の核スピンの偏極を検出することを特徴とする核スピン偏極検出装置。
  2.  前記偏極部は、
     前記二次元量子構造に電流を流すことにより、核スピンを偏極させることを特徴とする請求項1記載の核スピン偏極検出装置。
  3.  前記交差部がランダウ準位分離とゼーマン準位分離を交差させた部分のうち、交差時に異なるスピン状態のドメインが形成されている部分を選択する選択部を有し、
     前記選択部が選択した部分の核スピン偏極を検出することを特徴とする請求項2記載の核スピン偏極検出装置。
  4.  前記二次元量子構造に電流を流した際の、前記交差部がランダウ準位分離とゼーマン準位分離を交差させた部分の抵抗変化から核スピン偏極を検出することを特徴とする請求項2または3のいずれか一項に記載の核スピン偏極検出装置。
  5.  前記二次元量子構造は、InSb、InAs、InGaAsのいずれかであることを特徴とする請求項1~4のいずれか一項に記載の核スピン偏極検出装置。
  6.  請求項1~5のいずれか一項に記載の核スピン偏極検出装置を有することを特徴とする核磁気共鳴装置。
  7.  請求項6記載の核磁気共鳴装置を有することを特徴とする量子コンピュータ。
  8.  請求項1~5のいずれか一項に記載の核スピン偏極検出装置を有することを特徴とする半導体のひずみ検出装置。
  9.  二次元量子構造を磁場中で傾斜させてランダウ準位分離とゼーマン準位分離を交差させる(a)と、
     前記二次元量子構造の核スピンを偏極させる(c)と、
     前記(a)が交差させた部分の核スピンの偏極を検出する(d)と、
     を有することを特徴とする核スピン偏極検出方法。
  10.  前記(c)は、
     前記二次元量子構造に電流を流すことにより、核スピンを偏極させることを特徴とする請求項9記載の核スピン偏極検出方法。
  11.  前記(a)と前記(c)の間に行われ、前記(a)がランダウ準位分離とゼーマン準位分離を交差させた部分のうち、交差時に異なるスピン状態のドメインが形成されている部分を選択する(b)をさらに有し、
     前記(d)は、前記(b)が選択した部分の核スピン偏極を検出することを特徴とする請求項10記載の核スピン偏極検出方法。
  12.  前記(d)は、
     前記二次元量子構造に電流を流した際の、前記(a)がランダウ準位分離とゼーマン準位分離を交差させた部分の抵抗変化から核スピン偏極を検出することを特徴とする請求項10または11のいずれか一項に記載の核スピン偏極検出方法。
  13.  前記二次元量子構造は、InSb、InAs、InGaAsのいずれかであることを特徴とする請求項9~12のいずれか一項に記載の核スピン偏極検出方法。
PCT/JP2010/072438 2009-12-18 2010-12-14 核スピン偏極検出装置および核スピン偏極検出方法 WO2011074558A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/516,380 US9310449B2 (en) 2009-12-18 2010-12-14 Nuclear-spin polarization detection device and nuclear-spin polarization detection method
JP2011546122A JP5569945B2 (ja) 2009-12-18 2010-12-14 核スピン偏極検出装置および核スピン偏極検出方法
EP10837584.1A EP2515134A4 (en) 2009-12-18 2010-12-14 NUCLEAR SPIN POLARIZATION DETECTION DEVICE AND NUCLEAR SPIN POLARIZATION DETECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009287150 2009-12-18
JP2009-287150 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074558A1 true WO2011074558A1 (ja) 2011-06-23

Family

ID=44167311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072438 WO2011074558A1 (ja) 2009-12-18 2010-12-14 核スピン偏極検出装置および核スピン偏極検出方法

Country Status (4)

Country Link
US (1) US9310449B2 (ja)
EP (1) EP2515134A4 (ja)
JP (1) JP5569945B2 (ja)
WO (1) WO2011074558A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027074A (ja) * 2012-07-26 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> 核スピン状態の制御方法、検出方法、制御装置および検出装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112113991B (zh) * 2020-09-25 2021-08-31 吉林大学 一种非局域电阻式核磁共振测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220033A (ja) * 1995-02-08 1996-08-30 Yamagata Pref Gov Technopolis Zaidan 常磁性種の分析方法
JP2006066603A (ja) * 2004-08-26 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> 原子核スピン状態制御装置及び検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917322A (en) * 1996-10-08 1999-06-29 Massachusetts Institute Of Technology Method and apparatus for quantum information processing
US7184555B2 (en) * 2001-04-11 2007-02-27 Magiq Technologies, Inc. Quantum computation
US7148683B2 (en) * 2001-10-25 2006-12-12 Intematix Corporation Detection with evanescent wave probe
JP4088927B2 (ja) * 2001-12-06 2008-05-21 独立行政法人科学技術振興機構 固体中核スピン量子演算素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220033A (ja) * 1995-02-08 1996-08-30 Yamagata Pref Gov Technopolis Zaidan 常磁性種の分析方法
JP2006066603A (ja) * 2004-08-26 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> 原子核スピン状態制御装置及び検出装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D. D. AWSCHALOM; D. LOSS; N. SAMARTH: "Semiconductor Spintronics and Quantum Computation", 2002, SPRINGER
H. SANADA; Y. KONDO; S. MATSUZAKA; K. MORITA; C. Y. HU; Y. OHNO; H. OHNO: "Optical Pump-Probe Measurements of Local Nuclear Spin Coherence in Semiconductor Quantum Wells", PHYS. REV. LETT., vol. 96, 2006, pages 067602
See also references of EP2515134A4 *
TOSHIYUKI SATO ET AL.: "Ko Kando Denkiteki Kenshutsu ESR(EDMR) Sochi no Kaihatsu", REPORTS OF YAMAGATA RESEARCH INSTITUTE OF TECHNOLOGY, March 1999 (1999-03-01), pages 31 - 33 *
Y HIRAYAMA ET AL.: "Electron-spin/nuclear-spin interactions and NMR in semiconductors", SEMICOND.SCI.TECHNOL., vol. 24, no. 2, February 2009 (2009-02-01), pages 1 - 22, XP020150817 *
Y. HIRAYAMA; G. YUSA; K. HASHIMOTO; N. KUMADA; T. OTA; K. MURAKI: "Electron-spin / nuclear-spin interactions and NMR in semiconductors", SEMICOND. SCI. TECHNOL., vol. 24, 2009, pages 023001

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027074A (ja) * 2012-07-26 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> 核スピン状態の制御方法、検出方法、制御装置および検出装置

Also Published As

Publication number Publication date
EP2515134A1 (en) 2012-10-24
US20120256629A1 (en) 2012-10-11
JP5569945B2 (ja) 2014-08-13
EP2515134A4 (en) 2013-09-18
JPWO2011074558A1 (ja) 2013-04-25
US9310449B2 (en) 2016-04-12

Similar Documents

Publication Publication Date Title
Wang et al. Anomalous spin–orbit torques in magnetic single-layer films
Harder et al. Electrical detection of magnetization dynamics via spin rectification effects
Humphries et al. Observation of spin-orbit effects with spin rotation symmetry
Fang et al. Spin–orbit-driven ferromagnetic resonance
Zhao et al. Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge
Little et al. Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2
Sankey et al. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions
Bi et al. Room-temperature electronically-controlled ferromagnetism at the LaAlO3/SrTiO3 interface
Iwasaki et al. Universal current-velocity relation of skyrmion motion in chiral magnets
Belashchenko Equilibrium magnetization at the boundary of a magnetoelectric antiferromagnet
Lou et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices
Zolfagharkhani et al. Nanomechanical detection of itinerant electron spin flip
Guo et al. A nonlocal spin Hall magnetoresistance in a platinum layer deposited on a magnon junction
Ganichev et al. Electric current-induced spin orientation in quantum well structures
Eltschka et al. Probing absolute spin polarization at the nanoscale
Shiogai et al. Three-dimensional sensing of the magnetic-field vector by a compact planar-type Hall device
Wu et al. Enhancing perpendicular magnetic anisotropy in garnet ferrimagnet by interfacing with few-layer WTe2
Cheng et al. Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide
Wang et al. Spin–orbit torques in metallic magnetic multilayers: Challenges and new opportunities
EP3953722A1 (en) Devices and methods for frequency- and phase-based detection of magnetically-labeled molecules using spin torque oscillator (sto) sensors
Fu et al. Bilinear magnetoresistance in HgTe topological insulator: opposite signs at opposite surfaces demonstrated by gate control
JP5569945B2 (ja) 核スピン偏極検出装置および核スピン偏極検出方法
Hirayama et al. Electron-spin/nuclear-spin interactions and NMR in semiconductors
EP2791940B1 (en) Random access memory architecture for reading bit states
Kondo et al. Multipulse Operation and Optical Detection of Nuclear Spin Coherence<? format?> in a GaAs/AlGaAs Quantum Well

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011546122

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13516380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010837584

Country of ref document: EP