WO2011074171A1 - Defect inspection apparatus and defect inspection method - Google Patents

Defect inspection apparatus and defect inspection method Download PDF

Info

Publication number
WO2011074171A1
WO2011074171A1 PCT/JP2010/006479 JP2010006479W WO2011074171A1 WO 2011074171 A1 WO2011074171 A1 WO 2011074171A1 JP 2010006479 W JP2010006479 W JP 2010006479W WO 2011074171 A1 WO2011074171 A1 WO 2011074171A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect inspection
inspection apparatus
illumination light
sample
polarization
Prior art date
Application number
PCT/JP2010/006479
Other languages
French (fr)
Japanese (ja)
Inventor
昌昭 伊東
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US13/515,762 priority Critical patent/US20120327415A1/en
Publication of WO2011074171A1 publication Critical patent/WO2011074171A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Definitions

  • the present invention relates to a defect inspection apparatus and a defect inspection method for a sample on which a pattern is formed such as a wafer in semiconductor device manufacture, and more particularly to an optical system in an optical defect inspection apparatus.
  • defect inspection In the semiconductor device manufacturing process, film formation by sputtering or chemical vapor deposition, planarization by chemical mechanical polishing, and patterning by lithography and etching are repeated many times.
  • the wafer In order to secure the yield of the semiconductor devices, the wafer is removed in the middle of the manufacturing process and defect inspection is performed.
  • the defects are foreign matter, swelling, voids, scratches, and pattern defects (short, open, hole opening defects, etc.) on the wafer surface.
  • the purpose of the defect inspection is, firstly, to manage the state of the manufacturing apparatus, and secondly, to identify the process in which the defect has occurred and its cause. With the miniaturization of semiconductor devices, high detection sensitivity is required of the defect inspection apparatus.
  • chips Hundreds of devices (called chips) having the same pattern are fabricated on the wafer.
  • the memory unit of the device a large number of cells having a repetitive pattern are formed.
  • the defect inspection apparatus a method of comparing images between adjacent chips or adjacent cells is used.
  • a dark field defect inspection apparatus that irradiates light to a wafer to compare dark field images is often used in in-line inspection because the throughput is higher than that of the other type of defect inspection apparatus.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-156537 is disclosed as to a dark field defect inspection apparatus. Illumination light is irradiated to the wafer from a plurality of directions, and scattered light from the wafer is detected for each direction. For each illumination direction, the incident angle of the illumination light is different, and the wavelength of the illumination light is the same or different.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-225432 is disclosed regarding a dark field defect inspection apparatus. Illumination light is irradiated to the wafer from a plurality of directions, and scattered light from the wafer is detected for each direction. The polarization of the illumination light is different for each illumination direction.
  • Patent Document 1 reduces speckle noise from pattern edges by integrating images in a plurality of directions. However, the signal strength is not considered.
  • Patent Document 2 stabilizes the signal intensity against the thickness variation of the oxide film by the illumination light whose polarization is different from each other.
  • the target defects are foreign substances, and no consideration is given to pattern defects.
  • An object of the present invention is to provide a high sensitivity and high throughput defect inspection apparatus, in particular for pattern defects.
  • the feature of the present invention is to focus on the direction of the pattern, the direction of projection of the illumination light onto the sample, and the polarization of the illumination light.
  • the present invention irradiates illumination light from a plurality of directions to a sample on which a pattern is formed, forms an image of the sample through an optical system on an image sensor, and determines the presence or absence of a defect.
  • the projection of at least two illumination directions onto the sample is perpendicular or parallel to the direction of the main pattern of the sample
  • the polarization of the illumination light in the first direction and the illumination light in the second direction are characterized in that they are different from each other.
  • the invention is characterized in that the projection of the first direction and the projection of the second direction are perpendicular to each other.
  • the invention is characterized in that the projection of the first direction and the projection of the second direction are parallel to each other.
  • the present invention is further characterized in that the polarization of the illumination light in the first direction is s-polarization, and the polarization of the illumination light in the second direction is p-polarization.
  • the present invention is characterized in that the optical system is a dark field type.
  • the present invention is characterized in that the optical system is a bright field type.
  • the present invention is characterized in that the illumination light in the first direction and the illumination light in the second direction are spatially incoherent.
  • the present invention is characterized in that the illumination light in the first direction and the illumination light in the second direction are spatially coherent.
  • the present invention irradiates illumination light from a plurality of directions to a sample on which a pattern is formed, and forms an image of the sample through an optical system on an image sensor to determine the presence or absence of a defect.
  • the projection of at least two illumination directions onto the sample is perpendicular or parallel to the direction of the main pattern of the sample, and the wavelength of the illumination light in the first direction and the illumination light in the second direction.
  • the first and second directions are different from each other, and the polarization of the illumination light in the first direction and the polarization of the illumination light in the second direction are different from each other.
  • the invention is characterized in that the projection of the first direction and the projection of the second direction are perpendicular to each other.
  • the invention is characterized in that the projection of the first direction and the projection of the second direction are parallel to each other.
  • the present invention is further characterized in that the polarization of the illumination light in the first direction is s-polarization, and the polarization of the illumination light in the second direction is p-polarization.
  • the present invention is characterized in that the optical system is a dark field type.
  • the present invention is characterized in that the optical system is a bright field type.
  • the present invention is characterized in that the illumination light in the first direction and the illumination light in the second direction are spatially incoherent.
  • the present invention is characterized in that the illumination light in the first direction and the illumination light in the second direction are spatially coherent.
  • a highly sensitive and high-throughput defect inspection can be performed by an illumination method suitable for detecting a short or an open.
  • FIG. 7 shows two-way illumination for shorts. It is a figure which shows 4 direction illumination with respect to short. It is a figure which shows the relationship between illumination conditions and the signal strength of open.
  • FIG. 7 shows two-way illumination for short and open.
  • FIG. 7 illustrates another two-way illumination for short and open. It is a figure which shows the flow of illumination condition setting. It is a figure which shows the operation screen of lighting condition setting.
  • the inspection apparatus includes a stage 2 on which the wafer 1 is mounted, a light source 3, a branching element 4, a first polarizing element 51, a second polarizing element 52, a first illumination optical system 61, a second illumination optical system 62, and detection. It comprises an optical system 7, a detector 8, an image processing unit 9, an overall control unit 10, and an input / output operation unit 11.
  • the operator When loading the wafer 1 into the defect inspection apparatus, the operator inputs information such as a pattern layout and a target defect type into the input / output operation unit 11.
  • the overall control unit 10 uses this information to select a suitable illumination method as described later.
  • the light emitted from the light source 3 is split into two light paths by the branching element 4.
  • the respective light beams become two linearly polarized lights orthogonal to each other by the polarizing elements 51 and 52, and illuminate the wafer 1 through the illumination optical systems 61 and 62.
  • the first illumination light and the second illumination light are spatially incoherent because the optical path lengths are different from each other.
  • the direction of the first illumination light and the direction of the second illumination light are set so that the projections on the wafer surface are perpendicular to each other.
  • projection means the component in the wafer surface of the direction vector of illumination light.
  • the projection is perpendicular or parallel to the main pattern of the wafer.
  • the first illumination light is s-polarized light
  • the second illumination light is p-polarized light.
  • the light scattered by the wafer is collected by the detection optical system 7. Since the specularly reflected light from the wafer is emitted out of the aperture of the detection optical system, a dark field image is formed on the detector 8.
  • the inspection image is converted into a digital signal by an A / D converter (not shown) and recorded in the image processing unit 9.
  • a reference image which is adjacent to the inspection chip and acquired by a chip having the same pattern is recorded.
  • a difference image of the both is output.
  • the luminance of this difference image is compared with a preset threshold value to determine the presence or absence of a defect.
  • the determination result of the defect is transmitted to the overall control unit, and displayed on the input / output operation unit after completion of the predetermined inspection.
  • FIG. 2 shows the relationship between the pattern in the embodiment and the illumination light.
  • a line and space pattern is formed on the wafer, and illumination light is irradiated from two directions.
  • the projection of the first direction onto the wafer is perpendicular to the pattern pitch direction.
  • the projection of the second direction onto the wafer is parallel to the pattern pitch direction.
  • the projection of the first direction and the projection of the second direction are perpendicular to one another.
  • the illumination light in the first direction is s-polarization
  • the illumination light in the second direction is p-polarization.
  • the direction and polarization of the illumination light are set according to the pattern and the defect of interest. Details will be described below.
  • FIG. 3 shows the relationship between the azimuth angle of the illumination light and the signal strength for the short circuit of the line and space pattern.
  • the azimuth is defined as the angle between the projection of the illumination direction onto the wafer and the pattern pitch direction.
  • the short signal strength is maximum at an azimuth angle of 90 degrees for s-polarization and at an azimuth angle of 0 degrees for p-polarization. In either case, the projection of the electric field vector of the illumination light onto the wafer is parallel to the pattern pitch direction.
  • the azimuth angle is 0 degree for s-polarization and 90 degrees for p-polarization
  • the short signal strength is zero.
  • Illumination light of s-polarization is emitted from a direction perpendicular to the pattern pitch direction
  • illumination light of p-polarization is emitted from a direction parallel to the pattern pitch direction.
  • Illumination light of s-polarization is emitted from two directions perpendicular to the pattern pitch direction
  • illumination light of p-polarization is emitted from two directions parallel to the pattern pitch direction.
  • FIG. 6 shows the relationship between the azimuth angle of the illumination light and the signal strength with respect to the opening of the line and space pattern.
  • the open signal strength is maximized at p-polarization at an azimuth of 90 degrees.
  • the short signal strength becomes zero.
  • Illumination light is applied to the wafer from two directions perpendicular to the pattern pitch direction.
  • the first illumination light is s-polarized
  • the second illumination light is p-polarized.
  • Illumination light is applied to the wafer from two directions parallel to the pattern pitch direction.
  • the first illumination light is s-polarized
  • the second illumination light is p-polarized.
  • the open can be detected by the first illumination light
  • the short can be detected by the second illumination light.
  • FIG. 10 shows the operation screen in the case where the pattern direction is the Y direction, the defect type of interest is the short, and the illumination light direction is the two directions.
  • the oxide film is transparent, thin film interference occurs, and the signal strength varies significantly depending on the oxide film thickness.
  • a method of illuminating with light of different wavelengths is effective to reduce the thin film interference effect.
  • the light source 31 emits far ultraviolet light
  • the light source 32 emits ultraviolet light.
  • the far ultraviolet light irradiates the wafer with linearly polarized light via the first polarizing element 51 and the first illumination optical system 61.
  • the ultraviolet light illuminates the wafer with linearly polarized light through the second polarizing element 52 and the second illumination optical system 62.
  • the direction of the far ultraviolet light and the direction of the ultraviolet light are set so that the projections on the wafer surface are perpendicular to each other.
  • the projection is perpendicular or parallel to the main pattern of the wafer.
  • the polarization of far ultraviolet light and the polarization of ultraviolet light are different, one is s-polarization and the other is p-polarization.
  • the far ultraviolet light and the ultraviolet light scattered by the wafer are collected by the detection optical system 7, and a dark field image is formed on the detector 8.
  • FIG. 1 An illumination method suitable for detecting pattern shorts is shown in FIG.
  • the s-polarized far-ultraviolet light is irradiated from a direction perpendicular to the pattern pitch direction.
  • the p-polarized ultraviolet light is irradiated from a direction parallel to the pattern pitch direction.
  • FIG. 13 shows the relationship between the oxide film thickness and the signal strength of the short. It can be seen that the signal intensity of the far ultraviolet light and the signal intensity of the ultraviolet light significantly change with respect to the film thickness. On the other hand, the sum of the signal intensity of far ultraviolet light and the signal intensity of ultraviolet light has a small fluctuation with respect to the film thickness. As described above, two-directional illumination with different wavelengths and polarizations can ensure signal strength even on wafers with uneven film thickness.
  • the illumination light is spatially incoherent, but the optical path lengths can be made identical to make it coherent.
  • coherent illumination although noise increases, interference effects may further increase the signal strength. Therefore, although the noise is sufficiently small, it is effective when the signal strength is insufficient.
  • the projection of the illumination direction onto the wafer surface is perpendicular or parallel to the main direction of the pattern, but substantially the same effect can be obtained even if the angle deviates a little.
  • the polarization of the illumination light is s-polarization and p-polarization, but even if the polarization is somewhat offset, substantially the same effect can be obtained.
  • the illumination area on the wafer can be slit. By scanning the wafer in the lateral direction, high throughput defect inspection is possible.
  • a plurality of detection systems can be provided.
  • the scattered light distribution of defects changes with the oxide film thickness. Therefore, the combined use of the upper detection system and the oblique detection system provides the effect of stabilizing the detection sensitivity to film thickness unevenness.
  • the present invention is also applicable to inspection of a sample on which a fine pattern such as a mask in a semiconductor lithography process is formed.

Abstract

Disclosed is a defect inspection apparatus having a high sensitivity and a high throughput, in defect inspection of a sample having a pattern of a semiconductor wafer and the like formed thereon. The defect inspection apparatus is characterized by the direction of the pattern, the direction of the projection of illuminating light to the sample, and polarization of the illuminating light. The projections to the sample in at least two illuminating directions are perpendicular or parallel to the direction of the major pattern of the sample, and the polarization light of the illuminating light in the first direction and the polarization light of the illuminating light in the second direction are different from each other. The projection in the first direction and the projection in the second direction are either perpendicular to each other or parallel to each other. The polarization light of the illuminating light in the first direction is s-polarization light, and the polarization light of the illuminating light in the second direction is p-polarization light.

Description

欠陥検査装置及び欠陥検査方法Defect inspection apparatus and defect inspection method
 本発明は、半導体デバイス製造におけるウェハなどの、パターンが形成された試料の欠陥検査装置及び欠陥検査方法に係り、特に光学式欠陥検査装置における光学系に関する。 The present invention relates to a defect inspection apparatus and a defect inspection method for a sample on which a pattern is formed such as a wafer in semiconductor device manufacture, and more particularly to an optical system in an optical defect inspection apparatus.
 半導体デバイスの製造プロセスでは、スパッタ法や化学気相成長法による成膜,化学機械研磨法による平坦化,リソグラフィとエッチングによるパターニングを多数繰り返す。半導体デバイスの歩留まりを確保するために、製造プロセスの途中でウェハを抜き取り、欠陥検査を行う。欠陥とは、ウェハ表面の異物,膨れ,ボイド,スクラッチ,パターン欠陥(ショート,オープン,ホールの開口不良など)である。欠陥検査の目的は、第1に製造装置の状態を管理すること、第2に不良が発生した工程とその原因を特定することにある。半導体デバイスの微細化に伴い、欠陥検査装置に対して、高い検出感度が要求されている。 In the semiconductor device manufacturing process, film formation by sputtering or chemical vapor deposition, planarization by chemical mechanical polishing, and patterning by lithography and etching are repeated many times. In order to secure the yield of the semiconductor devices, the wafer is removed in the middle of the manufacturing process and defect inspection is performed. The defects are foreign matter, swelling, voids, scratches, and pattern defects (short, open, hole opening defects, etc.) on the wafer surface. The purpose of the defect inspection is, firstly, to manage the state of the manufacturing apparatus, and secondly, to identify the process in which the defect has occurred and its cause. With the miniaturization of semiconductor devices, high detection sensitivity is required of the defect inspection apparatus.
 ウェハには同一のパターンを有する数百のデバイス(チップと呼ぶ)が作製される。また、デバイスのメモリ部などでは、繰り返しパターンを有する多数のセルが形成される。欠陥検査装置では、隣接するチップ間または隣接するセル間で画像を比較する方法が使用されている。 Hundreds of devices (called chips) having the same pattern are fabricated on the wafer. In addition, in the memory unit of the device, a large number of cells having a repetitive pattern are formed. In the defect inspection apparatus, a method of comparing images between adjacent chips or adjacent cells is used.
 ウェハに光を照射して暗視野画像を比較する暗視野欠陥検査装置は、他方式の欠陥検査装置に比べてスループットが高いので、インライン検査で多く使用されている。 A dark field defect inspection apparatus that irradiates light to a wafer to compare dark field images is often used in in-line inspection because the throughput is higher than that of the other type of defect inspection apparatus.
 暗視野欠陥検査装置に関して、特開2005-156537号公報(特許文献1)が示されている。ウェハに複数の方向から照明光を照射し、ウェハからの散乱光を方向ごとに検出する。照明方向ごとに、照明光の入射角は異なり、照明光の波長は同一または異なる。 Japanese Patent Laid-Open No. 2005-156537 (Patent Document 1) is disclosed as to a dark field defect inspection apparatus. Illumination light is irradiated to the wafer from a plurality of directions, and scattered light from the wafer is detected for each direction. For each illumination direction, the incident angle of the illumination light is different, and the wavelength of the illumination light is the same or different.
 また、暗視野欠陥検査装置に関して、特開2007-225432号公報(特許文献2)が示されている。ウェハに複数の方向から照明光を照射し、ウェハからの散乱光を方向ごとに検出する。照明方向ごとに、照明光の偏光は異なる。 Further, Japanese Patent Application Laid-Open No. 2007-225432 (Patent Document 2) is disclosed regarding a dark field defect inspection apparatus. Illumination light is irradiated to the wafer from a plurality of directions, and scattered light from the wafer is detected for each direction. The polarization of the illumination light is different for each illumination direction.
特開2005-156537号公報JP, 2005-156537, A 特開2007-225432号公報Unexamined-Japanese-Patent No. 2007-225432
 半導体デバイスの微細化に伴い、光学式欠陥検査装置に対して、検出感度の向上が要求されている。特に、ゲートやビットラインなどのパターニング後検査では、非常に微小なショートやオープンを検出する必要があり、信号強度の確保が課題となっている。 With the miniaturization of semiconductor devices, it is required to improve the detection sensitivity of the optical defect inspection apparatus. In particular, in inspection after patterning of gates, bit lines, etc., it is necessary to detect very short shorts and opens, and securing of signal strength is a problem.
 特許文献1の技術は、複数の方向ごとの画像を統合処理することにより、パターンエッジからのスペックルノイズの軽減を図っている。しかし、信号強度については考慮されていない。 The technique of Patent Document 1 reduces speckle noise from pattern edges by integrating images in a plurality of directions. However, the signal strength is not considered.
 特許文献2の技術は、偏光が互いに異なる照明光により、酸化膜の厚さ変動に対して信号強度の安定化を図っている。しかし、対象とする欠陥は異物であり、パターン欠陥については考慮されていない。 The technique of Patent Document 2 stabilizes the signal intensity against the thickness variation of the oxide film by the illumination light whose polarization is different from each other. However, the target defects are foreign substances, and no consideration is given to pattern defects.
 本発明の目的は、特にパターン欠陥に対して、高感度かつ高スループットの欠陥検査装置を提供することにある。 An object of the present invention is to provide a high sensitivity and high throughput defect inspection apparatus, in particular for pattern defects.
 上記目的を達成するために、本発明の特徴は、パターンの方向と、照明光の試料への射影の方向と照明光の偏光に着目したことにある。 In order to achieve the above object, the feature of the present invention is to focus on the direction of the pattern, the direction of projection of the illumination light onto the sample, and the polarization of the illumination light.
 また、本発明は、パターンが形成された試料に、複数の方向から照明光を照射し、該試料の像を光学系を介して画像センサに結像し、欠陥の有無を判定する欠陥検査装置において、少なくとも2つの照明方向の該試料への射影は該試料の主要なパターンの方向に対して垂直または平行であり、該第1の方向の照明光の偏光と該第2の方向の照明光の偏光は互いに異なることを特徴とする。 Further, the present invention irradiates illumination light from a plurality of directions to a sample on which a pattern is formed, forms an image of the sample through an optical system on an image sensor, and determines the presence or absence of a defect. In which the projection of at least two illumination directions onto the sample is perpendicular or parallel to the direction of the main pattern of the sample, the polarization of the illumination light in the first direction and the illumination light in the second direction Are characterized in that they are different from each other.
 また、本発明は、該第1の方向の射影と該第2の方向の射影は互いに垂直であることを特徴とする。 Also, the invention is characterized in that the projection of the first direction and the projection of the second direction are perpendicular to each other.
 また、本発明は、該第1の方向の射影と該第2の方向の射影は互いに平行であることを特徴とする。 Furthermore, the invention is characterized in that the projection of the first direction and the projection of the second direction are parallel to each other.
 また、本発明は、該第1の方向の照明光の偏光はs偏光であり、該第2の方向の照明光の偏光はp偏光であることを特徴とする。 The present invention is further characterized in that the polarization of the illumination light in the first direction is s-polarization, and the polarization of the illumination light in the second direction is p-polarization.
 また、本発明は、該光学系は暗視野型であることを特徴とする。 Further, the present invention is characterized in that the optical system is a dark field type.
 また、本発明は、該光学系は明視野型であることを特徴とする。 Further, the present invention is characterized in that the optical system is a bright field type.
 また、本発明は、該第1の方向の照明光と該第2の方向の照明光は空間的にインコヒーレントであることを特徴とする。 Further, the present invention is characterized in that the illumination light in the first direction and the illumination light in the second direction are spatially incoherent.
 また、本発明は、該第1の方向の照明光と該第2の方向の照明光は空間的にコヒーレントであることを特徴とする。 Furthermore, the present invention is characterized in that the illumination light in the first direction and the illumination light in the second direction are spatially coherent.
 さらに、本発明は、パターンが形成された試料に、複数の方向から照明光を照射し、該試料の像を光学系を介して画像センサに結像し、欠陥の有無を判定する欠陥検査装置において、少なくとも2つの照明方向の該試料への射影は該試料の主要なパターンの方向に対して垂直または平行であり、該第1の方向の照明光の波長と該第2の方向の照明光の波長は互いに異なり、該第1の方向の照明光の偏光と該第2の方向の照明光の偏光は互いに異なることを特徴とする。 Furthermore, the present invention irradiates illumination light from a plurality of directions to a sample on which a pattern is formed, and forms an image of the sample through an optical system on an image sensor to determine the presence or absence of a defect. Wherein the projection of at least two illumination directions onto the sample is perpendicular or parallel to the direction of the main pattern of the sample, and the wavelength of the illumination light in the first direction and the illumination light in the second direction The first and second directions are different from each other, and the polarization of the illumination light in the first direction and the polarization of the illumination light in the second direction are different from each other.
 また、本発明は、該第1の方向の射影と該第2の方向の射影は互いに垂直であることを特徴とする。 Also, the invention is characterized in that the projection of the first direction and the projection of the second direction are perpendicular to each other.
 また、本発明は、該第1の方向の射影と該第2の方向の射影は互いに平行であることを特徴とする。 Furthermore, the invention is characterized in that the projection of the first direction and the projection of the second direction are parallel to each other.
 また、本発明は、該第1の方向の照明光の偏光はs偏光であり、該第2の方向の照明光の偏光はp偏光であることを特徴とする。 The present invention is further characterized in that the polarization of the illumination light in the first direction is s-polarization, and the polarization of the illumination light in the second direction is p-polarization.
 また、本発明は、該光学系は暗視野型であることを特徴とする。 Further, the present invention is characterized in that the optical system is a dark field type.
 また、本発明は、該光学系は明視野型であることを特徴とする。 Further, the present invention is characterized in that the optical system is a bright field type.
 また、本発明は、該第1の方向の照明光と該第2の方向の照明光は空間的にインコヒーレントであることを特徴とする。 Further, the present invention is characterized in that the illumination light in the first direction and the illumination light in the second direction are spatially incoherent.
 また、本発明は、該第1の方向の照明光と該第2の方向の照明光は空間的にコヒーレントであることを特徴とする。 Furthermore, the present invention is characterized in that the illumination light in the first direction and the illumination light in the second direction are spatially coherent.
 本発明によれば、ショートやオープン等の検出に好適な照明方法により、高感度かつ高スループットの欠陥検査が可能となる。 According to the present invention, a highly sensitive and high-throughput defect inspection can be performed by an illumination method suitable for detecting a short or an open.
本発明に係る欠陥検査装置の第1の実施形態を示す図である。It is a figure which shows 1st Embodiment of the defect inspection apparatus which concerns on this invention. ウェハにおけるパターンと照明光との関係を示す図である。It is a figure which shows the relationship between the pattern in a wafer, and illumination light. 照明条件とショートの信号強度との関係を示す図である。It is a figure which shows the relationship between illumination conditions and the signal strength of a short. ショートに対する2方向照明を示す図である。FIG. 7 shows two-way illumination for shorts. ショートに対する4方向照明を示す図である。It is a figure which shows 4 direction illumination with respect to short. 照明条件とオープンの信号強度との関係を示す図である。It is a figure which shows the relationship between illumination conditions and the signal strength of open. ショートとオープンに対する2方向照明を示す図である。FIG. 7 shows two-way illumination for short and open. ショートとオープンに対する他の2方向照明を示す図である。FIG. 7 illustrates another two-way illumination for short and open. 照明条件設定の流れを示す図である。It is a figure which shows the flow of illumination condition setting. 照明条件設定の操作画面を示す図である。It is a figure which shows the operation screen of lighting condition setting. 本発明に係る欠陥検査装置の第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment of the defect inspection apparatus which concerns on this invention. 第2の実施形態において、ショートに対する2方向照明を示す図である。In 2nd Embodiment, it is a figure which shows 2 direction illumination with respect to short. 酸化膜厚とショートの信号強度との関係を示す図である。It is a figure which shows the relationship between an oxide film thickness and the signal strength of a short.
 本発明の一実施形態として、半導体ウェハを対象とする暗視野欠陥検査装置について説明する。 As one embodiment of the present invention, a dark field defect inspection apparatus for a semiconductor wafer will be described.
 検査装置の概略構成を図1に示す。検査装置は、ウェハ1を搭載するステージ2,光源3,分岐素子4,第1の偏光素子51,第2の偏光素子52,第1の照明光学系61,第2の照明光学系62,検出光学系7,検出器8,画像処理部9,全体制御部10、及び入出力操作部11とから構成される。 A schematic configuration of the inspection apparatus is shown in FIG. The inspection apparatus includes a stage 2 on which the wafer 1 is mounted, a light source 3, a branching element 4, a first polarizing element 51, a second polarizing element 52, a first illumination optical system 61, a second illumination optical system 62, and detection. It comprises an optical system 7, a detector 8, an image processing unit 9, an overall control unit 10, and an input / output operation unit 11.
 ウェハ1を欠陥検査装置に装填する際、オペレータはパターンレイアウトや注目欠陥種などの情報を入出力操作部11に入力する。全体制御部10はこの情報を用いて、後述のように好適な照明方法を選定する。 When loading the wafer 1 into the defect inspection apparatus, the operator inputs information such as a pattern layout and a target defect type into the input / output operation unit 11. The overall control unit 10 uses this information to select a suitable illumination method as described later.
 光源3から発した光は、分岐素子4により2つの光路に分かれる。それぞれの光は偏光素子51,52により、互いに直交する2つの直線偏光となり、照明光学系61と62を介して、ウェハ1を照射する。第1の照明光と第2の照明光とは、光路長に差を設けてあるので、空間的にインコヒーレントである。第1の照明光の方向と第2の照明光の方向は、ウェハ面への射影が互いに垂直となるように設定されている。ここで、射影とは、照明光の方向ベクトルのウェハ面内の成分を意味する。前記の射影はウェハの主要なパターンに対して、垂直または平行である。また、ウェハに対して、第1の照明光はs偏光、第2の照明光はp偏光である。ウェハで散乱された光は、検出光学系7により捕集される。ウェハからの正反射光は検出光学系の開口外に出射するので、暗視野像が検出器8に結像する。検査画像は、A/D変換器(図示しない)によりデジタル信号に変換され、画像処理部9に記録される。画像処理部には、検査チップと隣接し、同一パターンを有するチップで取得した参照画像が記録されている。検査画像と参照画像に対して、位置合わせなどの処理を行った後、両者の差画像を出力する。この差画像の輝度を予め設定した閾値と比較し、欠陥の有無を判定する。欠陥の判定結果は、全体制御部に送信され、所定の検査終了後に、入出力操作部に表示される。 The light emitted from the light source 3 is split into two light paths by the branching element 4. The respective light beams become two linearly polarized lights orthogonal to each other by the polarizing elements 51 and 52, and illuminate the wafer 1 through the illumination optical systems 61 and 62. The first illumination light and the second illumination light are spatially incoherent because the optical path lengths are different from each other. The direction of the first illumination light and the direction of the second illumination light are set so that the projections on the wafer surface are perpendicular to each other. Here, projection means the component in the wafer surface of the direction vector of illumination light. The projection is perpendicular or parallel to the main pattern of the wafer. Further, with respect to the wafer, the first illumination light is s-polarized light, and the second illumination light is p-polarized light. The light scattered by the wafer is collected by the detection optical system 7. Since the specularly reflected light from the wafer is emitted out of the aperture of the detection optical system, a dark field image is formed on the detector 8. The inspection image is converted into a digital signal by an A / D converter (not shown) and recorded in the image processing unit 9. In the image processing unit, a reference image which is adjacent to the inspection chip and acquired by a chip having the same pattern is recorded. After processing such as alignment is performed on the inspection image and the reference image, a difference image of the both is output. The luminance of this difference image is compared with a preset threshold value to determine the presence or absence of a defect. The determination result of the defect is transmitted to the overall control unit, and displayed on the input / output operation unit after completion of the predetermined inspection.
 図2は、前記実施例におけるパターンと照明光との関係を示す。ウェハにはラインアンドスペースパターンが形成されており、2方向から照明光を照射する。第1の方向のウェハへの射影は、パターンピッチ方向に対して垂直である。第2の方向のウェハへの射影は、パターンピッチ方向に対して平行である。このように、第1の方向の射影と第2の方向の射影は、互いに垂直である。また、偏光については、第1の方向の照明光はs偏光、第2の方向の照明光はp偏光としている。 FIG. 2 shows the relationship between the pattern in the embodiment and the illumination light. A line and space pattern is formed on the wafer, and illumination light is irradiated from two directions. The projection of the first direction onto the wafer is perpendicular to the pattern pitch direction. The projection of the second direction onto the wafer is parallel to the pattern pitch direction. Thus, the projection of the first direction and the projection of the second direction are perpendicular to one another. With regard to polarization, the illumination light in the first direction is s-polarization, and the illumination light in the second direction is p-polarization.
 本発明では、パターンと注目欠陥に応じて、照明光の方向と偏光を設定する。以下、詳細を説明する。 In the present invention, the direction and polarization of the illumination light are set according to the pattern and the defect of interest. Details will be described below.
 パターン欠陥検査では、致命欠陥であるショートの検出が特に重要である。図3は、ラインアンドスペースパターンのショートについて、照明光の方位角と信号強度との関係を示す。ここでは、方位角は、照明方向のウェハへの射影とパターンピッチ方向とのなす角で定義した。信号強度は、偏光と方位角に依存することが分かる。ショートの信号強度が最大となるのは、s偏光では方位角90度、p偏光では方位角0度である。いずれの場合も、照明光の電場ベクトルのウェハへの射影は、パターンピッチ方向と平行である。一方、s偏光で方位角0度、p偏光で方位角90度の場合、ショートの信号強度は0である。 In pattern defect inspection, detection of a short, which is a fatal defect, is particularly important. FIG. 3 shows the relationship between the azimuth angle of the illumination light and the signal strength for the short circuit of the line and space pattern. Here, the azimuth is defined as the angle between the projection of the illumination direction onto the wafer and the pattern pitch direction. It can be seen that the signal strength is dependent on polarization and azimuth. The short signal strength is maximum at an azimuth angle of 90 degrees for s-polarization and at an azimuth angle of 0 degrees for p-polarization. In either case, the projection of the electric field vector of the illumination light onto the wafer is parallel to the pattern pitch direction. On the other hand, when the azimuth angle is 0 degree for s-polarization and 90 degrees for p-polarization, the short signal strength is zero.
 ところで、1方向から照明光をウェハに照射すると、ウェハ表面のグレインやラインエッジの粗さによるスペックルが生じ易く、欠陥検出を阻害することが多い。このようなノイズを低減するには、複数の方向から照明光を照射し、空間的コヒーレンスを下げるのが有効である。 By the way, when the illumination light is irradiated to the wafer from one direction, speckle is easily generated due to the grain of the wafer surface or the roughness of the line edge, which often hinders the defect detection. In order to reduce such noise, it is effective to emit illumination light from a plurality of directions to reduce spatial coherence.
 以上を考慮し、2方向から照明光をウェハに照射し、パターンショートを検出するのに好適な照明方法を、図4に示す。パターンピッチ方向に垂直な方向からs偏光の照明光を照射し、パターンピッチ方向に平行な方向からp偏光の照明光を照射する。このような2方向照明により、ノイズを低減しつつ、ショートの信号強度を確保することができる。 In consideration of the above, an illumination method suitable for irradiating a wafer with illumination light from two directions and detecting a pattern short is shown in FIG. Illumination light of s-polarization is emitted from a direction perpendicular to the pattern pitch direction, and illumination light of p-polarization is emitted from a direction parallel to the pattern pitch direction. Such two-directional illumination can ensure short signal strength while reducing noise.
 また、4方向から照明光をウェハに照射し、パターンショートを検出するのに好適な照明方法を、図5に示す。パターンピッチ方向に垂直な2方向からs偏光の照明光を照射し、パターンピッチ方向に平行な2方向からp偏光の照明光を照射する。4方向照明は前記の2方向照明に比べて、照明光学系が複雑になるが、ノイズをさらに低減することができる。 Further, an illumination method suitable for irradiating the wafer with illumination light from four directions and detecting a pattern short is shown in FIG. Illumination light of s-polarization is emitted from two directions perpendicular to the pattern pitch direction, and illumination light of p-polarization is emitted from two directions parallel to the pattern pitch direction. Although the four-directional illumination complicates the illumination optical system compared to the two-directional illumination described above, noise can be further reduced.
 また、パターン欠陥検査では、致命欠陥であるオープンの検出も重要である。図6は、ラインアンドスペースパターンのオープンに対して、照明光の方位角と信号強度との関係を示す。オープンの信号強度が最大となるのは、p偏光で方位角90度である。しかし、この条件では図3に示したように、ショートの信号強度は0になってしまう。 Moreover, in pattern defect inspection, detection of an open which is a fatal defect is also important. FIG. 6 shows the relationship between the azimuth angle of the illumination light and the signal strength with respect to the opening of the line and space pattern. The open signal strength is maximized at p-polarization at an azimuth of 90 degrees. However, under this condition, as shown in FIG. 3, the short signal strength becomes zero.
 そこで、ショートとオープンが存在するウェハにおいて、両方を検出するのに好適な照明方法を図7に示す。パターンピッチ方向に垂直な2方向から、照明光をウェハに照射する。第1の照明光はs偏光、第2の照明光はp偏光とする。このような2方向照明により、第1の照明光でショートを検出でき、第2の照明光でオープンを検出できる。 Therefore, a suitable illumination method for detecting both shorts and open wafers is shown in FIG. Illumination light is applied to the wafer from two directions perpendicular to the pattern pitch direction. The first illumination light is s-polarized, and the second illumination light is p-polarized. With such two-directional illumination, a short can be detected by the first illumination light, and an open can be detected by the second illumination light.
 また、ショートとオープンの両方を検出するのに好適な、他の照明方法を図8に示す。パターンピッチ方向に平行な2方向から、照明光をウェハに照射する。第1の照明光はs偏光、第2の照明光はp偏光とする。このような2方向照明により、第1の照明光でオープンを検出でき、第2の照明光でショートを検出できる。 Also, another illumination method suitable for detecting both short and open is shown in FIG. Illumination light is applied to the wafer from two directions parallel to the pattern pitch direction. The first illumination light is s-polarized, and the second illumination light is p-polarized. With such two-directional illumination, the open can be detected by the first illumination light, and the short can be detected by the second illumination light.
 以上に述べた照明条件について、ユーザによる設定の流れを図9に示す。まず、入出力操作部にて、検査装置上のパターンの主要な方向を入力する。次に、注目欠陥種を入力する。上記の入力情報に基づき、全体制御部は推奨照明条件を選定し、操作画面に表示する。ユーザはこの照明条件を確認し、検査レシピに設定登録する。図10は、パターン方向がY方向、注目欠陥種がショート、照明光方向が2方向の場合の、操作画面を示す。 A flow of setting by the user regarding the illumination conditions described above is shown in FIG. First, the main direction of the pattern on the inspection apparatus is input at the input / output operation unit. Next, the target defect type is input. Based on the above input information, the overall control unit selects a recommended illumination condition and displays it on the operation screen. The user confirms this lighting condition and sets and registers it in the inspection recipe. FIG. 10 shows the operation screen in the case where the pattern direction is the Y direction, the defect type of interest is the short, and the illumination light direction is the two directions.
 次に、酸化膜上のパターン欠陥の検査について、説明する。酸化膜は透明なので薄膜干渉が生じ、酸化膜厚によって信号強度が著しく変動する。膜厚むらが大きいウェハでは、薄膜干渉効果を低減するために、波長の異なる光で照明する方法が有効である。 Next, inspection of pattern defects on the oxide film will be described. Since the oxide film is transparent, thin film interference occurs, and the signal strength varies significantly depending on the oxide film thickness. For a wafer with large film thickness unevenness, a method of illuminating with light of different wavelengths is effective to reduce the thin film interference effect.
 酸化膜上のパターン欠陥検査に好適な本発明の第2の実施形態を、図11を用いて説明する。光源31は遠紫外光を発光し、光源32は紫外光を発光する。遠紫外光は第1の偏光素子51と第1の照明光学系61を介して、直線偏光にてウェハを照射する。紫外光は第2の偏光素子52と第2の照明光学系62を介して、直線偏光にてウェハを照射する。ここで、遠紫外光の方向と紫外光の方向は、ウェハ面への射影が互いに垂直となるように設定されている。前記の射影はウェハの主要なパターンに対して、垂直または平行である。また、遠紫外光の偏光と紫外光の偏光は異なり、一方はs偏光で他方はp偏光である。ウェハで散乱された遠紫外光と紫外光は検出光学系7により捕集され、暗視野像が検出器8に結像する。 A second embodiment of the present invention suitable for pattern defect inspection on an oxide film will be described with reference to FIG. The light source 31 emits far ultraviolet light, and the light source 32 emits ultraviolet light. The far ultraviolet light irradiates the wafer with linearly polarized light via the first polarizing element 51 and the first illumination optical system 61. The ultraviolet light illuminates the wafer with linearly polarized light through the second polarizing element 52 and the second illumination optical system 62. Here, the direction of the far ultraviolet light and the direction of the ultraviolet light are set so that the projections on the wafer surface are perpendicular to each other. The projection is perpendicular or parallel to the main pattern of the wafer. Also, the polarization of far ultraviolet light and the polarization of ultraviolet light are different, one is s-polarization and the other is p-polarization. The far ultraviolet light and the ultraviolet light scattered by the wafer are collected by the detection optical system 7, and a dark field image is formed on the detector 8.
 パターンショートを検出するのに好適な照明方法を、図12に示す。パターンピッチ方向に垂直な方向から、s偏光の遠紫外光を照射する。パターンピッチ方向に平行な方向から、p偏光の紫外光を照射する。 An illumination method suitable for detecting pattern shorts is shown in FIG. The s-polarized far-ultraviolet light is irradiated from a direction perpendicular to the pattern pitch direction. The p-polarized ultraviolet light is irradiated from a direction parallel to the pattern pitch direction.
 図13は、酸化膜厚とショートの信号強度との関係を示す。遠紫外光の信号強度と紫外光の信号強度は、それぞれ膜厚に対して著しく変動することが分かる。一方、遠紫外光の信号強度と紫外光の信号強度の和は、膜厚に対する変動が小さい。このように、波長と偏光がそれぞれ異なる2方向照明により、膜厚むらがあるウェハでも信号強度を確保することができる。 FIG. 13 shows the relationship between the oxide film thickness and the signal strength of the short. It can be seen that the signal intensity of the far ultraviolet light and the signal intensity of the ultraviolet light significantly change with respect to the film thickness. On the other hand, the sum of the signal intensity of far ultraviolet light and the signal intensity of ultraviolet light has a small fluctuation with respect to the film thickness. As described above, two-directional illumination with different wavelengths and polarizations can ensure signal strength even on wafers with uneven film thickness.
 以上の実施形態では、照明光は空間的にインコヒーレントであるが、光路長を同じにして、コヒーレントにすることもできる。コヒーレント照明では、ノイズは増加するが、干渉効果により信号強度がさらに増加する場合がある。そのため、ノイズは十分小さいけれども、信号強度が不足している場合に、有効である。 In the above embodiments, the illumination light is spatially incoherent, but the optical path lengths can be made identical to make it coherent. In coherent illumination, although noise increases, interference effects may further increase the signal strength. Therefore, although the noise is sufficiently small, it is effective when the signal strength is insufficient.
 また、以上の実施形態では、照明方向のウェハ面への射影はパターンの主要な方向に対して垂直または平行であるが、角度が多少ずれても、ほぼ同じ効果が得られる。 Also, in the above embodiments, the projection of the illumination direction onto the wafer surface is perpendicular or parallel to the main direction of the pattern, but substantially the same effect can be obtained even if the angle deviates a little.
 また、以上の実施形態では、照明光の偏光はs偏光とp偏光であるが、偏光が多少ずれても、ほぼ同じ効果が得られる。 Also, in the above embodiments, the polarization of the illumination light is s-polarization and p-polarization, but even if the polarization is somewhat offset, substantially the same effect can be obtained.
 また、以上の実施形態では、ウェハ上の照明領域をスリット状にすることもできる。ウェハを短手方向に走査して、高スループットの欠陥検査が可能となる。 Also, in the above embodiments, the illumination area on the wafer can be slit. By scanning the wafer in the lateral direction, high throughput defect inspection is possible.
 また、以上の実施形態では、複数の検出系を設けることもできる。多くの場合、欠陥の散乱光分布は酸化膜厚によって変化する。そこで、上方検出系と斜方検出系の併用により、膜厚むらに対して、検出感度を安定化する効果が得られる。 Further, in the above embodiments, a plurality of detection systems can be provided. In many cases, the scattered light distribution of defects changes with the oxide film thickness. Therefore, the combined use of the upper detection system and the oblique detection system provides the effect of stabilizing the detection sensitivity to film thickness unevenness.
 また、以上の実施形態では、半導体ウェハの暗視野欠陥検査装置について説明したが、本発明は明視野欠陥検査装置にも適用可能である。 Moreover, although the dark-field defect inspection apparatus of a semiconductor wafer was demonstrated in the above embodiment, this invention is applicable also to a bright-field defect inspection apparatus.
 また、本発明は、半導体リソグラフィ工程のマスクなどの微細パターンが形成された試料の検査にも適用できる。 The present invention is also applicable to inspection of a sample on which a fine pattern such as a mask in a semiconductor lithography process is formed.
1 ウェハ
2 ステージ
3 光源
4 分岐素子
7 検出光学系
8 検出器
9 画像処理部
10 全体制御部
11 入出力操作部
51 第1の偏光素子
52 第2の偏光素子
61 第1の照明光学系
62 第2の照明光学系
DESCRIPTION OF SYMBOLS 1 wafer 2 stage 3 light source 4 branch element 7 detection optical system 8 detector 9 image processing unit 10 overall control unit 11 input / output operation unit 51 first polarization element 52 second polarization element 61 first illumination optical system 62 first 2 illumination optics

Claims (19)

  1.  パターンが形成された試料に、複数の方向から照明光を照射し、該試料の像を光学系を介して画像センサに結像し、欠陥の有無を判定する欠陥検査装置において、
     少なくとも2つの照明方向の該試料への射影は該試料のパターンの方向に対して垂直または平行であり、
     該第1の方向の照明光の偏光と該第2の方向の照明光の偏光は互いに異なることを特徴とする欠陥検査装置。
    In a defect inspection apparatus, a sample on which a pattern is formed is irradiated with illumination light from a plurality of directions, an image of the sample is formed on an image sensor through an optical system, and the presence or absence of a defect is determined.
    The projection of the at least two illumination directions onto the sample is perpendicular or parallel to the direction of the pattern of the sample,
    A defect inspection apparatus, wherein the polarization of the illumination light in the first direction and the polarization of the illumination light in the second direction are different from each other.
  2.  請求項1記載の欠陥検査装置において、
     該第1の方向の射影と該第2の方向の射影は互いに垂直であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    A defect inspection apparatus, wherein the projection of the first direction and the projection of the second direction are perpendicular to each other.
  3.  請求項1記載の欠陥検査装置において、
     該第1の方向の射影と該第2の方向の射影は互いに平行であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    A defect inspection apparatus, wherein the projection of the first direction and the projection of the second direction are parallel to each other.
  4.  請求項1記載の欠陥検査装置において、
     該第1の方向の照明光の偏光はs偏光であり、該第2の方向の照明光の偏光はp偏光であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    The defect inspection apparatus, wherein the polarization of the illumination light in the first direction is s-polarization, and the polarization of the illumination light in the second direction is p-polarization.
  5.  請求項1記載の欠陥検査装置において、
     該光学系は暗視野型であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    The defect inspection apparatus characterized in that the optical system is a dark field type.
  6.  請求項1記載の欠陥検査装置において、
     該光学系は明視野型であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    The defect inspection apparatus characterized in that the optical system is a bright field type.
  7.  請求項1記載の欠陥検査装置において、
     該第1の方向の照明光と該第2の方向の照明光は空間的にインコヒーレントであることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    A defect inspection apparatus, wherein the illumination light in the first direction and the illumination light in the second direction are spatially incoherent.
  8.  請求項1記載の欠陥検査装置において、
     該第1の方向の照明光と該第2の方向の照明光は空間的にコヒーレントであることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    A defect inspection apparatus, wherein the illumination light in the first direction and the illumination light in the second direction are spatially coherent.
  9.  パターンが形成された試料に、複数の方向から照明光を照射し、該試料の像を光学系を介して画像センサに結像し、欠陥の有無を判定する欠陥検査装置において、
     少なくとも2つの照明方向の該試料への射影は該試料のパターンの方向に対して垂直または平行であり、
     該第1の方向の照明光の波長と該第2の方向の照明光の波長は互いに異なり、
     該第1の方向の照明光の偏光と該第2の方向の照明光の偏光は互いに異なることを特徴とする欠陥検査装置。
    In a defect inspection apparatus, a sample on which a pattern is formed is irradiated with illumination light from a plurality of directions, an image of the sample is formed on an image sensor through an optical system, and the presence or absence of a defect is determined.
    The projection of the at least two illumination directions onto the sample is perpendicular or parallel to the direction of the pattern of the sample,
    The wavelength of the illumination light in the first direction and the wavelength of the illumination light in the second direction are different from each other
    A defect inspection apparatus, wherein the polarization of the illumination light in the first direction and the polarization of the illumination light in the second direction are different from each other.
  10.  請求項9記載の欠陥検査装置において、
     該第1の方向の射影と該第2の方向の射影は互いに垂直であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 9,
    A defect inspection apparatus, wherein the projection of the first direction and the projection of the second direction are perpendicular to each other.
  11.  請求項9記載の欠陥検査装置において、
     該第1の方向の射影と該第2の方向の射影は互いに平行であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 9,
    A defect inspection apparatus, wherein the projection of the first direction and the projection of the second direction are parallel to each other.
  12.  請求項9記載の欠陥検査装置において、
     該第1の方向の照明光の偏光はs偏光であり、該第2の方向の照明光の偏光はp偏光であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 9,
    The defect inspection apparatus, wherein the polarization of the illumination light in the first direction is s-polarization, and the polarization of the illumination light in the second direction is p-polarization.
  13.  請求項9記載の欠陥検査装置において、
     該光学系は暗視野型であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 9,
    The defect inspection apparatus characterized in that the optical system is a dark field type.
  14.  請求項9記載の欠陥検査装置において、
     該光学系は明視野型であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 9,
    The defect inspection apparatus characterized in that the optical system is a bright field type.
  15.  請求項9記載の欠陥検査装置において、
     該第1の方向の照明光と該第2の照明光は空間的にインコヒーレントであることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 9,
    A defect inspection apparatus, wherein the illumination light in the first direction and the second illumination light are spatially incoherent.
  16.  請求項9記載の欠陥検査装置において、
     該第1の方向の照明光と該第2の照明光は空間的にコヒーレントであることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 9,
    A defect inspection apparatus, wherein the illumination light in the first direction and the second illumination light are spatially coherent.
  17.  欠陥検査装置において、
     パターンの形成された試料を移動するステージと、
     前記試料へ第1の光を照射する第1の照明光学系と、
     前記第1の光とは異なる偏光状態の第2の光を照射する第2の照明光学系と、
     前記試料からの光を検出する検出光学系と、
     前記検出光学系の検出結果を用いて欠陥の有無を判別する処理部と、を有し、
     前記第1の光の試料への射影と、前記第2の光の試料への射影とは、互いに方向が異なることを特徴とする欠陥検査装置。
    In the defect inspection system
    A stage for moving the pattern-formed sample;
    A first illumination optical system for irradiating the sample with a first light;
    A second illumination optical system that emits a second light of a polarization state different from the first light;
    A detection optical system that detects light from the sample;
    A processing unit that determines the presence or absence of a defect using the detection result of the detection optical system;
    A defect inspection apparatus, wherein the projection of the first light onto the sample and the projection of the second light onto the sample are different in direction from each other.
  18.  請求項17に記載の欠陥検査装置において、
     前記第1の光の試料への射影は、前記試料のパターンピッチに対して垂直であり、前記第2の光の試料への射影は、前記試料のパターンピッチに対して平行であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 17,
    The projection of the first light onto the sample is perpendicular to the pattern pitch of the sample, and the projection of the second light onto the sample is parallel to the pattern pitch of the sample Defect inspection device.
  19.  パターンが形成された試料の欠陥検査方法であって、
     前記試料に対して、偏光状態の異なる少なくとも2つ以上の光を照射し、
     前記2つの光の前記試料への射影は、互いに方向が異なることを特徴とする欠陥検査方法。
    It is a defect inspection method of the sample in which the pattern was formed, and
    Irradiating the sample with at least two or more lights of different polarization states;
    The defect inspection method characterized in that the projections of the two lights onto the sample are different in direction from each other.
PCT/JP2010/006479 2009-12-14 2010-11-04 Defect inspection apparatus and defect inspection method WO2011074171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/515,762 US20120327415A1 (en) 2009-12-14 2010-11-04 Defect inspection apparatus and defect inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-282363 2009-12-14
JP2009282363A JP2011122990A (en) 2009-12-14 2009-12-14 Defect inspection apparatus and defect inspection method

Publications (1)

Publication Number Publication Date
WO2011074171A1 true WO2011074171A1 (en) 2011-06-23

Family

ID=44166946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006479 WO2011074171A1 (en) 2009-12-14 2010-11-04 Defect inspection apparatus and defect inspection method

Country Status (3)

Country Link
US (1) US20120327415A1 (en)
JP (1) JP2011122990A (en)
WO (1) WO2011074171A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9747670B2 (en) * 2013-06-26 2017-08-29 Kla-Tencor Corporation Method and system for improving wafer surface inspection sensitivity
JP6273162B2 (en) * 2014-03-25 2018-01-31 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
JP6406606B2 (en) * 2014-10-06 2018-10-17 パナソニックIpマネジメント株式会社 Gloss determination apparatus and gloss determination method
US20170284943A1 (en) * 2016-03-29 2017-10-05 Nilanjan Ghosh Detecting voids and delamination in photoresist layer
JP6716160B2 (en) * 2016-05-31 2020-07-01 株式会社ディスコ Processing device and processing method
JP6149990B2 (en) * 2016-09-02 2017-06-21 Jfeスチール株式会社 Surface defect detection method and surface defect detection apparatus
US10739275B2 (en) 2016-09-15 2020-08-11 Kla-Tencor Corporation Simultaneous multi-directional laser wafer inspection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225432A (en) * 2006-02-23 2007-09-06 Hitachi High-Technologies Corp Inspection method and inspection device
JP2007232555A (en) * 2006-03-01 2007-09-13 Hitachi High-Technologies Corp Defect inspection method and device therefor
JP2008051666A (en) * 2006-08-25 2008-03-06 Hitachi High-Technologies Corp Flaw inspection device
JP2009276273A (en) * 2008-05-16 2009-11-26 Hitachi High-Technologies Corp Defect inspecting device and method for inspecting defect

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068363B2 (en) * 2003-06-06 2006-06-27 Kla-Tencor Technologies Corp. Systems for inspection of patterned or unpatterned wafers and other specimen
US7239389B2 (en) * 2004-07-29 2007-07-03 Applied Materials, Israel, Ltd. Determination of irradiation parameters for inspection of a surface
JP5221858B2 (en) * 2006-08-30 2013-06-26 株式会社日立ハイテクノロジーズ Defect inspection apparatus and defect inspection method
US7714997B2 (en) * 2006-11-07 2010-05-11 Hitachi High-Technologies Corporation Apparatus for inspecting defects
JP4876019B2 (en) * 2007-04-25 2012-02-15 株式会社日立ハイテクノロジーズ Defect inspection apparatus and method
JP2010025713A (en) * 2008-07-18 2010-02-04 Hitachi High-Technologies Corp Flaw inspection method and flaw inspection device
JP5032677B2 (en) * 2011-02-04 2012-09-26 株式会社東芝 Liquid crystal module and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225432A (en) * 2006-02-23 2007-09-06 Hitachi High-Technologies Corp Inspection method and inspection device
JP2007232555A (en) * 2006-03-01 2007-09-13 Hitachi High-Technologies Corp Defect inspection method and device therefor
JP2008051666A (en) * 2006-08-25 2008-03-06 Hitachi High-Technologies Corp Flaw inspection device
JP2009276273A (en) * 2008-05-16 2009-11-26 Hitachi High-Technologies Corp Defect inspecting device and method for inspecting defect

Also Published As

Publication number Publication date
US20120327415A1 (en) 2012-12-27
JP2011122990A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP6580771B2 (en) System for examining samples in two separate channels simultaneously
WO2011074171A1 (en) Defect inspection apparatus and defect inspection method
JP4529366B2 (en) Defect inspection apparatus, defect inspection method, and hole pattern inspection method
US7643137B2 (en) Defect inspection apparatus, defect inspection method and method of inspecting hole pattern
US8319960B2 (en) Defect inspection system
US6768543B1 (en) Wafer inspection apparatus with unique illumination methodology and method of operation
US20090315988A1 (en) Observation device, inspection device and inspection method
WO2010050488A1 (en) Defect inspection device and defect inspection method
JP2009281898A (en) Defect inspection method and apparatus for the same
WO2009091034A1 (en) Surface inspection apparatus and surface inspection method
US20080243412A1 (en) Apparatus for Inspecting Defect and Method of Inspecting Defect
JPWO2008007614A1 (en) Surface inspection device
JP2009198230A (en) Defect inspecting device and defect inspecting method
US20130063721A1 (en) Pattern inspection apparatus and method
JP4723399B2 (en) Inspection method and inspection apparatus
JP2014041015A (en) Pattern inspection device
KR101899191B1 (en) Super resolution inspection system
JP4901090B2 (en) Defect inspection method and defect detection apparatus
JP3956942B2 (en) Defect inspection method and apparatus
JP5500427B2 (en) Surface inspection apparatus and surface inspection method
JP5287891B2 (en) Defect inspection method
JP3918840B2 (en) Defect inspection method and apparatus
JP4696607B2 (en) Surface inspection device
JP2006258472A (en) Defect inspection device
JP4661441B2 (en) Defect measuring equipment for periodic structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837208

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13515762

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10837208

Country of ref document: EP

Kind code of ref document: A1