WO2011073139A1 - Method of enhancing perfume retention during storage or of enhancing perfume bloom using low total fatty matter extruded bars having starch polyol structuring system - Google Patents
Method of enhancing perfume retention during storage or of enhancing perfume bloom using low total fatty matter extruded bars having starch polyol structuring system Download PDFInfo
- Publication number
- WO2011073139A1 WO2011073139A1 PCT/EP2010/069517 EP2010069517W WO2011073139A1 WO 2011073139 A1 WO2011073139 A1 WO 2011073139A1 EP 2010069517 W EP2010069517 W EP 2010069517W WO 2011073139 A1 WO2011073139 A1 WO 2011073139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- perfume
- bar
- bars
- starch
- soap
- Prior art date
Links
- 239000002304 perfume Substances 0.000 title claims abstract description 212
- 238000000034 method Methods 0.000 title claims abstract description 64
- 229920005862 polyol Polymers 0.000 title claims abstract description 51
- 238000003860 storage Methods 0.000 title claims abstract description 47
- 230000014759 maintenance of location Effects 0.000 title claims abstract description 40
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 16
- 229920002472 Starch Polymers 0.000 title claims description 49
- 239000008107 starch Substances 0.000 title claims description 48
- 235000019698 starch Nutrition 0.000 title claims description 48
- 150000003077 polyols Chemical class 0.000 title claims description 43
- 239000000203 mixture Substances 0.000 claims abstract description 137
- 239000000344 soap Substances 0.000 claims description 111
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 77
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 54
- 239000000194 fatty acid Substances 0.000 claims description 54
- 229930195729 fatty acid Natural products 0.000 claims description 54
- 150000004665 fatty acids Chemical class 0.000 claims description 50
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 36
- 150000003839 salts Chemical class 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 28
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 13
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 13
- 239000000600 sorbitol Substances 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 12
- 150000001768 cations Chemical class 0.000 claims description 10
- 238000007865 diluting Methods 0.000 claims description 2
- 238000010790 dilution Methods 0.000 abstract description 11
- 239000012895 dilution Substances 0.000 abstract description 11
- 239000003921 oil Substances 0.000 description 42
- 235000019198 oils Nutrition 0.000 description 42
- -1 alkali metal salt Chemical class 0.000 description 39
- 239000003205 fragrance Substances 0.000 description 24
- 230000008569 process Effects 0.000 description 24
- 239000004094 surface-active agent Substances 0.000 description 23
- 238000001125 extrusion Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 238000009472 formulation Methods 0.000 description 21
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 18
- 238000004817 gas chromatography Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 16
- 239000004615 ingredient Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 235000011187 glycerol Nutrition 0.000 description 14
- 239000003599 detergent Substances 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 235000010356 sorbitol Nutrition 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 239000003240 coconut oil Substances 0.000 description 8
- 235000019864 coconut oil Nutrition 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000003607 modifier Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 239000003945 anionic surfactant Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 238000005192 partition Methods 0.000 description 7
- 239000012808 vapor phase Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 240000008042 Zea mays Species 0.000 description 6
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 239000003925 fat Substances 0.000 description 5
- 235000019197 fats Nutrition 0.000 description 5
- 239000011236 particulate material Substances 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- 239000000454 talc Substances 0.000 description 5
- 229910052623 talc Inorganic materials 0.000 description 5
- 239000003760 tallow Substances 0.000 description 5
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000001931 aliphatic group Chemical class 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 235000009973 maize Nutrition 0.000 description 4
- 239000003346 palm kernel oil Substances 0.000 description 4
- 235000019865 palm kernel oil Nutrition 0.000 description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004382 Amylase Substances 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- 229910021532 Calcite Inorganic materials 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 240000003183 Manihot esculenta Species 0.000 description 3
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 3
- 229920000881 Modified starch Polymers 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 235000019482 Palm oil Nutrition 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 244000061456 Solanum tuberosum Species 0.000 description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 3
- 244000098338 Triticum aestivum Species 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000002540 palm oil Substances 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 238000007127 saponification reaction Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- ZZHLYYDVIOPZBE-UHFFFAOYSA-N Trimeprazine Chemical compound C1=CC=C2N(CC(CN(C)C)C)C3=CC=CC=C3SC2=C1 ZZHLYYDVIOPZBE-UHFFFAOYSA-N 0.000 description 2
- 229930003316 Vitamin D Natural products 0.000 description 2
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- AKGGYBADQZYZPD-UHFFFAOYSA-N benzylacetone Chemical compound CC(=O)CCC1=CC=CC=C1 AKGGYBADQZYZPD-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229960001484 edetic acid Drugs 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- VEVFSWCSRVJBSM-HOFKKMOUSA-N ethyl 4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine-1-carboxylate Chemical compound C1CN(C(=O)OCC)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 VEVFSWCSRVJBSM-HOFKKMOUSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- 150000002314 glycerols Chemical class 0.000 description 2
- 230000003779 hair growth Effects 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000019388 lanolin Nutrition 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229930002330 retinoic acid Natural products 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- AGGIJOLULBJGTQ-UHFFFAOYSA-N sulfoacetic acid Chemical class OC(=O)CS(O)(=O)=O AGGIJOLULBJGTQ-UHFFFAOYSA-N 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 235000019166 vitamin D Nutrition 0.000 description 2
- 239000011710 vitamin D Substances 0.000 description 2
- 150000003710 vitamin D derivatives Chemical class 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- SDOFMBGMRVAJNF-KVTDHHQDSA-N (2r,3r,4r,5r)-6-aminohexane-1,2,3,4,5-pentol Chemical compound NC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO SDOFMBGMRVAJNF-KVTDHHQDSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- NSSALFVIQPAIQK-FPLPWBNLSA-N (Z)-2-Nonen-1-ol Chemical compound CCCCCC\C=C/CO NSSALFVIQPAIQK-FPLPWBNLSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- RCSBILYQLVXLJG-UHFFFAOYSA-N 2-Propenyl hexanoate Chemical compound CCCCCC(=O)OCC=C RCSBILYQLVXLJG-UHFFFAOYSA-N 0.000 description 1
- QDSSWFSXBZSFQO-UHFFFAOYSA-N 2-amino-6-ethyl-1h-pyrimidin-4-one Chemical compound CCC1=CC(=O)N=C(N)N1 QDSSWFSXBZSFQO-UHFFFAOYSA-N 0.000 description 1
- BHVJSLPLFOAMEV-UHIFYLTQSA-M 20-Epibryonolic acid Natural products C([C@H]1[C@]2(C)CC3)[C@@](C)(C([O-])=O)CC[C@]1(C)CC[C@]2(C)C1=C3[C@@]2(C)CC[C@H](O)C(C)(C)[C@@H]2CC1 BHVJSLPLFOAMEV-UHIFYLTQSA-M 0.000 description 1
- AJBZENLMTKDAEK-UHFFFAOYSA-N 3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-4,9-diol Chemical compound CC12CCC(O)C(C)(C)C1CCC(C1(C)CC3O)(C)C2CCC1C1C3(C)CCC1C(=C)C AJBZENLMTKDAEK-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- CKNYEUXAXWTAPK-UHFFFAOYSA-N 4-octoxy-4-oxobutanoic acid Chemical compound CCCCCCCCOC(=O)CCC(O)=O CKNYEUXAXWTAPK-UHFFFAOYSA-N 0.000 description 1
- 239000002677 5-alpha reductase inhibitor Substances 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 244000205574 Acorus calamus Species 0.000 description 1
- TWXUTZNBHUWMKJ-UHFFFAOYSA-N Allyl cyclohexylpropionate Chemical compound C=CCOC(=O)CCC1CCCCC1 TWXUTZNBHUWMKJ-UHFFFAOYSA-N 0.000 description 1
- 244000144927 Aloe barbadensis Species 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 239000004251 Ammonium lactate Substances 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 241000237519 Bivalvia Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- BHVJSLPLFOAMEV-UHFFFAOYSA-N Bryonolic acid Natural products C1CC2(C)C3CC(C)(C(O)=O)CCC3(C)CCC2(C)C2=C1C1(C)CCC(O)C(C)(C)C1CC2 BHVJSLPLFOAMEV-UHFFFAOYSA-N 0.000 description 1
- 235000011996 Calamus deerratus Nutrition 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 235000003880 Calendula Nutrition 0.000 description 1
- 240000001432 Calendula officinalis Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 1
- 241000555678 Citrus unshiu Species 0.000 description 1
- 240000007311 Commiphora myrrha Species 0.000 description 1
- 235000006965 Commiphora myrrha Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 208000001840 Dandruff Diseases 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 239000004287 Dehydroacetic acid Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000208152 Geranium Species 0.000 description 1
- 244000194101 Ginkgo biloba Species 0.000 description 1
- 241000208680 Hamamelis mollis Species 0.000 description 1
- 244000018716 Impatiens biflora Species 0.000 description 1
- 235000015912 Impatiens biflora Nutrition 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 244000179970 Monarda didyma Species 0.000 description 1
- 235000010672 Monarda didyma Nutrition 0.000 description 1
- 244000002791 Myrciaria paraensis Species 0.000 description 1
- 235000016392 Myrciaria paraensis Nutrition 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- 235000007265 Myrrhis odorata Nutrition 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 125000003047 N-acetyl group Chemical group 0.000 description 1
- 235000017879 Nasturtium officinale Nutrition 0.000 description 1
- 240000005407 Nasturtium officinale Species 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical class OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical group [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 240000004371 Panax ginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 244000025272 Persea americana Species 0.000 description 1
- 235000008673 Persea americana Nutrition 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 229940122511 Sebum inhibitor Drugs 0.000 description 1
- 206010040799 Skin atrophy Diseases 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 240000007313 Tilia cordata Species 0.000 description 1
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 244000273928 Zingiber officinale Species 0.000 description 1
- 235000006886 Zingiber officinale Nutrition 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229960003790 alimemazine Drugs 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229930002945 all-trans-retinaldehyde Natural products 0.000 description 1
- 229940069521 aloe extract Drugs 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- FIQKTHSUXBJBCQ-UHFFFAOYSA-K aluminum;hydrogen phosphate;hydroxide Chemical compound O.[Al+3].[O-]P([O-])([O-])=O FIQKTHSUXBJBCQ-UHFFFAOYSA-K 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940059265 ammonium lactate Drugs 0.000 description 1
- 235000019286 ammonium lactate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940051879 analgesics and antipyretics salicylic acid and derivative Drugs 0.000 description 1
- 239000000058 anti acne agent Substances 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- 229940124340 antiacne agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- RZOBLYBZQXQGFY-HSHFZTNMSA-N azanium;(2r)-2-hydroxypropanoate Chemical compound [NH4+].C[C@@H](O)C([O-])=O RZOBLYBZQXQGFY-HSHFZTNMSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- ZFXVRMSLJDYJCH-UHFFFAOYSA-N calcium magnesium Chemical compound [Mg].[Ca] ZFXVRMSLJDYJCH-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229930006739 camphene Natural products 0.000 description 1
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-O carboxymethyl-[3-(dodecanoylamino)propyl]-dimethylazanium Chemical group CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(O)=O MRUAUOIMASANKQ-UHFFFAOYSA-O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N cinnamic acid Chemical class OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- WJSDHUCWMSHDCR-VMPITWQZSA-N cinnamyl acetate Natural products CC(=O)OC\C=C\C1=CC=CC=C1 WJSDHUCWMSHDCR-VMPITWQZSA-N 0.000 description 1
- 229940043350 citral Drugs 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019258 dehydroacetic acid Nutrition 0.000 description 1
- 229940061632 dehydroacetic acid Drugs 0.000 description 1
- JEQRBTDTEKWZBW-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1=C(O)OC(C)=CC1=O JEQRBTDTEKWZBW-UHFFFAOYSA-N 0.000 description 1
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Natural products CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 description 1
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 description 1
- 239000007854 depigmenting agent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000035618 desquamation Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 229940120503 dihydroxyacetone Drugs 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002481 ethanol extraction Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- SBBWEQLNKVHYCX-UHFFFAOYSA-N ethyl 2-amino-3-(4-hydroxyphenyl)propanoate Chemical compound CCOC(=O)C(N)CC1=CC=C(O)C=C1 SBBWEQLNKVHYCX-UHFFFAOYSA-N 0.000 description 1
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 235000008995 european elder Nutrition 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- ZWJINEZUASEZBH-UHFFFAOYSA-N fenamic acid Chemical class OC(=O)C1=CC=CC=C1NC1=CC=CC=C1 ZWJINEZUASEZBH-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 1
- 229960004039 finasteride Drugs 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 1
- 235000008397 ginger Nutrition 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229940087559 grape seed Drugs 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 230000003646 hair health Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229960003632 minoxidil Drugs 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 235000019488 nut oil Nutrition 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- QKNZNUNCDJZTCH-UHFFFAOYSA-N pentyl benzoate Chemical compound CCCCCOC(=O)C1=CC=CC=C1 QKNZNUNCDJZTCH-UHFFFAOYSA-N 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229940068917 polyethylene glycols Drugs 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical class [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000005599 propionic acid derivatives Chemical class 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 235000020945 retinal Nutrition 0.000 description 1
- 239000011604 retinal Substances 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- NCYCYZXNIZJOKI-OVSJKPMPSA-N retinal group Chemical group C\C(=C/C=O)\C=C\C=C(\C=C\C1=C(CCCC1(C)C)C)/C NCYCYZXNIZJOKI-OVSJKPMPSA-N 0.000 description 1
- 235000020944 retinol Nutrition 0.000 description 1
- 239000011607 retinol Substances 0.000 description 1
- 229960003471 retinol Drugs 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000036559 skin health Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- VZWGHDYJGOMEKT-UHFFFAOYSA-J sodium pyrophosphate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O VZWGHDYJGOMEKT-UHFFFAOYSA-J 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000005480 straight-chain fatty acid group Chemical group 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical class CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 229960003500 triclosan Drugs 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 125000005457 triglyceride group Chemical group 0.000 description 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical class [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-L tyrosinate(2-) Chemical compound [O-]C(=O)C(N)CC1=CC=C([O-])C=C1 OUYCCCASQSFEME-UHFFFAOYSA-L 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229940118846 witch hazel Drugs 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/44—Perfumes; Colouring materials; Brightening agents ; Bleaching agents
- C11D9/442—Perfumes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D13/00—Making of soap or soap solutions in general; Apparatus therefor
- C11D13/14—Shaping
- C11D13/18—Shaping by extrusion or pressing
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/06—Inorganic compounds
- C11D9/08—Water-soluble compounds
- C11D9/10—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/22—Organic compounds, e.g. vitamins
- C11D9/26—Organic compounds, e.g. vitamins containing oxygen
- C11D9/262—Organic compounds, e.g. vitamins containing oxygen containing carbohydrates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/22—Organic compounds, e.g. vitamins
- C11D9/26—Organic compounds, e.g. vitamins containing oxygen
- C11D9/265—Organic compounds, e.g. vitamins containing oxygen containing glycerol
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/22—Organic compounds, e.g. vitamins
- C11D9/26—Organic compounds, e.g. vitamins containing oxygen
- C11D9/267—Organic compounds, e.g. vitamins containing oxygen containing free fatty acids
Definitions
- the present invention relates to extruded bars having relatively low amounts of total fatty matter, in particular to such bars comprising perfume.
- perfume headspace retention The percentage of perfume retained in the headspace over a bar surface (specifically, the perfume headspace concentration, after storage, divided by perfume headspace concentration at initial time zero) measured after storage at 50°C for one month can be defined as "perfume headspace retention".
- Enhanced retention in a bar is important because it is correlated with enhanced fragrance activity that is perceived by consumers, presumably because less perfume (especially top note perfume elements) is lost.
- U.S. Patent No. 6,336,553 to Gordon discloses packages that prevent fragrance or moisture loss during storage.
- JP 10060482 to Givaudan Roure Int. discloses a perfume carrier comprising a solid water-insoluble inorganic carrier, a perfume composition, a perfume thickener soluble in water, and a perfume for limiting the loss of a perfume during storage of a bar.
- WO 01/42418 to Chokappa et al. discloses a detergent bar containing 0.5 to 30% amorphous alumina, one alkali metal salt of carboxylic/sulfonic acid, 5-70% detergent active and 10-55% water.
- U.S. Patent No. 6,207,636 to Benjamin et al. discloses detergent bars having 25- 70% total fatty matter, 9-16% by weight colloidal aluminum hydroxide and 12-52% water.
- the invention also comprises a process for preparing a detergent bar.
- WO 2006/094586 to Gangopadhayay et al. discloses a low TFM detergent bar including soap (15% to 30% TFM); 25% to 70% inorganic particulates including talc and calcium carbonate; 0.5% to 10% of alumino-silicate; and 3% to 20% water.
- U.S. Patent No. 6,310,016 to Behal et al. discloses a detergent bar including soap (15-70% total fatty matter); 0.5-40% colloidal aluminum hydroxide-phosphate complex, and 10-50% water. A process for making such bars is also disclosed.
- U.S. Patent No. 6,440,908 to Racherla discloses high moisture containing bar compositions that includes a borate compound.
- the borate compound structures water in the bar thereby enabling the retention of high amounts of moisture without compromising bar properties.
- WO 2005/080541 to Gangopadhayay et al. discloses a non-granular solid cleaning composition comprising 50% to 70% of a salt of fatty acid; 1 % to 15% of a mono- or disaccharide; and 0.02% to 2% of a stabilizing agent.
- Preferred saccharides are glucose, sucrose, mannose, and fructose and the stabilizing agent is preferably chosen from the class of fungicides including formaldehyde, benzoic acid and salts thereof and methyl or ethyl paraben.
- WO 03/010272 to Anderson et al. discloses soap or detergent bar having relatively low levels of total fatty matter (40% to 78%), allowing relatively high levels of water (7% to 30%) and/or other liquid additives to be present by incorporating aluminum hydroxide and tetra sodium pyrophosphate decahydrate into the bar. Methods of producing such bars are also disclosed.
- WO 96/35772 to Wise et al. discloses laundry bar compositions including from about 20% to about 70% surfactant; from about 12% to about 24% water; from about 6.25% to about 20% calculated excess alkali metal carbonate; from about 2% to about 20% water-soluble inorganic strong-electrolyte salt; and various optional ingredients including whole-cut starch.
- WO 95/26710 to Kacher et al. discloses personal washing bar compositions that include about 5 parts to about 40 parts of a lipid skin moisturizing agent; about 10 parts to about 50 parts of a rigid crystalline skeleton network structure consisting essentially of selected fatty acid soap or a mixture of said soap and selected fatty acid; about 1 part to about 50 parts of a lathering synthetic surfactant, and; about 10 parts to about 50 parts water.
- high moisture laundry bar composition including from about 45% to about 95% structured soap composition, wherein said structured soap composition comprises a pre-mixture of from about 45% to about 75% soap; from about 5% to about 50% starch; about 25% to about 45% moisture; and wherein the ratio of starch to moisture in said structured soap composition is from about 1 :5 to about 1 .25:1 ; and from about 1 % to about 15% synthetic anionic surfactant; wherein the total moisture in the finished bar composition is from about 20% to about 40%.
- U.S. Patent Nos. 2007/0021314 and 2007/0155639 to Salvador et al. disclose cleansing bar compositions having high water content that include (a) at least about 15% by weight of the composition of water; (b) from about 40% to about 84% by weight of the composition of soap; and (c) from about 1 % to about 15% by weight of the composition of inorganic salt.
- the bar compositions further comprise a component selected from the group consisting of carbohydrate structurant, free fatty acid, synthetic surfactants, and mixtures thereof.
- the bar compositions preferably have a Water Activity ("Aw") of less than about 0.95, preferably less than about 0.90, and more preferably less than about 0.85.
- the bar compositions are preferably manufactured by a milling process.
- TFM Total Fatty Matter
- U.S. Patent No. 6,998,382 to Yang et al. discloses a process for making perfume containing surfactant compositions having perfume burst and enhanced perfume deposition when diluted.
- U.S. Patent No. 6,858,574 to Yang et al. also discloses a process for making perfume containing surfactant compositions having perfume bloom when diluted, as well as formulation factors which affect this process.
- Neither reference discloses a method of enhancing bloom using low TFM bars having starch polyol structuring system.
- EP 88846 B1 toilet bowl detergent
- HIA High Impact Accord
- CLogP oil/water partition coefficient
- EP 1656441 discloses encapsulation of blooming perfume ingredients according to HIA in soap bars.
- Encapsulation materials comprise starch, cyclodextrin, zeolite, silica or mixtures thereof.
- the present invention thus provides for both a method of enhancing perfume retention during storage and to a method of enhancing perfume bloom simply, but quite unexpectedly, by formulating into specific bar formulations as defined. More particularly, the invention is a method for enhancing perfume retention in storage (for example relative to the retention if the same perfume were used in soap bar composition having more than 60% by wt. fatty acid soap), and/or a method of enhancing perfume bloom, and/or a method of preparing a soap bar by selecting and formulating perfume into extrudable bar compositions comprising: a) 20 to less than 60%, preferably 20 to 55% by wt. fatty acid soap;
- structuring system comprising: (i) 5 to 30%, preferably 6 to 25%, even more preferably 8 to 20% by wt. polyol (preferably selected from group consisting of glycerol, sorbitol and mixtures thereof);
- bars are then stored in, e.g., a carton box (for bar packaging) as is.
- a carton box for bar packaging
- compositions are diluted with water in use (typically five to ten times dilution).
- the present invention relates to a method of enhancing perfume retention during storage (defined by storage at 50°C for one month) by selecting and formulating the perfume into specific bar formulations.
- d) structuring system comprising:
- polyol preferably selected from group consisting of glycerol, sorbitol and mixtures thereof;
- the invention in a second embodiment, relates to a method of enhancing perfume bloom by selecting and formulating perfume into the same specific bar formulations.
- d) structuring system comprising:
- polyol preferably selected from group consisting of glycerol, sorbitol and mixtures thereof;
- the structuring system comprises:
- polyol selected from the group consisting of glycerols, sorbitol and their mixtures;
- a method of preparing a soap bar according to any of the compositions described herein comprising selecting and combining the components of the composition to form a soap bar, preferably an extrudable soap bar.
- optional insoluble particles are inorganic particulates.
- the structuring system comprises:
- polyol selected from the group consisting of glycerols, sorbitol and their mixtures;
- optional insoluble particles are inorganic particulates.
- the bar is described in more detail below.
- the bar may include synthetic surfactant at levels of up to 10% by wt. of the bar, preferably 2% to 8% by wt.
- the bar can also include slip modifier which improves the feel of the wet bar when rubbed on the skin, especially when starch and/or insoluble particles are approaching upper levels of their concentration range.
- the composition contains less than 20%, preferably 14 to 19% water when the bar is initially made, i.e., immediately after it is extruded and stamped.
- the bars used in the method for enhanced retention for storage or for enhanced bloom are extruded personal washing bars that comprise specific levels of fatty acid soaps; one or more added soluble salts; optional fatty acid; a structuring system (present at levels from as low as about 20% to as high as 70%, largely depending on the levels of fatty acid soap used) and various other optional ingredients.
- fatty acid soaps one or more added soluble salts
- optional fatty acid optional fatty acid
- a structuring system present at levels from as low as about 20% to as high as 70%, largely depending on the levels of fatty acid soap used
- various other optional ingredients are described even further below.
- the bar compositions of the invention are capable of being manufactured at high production rates by processes that generally involve the extrusion forming of ingots or billets, and stamping or molding of these billets into individual tablets, cakes, or bars.
- the mass formed from the bar composition is capable of (i) being extruded at a rate in excess of 9 kg per minute, preferably at or exceeding 27 kg per minute and ideally at or exceeding 36 kg per minute; and (ii) capable of being stamped at a rate exceeding 100 bars per minute, preferably exceeding 300 bars per minute and ideally at a rate at or above 400 bars per minute.
- personal washing bars produced from these composition sat high production rates should possess a range of physical properties that make them entirely suitable for every day use by mass market consumers. Test methods useful in assessing various physical properties of bars manufactured from these compositions to establish criteria for manufacturing capability and consumer acceptability are described below in the TEST METHODOLOGY section. Bar Composition (used in Method of Invention)
- the fatty acid soaps, other surfactants and in fact all the components of the bar should be suitable for routine contact with human skin and preferably yield bars that are high lathering.
- the preferred type of surfactant is fatty acid soap.
- soap is used herein in its popular sense, i.e., the alkali metal or alkanol ammonium salts of aliphatic, alkane-, or alkene monocarboxylic acids.
- Sodium, potassium, magnesium, mono-, di- and tri- ethanol ammonium cations, or combinations thereof, are the most suitable for purposes of this invention.
- sodium soaps are used in the compositions of this invention, but from about 1 % to about 25% of the soap may be potassium, magnesium or triethanolamine soaps.
- the soaps useful herein are the well known alkali metal salts of natural or synthetic aliphatic (alkanoic or alkenoic) acids having about 8 to about 22 carbon atoms, preferably about 10 to about 18 carbon atoms. They may be described as alkali metal carboxylates of saturated or unsaturated hydrocarbons having about 8 to about 22 carbon atoms. Soaps having the fatty acid distribution of coconut oil may provide the lower end of the broad molecular weight range. Those soaps having the fatty acid distribution of peanut or rapeseed oil, or their hydrogenated derivatives, may provide the upper end of the broad molecular weight range.
- soaps having the fatty acid distribution of coconut oil or tallow, or mixtures thereof since these are among the more readily available fats.
- the proportion of fatty acids having at least 12 carbon atoms in coconut oil soap is about 85%. This proportion will be greater when mixtures of coconut oil and fats such as tallow, palm oil, or non-tropical nut oils or fats are used, wherein the principle chain lengths are Ci6 and higher.
- Preferred soap for use in the compositions of this invention has at least about 85% fatty acids having about 12 to 18 carbon atoms.
- Coconut oil employed for the soap may be substituted in whole or in part by other "high-lauric” or “lauric rich” oils, that is, oils or fats wherein at least 50% of the total fatty acids are composed of lauric or myristic acids and mixtures thereof. These oils are generally exemplified.
- a preferred soap is a mixture of about 10% to about 40% derived from coconut oil, palm kernel oil or other lauric rich oils ("lauric-rich soaps”) and about 90% to about 60% tallow, palm oil or other stearic rich oils (“stearic-rich soaps").
- the soaps may contain unsaturation in accordance with commercially acceptable standards. Excessive unsaturation is normally avoided because of the potential for rancidity.
- Soaps may be made by the classic kettle boiling process or modern continuous soap manufacturing processes wherein natural fats and oils such as tallow, palm oil or coconut oil or their equivalents are saponified with an alkali metal hydroxide using procedures well known to those skilled in the art.
- Two broad processes are of particular commercial importance.
- the SAGE process where triglycerides are saponified with a base, e.g., sodium hydroxide and the reaction products extensively treated and the glycerin component extracted and recovered.
- the second process is the SWING process where the saponification product is directly used with less exhaustive treatment and the glycerin from the triglyceride is not separated but rather included in the finished soap noodles and/or bars.
- the soaps may be made by neutralizing fatty acids, such as lauric (C12), myristic (CM), palmitic (C16), or stearic (Cis) acids with an alkali metal hydroxide or carbonate.
- fatty acids such as lauric (C12), myristic (CM), palmitic (C16), or stearic (Cis) acids with an alkali metal hydroxide or carbonate.
- the level of fatty acid soap in the bar (generally a mixture of different chain lengths and/or isomers) can range from 40% to less than 60%, preferably 45% to less than 60%, more preferably 45% to 55% and most preferably 45% to 52% based on the total weight of the bar composition.
- Surfactants other than soap can optionally be included in the bar at levels up to about 25%, preferably up to 15%, more preferably 2% to 10% and most preferably 2% to 7% by weight of the bar. Examples of suitable syndets are described below under OPTIONAL INGREDIENTS.
- the term “added" soluble salt is meant one or more salts that are introduced in the bar in addition to the salts which are presenting the bar as a result of saponification and neutralization of the fatty acids, e.g., NaCI generated from saponification with sodium hydroxide and neutralization with hydrochloric acid.
- the preferred salts are water soluble salts that do not contain cations which precipitate with soap, i.e., which form insoluble precipitates with fatty acid carboxylates.
- water soluble salts containing divalent ions such as calcium magnesium and zinc and trivalent ions such as aluminum should be avoided.
- highly insoluble calcium salts such as calcium carbonate may be used as optional insoluble particles as part of the structuring system (see below).
- Especially preferred soluble salts comprise monovalent cations that form soluble fatty acid soaps (such as sodium, potassium, alkylanoammonium but no lithium) and divalent anions (e.g., sulfates, carbonates, and isethionates), trivalent anions (e.g., citrates, sulfosuccinates, phosphates) and multivalent anions (e.g., polyphosphates and polyacylates).
- Especially preferred salts are sodium and potassium sulfates, carbonates, phosphates, citrates, sulfosuccinates and isethionates and mixtures thereof.
- the one or more water soluble salts reduces the level of liquid crystal phase (e.g., lamellar phase) in the bar and therefore allows the bar to accommodate a composite structuring system that itself comprises some liquid.
- the level of salt should be at least about 0.3% but less than 2.0, preferably 0.3% to less than 1 .50%, more preferably 0.3% to 0.80%.
- the role of salts in the current invention is not primarily a lowering of water activity so as to accommodate very high levels of water in the bar which are characteristic of low TFM bars described in the prior art, i.e. the use of electrolytes to prevent or slow the drying out of the bar.
- the bars of the current invention have water levels that are not especially high (up to about 20%) compared with normal commercial soap bars which can range from about 13 to about 15-18%.
- levels of salts in the range of 2.5 to 8% typical of the high water content bars of the prior art would be detrimental to the bars described herein.
- Fatty Acid A useful optional ingredient is fatty acid. Although it is well known that fatty acids are useful in improving lather, their primary function in bars described herein is modify rheology at low levels incorporated in the bar composition so as to provide adequate thermo-plasticity to the mass.
- Potentially suitable fatty acids are C8-C22 fatty acids.
- Preferred fatty acids are C12- C18, preferably predominantly saturated, straight-chain fatty acids. However, some unsaturated fatty acids can also be employed.
- the free fatty acids can be mixtures of shorter chain length (e.g., C10-C14) and longer chain length (e.g., C16-C18) chain fatty acids.
- one useful fatty acid is fatty acid derived from high-lauric triglycerides such as coconut oil, palm kernel oil, and babasu oil.
- the fatty acid can be incorporated directly or they can be generated in-situ by the addition of a protic acid to the soap during processing.
- suitable protic acids include: mineral acids such as hydrochloric acid and sulfuric acid, adipic acid, citric acid, glycolic acid, acetic acid, formic acid, fumaric acid, lactic acid, malic acid, maleic acid, succinic acid, tartaric acid and polyacrylic acid.
- the level of fatty acid should not exceed 5.0%, preferably not exceed about 1 % and most preferably be between 0.3% and 0.8% based on the total weight of the bar composition. Structuring System
- the structuring system includes one or more starch components, one or more polyols and optionally, water insoluble particles (i.e., particulate material).
- the total level of the structuring system used in the bar composition can be at from about 20% but less than 60%, preferably from 25% to less than 60% based on the total weight of the bar composition.
- total level of the structuring system is meant the sum of the weights of the starch, polyol, and optional insoluble particle components.
- Suitable starch materials include natural starch (from corn, wheat, rice, potato, tapioca and the like), pre-gelatinized starch, various physically and chemically modified starch and mixtures thereof.
- natural starch starch which has not been subject to chemical or physical modification - also known as raw or native starch.
- a preferred starch is natural or native starch from maize (corn), cassava, wheat, potato, rice and other natural sources of it.
- Raw starch with different ratio of amylase and amylopectic e.g. maize (25% amylase); waxy maize (0%); high amylase maize (70%); potato (23%); rice (16%); sago (27%); cassava (18%); wheat (30%) and others.
- the raw starch can be used directly or modified during the process of making the bar composition such that the starch becomes gelatinized, either partially or fully gelantinized.
- Another suitable starch is pre-gelatinized, which is starch that has been gelatinized before it is added as an ingredient in the present bar compositions.
- the amount of the starch component in the filler can range from about 5% to about 30%, preferably 6% to 25%, preferably 10% to 25%, preferably 10% to 20%, and preferably 10% to 15% by weight of total bar composition.
- a second critical component of the structuring system is a polyol or mixture of polyols.
- Polyol is a term used herein to designate a compound having multiple hydroxyl groups (at least two, preferably at least three) which is highly water soluble, preferably freely soluble, in water.
- polyols are available including: relatively low molecular weight short chain polyhydroxy compounds such as glycerol and propylene glycol; sugars such as sorbitol, manitol, sucrose and glucose; modified carbohydrates such as hydrolyzed starch, dextrin and maltodextrin, and polymeric synthetic polyols such as polyalkylene glycols, for example polyoxyethylene glycol (PEG) and polyoxypropylene glycol (PPG).
- PEG polyoxyethylene glycol
- PPG polyoxypropylene glycol
- Preferred polyols are relatively low molecular weight compounds which are either liquid or readily form stable highly concentrated aqueous solutions, e.g., greater than 50% and preferably 70% or greater by weight in water. These include low molecular weight polyols and sugars.
- Especially preferred polyols are glycerol, sorbitol and their mixtures.
- the level of polyol is critical in forming a thermoplastic mass whose material properties are suitable for both high speed manufacture (300-400 bars per minute) and for use as a personal washing bar. It has been found that when the polyol level is too low, the mass is not sufficiently plastic at the extrusion temperature (e.g., 40°C to 45°C) and the bars tend to exhibit higher mushing and rates of wear. Conversely, when the polyol level is too high, the mass becomes too soft to be formed into bars by high speed at normal process temperature.
- the level of polyol should be between 5.0% and 30.0%, preferably 6 to 25% and preferably about 8% to about 20% by weight based on the total weight of the bar composition. Furthermore, it has been found that the ratio of polyols to starch be preferably between about 1 :1 to 1 :4.5 by weight, and more preferably between 1 :1 and 1 :1 .25. As indicated above, it is unexpected and unpredictable that high polyol levels would lead to enhanced perfume retention during storage and/or to enhanced blooming.
- these higher polyol levels "suppress" perfume and, because of this suppression: (1 ) less perfume was lost to the vapor phase during storage (e.g., higher concentration is maintained and has more olfactory impact); and (2) the perfume provides enhanced bloom on dilution.
- the structuring system may optionally include insoluble particles comprising one or a combination of materials.
- insoluble particles is meant materials that are present in solid particulate form and suitable for personal washing.
- the particulate material can potentially be inorganic or organic or a combination as long as it is insoluble in water.
- the insoluble particles should not be perceived as scratchy or granular and thus should have a particle size less than 300 microns, more preferably less than 100 microns and most preferably less than 50 microns.
- Preferred inorganic particulate material includes talc and calcium carbonate.
- Talc is a magnesium silicate mineral material, with a sheet silicate structure and a composition of Mg 3 Si 4 (OH) 2 2, and may be available in the hydrated form. It has a plate-like morphology, and is essentially oleophilic/hydrophobic, i.e., it is wetted by oil rather than water.
- Calcium carbonate or chalk exists in three crystal forms: calcite, aragonite and vaterite.
- the natural morphology of calicite is rhombohedral or cuboidal, acicular or dendritic for aragonite and spheroidal for vaterite.
- calcium carbonate or chalk known as precipitated calcium carbonate is produced by a carbonation method in which carbon dioxide gas is bubbled through an aqueous suspension of calcium hydroxide.
- the crystal type of calcium carbonate is calcite or a mixture of calcite and aragonite.
- Examples of other optional insoluble inorganic particulate materials include alumino silicates, aluminates, silicates, phosphates, insoluble sulfates, borates and clays (e.g., kaolin, china clay) and their combinations.
- Organic particulate materials include: insoluble polysaccharides such as highly cross linked or insolubilized starch (e.g., by reaction with a hydrophobe such as octyl succinate) and cellulose; synthetic polymers such as various polymer lattices and suspension polymers; insoluble soaps and mixtures thereof.
- the structuring system can comprise up to 10% insoluble particles, preferably 5% to 8%, based on the total weight of the bar composition.
- the bar compositions of the invention do not comprise an especially high level of water compared to typical extruded and stamped soap bars which typically can range from about 13 to about 18% water when freshly made, i.e., after extrusion and stamping.
- the water content of the freshly made bar should be less than 20% and preferably be between 14% and 18% based on the total weight of the bar.
- the water level of the freshly made bars of the invention is lower than the water content of freshly made melt and pours or melt-cast bars, i.e., the nominal water content based on the formulation, which typically exceeds 25% by weight in melt-cast compositions.
- the bar compositions can optionally include non-soap synthetic type surfactants (detergents) - so called syndets.
- Syndets can include anionic surfactants, nonionic surfactants, amphoteric or zwitterionic surfactants and cationic surfactants.
- the level of synthetic surfactant present in the bar is generally less than 25%, preferably less than 15%, preferably up to 10%, and most preferably from 0 to 7% based on the total weight of the bar composition.
- the anionic surfactant may be, for example, an aliphatic sulfonate, such as a primary alkane (e.g., C8-C22) sulfonate, primary alkane (e.g., C8-C22) disulfonate, C8-C22 alkene sulfonate, C8-C22 hydroxyalkane sulfonate or alkyl glyceryl either sulfonate (AGS); or an aromatic sulfonate such as alkyl benzene sulfonate.
- Alpha olefin sulfonates are another suitable anionic surfactant.
- the anionic may also be an alkyl sulfate (e.g., C12-C18 alkyl sulfate), especially a primary alcohol sulfate or an alkyl ether sulfate (including alkyl glyceryl ether sulfates).
- alkyl sulfate e.g., C12-C18 alkyl sulfate
- a primary alcohol sulfate e.g., C12-C18 alkyl sulfate
- alkyl ether sulfate including alkyl glyceryl ether sulfates
- the anionic surfactant can also be a sulfonated fatty acid such as alpha sulfonated tallow fatty acid, a sulfonated fatty acid ester such as alpha sulfonated methyl tallowate or mixtures thereof.
- the anionic surfactant may also be alkyl sulfosuccinates (including mono- and dialkyl, e.g., C6-C22 sulfosuccinates); alkyl and acyl taurates, alkyl and acyl sarcosinates, sulfoacetates, C8-C22 alkyl phosphates and phosphates, alkyl phosphate esters and alkoxyl alkyl phosphate esters, acyl lactates or lactylates, C8-C22 monoalkyl succinates and maleates, sulphoacetates, and acyl isethioniates.
- alkyl sulfosuccinates including mono- and dialkyl, e.g., C6-C22 sulfosuccinates
- alkyl and acyl taurates alkyl and acyl sarcosinates
- sulfoacetates C8-
- anionics is C8-C20 alkyl ethoxy (1 -20 EO) carboxylates.
- Cs-Cis acyl isethionates Another suitable anionic surfactant is Cs-Cis acyl isethionates. These esters are prepared by reaction between alkali metal isethionate with mixed aliphatic fatty acids having from 6 to 18 carbon atoms and an iodine value of less than 20. At least 75% of the mixed fatty acids have from 12 to 18 carbon atoms and up to 25% have form 6 to 10 carbon atoms.
- the acyl isethionate may also be alkoxylated isethionates. Acyl isethionates, when present, will generally range from about 0.5% to about 25% by weight of the total composition.
- the anionic component will comprise the majority of the synthetic surfactants used in the bar composition.
- Amphoteric detergents which may be used in this invention include at least one acid group. This may be a carboxylic or a sulphonic acid group. They include quaternary nitrogen and therefore are quaternary amido acids. They should generally include an alkyl or alkenyl group of 7 to 18 carbon atoms. Suitable amphoteric surfactants include amphoacetates, alkyl and alkyl amido betaines, and alkyl and alkyl amido sulphobetaines.
- Amphoacetates and diamphoacetates are also intended to be covered in possible zwitterionic and/or amphoteric compounds which may be used.
- Suitable nonionic surfactants include the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols or fatty acids, with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- alkylene oxides especially ethylene oxide either alone or with propylene oxide.
- Examples include the condensation products of aliphatic (Cs- Cis) primary or secondary linear or branched alcohols with ethylene oxide, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine.
- Other so-called nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.
- the nonionic may also be a sugar amide, such as alkyl polysaccharides and alkyl polysaccharide amides.
- cationic detergents are the quaternary ammonium compounds such as alkyldimethylammonium halides.
- slip modifiers Very useful optional ingredients are slip modifiers.
- the term "slip modifier” is used herein to designate materials that when present at relatively low levels (generally less than 1 .5% based on the total weight of the bar composition) will significantly reduce the perceived friction between the wet bar and the skin.
- the most suitable slip modifiers are useful at a level of 1 % or less, preferably from 0.05 to 1 % and more preferably from 0.05% to 0.5%.
- Slip modifiers are particularly useful in bar compositions which contain starch and/or insoluble particles whose levels approach the higher end of the useful concentration range for these materials, e.g., 20-25% for starch. It has been found that the incorporation of higher levels of starch and/or insoluble particles increases the wet skin friction of the bar and the bars are perceived as "draggy” (have a high perceived level of frictional "drag” on the skin). Although some consumers do not mind this sensory quality, others dislike it. In general, consumers prefer bars that are perceived to glide easily over their skin and are perceived as being slippery.
- Suitable slip modifiers include petrolatum, waxes, lanolines, poly-alkane, -alkene, -polalkyalyene oxides, high molecular weight polyethylene oxide resins, silicones, poly ethylene glycols and mixtures thereof.
- Particularly suitable slip modifiers are high molecular weight polyethylene oxide resins because they have been found to be effective at relatively low concentrations in the composition.
- the molecular weight of the polyethylene oxide resin is greater than 80,000, more preferably at least 100,000 Daltons and most preferably at least 400,000 Daltons.
- suitable high molecular weight polyethylene oxide resins are water soluble resins supplied by Dow Chemical Company under the grade name POLYOX. An example is WSR N-301 (molecular weight 4,000,000 Daltons).
- Adjuvants are ingredients that improve the aesthetic qualities of the bar, especially the visual, tactile and olefactory properties either directly (perfume) or indirectly (preservatives).
- a wide variety of optional ingredients can be incorporated in the bar composition of the invention.
- adjuvants include but are not limited to perfumes; opacifying agent such as fatty alcohols, ethoxylated fatty acids, solid esters, and ⁇ 2; dyes and pigments; pearlizing agent such as ⁇ 2 coated micas and other interference pigments; plate like mirror particles such as organic glitters; sensates such as menthol and ginger; preservatives such as dimethyloldimethylhydantoin (Glydant XL1000), parabens, sorbic acid and the like; antioxidants such as, for example, butylated hydroxytoluene (BHT); chelating agents such as salts of ethylene diamine tetra acetic acid (EDTA) and trisodium etridronate; emulsion
- a particular class of optional ingredients highlighted here is skin benefit agents included to promote skin and hair health and condition.
- Potential benefit agents include but are not limited to lipids such as cholesterol, ceramides, and pseudoceramides; antimicrobial agents such as TRICLOSAN; sunscreens such as cinnamates; other types of exfoliant particles such as polyethylene beads, walnut shells, apricot seeds, flower petals and seeds, and inorganics such as silica, and pumice; additional emollients (skin softening agents) such as long chain alcohols and waxes like lanolin; additional moisturizers; skin-toning agents; skin nutrients such as vitamins like Vitamin C, D and E and essential oils like bergamot, citrus unshiu, calamus, and the like; water soluble or insoluble extracts of avocado, grape, grape seed, myrrh, cucumber, watercress, calendula, elder flower, geranium, linden blossom, amaranth, seaweed, gingko, ginseng
- the composition can also include a variety of other active ingredients that provide additional skin (including scalp) benefits.
- active ingredients include anti-acne agents such as salicylic and resorcinol; sulfur-containing D and L amino acids and their derivatives and salts, particularly their N-acetyl derivatives; anti-wrinkle, anti-skin atrophy and skin-repair actives such as vitamins (e.g., A, E and K), vitamin alkyl esters, minerals, magnesium, calcium, copper, zinc and other metallic components; retinoic acid and esters and derivatives such as retinal and retinol, vitamin B3 compounds, alpha hydroxyl acids, beta hydroxyl acids, e.g.
- salicylic acid and derivatives thereof skin soothing agents such as aloe vera, jojobe oil, propionic and acetic acid derivatives, fenamic acid derivatives; artificial tanning agent such as dihydroxyacetone; tyrosine; tyrosine esters such as ethyl tyrosinate and glucose tyrosinate; skin lightening agents such as aloe extract and niacinamide, alpha-glyceryl-L-ascorbic acid, aminotyroxine, ammonium lactate, glycolic acid, hydroquinone, 4 hydroxyanisole, sebum stimulation agents such as bryonolic acid, dehydroepiandrosterone (DHEA) and orizano; sebum inhibitors such as aluminum hydroxyl chloride, corticosteroids, dehydroacetic acid and its salts, dichlorophenyl imidazoldioxolan (available from Elubiol); anti-oxidant effects, protease inhibition; skin tighten
- perfume may be used for purposes of the invention although perfumes which are less volatile are preferred.
- Perfumes may be classified into four categories according to oil/water partition coefficients and volatility constants as described, for example, in U.S. Patent No. 6,806,249 to Yang et al., hereby incorporated by reference in its entirety, into the subject application.
- fragrance molecules in Type 1 category have low partition coefficient (reflection of low solubility in surfactant phase) and high volatility and Type 2 molecules have high partition coefficient and low volatility (e.g., they readily dissolve in surfactant, but are not very volatile).
- Type 2 perfume molecules include allyl cyclohexane propionate, amyl benzoate, amyl cinnamate and other molecules noted, for example, in U.S. Patent No. 6,806,249 at column 7, lines 9-37.
- Volatility constant (K) is a constant that describes the relation between the perfume concentration (x) in a continuous phase (e.g., water phase of a surfactant water solution) and the perfume partial pressure in the vapor phase (Pi):
- Kx K can be determined experimentally and typically is in the unit of atmosphere (atm). The higher the K value, the higher the volatility of the perfume compounds from the solution of interest to the vapor phase.
- volatile perfumes have volatility constant of about 2 to 1000, especially 50 to 1000 atmospheres and "low volatility" molecules have volatility constant below 2, preferably 1 .5 and below, more preferably about 1 atmosphere and lower.
- Type 3 molecules typically have high oil/water partition coefficient and high volatility; typical examples include allyl caproate, anisole, camphene, citral and other molecules note at column 7, lines 49-65 of U.S. Patent No. 6,806,249.
- Type 4 perfume molecules have low oil/water partition coefficient and low volatility.
- Typical molecule include benzyl acetate, benzyl acetone, cinnamyl acetate and molecules noted at column 8, lines 17-37 of U.S. Patent No. 6,806,249 B2.
- perfume molecules of high oil/water partition coefficient such as type 2 and type 3
- fragrance molecules of type 2 and type 3 tend to release from the micellar entrapment and go to the vapor phase, which is the phase responsible for a blooming effect.
- extruded masses are meant that the bars are made by a process which involved both the intensive mixing and working of the soap mass while it is in a semi-solid plastic state and its forming into a cohesive mass by the process of extrusion.
- the intensive mixing can be accomplished by one or more unit operations known in the art which can include roller milling, refining, and single or multistage extrusion.
- Such processes work the bar mass, e.g., soap mass, at a temperature between about 30°C and about 50°C to form a homogeneous network of insoluble materials in a viscous liquid and/or liquid crystalline phase containing the lower melting, more soluble surfactants (e.g., soaps and other water soluble/dispersible materials).
- An extruded mass must be thermoplastic within the process temperature of extrusion which is generally between about 30°C and about 45°C, preferably at a temperature between about 33°C to about 42°C.
- the material must soften within this process temperature window but remain highly viscous, i.e., not softer excessively to form a sticky mass.
- the material must regain its structure and harden quickly as the temperature is lowered below its softening point. This means that the internal structure must reform quickly generally by re-solidification of structure forming units, e.g., crystals.
- the softened mass although pliable must be sufficiently viscous so that it does not stick to the surfaces of the extruder in order to be capable of conveyance by the extruder screws but not bend excessively when exiting the extruder as a billet.
- the hardness of the mass should fall within limits within the process temperature window to be capable of high rates of production.
- high rate of production is meant in excess of about 50 tablet or bars per minute (4.5 Kg/min for a 90 Kg bar), preferably greater than about 150 bars per minute (13.5 Kg/min), more preferably greater than 250 bars per minute (22.5 Kg/min) and still more preferably greater than 400 bars per minute (36 Kg/min).
- Personal washing bars formed by extrusion also commonly known as milled soaps
- high temperature e.g. 70°C
- the one or more key properties that serve as characteristic "finger-prints" of an extruded mass are structural anisotropy, the level of high melting point materials such as stearic soaps, high melting point and thermal reversibility, and rapid recovery of hardness after heating and shear. These characteristics are briefly described below.
- Bars made by extrusion typically have a characteristic anisotropic internal structure both with respect to the alignment of crystals and overall macro- structure.
- One important element of the macro-structure is the "candle structure", disclosed for example by Schonig et al. in US patent 4,720,365 which is produced in the plodder and modified in the stamper. Shear forces generated at the eyeplate and subsequent extensional forces in the plodder cone produce marked alignment within the candles and thus influence the colloidal structure of the extruded mass.
- the resultant bar usually has a characteristic macroscopic alignment of the crystallites and domains relative to the bar surface and some residual candle structure.
- the liquid (crystalline) phase generated at the extrusion temperature has a relatively lower viscosity and is expected to preferentially flow to the surface of the candles during the plodder compression stage.
- melt-case bars have a predominantly isotropic structure because crystallization occurs during quiescent cooling, and thus the alignment of crystals is minimal and there is no candle structure.
- an extruded mass In order to achieve the rheological properties required for milling and extrusion, an extruded mass must have a sufficient level of solid particles to adequately structure the mass at the process temperature, i.e., the bar contains materials whose melting point is above the extrusion temperature.
- these high melting solids are provided in at least part by the stearic soaps which include the C16 and C18 saturated soaps.
- the level of high melting solids (melting point greater than the extrusion temperature) found in extruded bars is generally greater than 20%, and typically greater than 30%.
- the level of stearic-rich soaps is generally between about 25% and about 55% based on the total weight of bar, preferably between 25% to about 40%.
- Other sources of solid particles are also present in the bars described herein.
- melt point and thermal reversibility Because of the presence of significant high melting solids (e.g. stearic-rich soaps and structurants) and the lower levels of liquids relative to cast soaps, extruded masses have melting points that are generally above 80°C, typically above 90° C and usually above 100°C. In contrast, cast soaps generally melt at temperature between 70°C and 80°C.
- high melting solids e.g. stearic-rich soaps and structurants
- cast soaps generally melt at temperature between 70°C and 80°C.
- an extruded mass regains its structure and hardens quickly as the temperature is lowered below its softening point.
- This rapid re-solidification is generally observed as thermal reversibility in differential scanning calorimetry (DSC).
- thermal reversibility is meant that increasing and decreasing temperature sweeps tend to be super imposable albeit offset by a temperature difference characteristic of the composition.
- cast soaps require much longer periods of time to reform the solid structural units and exhibit lower thermal reversibility, e.g., increasing-decreasing temperature sweeps are either not super- imposable or are offset by much larger temperatures than is found with an extruded mass.
- an extruded mass must soften when it is heated to the extrusion process temperature which is typically in the range of about 35°C to about 45°C. However, at this temperature it must retain sufficient hardness. It has been found experimentally that to achieve the desired rates of production, the hardness of the mass should generally be at least about 1500 g, preferably at least 3000g but generally not greater than about 8000g, preferably between 3000g and 5000g when measured by the Hardness Penetration Test described in the TEST METHODOLOGY section, said measurement being carried out at a temperature in the range of about 40°C.
- An extruded mass also remains cohesive after it has been subjected to sheer at the extrusion temperature without exhibiting excessive pliability or stickiness.
- main cohesive is meant when compacted under pressure the mass should be capable of sintering together to form a single cohesive unit that has mechanical integrity.
- an extruded mass quickly recovers its yield stress (as measured by its penetrometer hardness) when it is subjected to shear at the extrusion temperature (e.g., 40°C) and allowed to cool.
- the mass should recover at least about 75%, preferably at least about 85% and more preferably at least about 95% of the initial hardness before it was sheared, by for example, extrusion through an "orifice" extruder - see below.
- an "orifice" extruder which provides a controlled extensional flow similar to that encountered by the mass during extrusion through an eye plate.
- This device comprises a thermal jacketed barrel (e.g., 350 mm length by 90 mm in diameter) ending in a narrow opening (typically 2-4 mm) and a plunger which is coupled to a drive unit e.g., Instron Mechanical Tester. The plunger forces the mass through the orifice to form an extrudate. The extrudate can be assessed at the process temperature.
- the extrudate can be placed in the barrel of the orifice extruder, compressed under different loads and removed to determine its cohesivity or extent of cohesion, its stickiness and its ability to recover its hardness after it has been sheared at the extrusion temperature (e.g., 40°C) and cooled (e.g., 25°C).
- the extrusion temperature e.g. 40°C
- cooled e.g. 25°C
- melt and pour compositions such as those used to make glycerin soaps that require casting in molds in order to form bars are not extrudable masses when they are initially formed from the melt and are not suitable.
- melt and pour compositions such as those used to make glycerin soaps that require casting in molds in order to form bars are not extrudable masses when they are initially formed from the melt and are not suitable.
- the bar mass should also be sufficiently hard to be stamped with conventional soap making dies.
- the stamping process involves placing a billet or ingot of the extruded mass into a split mold comprised of generally two moveable halves (the dies). These dies when closed compress the billet ("stamp" the billet), squeezing out excess mass and defining the ultimate shape of the bar.
- the mold halves meet at a parting line which becomes visible as a line on the edge perimeter of the molded finished bar (stamped bar).
- a stamped personal washing bar can be characterized as comprising top and bottom stamped faces meeting at a parting line.
- stamping can be achieved by ensuring that an extruded billet of the bar mass (also known as an ingot) has a minimum hardness of at least about 1500 g at the stamping temperature which is typically in the range 25°C to 45°C.
- Recovery of hardness Recovers at least about After melting and casting After heating and shear 75%, preferably at least either low recovery of
- Examples 1 - 6 (Relating to Perfume Retention) Formulations: In order to study perfume retention effect during storage, compositions listed in Table 1 below were prepared. Compositions of examples 1 and 2 have much lower TFM level compared to a conventional bar (-80% in conventional bars vs. -50% in these examples). In these examples, starch, glycerine, talc and sorbitol were or could be used to replace the lowered TFM. Soap bars with higher TFM values (Control Examples A and B) were used as controls.
- TFM total fatty matter
- Fragrance oil composition Two commercially available perfume oils were chosen to study perfume retention in the low TFM bars (Examples 1 and 2) noted in Table 1 above. Their compositions in terms of top notes (compounds with high volatilities), middle notes (compounds with intermediate volatilities) and bottom notes (compounds with least volatilities), as well as solvent (dipropylene glycol), are listed in Table 2 below.
- Perfume 1 is a representative of perfume oils with relatively high overall volatilities.
- Perfume 2 is a representative of perfume oils that are well balanced in terms of top, middle and bottom notes. Table 2: Solvent/top/middle/bottom content in Perfume 1 and 2 perfume oils
- a higher FID area is correlated to higher perfume concentration in the vapor phase, e.g., perfume retained in bar after storage at 50°C, and thus higher olfactory impact after storage.
- Composition wash to 2/3 of bar weight
- Example 7 Bar prototype A 39 ⁇ 3.9%
- GC samples (2 g of bar flakes were weighed into 20 ml GC vials) were left at room temperature for at least 12 hours before GC measurement to ensure equilibrium of perfume in headspace. There was no incubation (all experiments were done at room temperature) on autosampler for these samples. The details of the GC conditions are set forth below.
- Perfume 1 contains the highest level of top notes (55%).
- limonene which is a hydrophobic compound, is the major component (35%).
- Perfume 2 is well balanced in top/middle/bottom notes.
- Perfume 1 and Perfume 2 were thus chosen for the fragrance loss study during storage, where Perfume 1 represents perfume oils of high volatility and high hydrophobicity, and Perfume 2 represents perfume oils of well balanced top/middle/bottom notes. ln Examples 3-6 (Tables 3 and 4), percentage of perfume headspace retention (perfume headspace concentration after storage divided by that of initial time zero) over bar surface after 50°C storage for one month was plotted.
- both of the low TFM prototypes (bar prototype A, SL 50 sorbitol and bar prototype B, SL 50 glycerine) exhibited higher percentage of perfume retention compared to the controls, which indicates that SL 50 bars (bar prototype A and B) lose significantly fewer perfume compounds during bar storage at 50°C.
- the bars have starch- polyol structuring system as noted. Without wishing to be bound by theory, it is believed that polyols (e.g., 5-14%) are good solvents for perfume components in general and may "lock" perfume within the bar matrix and prevent perfume loss during storage.
- fragrance loss during bar use/storage seems to exhibit a different trend compared to that of dry bar storage due to changes of the bar matrix on the surface of the bar. It was also noted from the examples that in both storage conditions, Perfume 1 oil (which is rich in perfume ingredients of high volatilities) showed a higher percentage of perfume loss in the same bar prototype compared to that of Perfume 2 (which is well balanced in top/middle/bottom notes). Lower volatile perfume such as Perfume 2 is thus preferred. Examples 1 1 -17 and 18-24 (Relating to Perfume Bloom)
- compositions listed in Table 7 below were prepared. These compositions have much lower TFM level compared to a conventional bar (-80% in conventional bars vs. -50% in these examples). In these examples, starch, glycerin, talc and sorbitol were used to replace the lowered TFM. Soap bars with higher TFM values (Controls A, B & C) were used as controls against examples of each of these groups A, B & C. The controls represent typical high TFM soap bars and are set forth in Table 8.
- the lower TFM bars were tested against the three controls with higher TFM level (composition listed in Table 8) for blooming effect using perfume oil A (i.e., blooming effect of perfume oil A in bar formulations A1 1 -A13 was tested against blooming effect in Control A bar; blooming effect of perfume oil A in bar formulations B14-B15 was tested against blooming effect in Control B; and blooming effect of perfume oil A in bar formulations C16-C17 was tested against blooming effect in Control C bar).
- perfume oil A i.e., blooming effect of perfume oil A in bar formulations A1 1 -A13 was tested against blooming effect in Control A bar; blooming effect of perfume oil A in bar formulations B14-B15 was tested against blooming effect in Control B; and blooming effect of perfume oil A in bar formulations C16-C17 was tested against blooming effect in Control C bar).
- PAS primary alcohol sulphate
- AOS alpha olephin sulphate
- Examples 25-31 and 32-38 (Further Examples Relating to Perfume Bloom) The applicants ran the same two sets of experiments (using perfume oil A in Examples 25-31 and perfume oil B in Examples 32-38) as were done for Examples 1 1 -17 and 18-24. In this case, however, the bars were first diluted with water (at a 1 to 9 bar flakes to water ratio) as described in the "Methodology" section.
- GC gas chromatography
- perfume headspace concentration over 10 times diluted bar slurry was measured under equilibrium condition which correlates to perfume impact upon dilution with water in use (blooming).
- Tables 1 1 and 12 the perfume headspace concentration (as FID total perfume peak area) over 10 times diluted bar slurry is noted for the two perfume oils (Perfume oil A and Perfume oil B) for all three regions: A, B and C.
- Perfume oil A and Perfume oil B Perfume oil B
- Example 25 showed higher FID relative to Control A.
- Examples 28-29 have higher FID relative to Control B;
- Examples 30-31 have higher FID relative to Control C, etc.
- the same trends are seen in Examples 32-38 relative to respective controls.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Molecular Biology (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2012007033A MX2012007033A (en) | 2009-12-16 | 2010-12-13 | Method of enhancing perfume retention during storage or of enhancing perfume bloom using low total fatty matter extruded bars having starch polyol structuring system. |
BR112012013537A BR112012013537B1 (en) | 2009-12-16 | 2010-12-13 | method to increase perfume retention |
ZA2012/03977A ZA201203977B (en) | 2009-12-16 | 2012-05-31 | Method of enhancing perfume retention during storage or of enhancing perfume bloom using low total fatty matter extruded bars having starch polyol structuring system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/639,077 US7981852B2 (en) | 2009-12-16 | 2009-12-16 | Method of enhancing perfume retention during storage using low total fatty matter extruded bars having starch polyol structuring system |
US12/639,077 | 2009-12-16 | ||
US12/639,113 | 2009-12-16 | ||
US12/639,113 US7989410B2 (en) | 2009-12-16 | 2009-12-16 | Method of enhancing perfume bloom in extruded diluted bars having low total fatty matter and using starch polyol structuring system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011073139A1 true WO2011073139A1 (en) | 2011-06-23 |
Family
ID=43587321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/069517 WO2011073139A1 (en) | 2009-12-16 | 2010-12-13 | Method of enhancing perfume retention during storage or of enhancing perfume bloom using low total fatty matter extruded bars having starch polyol structuring system |
Country Status (4)
Country | Link |
---|---|
BR (1) | BR112012013537B1 (en) |
MX (1) | MX2012007033A (en) |
WO (1) | WO2011073139A1 (en) |
ZA (1) | ZA201203977B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2817403A4 (en) * | 2012-02-24 | 2015-10-28 | Colgate Palmolive Co | Soap bar |
WO2020178056A1 (en) * | 2019-03-01 | 2020-09-10 | Unilever N.V. | A soap bar with improved perfume impact and deposition of actives |
US12006494B2 (en) | 2019-03-01 | 2024-06-11 | Conopco, Inc. | Bar compositions comprising C10 soap while minimizing ratio of unsaturated C18 soap to caprate |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3723325A (en) | 1967-09-27 | 1973-03-27 | Procter & Gamble | Detergent compositions containing particle deposition enhancing agents |
JPS5853998A (en) * | 1981-09-25 | 1983-03-30 | 株式会社コンゴ | Transparent soap |
EP0088846B1 (en) | 1982-03-05 | 1986-03-05 | Clearplas Limited | Mirror |
US4720365A (en) | 1971-07-01 | 1988-01-19 | Lever Brothers Company | Manufacture of detergent bars |
WO1995026710A1 (en) | 1994-03-30 | 1995-10-12 | The Procter & Gamble Company | Combined skin moisturizing and cleansing bar composition |
WO1996035772A1 (en) | 1995-05-12 | 1996-11-14 | The Procter & Gamble Company | Soap-based laundry bars with improved firmness |
JPH1060482A (en) | 1996-06-24 | 1998-03-03 | Givaudan Roure Internatl Sa | Perfume carrier |
GB2317396A (en) * | 1996-08-21 | 1998-03-25 | Cussons Int Ltd | Personal cleansing bar |
WO1998018896A1 (en) | 1996-10-31 | 1998-05-07 | The Procter & Gamble Company | High moisture laundry bar compositions with improved physical properties |
US6194362B1 (en) | 1996-03-19 | 2001-02-27 | The Procter & Gamble Company | Glass cleaning compositions containing blooming perfume |
US6207636B1 (en) | 1998-12-14 | 2001-03-27 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Process for preparing a low TFM detergent bar composition |
WO2001042418A1 (en) | 1999-12-08 | 2001-06-14 | Unilever Plc | Improved detergent bar composition |
US6310016B1 (en) | 1999-12-08 | 2001-10-30 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Detergent bar composition and manufacturing process comprising colloidal aluminum hydroxide phosphate complex |
US6336553B1 (en) | 1999-06-07 | 2002-01-08 | Colgate-Palmolive Company | Soap wrappers |
US6440908B2 (en) | 1999-11-30 | 2002-08-27 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | High moisture retaining bars compositions comprising borax as water structurant |
WO2003010272A1 (en) | 2001-07-26 | 2003-02-06 | Unilever Plc | Soap/detergent bar composition and manufacturing process |
US6806249B2 (en) | 2002-02-28 | 2004-10-19 | Unilever Home & Personal Care Usa, A Division Of Conopco | Perfume containing surfactant compositions having perfume burst when diluted |
US6858574B2 (en) | 2002-02-28 | 2005-02-22 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Process for making perfume containing surfactant compositions having perfume burst when diluted |
WO2005080541A1 (en) | 2004-02-20 | 2005-09-01 | Unilever Plc | Improved detergent bar |
US6998382B2 (en) | 2002-02-28 | 2006-02-14 | Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. | Process for making perfume containing surfactant compositions having perfume burst and enhanced perfume deposition when diluted |
US7030068B2 (en) | 2001-02-14 | 2006-04-18 | The Procter & Gamble Company | Automatic dishwashing compositions comprising blooming perfume and base masking ingredients |
EP1656441A1 (en) | 2003-06-18 | 2006-05-17 | The Procter & Gamble Company | Blooming soap bars |
WO2006094586A1 (en) | 2005-03-04 | 2006-09-14 | Unilever Plc | A low tfm detergent bar |
US20070021314A1 (en) | 2005-06-18 | 2007-01-25 | Salvador Charlie R | Cleansing bar compositions comprising a high level of water |
US20070155639A1 (en) | 2005-06-18 | 2007-07-05 | Salvador Charlie R | Cleansing bar compositions comprising a high level of water |
US20070280976A1 (en) | 2005-06-07 | 2007-12-06 | The Procter & Gamble Company | Multi-phased personal care composition comprising a blooming perfume composition |
WO2009027957A2 (en) * | 2008-12-16 | 2009-03-05 | The Procter & Gamble Company | Perfume systems |
GB2459093A (en) * | 2008-04-08 | 2009-10-14 | Unilever Plc | Personal washing soap bar |
-
2010
- 2010-12-13 MX MX2012007033A patent/MX2012007033A/en active IP Right Grant
- 2010-12-13 BR BR112012013537A patent/BR112012013537B1/en active IP Right Grant
- 2010-12-13 WO PCT/EP2010/069517 patent/WO2011073139A1/en active Application Filing
-
2012
- 2012-05-31 ZA ZA2012/03977A patent/ZA201203977B/en unknown
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3723325A (en) | 1967-09-27 | 1973-03-27 | Procter & Gamble | Detergent compositions containing particle deposition enhancing agents |
US4720365A (en) | 1971-07-01 | 1988-01-19 | Lever Brothers Company | Manufacture of detergent bars |
JPS5853998A (en) * | 1981-09-25 | 1983-03-30 | 株式会社コンゴ | Transparent soap |
EP0088846B1 (en) | 1982-03-05 | 1986-03-05 | Clearplas Limited | Mirror |
WO1995026710A1 (en) | 1994-03-30 | 1995-10-12 | The Procter & Gamble Company | Combined skin moisturizing and cleansing bar composition |
WO1996035772A1 (en) | 1995-05-12 | 1996-11-14 | The Procter & Gamble Company | Soap-based laundry bars with improved firmness |
US6194362B1 (en) | 1996-03-19 | 2001-02-27 | The Procter & Gamble Company | Glass cleaning compositions containing blooming perfume |
JPH1060482A (en) | 1996-06-24 | 1998-03-03 | Givaudan Roure Internatl Sa | Perfume carrier |
GB2317396A (en) * | 1996-08-21 | 1998-03-25 | Cussons Int Ltd | Personal cleansing bar |
WO1998018896A1 (en) | 1996-10-31 | 1998-05-07 | The Procter & Gamble Company | High moisture laundry bar compositions with improved physical properties |
US6207636B1 (en) | 1998-12-14 | 2001-03-27 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Process for preparing a low TFM detergent bar composition |
US6336553B1 (en) | 1999-06-07 | 2002-01-08 | Colgate-Palmolive Company | Soap wrappers |
US6440908B2 (en) | 1999-11-30 | 2002-08-27 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | High moisture retaining bars compositions comprising borax as water structurant |
US6310016B1 (en) | 1999-12-08 | 2001-10-30 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Detergent bar composition and manufacturing process comprising colloidal aluminum hydroxide phosphate complex |
WO2001042418A1 (en) | 1999-12-08 | 2001-06-14 | Unilever Plc | Improved detergent bar composition |
US7030068B2 (en) | 2001-02-14 | 2006-04-18 | The Procter & Gamble Company | Automatic dishwashing compositions comprising blooming perfume and base masking ingredients |
WO2003010272A1 (en) | 2001-07-26 | 2003-02-06 | Unilever Plc | Soap/detergent bar composition and manufacturing process |
US6998382B2 (en) | 2002-02-28 | 2006-02-14 | Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. | Process for making perfume containing surfactant compositions having perfume burst and enhanced perfume deposition when diluted |
US6858574B2 (en) | 2002-02-28 | 2005-02-22 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Process for making perfume containing surfactant compositions having perfume burst when diluted |
US6806249B2 (en) | 2002-02-28 | 2004-10-19 | Unilever Home & Personal Care Usa, A Division Of Conopco | Perfume containing surfactant compositions having perfume burst when diluted |
EP1656441A1 (en) | 2003-06-18 | 2006-05-17 | The Procter & Gamble Company | Blooming soap bars |
WO2005080541A1 (en) | 2004-02-20 | 2005-09-01 | Unilever Plc | Improved detergent bar |
WO2006094586A1 (en) | 2005-03-04 | 2006-09-14 | Unilever Plc | A low tfm detergent bar |
US20070280976A1 (en) | 2005-06-07 | 2007-12-06 | The Procter & Gamble Company | Multi-phased personal care composition comprising a blooming perfume composition |
US20070021314A1 (en) | 2005-06-18 | 2007-01-25 | Salvador Charlie R | Cleansing bar compositions comprising a high level of water |
US20070155639A1 (en) | 2005-06-18 | 2007-07-05 | Salvador Charlie R | Cleansing bar compositions comprising a high level of water |
GB2459093A (en) * | 2008-04-08 | 2009-10-14 | Unilever Plc | Personal washing soap bar |
WO2009027957A2 (en) * | 2008-12-16 | 2009-03-05 | The Procter & Gamble Company | Perfume systems |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2817403A4 (en) * | 2012-02-24 | 2015-10-28 | Colgate Palmolive Co | Soap bar |
US9433566B2 (en) | 2012-02-24 | 2016-09-06 | Colgate-Palmolive Company | Soap bar |
WO2020178056A1 (en) * | 2019-03-01 | 2020-09-10 | Unilever N.V. | A soap bar with improved perfume impact and deposition of actives |
CN113490737A (en) * | 2019-03-01 | 2021-10-08 | 联合利华知识产权控股有限公司 | Soap bars with improved flavor impact and active deposition |
US11414632B2 (en) | 2019-03-01 | 2022-08-16 | Conopco, Inc. | Soap bar with improved perfume impact and deposition of actives |
US12006494B2 (en) | 2019-03-01 | 2024-06-11 | Conopco, Inc. | Bar compositions comprising C10 soap while minimizing ratio of unsaturated C18 soap to caprate |
Also Published As
Publication number | Publication date |
---|---|
BR112012013537A2 (en) | 2016-08-02 |
MX2012007033A (en) | 2012-07-04 |
BR112012013537B1 (en) | 2019-09-10 |
ZA201203977B (en) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101554357B (en) | Extruded and stamped personal washing soap bar containing starch-polyol | |
US7538077B2 (en) | Extruded personal washing bars with plate-like polymeric inclusions | |
WO2011080101A1 (en) | Low tmf extruded soap bars having reduced cracking | |
US7989410B2 (en) | Method of enhancing perfume bloom in extruded diluted bars having low total fatty matter and using starch polyol structuring system | |
WO2010089269A1 (en) | Low tmf extruded soap bars comprising polysacharide-polyol structuring system | |
US8722603B2 (en) | Toilet soap with improved lather | |
CA2930724C (en) | Soap bar formulations with improved skin softness comprising nonionic polymer structuring system | |
EP3099771B1 (en) | Cleansing compositions containing stable silver | |
US7981852B2 (en) | Method of enhancing perfume retention during storage using low total fatty matter extruded bars having starch polyol structuring system | |
WO2011073139A1 (en) | Method of enhancing perfume retention during storage or of enhancing perfume bloom using low total fatty matter extruded bars having starch polyol structuring system | |
EP3172309B1 (en) | Use of specific soap bar composition for enhanced lather in presence of water with high electrolyte concentration | |
WO2008104419A1 (en) | Extruded artisan soap having inner vein | |
WO2025056296A1 (en) | Soap bars comprising potassium soap | |
WO2025056484A1 (en) | Soap bars comprising high soluble soap content |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10793216 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1468/MUMNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/007033 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012013537 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10793216 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112012013537 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120605 |