WO2011071065A1 - Light diffusion film and backlight device comprising same - Google Patents

Light diffusion film and backlight device comprising same Download PDF

Info

Publication number
WO2011071065A1
WO2011071065A1 PCT/JP2010/071981 JP2010071981W WO2011071065A1 WO 2011071065 A1 WO2011071065 A1 WO 2011071065A1 JP 2010071981 W JP2010071981 W JP 2010071981W WO 2011071065 A1 WO2011071065 A1 WO 2011071065A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film
light diffusion
diffusion film
adhesive layer
Prior art date
Application number
PCT/JP2010/071981
Other languages
French (fr)
Japanese (ja)
Inventor
勝朗 久世
兼次 河井
一元 今井
章文 安井
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to CN201080054938.1A priority Critical patent/CN102753999B/en
Priority to KR1020127015523A priority patent/KR101711689B1/en
Publication of WO2011071065A1 publication Critical patent/WO2011071065A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Definitions

  • the present invention relates to a light diffusing film excellent in light diffusibility and adhesiveness, and a backlight device incorporating the same.
  • the light diffusion film is widely used as a member of various lighting fixtures, display devices or screens.
  • the light diffusing film may be used by being stuck with an adhesive or a pressure-sensitive adhesive for workability and shape stability, in addition to being used by simply overlapping with other members.
  • the light diffusing film is used by being attached to the surface of the light guide plate with an adhesive or an adhesive when incorporated in a planar light source device or a backlight device (see, for example, Patent Documents 1 to 3).
  • this method requires a step of laminating an adhesive or the like, and has a problem that it is economically disadvantageous.
  • Patent Document 1 a surface light diffusion type light diffusion film of a bead coating method is bonded to the surface of the light guide plate with a UV curable adhesive, but no mention is made of the brightness enhancement effect by the bonding.
  • Patent Document 2 a directional light diffusing film is bonded to the light exiting surface of the light guide plate with a light diffusing adhesive containing fine particles. Not mentioned.
  • Patent Document 3 a liquid resin made of acrylic acid prepolymer is applied to the surface of a light guide plate made of acrylic resin, a light diffusion film made of polycarbonate resin is laminated on the coated surface, and then the liquid resin is cured to be integrated. It has become.
  • Patent Document 3 describes that air and foreign matters are prevented from being mixed at the interface between the light guide plate and the diffusion film, and light emission and reduction of diffusion due to this are suppressed. This method is described that the brightness is higher than when pasted with a double-sided adhesive tape, suggesting that the refractive index difference at the interface between the light guide plate and the light diffusion film affects the brightness. However, the effect is not clearly shown.
  • the light diffusion film made of polycarbonate resin is shown to be a surface diffusion type light diffusion film utilizing the diffusion and scattering of light by the surface protrusions from the described figure, but its specific contents No optical properties are disclosed.
  • Patent Document 4 an optical film that has been processed to have a concavo-convex process so as to increase the surface area is bonded to the surface of the basic unit of the backlight device with an adhesive layer.
  • the problem to be solved by the invention of Patent Document 4 is that “an optical sheet with an adhesive provided with an optical adhesive layer can be attached to an adherend that emits light to efficiently emit light.
  • the diffusion plate, the BEF, and the diffusion plate that were installed on the backlight used for luminance evaluation are mounted as they are. Only the comparison is made, and the effect of bonding in the same optical film is not disclosed.
  • Patent Document 5 discloses a light-scattering laminated film in which a transparent resin layer is laminated on at least one surface of a light-scattering layer composed of a continuous phase and a particulate dispersed phase having different refractive indexes. An unmodified polypropylene resin is used for the transparent resin layer, and the adhesiveness is insufficient.
  • Patent Document 6 discloses a light reflecting film provided with an adhesive layer, but does not provide an adhesive layer on a light diffusion film.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, a light diffusing film having excellent light diffusibility and light resistance, excellent economical efficiency, and excellent adhesion to other members. And a backlight device incorporating the same.
  • the present invention comprises the following configurations (1) to (9).
  • An adhesive layer containing a polyolefin resin containing a polar group as a main component on at least one surface of a light diffusion layer containing two kinds of mutually incompatible polyolefin resins as a main component is the outermost surface.
  • a light diffusing film, wherein the film has a total light transmittance of 66 to 100% and a haze of the film of 20 to 100%.
  • the light diffusing film as described in (1) wherein the diffusivity in the main diffusion direction of the transmitted light measured at an incident angle of 0 degrees is 140 to 180 degrees.
  • the two types of mutually incompatible polyolefin resins are composed of a polypropylene resin and a polyolefin resin containing ethylene and / or butene, according to any one of (1) to (3) Light diffusion film.
  • a backlight device comprising a base material surface of a light exit surface of a basic unit of a backlight, and the adhesive layer surface of the light diffusing film according to any one of (1) to (6) bonded together.
  • the light diffusing film of the present invention is excellent in both light transmission and diffusing properties, has good light resistance, and has excellent adhesion to other members.
  • other members can be bonded by thermocompression bonding. It can be easily bonded, and is also economical. Therefore, it can be used suitably for various lighting devices, display devices and optical devices and devices such as screens.
  • the light diffusing film of the present invention for a backlight device the light output efficiency of the backlight device can be increased, and the brightness of the backlight device can be increased.
  • the economical efficiency of the backlight device can be improved by reducing the output of the light source of the backlight device and reducing the number of used optical films.
  • an adhesive layer containing a polyolefin resin containing a polar group as a main component is laminated on at least one surface of a light diffusing layer containing two kinds of mutually incompatible polyolefin resins as a main component.
  • the total light transmittance of the film is 66 to 100%, and the haze of the film is 20 to 100%.
  • the light diffusion layer of the present invention contains two kinds of mutually incompatible polyolefin resins as main components.
  • a main component means that a content rate is 50 mass% or more, Preferably it is 70 mass% or more.
  • a polyolefin resin does not have an aromatic ring and thus is not easily deteriorated by ultraviolet irradiation. Therefore, since yellowing by ultraviolet irradiation is suppressed, it is suitable as a constituent material for the light diffusion film.
  • the two types of incompatible polyolefin resins are not limited as long as they are a combination of resins that are incompatible with each other, but are preferably composed of a polypropylene resin and a polyolefin resin containing ethylene and / or butene.
  • the two types of mutually incompatible polyolefin resins are preferably composed of a cyclic polyolefin resin and a polyethylene resin.
  • a nanocrystal structure control polyolefin elastomer resin may be further combined with the above two combinations.
  • the polyolefin resin is not limited as long as 70 mol% or more thereof is composed of an olefin monomer.
  • the proportion of the olefin monomer is preferably 90 mol% or more, more preferably 95% or more, and further preferably 98% or more.
  • polyolefin resins include polyethylene resins, polypropylene resins, polybutene resins, polyolefin resins such as cyclic polyolefin resins and polymethylpentene resins, and copolymers thereof.
  • modified polyolefin resins in which functional groups such as carboxyl groups, ester groups, and hydroxyl groups are introduced into these resins are also preferably used.
  • the polyethylene resin may be a single polymer or a copolymer. In the case of a copolymer, it is preferable that 50 mol% or more is an ethylene component.
  • the density and polymerization method of the resin are not limited, but it is preferable to use a copolymer having a density of 0.909 or less. For example, a copolymer with octene is mentioned.
  • the polymerization method may be either a metallocene catalyst method or a nonmetallocene catalyst method.
  • the polypropylene resin may be a single polymer or a copolymer. In the case of a copolymer, it is preferable that 50 mol% or more is a propylene component.
  • the production method, molecular weight and the like of the resin are not limited, but those having high crystallinity are preferable from the viewpoint of heat resistance and the like. Specifically, the crystallinity is determined by the heat of fusion measured by a differential scanning calorimeter (DSC), and preferably has a heat of fusion of 65 J / g or more.
  • polyolefin resins containing ethylene and / or butene examples include homopolyethylene resins, homopolybutene resins, copolymers of these resins with other olefinic monomers, acrylic acid, methacrylic acid, and ester derivatives thereof.
  • a copolymer etc. are mentioned.
  • any of random, block and graft copolymers may be used.
  • a dispersion such as EP rubber may be used.
  • the production method and molecular weight of the resin For example, it is preferable to use the polyethylene resin or a copolymer of ethylene and butene.
  • cyclic polyolefin-based resin examples include those having a cyclic polyolefin structure such as norbornene and tetracyclododecene.
  • a resin obtained by hydrogenating a ring-opening (co) polymer of a norbornene-based monomer after performing polymer modification such as addition of maleic acid or cyclopentadiene, if necessary (2) a norbornene-based polymer Examples thereof include resins obtained by addition-type polymerization of monomers, and (3) resins obtained by addition-type copolymerization of norbornene monomers and olefin monomers such as ethylene and ⁇ -olefin.
  • the polymerization method and the hydrogenation method can be performed by conventional methods.
  • the nano-crystal structure control type polyolefin elastomer resin is a thermoplastic polyolefin-based elastomer in which the crystal / amorphous structure of the polymer is controlled in the nano order and the crystal has a network structure in the nano order.
  • the conventional polyolefin-based elastomer resin has a crystal size on the order of microns, whereas the nanocrystal structure control-type polyolefin-based elastomer resin has a feature that the crystal size is controlled on the order of nanometers.
  • the blending ratio of the two mutually incompatible polyolefin resins is preferably 10/90 to 90/10, more preferably 20/80 to 80/20, and more preferably 30/70 to 70 / 30 is more preferable.
  • At least two types of incompatible polyolefin-based resins may be blended in the film forming step, or may be blended in advance by a kneading method or the like.
  • two kinds of resins other than mutually incompatible polyolefin resins may be blended, and additives such as a compatibilizing agent and a dispersion diameter adjusting agent for improving the conformability of each resin are added.
  • additives such as a compatibilizing agent and a dispersion diameter adjusting agent for improving the conformability of each resin are added.
  • blend additives such as stabilizers, such as antioxidant and a ultraviolet absorber, and antistatic agent.
  • fine particles such as inorganic particles and polymer beads may be added as long as the above optical characteristics are not impaired.
  • the melt flow rate of the two kinds of mutually incompatible polyolefin resins is not particularly limited as long as the above optical characteristics are satisfied.
  • Each resin is appropriately selected in the range of a melt flow rate measured at 230 ° C. of 0.1 to 100, preferably 0.2 to 50.
  • the adhesive layer of the present invention contains a polyolefin resin containing a polar group as a main component.
  • a main component means that a content rate is 10 mass% or more, Preferably it is 30 mass% or more.
  • the polyolefin resin containing a polar group preferably contains at least one monomer of ethylene, propylene, butene, hexene, octene, methylpentene and cyclic olefin as the skeleton. It may be a homopolymer using one kind of the above monomer or a copolymer using two or more kinds.
  • polar group contained in the polyolefin resin carboxyl group, sulfonic acid group, phosphonic acid group, hydroxyl group, glycidyl group, isocyanate group, amino group, imide group, oxazoline group, ester group, ether group, carboxylate metal base
  • examples include sulfonic acid metal bases, phosphonic acid metal bases, tertiary amine bases, and quaternary amine bases.
  • the polar group may be one kind or two or more kinds.
  • the polar group preferably contains at least a carboxyl group.
  • the polar group may be introduced directly into the polymer chain of the polyolefin resin, or may be introduced into another resin, added to the polyolefin resin, and mixed.
  • the polyolefin resin can also be used after being modified by reacting, for example, a carboxyl group or a hydroxyl group with a compound capable of reacting with these introduced into the terminal or inside of the molecular chain.
  • the polyolefin resin containing a polar group may be used alone or in combination of two or more. Moreover, the compound of the polyolefin resin which does not contain a polar group, and another kind of resin may be sufficient. By using a polyolefin resin containing a polar group, the adhesive layer of the present invention can be bonded by heat.
  • the configuration and the manufacturing method are not limited.
  • the adhesive layer may be laminated on either one side or both sides of the light diffusion layer.
  • the total thickness of the film is not limited, but is preferably 10 to 500 ⁇ m.
  • the thickness of the adhesive layer is preferably 2 to 100 ⁇ m on one side.
  • the ratio of the thickness of the light diffusion layer / adhesion layer in the light diffusion film is preferably 10/1 to 3/1, more preferably 6/1 to 4/1. By setting such a ratio of thickness, the smoothness of the adhesive layer can be sufficiently obtained.
  • the total light transmittance of the light diffusing film of the present invention is 66 to 100%, preferably 68% or more, more preferably 70% or more, and most preferably 100%.
  • the upper limit of the total light transmittance is 100% in principle. If the total light transmittance is less than 66%, the utilization efficiency of the amount of light emitted from the light source decreases, which is not preferable.
  • the haze of the light diffusion film of the present invention is 20 to 100%, preferably 25% or more, and more preferably 30% or more. In principle, the upper limit of haze is 100%.
  • the haze of the film is preferably 72% or more, and more preferably 75% or more. If the haze is less than 20%, the light diffusibility is too low, and the effect of controlling the diffusivity is insufficient.
  • the light diffusion film of the present invention preferably has a diffusivity in the main diffusion direction of transmitted light of 140 to 180 degrees measured at an incident angle of 0 degree with a goniophotometer measured by the method described in the examples. .
  • the diffusion degree is more preferably 145 to 180 degrees, and further preferably 150 to 180 degrees.
  • the light diffusion film of the present invention preferably has a light inflection of 1 to 100% in the main diffusion direction measured by the method described in Examples.
  • the inflection degree of light is more preferably 2 to 100%, further preferably 5 to 100%.
  • the method for producing the light diffusing film is not particularly limited as long as the above optical characteristics are satisfied, but a method of forming a film by a melt extrusion method is preferable from the viewpoint of economy.
  • the light diffusibility is imparted by blending the polyolefin resin of the film without containing the non-melting fine particles. Therefore, even if it is carried out by melt extrusion molding, Filtering filter clogging can be reduced, productivity is excellent, and the resulting film has high clarity.
  • each layer is extruded by a plurality of separate extruders, and the layers are merged in a die to form a film
  • a so-called multilayer extrusion method a light diffusing layer film and an adhesive layer film.
  • a method of forming films separately and sticking them with an adhesive or a pressure-sensitive adhesive a so-called extrusion laminating method in which an adhesive layer or a light diffusion layer is melt-extruded and laminated on a light diffusion layer film or an adhesive layer film, etc. Is mentioned.
  • the multilayer extrusion method is preferable in terms of the adhesive force between the light diffusion layer and the adhesive layer.
  • the melt extrusion method is not particularly limited, and may be, for example, either a T-die method or an inflation method.
  • the film may be an unstretched film or may be subjected to a stretching process.
  • the backlight device of the present invention is formed by bonding the adhesive layer surface of the above-mentioned light diffusion film to the base material surface of the light exit surface of the basic unit of the backlight device.
  • the basic unit of the backlight device of the present invention is not particularly limited as long as it has a light emitting surface on at least one side.
  • any of an edge light system and a direct type may be used.
  • a double-sided light emission type may be used.
  • the base material surface of the light exit surface of the basic unit of the backlight device is, for example, the light exit surface of the light guide plate in the case of the edge light system.
  • a direct type it refers to the upper substrate surface.
  • the double-sided light emission type it refers to the surfaces on both sides of the edge light type light guide plate.
  • a reflective film or a reflector is used on the opposite surface of the light emitting surface for the purpose of increasing the luminance of the light emitting surface.
  • the reflective film and the reflector include a diffusing type made of a white body, a highly directional film utilizing reflection by metallic luster, and a film having both characteristics.
  • the edge light type backlight device employs a method of applying a light emission pattern by printing, engraving, engraving, etc. It doesn't matter. Since the method of the present invention differs greatly from the conventional method in which various optical members are simply overlapped and installed, the light emission profile is greatly different. Therefore, the light emission pattern is designed to be compatible with the method of the present invention. preferable. In the method of the present invention, since the amount of emitted light at a short distance from the light source is increased, it is preferable to further increase the inclination of the light emission pattern.
  • the basic unit of the backlight device is preferably an edge light type light guide plate.
  • the amount of light emitted to the surface of the backlight device due to a change in the critical angle of incident light propagating through the light guide plate is increased, and the brightness improvement effect is further increased.
  • the backlight device can be made thinner than the direct type, it is easy to meet market demands for thin display devices and lighting devices.
  • the reason for the brightness improvement effect of the backlight device of the present invention is presumed as follows. That is, for example, when propagating through the light guide plate, light having an angle exceeding the critical angle is reflected at the interface between the light guide plate and the light diffusion film, and does not exit the surface of the light guide plate.
  • a conventionally widely used light diffusion film is simply superimposed on the surface of the light guide plate, an air layer exists between the light diffusion film and the substrate. Since the refractive index of air is significantly lower than the refractive index of the base material, the critical angle becomes small, so that the amount of light emitted to the surface of the base material becomes low, and as a result, the luminance decreases.
  • the refractive index of the resin used for the light diffusion film is larger than that of air. Therefore, by bonding the light diffusion film, the critical angle of light propagating through the light guide plate is increased, so that the amount of light emitted to the surface of the light guide plate is increased, resulting in an improvement in luminance.
  • the above-mentioned brightness enhancement effect is first manifested by using the light diffusion film of the present invention.
  • a light diffusion component such as beads is applied to the surface of a conventionally used shaping method or transparent film.
  • the effect is small.
  • the light diffusion film of the present invention is a so-called internal diffusion film that imparts light diffusibility by light scattering by a light scatterer made of mutually incompatible resins existing inside the film, and is a surface diffusion type light diffusion. The light diffusing effect is greatly different from the film.
  • the light diffusing film of the present invention is a multilayer scattering type in which light scattering occurs throughout the film, and since this light scattering acts in a multilayer manner, the critical angle is widened to the surface of the light guide plate.
  • the emitted light effectively acts to improve the luminance.
  • luminance improves efficiently by limiting the optical characteristic of a light-diffusion film to the above ranges.
  • the method of bonding the adhesive layer surface of the light diffusion film and the substrate surface is not particularly limited as long as the air layer existing between the light diffusion film and the substrate is excluded.
  • it may be bonded with a pressure-sensitive adhesive or an adhesive, or may be bonded together with a liquid. Since a light-diffusion film has heat adhesiveness, the method of bonding both by the heat bonding method is preferable.
  • the present invention by adhering the light diffusing film and the base material, for example, there is also a secondary effect that a dimensional change due to an environmental change such as a temperature of the light diffusing film can be suppressed.
  • the difference in refractive index between the adhesive layer of the light diffusing film and the substrate is preferably ⁇ 0.2 to +0.5.
  • the difference in refractive index is more preferably ⁇ 0.1 to +0.2, and most preferably 0.
  • the refractive index is displayed up to 3 digits after the decimal point.
  • the refractive index may be evaluated by the difference in 1 digit after the decimal point (rounded off to 2 digits after the decimal point).
  • the refractive index is measured by a regular method using a refractometer.
  • literature values may be used for resins with literature values. In the case of a mixture of resins, the value obtained by weighted averaging according to the composition ratio using the value of a single resin was used.
  • the backlight device of the present invention it is preferable to use only one light diffusion film. This is because the multilayer diffusion film has high brightness, uniformity of brightness, and disappearance of the light emission pattern, and thus it is not necessary to use an optical film such as a lens film or a brightness enhancement film. However, in combination with the lens film, it is possible to further increase the luminance and to further reduce the output of the lamp used in the backlight device.
  • the backlight device of the present invention can be used as a light source for a display device. Since the backlight device of the present invention has high luminance, when used as a light source for a display device, the brightness of the display device can be improved and the visibility of the display screen can be improved. When high brightness is not required, the amount of light of the backlight lamp can be reduced, so that the manufacturing cost and energy consumption of the display device can be reduced.
  • the display device is not limited as long as the device has a function of transmitting some information by light emitted from the backlight device. For example, LCD display devices for transportation devices such as personal computers, TVs and vehicles can be mentioned. In addition, non-moving image display devices such as advertisements and information boards are listed.
  • the backlight device of the present invention can be used as a light source for illumination. Since the backlight device of the present invention has high luminance, that is, high illuminance, the brightness of the lighting device can be improved as a light source for lighting. Similarly, when high illuminance is not required, the manufacturing cost and energy consumption of the lighting device can be reduced.
  • the backlight device itself may be used as the illumination light source.
  • surface it incident and measured from the contact bonding layer side. When the adhesive layer was laminated on both surfaces and there was a difference in the surface roughness of both surfaces, the measurement was performed by entering light from the surface having the smaller surface roughness.
  • Diffusion degree of transmitted light in main diffusion direction Measurement was performed using an automatic variable angle photometer (GP-200: manufactured by Murakami Color Research Co., Ltd.). Transmission measurement mode, light incident angle: 0 ° (angle that is perpendicular to the sample surface, up and down, right and left), light receiving angle: -90 ° to 90 ° (angle on the equator plane), filter: ND10 used, luminous flux Under the conditions of aperture: 10.5 mm (VS-1 3.0), light receiving aperture: 9.1 mm (VS-3 4.0), SENSITIVITY: 950, HIGH VOLTON: 600, and variable angle interval 0.1 degree, The frequency of the angle between the peak rising angle and the peak ending angle of the variable angle luminous intensity curve of the transmitted light obtained by moving the light receiver from 90 degrees to +90 was obtained (see FIG.
  • the measurement was performed by entering light from the surface having the smaller surface roughness.
  • the film direction with the larger diffusivity was defined as the main diffusion direction.
  • the light-up film (product registration) 100DX2 film which is a light diffusion film manufactured by Kimoto Co., Ltd.
  • the film winding direction is parallel to the vertical direction of the sample fixing base, and diffusion is performed.
  • the sample was fixed to the sample fixing base so that the layer side was the light emission side, and the variable angle photometric measurement was performed under the same conditions as described above.
  • Inflection of light Measurement was performed using an automatic goniophotometer (GP-200: manufactured by Murakami Color Research Co., Ltd.). Transmission measurement mode, light incident angle: 0 ° (angles perpendicular to the sample surface, up and down, right and left), light receiving angle: -90 ° to 90 ° (angle on the equator plane), filter: ND10 used, beam stop 10.5 mm (VS-1 3.0), light-receiving aperture: 9.1 mm (VS-3 4.0), and measurement with a variable angle interval of 0.1 degree.
  • GP-200 manufactured by Murakami Color Research Co., Ltd.
  • the peak height (H0) of transmitted light obtained by changing the settings of SENSITIVITY and HIGH VOLTON so that it is 40 to 90% (H0), and the incident angle of light is 60 ° (angle on the equator line)
  • the height (H60) at an angle of 0 degree of the peak of transmitted light when measured under the same conditions as described above was obtained except for changing to. Inflection degree was calculated
  • required by this method. See FIG. Inflection of light H60 / H0 x 100 (%)
  • the surface on which the light receiver is moved is defined as the equator plane. The inflection of light was determined by measurement in the main diffusion direction.
  • Adhesive strength between the light diffusion film and the base material A 3 mm thick and transparent acrylic plate (Mitsubishi Rayon Co., Ltd .: Acrylite) is set on the fixed base of the hot press machine. A sample is placed on top, and a silicone rubber sheet with a thickness of 3 mm (hardness HsA 50 °) is laid on the sample, and is pressed from above the silicone rubber sheet with a presser indenter whose surface temperature is set to 180 ° C. In addition, a pressing pressure of 49 N / cm 2 was applied for 30 seconds.
  • Adhesive strength is 0.1 N / 15 mm or more: Good Adhesive strength is less than 0.1 N / 15 mm: Poor
  • Front luminance Example 1 to 5 and Comparative Examples 1 to 5, and the light diffusion film of Reference Example 1 bonded to a backlight unit are referred to as Examples 6 to 10, Comparative Examples 6 to 10, and Reference Example 2, respectively.
  • the front luminance of was measured.
  • the measuring method is as described in each example, comparative example, and reference example.
  • the opening in the front luminance measurement was observed with the naked eye in a state in which the backlight was turned on, and judged according to the following criteria.
  • the light guide plate mesh is not visible at all: Good
  • the light guide plate mesh is faint: Somewhat poor
  • the light guide plate mesh is clearly visible: Bad
  • Example 1 Using two melt extruders, 35 parts by mass of a cyclic polyolefin resin (TOPAS (TM) 6013S-04 Topas Advanced Polymers melt flow rate: 2.0 (230 ° C.)) was used in the first extruder.
  • TOPAS (TM) 6013S-04 Topas Advanced Polymers melt flow rate: 2.0 (230 ° C.) was used in the first extruder.
  • a block copolymer resin composed of ethylene and octene (INFUSE (TM) D9817.15 melt flow rate: 26 (230 ° C.) manufactured by Dow Chemical Co., Ltd.) is formed into a light diffusion layer of 65 parts by mass, and the second extruder
  • an adhesive layer composed of a maleated polypropylene resin (Admer (TM) QF551, Mitsui Chemicals, Ltd., melt flow rate: 5.7 (190 ° C.)) as the adhesive resin forms both sides of the light diffusion layer.
  • the light diffusion layer is cooled by cooling with a cooling roll with a mirror surface.
  • a light diffusion film having a total thickness of 400 ⁇ m with an adhesive layer laminated on the surface was obtained, and the film was closely attached to the cooling roll during the cooling using a vacuum chamber (layer thickness structure (adhesion layer / light diffusion layer / The adhesive layer was 40/320/40 ( ⁇ m).
  • Table 1 shows the characteristics of the obtained light diffusion film.
  • the light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
  • Comparative Example 1 In the method of Example 1, the resin of the adhesive layer formed by the second extruder was a cyclic polyolefin resin (TOPAS (TM) 6013S-04 Topas Advanced Polymers melt flow rate: 2.0 (230 ° C.)).
  • a light diffusing film was obtained in the same manner as in Example 1 except that the above was changed. Table 1 shows the characteristics of the obtained light diffusion film.
  • the light diffusing film obtained in this Comparative Example was excellent in light diffusing properties, but was inferior in adhesiveness.
  • Example 2 In the method of Example 1, except that the total thickness of the light diffusing film is changed to 175 ⁇ m and the layer thickness configuration is changed to 25/125/25 ( ⁇ m), the light diffusing film is formed in the same manner as in Example 1. Obtained. Table 1 shows the characteristics of the obtained light diffusion film.
  • the light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
  • Comparative Example 2 In the method of Example 2, the resin of the adhesive layer formed by the second extruder was a cyclic polyolefin resin (TOPAS (TM) 6013S-04 Topas Advanced Polymers melt flow rate: 2.0 (230 ° C.)).
  • a light diffusing film was obtained in the same manner as in Example 2 except that the above was changed. Table 1 shows the characteristics of the obtained light diffusion film.
  • the light diffusing film obtained in this Comparative Example was excellent in light diffusing properties, but was inferior in adhesiveness.
  • Example 3 In the method of Example 1, the resin of the light diffusion layer formed by the first extruder was a cyclic polyolefin resin (TOPAS (TM) 6015 Topas Advanced Polymers melt flow rate: 0.41 (230 ° C.)). Block copolymer resin consisting of 50 parts by mass, ethylene and octene (INFUSE (TM) D9817.15 melt flow rate: 26 (230 ° C.) manufactured by Dow Chemical Co., Ltd.) Same as Example 1 except for changing to 50 parts by mass A light diffusion film was obtained by the method. Table 1 shows the characteristics of the obtained light diffusion film. The light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
  • TOPAS (TM) 6015 Topas Advanced Polymers melt flow rate: 0.41 (230 ° C.) Block copolymer resin consisting of 50 parts by mass, ethylene and octene (INFUSE (TM) D9817.15 melt flow rate: 26 (230 ° C.) manufactured by Dow Chemical Co., Ltd
  • Table 1 shows the characteristics of the obtained light diffusion film.
  • the light diffusing film obtained in this Comparative Example was excellent in light diffusing properties, but was inferior in adhesiveness.
  • Example 4 In the method of Example 3, except that the total thickness of the light diffusion film is changed to 200 ⁇ m and the layer thickness configuration is changed to 20/160/20 ( ⁇ m), the light diffusion film is formed in the same manner as in Example 3. Obtained. Table 1 shows the characteristics of the obtained light diffusion film.
  • the light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
  • Comparative Example 4 In the method of Comparative Example 3, a light diffusing film was obtained in the same manner as in Comparative Example 3, except that the total thickness of the light diffusing film was changed to 200 ⁇ m and the layer thickness configuration was changed to 20/160/20 ( ⁇ m). It was. Table 1 shows the characteristics of the obtained light diffusion film.
  • the light diffusing film obtained in this Comparative Example was excellent in light diffusing properties, but was inferior in adhesiveness.
  • Example 5 In the method of Example 1, the resin composition of the light diffusing layer was changed to a block copolymer resin (INFUSE (TM) manufactured by Dow Chemical Co., Ltd.) composed of 65 parts by mass of polypropylene resin (Sumitomo Chemical Co., Ltd., Sumitomo Nobrene FS2011DG3) and ethylene and octene. D9817.15 Melt flow rate: 26 (230 ° C.) An unstretched sheet was obtained in the same manner as in Example 1 except that the content was changed to 35 parts by mass. Subsequently, this unstretched sheet was stretched 4.5 times at a stretching temperature of 118 ° C.
  • the light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
  • Example 5 In the method of Example 5, the resin of the adhesive layer formed by the second extruder was changed from a polypropylene-based adhesive resin (Admer (TM) QF551, Mitsui Chemicals, melt flow rate: 5.7 (190 ° C.)).
  • a light diffusion film was obtained in the same manner as in Example 5 except that the resin was changed to polypropylene resin (Sumitomo Chemical Co., Ltd., Sumitomo Noblen FS2011DG3). Table 1 shows the characteristics of the obtained light diffusion film.
  • the light diffusing film obtained in this comparative example was excellent in light diffusing properties, but was inferior in adhesiveness.
  • Example 6 to 10 and Comparative Examples 6 to 10 Near the center on the acrylic plate on the outgoing light side of a 19-inch light guide plate type (mesh type using a white reflective film) with three cold cathode tubes on each side of the long diameter side (lateral direction)
  • An evaluation sample of 40 mm x 60 mm square (60 mm side is the horizontal direction) is placed on the surface, a silicone rubber sheet is placed on the surface, and the surface temperature is about 180 ° C from the surface of the silicone rubber sheet. Then, press and stick for about 1 minute, and install the black shading paper provided with a 30mm x 50mm square (50mm side is the horizontal direction) so that the center of the cutout part is the center of the evaluation sample The brightness was measured in a dark room.
  • the black light-shielding paper was fixed so that the entire backlight unit was covered, and measurement was performed so that light did not leak. Moreover, the backlight unit was installed horizontally and measured. Luminance was measured using a Topcon Spectroradiometer SR-3A manufactured by Topcon Technohouse Co., Ltd. at a measurement angle of 2 degrees, at a distance of 40 cm from the backlight unit surface, and at the position where the center of the sample for evaluation was directly below. did. The measurement was performed by installing the sample for evaluation so that the main diffusion direction was perpendicular to the longitudinal direction of the cold cathode tube. The results obtained by using the light diffusing films of Examples 1 to 5 and Comparative Examples 1 to 5 as evaluation samples are shown in Table 2 as Examples 6 to 10 and Comparative Examples 6 to 10, respectively.
  • the light diffusion films of Examples 1 to 5 are adhered to the acrylic plate surface by an adhesive layer, air between the acrylic plate and the light diffusion film is excluded, and the difference in refractive index at the interface becomes small. Was expensive. In addition, since the optical characteristics of inflection and diffusivity are in a preferable range, the light emission pattern is excellent in disappearance. On the other hand, the light diffusing films of Comparative Examples 1 to 5 have a weak adhesive force between the acrylic plate and the light diffusing film, and air between the two materials is not excluded, resulting in a large difference in the refractive index of the interface between the two members. Compared with the light diffusion films of Examples 1 to 5, the front luminance was remarkably inferior.
  • the light guide plate was placed in an oven at 80 ° C. and allowed to stand for 240 hours.
  • those maintaining the same dimensions and shape as those before warming were excellent and considered good.
  • those that curled or reduced in size due to the heating treatment were considered inferior and were judged to be defective.
  • the results are shown in Table 2.
  • the light diffusing films obtained in Examples 1 to 5 were not deformed and maintained the same size and shape as before heating, but the light diffusing films obtained in Comparative Examples 1 to 5 were subjected to heating treatment. The light diffusing film curled and the dimensions were reduced.
  • An unstretched sheet was obtained by performing melt coextrusion by a T-die method and cooling with a casting roll at 20 ° C. so that A and the light diffusion layer B were laminated.
  • this unstretched sheet was stretched 4.8 times at a stretching temperature of 120 ° C. using the difference in roll peripheral speed of a longitudinal stretching machine, and subsequently heated at 165 ° C. by a tenter-type stretching machine, and then stretched at 155 ° C. The film was stretched 9 times in the transverse direction at the temperature.
  • heat setting was performed at 166 ° C. to obtain a light diffusion film in which the thickness of the base layer A / light diffusion layer B was 22.2 / 2.8 ( ⁇ m), respectively.
  • Table 1 shows the characteristics of the obtained light diffusion film. Further, using the obtained light diffusion film, front luminance, dimensional stability, and light emission pattern disappearance were measured in the same manner as in Examples 6 to 10 and Comparative Examples 6 to 10. The results are shown in Table 2.
  • the light diffusion film of this reference example was inferior in dimensional stability because there was no adhesive layer. Also, it is indicated that high brightness cannot be obtained because the inflection and diffusion are low. Moreover, the disappearance of the light emission pattern was also inferior.
  • Reference Example 2 Near the center on the acrylic plate on the outgoing light side of a 19-inch light guide plate type (mesh type using a white reflective film) with three cold cathode tubes on each side of the long diameter side (lateral direction)
  • the light diffusion film obtained in Reference Example 1 of 40 mm ⁇ 60 mm square (the 60 mm side is the horizontal direction) is attached to the part with an acrylic optical adhesive tape (double-sided separate film type), and the 30 mm ⁇ 50 mm square (the 50 mm side is horizontal)
  • a black shading paper provided with a cutout portion in the direction) was placed so that the center of the cutout portion was the center portion of the evaluation sample, and the luminance was measured in a dark room.
  • the black light-shielding paper was fixed so that the entire backlight unit was covered, and measurement was performed so that light did not leak. Moreover, the backlight unit was installed horizontally and measured. Luminance was measured using a Topcon Spectroradiometer SR-3A manufactured by Topcon Technohouse Co., Ltd. at a measurement angle of 2 degrees, at a distance of 40 cm from the backlight unit surface, and at the position where the center of the sample for evaluation was directly below. did. The measurement was performed by installing the sample for evaluation so that the main diffusion direction was perpendicular to the longitudinal direction of the cold cathode tube. Bonding was performed such that the layer A side of the light diffusion film was the adhesive tape side.
  • the light diffusing film of this reference example has a lower degree of inflection and diffusion than the light diffusing films obtained in Examples 1 to 5, and therefore, unlike the light diffusing films obtained in Examples 1 to 5, It was shown that the brightness improvement effect by bonding was small. Moreover, the disappearance of the light emission pattern was also inferior.
  • the light diffusing film of the present invention has both excellent light transmissive and diffusive properties and good light resistance, and can be easily bonded to other members by thermocompression bonding. Therefore, it can be suitably used for various lighting devices, display devices, optical devices and devices such as screens. Furthermore, by using the light diffusing film of the present invention for a backlight device, it is possible to increase the brightness of the backlight device and to improve the economics of the backlight device.

Abstract

Disclosed is a light diffusion film which exhibits good light diffusibility and good light resistance, while having excellent economic efficiency and excellent adhesion to other members. Specifically disclosed is a light diffusion film wherein an adhesive layer, which is mainly composed of a polyolefin resin containing a polar group, is arranged on at least one surface of a light diffusion layer, which is mainly composed of two kinds of polyolefin resins that are incompatible with each other, in such a manner that the adhesive layer forms the outermost surface of the light diffusion film. The light diffusion film is characterized in that the total light transmittance of the film is 66-100% and the haze of the film is 20-100%. A backlight device is configured by bonding the adhesive layer surface of the light diffusion film onto the base surface of the light exit surface of a backlight base unit.

Description

光拡散フィルム及びそれを組み込んだバックライト装置Light diffusion film and backlight device incorporating the same
 本発明は、光の拡散性と接着性に優れた光拡散フィルム、及びそれを組み込んだバックライト装置に関するものである。 The present invention relates to a light diffusing film excellent in light diffusibility and adhesiveness, and a backlight device incorporating the same.
 光拡散フィルムは、各種照明器具、表示装置あるいはスクリーン等の部材として広く使用されている。この場合、光拡散フィルムは、他部材と単に重ね合わせて使用されること以外に、作業性や形状安定性のために、接着剤や粘着剤で貼着して使用されることがある。例えば、光拡散フィルムは、面状光源装置やバックライト装置に組み込む場合に、接着剤や粘着剤で導光板表面に貼着して使用される(例えば、特許文献1~3参照)。しかし、この方法では、接着剤などを積層する工程が必要であり、経済的に不利であるという課題を有している。 The light diffusion film is widely used as a member of various lighting fixtures, display devices or screens. In this case, the light diffusing film may be used by being stuck with an adhesive or a pressure-sensitive adhesive for workability and shape stability, in addition to being used by simply overlapping with other members. For example, the light diffusing film is used by being attached to the surface of the light guide plate with an adhesive or an adhesive when incorporated in a planar light source device or a backlight device (see, for example, Patent Documents 1 to 3). However, this method requires a step of laminating an adhesive or the like, and has a problem that it is economically disadvantageous.
 特許文献1では、ビーズコート法の表面光拡散タイプの光拡散フィルムをUV硬化性の接着剤によって導光板表面に貼り合せているが、貼り合せによる輝度向上効果については言及されていない。 In Patent Document 1, a surface light diffusion type light diffusion film of a bead coating method is bonded to the surface of the light guide plate with a UV curable adhesive, but no mention is made of the brightness enhancement effect by the bonding.
 特許文献2では、指向性の光拡散フィルムを導光板の出射面に微粒子を含有する光拡散性の粘着剤によって貼り合せているが、特許文献1と同様に、貼り合せによる輝度向上効果については言及されていない。 In Patent Document 2, a directional light diffusing film is bonded to the light exiting surface of the light guide plate with a light diffusing adhesive containing fine particles. Not mentioned.
 特許文献3では、アクリル樹脂からなる導光板表面にアクリル酸プレポリマーからなる液状樹脂を塗布し、その塗布面上にポリカーボネート樹脂からなる光拡散フィルムを積層した後に、前記液状樹脂を硬化させて一体化している。特許文献3では、導光板と拡散フィルムとの界面における空気や異物の混入が抑制され、これによる光の放出や拡散の低下が抑制されることが記載されている。この方法は、両面粘着テープで貼着した場合よりも輝度が高くなることが記載されており、導光板と光拡散フィルムの間の界面の屈折率差が輝度に影響を与えることを示唆しているが、その効果が明確には示されてはいない。また、ポリカーボネート樹脂よりなる光拡散フィルムについては、記載された図より表面突起による光の拡散や散乱を利用した表面拡散タイプの光拡散フィルムであることが示されているが、その具体的な内容や光学特性が開示されていない。 In Patent Document 3, a liquid resin made of acrylic acid prepolymer is applied to the surface of a light guide plate made of acrylic resin, a light diffusion film made of polycarbonate resin is laminated on the coated surface, and then the liquid resin is cured to be integrated. It has become. Patent Document 3 describes that air and foreign matters are prevented from being mixed at the interface between the light guide plate and the diffusion film, and light emission and reduction of diffusion due to this are suppressed. This method is described that the brightness is higher than when pasted with a double-sided adhesive tape, suggesting that the refractive index difference at the interface between the light guide plate and the light diffusion film affects the brightness. However, the effect is not clearly shown. In addition, the light diffusion film made of polycarbonate resin is shown to be a surface diffusion type light diffusion film utilizing the diffusion and scattering of light by the surface protrusions from the described figure, but its specific contents No optical properties are disclosed.
 また、特許文献4では、表面積が増加するように凹凸加工処理をした光学フィルムをバックライト装置の基本ユニット表面に粘着剤層によって貼り合せている。特許文献4の発明が解決しようとする課題において、「光学用粘着剤層を設けた粘着剤付き光学シートを、光を出射する被着体に貼り付けて光を効率よく出射させることが可能である」と記載されているが、実施例において示されているのは、輝度評価に用いられるバッククライト上に設置してあった拡散板、BEF、拡散板の3枚をそのまま載せた場合との比較がなされているのみで、同一光学フィルムにおいての貼り合わせの効果は開示されていない。 Also, in Patent Document 4, an optical film that has been processed to have a concavo-convex process so as to increase the surface area is bonded to the surface of the basic unit of the backlight device with an adhesive layer. The problem to be solved by the invention of Patent Document 4 is that “an optical sheet with an adhesive provided with an optical adhesive layer can be attached to an adherend that emits light to efficiently emit light. Although it is described in the example, it is shown in the example that the diffusion plate, the BEF, and the diffusion plate that were installed on the backlight used for luminance evaluation are mounted as they are. Only the comparison is made, and the effect of bonding in the same optical film is not disclosed.
 また、特許文献5では、互いに屈折率が異なる連続相と粒子状分散相からなる光散乱層の少なくとも一方の面に透明樹脂層が積層された光散乱性の積層フィルムが開示されているが、透明樹脂層には未変性のポリプロピレン樹脂が使用されており、接着性が不足する。 Patent Document 5 discloses a light-scattering laminated film in which a transparent resin layer is laminated on at least one surface of a light-scattering layer composed of a continuous phase and a particulate dispersed phase having different refractive indexes. An unmodified polypropylene resin is used for the transparent resin layer, and the adhesiveness is insufficient.
 特許文献6では、接着性層を設けた光反射フィルムが開示されているが、光拡散フィルムに接着性層を設けたものではない。 Patent Document 6 discloses a light reflecting film provided with an adhesive layer, but does not provide an adhesive layer on a light diffusion film.
特開平09-159837号公報Japanese Patent Laid-Open No. 09-159837 特開2005-50654号公報JP 2005-50654 A 特開平06-324216号公報Japanese Patent Laid-Open No. 06-324216 特開2009-75595号公報JP 2009-75595 A 特開2002-1858号公報Japanese Patent Laid-Open No. 2002-1858 特開2007-178998号公報JP 2007-178998 A
 本発明の目的は、上記の従来技術の問題点を解消するためのものであり、光拡散性や耐光性が良好で、経済性に優れ、かつ他部材との接着性に優れた光拡散フィルム、及びそれを組み込んだバックライト装置を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, a light diffusing film having excellent light diffusibility and light resistance, excellent economical efficiency, and excellent adhesion to other members. And a backlight device incorporating the same.
 本発明は、以下の(1)~(9)の構成からなるものである。
(1)二種の互いに非相溶性のポリオレフィン系樹脂を主成分として含有する光拡散層の少なくとも片面に、極性基を含有するポリオレフィン樹脂を主成分として含有する接着層が最表面になるように積層された光拡散フィルムであって、前記フィルムの全光線透過率が66~100%であり、かつ前記フィルムのヘーズが20~100%であることを特徴とする光拡散フィルム。
(2)入射角0度で測定した透過光の主拡散方向の拡散度が140~180度であることを特徴とする(1)に記載の光拡散フィルム。
(3)主拡散方向の光の変曲度が1~100%であることを特徴とする(1)又は(2)に記載の光拡散フィルム。
(4)二種の互いに非相溶性のポリオレフィン系樹脂が、ポリプロピレン系樹脂とエチレン及び/又はブテンを含有するポリオレフィン樹脂とからなることを特徴とする(1)~(3)のいずれかに記載の光拡散フィルム。
(5)二種の互いに非相溶性のポリオレフィン系樹脂が、環状ポリオレフィン系樹脂とポリエチレン系樹脂とからなることを特徴とする(1)~(3)のいずれかに記載の光拡散フィルム。
(6)極性基を含有するポリオレフィン樹脂がカルボキシル基を含有することを特徴とする(1)~(5)のいずれかに記載の光拡散フィルム。
(7)バックライトの基本ユニットの出光面の基材表面に、(1)~(6)のいずれかに記載の光拡散フィルムの接着層面を貼り合せてなることを特徴とするバックライト装置。
(8)基材と接着層の屈折率差が-0.2~+0.5であることを特徴とする(7)に記載のバックライト装置。
The present invention comprises the following configurations (1) to (9).
(1) An adhesive layer containing a polyolefin resin containing a polar group as a main component on at least one surface of a light diffusion layer containing two kinds of mutually incompatible polyolefin resins as a main component is the outermost surface. A light diffusing film, wherein the film has a total light transmittance of 66 to 100% and a haze of the film of 20 to 100%.
(2) The light diffusing film as described in (1), wherein the diffusivity in the main diffusion direction of the transmitted light measured at an incident angle of 0 degrees is 140 to 180 degrees.
(3) The light diffusion film as described in (1) or (2), wherein the inflection degree of light in the main diffusion direction is 1 to 100%.
(4) The two types of mutually incompatible polyolefin resins are composed of a polypropylene resin and a polyolefin resin containing ethylene and / or butene, according to any one of (1) to (3) Light diffusion film.
(5) The light diffusing film according to any one of (1) to (3), wherein the two types of mutually incompatible polyolefin resins are a cyclic polyolefin resin and a polyethylene resin.
(6) The light diffusion film as described in any one of (1) to (5), wherein the polyolefin resin containing a polar group contains a carboxyl group.
(7) A backlight device comprising a base material surface of a light exit surface of a basic unit of a backlight, and the adhesive layer surface of the light diffusing film according to any one of (1) to (6) bonded together.
(8) The backlight device according to (7), wherein the difference in refractive index between the substrate and the adhesive layer is −0.2 to +0.5.
 本発明の光拡散フィルムは、光の透過性と拡散性の両方の特性が優れ、かつ耐光性が良好であり、他部材との接着性に優れ、例えば、熱圧着することで、他の部材と容易に接着させることができ、さらに経済性にも優れている。従って、各種の照明器具、表示機器及びスクリーン等の光学用の機器や装置に好適に用いることができる。また、本発明の光拡散フィルムをバックライト装置に用いることによって、バックライト装置の出光効率を高められ、バックライト装置の高輝度化を達成できる。さらに、バックライト装置の光源の出力低減や、各種光学フィルムの使用枚数を低減することによりバックライト装置の経済性を高めることができる。 The light diffusing film of the present invention is excellent in both light transmission and diffusing properties, has good light resistance, and has excellent adhesion to other members. For example, other members can be bonded by thermocompression bonding. It can be easily bonded, and is also economical. Therefore, it can be used suitably for various lighting devices, display devices and optical devices and devices such as screens. Further, by using the light diffusing film of the present invention for a backlight device, the light output efficiency of the backlight device can be increased, and the brightness of the backlight device can be increased. Furthermore, the economical efficiency of the backlight device can be improved by reducing the output of the light source of the backlight device and reducing the number of used optical films.
自動変角光度計の入射角0度で測定した受光角度に対する透過光度曲線。A transmitted light curve with respect to a light receiving angle measured at an incident angle of 0 degree of an automatic goniophotometer. 変曲度算出方法の補助図。The auxiliary figure of the inflection degree calculation method.
(光拡散フィルム)
 本発明の光拡散フィルムは、二種の互いに非相溶性のポリオレフィン系樹脂を主成分として含有する光拡散層の少なくとも片面に、極性基を含有するポリオレフィン樹脂を主成分として含有する接着層が積層されてなり、フィルムの全光線透過率が66~100%であり、かつフィルムのヘーズが20~100%であることを特徴とする。
(Light diffusion film)
In the light diffusing film of the present invention, an adhesive layer containing a polyolefin resin containing a polar group as a main component is laminated on at least one surface of a light diffusing layer containing two kinds of mutually incompatible polyolefin resins as a main component. The total light transmittance of the film is 66 to 100%, and the haze of the film is 20 to 100%.
 本発明の光拡散層は、二種の互いに非相溶性のポリオレフィン系樹脂を主成分として含有する。ここで、主成分とは、含有割合が50質量%以上、好ましくは70質量%以上であることを言う。通常、ポリオレフィン系樹脂は、芳香環を有していないので、紫外線照射による劣化を受けにくい。そのため、紫外線照射による黄化が抑制されるので、光拡散フィルムの構成材料としては好適である。 The light diffusion layer of the present invention contains two kinds of mutually incompatible polyolefin resins as main components. Here, a main component means that a content rate is 50 mass% or more, Preferably it is 70 mass% or more. Usually, a polyolefin resin does not have an aromatic ring and thus is not easily deteriorated by ultraviolet irradiation. Therefore, since yellowing by ultraviolet irradiation is suppressed, it is suitable as a constituent material for the light diffusion film.
 二種の互いに非相溶性のポリオレフィン系樹脂は、互いに相溶しない樹脂の組み合わせであれば限定されないが、ポリプロピレン系樹脂とエチレン及び/又はブテンを含有するポリオレフィン樹脂とからなることが好ましい。 The two types of incompatible polyolefin resins are not limited as long as they are a combination of resins that are incompatible with each other, but are preferably composed of a polypropylene resin and a polyolefin resin containing ethylene and / or butene.
 また、二種の互いに非相溶性のポリオレフィン系樹脂は、環状ポリオレフィン系樹脂とポリエチレン系樹脂とからなることが好ましい。 The two types of mutually incompatible polyolefin resins are preferably composed of a cyclic polyolefin resin and a polyethylene resin.
 上記の二種の組み合わせにより、光拡散層による光学特性の制御を広い範囲で安定して行うことができる。また、上記の二種の組み合わせは、耐光性や経済性の点からも好ましい。上記の二種の組み合わせに、さらにナノ結晶構造制御型ポリオレフィン系エラストマー樹脂を組み合わせても良い。 The combination of the above two types enables stable control of optical characteristics by the light diffusion layer over a wide range. Moreover, said 2 types of combination is preferable also from the point of light resistance or economical efficiency. A nanocrystal structure control polyolefin elastomer resin may be further combined with the above two combinations.
 ポリオレフィン系樹脂は、その70モル%以上がオレフィン系モノマーからなれば限定されない。オレフィン系モノマーの割合は90モル%以上が好ましく、95%以上がより好ましく、98%以上がさらに好ましい。ポリオレフィン系樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、環状ポリオレフィン系樹脂及びポリメチルペンテン系樹脂等のポリオレフィン系樹脂あるいはこれらの共重合体等が挙げられる。また、これらの樹脂にカルボキシル基、エステル基及びヒドロキシル基等の官能基が導入された変性ポリオレフィン系樹脂も好適に使用される。また、アクリル酸やメタクリル酸及びこれらのエステル誘導体等の芳香環を有しないモノマーの共重合体であっても構わない。 The polyolefin resin is not limited as long as 70 mol% or more thereof is composed of an olefin monomer. The proportion of the olefin monomer is preferably 90 mol% or more, more preferably 95% or more, and further preferably 98% or more. Examples of polyolefin resins include polyethylene resins, polypropylene resins, polybutene resins, polyolefin resins such as cyclic polyolefin resins and polymethylpentene resins, and copolymers thereof. In addition, modified polyolefin resins in which functional groups such as carboxyl groups, ester groups, and hydroxyl groups are introduced into these resins are also preferably used. Moreover, you may be a copolymer of the monomer which does not have aromatic rings, such as acrylic acid, methacrylic acid, and these ester derivatives.
 ポリエチレン系樹脂は、単一重合体であっても、共重合体であってもよい。共重合体の場合は、50モル%以上がエチレン成分であるのが好ましい。該樹脂の密度や重合方法等は限定されないが、密度が0.909以下の共重合体の使用が好ましい。例えば、オクテンとの共重合体が挙げられる。重合方法はメタロセン触媒法及び非メタロセン触媒法のいずれでも構わない。 The polyethylene resin may be a single polymer or a copolymer. In the case of a copolymer, it is preferable that 50 mol% or more is an ethylene component. The density and polymerization method of the resin are not limited, but it is preferable to use a copolymer having a density of 0.909 or less. For example, a copolymer with octene is mentioned. The polymerization method may be either a metallocene catalyst method or a nonmetallocene catalyst method.
 ポリプロピレン系樹脂は、単一重合体であっても共重合体であってもよい。共重合体の場合は、50モル%以上がプロピレン成分であるのが好ましい。該樹脂の製造方法、分子量等は限定されないが、耐熱性等の点から結晶性の高いものが好ましい。具体的には、結晶性は、示差走査熱量計(DSC)による融解熱で判断され、融解熱が65J/g以上のものが好ましい。 The polypropylene resin may be a single polymer or a copolymer. In the case of a copolymer, it is preferable that 50 mol% or more is a propylene component. The production method, molecular weight and the like of the resin are not limited, but those having high crystallinity are preferable from the viewpoint of heat resistance and the like. Specifically, the crystallinity is determined by the heat of fusion measured by a differential scanning calorimeter (DSC), and preferably has a heat of fusion of 65 J / g or more.
 エチレン及び/又はブテンを含有するポリオレフィン系樹脂としては、ホモポリエチレン樹脂、ホモポリブテン樹脂、及びこれらの樹脂の他のオレフィン系モノマーとの共重合体、アクリル酸やメタクリル酸及びこれらのエステル誘導体との共重合体等が挙げられる。他のオレフィン系モノマーとの共重合体の場合は、ランダム、ブロック及びグラフト共重合体のいずれでもよい。また、EPラバー等の分散体でも構わない。該樹脂の製造方法や分子量等も特に限定されない。例えば、上記のポリエチレン系樹脂やエチレンとブテンの共重合体の使用が好ましい。 Examples of polyolefin resins containing ethylene and / or butene include homopolyethylene resins, homopolybutene resins, copolymers of these resins with other olefinic monomers, acrylic acid, methacrylic acid, and ester derivatives thereof. A copolymer etc. are mentioned. In the case of a copolymer with other olefinic monomers, any of random, block and graft copolymers may be used. Further, a dispersion such as EP rubber may be used. There are no particular limitations on the production method and molecular weight of the resin. For example, it is preferable to use the polyethylene resin or a copolymer of ethylene and butene.
 環状ポリオレフィン系樹脂としては、例えば、ノルボルネンやテトラシクロドデセン等の環状のポリオレフィン構造を有するものが挙げられる。具体的には、(1)ノルボルネン系モノマーの開環(共)重合体を、必要に応じてマレイン酸付加、シクロペンタジエン付加のごときポリマー変性を行なった後に水素添加した樹脂、(2)ノルボルネン系モノマーを付加型重合させた樹脂、(3)ノルボルネン系モノマーとエチレンやα-オレフィンなどのオレフィン系モノマーと付加型共重合させた樹脂などを挙げることができる。重合方法及び水素添加方法は、常法により行なうことができる。 Examples of the cyclic polyolefin-based resin include those having a cyclic polyolefin structure such as norbornene and tetracyclododecene. Specifically, (1) a resin obtained by hydrogenating a ring-opening (co) polymer of a norbornene-based monomer after performing polymer modification such as addition of maleic acid or cyclopentadiene, if necessary, (2) a norbornene-based polymer Examples thereof include resins obtained by addition-type polymerization of monomers, and (3) resins obtained by addition-type copolymerization of norbornene monomers and olefin monomers such as ethylene and α-olefin. The polymerization method and the hydrogenation method can be performed by conventional methods.
 ナノ結晶構造制御型ポリオレフィン系エラストマー樹脂は、ポリマーの結晶/非晶構造がナノオーダーで制御され、該結晶がナノオーダーで網目構造を有する熱可塑性のポリオレフィン系エラストマーであり、例えば、三井化学社製のノティオ(商標登録)が挙げられる。従来のポリオレフィン系エラストマー樹脂は結晶サイズがミクロンオーダーであるのに対して、ナノ結晶構造制御型ポリオレフィン系エラストマー樹脂は、結晶サイズがナノオーダーで制御されているという特徴を有する。このため、従来のポリオレフィン系エラストマー樹脂に比べて、透明性、耐熱性、柔軟性、ゴム弾性などに優れている場合が多い。従って、該ナノ結晶構造制御型ポリオレフィン系エラストマー樹脂を配合することによって、得られるフィルムの外観を向上できる場合がある。 The nano-crystal structure control type polyolefin elastomer resin is a thermoplastic polyolefin-based elastomer in which the crystal / amorphous structure of the polymer is controlled in the nano order and the crystal has a network structure in the nano order. For example, manufactured by Mitsui Chemicals, Inc. Notio (registered trademark). The conventional polyolefin-based elastomer resin has a crystal size on the order of microns, whereas the nanocrystal structure control-type polyolefin-based elastomer resin has a feature that the crystal size is controlled on the order of nanometers. For this reason, it is often superior in transparency, heat resistance, flexibility, rubber elasticity and the like as compared with conventional polyolefin-based elastomer resins. Therefore, there are cases where the appearance of the resulting film can be improved by blending the nanocrystalline structure control polyolefin elastomer resin.
 二種の互いに非相溶性のポリオレフィン系樹脂の配合割合は、それぞれ質量比で10/90~90/10であることが好ましく、20/80~80/20がより好ましく、30/70~70/30が更に好ましい。少なくとも二種の非相溶性のポリオレフィン系樹脂は、それぞれの樹脂を製膜工程で配合してもよいし、予め混練法等で事前に配合してもよい。 The blending ratio of the two mutually incompatible polyolefin resins is preferably 10/90 to 90/10, more preferably 20/80 to 80/20, and more preferably 30/70 to 70 / 30 is more preferable. At least two types of incompatible polyolefin-based resins may be blended in the film forming step, or may be blended in advance by a kneading method or the like.
 本発明においては、二種の互いに非相溶性のポリオレフィン系樹脂以外の樹脂を配合してもよいし、それぞれの樹脂の馴染み性向上のための相溶化剤や分散径調整剤等の添加剤を併用しても構わない。また、酸化防止剤や紫外線吸収剤等の安定剤や帯電防止剤等の添加剤を配合してもよい。また、上記の光学特性を阻害しない範囲であれば、無機粒子やポリマービーズ等の微粒子を添加してもよい。 In the present invention, two kinds of resins other than mutually incompatible polyolefin resins may be blended, and additives such as a compatibilizing agent and a dispersion diameter adjusting agent for improving the conformability of each resin are added. You may use together. Moreover, you may mix | blend additives, such as stabilizers, such as antioxidant and a ultraviolet absorber, and antistatic agent. Further, fine particles such as inorganic particles and polymer beads may be added as long as the above optical characteristics are not impaired.
 二種の互いに非相溶性のポリオレフィン系樹脂のメルトフローレートは、上記の光学特性を満たせば特に限定されない。それぞれの樹脂は、230℃で測定したメルトフローレートが0.1~100、好ましくは0.2~50の範囲で適宜選択される。 The melt flow rate of the two kinds of mutually incompatible polyolefin resins is not particularly limited as long as the above optical characteristics are satisfied. Each resin is appropriately selected in the range of a melt flow rate measured at 230 ° C. of 0.1 to 100, preferably 0.2 to 50.
 本発明の接着層は、極性基を含有するポリオレフィン樹脂を主成分として含有する。ここで、主成分とは、含有割合が10質量%以上、好ましくは30質量%以上であることを言う。極性基を含有するポリオレフィン樹脂は、その骨格としてエチレン、プロピレン、ブテン、ヘキセン、オクテン、メチルペンテンおよび環状オレフィンのうち少なくとも1種のモノマーを含むことが好ましい。上記モノマーを一種類用いたホモポリマーであっても二種以上を用いた共重合体であっても構わない。 The adhesive layer of the present invention contains a polyolefin resin containing a polar group as a main component. Here, a main component means that a content rate is 10 mass% or more, Preferably it is 30 mass% or more. The polyolefin resin containing a polar group preferably contains at least one monomer of ethylene, propylene, butene, hexene, octene, methylpentene and cyclic olefin as the skeleton. It may be a homopolymer using one kind of the above monomer or a copolymer using two or more kinds.
 ポリオレフィン樹脂に含有される極性基としては、カルボキシル基、スルホン酸基、ホスホン酸基、水酸基、グリシジル基、イソシアネート基、アミノ基、イミド基、オキサゾリン基、エステル基、エーテル基、カルボン酸金属塩基、スルホン酸金属塩基、ホスホン酸金属塩基、3級アミン塩基または4級アミン塩基等が挙げられる。極性基は一種であってもよいし、二種以上を含んでもよい。極性基は、少なくともカルボキシル基を含むことが好ましい。 As the polar group contained in the polyolefin resin, carboxyl group, sulfonic acid group, phosphonic acid group, hydroxyl group, glycidyl group, isocyanate group, amino group, imide group, oxazoline group, ester group, ether group, carboxylate metal base, Examples include sulfonic acid metal bases, phosphonic acid metal bases, tertiary amine bases, and quaternary amine bases. The polar group may be one kind or two or more kinds. The polar group preferably contains at least a carboxyl group.
 極性基は、ポリオレフィン樹脂の高分子鎖中に直接導入されていても、また、他の樹脂に導入し、それをポリオレフィン樹脂に添加、混合したものであっても構わない。また、ポリオレフィン樹脂は、分子鎖の末端や内部に導入された、例えば、カルボキシル基や水酸基にこれらと反応しうる化合物を反応させて変性して使用することもできる。 The polar group may be introduced directly into the polymer chain of the polyolefin resin, or may be introduced into another resin, added to the polyolefin resin, and mixed. The polyolefin resin can also be used after being modified by reacting, for example, a carboxyl group or a hydroxyl group with a compound capable of reacting with these introduced into the terminal or inside of the molecular chain.
 極性基を含有するポリオレフィン樹脂は、一種の単独使用であってもよいし、二種以上の配合物を使用してもよい。また、極性基を含有しないポリオレフィン樹脂や他の種類の樹脂の配合物であってもよい。極性基を含有するポリオレフィン樹脂を使用することにより、本発明の接着層は熱による接着も可能である。 The polyolefin resin containing a polar group may be used alone or in combination of two or more. Moreover, the compound of the polyolefin resin which does not contain a polar group, and another kind of resin may be sufficient. By using a polyolefin resin containing a polar group, the adhesive layer of the present invention can be bonded by heat.
 本発明の光拡散フィルムは、光拡散層の少なくとも片面に接着層が最表面になるように積層されていれば、その構成や製造方法は限定されない。 As long as the light diffusing film of the present invention is laminated on at least one surface of the light diffusing layer so that the adhesive layer is the outermost surface, the configuration and the manufacturing method are not limited.
 接着層は、光拡散層の片面または両面のいずれに積層されていてもよい。フィルムの総厚みは限定されないが、10~500μmが好ましい。接着層の厚みは片面の厚みで2~100μmであることが好ましい。 The adhesive layer may be laminated on either one side or both sides of the light diffusion layer. The total thickness of the film is not limited, but is preferably 10 to 500 μm. The thickness of the adhesive layer is preferably 2 to 100 μm on one side.
 また、光拡散フィルム中の光拡散層/接着層の厚みの割合は10/1~3/1であることが好ましく、6/1~4/1がより好ましい。このような厚みの割合にすることによって、接着層の平滑性を十分に得ることができる。 Further, the ratio of the thickness of the light diffusion layer / adhesion layer in the light diffusion film is preferably 10/1 to 3/1, more preferably 6/1 to 4/1. By setting such a ratio of thickness, the smoothness of the adhesive layer can be sufficiently obtained.
 本発明の光拡散フィルムの全光線透過率は66~100%であり、68%以上が好ましく、70%以上がより好ましく、100%が最も好ましい。なお、全光線透過率は原理上、100%が上限である。全光線透過率が66%未満では、光源より発せられる光量の利用効率が低下するので好ましくない。 The total light transmittance of the light diffusing film of the present invention is 66 to 100%, preferably 68% or more, more preferably 70% or more, and most preferably 100%. The upper limit of the total light transmittance is 100% in principle. If the total light transmittance is less than 66%, the utilization efficiency of the amount of light emitted from the light source decreases, which is not preferable.
 本発明の光拡散フィルムのヘーズは20~100%であり、25%以上が好ましく、30%以上がより好ましい。なお、ヘーズは原理上、100%が上限である。バックライト装置用の光拡散フィルムとして用いる場合は、フィルムのヘーズは72%以上が好ましく、75%以上がより好ましい。ヘーズが20%未満では、光拡散性が低すぎ、拡散性制御効果が不足するので好ましくない。 The haze of the light diffusion film of the present invention is 20 to 100%, preferably 25% or more, and more preferably 30% or more. In principle, the upper limit of haze is 100%. When used as a light diffusion film for a backlight device, the haze of the film is preferably 72% or more, and more preferably 75% or more. If the haze is less than 20%, the light diffusibility is too low, and the effect of controlling the diffusivity is insufficient.
 本発明の光拡散フィルムは、実施例に記載の方法で測定される変角光度計にて入射角0度で測定した透過光の主拡散方向の拡散度が140~180度であることが好ましい。拡散度は、145~180度がより好ましく、150~180度がさらに好ましい。拡散度をこの範囲にすることにより、例えば、バックライト装置用の光拡散フィルムとして使用した場合に顕著な輝度向上効果が発現される。拡散度が、140度未満では、光拡散性が低すぎ、拡散性制御効果が不足する可能性がある。一方、拡散度は理論上、上限が180度である。 The light diffusion film of the present invention preferably has a diffusivity in the main diffusion direction of transmitted light of 140 to 180 degrees measured at an incident angle of 0 degree with a goniophotometer measured by the method described in the examples. . The diffusion degree is more preferably 145 to 180 degrees, and further preferably 150 to 180 degrees. By setting the diffusivity within this range, for example, when used as a light diffusion film for a backlight device, a remarkable brightness improvement effect is exhibited. If the diffusivity is less than 140 degrees, the light diffusibility is too low and the diffusivity control effect may be insufficient. On the other hand, the upper limit of the diffusion degree is theoretically 180 degrees.
 本発明の光拡散フィルムは、実施例に記載の方法で測定される主拡散方向の光の変曲度が1~100%であることが好ましい。光の変曲度は、2~100%がより好ましく、5~100%が更に好ましい。光の変曲度をこの範囲にすることにより、例えば、バックライト装置用の光拡散フィルムとして使用した場合に顕著な輝度向上効果が発現される。 The light diffusion film of the present invention preferably has a light inflection of 1 to 100% in the main diffusion direction measured by the method described in Examples. The inflection degree of light is more preferably 2 to 100%, further preferably 5 to 100%. By making the inflection degree of light within this range, for example, when it is used as a light diffusion film for a backlight device, a remarkable brightness improvement effect is exhibited.
 光拡散フィルムの製造方法は、上記の光学特性を満たせば特に限定されないが、経済性の点で溶融押し出し法により製膜する方法が好ましい。本発明においては、非溶融性微粒子を含有させずに、フィルムのポリオレフィン系樹脂を配合することにより、光拡散性を付与するので、溶融押し出し成型で実施しても、製膜工程における溶融樹脂の濾過フィルタの目詰まりが低減でき、生産性が優れるとともに、得られるフィルムの清澄度も高い。 The method for producing the light diffusing film is not particularly limited as long as the above optical characteristics are satisfied, but a method of forming a film by a melt extrusion method is preferable from the viewpoint of economy. In the present invention, the light diffusibility is imparted by blending the polyolefin resin of the film without containing the non-melting fine particles. Therefore, even if it is carried out by melt extrusion molding, Filtering filter clogging can be reduced, productivity is excellent, and the resulting film has high clarity.
 光拡散層と接着層の積層方法としては、例えば、複数のそれぞれ別個の押し出し機で各層を押し出し、ダイス内で合流させて製膜する、いわゆる多層押し出し法、光拡散層フィルムと接着層フィルムを別個に製膜して、それらを接着剤や粘着剤で貼着する方法、光拡散層フィルムまたは接着層フィルムにそれぞれ接着層または光拡散層を溶融押し出して両者を積層する、いわゆる押し出しラミネート法等が挙げられる。光拡散層と接着層の間の接着力の点で、多層押し出し法が好ましい。 As a method of laminating the light diffusing layer and the adhesive layer, for example, each layer is extruded by a plurality of separate extruders, and the layers are merged in a die to form a film, a so-called multilayer extrusion method, a light diffusing layer film and an adhesive layer film. A method of forming films separately and sticking them with an adhesive or a pressure-sensitive adhesive, a so-called extrusion laminating method in which an adhesive layer or a light diffusion layer is melt-extruded and laminated on a light diffusion layer film or an adhesive layer film, etc. Is mentioned. The multilayer extrusion method is preferable in terms of the adhesive force between the light diffusion layer and the adhesive layer.
 溶融押し出し法は、特に制限されず、例えば、Tダイ法及びインフレーション法のいずれでもよい。また、未延伸のままのフィルムでもよく、延伸処理を行ってもよい。 The melt extrusion method is not particularly limited, and may be, for example, either a T-die method or an inflation method. Moreover, the film may be an unstretched film or may be subjected to a stretching process.
 (バックライト装置)
 本発明のバックライト装置は、バックライト装置の基本ユニットの出光面の基材表面に、上述の光拡散フィルムの接着層面を貼り合わせてなるものである。
(Backlight device)
The backlight device of the present invention is formed by bonding the adhesive layer surface of the above-mentioned light diffusion film to the base material surface of the light exit surface of the basic unit of the backlight device.
 本発明のバックライト装置の基本ユニットは、少なくとも片面に出光面を有する構成であれば特に限定されない。例えば、エッジライト方式及び直下型のいずれであっても構わない。また、両面出光タイプであっても良い。バックライト装置の基本ユニットの出光面の基材表面とは、例えば、エッジライト方式の場合は、導光板の出光面表面である。また、直下型の場合は、上面の基板表面を指す。また、両面出光タイプの場合は、エッジライト方式の導光板の両面の表面を指す。 The basic unit of the backlight device of the present invention is not particularly limited as long as it has a light emitting surface on at least one side. For example, any of an edge light system and a direct type may be used. Moreover, a double-sided light emission type may be used. The base material surface of the light exit surface of the basic unit of the backlight device is, for example, the light exit surface of the light guide plate in the case of the edge light system. In the case of a direct type, it refers to the upper substrate surface. In the case of the double-sided light emission type, it refers to the surfaces on both sides of the edge light type light guide plate.
 一般に、バックライト装置には、出光面の輝度を上げる目的で、出光面の反対面に反射フィルムや反射体が使用されている。反射フィルムや反射体としては、例えば、白色体よりなる拡散タイプのもの、金属光沢による反射を利用した指向性の強いもの、及び両特性を兼備したもの等を挙げることができる。 Generally, in the backlight device, a reflective film or a reflector is used on the opposite surface of the light emitting surface for the purpose of increasing the luminance of the light emitting surface. Examples of the reflective film and the reflector include a diffusing type made of a white body, a highly directional film utilizing reflection by metallic luster, and a film having both characteristics.
 また、エッジライト方式のバックライト装置には、光源からの距離による輝度の減衰を抑制するために、印刷、刻印及び彫刻等により出光パターンを付ける方法が採用されているが、出光パターンの有無は問わない。本発明の方法は、従来実施されている各種光学用部材を単に重ね合わせて設置する方法とは、出光のプロファイルが大きく異なるので、出光パターンを本発明の方法に適合するように設計するのが好ましい。本発明の方法は、光源から近距離の出光量が増加するので、出光パターンの傾斜をより強くするのが好ましい。 In addition, in order to suppress the luminance attenuation due to the distance from the light source, the edge light type backlight device employs a method of applying a light emission pattern by printing, engraving, engraving, etc. It doesn't matter. Since the method of the present invention differs greatly from the conventional method in which various optical members are simply overlapped and installed, the light emission profile is greatly different. Therefore, the light emission pattern is designed to be compatible with the method of the present invention. preferable. In the method of the present invention, since the amount of emitted light at a short distance from the light source is increased, it is preferable to further increase the inclination of the light emission pattern.
 バックライト装置の基本ユニットは、エッジライト方式の導光板であることが好ましい。これにより、導光板内を伝播して行く入射光の臨界角度の変化によるバックライト装置表面への出光量が増大し、輝度向上効果がより大きくなる。また、直下型方式に比べてバックライト装置の厚さを薄くできるので、表示装置や照明装置の薄型化に対する市場要求に対応し易い。 The basic unit of the backlight device is preferably an edge light type light guide plate. As a result, the amount of light emitted to the surface of the backlight device due to a change in the critical angle of incident light propagating through the light guide plate is increased, and the brightness improvement effect is further increased. Further, since the backlight device can be made thinner than the direct type, it is easy to meet market demands for thin display devices and lighting devices.
 本発明のバックライト装置の輝度向上効果の理由は、以下のごとく推察している。すなわち、例えば、導光板内を伝播して行く時に、臨界角度を超えた角度の光は、導光板と光拡散フィルムとの界面で反射されてしまい、導光板の表面には出光しない。従来から広く使用されている光拡散フィルムを導光板の表面に単に重ね合わせた場合は、光拡散フィルムと基材との間に空気層が存在する。空気の屈折率は、基材の屈折率に比べて屈折率が著しく低いために、臨界角度が小さくなるので、基材の表面に出光される光量が低くなり、結果として輝度が低くなる。一般に、光拡散フィルムに用いられる樹脂の屈折率は、空気よりも大きい。従って、光拡散フィルムを貼り合わせることにより、導光板内を伝播して行く光の臨界角度が大きくなるので、導光板の表面に出光する光量が増加し、結果として輝度向上に繋がる。 The reason for the brightness improvement effect of the backlight device of the present invention is presumed as follows. That is, for example, when propagating through the light guide plate, light having an angle exceeding the critical angle is reflected at the interface between the light guide plate and the light diffusion film, and does not exit the surface of the light guide plate. When a conventionally widely used light diffusion film is simply superimposed on the surface of the light guide plate, an air layer exists between the light diffusion film and the substrate. Since the refractive index of air is significantly lower than the refractive index of the base material, the critical angle becomes small, so that the amount of light emitted to the surface of the base material becomes low, and as a result, the luminance decreases. Generally, the refractive index of the resin used for the light diffusion film is larger than that of air. Therefore, by bonding the light diffusion film, the critical angle of light propagating through the light guide plate is increased, so that the amount of light emitted to the surface of the light guide plate is increased, resulting in an improvement in luminance.
 上記の輝度向上効果は、本発明の光拡散フィルムを使用して初めて発現されるが、従来から広く使用されている賦型法や透明フィルムの表面に、例えば、ビーズ等の光拡散成分を塗工することにより得られる、いわゆる表面凹凸の光の散乱効果を利用した表面拡散タイプの光拡散フィルムでは、該効果が小さい。本発明の光拡散フィルムは、フィルム内部に存在する互いに非相溶性の樹脂からなる光散乱体による光散乱により光拡散性を付与している、いわゆる内部拡散フィルムであり、表面拡散タイプの光拡散フィルムとは、その光拡散効果が大きく異なる。表面光拡散フィルムの場合は、光拡散性は、表面凹凸の散乱効果を利用して光拡散性が付与されており、光散乱は、ほぼ表面の一面のみの光散乱層で制御されるのに対して、本発明の光拡散フィルムは、光散乱がフィルム内部全体で起こる多層散乱タイプになっており、この光散乱が、多層的に作用するために、臨界角度が広がることにより導光板の表面に出光された光が輝度向上に効率的に作用する。さらに、本発明においては、光拡散フィルムの光学特性を上記のような範囲に限定することにより効率的に輝度が向上する。 The above-mentioned brightness enhancement effect is first manifested by using the light diffusion film of the present invention. For example, a light diffusion component such as beads is applied to the surface of a conventionally used shaping method or transparent film. In a surface diffusion type light diffusion film utilizing the so-called surface unevenness light scattering effect obtained by processing, the effect is small. The light diffusion film of the present invention is a so-called internal diffusion film that imparts light diffusibility by light scattering by a light scatterer made of mutually incompatible resins existing inside the film, and is a surface diffusion type light diffusion. The light diffusing effect is greatly different from the film. In the case of a surface light diffusing film, light diffusibility is imparted by utilizing the scattering effect of surface irregularities, whereas light scattering is controlled by a light scattering layer on almost one surface. The light diffusing film of the present invention is a multilayer scattering type in which light scattering occurs throughout the film, and since this light scattering acts in a multilayer manner, the critical angle is widened to the surface of the light guide plate. The emitted light effectively acts to improve the luminance. Furthermore, in this invention, a brightness | luminance improves efficiently by limiting the optical characteristic of a light-diffusion film to the above ranges.
 本発明においては、光拡散フィルムの接着層面と基材表面とを貼り合せる方法は、光拡散フィルムと基材の間に存在する空気層が排除されれば特に限定されない。例えば、粘着剤や接着剤で貼り合せてもよいし、液体で密着させて貼り合せても良い。光拡散フィルムは熱接着性を有するので、両者を熱接着法で貼り合せる方法が好ましい。 In the present invention, the method of bonding the adhesive layer surface of the light diffusion film and the substrate surface is not particularly limited as long as the air layer existing between the light diffusion film and the substrate is excluded. For example, it may be bonded with a pressure-sensitive adhesive or an adhesive, or may be bonded together with a liquid. Since a light-diffusion film has heat adhesiveness, the method of bonding both by the heat bonding method is preferable.
 本発明においては、光拡散フィルムと基材とを貼り合せることにより、例えば、光拡散フィルムの温度等の環境変化による寸法変化を抑制できる等の副次的効果も持つ。 In the present invention, by adhering the light diffusing film and the base material, for example, there is also a secondary effect that a dimensional change due to an environmental change such as a temperature of the light diffusing film can be suppressed.
 本発明においては、光拡散フィルムの接着層と基材の屈折率差が-0.2~+0.5であることが好ましい。屈折率差は、-0.1~+0.2がより好ましく、0が最も好ましい。一般に屈折率は、少数点以下3桁まで表示されているが、本発明においては、少数点以下1桁(少数点以下2桁で四捨五入)での差で評価すれば良い。本発明においては、屈折率の測定は、屈折率計により定法により測定した。文献値のある樹脂は、文献値を用いれば良い。樹脂の混合物の場合は、単独樹脂の値を用いて、組成比により加重平均して求めた値を用いた。 In the present invention, the difference in refractive index between the adhesive layer of the light diffusing film and the substrate is preferably −0.2 to +0.5. The difference in refractive index is more preferably −0.1 to +0.2, and most preferably 0. In general, the refractive index is displayed up to 3 digits after the decimal point. However, in the present invention, the refractive index may be evaluated by the difference in 1 digit after the decimal point (rounded off to 2 digits after the decimal point). In the present invention, the refractive index is measured by a regular method using a refractometer. For resins with literature values, literature values may be used. In the case of a mixture of resins, the value obtained by weighted averaging according to the composition ratio using the value of a single resin was used.
 本発明のバックライト装置では、光拡散フィルムの1枚のみの使用が好ましい。多層拡散フィルムは、高い輝度や、輝度の均一性及び出光パターンの消失性を有するので、レンズフィルムや輝度向上フィルム等の光学用フィルムを使用しなくても良いからである。しかし、レンズフィルムと組み合わせて、さらに大きな輝度向上や、バックライト装置に用いられるランプのより大きな出力低減等を図っても良い。 In the backlight device of the present invention, it is preferable to use only one light diffusion film. This is because the multilayer diffusion film has high brightness, uniformity of brightness, and disappearance of the light emission pattern, and thus it is not necessary to use an optical film such as a lens film or a brightness enhancement film. However, in combination with the lens film, it is possible to further increase the luminance and to further reduce the output of the lamp used in the backlight device.
 本発明のバックライト装置は、表示装置用の光源として用いることができる。本発明のバックライト装置は、高い輝度を有するので、表示装置用の光源として用いた場合に、表示装置の明るさが向上し、表示画面の視認性を向上させることができる。高い輝度が必要でない場合は、バックライトのランプの光量を低減できるので、表示装置の製造コストやエネルギー消費量を低減することができる。該表示装置としては、バックライト装置により発せられる光により、何らかの情報を伝達する機能を有する装置であれば限定されない。例えば、パソコン、TV及び車両等の輸送装置用のLCD表示装置が挙げられる。また、広告や案内板等の非動画の表示装置が挙げられる。 The backlight device of the present invention can be used as a light source for a display device. Since the backlight device of the present invention has high luminance, when used as a light source for a display device, the brightness of the display device can be improved and the visibility of the display screen can be improved. When high brightness is not required, the amount of light of the backlight lamp can be reduced, so that the manufacturing cost and energy consumption of the display device can be reduced. The display device is not limited as long as the device has a function of transmitting some information by light emitted from the backlight device. For example, LCD display devices for transportation devices such as personal computers, TVs and vehicles can be mentioned. In addition, non-moving image display devices such as advertisements and information boards are listed.
 また、本発明のバックライト装置は、照明用の光源として用いることができる。本発明のバックライト装置は、高い輝度、すなわち高い照度を有するので、照明用の光源として照明装置の明るさを向上させることができる。高い照度が必要でない場合は、同様に、照明装置の製造コストやエネルギー消費量を低減することができる。照明用の光源は、上記バックライト装置そのものを用いても良い。 Further, the backlight device of the present invention can be used as a light source for illumination. Since the backlight device of the present invention has high luminance, that is, high illuminance, the brightness of the lighting device can be improved as a light source for lighting. Similarly, when high illuminance is not required, the manufacturing cost and energy consumption of the lighting device can be reduced. The backlight device itself may be used as the illumination light source.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。なお、実施例で採用した測定・評価方法は次の通りである。また、実施例中で「部」とあるのは断りのない限り「質量部」を意味し、「%」とあるのは断りのない限り「質量%」を意味する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and is implemented with appropriate modifications within a range that can be adapted to the gist of the present invention. These are all included in the technical scope of the present invention. The measurement / evaluation methods employed in the examples are as follows. In the examples, “parts” means “parts by mass” unless otherwise specified, and “%” means “% by mass” unless otherwise specified.
1.全光線透過率及びヘーズ
 日本電色工業株式会社製ヘーズ測定器「NDH-2000」を用いて、JIS-K-7136に準拠して測定した。
 フィルムの巻き方向を垂直方向及び水平方向にそれぞれ上記測定器の試料台に固定して測定し、それぞれ3回の測定で得られた測定値の平均値を用い、さらに両方向の測定値の平均値を求めて表示した。該対応をするのは、フィルムの巻き方向を垂直方向及び水平方向により平行光線透過率が大きく変わることがあるためである。
 なお、接着層が片面に積層されたサンプルについては、接着層側より入光して測定をした。接着層が両面に積層され、かつ両面の表面粗さに差がある場合は、表面粗さが小さい方の面より入光して測定した。
1. Total light transmittance and haze Measured in accordance with JIS-K-7136 using a haze meter “NDH-2000” manufactured by Nippon Denshoku Industries Co., Ltd.
Measured by fixing the winding direction of the film in the vertical and horizontal directions on the sample stage of the measuring device, using the average value of the measured values obtained in three measurements, and the average value of the measured values in both directions. Displayed asking for. The reason for this is that the parallel light transmittance may vary greatly depending on the vertical and horizontal directions of the film.
In addition, about the sample with which the contact bonding layer was laminated | stacked on the single side | surface, it incident and measured from the contact bonding layer side. When the adhesive layer was laminated on both surfaces and there was a difference in the surface roughness of both surfaces, the measurement was performed by entering light from the surface having the smaller surface roughness.
2.透過光の主拡散方向の拡散度
 自動変角光度計(GP-200:株式会社村上色彩研究所製)を用いて測定を行った。
 透過測定モード、光線入射角:0°(試料面に対して上下、左右共に直角になる角度)、受光角度:-90°~90°(赤道線面上の角度)、フィルター:ND10使用、光束絞り:10.5mm(VS-1 3.0)、受光絞り:9.1mm(VS-3 4.0)、SENSITIVITY:950、HIGH VOLTON:600及び変角間隔0.1度の条件で、-90度から+90まで受光器を移動させて測定することにより得た、透過光の変角光度曲線のピーク立ち上がり角度とピークの終了の角度との間の角度の度数を求めた(図1参照)。ピークの立ち上がり及び終了の角度は、これらの部分を10倍のルーペで観察して、ピークの線が消えた最先端の角度をそれぞれの角度とした。
 なお、受光器を移動させる面を赤道面と定義した。
 上記角度をフィルムの巻き方向が試料固定台の上下方向と平行方向及び水平方向になるように固定して測定し、該角度の大きい方の値を拡散度とした。
 なお、接着層が片面に積層されたサンプルについては、接着層側より入光して測定した。接着層が両面に積層され、かつ両面の表面粗さに差がある場合は、表面粗さが小さい方の面より入光して測定した。
 拡散度の大きい方のフィルム方向を主拡散方向とした。
 測定に際しては、試料の測定の前に、きもと株式会社製の光拡散フィルムであるライトアップフィルム(商品登録)100DX2フィルムをフィルムの巻き方向が試料固定台の上下方向と平行方向になり、かつ拡散層側が出光側になるように試料固定台に固定して、上記と同じ条件で変角光度測定を実施した。この測定において、変角光度曲線のピークトップの高さがフルスケールに対して、80%を超えるか、あるいは70%未満であった場合は、この値がフルスケールに対して70~80%になるようにSENSITIVITYあるいはHIGH VOLTONダイヤルの数値の微調整を行った。
2. Diffusion degree of transmitted light in main diffusion direction Measurement was performed using an automatic variable angle photometer (GP-200: manufactured by Murakami Color Research Co., Ltd.).
Transmission measurement mode, light incident angle: 0 ° (angle that is perpendicular to the sample surface, up and down, right and left), light receiving angle: -90 ° to 90 ° (angle on the equator plane), filter: ND10 used, luminous flux Under the conditions of aperture: 10.5 mm (VS-1 3.0), light receiving aperture: 9.1 mm (VS-3 4.0), SENSITIVITY: 950, HIGH VOLTON: 600, and variable angle interval 0.1 degree, The frequency of the angle between the peak rising angle and the peak ending angle of the variable angle luminous intensity curve of the transmitted light obtained by moving the light receiver from 90 degrees to +90 was obtained (see FIG. 1). . With respect to the rising and ending angles of the peaks, these portions were observed with a magnifying glass of 10 times, and the most advanced angles at which the peak lines disappeared were defined as the respective angles.
The surface on which the light receiver is moved is defined as the equator plane.
The angle was measured while fixing the film so that the film winding direction was parallel to the vertical direction of the sample fixing table and the horizontal direction, and the value with the larger angle was defined as the diffusivity.
In addition, about the sample with which the contact bonding layer was laminated | stacked on the single side | surface, it incident and measured from the contact bonding layer side. When the adhesive layer was laminated on both surfaces and there was a difference in the surface roughness of both surfaces, the measurement was performed by entering light from the surface having the smaller surface roughness.
The film direction with the larger diffusivity was defined as the main diffusion direction.
In measuring, before measuring the sample, the light-up film (product registration) 100DX2 film, which is a light diffusion film manufactured by Kimoto Co., Ltd., the film winding direction is parallel to the vertical direction of the sample fixing base, and diffusion is performed. The sample was fixed to the sample fixing base so that the layer side was the light emission side, and the variable angle photometric measurement was performed under the same conditions as described above. In this measurement, if the height of the peak top of the variable angle light curve is more than 80% or less than 70% with respect to the full scale, this value becomes 70 to 80% with respect to the full scale. The numerical value of the SENSITIVITY or HIGH VOLTON dial was finely adjusted.
3.光の変曲度
 自動変角光度計(GP-200:株式会社村上色彩研究所製)を用いて測定を行った。
 透過測定モード、光線入射角:0°(試料面に対して上下、左右共に直角の角度)、受光角度:-90°~90°(赤道線面上の角度)、フィルター:ND10使用、光束絞り:10.5mm(VS-1 3.0)、受光絞り:9.1mm(VS-3 4.0)及び変角間隔0.1度の条件で測定し、透過光のピークトップが、チャートの40~90%になるようにSENSITIVITYやHIGH VOLTONの設定を変更して測定することにより得た透過光のピークの高さ(H0)と、光線入射角を60°(赤道線面上の角度)に変更する以外は、上記条件と同じ条件で測定した時の透過光のピークの角度0度における高さ(H60)とを求めた。この方法で求めたH60とH0を用いて下記式で変曲度を求めた。図2参照。
   光の変曲度=H60/H0×100(%)
 なお、受光器を移動させる面を赤道面と定義した。
 光の変曲度は、主拡散方向において測定して求めた。
3. Inflection of light Measurement was performed using an automatic goniophotometer (GP-200: manufactured by Murakami Color Research Co., Ltd.).
Transmission measurement mode, light incident angle: 0 ° (angles perpendicular to the sample surface, up and down, right and left), light receiving angle: -90 ° to 90 ° (angle on the equator plane), filter: ND10 used, beam stop 10.5 mm (VS-1 3.0), light-receiving aperture: 9.1 mm (VS-3 4.0), and measurement with a variable angle interval of 0.1 degree. The peak height (H0) of transmitted light obtained by changing the settings of SENSITIVITY and HIGH VOLTON so that it is 40 to 90% (H0), and the incident angle of light is 60 ° (angle on the equator line) The height (H60) at an angle of 0 degree of the peak of transmitted light when measured under the same conditions as described above was obtained except for changing to. Inflection degree was calculated | required by the following formula using H60 and H0 calculated | required by this method. See FIG.
Inflection of light = H60 / H0 x 100 (%)
The surface on which the light receiver is moved is defined as the equator plane.
The inflection of light was determined by measurement in the main diffusion direction.
4.光拡散フィルムと基材との接着力
 熱プレス機の固定台の上に、厚みが3mmの表面が平滑で透明なアクリル板(三菱レイヨン(株)製:アクリライト)をセットし、そのアクリル板上に試料を置き、さらに、その上に厚みが3mm(硬度HsA50°)のシリコーンゴムシートを敷き、表面温度が180℃に設定された加圧用の圧子により、上記のシリコーンゴムシートの上より押さえ付けて、49N/cmの圧力で30秒間押し圧をした。加熱圧着後、温度23℃、相対湿度65%の環境下で30分放置し、東洋精機社製「テンシロン」(UTM-IIIL)を用いて、300mm/分の速度で180度剥離した際の抵抗値を接着力とした。
 接着力の判定は、以下の基準で実施した。
 接着力が0.1N/15mm以上:良
 接着力が0.1N/15mm未満:不良
4). Adhesive strength between the light diffusion film and the base material A 3 mm thick and transparent acrylic plate (Mitsubishi Rayon Co., Ltd .: Acrylite) is set on the fixed base of the hot press machine. A sample is placed on top, and a silicone rubber sheet with a thickness of 3 mm (hardness HsA 50 °) is laid on the sample, and is pressed from above the silicone rubber sheet with a presser indenter whose surface temperature is set to 180 ° C. In addition, a pressing pressure of 49 N / cm 2 was applied for 30 seconds. After thermocompression bonding, it is left for 30 minutes in an environment of 23 ° C and 65% relative humidity, and when it is peeled 180 degrees at a rate of 300 mm / min using “Tensilon” (UTM-IIIL) manufactured by Toyo Seiki Co., Ltd. The value was defined as adhesive strength.
Judgment of adhesive strength was carried out according to the following criteria.
Adhesive strength is 0.1 N / 15 mm or more: Good Adhesive strength is less than 0.1 N / 15 mm: Poor
5.熱可塑性樹脂のメルトフローレート
 JIS-K-7210 A法に準拠して、2.16kgfの条件で測定した。
5. Melt flow rate of thermoplastic resin It was measured under the condition of 2.16 kgf according to JIS-K-7210 A method.
6.正面輝度
 実施例1~5及び比較例1~5、参考例1の光拡散フィルムをバックライトユニットに貼り合せたものをそれぞれ実施例6~10及び比較例6~10、参考例2とし、それらの正面輝度を測定した。測定方法は各実施例、比較例、参考例に記載したとおりである。
6). Front luminance Example 1 to 5 and Comparative Examples 1 to 5, and the light diffusion film of Reference Example 1 bonded to a backlight unit are referred to as Examples 6 to 10, Comparative Examples 6 to 10, and Reference Example 2, respectively. The front luminance of was measured. The measuring method is as described in each example, comparative example, and reference example.
7.出光パターンの消失性
 正面輝度測定における開口部をバックライトが点灯させた状態で肉眼観察し、以下の基準で判定した。
 導光板のメッシュが全く見えない:良
 導光板のメッシュがかすかに見える:やや不良
 導光板のメッシュがはっきり見える:不良
7). Disappearance of light emission pattern The opening in the front luminance measurement was observed with the naked eye in a state in which the backlight was turned on, and judged according to the following criteria.
The light guide plate mesh is not visible at all: Good The light guide plate mesh is faint: Somewhat poor The light guide plate mesh is clearly visible: Bad
(実施例1)
 2台の溶融押し出し機を用い、第1の押し出し機にて、環状ポリオレフィン系樹脂(TOPAS(TM)6013S-04 Topas Advanced Polymers社製 メルトフローレート:2.0(230℃))35質量部とエチレンとオクテンよりなるブロック共重合樹脂(ダウ・ケミカル社製 INFUSE(TM) D9817.15 メルトフローレート:26(230℃))65質量部とからなる光拡散層を形成し、第2の押し出し機にて、接着性樹脂としてマレイン化ポリプロピレン系樹脂((アドマー(TM)QF551 三井化学社製 メルトフローレート:5.7(190℃))からなる接着層が光拡散層の両面を形成するように、Tダイ方式にて溶融共押出し後、鏡面の冷却ロールで冷却することにより、光拡散層の両面に接着層が積層された総厚み400μmの光拡散フィルムを得た。上記冷却時の冷却ロールへのフィルムの密着はバキュームチャンバーを用いて行った。層厚み構成(接着層/光拡散層/接着層)は40/320/40(μm)であった。
 得られた光拡散フィルムの特性を表1に示す。
 本実施例で得られた光拡散フィルムは、光拡散特性に優れ、かつ接着性にも優れていた。
Example 1
Using two melt extruders, 35 parts by mass of a cyclic polyolefin resin (TOPAS (TM) 6013S-04 Topas Advanced Polymers melt flow rate: 2.0 (230 ° C.)) was used in the first extruder. A block copolymer resin composed of ethylene and octene (INFUSE (TM) D9817.15 melt flow rate: 26 (230 ° C.) manufactured by Dow Chemical Co., Ltd.) is formed into a light diffusion layer of 65 parts by mass, and the second extruder Thus, an adhesive layer composed of a maleated polypropylene resin (Admer (TM) QF551, Mitsui Chemicals, Ltd., melt flow rate: 5.7 (190 ° C.)) as the adhesive resin forms both sides of the light diffusion layer. After the melt coextrusion by the T-die method, the light diffusion layer is cooled by cooling with a cooling roll with a mirror surface. A light diffusion film having a total thickness of 400 μm with an adhesive layer laminated on the surface was obtained, and the film was closely attached to the cooling roll during the cooling using a vacuum chamber (layer thickness structure (adhesion layer / light diffusion layer / The adhesive layer was 40/320/40 (μm).
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
(比較例1)
 実施例1の方法において、第2の押し出し機にて形成する接着層の樹脂を、環状ポリオレフィン系樹脂(TOPAS(TM)6013S-04 Topas Advanced Polymers社製 メルトフローレート:2.0(230℃))に変更した以外は、実施例1と同様の方法で、光拡散フィルムを得た。
 得られた光拡散フィルムの特性を表1に示す。
 本比較例で得られた光拡散フィルムは、光拡散特性に優れているが、接着性に劣っていた。
(Comparative Example 1)
In the method of Example 1, the resin of the adhesive layer formed by the second extruder was a cyclic polyolefin resin (TOPAS (TM) 6013S-04 Topas Advanced Polymers melt flow rate: 2.0 (230 ° C.)). A light diffusing film was obtained in the same manner as in Example 1 except that the above was changed.
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusing film obtained in this Comparative Example was excellent in light diffusing properties, but was inferior in adhesiveness.
(実施例2)
 実施例1の方法において、光拡散フィルムの総厚みを175μmに変更し、層厚み構成を25/125/25(μm)に変更する以外は、実施例1と同様の方法で、光拡散フィルムを得た。
 得られた光拡散フィルムの特性を表1に示す。
 本実施例で得られた光拡散フィルムは、光拡散特性に優れ、かつ接着性にも優れていた。
(Example 2)
In the method of Example 1, except that the total thickness of the light diffusing film is changed to 175 μm and the layer thickness configuration is changed to 25/125/25 (μm), the light diffusing film is formed in the same manner as in Example 1. Obtained.
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
(比較例2)
 実施例2の方法において、第2の押し出し機にて形成する接着層の樹脂を、環状ポリオレフィン系樹脂(TOPAS(TM)6013S-04 Topas Advanced Polymers社製 メルトフローレート:2.0(230℃))に変更した以外は、実施例2と同様の方法で、光拡散フィルムを得た。
 得られた光拡散フィルムの特性を表1に示す。
 本比較例で得られた光拡散フィルムは、光拡散特性に優れているが、接着性に劣っていた。
(Comparative Example 2)
In the method of Example 2, the resin of the adhesive layer formed by the second extruder was a cyclic polyolefin resin (TOPAS (TM) 6013S-04 Topas Advanced Polymers melt flow rate: 2.0 (230 ° C.)). A light diffusing film was obtained in the same manner as in Example 2 except that the above was changed.
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusing film obtained in this Comparative Example was excellent in light diffusing properties, but was inferior in adhesiveness.
(実施例3)
 実施例1の方法において、第1の押し出し機にて形成する光拡散層の樹脂を、環状ポリオレフィン系樹脂(TOPAS(TM)6015 Topas Advanced Polymers社製 メルトフローレート:0.41(230℃))50質量部とエチレンとオクテンよりなるブロック共重合樹脂(ダウ・ケミカル社製 INFUSE(TM) D9817.15 メルトフローレート:26(230℃))50質量部に変更する以外は、実施例1と同様の方法で、光拡散フィルムを得た。
 得られた光拡散フィルムの特性を表1に示す。
 本実施例で得られた光拡散フィルムは、光拡散特性に優れ、かつ接着性にも優れていた。
(Example 3)
In the method of Example 1, the resin of the light diffusion layer formed by the first extruder was a cyclic polyolefin resin (TOPAS (TM) 6015 Topas Advanced Polymers melt flow rate: 0.41 (230 ° C.)). Block copolymer resin consisting of 50 parts by mass, ethylene and octene (INFUSE (TM) D9817.15 melt flow rate: 26 (230 ° C.) manufactured by Dow Chemical Co., Ltd.) Same as Example 1 except for changing to 50 parts by mass A light diffusion film was obtained by the method.
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
(比較例3)
 環状ポリオレフィン系樹脂(TOPAS(TM)6015 Topas Advanced Polymers社製 メルトフローレート:0.41(230℃))50質量部とエチレンとオクテンよりなるブロック共重合樹脂(ダウ・ケミカル社製 INFUSE(TM) D9817.15 メルトフローレート:26(230℃))50質量部を池貝鉄工社製PCM45押出機を用いて樹脂温度250℃にて溶融混合してTダイで押出し、梨地加工した冷却ロール(Ra=0.55)で冷却することにより、厚み400μmの光拡散フィルムを得た。上記冷却ロールの反対面は表面に離型処理をした(Ra=1.0)押さえロールを用いた。
 得られた光拡散フィルムの特性を表1に示す。
 本比較例で得られた光拡散フィルムは、光拡散特性に優れているが、接着性に劣っていた。
(Comparative Example 3)
Cyclic polyolefin resin (TOPAS (TM) 6015 manufactured by Topas Advanced Polymers, melt flow rate: 0.41 (230 ° C)), block copolymer resin composed of ethylene and octene (INFUSE (TM) manufactured by Dow Chemical Co., Ltd.) D9817.15 Melt flow rate: 26 (230 ° C.) 50 parts by mass was melt-mixed at a resin temperature of 250 ° C. using a PCM45 extruder manufactured by Ikekai Tekko Co., Ltd., extruded with a T-die, and a satin-finished cooling roll (Ra = A light diffusion film having a thickness of 400 μm was obtained by cooling at 0.55). The opposite surface of the cooling roll was a pressing roll whose surface was subjected to mold release treatment (Ra = 1.0).
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusing film obtained in this Comparative Example was excellent in light diffusing properties, but was inferior in adhesiveness.
(実施例4)
 実施例3の方法において、光拡散フィルムの総厚みを200μmに変更し、層厚み構成を20/160/20(μm)に変更する以外は、実施例3と同様の方法で、光拡散フィルムを得た。
 得られた光拡散フィルムの特性を表1に示す。
 本実施例で得られた光拡散フィルムは、光拡散特性に優れ、かつ接着性にも優れていた。
Example 4
In the method of Example 3, except that the total thickness of the light diffusion film is changed to 200 μm and the layer thickness configuration is changed to 20/160/20 (μm), the light diffusion film is formed in the same manner as in Example 3. Obtained.
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
(比較例4)
 比較例3の方法において、光拡散フィルムの総厚みを200μmに変更し、層厚み構成を20/160/20(μm)に変更する以外は、比較例3と同様の方法で光拡散フィルムを得た。
 得られた光拡散フィルムの特性を表1に示す。
 本比較例で得られた光拡散フィルムは、光拡散特性に優れているが、接着性に劣っていた。
(Comparative Example 4)
In the method of Comparative Example 3, a light diffusing film was obtained in the same manner as in Comparative Example 3, except that the total thickness of the light diffusing film was changed to 200 μm and the layer thickness configuration was changed to 20/160/20 (μm). It was.
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusing film obtained in this Comparative Example was excellent in light diffusing properties, but was inferior in adhesiveness.
(実施例5)
 実施例1の方法において、光拡散層の樹脂配合を、ポリプロピレン樹脂(住友化学社製、住友ノーブレン FS2011DG3)65質量部にエチレンとオクテンよりなるブロック共重合樹脂(ダウ・ケミカル社製 INFUSE(TM) D9817.15メルトフローレート:26(230℃))35質量部に変更する以外は、実施例1と同様の方法で、未延伸シートを得た。次いでこの未延伸シートを縦延伸機のロール周速差を利用して延伸温度118℃で4.5倍に延伸し、引き続きその片面にコロナ処理をして厚み200μmの光拡散フィルムを得た。
 得られた光拡散フィルムの特性を表1に示す。
 本実施例で得られた光拡散フィルムは、光拡散特性に優れ、かつ接着性にも優れていた。
(Example 5)
In the method of Example 1, the resin composition of the light diffusing layer was changed to a block copolymer resin (INFUSE (TM) manufactured by Dow Chemical Co., Ltd.) composed of 65 parts by mass of polypropylene resin (Sumitomo Chemical Co., Ltd., Sumitomo Nobrene FS2011DG3) and ethylene and octene. D9817.15 Melt flow rate: 26 (230 ° C.) An unstretched sheet was obtained in the same manner as in Example 1 except that the content was changed to 35 parts by mass. Subsequently, this unstretched sheet was stretched 4.5 times at a stretching temperature of 118 ° C. using the difference in roll peripheral speed of a longitudinal stretching machine, and then a corona treatment was performed on one side to obtain a light diffusion film having a thickness of 200 μm.
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusion film obtained in this example was excellent in light diffusion characteristics and adhesiveness.
(比較例5)
 実施例5の方法において、第2の押出し機にて形成する接着層の樹脂をポリプロピレン系の接着性樹脂(アドマー(TM)QF551 三井化学社製 メルトフローレート:5.7(190℃))から、ポリプロピレン樹脂(住友化学社製、住友ノーブレン FS2011DG3)に変更する以外は、実施例5と同様の方法で、光拡散フィルムを得た。
 得られた光拡散フィルムの特性を表1に示す。
 本比較例で得られた光拡散フィルムは、光拡散特性に優れているが、接着性に劣っていた。
(Comparative Example 5)
In the method of Example 5, the resin of the adhesive layer formed by the second extruder was changed from a polypropylene-based adhesive resin (Admer (TM) QF551, Mitsui Chemicals, melt flow rate: 5.7 (190 ° C.)). A light diffusion film was obtained in the same manner as in Example 5 except that the resin was changed to polypropylene resin (Sumitomo Chemical Co., Ltd., Sumitomo Noblen FS2011DG3).
Table 1 shows the characteristics of the obtained light diffusion film.
The light diffusing film obtained in this comparative example was excellent in light diffusing properties, but was inferior in adhesiveness.
(実施例6~10及び比較例6~10)
 長径側(横方向)の両側に冷陰極管がそれぞれ3本ずつ設けられた19インチの導光板タイプ(白色反射フィルム使用でメッシュタイプ)のバックライトユニットの出射光側のアクリル板上のほぼ中央部に40mm×60mm角(60mm側が横方向)の評価サンプルを設置し、その表面にシリコーンゴムシートをおいて、そのシリコーンゴムシートの表面より、表面温度が約180℃の平板状の加熱治具で、約1分間押さえつけて貼着して、30mm×50mm角(50mm側が横方向)の切り抜き部分を設けた黒色の遮光紙を切り抜き部分の中心が評価サンプルの中心部になるように設置して、暗室で輝度を測定した。黒色の遮光紙はバックライトユニットの全体が覆われる大きさとして固定して光が漏れないようにして測定した。
 また、バックライトユニットは水平に設置して測定した。
 輝度は(株)トプコンテクノハウス社製のトプコン分光放射計SR-3Aを用いて、測定角度2度で、バックライトユニット表面との距離が40cmで評価用サンプルの中心が直下になる位置で測定した。
 測定は、評価用サンプルの主拡散方向が冷陰極管の長手方向と直交方向になるように設置して行った。
 実施例1~5及び比較例1~5の光拡散フィルムを評価サンプルとして使用して得られた結果をそれぞれ実施例6~10及び比較例6~10とし、表2に示す。
(Examples 6 to 10 and Comparative Examples 6 to 10)
Near the center on the acrylic plate on the outgoing light side of a 19-inch light guide plate type (mesh type using a white reflective film) with three cold cathode tubes on each side of the long diameter side (lateral direction) An evaluation sample of 40 mm x 60 mm square (60 mm side is the horizontal direction) is placed on the surface, a silicone rubber sheet is placed on the surface, and the surface temperature is about 180 ° C from the surface of the silicone rubber sheet. Then, press and stick for about 1 minute, and install the black shading paper provided with a 30mm x 50mm square (50mm side is the horizontal direction) so that the center of the cutout part is the center of the evaluation sample The brightness was measured in a dark room. The black light-shielding paper was fixed so that the entire backlight unit was covered, and measurement was performed so that light did not leak.
Moreover, the backlight unit was installed horizontally and measured.
Luminance was measured using a Topcon Spectroradiometer SR-3A manufactured by Topcon Technohouse Co., Ltd. at a measurement angle of 2 degrees, at a distance of 40 cm from the backlight unit surface, and at the position where the center of the sample for evaluation was directly below. did.
The measurement was performed by installing the sample for evaluation so that the main diffusion direction was perpendicular to the longitudinal direction of the cold cathode tube.
The results obtained by using the light diffusing films of Examples 1 to 5 and Comparative Examples 1 to 5 as evaluation samples are shown in Table 2 as Examples 6 to 10 and Comparative Examples 6 to 10, respectively.
 実施例1~5の光拡散フィルムは、アクリル板表面に接着層により接着され、アクリル板と光拡散フィルムの間の空気が排除され、該界面の屈折率差が僅かになるために、正面輝度が高かった。また、変曲度や拡散度の光学特性が好ましい範囲にあるので、出光パターンの消失性にも優れている。
 一方、比較例1~5の光拡散フィルムは、アクリル板と光拡散フィルムの接着力が弱く、両材料間の空気が排除されないために、両部材間の界面の屈折率に大きな差が生じ、実施例1~5の光拡散フィルムに比べて、正面輝度が著しく劣っていた。
The light diffusion films of Examples 1 to 5 are adhered to the acrylic plate surface by an adhesive layer, air between the acrylic plate and the light diffusion film is excluded, and the difference in refractive index at the interface becomes small. Was expensive. In addition, since the optical characteristics of inflection and diffusivity are in a preferable range, the light emission pattern is excellent in disappearance.
On the other hand, the light diffusing films of Comparative Examples 1 to 5 have a weak adhesive force between the acrylic plate and the light diffusing film, and air between the two materials is not excluded, resulting in a large difference in the refractive index of the interface between the two members. Compared with the light diffusion films of Examples 1 to 5, the front luminance was remarkably inferior.
 また、導光板を80℃のオーブンに入れて240時間、加温静置した。
 寸法安定性の評価において、加温前と同じ寸法と形状を保っているものは優れており、良とした。また加温処理によりカールあるいは寸法の縮小がみられたものは劣るとし、不良とした。結果を表2に示す。
 実施例1~5で得られた光拡散フィルムは変形せずに、加温前と同じ寸法と形状を保っていたが、比較例1~5で得られた光拡散フィルムは、加温処理により、光拡散フィルムがカールし、かつ寸法が縮小した。
The light guide plate was placed in an oven at 80 ° C. and allowed to stand for 240 hours.
In the evaluation of dimensional stability, those maintaining the same dimensions and shape as those before warming were excellent and considered good. Also, those that curled or reduced in size due to the heating treatment were considered inferior and were judged to be defective. The results are shown in Table 2.
The light diffusing films obtained in Examples 1 to 5 were not deformed and maintained the same size and shape as before heating, but the light diffusing films obtained in Comparative Examples 1 to 5 were subjected to heating treatment. The light diffusing film curled and the dimensions were reduced.
(参考例1)
 2台の溶融押し出し機を用い、第1の押し出し機にて、ポリプロピレン樹脂WF836DG3(住友化学社製、住友ノーブレン)100質量部を溶融して基層Aを形成し、第2の押し出し機にて、ポリプロピレン樹脂WF836DG3(住友化学社製、住友ノーブレン)17質量部とプロピレン・エチレン共重合体 HF3101C(日本ポリプロ社製)83質量部を溶融混合して光拡散層Bを形成し、ダイス内にて基層Aと光拡散層Bが積層されるように、Tダイ方式にて溶融共押出し後、20℃のキャスティングロールで冷却することにより未延伸シートを得た。次いでこの未延伸シートを縦延伸機のロール周速差を利用して延伸温度120℃で4.8倍に延伸し、引き続いてテンタ―式延伸機により、165℃で加熱後、155℃の延伸温度で横方向に9倍延伸した。次いで166℃で熱固定を行って、基層A/光拡散層Bの厚み構成がそれぞれ22.2/2.8(μm)の光拡散フィルムを得た。巻き取り直前において基層A表面にコロナ処理を行った。
 得られた光拡散フィルムの特性を表1に示す。また、得られた光拡散フィルムを使用して実施例6~10及び比較例6~10と同様にして正面輝度、寸法安定性、及び出光パターン消失性を測定した。その結果を表2に示す。
 本参考例の光拡散フィルムは、接着層がないので寸法安定性に劣っていた。また、変曲度や拡散度が低いので、高輝度が得られないことが示される。また、出光パターンの消失性も劣っていた。
(Reference Example 1)
Using two melt extruders, in the first extruder, 100 parts by mass of polypropylene resin WF836DG3 (Sumitomo Chemical Co., Ltd., Sumitomo Nobrene) was melted to form the base layer A, and in the second extruder, A light diffusion layer B is formed by melting and mixing 17 parts by mass of a polypropylene resin WF836DG3 (Sumitomo Chemical Co., Ltd., Sumitomo Nobrene) and 83 parts by mass of a propylene / ethylene copolymer HF3101C (Nippon Polypro Co., Ltd.). An unstretched sheet was obtained by performing melt coextrusion by a T-die method and cooling with a casting roll at 20 ° C. so that A and the light diffusion layer B were laminated. Next, this unstretched sheet was stretched 4.8 times at a stretching temperature of 120 ° C. using the difference in roll peripheral speed of a longitudinal stretching machine, and subsequently heated at 165 ° C. by a tenter-type stretching machine, and then stretched at 155 ° C. The film was stretched 9 times in the transverse direction at the temperature. Subsequently, heat setting was performed at 166 ° C. to obtain a light diffusion film in which the thickness of the base layer A / light diffusion layer B was 22.2 / 2.8 (μm), respectively. The corona treatment was performed on the surface of the base layer A immediately before winding.
Table 1 shows the characteristics of the obtained light diffusion film. Further, using the obtained light diffusion film, front luminance, dimensional stability, and light emission pattern disappearance were measured in the same manner as in Examples 6 to 10 and Comparative Examples 6 to 10. The results are shown in Table 2.
The light diffusion film of this reference example was inferior in dimensional stability because there was no adhesive layer. Also, it is indicated that high brightness cannot be obtained because the inflection and diffusion are low. Moreover, the disappearance of the light emission pattern was also inferior.
(参考例2)
 長径側(横方向)の両側に冷陰極管がそれぞれ3本ずつ設けられた19インチの導光板タイプ(白色反射フィルム使用でメッシュタイプ)のバックライトユニットの出射光側のアクリル板上のほぼ中央部に40mm×60mm角(60mm側が横方向)の参考例1で得られた光拡散フィルムをアクリル系の光学用粘着テープ(両面セパレートフィルムタイプ)で貼り付けて、30mm×50mm角(50mm側が横方向)の切り抜き部分を設けた黒色の遮光紙を切り抜き部分の中心が評価サンプルの中心部になるように設置して、暗室で輝度を測定した。黒色の遮光紙はバックライトユニットの全体が覆われる大きさとして固定して光が漏れないようにして測定した。
 また、バックライトユニットは水平に設置して測定した。
 輝度は(株)トプコンテクノハウス社製のトプコン分光放射計SR-3Aを用いて、測定角度2度で、バックライトユニット表面との距離が40cmで評価用サンプルの中心が直下になる位置で測定した。
 測定は、評価用サンプルの主拡散方向が冷陰極管の長手方向と直交方向になるように設置して行った。
 なお、貼り合わせは、光拡散フィルムのA層側が粘着テープ側になるようにして行った。
 また、実施例6~10及び比較例6~10と同様にして寸法安定性及び出光パターン消失性を測定した。その結果を表2に示す。
 本参考例の光拡散フィルムは、実施例1~5で得られた光拡散フィルムに比べて変曲度や拡散度が低いので、実施例1~5で得られた光拡散フィルムとは異なり、貼り合わせによる輝度向上効果が小さいことが示された。また、出光パターンの消失性も劣っていた。
(Reference Example 2)
Near the center on the acrylic plate on the outgoing light side of a 19-inch light guide plate type (mesh type using a white reflective film) with three cold cathode tubes on each side of the long diameter side (lateral direction) The light diffusion film obtained in Reference Example 1 of 40 mm × 60 mm square (the 60 mm side is the horizontal direction) is attached to the part with an acrylic optical adhesive tape (double-sided separate film type), and the 30 mm × 50 mm square (the 50 mm side is horizontal) A black shading paper provided with a cutout portion in the direction) was placed so that the center of the cutout portion was the center portion of the evaluation sample, and the luminance was measured in a dark room. The black light-shielding paper was fixed so that the entire backlight unit was covered, and measurement was performed so that light did not leak.
Moreover, the backlight unit was installed horizontally and measured.
Luminance was measured using a Topcon Spectroradiometer SR-3A manufactured by Topcon Technohouse Co., Ltd. at a measurement angle of 2 degrees, at a distance of 40 cm from the backlight unit surface, and at the position where the center of the sample for evaluation was directly below. did.
The measurement was performed by installing the sample for evaluation so that the main diffusion direction was perpendicular to the longitudinal direction of the cold cathode tube.
Bonding was performed such that the layer A side of the light diffusion film was the adhesive tape side.
Further, the dimensional stability and the light emission pattern disappearance were measured in the same manner as in Examples 6 to 10 and Comparative Examples 6 to 10. The results are shown in Table 2.
The light diffusing film of this reference example has a lower degree of inflection and diffusion than the light diffusing films obtained in Examples 1 to 5, and therefore, unlike the light diffusing films obtained in Examples 1 to 5, It was shown that the brightness improvement effect by bonding was small. Moreover, the disappearance of the light emission pattern was also inferior.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の光拡散フィルムは、光の透過性と拡散性の両方の特性が優れ、かつ耐光性が良好であり、熱圧着することで、他の部材と容易に接着させることができ、さらに経済性にも優れているので、各種の照明器具、表示機器及びスクリーン等の光学用の機器や装置に好適に用いることができる。さらに、本発明の光拡散フィルムをバックライト装置に用いることで、バックライト装置の高輝度化を達成でき、バックライト装置の経済性を高めることができる。 The light diffusing film of the present invention has both excellent light transmissive and diffusive properties and good light resistance, and can be easily bonded to other members by thermocompression bonding. Therefore, it can be suitably used for various lighting devices, display devices, optical devices and devices such as screens. Furthermore, by using the light diffusing film of the present invention for a backlight device, it is possible to increase the brightness of the backlight device and to improve the economics of the backlight device.

Claims (8)

  1.  二種の互いに非相溶性のポリオレフィン系樹脂を主成分として含有する光拡散層の少なくとも片面に、極性基を含有するポリオレフィン樹脂を主成分として含有する接着層が最表面になるように積層された光拡散フィルムであって、前記フィルムの全光線透過率が66~100%であり、かつ前記フィルムのヘーズが20~100%であることを特徴とする光拡散フィルム。 The adhesive layer containing a polyolefin resin containing a polar group as a main component was laminated on at least one surface of a light diffusing layer containing two types of mutually incompatible polyolefin resins as a main component. A light diffusing film, characterized in that the total light transmittance of the film is 66 to 100%, and the haze of the film is 20 to 100%.
  2.  入射角0度で測定した透過光の主拡散方向の拡散度が140~180度であることを特徴とする請求項1に記載の光拡散フィルム。 2. The light diffusing film according to claim 1, wherein the diffusivity in the main diffusion direction of the transmitted light measured at an incident angle of 0 degrees is 140 to 180 degrees.
  3.  主拡散方向の光の変曲度が1~100%であることを特徴とする請求項1又は2に記載の光拡散フィルム。 3. The light diffusion film according to claim 1, wherein the inflection degree of light in the main diffusion direction is 1 to 100%.
  4.  二種の互いに非相溶性のポリオレフィン系樹脂が、ポリプロピレン系樹脂とエチレン及び/又はブテンを含有するポリオレフィン樹脂とからなることを特徴とする請求項1~3のいずれかに記載の光拡散フィルム。 The light diffusing film according to any one of claims 1 to 3, wherein the two mutually incompatible polyolefin resins comprise a polypropylene resin and a polyolefin resin containing ethylene and / or butene.
  5.  二種の互いに非相溶性のポリオレフィン系樹脂が、環状ポリオレフィン系樹脂とポリエチレン系樹脂とからなることを特徴とする請求項1~3のいずれかに記載の光拡散フィルム。 The light diffusing film according to any one of claims 1 to 3, wherein the two kinds of mutually incompatible polyolefin resins are a cyclic polyolefin resin and a polyethylene resin.
  6.  極性基を含有するポリオレフィン樹脂がカルボキシル基を含有することを特徴とする請求項1~5のいずれかに記載の光拡散フィルム。 6. The light diffusing film according to claim 1, wherein the polyolefin resin containing a polar group contains a carboxyl group.
  7.  バックライトの基本ユニットの出光面の基材表面に、請求項1~6のいずれかに記載の光拡散フィルムの接着層面を貼り合せてなることを特徴とするバックライト装置。 7. A backlight device comprising a light-diffusing film adhesive layer surface according to any one of claims 1 to 6 bonded to a base material surface of a light exit surface of a basic unit of a backlight.
  8.  基材と接着層の屈折率差が-0.2~+0.5であることを特徴とする請求項7に記載のバックライト装置。 The backlight device according to claim 7, wherein the difference in refractive index between the substrate and the adhesive layer is -0.2 to +0.5.
PCT/JP2010/071981 2009-12-10 2010-12-08 Light diffusion film and backlight device comprising same WO2011071065A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080054938.1A CN102753999B (en) 2009-12-10 2010-12-08 Light diffusion film and backlight device comprising same
KR1020127015523A KR101711689B1 (en) 2009-12-10 2010-12-08 Light diffusion film and backlight device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-280277 2009-12-10
JP2009280277 2009-12-10
JP2009-292741 2009-12-24
JP2009292741 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011071065A1 true WO2011071065A1 (en) 2011-06-16

Family

ID=44145609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071981 WO2011071065A1 (en) 2009-12-10 2010-12-08 Light diffusion film and backlight device comprising same

Country Status (5)

Country Link
JP (1) JP5771963B2 (en)
KR (1) KR101711689B1 (en)
CN (1) CN102753999B (en)
TW (1) TWI440898B (en)
WO (1) WO2011071065A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174211A (en) * 1997-12-15 1999-07-02 Nitto Denko Corp Light diffusing board, optical element and liquid crystal display device
JP2002221608A (en) * 2001-01-26 2002-08-09 Daicel Chem Ind Ltd Light scattering sheet and liquid crystal display device
JP2003156603A (en) * 2001-11-20 2003-05-30 Nitto Denko Corp Light diffusing plate, method for manufacturing the same, optical element and image display device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324216A (en) 1993-05-12 1994-11-25 Ohtsu Tire & Rubber Co Ltd :The Light transmission plate and its production
JPH09159837A (en) 1995-12-04 1997-06-20 Dainippon Printing Co Ltd Light diffusive light transmission plate and its production
JP2000280267A (en) * 1999-03-30 2000-10-10 Fuji Photo Film Co Ltd Production of light diffusing body
JP4410391B2 (en) 2000-06-22 2010-02-03 ダイセル化学工業株式会社 Laminated film
JP3544349B2 (en) * 2000-09-27 2004-07-21 シャープ株式会社 Liquid crystal display
JP4181794B2 (en) 2001-06-01 2008-11-19 ダイセル化学工業株式会社 Anisotropic diffusion film
JP2004333716A (en) * 2003-05-06 2004-11-25 Tomoegawa Paper Co Ltd Light diffusing layer, light diffusing film and light diffusing adhesive sheet
JP2005050654A (en) 2003-07-28 2005-02-24 Clariant Internatl Ltd Surface light source
JP2005099484A (en) * 2003-09-25 2005-04-14 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display
JP4843952B2 (en) * 2004-02-04 2011-12-21 ソニー株式会社 Manufacturing method of light diffusing sheet replication mold, light diffusing sheet, manufacturing method thereof, and screen
WO2006014883A2 (en) * 2004-07-29 2006-02-09 Luminoz, Inc Optical display device with asymmetric viewing area
WO2006112325A1 (en) * 2005-04-14 2006-10-26 Sharp Kabushiki Kaisha Liquid crystal display
JP2007178998A (en) 2005-12-01 2007-07-12 Sekisui Film Kk Reflective film, reflective laminated film and reflective laminated board
KR101084903B1 (en) * 2006-03-31 2011-11-17 도요 보세키 가부시키가이샤 Light diffusion film
JP4196306B2 (en) * 2006-03-31 2008-12-17 東洋紡績株式会社 Light diffusion film
JP2008003245A (en) * 2006-06-21 2008-01-10 Sharp Corp Liquid crystal display device
JP2008064835A (en) * 2006-09-05 2008-03-21 Toppan Printing Co Ltd Liquid crystal image display device
JP4257619B2 (en) * 2007-01-31 2009-04-22 東洋紡績株式会社 Surface light diffusing polyester film
JP4700722B2 (en) 2007-02-28 2011-06-15 日東電工株式会社 Backlight system and optical sheet with adhesive
JP2007249210A (en) * 2007-03-15 2007-09-27 Kureha Elastomer Co Ltd Optical filter for display screen
JP4505755B2 (en) * 2007-03-30 2010-07-21 オムロン株式会社 Diffuser and surface light source device
JP2008256814A (en) * 2007-04-03 2008-10-23 Daicel Chem Ind Ltd Anisotropic diffusion plate and backlight unit provided with the same
JP2009025427A (en) * 2007-07-18 2009-02-05 Nippon Zeon Co Ltd Multilayer film and light emitting device
WO2009139402A1 (en) * 2008-05-15 2009-11-19 東洋紡績株式会社 Light-reflecting laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174211A (en) * 1997-12-15 1999-07-02 Nitto Denko Corp Light diffusing board, optical element and liquid crystal display device
JP2002221608A (en) * 2001-01-26 2002-08-09 Daicel Chem Ind Ltd Light scattering sheet and liquid crystal display device
JP2003156603A (en) * 2001-11-20 2003-05-30 Nitto Denko Corp Light diffusing plate, method for manufacturing the same, optical element and image display device

Also Published As

Publication number Publication date
TW201128241A (en) 2011-08-16
KR20120130079A (en) 2012-11-28
JP5771963B2 (en) 2015-09-02
CN102753999A (en) 2012-10-24
JP2011150303A (en) 2011-08-04
KR101711689B1 (en) 2017-03-02
CN102753999B (en) 2015-05-20
TWI440898B (en) 2014-06-11

Similar Documents

Publication Publication Date Title
TWI437278B (en) Anisotropic light-diffusing film, anisotropic light-diffusing film laminated sheet and production method thereof
WO2010016557A1 (en) Anisotropic light-diffusing film, anisotropic light-diffusing laminate, anisotropic light-reflecting laminate, and uses thereof
WO2012026429A1 (en) Film for improving viewing angle, liquid crystal display device, and viewing angle improvement method
JP5200922B2 (en) Polyolefin light diffusion film and polyolefin light diffusion laminate
JP5771963B2 (en) Light diffusion film and backlight device incorporating the same
TWI438499B (en) Light diffusing film, its laminating sheet, method for producing the same, lighting device using led source and backlight device
JP5787493B2 (en) Backlight device
JP5644092B2 (en) Light diffusing film and laminated sheet for backlight device and backlight device using the same
JP2010170076A (en) Anisotropic light-diffusing film, and anisotropic light-diffusing laminate and anisotropic light-reflecting laminate
KR101068635B1 (en) High brightness diffussion film improved engraving proportion and Preparing thereof
JP2015031893A (en) Lens film laminate for lighting equipment
JP2014137943A (en) Direct type surface light source device, and display apparatus and lighting apparatus using the same
TWI459042B (en) A photodiffusion film laminate
JP5838540B2 (en) Light diffusing film and laminated sheet for backlight device and backlight device using the same
JP2011151012A (en) Backlight device, and display device and lighting system using the same
JP2014137520A (en) Optical diffusion laminate and lighting device
JP2014038778A (en) Direct-type surface light source device, and luminaire and display device using the same
JP2012073608A (en) Light diffusion film laminate
JP2012078799A (en) Light-diffusing film laminate
JP2014137942A (en) Direct type surface light source device, and display apparatus and lighting apparatus using the same
JP2012073607A (en) Light diffusion film laminate
JP2014137519A (en) Optical diffusion laminate, surface light source unit, and display device and lighting device formed using surface light source unit
JP2014038779A (en) Direct-type surface light source device, and display device and luminaire using the same
JP2013218093A (en) Light diffusion laminate, surface light source device, and display device and illumination device using surface light source device
KR20100104615A (en) Diffussion film with the improved brightness and preparing thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054938.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015523

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10835985

Country of ref document: EP

Kind code of ref document: A1