WO2011070702A1 - Plate thickness control method and plate thickness control state judgment device - Google Patents

Plate thickness control method and plate thickness control state judgment device Download PDF

Info

Publication number
WO2011070702A1
WO2011070702A1 PCT/JP2010/006093 JP2010006093W WO2011070702A1 WO 2011070702 A1 WO2011070702 A1 WO 2011070702A1 JP 2010006093 W JP2010006093 W JP 2010006093W WO 2011070702 A1 WO2011070702 A1 WO 2011070702A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
deviation
plate thickness
rolling
thickness
Prior art date
Application number
PCT/JP2010/006093
Other languages
French (fr)
Japanese (ja)
Inventor
直 谷本
Original Assignee
Tanimoto Sunao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanimoto Sunao filed Critical Tanimoto Sunao
Publication of WO2011070702A1 publication Critical patent/WO2011070702A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control

Definitions

  • the present invention provides a rolling mill that rolls a sheet to a desired sheet thickness, and controls the sheet thickness by obtaining an estimated sheet thickness deviation based on a deviation of a rolling load from a reference state and a deviation of a rolling position of a roll of the rolling mill.
  • the present invention relates to a so-called BISRA type plate thickness control method and a plate thickness control state determination device used in the control method.
  • the BISRA type plate thickness control system is widely used in the field of metal rolling and is also called a BISRA-AGC (Automatic Gauge Control) system (for example, Patent Document 1).
  • BISRA-AGC Auto Gauge Control
  • the BISRA-AGC will be described in detail later.
  • the reason why BISRA-AGC is widely used is that it is possible to quickly obtain an estimated thickness deviation during rolling by using information on a rolling load during rolling and a rolling position of a roll of a rolling mill.
  • the roll reduction position of the roll of the rolling mill is operated. Therefore, in the BISRA-AGC, a feedback loop including a reduction position is formed.
  • the stability of control and the performance of control are in a so-called trade-off relationship in which priority is given to one and the other is sacrificed.
  • priority is given to stability of control at the expense of control performance to some extent. In other words, the control performance of the BISRA-AGC is not sufficiently exhibited in order to ensure control stability.
  • the sheet thickness control method is a rolling mill for rolling a sheet to a target sheet thickness, the rigidity of the rolling mill used for control, time, deviation of rolling load from the reference state, deviation of the rolling position of the rolling mill, Estimated thickness deviations, respectively,
  • G is As a constant that satisfies To obtain the estimated thickness deviation and control the thickness.
  • is As a constant that satisfies When is established, it is determined that the control state is not stable.
  • is 0 ⁇ ⁇ 1 As a constant satisfying As a result, the estimated thickness deviation is obtained by the equation (1) to control the thickness.
  • the control stability when it is determined that the control state is not stable, the control stability can be obtained by underestimating the magnitude (absolute value) of the second term on the right side of Equation (1) using ⁇ . Is improved.
  • the plate thickness is controlled by obtaining the estimated plate thickness deviation according to the equation (1) so that G decreases with the lapse of time that the state in which it is determined that the control state is not stable.
  • G decreases with the lapse of time of the state in which the state of control is determined to be unstable, so that the case where the stability of control deteriorates with the lapse of time is also supported. can do.
  • the plate thickness control residual is not rapidly increased.
  • the control state determination device is a rolling mill that rolls a plate to a target thickness, the rigidity of the rolling mill, time, deviation of rolling load from the reference state, deviation of the rolling position of the rolling mill, estimated thickness deviation Respectively And G is As a constant that satisfies Is used in a plate thickness control system for calculating the estimated plate thickness deviation and controlling the plate thickness.
  • the control state determination apparatus receives a deviation of the rolling load from the reference state and a deviation of the rolling position of the rolling mill, Value and Whether or not the control state is stable is determined from the relationship between the values, and a signal is output when it is determined that the control state is not stable.
  • Value and Whether or not the control state is stable can be determined from the relationship of the values of. Therefore, in BISRA-AGC, in a state where it is determined that the control state is stable, an estimated plate thickness deviation is obtained by setting G in formula (1) to 1 or a value close to 1, and the plate thickness control residual is minimized. can do. In other words, in BISRA-AGC, considering the case where the control state becomes unstable, it is not necessary to set G in Equation (1) to a lower fixed value.
  • FIG. 1 is a diagram showing the configuration of the BISRA-AGC system.
  • the plate 301 is rolled to a desired plate thickness by a rolling mill (hereinafter also referred to as a mill).
  • the rolling mill includes work roll pairs 201 and 203 and backup roll pairs 205 and 207.
  • the reduction positions of these roll pairs are operated by a reduction cylinder 113.
  • the reduction position is set in advance to a reduction position target value by the reduction control device 103 before the start of rolling.
  • the plate 301 is rolled by passing between a pair of work rolls 201 and 203 set at a predetermined reduction position.
  • a load cell 111 for detecting a rolling load is installed in the mill. The rolling load detected by the load cell 111 is sent to the AGC 101.
  • the roll-down position of the roll pair is detected by the position detector 115 of the roll-down cylinder 113, and the detected roll-down position is sent to the roll-down control device 103 and the AGC 101.
  • the AGC 101 obtains an estimated plate thickness deviation based on the detected rolling load and the reduction position, as described in detail later, and obtains a reduction position change amount based on the estimated plate thickness deviation and the target plate thickness deviation.
  • the change amount is sent to the reduction control device 103.
  • the reduction control device 103 controls the plate thickness by operating the reduction position based on the change amount.
  • BISRA-AGC calculates the estimated thickness deviation ⁇ he during rolling by the following BISRA equation.
  • S is a reduction position
  • P is a rolling load
  • Kc is a mill rigidity used for control, that is, a rolling load that causes elongation of a mill having a unit length.
  • Equation (3) shows that the change in sheet thickness is the sum of the change in the reduction position and the change in the elongation of the mill due to the rolling load.
  • Formula (3) is demonstrated using FIG.2 and FIG.3.
  • FIG. 2 is a diagram showing the relationship between the plate thickness, the reduction position, and the rolling load.
  • the horizontal axis in FIG. 2 indicates the plate thickness and the reduction position.
  • shaft of FIG. 2 shows a rolling load.
  • Curves 311 and 313 in FIG. 2 are curves showing the rigidity of the mill. Pressing position of the curve 311 is S 1, pressing position of the curve 313 is S 2.
  • a curve 315 in FIG. 2 is a plastic curve of a plate having a plate thickness H before rolling. The intersection of the curve 311 and the curve 315 is a point A.
  • the value on the horizontal axis of the point A is h 1 and indicates the thickness after rolling.
  • the value on the vertical axis of the point A is P 1, showing the rolling load.
  • the rolling load P 1 the thickness is reduced from H to h 1, pressing position of the mill, by milling extend by rolling load P 1, it is increased from S 1 to h 1.
  • the intersection of the curve 313 and the curve 315 is a point B.
  • the value on the horizontal axis of the point B is h 2, showing the plate thickness after rolling.
  • the value on the vertical axis of the point B is P 2, showing a rolling load.
  • the rolling load P 2 the thickness is reduced from H to h 2, pressing position of the mill, by milling extend by rolling load P 1, it is increased from S 2 to h 2.
  • FIG. 3 is an enlarged view of a region including the points A and B in FIG.
  • an intersection of a straight line passing through the point A and parallel to the horizontal axis and the curve 313 is defined as a point C.
  • curves 313 and 315 are regarded as straight lines, and their slopes are K and ⁇ M, respectively.
  • K is the mill rigidity, that is, the rolling load that causes the elongation of the mill of a unit length
  • M is the plastic gradient, that is, the rate of change of the rolling load with respect to the plate thickness change after rolling.
  • the following equation holds. When deformed, This equation corresponds to equation (3).
  • the rolling position is decreased by ⁇ S, the rolling load increases, so the mill elongation increases. Therefore, the sum of the decrease in the reduction position and the increase in the mill elongation is the decrease in the plate thickness.
  • FIG. 4 is a diagram showing the configuration of BISRA-AGC.
  • the symbols in FIG. 4 are as follows, including those already described.
  • the following equation including the tuning rate ⁇ is used as the BISRA equation instead of the equation (3).
  • the tuning rate ⁇ is a positive value smaller than 1.
  • the number of transmissions from the target plate thickness deviation to the deviation from the reference reduction position of the actual reduction position can be expressed by the following equation.
  • k / A is g. Therefore, the characteristic root is It becomes.
  • the control system is stable.
  • the condition that the real part of the characteristic root is negative is that g is positive. It is.
  • the tuning rate ⁇ is set to a value smaller than 1 in order to ensure the stability of the control system.
  • FIG. 5 is a block diagram showing the relationship between the disturbance of the rolling load and the plate thickness.
  • the symbols in FIG. 5 are as follows. However, the description of the same reference numerals as those in FIG. 4 is omitted. From FIG. 5, the number of transmissions from the disturbance of the rolling load to the deviation of the actual sheet thickness can be expressed by the following equation.
  • the mill rigidity (K, Kc) is 5 [MN / mm] and the rolling load is 1 [MN] during rolling.
  • Table 1 shows the plate thickness control residual [unit: ⁇ m] of a single stand generated by BISRA-AGC when the tuning rate ⁇ and the plastic gradient of the plate are changed.
  • BISRA-AGC falls into an unstable region of control, which means that in the worst case, a very dangerous situation involving the destruction of the rolling mill occurs.
  • the tuning rate ⁇ is set to about 0.8 for thin and wide materials with large M regardless of the state of the rolling mill.
  • Table 1 in this case, it is no exaggeration to say that the plate thickness control by BISRA-AGC is hardly performed.
  • BISRA-AGC is currently effective only for rolling a material having a small M, that is, a thick material or a narrow material.
  • control of the plate thickness by reducing the tuning rate ⁇ corresponds to the fact that the so-called absolute value AGC function for controlling by setting the product plate thickness to the target plate thickness cannot be used. This is a large loss in yield.
  • the inventor determines the stability of the control by considering the deviation of the actual reduction position from the reference reduction position and the thickness change due to the mill elongation. I got new knowledge that I could do it.
  • the reduction in the rolling position ( ⁇ S, where ⁇ S ⁇ 0) is the increase in rolling load ( ⁇ P, where ⁇ P> 0), that is, the increase in mill elongation change ( ⁇ P / Kc). ). Therefore, we compared the absolute value of the rolling position change used in BISRA-AGC with the absolute value of the mill elongation change, Then it ’s stable, If so, it is determined to be unstable.
  • Expression (12) is the same as Expression (2).
  • G is the tuning rate, It is a constant that satisfies
  • the tuning rate according to the present invention is defined as G, and is distinguished from the tuning rate ⁇ according to the prior art.
  • is a constant related to the position of the characteristic root, and the position of the characteristic root is determined by Expressions (11) and (12). Specifically, ⁇ is Is a constant satisfying Corresponds to the position of the characteristic root. That is, as the value of ⁇ is larger, the characteristic root is located on the negative side (control stable side). According to the equations (11) and (12), the characteristic root is It is determined whether it is on the negative side or the positive side from the position of.
  • FIG. 6 is a diagram showing a configuration of a BISRA-AGC system including the control state determination device 105 according to the present invention.
  • the portion of the AGC system of FIG. 6 excluding the control state determination device 105 is the same as the AGC system described with reference to FIG.
  • the control state determination device 105 is connected to the AGC 101, and the deviation from the reference reduction position of the actual reduction position from the AGC 101. And actual rolling load deviation from standard rolling load Receive.
  • the control state determination apparatus 105 determines the stability of control using these values. If the control state determination device 105 determines that the control state is unstable, the control state determination device 105 changes the control parameter of the AGC 101. If the control state determination device 105 determines that the control state is unstable, it sends an alarm output command to the alarm output device 107 to output an alarm.
  • the control state determination device 105 has the formula Monitor whether or not here, Is a positive constant of 1 or more, and is 1.05 as an example. If Expression (14) does not hold, the control state determination device 105 determines that the control is in a stable state, and continues control using Expression (13). If Expression (14) is satisfied, the control state determination device 105 determines that the control is in an unstable state, and changes the expression for obtaining the estimated thickness deviation as follows. here, ⁇ Is a positive constant less than 1, for example 0.8.
  • Equation (13) By changing the equation for obtaining the estimated thickness deviation from Equation (13) to Equation (15), the position of the characteristic root according to Equation (7) moves to the stable side, and feedback control can escape from the unstable state.
  • a control residual of the plate thickness as shown in Table 1 occurs with respect to the disturbance of the rolling load.
  • the control stability is ensured at the expense of the control performance only when the control becomes unstable while monitoring the control stability.
  • the use of Equation (11) is different from the conventional control method in that the control performance is sufficiently exhibited.
  • Example 2 AGC101
  • the estimated plate thickness deviation is obtained by the feedback plate thickness control.
  • Expression (16) is the same as Expression (1).
  • the control state determination device 105 has the formula It is determined whether or not here, The initial value of is 1.0 Is a positive constant of 1 or more, and is 1.05 as an example.
  • FIG. 7 is a flowchart for explaining the control method of the second embodiment.
  • step S110 in FIG. 7 the control state determination device 105 determines the deviation from the reference reduction position of the actual reduction position from the AGC 101. And actual rolling load deviation from standard rolling load Receive.
  • the AGC 101 takes in the actual plate thickness, the actual rolling load, and the actual reduction position as reference values when the plates are bitten (lock-on process), and a deviation is obtained from these reference values.
  • the absolute value of the deviation of the actual reduction position from the reference reduction position may be, for example, 0.1 mm or 3% of the target plate thickness.
  • step S120 of FIG. It is determined whether or not If Formula (17) is materialized, it will progress to Step S130. If Expression (17) does not hold, the process proceeds to step S140.
  • step S130 in FIG. 7 it is determined that the control is in an unstable state. And here, ⁇ Is a constant less than 1, for example 0.9.
  • G in Expression (16) By changing G in Expression (16) according to Expression (18), the position of the characteristic root according to Expression (7) moves to the stable side. Until the stability of control is ensured by repeating the process of step S130 at regular intervals. The value of is decreased.
  • expression (17) does not hold, it is determined that the control is in a stable state. As is, control using the equation (16) is continued.
  • control state determination device 105 determines whether or not AGC control is being performed. If AGC control is being performed, the process returns to step S110. If AGC control is not in progress, the process is terminated.
  • the control stability is ensured at the expense of the control performance only when the control becomes unstable. If the control is stable, in equation (16) Thus, the point that the control performance is sufficiently exhibited is different from the conventional control method.
  • a rolling load disturbance of 0.5 MN occurs due to a skid mark generated in a heating furnace before rolling.
  • the tuning coefficient ⁇ is 0.8, from Table 1, the plate thickness variation caused by the rolling load disturbance is It is. According to the present invention, if the tuning coefficient ⁇ can be set to 1.0 by ensuring the stability of the control, The yield can be improved.
  • the present invention has been described using a hot strip mill as an example, the present invention can be applied to other rolling mills such as a cold strip mill and a thick plate mill as long as the mill uses a BISRA-AGC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Provided is a plate thickness control method for controlling, in a rolling mill for rolling a plate to obtain a target plate thickness, a plate thickness by determining an estimated plate thickness deviation from the following expression (1): ∆he(t) = ∆S(t)+G×∆P(t)/Kc (1), in which Kc, t, ∆P(t), ∆S(t), and ∆he(t) (A) represent the rigidity of the rolling mill used for the control, a period of time, and the deviation of a rolling weight, the deviation of a roll gap of the rolling mill, and the estimated plate thickness deviation from a standard state, respectively, and G represents a constant value that satisfies 0<G≤1 (B). In this method, during the control, whether the state of the control is stable or not is judged from the relationship between the value of |∆S(t)| (C) and the value of |G×∆P(t)/Kc| (D), and when it is judged that the state of the control is not stable, at least one of the lowering of the value of G in the expression (1) and the generation of an alarm is carried out.

Description

板厚制御方法及び板厚制御状態判定装置Plate thickness control method and plate thickness control state determination device
 本発明は、板を所望の板厚に圧延する圧延機において、基準状態からの圧延荷重の偏差及び圧延機のロールの圧下位置の偏差に基づいて、推定板厚偏差を求めて板厚の制御を行なう、いわゆるBISRA方式の板厚制御方法及び該制御方法に使用される板厚制御状態判定装置に関するものである。 The present invention provides a rolling mill that rolls a sheet to a desired sheet thickness, and controls the sheet thickness by obtaining an estimated sheet thickness deviation based on a deviation of a rolling load from a reference state and a deviation of a rolling position of a roll of the rolling mill. The present invention relates to a so-called BISRA type plate thickness control method and a plate thickness control state determination device used in the control method.
 BISRA方式の板厚制御システムは、金属の圧延の分野で広く使用されており、BISRA-AGC(Automatic Gauge Control)システムとも呼称される(たとえば、特許文献1)。BISRA-AGCについては後で詳細に説明する。BISRA-AGCが広く使用されている理由は、圧延中の圧延荷重及び圧延機のロールの圧下位置の情報を使用して、圧延中の推定板厚偏差を迅速に得ることができるからである。一方、このようにして得られた推定板厚偏差に基づいて板厚を制御するために、圧延機のロールの圧下位置が操作される。したがって、BISRA-AGCにおいては、圧下位置を含むフィードバックループが形成される。一般的に、フィードバックループにおいて、制御の安定性と制御の性能は、一方を優先させると他方が犠牲とされる、いわゆる、トレードオフの関係にある。BISRA-AGCを使用した圧延機において、制御が不安定となると大規模な圧延不良が発生する可能性が高い。そこで、従来、BISRA-AGCを使用した圧延機においては、制御の性能をある程度犠牲にして制御の安定性を優先させている。換言すれば、制御の安定性を確保するために、BISRA-AGCの制御性能が十分に発揮されていない。 The BISRA type plate thickness control system is widely used in the field of metal rolling and is also called a BISRA-AGC (Automatic Gauge Control) system (for example, Patent Document 1). The BISRA-AGC will be described in detail later. The reason why BISRA-AGC is widely used is that it is possible to quickly obtain an estimated thickness deviation during rolling by using information on a rolling load during rolling and a rolling position of a roll of a rolling mill. On the other hand, in order to control the sheet thickness based on the estimated sheet thickness deviation obtained in this way, the roll reduction position of the roll of the rolling mill is operated. Therefore, in the BISRA-AGC, a feedback loop including a reduction position is formed. Generally, in the feedback loop, the stability of control and the performance of control are in a so-called trade-off relationship in which priority is given to one and the other is sacrificed. In a rolling mill using BISRA-AGC, if the control becomes unstable, there is a high possibility that a large-scale rolling failure will occur. Therefore, conventionally, in a rolling mill using BISRA-AGC, priority is given to stability of control at the expense of control performance to some extent. In other words, the control performance of the BISRA-AGC is not sufficiently exhibited in order to ensure control stability.
 このように、従来、BISRA-AGCを使用した圧延機において、制御の安定性を確保しながら、制御性能を高くする板厚制御方法は開発されていなかった。 Thus, conventionally, in the rolling mill using BISRA-AGC, a plate thickness control method for improving the control performance while ensuring the stability of control has not been developed.
特開2001-179317号公報JP 2001-179317 A
 そこで、BISRA-AGCにおいて、制御の安定性を確保しながら、制御性能を高くする板厚制御方法に対するニーズがある。 Therefore, there is a need for a plate thickness control method in BISRA-AGC that enhances control performance while ensuring control stability.
 本発明による板厚制御方法は、板を目標の板厚に圧延する圧延機において、制御に使用する圧延機の剛性、時間、基準状態からの圧延加重の偏差、圧延機の圧下位置の偏差、推定板厚偏差を、それぞれ、
Figure JPOXMLDOC01-appb-M000001
とし、Gは、
Figure JPOXMLDOC01-appb-M000002
を満たす定数であるとして、式
Figure JPOXMLDOC01-appb-M000003
によって推定板厚偏差を求めて、板厚を制御する。本方法において、制御中に
Figure JPOXMLDOC01-appb-M000004
の値及び
Figure JPOXMLDOC01-appb-M000005
の値の関係から制御の状態が安定しているかどうか判定し、制御の状態が安定していないと判定したときに、式(1)のGを小さくすること及びアラームを発生させることの少なくとも一方を実施する。
The sheet thickness control method according to the present invention is a rolling mill for rolling a sheet to a target sheet thickness, the rigidity of the rolling mill used for control, time, deviation of rolling load from the reference state, deviation of the rolling position of the rolling mill, Estimated thickness deviations, respectively,
Figure JPOXMLDOC01-appb-M000001
And G is
Figure JPOXMLDOC01-appb-M000002
As a constant that satisfies
Figure JPOXMLDOC01-appb-M000003
To obtain the estimated thickness deviation and control the thickness. In this method, during control
Figure JPOXMLDOC01-appb-M000004
Value and
Figure JPOXMLDOC01-appb-M000005
It is determined whether the control state is stable from the relationship between the values of the values, and when it is determined that the control state is not stable, at least one of reducing G in Formula (1) and generating an alarm To implement.
 本発明による方法によれば、制御中に
Figure JPOXMLDOC01-appb-M000006
の値及び
Figure JPOXMLDOC01-appb-M000007
の値の関係から制御の状態が安定しているかどうか判定することができる。したがって、BISRA-AGCにおいて、制御の状態が安定していると判定される状態で、式(1)のGを1または1に近い値で推定板厚偏差を求め、板厚制御残差を最小とすることができる。換言すれば、BISRA-AGCにおいて、制御状態が不安定となる場合を考慮して、式(1)のGを低めの固定値に設定する必要がない。
According to the method according to the invention, during control
Figure JPOXMLDOC01-appb-M000006
Value and
Figure JPOXMLDOC01-appb-M000007
Whether or not the control state is stable can be determined from the relationship of the values of. Therefore, in BISRA-AGC, in a state where it is determined that the control state is stable, an estimated plate thickness deviation is obtained with G in Formula (1) being 1 or a value close to 1, and the plate thickness control residual is minimized. It can be. In other words, in BISRA-AGC, considering the case where the control state becomes unstable, it is not necessary to set G in Equation (1) to a lower fixed value.
 本発明の実施形態によれば、βは、
Figure JPOXMLDOC01-appb-M000008
を満たす定数であるとして、式
Figure JPOXMLDOC01-appb-M000009
が成立したときに、制御の状態が安定していないと判定する。
According to an embodiment of the present invention, β is
Figure JPOXMLDOC01-appb-M000008
As a constant that satisfies
Figure JPOXMLDOC01-appb-M000009
When is established, it is determined that the control state is not stable.
 本実施形態による方法によれば、式(2)を使用することにより、制御の状態が安定しているかどうかを容易に判定することができる。 According to the method according to the present embodiment, it is possible to easily determine whether or not the control state is stable by using Expression (2).
 本発明の実施形態によれば、制御の状態が安定していないと判定した場合に、γは、
 0<γ<1
を満たす定数であるとして、
Figure JPOXMLDOC01-appb-M000010
として式(1)によって推定板厚偏差を求めて、板厚を制御する。
According to the embodiment of the present invention, when it is determined that the state of control is not stable, γ is
0 <γ <1
As a constant satisfying
Figure JPOXMLDOC01-appb-M000010
As a result, the estimated thickness deviation is obtained by the equation (1) to control the thickness.
 本実施形態による方法によれば、制御状態が安定していないと判定した場合に、γによって、式(1)右辺第2項の大きさ(絶対値)を過小評価することで制御の安定性が改善される。 According to the method according to the present embodiment, when it is determined that the control state is not stable, the control stability can be obtained by underestimating the magnitude (absolute value) of the second term on the right side of Equation (1) using γ. Is improved.
 本発明の実施形態によれば、式(2)による判定を繰り返し行ない、制御の状態が安定していないと判定した場合に、δは
 0<δ<1
を満たす定数であるとして、
Figure JPOXMLDOC01-appb-M000011
として、制御の状態が安定していないと判定された状態の持続する時間の経過とともにGが減少するようにして式(1)によって推定板厚偏差を求めて、板厚を制御する。
According to the embodiment of the present invention, when the determination according to the expression (2) is repeatedly performed and it is determined that the control state is not stable, δ is 0 <δ <1
As a constant satisfying
Figure JPOXMLDOC01-appb-M000011
As described above, the plate thickness is controlled by obtaining the estimated plate thickness deviation according to the equation (1) so that G decreases with the lapse of time that the state in which it is determined that the control state is not stable.
 本実施形態による方法によれば、制御の状態が安定していないと判定された状態の持続する時間の経過とともにGが減少するので、制御の安定性が時間の経過とともに悪化する場合にも対応することができる。他方、板厚制御残差を急激に増加させることがない。 According to the method according to the present embodiment, G decreases with the lapse of time of the state in which the state of control is determined to be unstable, so that the case where the stability of control deteriorates with the lapse of time is also supported. can do. On the other hand, the plate thickness control residual is not rapidly increased.
 本発明による制御状態判定装置は、板を目標の板厚に圧延する圧延機において、圧延機の剛性、時間、基準状態からの圧延加重の偏差、圧延機の圧下位置の偏差、推定板厚偏差を、それぞれ、
Figure JPOXMLDOC01-appb-M000012
とし、Gは、
Figure JPOXMLDOC01-appb-M000013
を満たす定数であるとして、式
Figure JPOXMLDOC01-appb-M000014
によって推定板厚偏差を求めて、板厚を制御する板厚制御システムにおいて使用される。本発明による制御状態判定装置は、基準状態からの圧延加重の偏差及び圧延機の圧下位置の偏差を受け取り、
Figure JPOXMLDOC01-appb-M000015
の値及び
Figure JPOXMLDOC01-appb-M000016
の値の関係から制御の状態が安定しているかどうか判定し、制御の状態が安定していないと判定したときに信号を出力する。
The control state determination device according to the present invention is a rolling mill that rolls a plate to a target thickness, the rigidity of the rolling mill, time, deviation of rolling load from the reference state, deviation of the rolling position of the rolling mill, estimated thickness deviation Respectively
Figure JPOXMLDOC01-appb-M000012
And G is
Figure JPOXMLDOC01-appb-M000013
As a constant that satisfies
Figure JPOXMLDOC01-appb-M000014
Is used in a plate thickness control system for calculating the estimated plate thickness deviation and controlling the plate thickness. The control state determination apparatus according to the present invention receives a deviation of the rolling load from the reference state and a deviation of the rolling position of the rolling mill,
Figure JPOXMLDOC01-appb-M000015
Value and
Figure JPOXMLDOC01-appb-M000016
Whether or not the control state is stable is determined from the relationship between the values, and a signal is output when it is determined that the control state is not stable.
 本発明による制御状態判定装置によれば、
Figure JPOXMLDOC01-appb-M000017
の値及び
Figure JPOXMLDOC01-appb-M000018
の値の関係から制御の状態が安定しているかどうか判定することができる。したがって、BISRA-AGCにおいて、制御状態が安定していると判定される状態で、式(1)のGを1または1に近い値で推定板厚偏差を求め、板厚制御残差を最小とすることができる。換言すれば、BISRA-AGCにおいて、制御状態が不安定となる場合を考慮して、式(1)のGを低めの固定値に設定する必要がない。
According to the control state determination apparatus of the present invention,
Figure JPOXMLDOC01-appb-M000017
Value and
Figure JPOXMLDOC01-appb-M000018
Whether or not the control state is stable can be determined from the relationship of the values of. Therefore, in BISRA-AGC, in a state where it is determined that the control state is stable, an estimated plate thickness deviation is obtained by setting G in formula (1) to 1 or a value close to 1, and the plate thickness control residual is minimized. can do. In other words, in BISRA-AGC, considering the case where the control state becomes unstable, it is not necessary to set G in Equation (1) to a lower fixed value.
BISRA-AGCシステムの構成を示す図である。It is a figure which shows the structure of a BISRA-AGC system. 板厚、圧下位置と圧延荷重との関係を示す図である。It is a figure which shows the relationship between plate | board thickness, a reduction position, and a rolling load. 図2の点A及び点Bを含む領域を拡大した図である。It is the figure which expanded the area | region containing the point A and the point B of FIG. BISRA-AGCの構成を示す図である。It is a figure which shows the structure of BISRA-AGC. 圧延荷重の外乱と板厚との関係を示すブロック図である。It is a block diagram which shows the relationship between disturbance of rolling load, and plate | board thickness. 本発明による制御状態判定装置を含む、BISRA-AGCシステムの構成を示す図である。It is a figure which shows the structure of the BISRA-AGC system containing the control state determination apparatus by this invention. 実施例2の制御方法を説明するための流れ図である。6 is a flowchart for explaining a control method according to the second embodiment.
 図1は、BISRA-AGCシステムの構成を示す図である。板301は、圧延機(以下、ミルとも呼称する)によって所望の板厚に圧延される。圧延機は、ワークロールの対201、203及びバックアップロールの対205、207を含む。これらのロール対の圧下位置は、圧下シリンダ113によって操作される。圧下位置は、圧延開始前に、圧下制御装置103によって圧下位置目標値に予め設定される。板301は、所定の圧下位置に設定されたワークロールの対201、203の間を通過することによって圧延される。ミルには、圧延荷重を検出するためのロードセル111が設置されている。ロードセル111によって検出された圧延荷重は、AGC101に送られる。また、ロール対の圧下位置は、圧下シリンダ113の位置検出器115によって検出され、検出された圧下位置は、圧下制御装置103及びAGC101に送られる。AGC101は、検出された圧延荷重及び圧下位置に基づいて、後で詳細に説明するように推定板厚偏差を求め、該推定板厚偏差及び目標板厚偏差に基づいて圧下位置変更量を求め、該変更量を圧下制御装置103に送る。圧下制御装置103は、該変更量に基づいて圧下位置を操作することにより板厚を制御する。 FIG. 1 is a diagram showing the configuration of the BISRA-AGC system. The plate 301 is rolled to a desired plate thickness by a rolling mill (hereinafter also referred to as a mill). The rolling mill includes work roll pairs 201 and 203 and backup roll pairs 205 and 207. The reduction positions of these roll pairs are operated by a reduction cylinder 113. The reduction position is set in advance to a reduction position target value by the reduction control device 103 before the start of rolling. The plate 301 is rolled by passing between a pair of work rolls 201 and 203 set at a predetermined reduction position. A load cell 111 for detecting a rolling load is installed in the mill. The rolling load detected by the load cell 111 is sent to the AGC 101. Further, the roll-down position of the roll pair is detected by the position detector 115 of the roll-down cylinder 113, and the detected roll-down position is sent to the roll-down control device 103 and the AGC 101. The AGC 101 obtains an estimated plate thickness deviation based on the detected rolling load and the reduction position, as described in detail later, and obtains a reduction position change amount based on the estimated plate thickness deviation and the target plate thickness deviation. The change amount is sent to the reduction control device 103. The reduction control device 103 controls the plate thickness by operating the reduction position based on the change amount.
 BISRA-AGCは、以下のBISRA式で圧延中の推定板厚偏差Δheを求める。
Figure JPOXMLDOC01-appb-M000019
ここで、Sは、圧下位置、Pは圧延荷重、Kcは、制御に使用されるミル剛性、すなわち、単位長さのミルの伸びを生じる圧延荷重である。式(3)は、板厚の変化が圧下位置の変化と圧延荷重によるミルの伸びの変化との和であることを示す。式(3)について、図2及び図3を使用して説明する。
BISRA-AGC calculates the estimated thickness deviation Δhe during rolling by the following BISRA equation.
Figure JPOXMLDOC01-appb-M000019
Here, S is a reduction position, P is a rolling load, and Kc is a mill rigidity used for control, that is, a rolling load that causes elongation of a mill having a unit length. Equation (3) shows that the change in sheet thickness is the sum of the change in the reduction position and the change in the elongation of the mill due to the rolling load. Formula (3) is demonstrated using FIG.2 and FIG.3.
 図2は、板厚、圧下位置と圧延荷重との関係を示す図である。図2の横軸は、板厚及び圧下位置を示す。図2の縦軸は、圧延荷重を示す。図2における曲線311及び313は、ミルの剛性を示す曲線である。曲線311の圧下位置は、Sであり、曲線313の圧下位置は、Sである。図2における曲線315は、圧延前の板厚がHである板の塑性曲線である。曲線311と曲線315の交点は、点Aである。点Aの横軸上の値は、hであり、圧延後の板厚を示す。点Aの縦軸上の値は、Pであり、圧延荷重を示す。この場合に、圧延荷重Pによって、板厚は、Hからhまで減少され、ミルの圧下位置は、圧延荷重Pによってミルが伸びることにより、Sからhまで増加される。同様に、曲線313と曲線315の交点は、点Bである。点Bの横軸上の値は、hであり、圧延後の板厚を示す。点Bの縦軸上の値は、Pであり、圧延荷重を示す。この場合に、圧延荷重Pによって、板厚は、Hからhまで減少され、ミルの圧下位置は、圧延荷重Pによってミルが伸びることにより、Sからhまで増加される。 FIG. 2 is a diagram showing the relationship between the plate thickness, the reduction position, and the rolling load. The horizontal axis in FIG. 2 indicates the plate thickness and the reduction position. The vertical axis | shaft of FIG. 2 shows a rolling load. Curves 311 and 313 in FIG. 2 are curves showing the rigidity of the mill. Pressing position of the curve 311 is S 1, pressing position of the curve 313 is S 2. A curve 315 in FIG. 2 is a plastic curve of a plate having a plate thickness H before rolling. The intersection of the curve 311 and the curve 315 is a point A. The value on the horizontal axis of the point A is h 1 and indicates the thickness after rolling. The value on the vertical axis of the point A is P 1, showing the rolling load. In this case, the rolling load P 1, the thickness is reduced from H to h 1, pressing position of the mill, by milling extend by rolling load P 1, it is increased from S 1 to h 1. Similarly, the intersection of the curve 313 and the curve 315 is a point B. The value on the horizontal axis of the point B is h 2, showing the plate thickness after rolling. The value on the vertical axis of the point B is P 2, showing a rolling load. In this case, the rolling load P 2, the thickness is reduced from H to h 2, pressing position of the mill, by milling extend by rolling load P 1, it is increased from S 2 to h 2.
 図3は、図2の点A及び点Bを含む領域を拡大した図である。図3において、点Aを通り横軸と平行な直線と曲線313との交点を点Cとする。図3において、曲線313及び315を直線とみなし、その傾きを、それぞれK及び-Mとする。ここで、Kは、ミル剛性、すなわち、単位長さのミルの伸びを生じる圧延荷重、Mは、塑性勾配、すなわち、圧延後の板厚変化に対する圧延荷重の変化率である。符号を考慮すると、以下の式が成立する。
Figure JPOXMLDOC01-appb-M000020
変形すると、
Figure JPOXMLDOC01-appb-M000021
この式は、式(3)に相当する。圧下位置をΔS減少させたときに、圧延荷重が増加するのでミルの伸びは増加する。したがって、圧下位置の減少分とミル伸びの増加分との和が、板厚の減少分となる。
FIG. 3 is an enlarged view of a region including the points A and B in FIG. In FIG. 3, an intersection of a straight line passing through the point A and parallel to the horizontal axis and the curve 313 is defined as a point C. In FIG. 3, curves 313 and 315 are regarded as straight lines, and their slopes are K and −M, respectively. Here, K is the mill rigidity, that is, the rolling load that causes the elongation of the mill of a unit length, and M is the plastic gradient, that is, the rate of change of the rolling load with respect to the plate thickness change after rolling. Considering the sign, the following equation holds.
Figure JPOXMLDOC01-appb-M000020
When deformed,
Figure JPOXMLDOC01-appb-M000021
This equation corresponds to equation (3). When the rolling position is decreased by ΔS, the rolling load increases, so the mill elongation increases. Therefore, the sum of the decrease in the reduction position and the increase in the mill elongation is the decrease in the plate thickness.
 つぎに、圧延荷重の変化について考慮する。図3において、符合を考慮すると、
Figure JPOXMLDOC01-appb-M000022
この式を変形して
Figure JPOXMLDOC01-appb-M000023
が得られる。
Next, changes in rolling load are considered. In FIG. 3, considering the sign,
Figure JPOXMLDOC01-appb-M000022
Transform this formula
Figure JPOXMLDOC01-appb-M000023
Is obtained.
 図4は、BISRA-AGCの構成を示す図である。図4の符号は、すでに説明したものを含め、以下のとおりである。
Figure JPOXMLDOC01-appb-M000024
FIG. 4 is a diagram showing the configuration of BISRA-AGC. The symbols in FIG. 4 are as follows, including those already described.
Figure JPOXMLDOC01-appb-M000024
 図4から明らかなようにBISRA式として、式(3)の代わりに、チューニング率αを含む以下の式が使用される。
Figure JPOXMLDOC01-appb-M000025
ここで、チューニング率αは、1より小さい正の値である。
As is apparent from FIG. 4, the following equation including the tuning rate α is used as the BISRA equation instead of the equation (3).
Figure JPOXMLDOC01-appb-M000025
Here, the tuning rate α is a positive value smaller than 1.
 図4から、目標板厚偏差から実績圧下位置の基準圧下位置からの偏差までの伝達間数は以下の式で表せる。ここでは、k/Aをgとした。
Figure JPOXMLDOC01-appb-M000026
したがって、特性根は、
Figure JPOXMLDOC01-appb-M000027
となる。制御理論によれば、特性根の実部が負であれば、制御系は安定である。特性根の実部が負となる条件は、gが正であるので、
Figure JPOXMLDOC01-appb-M000028
である。
From FIG. 4, the number of transmissions from the target plate thickness deviation to the deviation from the reference reduction position of the actual reduction position can be expressed by the following equation. Here, k / A is g.
Figure JPOXMLDOC01-appb-M000026
Therefore, the characteristic root is
Figure JPOXMLDOC01-appb-M000027
It becomes. According to the control theory, if the real part of the characteristic root is negative, the control system is stable. The condition that the real part of the characteristic root is negative is that g is positive.
Figure JPOXMLDOC01-appb-M000028
It is.
 式(8)から、チューニング率αが小さいほど制御系は安定である。たとえば、板厚が薄く、板幅が広い板の場合など、ミル剛性Kが制御に使用するミル剛性Kcよりも大きな場合には、制御系の安定度が低下する。そこで、このような場合にも制御系の安定性を確保するために、チューニング率αは、1より小さな値に設定される。 From equation (8), the smaller the tuning rate α, the more stable the control system. For example, when the mill stiffness K is larger than the mill stiffness Kc used for control, such as when the plate thickness is thin and the plate width is wide, the stability of the control system decreases. Therefore, in such a case, the tuning rate α is set to a value smaller than 1 in order to ensure the stability of the control system.
 つぎに、式(5)を使用するBISRA-AGCにおいて、圧延荷重にステップ状の外乱が入った場合の制御残差について説明する。 Next, in BISRA-AGC using Equation (5), the control residual when a step-like disturbance enters the rolling load will be described.
 図5は、圧延荷重の外乱と板厚との関係を示すブロック図である。図5の符号は、以下のとおりである。ただし、図4と同じ符号は説明を省略する。
Figure JPOXMLDOC01-appb-M000029
図5から、圧延荷重の外乱から実績板厚の偏差までの伝達間数は、以下の式で表せる。
Figure JPOXMLDOC01-appb-M000030
FIG. 5 is a block diagram showing the relationship between the disturbance of the rolling load and the plate thickness. The symbols in FIG. 5 are as follows. However, the description of the same reference numerals as those in FIG. 4 is omitted.
Figure JPOXMLDOC01-appb-M000029
From FIG. 5, the number of transmissions from the disturbance of the rolling load to the deviation of the actual sheet thickness can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000030
 (9)に最終値の定理を適用すると、単位ステップ外乱に対する制御残差は、
Figure JPOXMLDOC01-appb-M000031
Applying the final value theorem to (9), the control residual for unit step disturbance is
Figure JPOXMLDOC01-appb-M000031
 ここで、例として、BISRA-AGCを使用した鋼板のホットストリップミル仕上げ後段の圧延機で、ミル剛性(K, Kc)を 5 [MN/mm]として、圧延中に1[MN]の圧延荷重の外乱が入った場合を考える。AGCが無い場合は、
 1[MN] / 5[MN/mm] = 200μm
の板厚制御残差
Figure JPOXMLDOC01-appb-M000032
を生じるはずである。
Here, as an example, with a rolling mill after hot strip mill finishing of a steel plate using BISRA-AGC, the mill rigidity (K, Kc) is 5 [MN / mm] and the rolling load is 1 [MN] during rolling. Consider the case of a disturbance. If there is no AGC,
1 [MN] / 5 [MN / mm] = 200μm
Sheet thickness control residual
Figure JPOXMLDOC01-appb-M000032
Should result.
 表1は、チューニング率α及び板の塑性勾配を変化させた場合にBISRA-AGCによって生じる単スタンドの板厚制御残差[単位 μm]を示す。

Figure JPOXMLDOC01-appb-T000001
Table 1 shows the plate thickness control residual [unit: μm] of a single stand generated by BISRA-AGC when the tuning rate α and the plastic gradient of the plate are changed.

Figure JPOXMLDOC01-appb-T000001
 このように、α=1.0であると外乱を完全に吸収できるが、αを小さくすると自動板厚制御性能を特にMの大きな材料(薄物広幅材料など)で劣化させることが分かる。 Thus, it can be seen that when α = 1.0, the disturbance can be completely absorbed, but when α is reduced, the automatic plate thickness control performance is deteriorated particularly by a material having a large M (such as a thin wide material).
 BISRA-AGCが制御の不安定領域に陥ることは、最悪の場合に圧延機の破壊を伴う非常に危険な事態が生じることを意味する。しかし、従来、BISRA-AGCの制御の安定性を事前に予測することはできなかった。この結果、油圧圧下装置などの高性能なアクチュエータを装備しながら、Mの大きい薄物広幅材料に対しては圧延機の状態にかかわらず、チューニング率αを0.8程度に設定しているのが現状である。表1から分かるように、この場合はBISRA-AGCによる板厚制御がほとんどできていないといっても過言ではない。すなわち、従来においては、いつ発生するか不明な制御の不安定な状態に起因する、圧延機不良を考慮して、圧延機が正常な状態(制御が安定した状態)でも低いチューニング率を使用することにより、BISRA-AGCの機能を低下させている。換言すれば、BISRA-AGCは、Mの小さい材料すなわち厚物材料・幅狭材料の圧延のみに効果を発揮しているのが現状である。 BISRA-AGC falls into an unstable region of control, which means that in the worst case, a very dangerous situation involving the destruction of the rolling mill occurs. However, conventionally, it has not been possible to predict the stability of BISRA-AGC control in advance. As a result, while equipped with high-performance actuators such as a hydraulic reduction device, the tuning rate α is set to about 0.8 for thin and wide materials with large M regardless of the state of the rolling mill. Currently. As can be seen from Table 1, in this case, it is no exaggeration to say that the plate thickness control by BISRA-AGC is hardly performed. That is, conventionally, a low tuning rate is used even when the rolling mill is in a normal state (a state where the control is stable) in consideration of a rolling mill failure caused by an unstable state of control unknown when it occurs. As a result, the function of BISRA-AGC is lowered. In other words, BISRA-AGC is currently effective only for rolling a material having a small M, that is, a thick material or a narrow material.
 また、チューニング率αを小さくして板厚制御をすることは、目標板厚に製品板厚を設定して制御するいわゆる絶対値AGC機能を利用できないことに相当する。これは歩留まり上で大きな損失である。 Further, the control of the plate thickness by reducing the tuning rate α corresponds to the fact that the so-called absolute value AGC function for controlling by setting the product plate thickness to the target plate thickness cannot be used. This is a large loss in yield.
 発明者は、図4に示すBISRA-AGCの構成を検討した結果、実績圧下位置の基準圧下位置からの偏差とミル伸びによる板厚変化分とを考慮することにより、制御の安定性を判定することができるとの新たな知見を得た。 As a result of examining the configuration of the BISRA-AGC shown in FIG. 4, the inventor determines the stability of the control by considering the deviation of the actual reduction position from the reference reduction position and the thickness change due to the mill elongation. I got new knowledge that I could do it.
 ここで、図3に示すように、圧下位置の減少(ΔS、ただし、ΔS<0)は、圧延荷重の増加(ΔP、ただし、ΔP>0)、すなわち、ミル伸び変化の増加(ΔP/Kc)をもたらす。そこで、BISRA-AGCで使用する圧下位置変化の絶対値とミル伸び変化の絶対値を比較し、
Figure JPOXMLDOC01-appb-M000033
ならば安定であり、
Figure JPOXMLDOC01-appb-M000034
ならば不安定であると判定する。式(12)は、式(2)と同じである。ここで、Gは、チューニング率であり、
Figure JPOXMLDOC01-appb-M000035
を満たす定数である。ここで、本発明によるチューニング率をGとして、従来技術によるチューニング率αと区別した。βは、特性根の位置に関係する定数であり、式(11)及び式(12)によって特性根の位置が判断される。具体的に、βは、
Figure JPOXMLDOC01-appb-M000036
を満たす定数であり、
Figure JPOXMLDOC01-appb-M000037
が特性根の位置に対応する。すなわち、βの値が大きなほど、特性根が、負の側(制御の安定側)に位置する。式(11)及び式(12)によって、特性根が、
Figure JPOXMLDOC01-appb-M000038
の位置より負側にあるか正側にあるかが判定される。
Here, as shown in FIG. 3, the reduction in the rolling position (ΔS, where ΔS <0) is the increase in rolling load (ΔP, where ΔP> 0), that is, the increase in mill elongation change (ΔP / Kc). ). Therefore, we compared the absolute value of the rolling position change used in BISRA-AGC with the absolute value of the mill elongation change,
Figure JPOXMLDOC01-appb-M000033
Then it ’s stable,
Figure JPOXMLDOC01-appb-M000034
If so, it is determined to be unstable. Expression (12) is the same as Expression (2). Where G is the tuning rate,
Figure JPOXMLDOC01-appb-M000035
It is a constant that satisfies Here, the tuning rate according to the present invention is defined as G, and is distinguished from the tuning rate α according to the prior art. β is a constant related to the position of the characteristic root, and the position of the characteristic root is determined by Expressions (11) and (12). Specifically, β is
Figure JPOXMLDOC01-appb-M000036
Is a constant satisfying
Figure JPOXMLDOC01-appb-M000037
Corresponds to the position of the characteristic root. That is, as the value of β is larger, the characteristic root is located on the negative side (control stable side). According to the equations (11) and (12), the characteristic root is
Figure JPOXMLDOC01-appb-M000038
It is determined whether it is on the negative side or the positive side from the position of.
 不安定または不安定に近い状態を安定状態に移行させるためには、ミル伸び変化を過小に評価して推定板厚偏差を求めればよい。このことは、チューニング率を減少させることに相当する。 In order to shift the unstable or nearly unstable state to the stable state, it is only necessary to underestimate the mill elongation change and obtain the estimated plate thickness deviation. This is equivalent to reducing the tuning rate.
 制御の不安定性は、フィードバック制御の前向き要素すなわちコントローラ部の伝達関数を変更しても防ぎ得ない。 ∙ Control instability cannot be prevented by changing the forward function of feedback control, that is, the transfer function of the controller.
 図6は、本発明による制御状態判定装置105を含む、BISRA-AGCシステムの構成を示す図である。図6のAGCシステムの、制御状態判定装置105を除いた部分は図1によって説明したAGCシステムと同じである。制御状態判定装置105は、AGC101に接続され、AGC101から、実績圧下位置の基準圧下位置からの偏差
Figure JPOXMLDOC01-appb-M000039
及び実績圧延荷重の基準圧延荷重からの偏差
Figure JPOXMLDOC01-appb-M000040
を受け取る。制御状態判定装置105は、これらの値を使用して、制御の安定性を判定する。制御状態判定装置105は、制御状態が不安定であると判定した場合は、AGC101の制御パラメータを変更する。また、制御状態判定装置105は、制御状態が不安定であると判定した場合は、アラーム出力装置107にアラーム出力指令を送り、アラームを出力させる。
FIG. 6 is a diagram showing a configuration of a BISRA-AGC system including the control state determination device 105 according to the present invention. The portion of the AGC system of FIG. 6 excluding the control state determination device 105 is the same as the AGC system described with reference to FIG. The control state determination device 105 is connected to the AGC 101, and the deviation from the reference reduction position of the actual reduction position from the AGC 101.
Figure JPOXMLDOC01-appb-M000039
And actual rolling load deviation from standard rolling load
Figure JPOXMLDOC01-appb-M000040
Receive. The control state determination apparatus 105 determines the stability of control using these values. If the control state determination device 105 determines that the control state is unstable, the control state determination device 105 changes the control parameter of the AGC 101. If the control state determination device 105 determines that the control state is unstable, it sends an alarm output command to the alarm output device 107 to output an alarm.
 本発明による制御方法の実施例を以下に説明する。 Embodiments of the control method according to the present invention will be described below.
実施例1
 AGC101が、
Figure JPOXMLDOC01-appb-M000041
によって推定板厚偏差を求め、フィードバック板厚制御を行う。式(13)は、式(1)においてG=1.0としたものに相当する。フィードバック板厚制御中に、制御状態判定装置105は、式
Figure JPOXMLDOC01-appb-M000042
が成立するかどうか監視する。ここで、
Figure JPOXMLDOC01-appb-M000043
は、1以上の正の定数であり、一例として1.05である。式(14)が成立しなければ、制御状態判定装置105は、制御は安定状態にあると判定して式(13)を使用した制御を継続する。式(14)が成立すれば、制御状態判定装置105は、制御は不安定状態にあると判定して推定板厚偏差を求める式を以下のように変更する。
Figure JPOXMLDOC01-appb-M000044
ここで、
 γ
は、1未満の正の定数であり、一例として0.8である。推定板厚偏差を求める式を式(13)から式(15)に変更したことにより、式(7)による特性根の位置が安定側に移動し、フィードバック制御が不安定状態から脱出できる。他方、この状態では、圧延荷重の外乱に対して、表1に示すような板厚の制御残差が生じる。換言すれば、本実施例によれば、制御の安定性を監視しながら、制御が不安定となった場合にのみ制御性能を犠牲にして制御の安定性を確保する。制御が安定な場合には、式(11)を使用することにより、制御性能が十分に発揮される点が従来の制御方法と異なる。
Example 1
AGC101 is
Figure JPOXMLDOC01-appb-M000041
The estimated plate thickness deviation is obtained by the feedback plate thickness control. Equation (13) corresponds to the equation (1) with G = 1.0. During the feedback plate thickness control, the control state determination device 105 has the formula
Figure JPOXMLDOC01-appb-M000042
Monitor whether or not here,
Figure JPOXMLDOC01-appb-M000043
Is a positive constant of 1 or more, and is 1.05 as an example. If Expression (14) does not hold, the control state determination device 105 determines that the control is in a stable state, and continues control using Expression (13). If Expression (14) is satisfied, the control state determination device 105 determines that the control is in an unstable state, and changes the expression for obtaining the estimated thickness deviation as follows.
Figure JPOXMLDOC01-appb-M000044
here,
γ
Is a positive constant less than 1, for example 0.8. By changing the equation for obtaining the estimated thickness deviation from Equation (13) to Equation (15), the position of the characteristic root according to Equation (7) moves to the stable side, and feedback control can escape from the unstable state. On the other hand, in this state, a control residual of the plate thickness as shown in Table 1 occurs with respect to the disturbance of the rolling load. In other words, according to the present embodiment, the control stability is ensured at the expense of the control performance only when the control becomes unstable while monitoring the control stability. When the control is stable, the use of Equation (11) is different from the conventional control method in that the control performance is sufficiently exhibited.
実施例2
 AGC101が
Figure JPOXMLDOC01-appb-M000045
によって推定板厚偏差を求め、フィードバック板厚制御を行なう。式(16)は、式(1)と同じである。フィードバック板厚制御中に、制御状態判定装置105は、式
Figure JPOXMLDOC01-appb-M000046
が成立するかどうか判定する。ここで、
Figure JPOXMLDOC01-appb-M000047
の初期値は1.0であり、
Figure JPOXMLDOC01-appb-M000048
は、1以上の正の定数であり、一例として1.05である。
Example 2
AGC101
Figure JPOXMLDOC01-appb-M000045
The estimated plate thickness deviation is obtained by the feedback plate thickness control. Expression (16) is the same as Expression (1). During the feedback plate thickness control, the control state determination device 105 has the formula
Figure JPOXMLDOC01-appb-M000046
It is determined whether or not here,
Figure JPOXMLDOC01-appb-M000047
The initial value of is 1.0
Figure JPOXMLDOC01-appb-M000048
Is a positive constant of 1 or more, and is 1.05 as an example.
 図7は、実施例2の制御方法を説明するための流れ図である。 FIG. 7 is a flowchart for explaining the control method of the second embodiment.
 図7のステップS110において、制御状態判定装置105は、AGC101から、実績圧下位置の基準圧下位置からの偏差
Figure JPOXMLDOC01-appb-M000049
及び実績圧延荷重の基準圧延荷重からの偏差
Figure JPOXMLDOC01-appb-M000050
を受け取る。なお、AGC101は、板の噛み込み時に、実績板厚、実績圧延荷重及び実績圧下位置を基準値として取り込んでおり(ロックオン処理)、これらの基準値から偏差が求められる。
In step S110 in FIG. 7, the control state determination device 105 determines the deviation from the reference reduction position of the actual reduction position from the AGC 101.
Figure JPOXMLDOC01-appb-M000049
And actual rolling load deviation from standard rolling load
Figure JPOXMLDOC01-appb-M000050
Receive. The AGC 101 takes in the actual plate thickness, the actual rolling load, and the actual reduction position as reference values when the plates are bitten (lock-on process), and a deviation is obtained from these reference values.
 なお、図7の流れ図には示していないが、ノイズによる誤判定を防止するために、実績圧下位置の基準圧下位置からの偏差の絶対値
Figure JPOXMLDOC01-appb-M000051
及び実績圧延荷重の基準圧延荷重からの偏差によるミル伸びの絶対値
Figure JPOXMLDOC01-appb-M000052
が所定の値未満であれば、判定処理を行わずに処理を終了するようにしてもよい。所定の値は、たとえば、0.1mmまたは、目標板厚の3%などとしてもよい。
Although not shown in the flowchart of FIG. 7, in order to prevent erroneous determination due to noise, the absolute value of the deviation of the actual reduction position from the reference reduction position.
Figure JPOXMLDOC01-appb-M000051
Absolute value of mill elongation due to deviation from standard rolling load and actual rolling load
Figure JPOXMLDOC01-appb-M000052
If is less than a predetermined value, the process may be terminated without performing the determination process. The predetermined value may be, for example, 0.1 mm or 3% of the target plate thickness.
 図7のステップS120において、制御状態判定装置105は、式
Figure JPOXMLDOC01-appb-M000053
が成立するかどうか判定する。式(17)が成立すれば、ステップS130に進む。式(17)が成立しなければ、ステップS140に進む。
In step S120 of FIG.
Figure JPOXMLDOC01-appb-M000053
It is determined whether or not If Formula (17) is materialized, it will progress to Step S130. If Expression (17) does not hold, the process proceeds to step S140.
 図7のステップS130において、制御は不安定状態にあると判定されたので
Figure JPOXMLDOC01-appb-M000054
とする。ここで、
 δ
は、1未満の定数であり、一例として0.9である。式(16)のGを式(18)によって変更することにより、式(7)による特性根の位置が安定側に移動する。一定周期ごとにステップS130の処理を繰り返すことにより、制御の安定性が確保されるまで
Figure JPOXMLDOC01-appb-M000055
の値が減少される。他方、式(17)が成立しなければ、制御は安定状態にあると判定されたので、AGC101により、
Figure JPOXMLDOC01-appb-M000056
をそのままとして式(16)を使用した制御が継続される。
In step S130 in FIG. 7, it is determined that the control is in an unstable state.
Figure JPOXMLDOC01-appb-M000054
And here,
δ
Is a constant less than 1, for example 0.9. By changing G in Expression (16) according to Expression (18), the position of the characteristic root according to Expression (7) moves to the stable side. Until the stability of control is ensured by repeating the process of step S130 at regular intervals.
Figure JPOXMLDOC01-appb-M000055
The value of is decreased. On the other hand, if expression (17) does not hold, it is determined that the control is in a stable state.
Figure JPOXMLDOC01-appb-M000056
As is, control using the equation (16) is continued.
 図7のステップS140において、制御状態判定装置105は、AGC制御中であるかどうか判定する。AGC制御中であれば、ステップS110に戻る。AGC制御中でなければ、処理を終了する。 7, the control state determination device 105 determines whether or not AGC control is being performed. If AGC control is being performed, the process returns to step S110. If AGC control is not in progress, the process is terminated.
 本実施例によれば、制御の安定性を監視しながら、制御が不安定となった場合にのみ制御性能を犠牲にして制御の安定性を確保する。制御が安定な場合には、式(16)において
Figure JPOXMLDOC01-appb-M000057
とすることにより、制御性能が十分に発揮される点が従来の制御方法と異なる。
According to this embodiment, while monitoring the control stability, the control stability is ensured at the expense of the control performance only when the control becomes unstable. If the control is stable, in equation (16)
Figure JPOXMLDOC01-appb-M000057
Thus, the point that the control performance is sufficiently exhibited is different from the conventional control method.
 たとえば、厚さ1.6mm、幅1200mmの鋼板(M=30[MN/mm])のホットストリップミルの圧延において、圧延前の加熱炉で生じるスキッドマークなどにより0.5MNの圧延荷重外乱が生じるとする。チューニング係数α=0.8とすると、表1から、該圧延荷重外乱によって生じる板厚変動は、
Figure JPOXMLDOC01-appb-M000058
である。本発明により、制御の安定性を確保することにより、チューニング係数α=1.0とすることができれば、
Figure JPOXMLDOC01-appb-M000059
の歩留まりを向上することができる。
For example, in a hot strip mill rolling of a steel plate (M = 30 [MN / mm]) having a thickness of 1.6 mm and a width of 1200 mm, a rolling load disturbance of 0.5 MN occurs due to a skid mark generated in a heating furnace before rolling. And Assuming that the tuning coefficient α is 0.8, from Table 1, the plate thickness variation caused by the rolling load disturbance is
Figure JPOXMLDOC01-appb-M000058
It is. According to the present invention, if the tuning coefficient α can be set to 1.0 by ensuring the stability of the control,
Figure JPOXMLDOC01-appb-M000059
The yield can be improved.
 本発明について、ホットストリップミルを例として説明したが、BISRA-AGCを使用するミルであれば、本発明は、コールドストリップミル、厚板ミルなど他の圧延機にも適用することができる。 Although the present invention has been described using a hot strip mill as an example, the present invention can be applied to other rolling mills such as a cold strip mill and a thick plate mill as long as the mill uses a BISRA-AGC.

Claims (5)

  1.  板を目標の板厚に圧延する圧延機において、制御に使用する圧延機の剛性、時間、基準状態からの圧延加重の偏差、圧延機の圧下位置の偏差、推定板厚偏差を、それぞれ、
    Figure JPOXMLDOC01-appb-M000060
    とし、Gは、
    Figure JPOXMLDOC01-appb-M000061
    を満たす定数であるとして、式
    Figure JPOXMLDOC01-appb-M000062
    によって推定板厚偏差を求めて、板厚を制御する板厚制御方法であって、
     制御中に
    Figure JPOXMLDOC01-appb-M000063
    の値及び
    Figure JPOXMLDOC01-appb-M000064
    の値の関係から制御の状態が安定しているかどうか判定し、制御の状態が安定していないと判定したときに、式(1)のGを小さくすること及びアラームを発生させることの少なくとも一方を実施する板厚制御方法。
    In the rolling mill that rolls the plate to the target plate thickness, the rigidity of the rolling mill used for control, the time, the deviation of the rolling load from the reference state, the deviation of the rolling position of the rolling mill, the estimated thickness deviation,
    Figure JPOXMLDOC01-appb-M000060
    And G is
    Figure JPOXMLDOC01-appb-M000061
    As a constant that satisfies
    Figure JPOXMLDOC01-appb-M000062
    Is a plate thickness control method for calculating the estimated plate thickness deviation and controlling the plate thickness,
    During control
    Figure JPOXMLDOC01-appb-M000063
    Value and
    Figure JPOXMLDOC01-appb-M000064
    It is determined whether the control state is stable from the relationship between the values of the values, and when it is determined that the control state is not stable, at least one of reducing G in Formula (1) and generating an alarm The thickness control method which implements.
  2.  βは、
    Figure JPOXMLDOC01-appb-M000065
    を満たす定数であるとして、式
    Figure JPOXMLDOC01-appb-M000066
    が成立したときに、制御の状態が安定していないと判定する請求項1に記載の板厚制御方法。
    β is
    Figure JPOXMLDOC01-appb-M000065
    As a constant that satisfies
    Figure JPOXMLDOC01-appb-M000066
    The plate | board thickness control method of Claim 1 which determines with the state of control not being stable when is materialized.
  3.  制御の状態が安定していないと判定した場合に、γは、
     0<γ<1
    を満たす定数であるとして、
    Figure JPOXMLDOC01-appb-M000067
    として式(1)によって推定板厚偏差を求めて、板厚を制御する請求項1または2に記載の板厚制御方法。
    When it is determined that the control state is not stable, γ is
    0 <γ <1
    As a constant satisfying
    Figure JPOXMLDOC01-appb-M000067
    The plate | board thickness control method of Claim 1 or 2 which calculates | requires an estimated plate | board thickness deviation by Formula (1) as follows, and controls plate | board thickness.
  4.  式(2)による判定を繰り返し行ない、制御の状態が安定していないと判定した場合に、δは
     0<δ<1
    を満たす定数であるとして、
    Figure JPOXMLDOC01-appb-M000068
    として、制御の状態が安定していないと判定された状態の持続する時間の経過とともにGが減少するようにして式(1)によって推定板厚偏差を求めて、板厚を制御する請求項1または2に記載の板厚制御方法。
    When the determination by the expression (2) is repeated and it is determined that the control state is not stable, δ is 0 <δ <1
    As a constant satisfying
    Figure JPOXMLDOC01-appb-M000068
    The sheet thickness is controlled by obtaining an estimated sheet thickness deviation according to equation (1) such that G decreases with the lapse of time for which it is determined that the control state is not stable. Or the thickness control method according to 2.
  5.  板を目標の板厚に圧延する圧延機において、圧延機の剛性、時間、基準状態からの圧延加重の偏差、圧延機の圧下位置の偏差、推定板厚偏差を、それぞれ、
    Figure JPOXMLDOC01-appb-M000069
    とし、Gは、
    Figure JPOXMLDOC01-appb-M000070
    を満たす定数であるとして、式
    Figure JPOXMLDOC01-appb-M000071
    によって推定板厚偏差を求めて、板厚を制御する板厚制御システムにおける制御状態判定装置であって、基準状態からの圧延加重の偏差及び圧延機の圧下位置の偏差を受け取り、
     制御中に
    Figure JPOXMLDOC01-appb-M000072
    の値及び
    Figure JPOXMLDOC01-appb-M000073
    の値の関係から制御の状態が安定しているかどうか判定し、制御の状態が安定していないと判定したときに信号を出力する制御状態判定装置。
    In the rolling mill that rolls the plate to the target plate thickness, the rolling mill stiffness, time, deviation of the rolling load from the reference state, deviation of the rolling mill reduction position, estimated plate thickness deviation,
    Figure JPOXMLDOC01-appb-M000069
    And G is
    Figure JPOXMLDOC01-appb-M000070
    As a constant that satisfies
    Figure JPOXMLDOC01-appb-M000071
    Is a control state determination device in a plate thickness control system that controls the plate thickness by obtaining an estimated plate thickness deviation, and receives a rolling load deviation from a reference state and a rolling mill deviation,
    During control
    Figure JPOXMLDOC01-appb-M000072
    Value and
    Figure JPOXMLDOC01-appb-M000073
    A control state determination device that determines whether or not the control state is stable based on the relationship between the values of the values and outputs a signal when it is determined that the control state is not stable.
PCT/JP2010/006093 2009-12-08 2010-10-13 Plate thickness control method and plate thickness control state judgment device WO2011070702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009278933A JP4565246B1 (en) 2009-12-08 2009-12-08 Plate thickness control method and plate thickness control state determination device
JP2009-278933 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011070702A1 true WO2011070702A1 (en) 2011-06-16

Family

ID=43098803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006093 WO2011070702A1 (en) 2009-12-08 2010-10-13 Plate thickness control method and plate thickness control state judgment device

Country Status (2)

Country Link
JP (1) JP4565246B1 (en)
WO (1) WO2011070702A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108971233A (en) * 2018-06-27 2018-12-11 张家港浦项不锈钢有限公司 A kind of steekle mill thickness control technique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6016715B2 (en) * 2013-06-11 2016-10-26 株式会社神戸製鋼所 Roll thickness control method
CN110404977B (en) * 2019-07-26 2020-07-28 东北大学 On-line quality judgment method in plate and strip rolling process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293510A (en) * 2000-04-12 2001-10-23 Nkk Corp Method for controlling flying thickness change in continuous hot-rolling mill
JP2006110588A (en) * 2004-10-14 2006-04-27 Nippon Steel Corp Method for controlling thickness and shape
JP2007167887A (en) * 2005-12-21 2007-07-05 Nippon Steel Corp Method for controlling thickness in cold tandem rolling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293510A (en) * 2000-04-12 2001-10-23 Nkk Corp Method for controlling flying thickness change in continuous hot-rolling mill
JP2006110588A (en) * 2004-10-14 2006-04-27 Nippon Steel Corp Method for controlling thickness and shape
JP2007167887A (en) * 2005-12-21 2007-07-05 Nippon Steel Corp Method for controlling thickness in cold tandem rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108971233A (en) * 2018-06-27 2018-12-11 张家港浦项不锈钢有限公司 A kind of steekle mill thickness control technique

Also Published As

Publication number Publication date
JP4565246B1 (en) 2010-10-20
JP2011121071A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP4214150B2 (en) Rolling method and rolling apparatus for metal sheet
KR20220061151A (en) Rolling method of super austenitic stainless steel
KR101242841B1 (en) Method and apparatus for roughing mill of thick steel sheet
WO2011070702A1 (en) Plate thickness control method and plate thickness control state judgment device
JP2006224154A (en) Method for controlling thickness in tandem mill
JP2007144484A (en) Multi roll mill and method for controlling multi roll mill
JP2006021210A (en) Apparatus and method for controlling rolling operation, and rolling apparatus
JP4323273B2 (en) Load distribution control device for continuous rolling mill
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP4788349B2 (en) Rolling control method and hot finish rolling mill
JP2015193026A (en) Method for rolling taper steel plate having excellent flatness
JP2009248186A (en) Buckling prevention method of hot slab width press
JP2018134673A (en) Tandem rolling mill control device and tandem rolling mill control method
KR100931634B1 (en) Elongation constant control method by feedback control
KR100993855B1 (en) Apparatus and method for controlling pinch roll
JP2007190579A (en) Method and equipment for rolling metallic sheet
JP2010260067A (en) Plate rolling mill and its control method
JP2006116569A (en) Method and apparatus for rolling metal plate
JP2004090079A (en) Edge drop controller for rolling mill
JP2019107675A (en) Control device and control method for rolling mill
JP5910541B2 (en) Cold rolling equipment and cold rolling method
JP4402570B2 (en) Plate profile control device
JP2005125407A (en) Method of shape control in temper rolling mill
JP2007253223A (en) Method for controlling thickness in rolling mill and rolling equipment
JPH11123427A (en) Method for controlling shape of rolled stock and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835633

Country of ref document: EP

Kind code of ref document: A1