WO2011070682A1 - Magnetic separation apparatus - Google Patents

Magnetic separation apparatus Download PDF

Info

Publication number
WO2011070682A1
WO2011070682A1 PCT/JP2009/070779 JP2009070779W WO2011070682A1 WO 2011070682 A1 WO2011070682 A1 WO 2011070682A1 JP 2009070779 W JP2009070779 W JP 2009070779W WO 2011070682 A1 WO2011070682 A1 WO 2011070682A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic field
rotating container
cleaning
porous
Prior art date
Application number
PCT/JP2009/070779
Other languages
French (fr)
Japanese (ja)
Inventor
隆浩 古田
Original Assignee
日本磁力選鉱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本磁力選鉱株式会社 filed Critical 日本磁力選鉱株式会社
Priority to JP2011504068A priority Critical patent/JP5503637B2/en
Priority to PCT/JP2009/070779 priority patent/WO2011070682A1/en
Priority to KR1020117004693A priority patent/KR101231644B1/en
Publication of WO2011070682A1 publication Critical patent/WO2011070682A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/032Matrix cleaning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Definitions

  • the present invention relates to a magnetic separation device, and more particularly to a magnetic separation device that removes magnetic substances from a raw material liquid such as rolling oil or ore slurry containing iron powder or iron oxide powder using a magnetized magnetic medium.
  • Patent Document 1 As a device for removing magnetic substances from a raw material liquid, for example, a magnetic separation device disclosed in Patent Document 1 is known.
  • the apparatus of Patent Document 1 has a cylindrical separator container as a main body, a magnet for generating a magnetic field in a part of the separator container is provided outside the separator container, and a horizontal plane around a vertical rotation axis.
  • the main configuration is that an annular magnetic filter that can rotate inside is accommodated in a separator container, and a rotation driving means is provided in the magnetic filter.
  • the magnetic filter has a large number of filaments made of a magnetic material. When the magnetic filter continuously passes through the effective magnetic field of the magnet, the magnetic filter magnetizes the magnetic substance (magnetic material) in the raw water (raw material liquid) passed through the effective magnetic field. To wear.
  • the raw water is passed through the effective magnetic field from the raw water inflow section provided in the separator vessel so that the flow direction of the raw water in the effective magnetic field is the rotation direction of the magnetic filter, and is discharged from the effective magnetic field.
  • the treated water is discharged from the treated water discharge section provided in the separator container.
  • backwash water flows into the ineffective magnetic field from the backwash water inflow portion provided in the separator container, and the magnetic substance magnetized on the magnetic filter is removed, and the removed magnetic substance is put into the separator container. It discharges from the backwash water discharge part provided. Accordingly, the magnetic filter can be regenerated while continuously processing the raw water containing the magnetic substance with the magnetic filter. As a result, the amount of raw water purification can be increased, and the device can be simplified and made compact.
  • the inner space is divided into a number of divided chambers in the circumferential direction and is made of a nonmagnetic material that can rotate around a horizontal rotation axis. It has been found that the above-mentioned problems can be solved by adopting an annular porous rotating container and movably storing a magnetic medium in each divided chamber, and the present invention has been completed. That is, the porous rotating container is rotated in the vertical plane around the rotation axis, and the magnetic medium in the divided chamber that has reached the effective magnetic field of the magnet is sequentially magnetized, and the magnetism in the raw material liquid supplied in the effective magnetic field is here. An object is magnetically attached to the surface of the magnetic medium.
  • the dividing chamber moves from the effective magnetic field to the ineffective magnetic field, and the magnetic material on the surface of the magnetic medium which has been demagnetized is cleaned and recovered, thereby improving the cleaning performance of the magnetic medium to which the magnetic material is attached.
  • the recoverability of the magnetic substance from the raw material liquid can be improved.
  • An object of the present invention is to provide a magnetic separation device that can improve the cleaning performance of a magnetic medium to which a magnetic material is adhered, and can also improve the recoverability of the magnetic material from the raw material liquid. .
  • the inner space is partitioned into a plurality of divided chambers in the circumferential direction by a partition plate made of a non-magnetic material, and the center axis is horizontal or inclined and is a porous material made of a non-magnetic material.
  • a rotation driving means for rotating in an inner or inclined plane, a magnet that is arranged outside a part of the porous rotating container, and that generates an effective magnetic field that sequentially passes through each of the divided chambers as the porous rotating container rotates,
  • Raw material liquid supply means for supplying a raw material liquid containing a magnetic material to each divided chamber that has reached the effective magnetic field, and each divided chamber that has passed the effective magnetic field and has reached an ineffective magnetic field that does not reach the magnetic force of the magnet.
  • Supply cleaning media In a magnetic separation apparatus comprising a disabling field in the cleaning means for separating the washed magnetic substance attached to the surface of the invalid field to reach the portioning chambers of a magnetic medium.
  • each of the magnets having reached the effective magnetic field of the magnet is obtained by rotating the porous rotating container in the vertical plane or the inclined plane around the rotation axis that is horizontal or inclined by the rotation driving means.
  • the magnetic medium in the divided chamber is magnetized.
  • the effective magnetic field is supplied with the raw material liquid containing the magnetic substance from the raw material liquid supply means through the hole of the porous rotating container.
  • the magnetic substance is magnetically attached to the surface of the magnetic medium, while the processing liquid is discharged to the outside through another hole of the porous rotating container.
  • a magnetic separation device is a device that uses magnetism (magnetic field) to separate a raw material liquid containing a magnetic substance into a magnetic substance and a treatment liquid that is a liquid remaining after separating the magnetic substance from the raw material liquid.
  • the raw material liquid include water, granular mineral slurry (mineral slurry), oil emulsified water (rolled oil), water containing sodium hydroxide, oil (including waste oil from metalworking machines), etc. Can be adopted.
  • Examples of the magnetic material include chips discharged from a metal processing machine, rolling oil, and powder (including wear powder) in silica sand slurry.
  • the material of the magnetic material for example, iron, nickel, cobalt, and alloys or compounds thereof, or magnetic minerals such as chromite, ilmenite, and spinel can be employed.
  • the cleaning medium examples include water (cold water, hot water), petroleum-based cleaning oils such as second petroleums and third petroleums, organic solvents such as alcohol, alkaline solutions (such as aqueous caustic soda), compressed air, inert gas, or A mixed liquid of at least one of these and hot water may be used.
  • water cold water, hot water
  • petroleum-based cleaning oils such as second petroleums and third petroleums
  • organic solvents such as alcohol, alkaline solutions (such as aqueous caustic soda), compressed air, inert gas, or A mixed liquid of at least one of these and hot water may be used.
  • organic solvents such as alcohol, alkaline solutions (such as aqueous caustic soda), compressed air, inert gas, or A mixed liquid of at least one of these and hot water may be used.
  • the organic solvent dissolves the oil adhering to the surface of the magnetic medium. Therefore, the removal rate of the magnetic substance adhering to the surface of the magnetic medium is increased.
  • the cleaning medium may be blown into the
  • the cleaning liquid uniformly penetrates all exposed surfaces of the magnetic medium stored in the division chamber, and the cleaning effect of the magnetic medium is further enhanced.
  • the pressure of compressed air is preferably 0.5 kg / cm 2 or more.
  • the cleaned cleaning medium may be reused if the liquid is extracted after separating the mixed magnetic substances.
  • the material of the partition plate is arbitrary as long as it is a non-magnetic material.
  • various non-magnetic metals such as austenitic stainless steel and titanium alloy
  • various synthetic resins such as vinyl chloride and fiber reinforced plastic (FRP)
  • ceramics can be used.
  • the number of partition plates used is 4 or 5 or more. As the number of partition plates is increased, the multi-hole rotating container is divided into more divided chambers.
  • the positions of the partition plates in the circumferential direction of the porous rotating container may be arranged at a predetermined pitch or may be unevenly spaced. However, it is preferable that the partition plates are arranged at uniform intervals in the circumferential direction of the porous rotating container.
  • the partition plate is not formed with a hole through which the raw material liquid or the like passes. Moreover, it is preferable that the length direction of the partition plate is aligned with the radial direction around the central axis of the porous rotating container.
  • the number of division chambers formed is determined by the number of partition plates used. Further, the size of the dividing chamber is also appropriately determined depending on the interval between the adjacent partition plates.
  • As the material of the porous rotating container various nonmagnetic materials exemplified as the material of the partition plate can be adopted.
  • the shape of the porous rotating container is arbitrary as long as it has an annular shape. Specifically, it may be not only a perfect circular donut shape (hollow annular shape) when viewed from the front, but may also be a triangular or quadrangular or more polygonal hollow donut shape when viewed from the front.
  • the inclination angle when the “annular center line is inclined” is greater than 0 ° and less than or equal to 45 ° with respect to the horizontal line.
  • the inclination angle here refers to the inclination angle when the annular center line has one end side directed downward (the other end side is directed upward) and the inclination angle when one end side is directed upward. And both. When the tilt angle is 0 °, the porous rotating container is not tilted.
  • a preferable inclination angle of the center line is larger than 0 ° and not larger than 20 °. If it is within this range, among the many magnetized media stored in the separation chamber, the number of magnetized media (surface area on the supply side of the magnetic media group) arranged on the supply side surface increases. The amount of magnetic adhesion of the magnetic material in the raw material liquid increases.
  • the rotation speed of the porous rotating container is 0.1 to 30 rpm.
  • the amount of magnetic material attached to the magnetic medium within the effective magnetic field per rotation of the porous rotating container increases, and it becomes difficult to clean the surface of the magnetic medium within the ineffective magnetic field.
  • a porous rotating container will be high-speed rotation, and a raw material liquid will hit a partition plate and will be easily scattered outside.
  • a preferable rotation speed of the porous rotating container is 0.3 to 2 rpm. Within this range, the raw material liquid is not scattered, and the magnetic deposit adhered to the surface of the magnetic medium can be sufficiently cleaned during cleaning in a non-cleaning magnetic field.
  • “Movement due to its own weight in the division chamber” means that the magnetic medium in the division chamber rolls and moves (rolls) under its own weight as the porous rotating container rotates.
  • the magnetic medium is magnetized by a magnet in an effective magnetic field and magnetically adheres a magnetic substance in the raw material liquid supplied from the raw material liquid supply means to the effective magnetic field.
  • the material of the magnetic medium for example, iron, nickel, cobalt, and alloys thereof exemplified as the material of the magnetic material can be employed.
  • a metal ball (iron ball), a metal rod (rebar), or the like can be employed.
  • a magnetic metal wire or the like formed into a substantially spherical shape may be used.
  • the number of magnetic media used may be one or two or more. When there are a plurality of magnetic media, the size of each magnetic medium may be the same or different.
  • the filling rate of the magnetic medium into the dividing chamber is 50 to 90%. If it is less than 50%, the amount of magnetic adhesion (magnetic adherence) in the division chamber of the magnetic material is lowered, and the recovery rate of the magnetic material is lowered. If it exceeds 90%, the magnetic substance hardly rolls in the division chamber.
  • a preferable filling rate of the magnetic medium into the dividing chamber is 70 to 80%. Within this range, a high recovery rate of the magnetic material can be obtained while the magnetic medium rolls smoothly in the dividing chamber.
  • various prime movers such as an electric motor and a hydraulic motor can be employed.
  • the “outside part of the porous rotating container” means, for example, not the inside of the part of the porous rotating container but the outside (near) of this part.
  • a permanent magnet such as a ferrite magnet or a rare earth magnet, an electromagnet (including a superconducting magnet), or the like can be employed.
  • the effective magnetic field refers to a region affected by the magnetic field of the magnet.
  • the ineffective magnetic field refers to a region that is not affected by the magnetic field of the magnet.
  • “The divided chambers sequentially pass with the rotation of the porous rotating container” means that the rotating rotating means rotates the porous rotating container so that each of the divided chambers in the porous rotating container sequentially reaches an effective magnetic field. Too much effective magnetic field.
  • the raw material liquid supply means for example, a raw material liquid pumping machine, a stirring tank for supplying the raw material liquid by overflow, and the like can be adopted.
  • As the ineffective magnetic field cleaning means a spray device for spraying the cleaning medium from the nozzle, or a cleaning tank (container) for pouring the cleaning medium can be employed.
  • the magnetic medium in the divided chamber is magnetized.
  • the raw material liquid is supplied from the raw material liquid supply means to the dividing chamber in the effective magnetic field through each hole of the porous member on the outer peripheral surface side, and the magnetic substance in the raw material liquid is magnetized on the surface of the magnetic medium.
  • the treatment liquid from which the magnetic material has been removed is at the center of the porous rotating container through the holes of at least the inner peripheral surface side porous member of the inner peripheral surface side and the side surface side in the upper part of the porous rotating container. It is discharged into the space.
  • the raw material liquid is supplied to each divided chamber through the outer peripheral surface of the porous rotating container having a larger surface area than the inner peripheral surface of the porous rotating container at the upper part of the porous rotating container, the raw material liquid from the inner peripheral surface side is supplied.
  • the amount of magnetic adhesion of the magnetic material increases, and the magnetic separation efficiency can be increased. This is because when the liquid containing the magnetic material is supplied to the magnetic medium group housed in the container, the amount of magnetic adhesion of the magnetic material increases in the upstream region compared to the downstream region of the magnetic medium group.
  • each of the divided chambers has a funnel shape in which the discharge side (inner peripheral surface side) is narrower than the supply side (outer peripheral surface side) of the raw material liquid in this way. easy. Therefore, the magnetic material is easily magnetically attached to the surface of the magnetic medium.
  • the surface composed of a porous member capable of passing a raw material liquid or the like is either two types of surfaces, an inner peripheral surface and an outer peripheral surface, or an inner peripheral surface, an outer peripheral surface, and a side surface.
  • the side surface referred to here may be both side surfaces (end surfaces) or only one side surface.
  • the other surface of the porous rotating container is not constituted by a porous member.
  • the material and shape of the porous member are arbitrary as long as a gap (hole) through which the magnetic medium does not pass is formed.
  • a rooster, a metal mesh, various perforated plates (expanded metal, punching metal, etc.) made of various metals can be employed.
  • the porous member on the outer peripheral surface side and the porous member on the inner peripheral surface side may be the same member or different members.
  • the magnetic medium in the divided chamber is magnetized.
  • the raw material liquid is supplied from the raw material liquid supply means to the effective magnetic field dividing chamber through each hole of the porous member on the inner peripheral surface side.
  • the magnetic material in the raw material liquid is magnetically attached to the surface of the magnetic medium, while the treatment liquid from which the magnetic material has been removed is at least of the outer peripheral surface side and the side surface side in the lower part of the porous rotating container. It is discharged to the lower space of the porous rotating container through each hole of the porous member on the outer peripheral surface side.
  • the cleaning medium for washing away the liquid component adhering to the surface of the magnetic medium is supplied to a downstream portion of the effective magnetic field from the supply position of the raw material liquid.
  • the cleaning medium from the effective magnetic field cleaning means by supplying the cleaning medium from the effective magnetic field cleaning means to the downstream portion of the effective magnetic field from the supply position of the raw material liquid, the raw material liquid adhered to the surface of the magnetic medium is supplied. Wash away only the liquid (treatment liquid). That is, the magnetic material magnetized on the surface of the magnetic medium is not washed away. As described above, since the magnetic medium is cleaned in the effective magnetic field, the recovery rate of the treatment liquid can be increased.
  • the invention according to claim 5 is the magnetic separation according to claim 1, wherein the cleaning medium is at least one of water, an aqueous alkali solution, surface-active water, water vapor, volatile oil, compressed air, and inert gas. Device.
  • the cleaning medium may be, for example, any one of water, alkaline aqueous solution, surface active water, water vapor, volatile oil, compressed air, inert gas, or any two or more selected from this group.
  • aqueous alkali solution for example, an aqueous caustic soda solution can be employed.
  • surface active water for example, a synthetic detergent such as alkylbenzene sulfonate dissolved in water can be used.
  • volatile oil, kerosene etc. are employable, for example.
  • the inert gas for example, nitrogen gas or argon gas can be employed.
  • a plurality of the ineffective magnetic field cleaning means are arranged along at least one of the inner periphery and the outer periphery of the porous rotating container, and each of the ineffective magnetic field cleaning means is used.
  • a plurality of ineffective magnetic field cleaning means are arranged along at least one of the inner periphery and the outer periphery of the porous rotating container, and are supplied from each ineffective magnetic field cleaning means. Since the cleaning media are different, different cleaning media are sequentially supplied to the magnetic media in the respective divided chambers that are passing through the reactive magnetic field. With this configuration, it is possible to select an optimal cleaning sequence using different cleaning media, the removability of magnetic substances magnetically attached to the surface of the magnetic medium, and the treatment liquid (foreign matter) adhering to this surface Can be improved.
  • the ineffective magnetic field cleaning means may be disposed on the inner periphery or the outer periphery of the porous rotating container. Moreover, you may arrange
  • the number of ineffective magnetic field cleaning means used is arbitrary as long as it is two or three or more. When three or more reactive magnetic field cleaning units are used, the same cleaning medium may be used by a plurality of reactive magnetic field cleaning units as long as the cleaning media are different in adjacent reactive magnetic field cleaning units. Of course, in all the ineffective magnetic field cleaning means, the cleaning medium may be different without exception.
  • Each ineffective magnetic field cleaning means may be provided with only one supply unit (nozzle or the like) for supplying the cleaning medium to the division chamber, or two or more.
  • the cleaning medium supplied from each supply unit possessed by one ineffective magnetic field cleaning means is one type (all the same). “The cleaning media are different” means that there are two or more different cleaning media in the entire magnetic separation apparatus (a plurality of ineffective magnetic field cleaning units).
  • the multi-rotation container is rotated in the vertical plane or the inclined plane around the rotation axis that is horizontal or inclined by the rotation driving means, so that each effective magnetic field of the magnetic medium is divided.
  • the chambers reach sequentially, where the magnetic medium is magnetized.
  • the raw material liquid is supplied from the raw material liquid supply means through the hole of the porous rotating container.
  • the treatment liquid from which the magnetic substance has been removed from the raw material liquid is discharged to the outside from another hole of the porous rotating container.
  • the divided chambers in the effective magnetic field are sequentially moved to the ineffective magnetic field, and accordingly, each magnetic medium rolls while continuously collapsing in each divided chamber.
  • the cleaning medium is supplied from the ineffective magnetic field cleaning means toward each magnetic medium, so that the cleaning performance of the magnetic medium to which the magnetic material is attached can be improved.
  • the recoverability of the magnetic material from the raw material liquid can also be improved.
  • the magnetic medium in the divided chamber is magnetized.
  • the raw material liquid is supplied from the raw material liquid supply means to the dividing chamber in the effective magnetic field through each hole of the porous member on the outer peripheral surface side, and the magnetic substance in the raw material liquid is magnetized on the surface of the magnetic medium.
  • the processing liquid from which the magnetic material has been removed is discharged into the central space of the porous rotating container through the holes of the porous member on the inner peripheral surface side in the upper part of the porous rotating container.
  • each dividing chamber has a funnel shape with a narrower discharge side than the supply side of the raw material liquid, the raw material liquid is easily stored in the dividing chamber, and the magnetic substance is easily magnetized on the surface of the magnetic medium. .
  • the magnetic medium in the divided chamber is magnetized.
  • the raw material liquid is supplied from the raw material liquid supply means to the effective magnetic field dividing chamber through each hole of the porous member on the inner peripheral surface side.
  • the magnetic material in the raw material liquid is magnetically attached to the surface of the magnetic medium, while the treatment liquid from which the magnetic material has been removed is at least of the outer peripheral surface side and the side surface side in the lower part of the porous rotating container. It is discharged to the lower space of the porous rotating container through each hole of the porous member on the outer peripheral surface side.
  • the magnetic separation device can be made compact. Moreover, even when a raw material liquid having a higher viscosity than water is used, it is possible to prevent the time for the raw material liquid from passing through the dividing chamber from being increased due to the high viscosity. This is because the raw material liquid is supplied to each division chamber at the lower part of the multi-hole rotating container, so that after the raw material liquid passes through the upstream area of the magnetic medium group, the downstream area has a larger volume than the upstream area and the dispersibility of the liquid is increased. This is because the raw material liquid is discharged outside.
  • the cleaning medium is supplied from the effective magnetic field cleaning means to the downstream portion of the effective magnetic field from the supply position of the raw material liquid.
  • the liquid component excluding the magnetic substance can be washed away, so that the recovery rate of the treatment liquid can be increased.
  • a plurality of ineffective magnetic field cleaning means are arranged along at least one of the inner periphery and the outer periphery of the porous rotating container, and each of the divided chambers that are passing through the ineffective magnetic field.
  • Different cleaning media are sequentially supplied from each ineffective magnetic field cleaning means to the magnetic medium.
  • FIG. 1 It is a perspective view of the main structural body of the magnetic separation apparatus which concerns on Example 1 of this invention. It is a front view of the magnetic separation apparatus which concerns on Example 1 of this invention. It is a right view of the magnetic separation apparatus which concerns on Example 1 of this invention. It is a top view of the magnetic separation apparatus which concerns on Example 1 of this invention. It is a principal part expanded longitudinal cross-sectional view which shows the discharge system path
  • FIG. 3 is a perspective view showing each magnetic medium housed in a division chamber in an upward state (reference position) in the magnetic separation apparatus according to Embodiment 1 of the present invention.
  • each is a perspective view showing each magnetic medium housed in a division chamber in a sideways state (90 ° rotation state).
  • FIG. 3 is a perspective view showing each magnetic medium housed in a division chamber in a downward state (180 ° rotation state) in the magnetic separation device according to Embodiment 1 of the present invention.
  • FIG. 1 It is a front view which shows schematic structure of another magnetic separation apparatus which concerns on Example 1 of this invention. It is a right view of another magnetic separation apparatus which concerns on Example 1 of this invention.
  • the magnetic separation apparatus according to Embodiment 1 of the present invention it is a front view showing a rolling locus of a magnetic medium in a division chamber.
  • the front direction is the front (front) direction of the apparatus
  • the rear direction is the back (rear) direction of the apparatus
  • the left direction is the left direction of the apparatus
  • the right direction is the right direction of the apparatus.
  • reference numeral 10 denotes a magnetic separation apparatus according to Embodiment 1 of the present invention.
  • This magnetic separation apparatus 10 has an inner space in a circumferential direction by a gantry 11 and a trapezoidal partition plate 12 made of stainless steel (nonmagnetic material).
  • An annular porous rotating container 14 made of stainless steel whose center axis is horizontal and which is divided into 16 division chambers 13 toward the front, and each division chamber 13 can be moved by its own weight in the division chambers 13 freely.
  • a drive motor (rotation drive means) that rotates the porous rotary container 14 in a vertical plane around the stored iron ball (magnetic medium) 15 and the rotary shaft 16 disposed on the central axis of the porous rotary container 14.
  • a magnet M that is arranged outside a part of the porous rotating container 14 and generates an effective magnetic field A that sequentially passes through each of the divided chambers 13 as the porous rotating container 14 rotates, and each of the divided parts that have reached the effective magnetic field A In chamber 13,
  • a cleaning liquid cleaning medium
  • three cleaning nozzles invalid magnetic field
  • the frame 11 has a gantry 11 in which a support 22 is suspended from each corner of a horizontal rectangular frame 21.
  • a portal frame 23 is erected on both corners of one long side frame 21 a of the rectangular frame 21, and a portal frame of the same shape is also formed on an intermediate portion of both short side frames 21 b of the rectangular frame 21. 23 is erected.
  • the intermediate portions of the two support legs 23 a of the two-port frame 23 are connected by a reinforcing frame 24.
  • a horizontally-long rectangular frame-shaped yoke 25 made of a magnetic material is erected.
  • Both magnets M are horizontally long rectangular parallelepiped neodymium magnets capable of obtaining about 0.5 Tesla.
  • the raw material liquid input part (raw material liquid supply means) 19 that is disposed immediately above the porous rotating container 14 and supplies the rolling oil 18 to each of the divided chambers 13 reaching the upper part of the porous rotating container 14 includes: It is fixed via a bracket 27.
  • Inner cleaning means) 28 is attached (FIGS. 1, 2, and 4).
  • the cleaning liquid is sprayed to the downstream portion from the supply position of the rolling oil 18 using the cleaning nozzle 28 in the effective magnetic field, so that the magnetic material magnetized on the surface of each iron ball 15 remains, and the rolling oil Only 18 liquid components (treatment liquid 31) can be washed away. As a result, the recovery rate of the processing liquid 31 can be increased.
  • ore slurry may be used as the raw material liquid.
  • a cleaning liquid (cleaning medium, cleaning medium, cleaning medium, and the like) is passed from the center of the porous rotating container 14 toward each of the dividing chambers 13 through a rooster 33 that closes the opening on the inner peripheral side of each of the dividing chambers 13 at three positions:
  • the three ineffective magnetic field cleaning nozzles 20A to 20C for injecting tap water are sequentially arranged.
  • the magnetic material recovery chute 35 has a rectangular opening that is long in the lateral direction on the upper end surface, and both end portions in the length direction are fixed to the reinforcing frames 24.
  • the magnetic substance recovery chute 35 wraps the entire lower part of the porous rotating container 14 from below.
  • different cleaning media may be ejected from the three ineffective magnetic field cleaning nozzles 20A to 20C (FIG. 6).
  • water is ejected from the most upstream ineffective magnetic field cleaning nozzle 20A
  • surface active water is ejected from the second ineffective magnetic field cleaning nozzle 20B
  • from the third ineffective magnetic field cleaning nozzle 20C Volatile oil (such as kerosene) may be injected.
  • the injection of the surface active water and the volatile oil is advantageous for cleaning the oil adhering to the surface of each iron ball 15.
  • the internal space 35a is replaced with the cleaning liquid instead of the magnetic substance recovery chute 35 so that the respective cleaning liquids are generally individually recovered and the subsequent waste liquid processing becomes easy. It is preferable to use a three-tank chute 35A having three drains according to the type (three here) and having a dedicated drain 35b for each section.
  • a rectangular scaffolding frame base 36 having a height lower than that of the double-gate frame 23 and long in the lateral direction in plan view is provided on the other long side portion of the rectangular frame body 21.
  • a scaffold plate (step) 37 made of metal is provided on the scaffold frame base 36.
  • the drive motor 17 with a speed reducer 17A is fixed with the length direction of the output shaft 17a facing forward.
  • the drive motor 17 is a transmission motor, and a small-diameter sprocket 38 is fixed to the output shaft 17a.
  • a pair of bearings 39 are disposed in the middle portion in the length direction of the two-port frame 23, and both end portions of the rotating shaft 16 are supported by the two bearings 39.
  • the rotary shaft 16 has a rear end protruding outward from the rear bearing 39, and a large-diameter sprocket 40 is fixed to the protruding portion.
  • An endless chain 41 is bridged between the sprockets 38 and 40.
  • Both sprockets 38 and 40 are covered with a horizontally long metal cover 42 fixed to the scaffold frame 36 so that the scattered rolling oil 18 and the like do not adhere.
  • the two-port frame 23 is provided with a total of two pairs of pivot rollers 43 that are in contact with the annular end plates 14a on the outer peripheral portion of the multi-hole rotating container 14.
  • each divided chamber 13 of the multi-hole rotating container 14 is mainly partitioned by both end plates 14 a and the respective partition plates 12.
  • Each of the divided chambers 13 is arranged in the inner space of the outer peripheral portion of the porous rotating container 14 at a predetermined pitch (here, 22.5 °) in the circumferential direction.
  • the central portion of the porous rotating container 14 is constituted by a central disk 44 made of stainless steel.
  • the rotating shaft 16 is fixed to the central portion of the central disk 44.
  • Both end plates 14a are non-porous ring-shaped plates made of stainless steel.
  • a large number of drain holes 14b having a diameter (for example, 5 to 8 mm) through which the iron balls 15 do not pass may be formed in the inner peripheral portion of the both end plates 14a (FIG. 7).
  • a rooster 33 is fixed on the inner peripheral surface of the porous rotating container 14 so as to cover the opening on the inner peripheral side of each divided chamber 13.
  • a metal mesh 34 is stretched on the outer peripheral surface of the porous rotating container 14 so as to cover the opening on the outer peripheral side of each divided chamber 13.
  • the gap (9 mm) of the rooster 33 and the mesh (6.47 mm) of the wire net 34 are sized so that the iron balls 15 having a diameter of 12.7 mm do not pass through.
  • the number of iron balls 15 that occupies 75% of the internal space in each divided chamber 13 is stored.
  • the effective magnetic field A of the magnet M is obtained by rotating the porous rotating container 14 counterclockwise at 0.5 rpm around the rotation axis 16 by the drive motor 17.
  • Each division chamber 13 arrives sequentially, and the iron ball 15 in each division chamber 13 that has reached is magnetized.
  • the effective magnetic field A is supplied with the rolling oil 18 containing the magnetic material supplied from the raw material liquid input unit 19 through the wire mesh 34 of each division chamber 13.
  • the processing liquid 31 is discharged to the outside through the rooster 33. That is, the processing liquid 31 is discharged to the outside at the center of the porous rotating container 14, and then discharged to the lower front of the magnetic separation device 10 by the draining chute 32, and then placed on the floor (not shown). It is recovered in the liquid recovery tank.
  • a cleaning liquid for washing the rolling oil 18 adhering to the surface of the iron ball 15 is passed from the cleaning nozzle 28 in the effective magnetic field through the wire mesh 34 to each divided chamber. It is always sprayed toward each iron ball 15 in 13. In this way, by jetting the cleaning liquid from the effective magnetic field cleaning nozzle 28 to the downstream portion from the supply position of the rolling oil 18, among the raw material liquid adhering to the surface of each iron ball 15 at the same time as the magnetic separation of the magnetic material, Only the liquid (the processing liquid 31) excluding the magnetic material can be washed away, and the recovery rate of the processing liquid 31 can be increased.
  • each iron ball 15 rolls in each divided chamber 13 while being continuously crushed (FIGS. 8 to 10).
  • each iron ball 15 accommodated in each divided chamber 13 is supplied with the rolling oil 18 only from above, so that the magnetic substance adheres to the upper region of the surface. Although the amount is large, the magnetic material is dispersed over the entire surface of each iron ball 15 by this rolling.
  • each of the divided chambers 13 sequentially reaches the 100 ° position, the 140 ° position, and the 200 ° position in the rotation direction of the porous rotating container 14 with reference to the charging position of the rolling oil 18 of the porous rotating container 14.
  • the cleaning liquid being continuously jetted from the three ineffective magnetic field cleaning nozzles 20A to 20C passes from the central side of the porous rotating container 14 to the numerous iron balls 15 that are rolling in the divided chambers 13 through the wire meshes 34. Be sprayed. Thereby, the magnetic substance adhering to each iron ball 15 of each division chamber 13 is washed away. As a result, the magnetic material and the used cleaning liquid flow down to the magnetic material recovery chute 35 directly below through the wire mesh 34 of each divided chamber 13.
  • the magnetic material after cleaning and the used cleaning liquid are dropped and recovered in a magnetic material recovery tank (not shown) placed on the floor immediately below the magnetic material recovery chute 35. Thereafter, the rotation of the porous rotating container 14 further proceeds, so that the divided chamber 13 in which the cleaned iron ball 15 is accommodated reaches the effective magnetic field A again. The above operation is repeated while the rotation of the porous rotating container 14 is continued by the drive motor 17.
  • the magnetic material is removed from the rolling oil 18 introduced into each division chamber 13 and the inside of each division chamber 13 while the porous rotary container 14 rotates once. Since the magnetic substance adhering to the large number of iron balls 15 is cleaned, the separation and recovery of the rolling oil 18 and the magnetic substance can be performed continuously and efficiently. Further, when the multi-rotary container 14 is rotated in the vertical plane around the rotation axis 16 by the drive motor 17 and each divided chamber 13 sequentially reaches the effective magnetic field A, the iron ball 15 in each divided chamber 13 is magnetized. In this state, when the rolling oil 18 is supplied to the effective magnetic field A, the magnetic material is magnetically attached to the surface of the iron ball 15, while the processing liquid 31 is discharged to the outside.
  • the divided chambers 13 sequentially move from the effective magnetic field A toward the ineffective magnetic field B, and each iron ball 15 rolls while continuously collapsing in each divided chamber 13. . Since the cleaning liquid is sprayed onto each iron ball 15 during the rolling, the magnetic material attached to the surface of each iron ball 15 is easily washed away. As a result, it is possible to improve the cleaning performance of the iron ball 15 to which the magnetic material is adhered, and accordingly, it is possible to improve the recoverability of the magnetic material from the rolling oil 18.
  • each iron ball 15 in the divided chamber 13 is magnetized.
  • the rolling oil 18 is supplied from the raw material liquid inlet 19 to the dividing chamber 13 in the effective magnetic field A through the holes of the wire mesh 34 disposed on the outer peripheral surface of the porous rotating container 14, and the magnetic material in the rolling oil 18 is changed.
  • the treatment liquid 31 from which the magnetic material has been removed while being magnetically attached to the surface of the iron ball 15 is a long hole of each of the roosters 33 disposed on the inner peripheral surface of the porous rotating container 14 at the upper part of the porous rotating container 14. It is discharged to the central space of the multi-hole rotating container 14.
  • the rolling oil 18 is supplied to each division chamber 13 through the outer peripheral surface (metal mesh 33) having a larger surface area than the inner peripheral surface (rooster 34) in the upper part of the porous rotating container 14, from the inner peripheral surface side.
  • the amount of magnetic material deposited increases, and the magnetic separation efficiency can be increased. This is because when the liquid containing the magnetic material is supplied to the magnetic medium group housed in the container, the amount of magnetic adhesion of the magnetic material increases in the upstream region compared to the downstream region of the magnetic medium group.
  • the magnet M is arranged outside the lower part of the porous rotating container 14, an effective magnetic field A is generated at the lower part of the porous rotating container 14, and the rolling oil 18 is passed through each hole of the rooster 33.
  • the processing liquid 31 may pass through each hole of the wire mesh 34 and be discharged out of the apparatus.
  • the iron ball 15 in the divided chamber 13 is magnetized.
  • the magnetic separation device 10 can be made more compact as compared with the case where the large raw material liquid charging unit 19 is provided above the porous rotating container 14.
  • the gantry 11A is gradually inclined downward toward the rear, so that the rotation axis 16 of the porous rotating container 14 is at an angle ⁇ (about 15 ° with respect to the horizontal). ).
  • about 15 ° with respect to the horizontal.
  • each iron ball 15 moves in the dividing chamber 13 by rotating the porous rotating container 14 in a state where the occupation ratio of the iron balls 15 in the dividing chamber 13 is 75%. .
  • the magnetic separation device of the present invention is useful when magnetically separating a magnetic substance from a raw material liquid such as rolling oil or ore slurry containing iron powder or iron oxide powder.

Abstract

Disclosed is a magnetic separation apparatus comprising a vertical and annular perforated rotating container consisting of a nonmagnetic material and having the internal space sectioned into a plurality of partitioned chambers, a magnetic medium housed in each divided chamber to move freely and gravitationally, rotary drive means for rotating the perforated rotating container about the horizontal axis of rotation, a magnet which generates an effective magnetic field, a material liquid supply means for supplying material liquid to each divided chamber which reached the effective magnetic field, and a cleaning means in ineffective magnetic field for cleaning off magnetic matters adhering to the surface of the magnetic medium in the divided chamber by supplying each divided chamber which reached the ineffective magnetic field from the effective magnetic field with cleaning medium, wherein cleanability of the magnetic medium to which magnetic matters are adhering is improved and collectability of magnetic matters from the material liquid is also improved.

Description

磁気分離装置Magnetic separation device
 この発明は磁気分離装置、詳しくは例えば鉄粉や酸化鉄粉を含んだ圧延油や鉱石スラリーのような原料液中から、磁化された磁性媒体を用いて磁性物を除去する磁気分離装置に関する。 The present invention relates to a magnetic separation device, and more particularly to a magnetic separation device that removes magnetic substances from a raw material liquid such as rolling oil or ore slurry containing iron powder or iron oxide powder using a magnetized magnetic medium.
 原料液中から磁性物を除去する装置として、例えば、特許文献1の磁気分離装置が知られている。特許文献1の装置は、円筒形状の分離器容器を本体とし、分離器容器内の一部に磁場を発生させる磁石をこの分離器容器の外方に設け、垂直な回転軸を中心にして水平面内で回転可能な円環状の磁気フィルタを分離器容器に収納し、磁気フィルタに回転駆動手段を設けることを主な構成としている。磁気フィルタは、磁性材料からなる多数本のフィラメントを有し、磁石の有効磁場を連続して通過するとき、有効磁場へ通水された原水(原料液)中の磁気物質(磁性物)を磁着する。 As a device for removing magnetic substances from a raw material liquid, for example, a magnetic separation device disclosed in Patent Document 1 is known. The apparatus of Patent Document 1 has a cylindrical separator container as a main body, a magnet for generating a magnetic field in a part of the separator container is provided outside the separator container, and a horizontal plane around a vertical rotation axis. The main configuration is that an annular magnetic filter that can rotate inside is accommodated in a separator container, and a rotation driving means is provided in the magnetic filter. The magnetic filter has a large number of filaments made of a magnetic material. When the magnetic filter continuously passes through the effective magnetic field of the magnet, the magnetic filter magnetizes the magnetic substance (magnetic material) in the raw water (raw material liquid) passed through the effective magnetic field. To wear.
 装置運転時には、分離器容器に設けられた原水流入部から、有効磁場内での原水の通水方向が磁気フィルタの回転方向となるように原水を有効磁場に通水し、有効磁場から排出された処理水を分離器容器に設けられた処理水排出部から排出する。その後、分離器容器に設けられた逆洗水流入部から逆洗水を無効磁場に流入し、磁気フィルタに磁着された磁気物質を除去するとともに、除去された磁気物質を、分離器容器に設けられた逆洗水排出部から排出する。これにより、磁気フィルタで磁気物質を含む原水を連続的に処理しながら、磁気フィルタを再生することができる。その結果、原水の浄化処理量を増大させることができ、装置の簡素化とコンパクト化を実現することができる。 During operation, the raw water is passed through the effective magnetic field from the raw water inflow section provided in the separator vessel so that the flow direction of the raw water in the effective magnetic field is the rotation direction of the magnetic filter, and is discharged from the effective magnetic field. The treated water is discharged from the treated water discharge section provided in the separator container. After that, backwash water flows into the ineffective magnetic field from the backwash water inflow portion provided in the separator container, and the magnetic substance magnetized on the magnetic filter is removed, and the removed magnetic substance is put into the separator container. It discharges from the backwash water discharge part provided. Accordingly, the magnetic filter can be regenerated while continuously processing the raw water containing the magnetic substance with the magnetic filter. As a result, the amount of raw water purification can be increased, and the device can be simplified and made compact.
日本国特開平11-114326号公報Japanese Unexamined Patent Publication No. 11-114326
 しかしながら、特許文献1に記載された磁気分離装置の運転時、原水中の磁気物質に着目すれば、磁気物質は、有効磁場で磁気フィルタに磁着され、その後、磁気フィルタの水平回転により無効磁場へ移動し、ここで逆洗されて装置外へ排出される。このとき、磁気フィルタには各フィラメントの表面に磁気物質が付着している。そのため、一方向へ回転中の磁気フィルタに逆洗水を一方向から通水するだけでは、例えば、磁気フィルタの内部(中心部)のフィラメントに付着した磁気物質を除去することは困難であった。その結果、原水中からの磁気物質の除去率が低下していた。 However, when the magnetic separation apparatus described in Patent Document 1 is operated, if attention is paid to the magnetic substance in the raw water, the magnetic substance is magnetically attached to the magnetic filter with an effective magnetic field, and then the ineffective magnetic field is generated by the horizontal rotation of the magnetic filter. And then backwashed and discharged out of the apparatus. At this time, the magnetic substance adheres to the surface of each filament in the magnetic filter. Therefore, for example, it is difficult to remove the magnetic substance adhering to the filament (in the center) of the magnetic filter only by passing backwash water from one direction to the magnetic filter rotating in one direction. . As a result, the removal rate of the magnetic substance from the raw water was reduced.
 そこで、発明者は、鋭意研究の結果、磁気フィルタに代えて、内部空間が周方向へ向かって多数の分割室に区画され、かつ水平な回転軸を中心にして回転可能な非磁性材料からなる円環状の多孔回転容器を採用し、各分割室に磁性媒体を移動可能に収納するように構成すれば、上述した問題は解消されることを知見し、この発明を完成させた。すなわち、回転軸を中心にして多孔回転容器を垂直面内で回転させ、磁石の有効磁場へ達した分割室の磁性媒体を順次磁化し、ここで有効磁場内に供給された原料液中の磁性物を、磁性媒体の表面に磁着させる。その後、分割室が有効磁場から無効磁場へ移動し、そこで磁化が解かれた磁性媒体の表面の磁性物が洗浄されて回収されることにより、磁性物が付着した磁性媒体の洗浄性を高めることができ、しかも原料液中からの磁性物の回収性も高めることができることを知見した。 Therefore, as a result of earnest research, the inventor, instead of the magnetic filter, the inner space is divided into a number of divided chambers in the circumferential direction and is made of a nonmagnetic material that can rotate around a horizontal rotation axis. It has been found that the above-mentioned problems can be solved by adopting an annular porous rotating container and movably storing a magnetic medium in each divided chamber, and the present invention has been completed. That is, the porous rotating container is rotated in the vertical plane around the rotation axis, and the magnetic medium in the divided chamber that has reached the effective magnetic field of the magnet is sequentially magnetized, and the magnetism in the raw material liquid supplied in the effective magnetic field is here. An object is magnetically attached to the surface of the magnetic medium. After that, the dividing chamber moves from the effective magnetic field to the ineffective magnetic field, and the magnetic material on the surface of the magnetic medium which has been demagnetized is cleaned and recovered, thereby improving the cleaning performance of the magnetic medium to which the magnetic material is attached. In addition, it has been found that the recoverability of the magnetic substance from the raw material liquid can be improved.
 この発明は、磁性物が付着した磁性媒体の洗浄性を高めることができ、これに伴い、原料液中からの磁性物の回収性も高めることができる磁気分離装置を提供することを目的としている。 An object of the present invention is to provide a magnetic separation device that can improve the cleaning performance of a magnetic medium to which a magnetic material is adhered, and can also improve the recoverability of the magnetic material from the raw material liquid. .
 請求項1に記載の発明は、非磁性材料からなる仕切板により内部空間が周方向へ向かって複数の分割室に区画され、かつ中心軸線が水平または傾斜する円環状で非磁性材料からなる多孔回転容器と、前記各分割室に、この分割室内での自重による移動が自在に収納された磁性媒体と、前記中心軸線上に配置された回転軸を中心にして、前記多孔回転容器を垂直面内または傾斜面内で回転させる回転駆動手段と、前記多孔回転容器の一部分の外方に配置され、該多孔回転容器の回転に伴い前記各分割室が順次通過する有効磁場を発生させる磁石と、前記有効磁場に達した各分割室に、磁性物を含む原料液を供給する原料液供給手段と、前記有効磁場を通過し、前記磁石の磁力が及ばない無効磁場に達した前記各分割室に洗浄媒体を供給することで、前記無効磁場に達した分割室の磁性媒体の表面に付着した磁性物を洗浄によって分離する無効磁場内洗浄手段とを備えた磁気分離装置である。 According to the first aspect of the present invention, the inner space is partitioned into a plurality of divided chambers in the circumferential direction by a partition plate made of a non-magnetic material, and the center axis is horizontal or inclined and is a porous material made of a non-magnetic material. A rotary container, a magnetic medium accommodated in each of the divided chambers so as to be freely moved by its own weight, and a rotary axis disposed on the central axis line, the porous rotating container being placed in a vertical plane. A rotation driving means for rotating in an inner or inclined plane, a magnet that is arranged outside a part of the porous rotating container, and that generates an effective magnetic field that sequentially passes through each of the divided chambers as the porous rotating container rotates, Raw material liquid supply means for supplying a raw material liquid containing a magnetic material to each divided chamber that has reached the effective magnetic field, and each divided chamber that has passed the effective magnetic field and has reached an ineffective magnetic field that does not reach the magnetic force of the magnet. Supply cleaning media In a magnetic separation apparatus comprising a disabling field in the cleaning means for separating the washed magnetic substance attached to the surface of the invalid field to reach the portioning chambers of a magnetic medium.
 請求項1に記載の発明によれば、回転駆動手段により水平または傾斜した回転軸を中心にして多孔回転容器を垂直面内または傾斜面内で回転させることで、磁石の有効磁場に達した各分割室の磁性媒体が磁化される。このとき、有効磁場には、多孔回転容器の孔を通って原料液供給手段から磁性物を含む原料液が供給されている。これにより、有効磁場内の分割室では、磁性媒体の表面に磁性物が磁着する一方、その処理液が多孔回転容器の別の孔を通って外部へ排出される。
 その後、多孔回転容器の回転を継続することで、有効磁場内の分割室が無効磁場へ移動し、その分割室の磁性媒体の磁化が解かれる。これに伴い、各分割室内で各磁性媒体が連続的に山崩れしながら転動する。この転動状態で、無効磁場内洗浄手段により洗浄媒体が無効磁場に達した各分割室に供給され、その分割室内の磁性媒体に付着した磁性物が洗い流される。その結果、磁性物が付着した磁性媒体の洗浄性を高めることができ、これに伴い、原料液中からの磁性物の回収性も高めることができる。その後、多孔回転容器の回転がさらに進むことで、洗浄済みの磁性媒体を収納した分割室が再び有効磁場へ移動する。これらの動作は、回転駆動手段によって多孔回転容器の回転が継続している間中、繰り返される。
According to the first aspect of the present invention, each of the magnets having reached the effective magnetic field of the magnet is obtained by rotating the porous rotating container in the vertical plane or the inclined plane around the rotation axis that is horizontal or inclined by the rotation driving means. The magnetic medium in the divided chamber is magnetized. At this time, the effective magnetic field is supplied with the raw material liquid containing the magnetic substance from the raw material liquid supply means through the hole of the porous rotating container. Thereby, in the divided chamber in the effective magnetic field, the magnetic substance is magnetically attached to the surface of the magnetic medium, while the processing liquid is discharged to the outside through another hole of the porous rotating container.
Thereafter, by continuing the rotation of the porous rotating container, the division chamber in the effective magnetic field moves to the invalid magnetic field, and the magnetization of the magnetic medium in the division chamber is released. Along with this, each magnetic medium rolls while continuously falling in each divided chamber. In this rolling state, the cleaning medium is supplied to each of the divided chambers that have reached the invalid magnetic field by the ineffective magnetic field cleaning means, and the magnetic material attached to the magnetic medium in the divided chamber is washed away. As a result, it is possible to improve the cleaning properties of the magnetic medium to which the magnetic material is adhered, and accordingly, it is possible to improve the recoverability of the magnetic material from the raw material liquid. Thereafter, the rotation of the porous rotating container further proceeds, so that the divided chamber containing the washed magnetic medium moves again to the effective magnetic field. These operations are repeated while the rotation of the porous rotating container is continued by the rotation driving means.
 磁気分離装置とは、磁気(磁界)を利用し、磁性物を含む原料液を、磁性物と、原料液から磁性物を分離して残った液分である処理液とに分離する装置である。
 原料液としては、例えば、水、粉粒状鉱物のスラリー(鉱物スラリー)、油を乳化させた水(圧延油)、水酸化ナトリウムを含む水、油(金属加工機械からの廃油を含む)などを採用することができる。
 磁性物としては、例えば金属加工機械から排出された切り屑、圧延油や硅砂スラリー中の粉体(摩耗粉を含む)などが挙げられる。磁性物の素材としては、例えば鉄、ニッケル、コバルトおよびこれらの合金または化合物、あるいはクロマイト、イルメナイト、スピネルといった磁性鉱物などを採用することができる。
A magnetic separation device is a device that uses magnetism (magnetic field) to separate a raw material liquid containing a magnetic substance into a magnetic substance and a treatment liquid that is a liquid remaining after separating the magnetic substance from the raw material liquid. .
Examples of the raw material liquid include water, granular mineral slurry (mineral slurry), oil emulsified water (rolled oil), water containing sodium hydroxide, oil (including waste oil from metalworking machines), etc. Can be adopted.
Examples of the magnetic material include chips discharged from a metal processing machine, rolling oil, and powder (including wear powder) in silica sand slurry. As the material of the magnetic material, for example, iron, nickel, cobalt, and alloys or compounds thereof, or magnetic minerals such as chromite, ilmenite, and spinel can be employed.
 洗浄媒体としては、例えば水(冷水、温水)、第2石油類、第3石油類などの石油系洗浄油、アルコール等の有機溶剤、アルカリ溶液(苛性ソーダ水溶液など)、圧縮空気、不活性ガスまたはこれらの少なくとも1つと温湯との混合液などが挙げられる。このうち、有機溶剤の洗浄媒体により磁性媒体の表面を洗浄すれば、有機溶剤が磁性媒体の表面に付着した油分を溶解する。そのため、磁性媒体の表面に付着した磁性物の除去率が高まる。
 洗浄媒体は圧縮空気や不活性ガスとともに分割室に吹き込んでもよい。これにより、分割室に収納された磁性媒体の全露出面に万遍なく洗浄液が浸透し、磁性媒体の洗浄効果がさらに高まる。圧縮空気の圧力は0.5kg/cm以上が好ましい。
 洗浄済みの洗浄媒体は、混入されている磁性物を分離した後、液分だけ抽出すれば再使用してもよい。
Examples of the cleaning medium include water (cold water, hot water), petroleum-based cleaning oils such as second petroleums and third petroleums, organic solvents such as alcohol, alkaline solutions (such as aqueous caustic soda), compressed air, inert gas, or A mixed liquid of at least one of these and hot water may be used. Of these, if the surface of the magnetic medium is washed with an organic solvent washing medium, the organic solvent dissolves the oil adhering to the surface of the magnetic medium. Therefore, the removal rate of the magnetic substance adhering to the surface of the magnetic medium is increased.
The cleaning medium may be blown into the dividing chamber together with compressed air or an inert gas. As a result, the cleaning liquid uniformly penetrates all exposed surfaces of the magnetic medium stored in the division chamber, and the cleaning effect of the magnetic medium is further enhanced. The pressure of compressed air is preferably 0.5 kg / cm 2 or more.
The cleaned cleaning medium may be reused if the liquid is extracted after separating the mixed magnetic substances.
 仕切板の素材は非磁性材料であれば任意である。例えば、各種の非磁性金属(オーステナイト系ステンレス鋼、チタン合金など)、各種の合成樹脂(塩化ビニル、繊維強化プラスチック(FRP)など)、セラミックスなどを採用することができる。仕切板の使用枚数は4枚または5枚以上である。仕切板の数を増やすほど、多孔回転容器はより多くの分割室に分割される。各仕切板の多孔回転容器の周方向の位置は、所定ピッチで配置しても、間隔が不均等でもよい。ただし、仕切板は多孔回転容器の周方向において均一間隔で配置した方が好ましい。仕切板には、原料液などが通過する孔が形成されていない。また、仕切板は、その長さ方向を、多孔回転容器の中心軸線を中心とした放射方向に揃えた方が好ましい。
 分割室の形成数は、仕切板の使用枚数により決定される。また、分割室の大きさも隣り合う仕切板の間隔により適宜決定される。
 多孔回転容器の素材としては、仕切板の素材として例示された各種の非磁性材料を採用することができる。
The material of the partition plate is arbitrary as long as it is a non-magnetic material. For example, various non-magnetic metals (such as austenitic stainless steel and titanium alloy), various synthetic resins (such as vinyl chloride and fiber reinforced plastic (FRP)), and ceramics can be used. The number of partition plates used is 4 or 5 or more. As the number of partition plates is increased, the multi-hole rotating container is divided into more divided chambers. The positions of the partition plates in the circumferential direction of the porous rotating container may be arranged at a predetermined pitch or may be unevenly spaced. However, it is preferable that the partition plates are arranged at uniform intervals in the circumferential direction of the porous rotating container. The partition plate is not formed with a hole through which the raw material liquid or the like passes. Moreover, it is preferable that the length direction of the partition plate is aligned with the radial direction around the central axis of the porous rotating container.
The number of division chambers formed is determined by the number of partition plates used. Further, the size of the dividing chamber is also appropriately determined depending on the interval between the adjacent partition plates.
As the material of the porous rotating container, various nonmagnetic materials exemplified as the material of the partition plate can be adopted.
 多孔回転容器の形状は円環状で有れば任意である。具体的には、正面視して真円の中空ドーナツ形状(中空円環形状)だけでなく、例えば正面視して三角形または四角形以上の多角形の中空ドーナツ形状でもよい。
 「円環状の中心線が傾斜」している場合の傾斜角度は、水平線を基準として0°より大きく45°以下である。なお、ここでいう傾斜角度とは、円環状の中心線が、その一端側を下方(他端側を上方)へ向けた場合の傾斜角度と、その一端側を上方へ向けた場合の傾斜角度との両方を含む。傾斜角度が0°では、多孔回転容器が傾斜していない。また、45°を超えれば、原料液供給手段から各分割室に供給された原料液が、各分離室の供給側の開口からオーバーフローし易い。中心線の好ましい傾斜角度は0°より大きく20°以下である。この範囲であれば、分離室に収納された多数の磁着媒体のうち、供給側の面に配置される磁着媒体の個数(磁性媒体群の供給側の表面積)が増大し、その分、原料液中の磁性物の磁着量が増大する。
 多孔回転容器の回転速度は、0.1~30rpmである。0.1rpm未満では、多孔回転容器の1回転当たりの有効磁場内での磁性媒体への磁性物の磁着量が増大し、無効磁場内での磁性媒体の表面の洗浄が困難になる。また、30rpmを超えれば、多孔回転容器が高速回転となり、原料液が仕切板に当たって外方へ飛散し易い。多孔回転容器の好ましい回転速度は、0.3~2rpmである。この範囲であれば、原料液の飛散が無く、かつ無洗浄磁場内での洗浄時において、磁性媒体の表面に付着した磁着物の洗浄を十分に行うことができる。
The shape of the porous rotating container is arbitrary as long as it has an annular shape. Specifically, it may be not only a perfect circular donut shape (hollow annular shape) when viewed from the front, but may also be a triangular or quadrangular or more polygonal hollow donut shape when viewed from the front.
The inclination angle when the “annular center line is inclined” is greater than 0 ° and less than or equal to 45 ° with respect to the horizontal line. The inclination angle here refers to the inclination angle when the annular center line has one end side directed downward (the other end side is directed upward) and the inclination angle when one end side is directed upward. And both. When the tilt angle is 0 °, the porous rotating container is not tilted. Further, if it exceeds 45 °, the raw material liquid supplied from the raw material liquid supply means to each of the dividing chambers tends to overflow from the opening on the supply side of each separation chamber. A preferable inclination angle of the center line is larger than 0 ° and not larger than 20 °. If it is within this range, among the many magnetized media stored in the separation chamber, the number of magnetized media (surface area on the supply side of the magnetic media group) arranged on the supply side surface increases. The amount of magnetic adhesion of the magnetic material in the raw material liquid increases.
The rotation speed of the porous rotating container is 0.1 to 30 rpm. If it is less than 0.1 rpm, the amount of magnetic material attached to the magnetic medium within the effective magnetic field per rotation of the porous rotating container increases, and it becomes difficult to clean the surface of the magnetic medium within the ineffective magnetic field. Moreover, if it exceeds 30 rpm, a porous rotating container will be high-speed rotation, and a raw material liquid will hit a partition plate and will be easily scattered outside. A preferable rotation speed of the porous rotating container is 0.3 to 2 rpm. Within this range, the raw material liquid is not scattered, and the magnetic deposit adhered to the surface of the magnetic medium can be sufficiently cleaned during cleaning in a non-cleaning magnetic field.
 「分割室内での自重による移動」とは、多孔回転容器が回転することで、分割室内の磁性媒体が自重で転がり移動(転動)することをいう。
 磁性媒体とは、有効磁場内で磁石によって磁化され、原料液供給手段から有効磁場に供給された原料液中の磁性物を磁着するものである。
 磁性媒体の素材としては、例えば、磁性物の素材として例示された鉄、ニッケル、コバルトおよびこれらの合金を採用することができる。磁性媒体としては、金属球(鉄球)、金属棒(鉄筋)などを採用することができる。その他、磁性金属線などを略球状に成形したものなどでもよい。
 磁性媒体の使用数は、1つでも、2つ以上でもよい。磁性媒体が複数の場合、各磁性媒体のサイズは同じでも、異なってもよい。
“Movement due to its own weight in the division chamber” means that the magnetic medium in the division chamber rolls and moves (rolls) under its own weight as the porous rotating container rotates.
The magnetic medium is magnetized by a magnet in an effective magnetic field and magnetically adheres a magnetic substance in the raw material liquid supplied from the raw material liquid supply means to the effective magnetic field.
As the material of the magnetic medium, for example, iron, nickel, cobalt, and alloys thereof exemplified as the material of the magnetic material can be employed. As the magnetic medium, a metal ball (iron ball), a metal rod (rebar), or the like can be employed. In addition, a magnetic metal wire or the like formed into a substantially spherical shape may be used.
The number of magnetic media used may be one or two or more. When there are a plurality of magnetic media, the size of each magnetic medium may be the same or different.
 分割室への磁性媒体の充填率は、50~90%である。50%未満では、磁性物の分割室内での磁着量(磁着性)が低下し、磁性物の回収率が低下する。また、90%を超えれば、分割室内で磁性物がほとんど転動しなくなる。分割室への磁性媒体の好ましい充填率は、70~80%である。この範囲であれば、磁性媒体が分割室内で円滑に転動しながら、磁性物の高い回収率が得られる。
 回転駆動手段としては、例えば、電動モータ、油圧モータなどの各種の原動機を採用することができる。
 「多孔回転容器の一部分の外方」とは、例えば、多孔回転容器の一部分の内部ではなく、この一部分の外(近傍)をいう。
 磁石としては、例えば、フェライト磁石や希土類磁石などの永久磁石、電磁石(超伝導磁石を含む)などが採用できる。
The filling rate of the magnetic medium into the dividing chamber is 50 to 90%. If it is less than 50%, the amount of magnetic adhesion (magnetic adherence) in the division chamber of the magnetic material is lowered, and the recovery rate of the magnetic material is lowered. If it exceeds 90%, the magnetic substance hardly rolls in the division chamber. A preferable filling rate of the magnetic medium into the dividing chamber is 70 to 80%. Within this range, a high recovery rate of the magnetic material can be obtained while the magnetic medium rolls smoothly in the dividing chamber.
As the rotational drive means, for example, various prime movers such as an electric motor and a hydraulic motor can be employed.
The “outside part of the porous rotating container” means, for example, not the inside of the part of the porous rotating container but the outside (near) of this part.
As the magnet, for example, a permanent magnet such as a ferrite magnet or a rare earth magnet, an electromagnet (including a superconducting magnet), or the like can be employed.
 有効磁場とは、磁石の磁界の影響が及ぶ領域をいう。また、無効磁場とは、磁石の磁界の影響が及ばない領域をいう。
 「多孔回転容器の回転に伴い各分割室が順次通過する」とは、回転駆動手段によって多孔回転容器が回転することで、多孔回転容器内の各分割室が、順次、有効磁場に達し、その後、有効磁場を行き過ぎることをいう。
 原料液供給手段としては、例えば原料液のポンプ圧送機、オーバーフローによる原料液の供給を行う攪拌タンクなどを採用することができる。
 無効磁場内洗浄手段としては、洗浄媒体をノズルから噴射するスプレー装置、その他、洗浄媒体の掛け流し用の洗浄タンク(容器)などを採用することができる。
The effective magnetic field refers to a region affected by the magnetic field of the magnet. The ineffective magnetic field refers to a region that is not affected by the magnetic field of the magnet.
“The divided chambers sequentially pass with the rotation of the porous rotating container” means that the rotating rotating means rotates the porous rotating container so that each of the divided chambers in the porous rotating container sequentially reaches an effective magnetic field. Too much effective magnetic field.
As the raw material liquid supply means, for example, a raw material liquid pumping machine, a stirring tank for supplying the raw material liquid by overflow, and the like can be adopted.
As the ineffective magnetic field cleaning means, a spray device for spraying the cleaning medium from the nozzle, or a cleaning tank (container) for pouring the cleaning medium can be employed.
 また、請求項2に記載の発明は、前記多孔回転容器は、その内周面、その外周面、その側面のうち、少なくとも前記内周面および前記外周面に多孔部材が配置されたもので、前記磁石を前記多孔回転容器の上部の外方に配置し、前記有効磁場を前記多孔回転容器の上部に発生させ、前記原料液は、前記外周面側の多孔部材の各孔を通して前記分割室に供給された後、前記内周面側の多孔部材の各孔を通過して装置外へ排出される請求項1に記載の磁気分離装置である。 In the invention according to claim 2, the porous rotating container has a porous member disposed on at least the inner peripheral surface and the outer peripheral surface of the inner peripheral surface, the outer peripheral surface, and the side surfaces thereof. The magnet is disposed outside the upper part of the porous rotating container, the effective magnetic field is generated at the upper part of the porous rotating container, and the raw material liquid is supplied to the dividing chamber through the holes of the porous member on the outer peripheral surface side. 2. The magnetic separation device according to claim 1, wherein after being supplied, the magnetic separation device passes through each hole of the porous member on the inner peripheral surface side and is discharged out of the device.
 請求項2に記載の発明によれば、多孔回転容器の上部の有効磁場に、順次、各分割室が達すれば、その分割室の磁性媒体が磁化される。しかも、外周面側の多孔部材の各孔を通して、原料液供給手段から原料液が有効磁場内の分割室に供給され、原料液中の磁性物が磁性媒体の表面に磁着される。一方、この磁性物が除去された処理液は、多孔回転容器の上部において、内周面側と側面側とのうち、少なくとも内周面側の多孔部材の各孔を通って多孔回転容器の中央空間へ排出される。このように、多孔回転容器の上部において、多孔回転容器の内周面に比べて表面積が大きい多孔回転容器の外周面を通して原料液を各分割室に供給するので、内周面側からの原料液の供給時に比べて磁性物の磁着量が増加し、磁選効率を高めることができる。これは、容器内に収納された磁性媒体群に磁性物を含む液体を供給したとき、磁性媒体群の下流領域に比べて上流領域の方が磁性物の磁着量が増えることによる。しかも、各分割室は、このように原料液の供給側(外周面側)に比べて排出側(内周面側)が狭い漏斗形状を有しているので、分割室内で原料液が貯留し易い。そのため、磁性物が磁性媒体の表面に磁着され易くなる。 According to the second aspect of the present invention, when each of the divided chambers reaches the effective magnetic field in the upper part of the porous rotating container sequentially, the magnetic medium in the divided chamber is magnetized. Moreover, the raw material liquid is supplied from the raw material liquid supply means to the dividing chamber in the effective magnetic field through each hole of the porous member on the outer peripheral surface side, and the magnetic substance in the raw material liquid is magnetized on the surface of the magnetic medium. On the other hand, the treatment liquid from which the magnetic material has been removed is at the center of the porous rotating container through the holes of at least the inner peripheral surface side porous member of the inner peripheral surface side and the side surface side in the upper part of the porous rotating container. It is discharged into the space. In this way, since the raw material liquid is supplied to each divided chamber through the outer peripheral surface of the porous rotating container having a larger surface area than the inner peripheral surface of the porous rotating container at the upper part of the porous rotating container, the raw material liquid from the inner peripheral surface side is supplied. As compared with the supply of the magnetic material, the amount of magnetic adhesion of the magnetic material increases, and the magnetic separation efficiency can be increased. This is because when the liquid containing the magnetic material is supplied to the magnetic medium group housed in the container, the amount of magnetic adhesion of the magnetic material increases in the upstream region compared to the downstream region of the magnetic medium group. In addition, each of the divided chambers has a funnel shape in which the discharge side (inner peripheral surface side) is narrower than the supply side (outer peripheral surface side) of the raw material liquid in this way. easy. Therefore, the magnetic material is easily magnetically attached to the surface of the magnetic medium.
 多孔回転容器のうち、原料液などの通過が可能な多孔部材から構成されている面としては、内周面と外周面との2種類の面、または、内周面と外周面と側面との3種類の面である。ここでいう側面とは、両方の側面(端面)でも一方の側面のみでもよい。多孔回転容器のその他の面は多孔部材によって構成されていない。
 多孔部材の素材および形状は、非磁性で磁性媒体が通過しない隙間(孔)が形成されたものであれば任意である。例えば、各種金属からなるロストル、金網、各種の多孔板(エキスパンドメタル、パンチングメタルなど)などを採用することができる。
 外周面側の多孔部材と内周面側の多孔部材とは同一部材としても、別部材としてもよい。
Among the porous rotating containers, the surface composed of a porous member capable of passing a raw material liquid or the like is either two types of surfaces, an inner peripheral surface and an outer peripheral surface, or an inner peripheral surface, an outer peripheral surface, and a side surface. There are three types of surfaces. The side surface referred to here may be both side surfaces (end surfaces) or only one side surface. The other surface of the porous rotating container is not constituted by a porous member.
The material and shape of the porous member are arbitrary as long as a gap (hole) through which the magnetic medium does not pass is formed. For example, a rooster, a metal mesh, various perforated plates (expanded metal, punching metal, etc.) made of various metals can be employed.
The porous member on the outer peripheral surface side and the porous member on the inner peripheral surface side may be the same member or different members.
 請求項3に記載の発明は、前記多孔回転容器は、その内周面、その外周面、その側面のうち、少なくとも前記内周面および前記外周面に多孔部材が配置されたもので、前記磁石を前記多孔回転容器の下部の外方に配置し、前記有効磁場を前記多孔回転容器の下部に発生させ、前記原料液は、前記内周面側の多孔部材の各孔を通して前記分割室に供給された後、前記外周面側の多孔部材の各孔を通過して装置外へ排出される請求項1に記載の磁気分離装置である。 According to a third aspect of the present invention, in the porous rotating container, a porous member is disposed on at least the inner peripheral surface and the outer peripheral surface of the inner peripheral surface, the outer peripheral surface, and the side surfaces thereof, and the magnet Is arranged outside the lower part of the porous rotating container, the effective magnetic field is generated in the lower part of the porous rotating container, and the raw material liquid is supplied to the dividing chamber through the holes of the porous member on the inner peripheral surface side. 2. The magnetic separation device according to claim 1, after being discharged through the holes of the porous member on the outer peripheral surface side and discharged outside the device.
 請求項3に記載の発明によれば、多孔回転容器の下部の有効磁場に、順次、各分割室が達すれば、その分割室の磁性媒体が磁化される。しかも、原料液供給手段から原料液が、内周面側の多孔部材の各孔を通して有効磁場の分割室に供給される。これにより、原料液中の磁性物は磁性媒体の表面に磁着される一方、磁性物が除去された処理液は、この多孔回転容器の下部において、外周面側と側面側とのうち、少なくとも外周面側の多孔部材の各孔を通って多孔回転容器の下部空間へ排出される。その結果、請求項2の発明の場合のように多孔回転容器の上方に大型化し易い原料液供給手段を設ける必要がないので、磁気分離装置のコンパクト化が図れる。しかも、原料液として水より粘性が高いものを採用した場合でも、この高粘性を原因とした流動性の低下により原料液が分割室を通過する時間が長くなるのを抑えることができる。これは、多孔回転容器の下部で原料液を各分割室に供給するようにしたので、原料液が磁性媒体群の上流領域を通過後、上流領域より容積が大きく液体の分散性が高くなる下流領域を通過し、原料液が外部へ排出されるためである。 According to the third aspect of the present invention, when each of the divided chambers reaches the effective magnetic field in the lower part of the porous rotating container sequentially, the magnetic medium in the divided chamber is magnetized. Moreover, the raw material liquid is supplied from the raw material liquid supply means to the effective magnetic field dividing chamber through each hole of the porous member on the inner peripheral surface side. Thus, the magnetic material in the raw material liquid is magnetically attached to the surface of the magnetic medium, while the treatment liquid from which the magnetic material has been removed is at least of the outer peripheral surface side and the side surface side in the lower part of the porous rotating container. It is discharged to the lower space of the porous rotating container through each hole of the porous member on the outer peripheral surface side. As a result, it is not necessary to provide a raw material liquid supply means that is easily increased in size above the porous rotating container as in the case of the invention of claim 2, so that the magnetic separation device can be made compact. Moreover, even when a raw material liquid having a higher viscosity than water is employed, it is possible to prevent the time required for the raw material liquid to pass through the dividing chamber due to the decrease in fluidity due to the high viscosity. This is because the raw material liquid is supplied to the respective division chambers at the lower part of the multi-hole rotating container, so that after the raw material liquid passes through the upstream region of the magnetic medium group, the volume is larger than the upstream region and the liquid dispersibility is increased. This is because the raw material liquid is discharged outside through the region.
 請求項4に記載の発明は、前記磁性媒体の表面に付着した原料液の液分を洗い流す前記洗浄媒体を、前記有効磁場のうち、前記原料液の供給位置より下流部分に供給する有効磁場内洗浄手段を有した請求項1~請求項3のうち、何れか1項に記載の磁気分離装置である。 According to a fourth aspect of the present invention, in the effective magnetic field, the cleaning medium for washing away the liquid component adhering to the surface of the magnetic medium is supplied to a downstream portion of the effective magnetic field from the supply position of the raw material liquid. The magnetic separation device according to any one of claims 1 to 3, further comprising a cleaning unit.
 請求項4に記載の発明によれば、有効磁場のうち、原料液の供給位置より下流部分に、有効磁場内洗浄手段から洗浄媒体を供給することで、磁性媒体の表面に付着した原料液の液分(処理液)のみを洗い流す。すなわち、磁性媒体の表面に磁着した磁性物は洗い流さない。このように、有効磁場内で、磁性媒体の洗浄を行うようにしたので、処理液の回収率を高めることができる。 According to the invention described in claim 4, by supplying the cleaning medium from the effective magnetic field cleaning means to the downstream portion of the effective magnetic field from the supply position of the raw material liquid, the raw material liquid adhered to the surface of the magnetic medium is supplied. Wash away only the liquid (treatment liquid). That is, the magnetic material magnetized on the surface of the magnetic medium is not washed away. As described above, since the magnetic medium is cleaned in the effective magnetic field, the recovery rate of the treatment liquid can be increased.
 「有効磁場のうち、原料液の供給位置より下流部分」とは、有効磁場には原料液供給手段から原料液が供給されるが、その供給位置よりも、多孔回転容器の回転に伴って分割室が進行する方向の有効磁場の領域部分をいう。
 有効磁場内洗浄手段としては、例えば、前記無効磁場内洗浄手段と同様のものを採用することができる。
“A portion of the effective magnetic field downstream from the supply position of the raw material liquid” means that the effective magnetic field is supplied with the raw material liquid from the raw material liquid supply means, but is divided from the supply position with the rotation of the porous rotating container. The area portion of the effective magnetic field in the direction in which the chamber travels.
As the effective magnetic field cleaning means, for example, the same effective magnetic field cleaning means can be employed.
 請求項5に記載の発明は、前記洗浄媒体は、水、アルカリ水溶液、表面活性水、水蒸気、揮発油、圧縮空気、不活性ガスのうち、少なくとも1つである請求項1に記載の磁気分離装置である。 The invention according to claim 5 is the magnetic separation according to claim 1, wherein the cleaning medium is at least one of water, an aqueous alkali solution, surface-active water, water vapor, volatile oil, compressed air, and inert gas. Device.
 洗浄媒体としては、例えば、水、アルカリ水溶液、表面活性水、水蒸気、揮発油、圧縮空気、不活性ガスのうちの何れか1つ、または、この群から選出された何れか2つ以上でもよい。
 アルカリ水溶液としては、例えば苛性ソーダ水溶液などを採用することができる。
 表面活性水としては、例えば、アルキルベンゼンスルホン酸塩などの合成洗剤を水に溶解したものなどを採用することができる。
 揮発油としては、例えば、灯油などを採用することができる。
 不活性ガスとしては、例えば窒素ガス、アルゴンガスなどを採用することができる。
The cleaning medium may be, for example, any one of water, alkaline aqueous solution, surface active water, water vapor, volatile oil, compressed air, inert gas, or any two or more selected from this group. .
As the aqueous alkali solution, for example, an aqueous caustic soda solution can be employed.
As the surface active water, for example, a synthetic detergent such as alkylbenzene sulfonate dissolved in water can be used.
As volatile oil, kerosene etc. are employable, for example.
As the inert gas, for example, nitrogen gas or argon gas can be employed.
 請求項6に記載の発明は、前記無効磁場内洗浄手段は、前記多孔回転容器の内周と外周とのうち、少なくとも1つに沿って複数配置され、前記各無効磁場内洗浄手段は、使用される洗浄媒体がそれぞれ異なる請求項1に記載の磁気分離装置である。 In the invention according to claim 6, a plurality of the ineffective magnetic field cleaning means are arranged along at least one of the inner periphery and the outer periphery of the porous rotating container, and each of the ineffective magnetic field cleaning means is used. The magnetic separation apparatus according to claim 1, wherein different cleaning media are used.
 請求項6に記載の発明によれば、無効磁場内洗浄手段は、多孔回転容器の内周と外周とのうち、少なくとも1つに沿って複数配置され、各無効磁場内洗浄手段から供給される洗浄媒体はそれぞれ異なるので、無効磁場を通過中の各分割室の磁性媒体に対して、順次、異なる洗浄媒体が供給される。このような構成としたので、異なる洗浄媒体を用いた最適な洗浄順序を選択することができ、磁性媒体の表面に磁着した磁性物の除去性と、この表面に付着した処理液(異物)の洗浄性とを高めることができる。 According to the sixth aspect of the present invention, a plurality of ineffective magnetic field cleaning means are arranged along at least one of the inner periphery and the outer periphery of the porous rotating container, and are supplied from each ineffective magnetic field cleaning means. Since the cleaning media are different, different cleaning media are sequentially supplied to the magnetic media in the respective divided chambers that are passing through the reactive magnetic field. With this configuration, it is possible to select an optimal cleaning sequence using different cleaning media, the removability of magnetic substances magnetically attached to the surface of the magnetic medium, and the treatment liquid (foreign matter) adhering to this surface Can be improved.
 無効磁場内洗浄手段は、多孔回転容器の内周に配置しても、外周に配置してもよい。また、これらの両方に配置してもよい。
 無効磁場内洗浄手段の使用数は、2つまたは3つ以上であれば任意である。
 無効磁場内洗浄手段を3つ以上使用する場合には、隣り合う無効磁場内洗浄手段において洗浄媒体が異なっていれば、同一の洗浄媒体を複数の無効磁場内洗浄手段で使用してもよい。もちろん、全ての無効磁場内洗浄手段において、1例の例外もなく洗浄媒体を異ならせてもよい。また、各無効磁場内洗浄手段には、洗浄媒体を分割室に供給する供給部(ノズルなど)は1つだけ設けても、2つ以上設けてもよい。なお、供給部が2つ以上の場合、1つの無効磁場内洗浄手段が保有する各供給部から供給される洗浄媒体は1種類(全て同じ)である。
 「洗浄媒体がそれぞれ異なる」とは、磁気分離装置(複数の無効磁場内洗浄手段)の全体において、異なる洗浄媒体が2種類以上存在することをいう。
The ineffective magnetic field cleaning means may be disposed on the inner periphery or the outer periphery of the porous rotating container. Moreover, you may arrange | position in both of these.
The number of ineffective magnetic field cleaning means used is arbitrary as long as it is two or three or more.
When three or more reactive magnetic field cleaning units are used, the same cleaning medium may be used by a plurality of reactive magnetic field cleaning units as long as the cleaning media are different in adjacent reactive magnetic field cleaning units. Of course, in all the ineffective magnetic field cleaning means, the cleaning medium may be different without exception. Each ineffective magnetic field cleaning means may be provided with only one supply unit (nozzle or the like) for supplying the cleaning medium to the division chamber, or two or more. When there are two or more supply units, the cleaning medium supplied from each supply unit possessed by one ineffective magnetic field cleaning means is one type (all the same).
“The cleaning media are different” means that there are two or more different cleaning media in the entire magnetic separation apparatus (a plurality of ineffective magnetic field cleaning units).
 請求項1に記載の発明によれば、回転駆動手段により水平または傾斜した回転軸を中心にして多孔回転容器を垂直面内または傾斜面内で回転させることで、磁性媒体の有効磁場に各分割室が順次達し、ここで磁性媒体が磁化される。この状態のまま、多孔回転容器の孔を通して、原料液供給手段から原料液を供給する。これにより、磁性媒体の表面に磁性物が磁着する一方、原料液から磁性物が除去された処理液が、多孔回転容器の別の孔から外部へ排出される。次に、多孔回転容器をさらに回転させることで、有効磁場内の分割室が無効磁場へ順次移動し、これに伴い、各分割室内で各磁性媒体が連続的に山崩れしながら転動する。この転動状態で、無効磁場内洗浄手段から各磁性媒体に向かって洗浄媒体が供給されるように構成したので、磁性物が付着した磁性媒体の洗浄性を高めることができ、これに伴い、原料液中からの磁性物の回収性も高めることができる。 According to the first aspect of the present invention, the multi-rotation container is rotated in the vertical plane or the inclined plane around the rotation axis that is horizontal or inclined by the rotation driving means, so that each effective magnetic field of the magnetic medium is divided. The chambers reach sequentially, where the magnetic medium is magnetized. In this state, the raw material liquid is supplied from the raw material liquid supply means through the hole of the porous rotating container. Thereby, while the magnetic substance is magnetically attached to the surface of the magnetic medium, the treatment liquid from which the magnetic substance has been removed from the raw material liquid is discharged to the outside from another hole of the porous rotating container. Next, by further rotating the porous rotating container, the divided chambers in the effective magnetic field are sequentially moved to the ineffective magnetic field, and accordingly, each magnetic medium rolls while continuously collapsing in each divided chamber. In this rolling state, the cleaning medium is supplied from the ineffective magnetic field cleaning means toward each magnetic medium, so that the cleaning performance of the magnetic medium to which the magnetic material is attached can be improved. The recoverability of the magnetic material from the raw material liquid can also be improved.
 特に、請求項2に記載の発明によれば、多孔回転容器の上部の有効磁場に、順次、各分割室が達すれば、その分割室の磁性媒体が磁化される。しかも、外周面側の多孔部材の各孔を通して、原料液供給手段から原料液が有効磁場内の分割室に供給され、原料液中の磁性物が磁性媒体の表面に磁着される。一方、この磁性物が除去された処理液は、多孔回転容器の上部において、内周面側の多孔部材の各孔を通って多孔回転容器の中央空間へ排出される。このように、多孔回転容器の上部において、多孔回転容器の内周面に比べて表面積が大きい多孔回転容器の外周面を通して原料液を各分割室に供給するので、内周面側からの原料液の供給時に比べて磁性物の磁着量が増加し、磁選効率を高めることができる。しかも、各分割室は、原料液の供給側に比べて排出側が狭い漏斗形状を有しているので、分割室内で原料液が貯留し易く、磁性物が磁性媒体の表面に磁着され易くなる。 Particularly, according to the second aspect of the present invention, when each divided chamber reaches the effective magnetic field in the upper part of the porous rotating container in sequence, the magnetic medium in the divided chamber is magnetized. Moreover, the raw material liquid is supplied from the raw material liquid supply means to the dividing chamber in the effective magnetic field through each hole of the porous member on the outer peripheral surface side, and the magnetic substance in the raw material liquid is magnetized on the surface of the magnetic medium. On the other hand, the processing liquid from which the magnetic material has been removed is discharged into the central space of the porous rotating container through the holes of the porous member on the inner peripheral surface side in the upper part of the porous rotating container. In this way, since the raw material liquid is supplied to each divided chamber through the outer peripheral surface of the porous rotating container having a larger surface area than the inner peripheral surface of the porous rotating container at the upper part of the porous rotating container, the raw material liquid from the inner peripheral surface side As compared with the supply of the magnetic material, the amount of magnetic adhesion of the magnetic material increases, and the magnetic separation efficiency can be increased. Moreover, since each dividing chamber has a funnel shape with a narrower discharge side than the supply side of the raw material liquid, the raw material liquid is easily stored in the dividing chamber, and the magnetic substance is easily magnetized on the surface of the magnetic medium. .
 請求項3に記載の発明によれば、多孔回転容器の下部の有効磁場に、順次、各分割室が達すれば、その分割室の磁性媒体が磁化される。しかも、原料液供給手段から原料液が、内周面側の多孔部材の各孔を通して有効磁場の分割室に供給される。これにより、原料液中の磁性物は磁性媒体の表面に磁着される一方、磁性物が除去された処理液は、この多孔回転容器の下部において、外周面側と側面側とのうち、少なくとも外周面側の多孔部材の各孔を通って多孔回転容器の下部空間へ排出される。その結果、多孔回転容器の上方に大型化し易い原料液供給手段を設ける必要がないので、磁気分離装置のコンパクト化が図れる。しかも、原料液として水より粘性が高いものを採用した場合でも、この高粘性を原因として原料液が分割室を通過する時間が長くなるのを抑えることができる。これは、多孔回転容器の下部で原料液を各分割室に供給するようにしたので、原料液が磁性媒体群の上流領域を通過後、上流領域より容積が大きく液体の分散性が高まる下流領域を通過し、原料液が外部へ排出されるためである。 According to the third aspect of the present invention, when each of the divided chambers reaches the effective magnetic field in the lower part of the porous rotating container sequentially, the magnetic medium in the divided chamber is magnetized. Moreover, the raw material liquid is supplied from the raw material liquid supply means to the effective magnetic field dividing chamber through each hole of the porous member on the inner peripheral surface side. Thus, the magnetic material in the raw material liquid is magnetically attached to the surface of the magnetic medium, while the treatment liquid from which the magnetic material has been removed is at least of the outer peripheral surface side and the side surface side in the lower part of the porous rotating container. It is discharged to the lower space of the porous rotating container through each hole of the porous member on the outer peripheral surface side. As a result, since it is not necessary to provide a raw material liquid supply means that is easily increased in size above the porous rotating container, the magnetic separation device can be made compact. Moreover, even when a raw material liquid having a higher viscosity than water is used, it is possible to prevent the time for the raw material liquid from passing through the dividing chamber from being increased due to the high viscosity. This is because the raw material liquid is supplied to each division chamber at the lower part of the multi-hole rotating container, so that after the raw material liquid passes through the upstream area of the magnetic medium group, the downstream area has a larger volume than the upstream area and the dispersibility of the liquid is increased. This is because the raw material liquid is discharged outside.
 請求項4に記載の発明によれば、有効磁場のうち、原料液の供給位置より下流部分に、有効磁場内洗浄手段から洗浄媒体を供給するようにしたので、有効磁場において、磁性媒体の表面に付着した原料液のうち、磁性物を除いた液分のみを洗い流せるので、処理液の回収率を高めることができる。 According to the fourth aspect of the present invention, the cleaning medium is supplied from the effective magnetic field cleaning means to the downstream portion of the effective magnetic field from the supply position of the raw material liquid. Of the raw material liquid adhered to the substrate, only the liquid component excluding the magnetic substance can be washed away, so that the recovery rate of the treatment liquid can be increased.
 請求項6に記載の発明によれば、無効磁場内洗浄手段は、多孔回転容器の内周と外周とのうち、少なくとも1つに沿って複数配置され、無効磁場を通過中の各分割室の磁性媒体に対して、順次、各無効磁場内洗浄手段から異なる洗浄媒体を供給する。このような構成としたので、異なる洗浄媒体を用いた最適な洗浄順序を選択することができ、磁性媒体の表面に磁着した磁性物の除去性およびこの表面に付着した処理液(異物)の洗浄性を高めることができる。 According to the sixth aspect of the present invention, a plurality of ineffective magnetic field cleaning means are arranged along at least one of the inner periphery and the outer periphery of the porous rotating container, and each of the divided chambers that are passing through the ineffective magnetic field. Different cleaning media are sequentially supplied from each ineffective magnetic field cleaning means to the magnetic medium. With such a configuration, it is possible to select an optimal cleaning sequence using different cleaning media, the removal of magnetic substances magnetically attached to the surface of the magnetic medium, and the treatment liquid (foreign matter) adhering to the surface. Detergency can be improved.
この発明の実施例1に係る磁気分離装置の主要構成体の斜視図である。It is a perspective view of the main structural body of the magnetic separation apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る磁気分離装置の正面図である。It is a front view of the magnetic separation apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る磁気分離装置の右側面図である。It is a right view of the magnetic separation apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る磁気分離装置の平面図である。It is a top view of the magnetic separation apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る磁気分離装置に供給された原料液を処理した処理液の排出系路を示す要部拡大縦断面図である。It is a principal part expanded longitudinal cross-sectional view which shows the discharge system path | route of the process liquid which processed the raw material liquid supplied to the magnetic separation apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る他の磁気分離装置の概略構成を示す正面図である。It is a front view which shows schematic structure of the other magnetic separation apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る磁気分離装置の一部を構成する多孔回転容器のうち、液抜き孔が形成された端板の要部拡大正面図である。It is a principal part enlarged front view of the end plate in which the liquid drainage hole was formed among the porous rotation containers which comprise a part of magnetic separation apparatus concerning Example 1 of this invention. この発明の実施例1に係る磁気分離装置において、上向き状態(基準位置)の分割室に収納された各磁性媒体を示す斜視図である。FIG. 3 is a perspective view showing each magnetic medium housed in a division chamber in an upward state (reference position) in the magnetic separation apparatus according to Embodiment 1 of the present invention. この発明の実施例1に係る磁気分離装置において、横向き状態(90°回転状態)の分割室に収納された各磁性媒体を示す斜視図である。In the magnetic separation apparatus according to Embodiment 1 of the present invention, each is a perspective view showing each magnetic medium housed in a division chamber in a sideways state (90 ° rotation state). この発明の実施例1に係る磁気分離装置において、下向き状態(180°回転状態)の分割室に収納された各磁性媒体を示す斜視図である。FIG. 3 is a perspective view showing each magnetic medium housed in a division chamber in a downward state (180 ° rotation state) in the magnetic separation device according to Embodiment 1 of the present invention. この発明の実施例1に係る別の磁気分離装置の概略構成を示す正面図である。It is a front view which shows schematic structure of another magnetic separation apparatus which concerns on Example 1 of this invention. この発明の実施例1に係るまた別の磁気分離装置の右側面図である。It is a right view of another magnetic separation apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る磁気分離装置において、分割室内での磁性媒体の転動軌跡を示す正面図である。In the magnetic separation apparatus according to Embodiment 1 of the present invention, it is a front view showing a rolling locus of a magnetic medium in a division chamber.
 以下、この発明の実施例を具体的に説明する。ここで、説明の都合上、図1において、前方向が装置の正面(前面)方向、後方向が装置の背面(後面)方向、左方向が装置の左方向、右方向が装置の右方向とする。 Hereinafter, embodiments of the present invention will be described in detail. Here, for convenience of explanation, in FIG. 1, the front direction is the front (front) direction of the apparatus, the rear direction is the back (rear) direction of the apparatus, the left direction is the left direction of the apparatus, and the right direction is the right direction of the apparatus. To do.
 図1において、10はこの発明の実施例1に係る磁気分離装置で、この磁気分離装置10は、架台11と、ステンレス(非磁性材料)からなる台形状の仕切板12により内部空間が周方向へ向かって16個の分割室13に区画され、かつ中心軸線が水平なステンレスからなる円環状の多孔回転容器14と、各分割室13に、この分割室13内での自重による移動が自在に収納された鉄球(磁性媒体)15と、多孔回転容器14の中心軸線上に配置された回転軸16を中心にして、多孔回転容器14を垂直面内で回転させる駆動モータ(回転駆動手段)17と、多孔回転容器14の一部分の外方に配置され、多孔回転容器14の回転に伴い各分割室13が順次通過する有効磁場Aを発生させる磁石Mと、有効磁場Aに達した各分割室13に、磁性物を含む圧延油(原料液)18を供給する原料液投入部(原料液供給手段)19と、有効磁場Aを通過し、磁石Mの磁力が及ばない無効磁場Bに達した前記各分割室13に洗浄液(洗浄媒体)を供給することで、無効磁場Bに達した分割室13の鉄球15の表面に付着した磁性物を洗浄によって分離する3本の無効磁場内洗浄ノズル(無効磁場内洗浄手段)20とを備えている。 In FIG. 1, reference numeral 10 denotes a magnetic separation apparatus according to Embodiment 1 of the present invention. This magnetic separation apparatus 10 has an inner space in a circumferential direction by a gantry 11 and a trapezoidal partition plate 12 made of stainless steel (nonmagnetic material). An annular porous rotating container 14 made of stainless steel whose center axis is horizontal and which is divided into 16 division chambers 13 toward the front, and each division chamber 13 can be moved by its own weight in the division chambers 13 freely. A drive motor (rotation drive means) that rotates the porous rotary container 14 in a vertical plane around the stored iron ball (magnetic medium) 15 and the rotary shaft 16 disposed on the central axis of the porous rotary container 14. 17, a magnet M that is arranged outside a part of the porous rotating container 14 and generates an effective magnetic field A that sequentially passes through each of the divided chambers 13 as the porous rotating container 14 rotates, and each of the divided parts that have reached the effective magnetic field A In chamber 13, The raw material liquid input part (raw material liquid supply means) 19 for supplying the rolling oil (raw material liquid) 18 containing the properties, and the respective divisions that have passed through the effective magnetic field A and reached the invalid magnetic field B that the magnetic force of the magnet M does not reach. By supplying a cleaning liquid (cleaning medium) to the chamber 13, three cleaning nozzles (invalid magnetic field) that separate the magnetic substances adhering to the surface of the iron balls 15 of the divided chamber 13 that have reached the reactive magnetic field B by cleaning. Inner cleaning means) 20.
 以下、図2~図7を参照して、磁気分離装置10をさらに詳細に説明する。
 図2~図7に示すように、水平な矩形枠体21の各角部に支柱22が垂設された架台11を有している。矩形枠体21の一方の長辺枠21aの両角部上には門型フレーム23が立設され、また矩形枠体21の両短辺枠21bの中間部上にも、同一形状の門型フレーム23が立設されている。両門型フレーム23の両支脚23aの中間部同士は、補強枠24により連結されている。両門型フレーム23上には、磁性材料からなる横長な矩形枠形状の継鉄25が立設されている。継鉄25の長さ方向の中間部の内面には、多孔回転容器14の上部を前方および後方に離間して配置され、有効磁場Aを多孔回転容器14の上部に発生させる一対の前記磁石Mが配設されている。両磁石Mは、約0.5テスラが得られる横長な直方体のネオジウム磁石である。
Hereinafter, the magnetic separation device 10 will be described in more detail with reference to FIGS.
As shown in FIGS. 2 to 7, the frame 11 has a gantry 11 in which a support 22 is suspended from each corner of a horizontal rectangular frame 21. A portal frame 23 is erected on both corners of one long side frame 21 a of the rectangular frame 21, and a portal frame of the same shape is also formed on an intermediate portion of both short side frames 21 b of the rectangular frame 21. 23 is erected. The intermediate portions of the two support legs 23 a of the two-port frame 23 are connected by a reinforcing frame 24. On the double-gate frame 23, a horizontally-long rectangular frame-shaped yoke 25 made of a magnetic material is erected. On the inner surface of the intermediate portion in the longitudinal direction of the yoke 25, a pair of the magnets M are arranged such that the upper part of the porous rotating container 14 is spaced forward and backward, and an effective magnetic field A is generated on the upper part of the porous rotating container 14. Is arranged. Both magnets M are horizontally long rectangular parallelepiped neodymium magnets capable of obtaining about 0.5 Tesla.
 継鉄25には、多孔回転容器14の直上に配置され、多孔回転容器14の上部に達した各分割室13に圧延油18を供給する前記原料液投入部(原料液供給手段)19が、ブラケット27を介して固定されている。ブラケット27の一部には、鉄球15の表面に付着した圧延油18を洗い流す洗浄液を、有効磁場Aのうち、圧延油18の供給位置より下流部分に供給する有効磁場内洗浄ノズル(有効磁場内洗浄手段)28が取り付けられている(図1、図2、図4)。このように、有効磁場内洗浄ノズル28を用いて洗浄液を圧延油18の供給位置より下流部分に噴射することで、各鉄球15の表面において、これに磁着した磁性物を残し、圧延油18の液分(処理液31)のみを洗い流すことができる。その結果、処理液31の回収率を高めることができる。なお、圧延油18に代えて、例えば鉱石スラリーを原料液としてもよい。 In the yoke 25, the raw material liquid input part (raw material liquid supply means) 19 that is disposed immediately above the porous rotating container 14 and supplies the rolling oil 18 to each of the divided chambers 13 reaching the upper part of the porous rotating container 14 includes: It is fixed via a bracket 27. An effective magnetic field cleaning nozzle (effective magnetic field) for supplying a cleaning liquid for washing the rolling oil 18 adhering to the surface of the iron ball 15 to a part downstream of the supply position of the rolling oil 18 in the effective magnetic field A. Inner cleaning means) 28 is attached (FIGS. 1, 2, and 4). As described above, the cleaning liquid is sprayed to the downstream portion from the supply position of the rolling oil 18 using the cleaning nozzle 28 in the effective magnetic field, so that the magnetic material magnetized on the surface of each iron ball 15 remains, and the rolling oil Only 18 liquid components (treatment liquid 31) can be washed away. As a result, the recovery rate of the processing liquid 31 can be increased. In place of the rolling oil 18, for example, ore slurry may be used as the raw material liquid.
 前側の門型フレーム23の長さ方向の中間部には、傾斜ブラケット29を介して、簀の子形状のロストル33を通過して排出された処理液31を上部で受け、これを装置前方へ排出する排液シュート32が固定されている(図1~図5)。また、前側の門型フレーム23の長さ方向の中間部付近には、多孔回転容器14の圧延油18の投入位置を基準とし、多孔回転容器14の回転方向へ向かって100°位置と、140°位置と、200°位置との3箇所に、各分割室13の内周側の開口を塞ぐロストル33を通して、多孔回転容器14の中心部側から各分割室13に向かって洗浄液(洗浄媒体、ここでは水道水)を噴射する3本の前記無効磁場内洗浄ノズル20A~20Cが順次配設されている。各無効磁場内洗浄ノズル20A~20Cから洗浄液を各分割室13内へ噴射することで、各分割室13の各鉄球15に付着した磁性物が洗い流され、磁性物を含む使用済みの洗浄液が金網34を通して直下の磁性物回収シュート35に落下する。磁性物回収シュート35は、上端面に横方向へ長い矩形状の開口を有し、その長さ方向の両端部が前記両補強枠24に固定されたものである。磁性物回収シュート35は、多孔回転容器14の下部全体を下方から包み込んでいる。 The intermediate portion in the length direction of the front portal frame 23 receives the treatment liquid 31 discharged through the slant 33 having a hook shape via the inclined bracket 29 at the upper portion, and discharges it to the front of the apparatus. The drainage chute 32 is fixed (FIGS. 1 to 5). Further, in the vicinity of the middle portion in the length direction of the front portal frame 23, a position of 100 ° toward the rotation direction of the porous rotating container 14 with respect to the charging position of the rolling oil 18 of the porous rotating container 14, and 140 A cleaning liquid (cleaning medium, cleaning medium, cleaning medium, and the like) is passed from the center of the porous rotating container 14 toward each of the dividing chambers 13 through a rooster 33 that closes the opening on the inner peripheral side of each of the dividing chambers 13 at three positions: Here, the three ineffective magnetic field cleaning nozzles 20A to 20C for injecting tap water are sequentially arranged. By spraying the cleaning liquid from each of the ineffective magnetic field cleaning nozzles 20A to 20C into each of the divided chambers 13, the magnetic material adhering to each iron ball 15 of each of the divided chambers 13 is washed away, and the used cleaning liquid containing the magnetic material is washed away. It falls onto the magnetic substance collecting chute 35 directly below through the wire mesh 34. The magnetic material recovery chute 35 has a rectangular opening that is long in the lateral direction on the upper end surface, and both end portions in the length direction are fixed to the reinforcing frames 24. The magnetic substance recovery chute 35 wraps the entire lower part of the porous rotating container 14 from below.
 なお、3本の無効磁場内洗浄ノズル20A~20Cから、異なる洗浄媒体を噴射してもよい(図6)。例えば、最も上流側の無効磁場内洗浄ノズル20Aから水を噴射し、2番目の無効磁場内洗浄ノズル20Bから界面活性水(石鹸水など)を噴射し、3番目の無効磁場内洗浄ノズル20Cから揮発油(灯油など)を噴射してもよい。このうち、界面活性水および揮発油の噴射は、各鉄球15の表面に付着した油分の洗浄に有利である。このように、異なる洗浄液を各エリアごと順次噴射する場合には、各洗浄液を大略個別回収してその後の廃液処理が容易となるように、磁性物回収シュート35に代えて、内部空間35aを洗浄液の種類に応じて区分し(ここでは3つ)、各区分ごとに専用のドレン35bを有する3槽式シュート35Aを採用した方が好ましい。 Note that different cleaning media may be ejected from the three ineffective magnetic field cleaning nozzles 20A to 20C (FIG. 6). For example, water is ejected from the most upstream ineffective magnetic field cleaning nozzle 20A, surface active water (soap water, etc.) is ejected from the second ineffective magnetic field cleaning nozzle 20B, and from the third ineffective magnetic field cleaning nozzle 20C. Volatile oil (such as kerosene) may be injected. Of these, the injection of the surface active water and the volatile oil is advantageous for cleaning the oil adhering to the surface of each iron ball 15. In this way, when different cleaning liquids are sequentially sprayed for each area, the internal space 35a is replaced with the cleaning liquid instead of the magnetic substance recovery chute 35 so that the respective cleaning liquids are generally individually recovered and the subsequent waste liquid processing becomes easy. It is preferable to use a three-tank chute 35A having three drains according to the type (three here) and having a dedicated drain 35b for each section.
 また、矩形枠体21の他方の長辺側部分には、両門型フレーム23より高さが低くかつ平面視して横方向に長い矩形状の足場枠台36が設けられている。足場枠台36には、金属からなる足場板(ステップ)37が設けられている。足場枠台36の長さ方向の一端部上には、減速機17A付きの前記駆動モータ17が、その出力軸17aの長さ方向を前方へ向けて固定されている。駆動モータ17は伝動モータで、出力軸17aには小径なスプロケット38が固定されている。
 両門型フレーム23の長さ方向の中間部には、一対の軸受39が配設され、両軸受39に前記回転軸16の両端部が支持されている。回転軸16は、その後側の端部が後側の軸受39から外方へ突出し、その突出部分に大径なスプロケット40が固定されている。両スプロケット38,40には、無端チェーン41が架け渡されている。両スプロケット38,40は、飛散した圧延油18などが付着しないように、足場枠台36に固定された横長な金属カバー42により被われている。駆動モータ17の出力軸17aを回転させることで、両スプロケット38,40および無端チェーン41を介して回転軸16が回転し、これにより多孔回転容器14が反時計回りに回転する。
 両門型フレーム23には、多孔回転容器14の外周部の円環形状の両端板14aに当接される合計2対の軸支ローラ43が配設されている。これらの軸支ローラ43により、回転軸16を中心にして回転する多孔回転容器14の回転時の振れを防止し、かつこの振れによる騒音を抑制して多孔回転容器14を回転させることができる。
In addition, a rectangular scaffolding frame base 36 having a height lower than that of the double-gate frame 23 and long in the lateral direction in plan view is provided on the other long side portion of the rectangular frame body 21. A scaffold plate (step) 37 made of metal is provided on the scaffold frame base 36. On one end of the scaffolding frame 36 in the length direction, the drive motor 17 with a speed reducer 17A is fixed with the length direction of the output shaft 17a facing forward. The drive motor 17 is a transmission motor, and a small-diameter sprocket 38 is fixed to the output shaft 17a.
A pair of bearings 39 are disposed in the middle portion in the length direction of the two-port frame 23, and both end portions of the rotating shaft 16 are supported by the two bearings 39. The rotary shaft 16 has a rear end protruding outward from the rear bearing 39, and a large-diameter sprocket 40 is fixed to the protruding portion. An endless chain 41 is bridged between the sprockets 38 and 40. Both sprockets 38 and 40 are covered with a horizontally long metal cover 42 fixed to the scaffold frame 36 so that the scattered rolling oil 18 and the like do not adhere. By rotating the output shaft 17a of the drive motor 17, the rotating shaft 16 rotates through both the sprockets 38 and 40 and the endless chain 41, whereby the porous rotating container 14 rotates counterclockwise.
The two-port frame 23 is provided with a total of two pairs of pivot rollers 43 that are in contact with the annular end plates 14a on the outer peripheral portion of the multi-hole rotating container 14. By these shaft support rollers 43, it is possible to prevent the shake during rotation of the porous rotating container 14 rotating around the rotation shaft 16 and to rotate the porous rotating container 14 while suppressing noise caused by the shake.
 次に、図1~図5,図7を参照して、前記多孔回転容器14を具体的に説明する。
 図1~図5に示すように、多孔回転容器14の各分割室13は、主に両端板14aと、前記各仕切り板12とにより区画されている。各分割室13は、多孔回転容器14の外周部の内部空間に、その周方向へ向かって所定ピッチ(ここでは22.5°)で配設されている。多孔回転容器14の中心部は、ステンレスからなる中心円板44により構成されている。中心円板44の中心部に前記回転軸16が固定されている。両端板14aは、ステンレスからなる無孔でリング形状の板である。なお、両端板14aの内周部に、鉄球15が通過しない直径(例えば5~8mm)の液抜き孔14bを多数形成してもよい(図7)。
 多孔回転容器14の内周面には、各分割室13の内周側の開口を被うようにロストル33が固定されている。また、多孔回転容器14の外周面には、各分割室13の外周側の開口を被うように、金網34が展張されている。ロストル33の隙間(9mm)および金網34の網目(6.47mm)は、直径12.7mmの鉄球15が通過しないサイズとなっている。鉄球15は、各分割室13において、その内部空間の75%を占有する個数が収納されている。
Next, the porous rotary container 14 will be described in detail with reference to FIGS.
As shown in FIGS. 1 to 5, each divided chamber 13 of the multi-hole rotating container 14 is mainly partitioned by both end plates 14 a and the respective partition plates 12. Each of the divided chambers 13 is arranged in the inner space of the outer peripheral portion of the porous rotating container 14 at a predetermined pitch (here, 22.5 °) in the circumferential direction. The central portion of the porous rotating container 14 is constituted by a central disk 44 made of stainless steel. The rotating shaft 16 is fixed to the central portion of the central disk 44. Both end plates 14a are non-porous ring-shaped plates made of stainless steel. A large number of drain holes 14b having a diameter (for example, 5 to 8 mm) through which the iron balls 15 do not pass may be formed in the inner peripheral portion of the both end plates 14a (FIG. 7).
A rooster 33 is fixed on the inner peripheral surface of the porous rotating container 14 so as to cover the opening on the inner peripheral side of each divided chamber 13. Further, a metal mesh 34 is stretched on the outer peripheral surface of the porous rotating container 14 so as to cover the opening on the outer peripheral side of each divided chamber 13. The gap (9 mm) of the rooster 33 and the mesh (6.47 mm) of the wire net 34 are sized so that the iron balls 15 having a diameter of 12.7 mm do not pass through. The number of iron balls 15 that occupies 75% of the internal space in each divided chamber 13 is stored.
 次に、図1~図5,図8~図10を参照して、この発明の実施例1に係る磁気分離装置10による磁性物を含む圧延油18の磁気分離方法を説明する。
 図1~図5に示すように、駆動モータ17により回転軸16を中心にして多孔回転容器14を垂直面内で反時計回りに0.5rpmで回転させることで、磁石Mの有効磁場Aに各分割室13が順次到達し、その到達した各分割室13内の鉄球15が磁化される。このとき、有効磁場Aには、原料液投入部19から投入された磁性物を含む圧延油18が、各分割室13の金網34を通って供給されている。これにより、有効磁場A内の分割室13では、鉄球15の表面に磁性物が磁着される。その際、各分割室13に収納された各鉄球15には、一方向(上方)からのみ圧延油18が供給されるため、各分割室13では、各鉄球15の表面のうち、上部側の領域部分への磁性物の付着量が多くなる。一方、その処理液31が、ロストル33を通って外部へ排出される。すなわち、処理液31は、多孔回転容器14の中心部において外部へ排出された後、排液シュート32により磁気分離装置10の下方前方へ排出され、次に床面に載置された図示しない処理液回収槽に回収される。また、有効磁場Aのうち、圧延油18の供給位置より下流部分には、鉄球15の表面に付着した圧延油18を洗い流す洗浄液が、有効磁場内洗浄ノズル28から、金網34を通して各分割室13内の各鉄球15に向かって常時噴射されている。このように、有効磁場内洗浄ノズル28から洗浄液を圧延油18の供給位置より下流部分に噴射することで、磁性物の磁力選別と同時に、各鉄球15の表面に付着した原料液のうち、磁性物を除いた液分(処理液31)のみを洗い流すことができ、処理液31の回収率を高めることができる。
Next, with reference to FIGS. 1 to 5 and FIGS. 8 to 10, a magnetic separation method of the rolling oil 18 containing magnetic material by the magnetic separation apparatus 10 according to the first embodiment of the present invention will be described.
As shown in FIGS. 1 to 5, the effective magnetic field A of the magnet M is obtained by rotating the porous rotating container 14 counterclockwise at 0.5 rpm around the rotation axis 16 by the drive motor 17. Each division chamber 13 arrives sequentially, and the iron ball 15 in each division chamber 13 that has reached is magnetized. At this time, the effective magnetic field A is supplied with the rolling oil 18 containing the magnetic material supplied from the raw material liquid input unit 19 through the wire mesh 34 of each division chamber 13. Thereby, in the divided chamber 13 in the effective magnetic field A, a magnetic material is magnetically attached to the surface of the iron ball 15. At that time, since each rolling ball 18 is supplied to each iron ball 15 accommodated in each division chamber 13 from only one direction (above), in each division chamber 13, the upper part of the surface of each iron ball 15. The amount of magnetic material attached to the side region increases. On the other hand, the processing liquid 31 is discharged to the outside through the rooster 33. That is, the processing liquid 31 is discharged to the outside at the center of the porous rotating container 14, and then discharged to the lower front of the magnetic separation device 10 by the draining chute 32, and then placed on the floor (not shown). It is recovered in the liquid recovery tank. Further, in the effective magnetic field A, in the downstream portion from the supply position of the rolling oil 18, a cleaning liquid for washing the rolling oil 18 adhering to the surface of the iron ball 15 is passed from the cleaning nozzle 28 in the effective magnetic field through the wire mesh 34 to each divided chamber. It is always sprayed toward each iron ball 15 in 13. In this way, by jetting the cleaning liquid from the effective magnetic field cleaning nozzle 28 to the downstream portion from the supply position of the rolling oil 18, among the raw material liquid adhering to the surface of each iron ball 15 at the same time as the magnetic separation of the magnetic material, Only the liquid (the processing liquid 31) excluding the magnetic material can be washed away, and the recovery rate of the processing liquid 31 can be increased.
 その後も、駆動モータ17による多孔回転容器14の回転が継続されることで、有効磁場A内の分割室13が順次無効磁場Bへ移動し、その分割室13の各鉄球15の磁化が解かれる。これに伴い、各分割室13では各鉄球15が連続的に山崩れしながら転動する(図8~図10)。前述したように、各分割室13に収納された各鉄球15には、上方向からのみ圧延油18が供給されたことで、その表面のうち、上部側の領域部分への磁性物の付着量が多いが、この転動により、磁性物は各鉄球15の表面全体に分散される。しかも、各分割室13が、多孔回転容器14の圧延油18の投入位置を基準として多孔回転容器14の回転方向へ向かって100°位置と、140°位置と、200°位置とに順次到達したとき、3本の無効磁場内洗浄ノズル20A~20Cから連続噴射中の洗浄液が、多孔回転容器14の中心部側から各金網34を通して各分割室13内で転動中の多数の鉄球15に吹き付けられる。これにより、各分割室13の各鉄球15に付着した磁性物が洗い流される。その結果、各分割室13の金網34を通して直下の磁性物回収シュート35に、磁性物および使用済みの洗浄液が流れ落ちる。
 続いて、この洗浄後の磁性物および使用済みの洗浄液は、磁性物回収シュート35の直下の床面に載置された図示しない磁性物回収槽に落下して回収される。その後、多孔回転容器14の回転がさらに進むことで、洗浄済みの鉄球15を収納した分割室13が、再び有効磁場Aに到達する。以上の動作は、駆動モータ17によって多孔回転容器14の回転が継続している間中、繰り返される。
After that, the rotation of the porous rotating container 14 by the drive motor 17 is continued, so that the divided chambers 13 in the effective magnetic field A sequentially move to the invalid magnetic field B, and the magnetization of each iron ball 15 in the divided chamber 13 is solved. It is burned. Along with this, each iron ball 15 rolls in each divided chamber 13 while being continuously crushed (FIGS. 8 to 10). As described above, each iron ball 15 accommodated in each divided chamber 13 is supplied with the rolling oil 18 only from above, so that the magnetic substance adheres to the upper region of the surface. Although the amount is large, the magnetic material is dispersed over the entire surface of each iron ball 15 by this rolling. Moreover, each of the divided chambers 13 sequentially reaches the 100 ° position, the 140 ° position, and the 200 ° position in the rotation direction of the porous rotating container 14 with reference to the charging position of the rolling oil 18 of the porous rotating container 14. At this time, the cleaning liquid being continuously jetted from the three ineffective magnetic field cleaning nozzles 20A to 20C passes from the central side of the porous rotating container 14 to the numerous iron balls 15 that are rolling in the divided chambers 13 through the wire meshes 34. Be sprayed. Thereby, the magnetic substance adhering to each iron ball 15 of each division chamber 13 is washed away. As a result, the magnetic material and the used cleaning liquid flow down to the magnetic material recovery chute 35 directly below through the wire mesh 34 of each divided chamber 13.
Subsequently, the magnetic material after cleaning and the used cleaning liquid are dropped and recovered in a magnetic material recovery tank (not shown) placed on the floor immediately below the magnetic material recovery chute 35. Thereafter, the rotation of the porous rotating container 14 further proceeds, so that the divided chamber 13 in which the cleaned iron ball 15 is accommodated reaches the effective magnetic field A again. The above operation is repeated while the rotation of the porous rotating container 14 is continued by the drive motor 17.
 このように、実施例1の磁気分離装置10では、多孔回転容器14が1回転する間に、各分割室13に投入された圧延油18中からの磁性物の除去と、各分割室13内の多数の鉄球15に付着した磁性物の洗浄とを行うように構成したので、圧延油18と磁性物との分離回収が連続的、かつ効率良く行うことができる。
 また、駆動モータ17により回転軸16を中心にして多孔回転容器14を垂直面内で回転させ、有効磁場Aに各分割室13が順次到達した時、各分割室13の鉄球15が磁化され、この状態で、圧延油18が有効磁場Aに供給されることで、鉄球15の表面に磁性物が磁着する一方、処理液31が外部へ排出される。その後、多孔回転容器14のさらなる回転により、有効磁場Aから無効磁場Bに向かって分割室13が順次移動するとともに、各分割室13内で各鉄球15が連続的に山崩れしながら転動する。この転動中に洗浄液を各鉄球15に噴射するので、各鉄球15の表面に付着した磁性物が洗い流され易くなる。その結果、磁性物が付着した鉄球15の洗浄性を高めることができ、これに伴い、圧延油18中からの磁性物の回収性も高めることができる。
As described above, in the magnetic separation device 10 according to the first embodiment, the magnetic material is removed from the rolling oil 18 introduced into each division chamber 13 and the inside of each division chamber 13 while the porous rotary container 14 rotates once. Since the magnetic substance adhering to the large number of iron balls 15 is cleaned, the separation and recovery of the rolling oil 18 and the magnetic substance can be performed continuously and efficiently.
Further, when the multi-rotary container 14 is rotated in the vertical plane around the rotation axis 16 by the drive motor 17 and each divided chamber 13 sequentially reaches the effective magnetic field A, the iron ball 15 in each divided chamber 13 is magnetized. In this state, when the rolling oil 18 is supplied to the effective magnetic field A, the magnetic material is magnetically attached to the surface of the iron ball 15, while the processing liquid 31 is discharged to the outside. Thereafter, by further rotation of the porous rotating container 14, the divided chambers 13 sequentially move from the effective magnetic field A toward the ineffective magnetic field B, and each iron ball 15 rolls while continuously collapsing in each divided chamber 13. . Since the cleaning liquid is sprayed onto each iron ball 15 during the rolling, the magnetic material attached to the surface of each iron ball 15 is easily washed away. As a result, it is possible to improve the cleaning performance of the iron ball 15 to which the magnetic material is adhered, and accordingly, it is possible to improve the recoverability of the magnetic material from the rolling oil 18.
 また、多孔回転容器14の上部の有効磁場Aに、順次、各分割室13が達すれば、その分割室13の各鉄球15が磁化される。しかも、多孔回転容器14の外周面に配置された金網34の各孔を通して、原料液投入部19から圧延油18が有効磁場A内の分割室13に供給され、圧延油18中の磁性物が鉄球15の表面に磁着される一方、この磁性物が除去された処理液31は、多孔回転容器14の上部において、多孔回転容器14の内周面に配置されたロストル33の各長孔を通って多孔回転容器14の中央空間へ排出される。 Further, when each divided chamber 13 reaches the effective magnetic field A in the upper part of the porous rotating container 14 in sequence, each iron ball 15 in the divided chamber 13 is magnetized. Moreover, the rolling oil 18 is supplied from the raw material liquid inlet 19 to the dividing chamber 13 in the effective magnetic field A through the holes of the wire mesh 34 disposed on the outer peripheral surface of the porous rotating container 14, and the magnetic material in the rolling oil 18 is changed. The treatment liquid 31 from which the magnetic material has been removed while being magnetically attached to the surface of the iron ball 15 is a long hole of each of the roosters 33 disposed on the inner peripheral surface of the porous rotating container 14 at the upper part of the porous rotating container 14. It is discharged to the central space of the multi-hole rotating container 14.
 このように、多孔回転容器14の上部において、内周面(ロストル34)に比べて表面積が大きい外周面(金網33)を通して圧延油18を各分割室13に供給するので、内周面側からの圧延油18の供給時に比べて磁性物の磁着量が増加し、磁選効率を高めることができる。これは、容器内に収納された磁性媒体群に磁性物を含む液体を供給したとき、磁性媒体群の下流領域に比べて上流領域の方が磁性物の磁着量が増えることによる。しかも、各分割室13は、このように圧延油18の供給側(外周面側)に比べて排出側(内周面側)が狭い漏斗形状となっているので、各分割室13内で圧延油18が貯留し易い。そのため、磁性物が各鉄球15の表面に磁着され易くなる。 Thus, since the rolling oil 18 is supplied to each division chamber 13 through the outer peripheral surface (metal mesh 33) having a larger surface area than the inner peripheral surface (rooster 34) in the upper part of the porous rotating container 14, from the inner peripheral surface side. Compared with the supply of the rolling oil 18, the amount of magnetic material deposited increases, and the magnetic separation efficiency can be increased. This is because when the liquid containing the magnetic material is supplied to the magnetic medium group housed in the container, the amount of magnetic adhesion of the magnetic material increases in the upstream region compared to the downstream region of the magnetic medium group. And since each division | segmentation chamber 13 becomes a funnel shape with the discharge | emission side (inner peripheral surface side) narrow compared with the supply side (outer peripheral surface side) of the rolling oil 18 in this way, it rolls in each division | segmentation chamber 13. Oil 18 is easy to store. Therefore, the magnetic material is easily magnetically attached to the surface of each iron ball 15.
 なお、図11に示すように、磁石Mを多孔回転容器14の下部の外方に配置し、有効磁場Aを多孔回転容器14の下部に発生させ、圧延油18を、ロストル33の各孔を通して分割室13に投入させた後、処理液31を金網34の各孔を通過して装置外へ排出するように構成してもよい。この場合、多孔回転容器14の下部の有効磁場Aに、順次、各分割室13が達すれば、その分割室13の鉄球15が磁化される。その結果、多孔回転容器14の上方に大きな原料液投入部19を設ける場合に比べて、磁気分離装置10のコンパクト化が図れる。しかも、原料液としてこのように水より粘性が高い圧延油18を採用した場合でも、高粘性を原因とした流動性の低下により圧延油18が各分割室13を通過する時間が長くなるのを抑えることができる。これは、多孔回転容器14の下部で圧延油18を各分割室13に供給するように構成したことで、圧延油18が鉄球群(各分割室13に充填された多数の鉄球15)の上流領域を通過後、上流領域より容積が大きく液体の分散性が高まる下流領域を通過し、処理液31が外部へ排出されることによる。
 図11中、20は無効磁場内洗浄ノズル20Aに代えて使用可能な洗浄液の掛け流シュートである。
As shown in FIG. 11, the magnet M is arranged outside the lower part of the porous rotating container 14, an effective magnetic field A is generated at the lower part of the porous rotating container 14, and the rolling oil 18 is passed through each hole of the rooster 33. After being put into the dividing chamber 13, the processing liquid 31 may pass through each hole of the wire mesh 34 and be discharged out of the apparatus. In this case, if each divided chamber 13 reaches the effective magnetic field A below the porous rotating container 14 in sequence, the iron ball 15 in the divided chamber 13 is magnetized. As a result, the magnetic separation device 10 can be made more compact as compared with the case where the large raw material liquid charging unit 19 is provided above the porous rotating container 14. Moreover, even when the rolling oil 18 having a higher viscosity than water is used as the raw material liquid, it takes a long time for the rolling oil 18 to pass through each of the divided chambers 13 due to a decrease in fluidity due to the high viscosity. Can be suppressed. This is because the rolling oil 18 is supplied to the respective divided chambers 13 at the lower part of the multi-hole rotating container 14, so that the rolling oil 18 is a group of iron balls (a large number of iron balls 15 filled in the respective divided chambers 13). This is because after passing through the upstream region, the liquid passes through the downstream region where the volume is larger than the upstream region and the dispersibility of the liquid is increased, and the processing liquid 31 is discharged to the outside.
In FIG. 11, reference numeral 20 denotes a flushing chute of cleaning liquid that can be used in place of the ineffective magnetic field cleaning nozzle 20A.
 また、図12の別の磁気分離装置10Aに示すように、架台11Aを後方へ向かって徐々に下方傾斜させることで、多孔回転容器14の回転軸16を水平を基準として角度θ(約15°)だけ傾斜させるようにしてもよい。このように多孔回転容器14を傾斜させれば、各分割室13において、供給当初の圧延油18と接触可能な分割室13の鉄球14の個数が増加するので、圧延油18中の磁性物の磁着率(除去率)を高めることができる。これは、分割室13に投入された圧延油18中の大半の磁性物が、鉄球群の上流領域で磁着され、特に鉄球群の上面(最上段の鉄球15)での磁着物の磁着量が最も大きいことによる。 Further, as shown in another magnetic separation device 10A in FIG. 12, the gantry 11A is gradually inclined downward toward the rear, so that the rotation axis 16 of the porous rotating container 14 is at an angle θ (about 15 ° with respect to the horizontal). ). By tilting the porous rotating container 14 in this way, the number of iron balls 14 in the dividing chamber 13 that can come into contact with the rolling oil 18 at the beginning of supply increases in each dividing chamber 13. The magnetic adhesion rate (removal rate) can be increased. This is because most of the magnetic material in the rolling oil 18 charged into the division chamber 13 is magnetically attached in the upstream region of the iron ball group, and in particular, the magnetic material on the upper surface (the uppermost iron ball 15) of the iron ball group. This is due to the largest amount of magnetic adhesion.
 ここで、図13を参照して、実際に磁気分離装置10の多孔回転容器14を5回転させた際、各回転時における分割室13内での鉄球15の位置変化を確認する試験を施した結果を報告する。なお、鉄球15の近辺に符された数字は、多孔回転容器14の回転数(周回数)を示す。ここでは、2回の試験(A,B)を行った。そのため、同じ回転数を示す数字(2A,2B、5A,5B)が存在する。
 多孔回転容器14を回転させることで、鉄球15は略円軌道を描きながら分割室13内を循環する。ただし、移動の距離や方向は一定ではなく、鉄球15の移動軌跡は乱れている。これは、1回転後の鉄球15の位置と、5回転後の鉄球15の位置とが、2回の試験ともずれていることから解る。何れにせよ、分割室13内での鉄球15の占有率が75%の状態において、多孔回転容器14を回転させることで、各鉄球15は分割室13内で移動することは明らかである。
Here, referring to FIG. 13, when the porous rotating container 14 of the magnetic separation apparatus 10 is actually rotated five times, a test for confirming the position change of the iron ball 15 in the divided chamber 13 at each rotation is performed. Report the results. In addition, the number attached | subjected to the vicinity of the iron ball 15 shows the rotation speed (number of rounds) of the porous rotating container 14. Here, two tests (A, B) were performed. Therefore, there are numbers (2A, 2B, 5A, 5B) indicating the same number of rotations.
By rotating the porous rotating container 14, the iron ball 15 circulates in the division chamber 13 while drawing a substantially circular orbit. However, the distance and direction of movement are not constant, and the movement locus of the iron ball 15 is disturbed. This can be understood from the fact that the position of the iron ball 15 after one rotation and the position of the iron ball 15 after five rotations deviate from the two tests. In any case, it is clear that each iron ball 15 moves in the dividing chamber 13 by rotating the porous rotating container 14 in a state where the occupation ratio of the iron balls 15 in the dividing chamber 13 is 75%. .
 この発明の磁気分離装置は、例えば、鉄粉や酸化鉄粉を含んだ圧延油や鉱石スラリーのような原料液中から磁性物を磁気分離する際に有用である。 The magnetic separation device of the present invention is useful when magnetically separating a magnetic substance from a raw material liquid such as rolling oil or ore slurry containing iron powder or iron oxide powder.
10,10A 磁気分離装置、
12 仕切板、
13 分割室、
14 多孔回転容器、
15 鉄球(磁性媒体)、
16 回転軸、
17 駆動モータ(回転駆動手段)、
18 圧延油(原料液)、
19 原料液投入部(原料液供給手段)、
20A~20C 無効磁場内洗浄ノズル(無効磁場内洗浄手段)、
28 有効磁場内洗浄ノズル(有効磁場内洗浄手段)、
33 ロストル(多孔部材)、
34 金網(多孔部材)、
A 有効磁場、
B 無効磁場、
M 磁石。
10, 10A magnetic separation device,
12 partition plate,
13 Division room,
14 porous rotating container,
15 Iron ball (magnetic medium),
16 axis of rotation,
17 drive motor (rotation drive means),
18 Rolling oil (raw material liquid),
19 Raw material liquid input part (raw material liquid supply means),
20A to 20C Invalid magnetic field cleaning nozzle (effective magnetic field cleaning means),
28 Effective magnetic field cleaning nozzle (effective magnetic field cleaning means),
33 Rooster (porous member),
34 Wire mesh (porous member),
A effective magnetic field,
B Invalid magnetic field,
M magnet.

Claims (6)

  1.  非磁性材料からなる仕切板により内部空間が周方向へ向かって複数の分割室に区画され、かつ中心軸線が水平または傾斜する円環状で非磁性材料からなる多孔回転容器と、
     前記各分割室に、この分割室内での自重による移動が自在に収納された磁性媒体と、
     前記中心軸線上に配置された回転軸を中心にして、前記多孔回転容器を垂直面内または傾斜面内で回転させる回転駆動手段と、
     前記多孔回転容器の一部分の外方に配置され、該多孔回転容器の回転に伴い前記各分割室が順次通過する有効磁場を発生させる磁石と、
     前記有効磁場に達した各分割室に、磁性物を含む原料液を供給する原料液供給手段と、
     前記有効磁場を通過し、前記磁石の磁力が及ばない無効磁場に達した前記各分割室に洗浄媒体を供給することで、前記無効磁場に達した分割室の磁性媒体の表面に付着した磁性物を洗浄によって分離する無効磁場内洗浄手段とを備えた磁気分離装置。
    A porous rotating container made of a nonmagnetic material in an annular shape in which the inner space is partitioned into a plurality of divided chambers in the circumferential direction by a partition plate made of a nonmagnetic material, and the central axis is horizontal or inclined;
    In each of the divided chambers, a magnetic medium that is freely moved by its own weight in the divided chambers, and
    Rotation driving means for rotating the porous rotating container in a vertical plane or an inclined plane around a rotation axis arranged on the central axis,
    A magnet that is disposed outside a part of the porous rotating container and generates an effective magnetic field that sequentially passes through each of the divided chambers as the porous rotating container rotates;
    Raw material liquid supply means for supplying a raw material liquid containing a magnetic substance to each of the divided chambers that have reached the effective magnetic field;
    Magnetic material attached to the surface of the magnetic medium in the division chamber that has reached the invalid magnetic field by supplying a cleaning medium to each of the division chambers that has passed through the effective magnetic field and has reached the invalid magnetic field that the magnetic force of the magnet does not reach Separation apparatus comprising: an ineffective magnetic field cleaning unit that separates the substrate by cleaning.
  2.  前記多孔回転容器は、その内周面、その外周面、その側面のうち、少なくとも前記内周面および前記外周面に多孔部材が配置されたもので、
     前記磁石を前記多孔回転容器の上部の外方に配置し、前記有効磁場を前記多孔回転容器の上部に発生させ、
     前記原料液は、前記外周面側の多孔部材の各孔を通して前記分割室に供給された後、前記内周面側の多孔部材の各孔を通過して装置外へ排出される請求項1に記載の磁気分離装置。
    The porous rotating container has a porous member disposed on at least the inner peripheral surface and the outer peripheral surface of the inner peripheral surface, the outer peripheral surface, and the side surfaces thereof,
    The magnet is disposed outside the upper part of the porous rotating container, and the effective magnetic field is generated at the upper part of the porous rotating container;
    The said raw material liquid is discharged | emitted out of an apparatus through each hole of the porous member of the said inner peripheral surface side after being supplied to the said division chamber through each hole of the porous member of the said outer peripheral surface side. The magnetic separation apparatus as described.
  3.  前記多孔回転容器は、その内周面、その外周面、その側面のうち、少なくとも前記内周面および前記外周面に多孔部材が配置されたもので、
     前記磁石を前記多孔回転容器の下部の外方に配置し、前記有効磁場を前記多孔回転容器の下部に発生させ、
     前記原料液は、前記内周面側の多孔部材の各孔を通して前記分割室に供給された後、前記外周面側の多孔部材の各孔を通過して装置外へ排出される請求項1に記載の磁気分離装置。
    The porous rotating container has a porous member disposed on at least the inner peripheral surface and the outer peripheral surface of the inner peripheral surface, the outer peripheral surface, and the side surfaces thereof,
    The magnet is disposed outside the lower part of the porous rotating container, and the effective magnetic field is generated at the lower part of the porous rotating container;
    The said raw material liquid is discharged | emitted outside the apparatus through each hole of the porous member of the said outer peripheral surface side, after being supplied to the said division chamber through each hole of the porous member of the said inner peripheral surface side. The magnetic separation apparatus as described.
  4.  前記磁性媒体の表面に付着した原料液の液分を洗い流す前記洗浄媒体を、前記有効磁場のうち、前記原料液の供給位置より下流部分に供給する有効磁場内洗浄手段を有した請求項1~請求項3のうち、何れか1項に記載の磁気分離装置。 An effective magnetic field cleaning means for supplying the cleaning medium for washing away the liquid component adhering to the surface of the magnetic medium to a downstream portion of the effective magnetic field from the supply position of the raw material liquid. The magnetic separation device according to claim 1.
  5.  前記洗浄媒体は、水、アルカリ水溶液、表面活性水、水蒸気、揮発油、圧縮空気、不活性ガスのうち、少なくとも1つである請求項1に記載の磁気分離装置。 The magnetic separation device according to claim 1, wherein the cleaning medium is at least one of water, an aqueous alkali solution, surface active water, water vapor, volatile oil, compressed air, and inert gas.
  6.  前記無効磁場内洗浄手段は、前記多孔回転容器の内周と外周とのうち、少なくとも1つに沿って複数配置され、
     前記各無効磁場内洗浄手段は、使用される洗浄媒体がそれぞれ異なる請求項1に記載の磁気分離装置。
    A plurality of the ineffective magnetic field cleaning means are disposed along at least one of the inner periphery and the outer periphery of the porous rotating container,
    The magnetic separation apparatus according to claim 1, wherein each of the ineffective magnetic field cleaning units uses a different cleaning medium.
PCT/JP2009/070779 2009-12-11 2009-12-11 Magnetic separation apparatus WO2011070682A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011504068A JP5503637B2 (en) 2009-12-11 2009-12-11 Magnetic separation device
PCT/JP2009/070779 WO2011070682A1 (en) 2009-12-11 2009-12-11 Magnetic separation apparatus
KR1020117004693A KR101231644B1 (en) 2009-12-11 2009-12-11 Magnetic separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070779 WO2011070682A1 (en) 2009-12-11 2009-12-11 Magnetic separation apparatus

Publications (1)

Publication Number Publication Date
WO2011070682A1 true WO2011070682A1 (en) 2011-06-16

Family

ID=44145251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070779 WO2011070682A1 (en) 2009-12-11 2009-12-11 Magnetic separation apparatus

Country Status (3)

Country Link
JP (1) JP5503637B2 (en)
KR (1) KR101231644B1 (en)
WO (1) WO2011070682A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721943A (en) * 2013-12-27 2014-04-16 吴江市振中纺织品有限公司 Equal-quality iron powder separating device of electromagnetic ironing structure
CN104624366A (en) * 2015-02-03 2015-05-20 广州粤有研矿物资源科技有限公司 Trans-vertical ring high gradient magnetic separator
CN104888949A (en) * 2015-06-19 2015-09-09 岳阳大力神电磁机械有限公司 Novel permanent-magnet high-gradient medium-intensity magnetic separator
CN107282291A (en) * 2017-07-27 2017-10-24 张佩佩 A kind of high gradient tramp iron separator
CN110142136A (en) * 2019-06-24 2019-08-20 纪礽辉 A kind of permanent magnet high gradient magnetic separator
CN110538721A (en) * 2019-09-26 2019-12-06 廖明勇 Magnetic separator
CN112808453A (en) * 2021-02-07 2021-05-18 胡定英 Magnetic separation method and magnetic separation device applying same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448149U (en) * 1987-09-17 1989-03-24
JPH01310709A (en) * 1988-06-10 1989-12-14 Nippon Steel Corp Method for washing magnetically separated particle
JPH11114326A (en) * 1997-10-20 1999-04-27 Nishishiba Electric Co Ltd Magnetically separating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1090295A (en) * 1976-11-22 1980-11-25 Jerzy A. Bartnik Vertical rotor-type high intensity wet magnetic separator with countercurrent flushing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448149U (en) * 1987-09-17 1989-03-24
JPH01310709A (en) * 1988-06-10 1989-12-14 Nippon Steel Corp Method for washing magnetically separated particle
JPH11114326A (en) * 1997-10-20 1999-04-27 Nishishiba Electric Co Ltd Magnetically separating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721943A (en) * 2013-12-27 2014-04-16 吴江市振中纺织品有限公司 Equal-quality iron powder separating device of electromagnetic ironing structure
CN104624366A (en) * 2015-02-03 2015-05-20 广州粤有研矿物资源科技有限公司 Trans-vertical ring high gradient magnetic separator
CN104888949A (en) * 2015-06-19 2015-09-09 岳阳大力神电磁机械有限公司 Novel permanent-magnet high-gradient medium-intensity magnetic separator
CN107282291A (en) * 2017-07-27 2017-10-24 张佩佩 A kind of high gradient tramp iron separator
CN110142136A (en) * 2019-06-24 2019-08-20 纪礽辉 A kind of permanent magnet high gradient magnetic separator
CN110538721A (en) * 2019-09-26 2019-12-06 廖明勇 Magnetic separator
CN112808453A (en) * 2021-02-07 2021-05-18 胡定英 Magnetic separation method and magnetic separation device applying same
CN112808453B (en) * 2021-02-07 2023-08-15 广东奥胜新材料有限公司 Magnetic separation device

Also Published As

Publication number Publication date
KR20110095855A (en) 2011-08-25
JPWO2011070682A1 (en) 2013-04-22
JP5503637B2 (en) 2014-05-28
KR101231644B1 (en) 2013-02-08

Similar Documents

Publication Publication Date Title
JP5503637B2 (en) Magnetic separation device
US11446590B2 (en) Methods for cleaning filtration system media
US6780312B2 (en) Filtration apparatus
CN108706821B (en) Industrial sewage treatment process
TW201622828A (en) Cleaning fluid spray device and cleaning fluid spray method
CN102151608A (en) Method and device for removing ferromagnetic substances from fluid
JP2010274231A (en) Apparatus and method of cleaning drainage
EP2539036B1 (en) A water filter
KR100773049B1 (en) Method and device for removing magnetic foreign objects from liquid
JP2013244569A (en) Magnetic selective collection device and chip selective collection method
CN110683706A (en) Coking wastewater treatment device
JP2020069462A (en) Soil purification system
KR101387714B1 (en) Oil filtering apparatus
CN108101190A (en) A kind of bio-ceramic filter backwash cutting module and its three-dimensional backwashing technology
JP2559313B2 (en) Iron removal method from rolling oil
JP6598077B2 (en) Heavy metal contaminated soil treatment system and heavy metal contaminated soil treatment method
GB2380952A (en) Regenerating filter media in situ
CN112619260B (en) Centrifugal filtering device for machine tool cutting fluid
CN210993275U (en) Dross clearing device for sewage treatment
CN207981408U (en) It is a kind of except iron and to wash husky device for construction
JP2007090202A (en) Filtration apparatus and filtration method
CN112792039A (en) Ore mining and dressing treatment method
JP2968069B2 (en) Magnetic separation device
CN110369127A (en) A kind of construction sand high-efficient deferrization and wash husky equipment
JP2002361010A (en) Apparatus and method for cleaning contaminated oil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011504068

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117004693

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852078

Country of ref document: EP

Kind code of ref document: A1