WO2011069465A1 - 通讯设备、方法及系统 - Google Patents

通讯设备、方法及系统 Download PDF

Info

Publication number
WO2011069465A1
WO2011069465A1 PCT/CN2010/079644 CN2010079644W WO2011069465A1 WO 2011069465 A1 WO2011069465 A1 WO 2011069465A1 CN 2010079644 W CN2010079644 W CN 2010079644W WO 2011069465 A1 WO2011069465 A1 WO 2011069465A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
transformer
interference
cable
communication device
Prior art date
Application number
PCT/CN2010/079644
Other languages
English (en)
French (fr)
Inventor
吴国强
唐纯勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011069465A1 publication Critical patent/WO2011069465A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/30Reducing interference caused by unbalanced currents in a normally balanced line

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communications device, method, and system. Background technique
  • the communication transformers in the communication devices are subject to various interferences, thereby generating interference signals to the data signals transmitted between the communication devices.
  • the prior art reduces the signal interference phenomenon by performing equal potential body rectification on the grounding system of the communication device.
  • the rectified communication system requires that each communication device has a ground wire connected to the ground busbar, and then the grounding busbar is connected to the ground through a thicker ground wire to ensure that the two communication device casings are of the same electric potential body.
  • the rectified communication equipment also separates the communication cable from the power line to route.
  • the problem to be solved by the embodiments of the present invention is: Providing a communication device, system and method for reducing interference of a communication link interference signal between communication devices.
  • an embodiment of the present invention provides a communication device, where the communication device performs data transmission with a peer device through a communication cable, and the communication device includes: a communication transformer, and the communication transformer is connected to the communication cable;
  • the interference reduction module is configured to perform interference reduction processing on the interference signal of the interference data transmission, and the interference reduction module is disposed at the output end of the communication transformer or At least one end of the input.
  • the embodiment of the invention provides a communication system, which includes the foregoing communication device and a peer device, and the communication device performs data transmission with the peer device through a communication cable.
  • An embodiment of the present invention provides a communication method, where a communication device performs data transmission with a peer device through a communication cable, and an interference reduction module is disposed at at least one end of the communication transformer output end or the input end of the communication device, and the method includes: The communication cable receives data transmitted from the peer device; the interference reduction module in the communication device reduces the interference signal of the interference data transmission.
  • an interference reduction module is provided at the input or output end of the communication transformer of the communication device, and the interference reduction module performs interference reduction processing on the interference signal of the data transmission between the interference communication devices.
  • the embodiments of the present invention improve the anti-interference ability and reliability of the communication device, and ensure the data transmission performance of the communication device and the signal quality of the entire communication link.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a communication device according to the present invention.
  • Embodiment A of Embodiment 1 is a schematic structural diagram of Embodiment A of Embodiment 1;
  • Embodiment B of Embodiment 1 is a schematic structural diagram of Embodiment B of Embodiment 1;
  • Embodiment 4 is a schematic structural diagram of Embodiment 2 of a communication device according to the present invention.
  • Embodiment 3 of a communication device is a schematic structural diagram of Embodiment 3 of a communication device according to the present invention.
  • FIG. 7 is a flowchart of Embodiment 6 of the communication method of the present invention.
  • Figure 8 is a flow chart showing the seventh embodiment of the communication method of the present invention. detailed description
  • the communication device transmits data through the communication cable and the opposite device. Due to the complexity of the construction site, the transmission data signal between the communication devices may be transmitted by multiple transmission devices or transmission devices.
  • the base station device or may be a transmission device and other network devices (such as a base station controller). Interference signals that interfere with the transmission of data signals between communication devices can be expressed as:
  • the two communication devices are connected to the ground of the respective equipment room. Due to the potential difference between the grounds of the two computer rooms, there is a potential difference between the outer casings of the two communication devices.
  • the interference current on the ground this interference current can be called the ground potential difference current.
  • the interference current flowing into the communication transformer via the communication cable is only a few milliamps, which is enough to cause the communication transformer to be magnetically saturated, thus affecting the data transmission between the communication devices in the communication system, which will seriously affect the communication service.
  • the interference current is a discharge current.
  • DC-C DC-Return Common
  • DC-I DC-return Isolate
  • the outer surface of the communication cable connected to the communication device using the DC-C power supply mode is connected to the outer casing of the communication device, and is powered by the DC-I power supply.
  • Mode of communication device connected communication The outer skin of the cable is not connected to the outer casing of the communication device. Even if the two communication devices are common, a backflow interference current is generated. This interference current is called a return current.
  • the communication cable and the power cable are often bundled together to take a long line, and the communication cable will be connected to the power frequency interference current generated in the power line.
  • the interference current is called a coupling power frequency.
  • Coupled interference currents are often generated due to near-field electromagnetic fields, and so on.
  • the data signals transmitted by the communication devices between the communication devices in the communication system will be distorted by the interference signals generated by the interference currents, thereby affecting the communication quality.
  • the inventors have found through research that the above-mentioned interference current, the ground potential difference current, the bleeder current and the return current are all direct currents.
  • the interference reduction module device such as an impedance converter module or a DC blocking capacitor module
  • the above three DC currents are used.
  • the DC current is either isolated by the DC blocking capacitor module or blocked by the impedance converter module, and cannot flow into the communication transformer of the communication device, thereby solving the communication transformer's magnetic saturation due to DC interference current interference and affecting the communication.
  • the problem of data transfer between devices when the interference reduction module selects the DC-blocking value, it absorbs or generates a large attenuation of the coupled power-frequency interference current, improving the anti-interference performance and reliability of the communication system.
  • a communication device includes at least two E1 interfaces for data transmission through an E1 coaxial communication cable, and the two communication devices may be transmission devices or transmission devices respectively.
  • a base station device, a transmission device and a base station device are provided with a communication transformer and a communication processor.
  • the communication system can be two transmission devices for data transmission through the E1 coaxial communication cable. It is also possible to transmit data between the transmission device and the base station device through the E1 coaxial communication cable.
  • Embodiment 1 of the present invention relates to a communication device.
  • the communication device includes a communication transformer, and the communication transformer is connected to the communication cable, and further includes an interference reduction module disposed at at least one end of the output end or the input end of the communication transformer, and the module may be an impedance converter or an isolator. It can block the generation of interference current flowing into the communication transformer and attenuate the interference current flowing into the communication transformer.
  • FIG. 1 is a schematic structural view of a first embodiment of a communication device according to the present invention.
  • the communication device is a communication device using the E1 interface.
  • the communication cable is an E1 coaxial communication cable
  • the E1 coaxial communication cable includes a core wire and a sheath wire
  • the core wire is a communication wire inside the E1 communication cable
  • the outer skin is an outer wire of the E1 coaxial communication cable
  • the specific The outer line may be a shielded wire wrapped outside the core wire.
  • the E1 communication transformer is connected in series with the E1 coaxial communication cable, and the transmission data flows to the input end of the E1 communication transformer via the E1 coaxial communication cable, or from the output end of the E1 communication transformer to the opposite device via the E1 coaxial communication cable.
  • one end of the E1 coaxial communication cable and the input end of the E1 communication transformer may be defined as an E1 coaxial communication cable receiving end, and one end of the E1 coaxial communication cable and the output end of the E1 communication transformer may be connected.
  • the interference reduction module can be set at the output of the E1 communication transformer or at least one end of the input.
  • the interference reduction module can block all DC interference currents flowing to the E1 communication transformer, for example, cutting off the discharge current generated by the communication device due to the ungrounded casing, cutting off the potential difference current generated at the two ends of the communication device, and generating the ground potential difference current to prevent the return flow.
  • the current is generated, and in addition, the coupled power frequency interference current can be directly absorbed or greatly attenuated.
  • the communication device of this embodiment is a communication device using an E1 interface, and includes: an E1 communication transformer and a communication processor, and the communication cable is, for example, an E1 coaxial communication cable.
  • the core of the E1 coaxial communication cable connected to the output end of the E1 communication transformer is the transmission core.
  • the El coaxial communication cable connected to the output end of the El communication transformer is a transmission sheath, and the E1 coaxial communication cable connected to the input end of the E1 communication transformer is a receiving core, and the E1 coaxial connected to the input end of the E1 communication transformer is connected.
  • the outer cable of the communication cable is the receiving sheath.
  • RTIP is used to indicate a core wire at the receiving end
  • R ING is a sheath line at the receiving end
  • TTIP is a core wire at the transmitting end
  • TRING is a sheathing wire at the transmitting end.
  • the communication processor is, for example, an E1 transceiver chip PEF22554.
  • the surface mount device (SMD) ceramic capacitor 50-50-10001 ⁇ -+/-10%-71-1206 can be used.
  • -50V-1000nF-+/-10%-X7R-1206 indicates that the rated working voltage of the capacitor is 50V, the rated capacitance value is luF, and there is a 10% error for the capacitance value caused by luF.
  • the material is X7R and the package is 1206.
  • the interference reduction module uses a capacitance of luF.
  • the capacitance of luF will exhibit a impedance of 3.18K ohms for a combined current frequency of 50 Hz, and a useful E1 signal for a frequency of 2.048M. Only an impedance of 0.18 ohms is produced. Therefore, the capacitor in the embodiment of the invention not only functions to block the DC interference current flowing to the E1 communication transformer, but also can absorb the power frequency interference current of the vehicle or generate a large attenuation of the coupled power frequency interference current, thereby making the utility useful.
  • the E1 signal can pass through the unimpeded pass capacitor.
  • the capacitor connected in series between the E1 coaxial communication cable and the E1 communication transformer can not only completely isolate the DC dry current, but also effectively separate the DC dry current from the E1 communication transformer. It greatly attenuates the interference current generated by the coupled power frequency interference current and other electromagnetic fields. Therefore, after the capacitor is connected, even if the outer casing of the communication device is not grounded, or both ends There is a potential difference between the communication equipment and the common grounding.
  • the capacitor can also directly block, isolate, absorb and attenuate the generated interference current, thereby ensuring the performance of the communication transformer and improving the anti-interference performance and reliability of the entire communication system.
  • the capacitor can be implemented in three ways of accessing the E1 coaxial communication cable. According to different implementation manners of the capacitor accessing the E1 coaxial communication cable, the other two types of the first embodiment of the present invention are derived. Method to realize.
  • FIG. 2 is a schematic structural diagram of an implementation manner A of the first embodiment of the communication device of the present invention.
  • two capacitors as interference reduction modules are respectively connected in series on the circuit of the E1 communication transformer and the circuit of the E1 coaxial communication cable, and the circuit of the E1 communication transformer input and the E1 coaxial communication cable, and Both capacitors are respectively connected to the outer sheath of the E1 coaxial communication cable.
  • FIG. 3 is a schematic structural diagram of an implementation manner B of the first embodiment of the communication device of the present invention.
  • the four capacitors as the interference reduction module are respectively connected in series on the circuit of the E1 communication transformer output and the E1 coaxial communication cable, and are connected in the outer sheath of the E1 coaxial communication cable, and connected in series.
  • the input of the E1 communication transformer and the circuit of the E1 coaxial communication cable are connected to the outer sheath of the E1 coaxial communication cable, and are connected in series on the circuit of the E1 communication transformer output and the E1 coaxial communication cable.
  • the E1 coaxial communication cable In the core of the E1 coaxial communication cable, it is connected in series to the circuit of the E1 communication transformer input and the E1 coaxial communication cable and is connected to the core of the E1 coaxial communication cable. That is, the capacitor is simultaneously connected into the core and the outer skin of the E1 coaxial communication cable.
  • the other implementation method of this embodiment further includes: the capacitor as the interference reduction module is only connected in series between the output end of the E1 communication transformer and the E1 coaxial communication cable, or the capacitor as the interference reduction module is only connected in series to the E1 communication transformer.
  • the input is connected to the E1 coaxial communication cable, and the capacitor can be connected to the outer sheath or the core of the E1 coaxial communication cable.
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of a communication device according to the present invention.
  • the communication device is a communication device using the E1 interface.
  • Pass The device includes a communication processor such as an E transceiver chip PEF22554, and an E1 communication transformer connected to the E1 transceiver chip.
  • the communication cable is an E1 coaxial communication cable, and the E1 communication transformer is connected to the E1 coaxial communication cable.
  • the E1 coaxial communication cable has a receiving core 1 (RTIP1) and a receiving sheath 1 (RRING1). Send the core 1 ( ⁇ 1 ) and send the sheath 1 ( TRING1 ).
  • the communication device further includes a capacitor as an interference reduction module, and the capacitor is connected in series between the E1 communication transformer and the E1 coaxial communication cable, and the connection manner of the capacitor may be any one described in Embodiment 1.
  • the E1 coaxial transmission rate is 2.048M, which is realized by the ceramic capacitor of the surface mount device -50V-1000nF-+/-10%-X7R-1206.
  • the rated working voltage of the capacitor is 50V
  • the rated capacitance value is luF, which is caused by luF.
  • the capacitance value is 10% error
  • the material is X7R
  • the package is 1206.
  • the capacitance connected in series between the E1 communication transformer and the E1 coaxial communication cable is a capacitance of luF.
  • a semiconductor discharge tube can also be disposed on the primary coil end of the E1 communication transformer.
  • a Transient Suppression Diode is used as the TSS tube.
  • One end of the TSS tube is connected to the connection between the El coaxial communication cable and the El communication transformer, and one end is connected to the protection ground of the device.
  • a connection between the E1 coaxial communication cable and the E1 communication transformer four connections including RTIP1, RRING1, TTIP1, and TRING1 and a communication device PGND are connected. TSS tube.
  • the TSS tube can quickly discharge the inrush current transmitted through the E1 coaxial communication cable to the protection ground of the communication device, thereby functioning as an inrush current protection device, especially a lightning protection device.
  • the surge lightning current transmitted through the E1 communication cable during thunder can be quickly discharged to the communication equipment protection ground through the TSS tube, and no large current flows through the rear stage circuit, thereby protecting the latter device and The role of the chip.
  • the latter devices include but are not limited to: interference reduction modules, communication transformers, communication processors, and the like.
  • a Transient Voltage Suppressor may be used instead of a TVS tube instead of a TSS tube.
  • Embodiment 3 of the present invention relates to a communication device.
  • Figure 5 is a block diagram showing the structure of a third embodiment of the communication device of the present invention.
  • the communication device is a communication device that uses the E1 interface.
  • the communication device includes a communication processor such as an E1 transceiver chip PEF22554, and an E1 communication transformer connected to the E1 transceiver chip.
  • the communication cable is an E1 coaxial communication cable, and the E1 communication transformer is connected to the E1 coaxial communication cable.
  • the E1 coaxial communication cable has a receiving core 1 (RTIP1) and a receiving sheath 1 (RRING1). Send the core 1 ( ⁇ 1 ) and send the sheath 1 ( TRING1 ).
  • the communication device further includes a capacitor as an interference reduction module, and the capacitor is connected in series between the E1 communication transformer and the E1 coaxial communication cable, and the connection manner of the capacitor may be any one described in Embodiment 1, and is connected in series to the E1 communication transformer.
  • the capacitance between the coaxial communication cable with the E1 is a capacitance of luF.
  • the communication device further includes a TSS tube disposed at a primary coil end of the E1 communication transformer, one end of the TSS tube is connected to a line between the E1 coaxial communication cable and the E1 communication transformer, and one end is connected to the protection ground of the device.
  • a TSS tube can be connected between the E1 coaxial communication cable and the E1 communication transformer (four connections including RTIP1, RRING1, TTIP1, and TRING1) and the communication device PGND.
  • the DIP switch Sl may be further included.
  • One end of the DIP switch S1 is connected to the protection ground of the device, and one end is connected to the RRING1 of the receiving end of the E1 coaxial communication cable connected to the input end of the E1 communication transformer.
  • a DIP switch is connected between the sheath R ING of the receiving end of the E1 coaxial communication cable connected to the input end of the communication transformer and the protection ground of the communication device, and can be sent according to the E1 coaxial communication cable connected to the output end of the E1 communication transformer by the opposite end device.
  • the outer sheath of the receiving end of the E1 coaxial communication cable connected to the receiving end of the communication device in the technical solution of the embodiment of the present invention is flexibly selected.
  • the DIP switch When the transmitting end of the E1 coaxial communication cable connected to the output end of the E1 communication transformer is not grounded, the E1 connected to the input end of the E1 communication transformer in the communication device in the technical solution of the embodiment of the present invention is used by the DIP switch.
  • Coaxial communication cable receiving end is grounded;
  • the E1 coaxial communication cable connected to the output end of the El communication transformer is not grounded, and the E1 coaxially connected to the input end of the E1 communication transformer in the communication device in the technical solution of the embodiment of the present invention is passed through the DIP switch.
  • the ground end of the communication cable is grounded or not grounded. Ensure that at least one end of the receiving or transmitting end of the E1 coaxial communication cable is grounded.
  • the receiving end and the transmitting end of the E1 coaxial communication cable can be realized.
  • the outer casing of the end device is connected to the protection ground of the equipment. It is equivalent to adding a grounded cover to the outer casing of the two communication devices to effectively solve the problem of electromagnetic interference (EMI).
  • EMI electromagnetic interference
  • the capacitor used as the interference reduction module between the E1 communication transformer and the E1 coaxial communication cable can effectively cut off the DC interference current, such as: discharge current, ground potential difference current and return current, so that they do not flow into the E1 communication transformer.
  • the problem that the E1 communication device affects the signal transmission of the E1 interface communication device due to the above-mentioned DC interference current flowing through the E1 communication transformer causes the magnetic saturation of the E1 communication transformer.
  • the present embodiment can also attenuate or absorb the power frequency interference current by selecting an appropriate capacitance value according to the frequency of signal transmission.
  • the capacitor can withstand surge voltages and protect the downstream devices.
  • the TSS tube is set at the primary coil end of the E1 communication transformer, so that the inrush current can be quickly discharged to the protection ground of the communication equipment to protect the downstream devices and chips.
  • a DIP switch is connected between the receiving end R ING1 of the E1 coaxial transmission cable connected to the input end of the E1 communication transformer and the protection ground of the device, and the grounding mode of the transmitting end of the E1 coaxial transmission cable can be flexibly selected to be grounded.
  • the E1 coaxial transmission cable can be grounded at one end, and grounded at both ends to fully solve the EMI problem.
  • the communication transformer and the interference reduction module can be directly replaced with a communication transformer with strong DC resistance capability, that is, the communication transformer with strong DC resistance capability is connected with the communication cable to realize Signal communication.
  • the present invention Ming can ensure the normal operation of the communication transformer in the communication system and improve the communication quality of the signal.
  • a TSS tube can be added to the primary coil end of the communication transformer to protect the communication transformer with strong DC resistance.
  • a DIP switch can be connected between the outer sheath of the E1 coaxial communication cable receiving the input end of the communication transformer and the protection ground of the communication device.
  • the device for preventing the generation of the interference current flowing into the communication transformer and attenuating the interference current flowing into the communication transformer may be implemented by using an impedance converter connected in series with the E1 communication transformer and the E1 coaxial communication line. Between the cables, and the impedance converter is simultaneously connected to the outer and core wires of the E1 coaxial communication cable.
  • a TSS tube can be added to the primary coil end of the E1 communication transformer to protect the E1 communication transformer with strong DC resistance.
  • a DIP switch can be connected between the E1 coaxial communication cable receiving end of the E1 communication transformer input end and the communication device protection ground.
  • the embodiment of the invention further provides a communication system, the communication system includes a communication device, and the communication device performs data transmission with the peer device through the E1 coaxial communication cable, and the communication device may include an E1 communication processor, and is processed by the E1.
  • the E1 communication transformer connected to the device, the E1 communication transformer is connected with the E1 coaxial communication cable and the opposite device performs data transmission.
  • the specific structure of the communication device is the same as that of the foregoing communication device embodiment, and the description thereof will not be repeated here.
  • the embodiment of the invention further provides a communication method, wherein the communication device transmits data through the communication cable and the opposite device, and the interference reduction module is set at the output end or the input end of the communication device of the communication device, the method includes: The communication cable receives data transmitted from the peer device; the interference reduction module in the communication device performs interference reduction processing on the interference signal of the interference data transmission.
  • the El interface communication device transmits data through the El communication cable to the opposite device.
  • the E1 interface communication device includes an E1 communication processor, an E1 communication transformer connected to the E1 communication processor, an E1 communication transformer and an E1 communication line.
  • the cable is connected, and an interference reduction module is disposed at the output end of the E1 communication transformer of the communication device or at least one end of the input end, and the method includes the following steps:
  • Step 601 The E1 interface communication device receives data transmitted from the peer device through the E1 coaxial communication cable;
  • the E 1 interface communication device and the opposite device may both be transmission devices, or may be transmission devices and base stations, respectively.
  • Data transmission can be transmitted from the E1 interface communication device to the peer device via the E1 coaxial communication cable, or from the peer device to the E1 interface communication device via the E1 coaxial communication cable.
  • Step 602 The interference reduction module in the communication device performs interference reduction processing on the interference signal flowing through the interference data transmission between the E1 coaxial communication cable and the E1 communication transformer.
  • the interference reduction module can isolate the DC interference current, and can also generate a coupled power frequency interference current by selecting an appropriate capacitance value. Larger attenuation.
  • the sixth embodiment of the present invention also provides a second communication method
  • Fig. 7 is a schematic flowchart of the communication method.
  • the E1 interface communication device performs data transmission with the opposite device through the E1 communication cable
  • the E1 interface communication device includes an E1 communication processor, and communicates with the E1.
  • the E1 communication transformer connected to the processor, the E1 communication transformer is connected with the E1 communication cable, and the interference reduction module is arranged at the output end or the input end of the E1 communication transformer of the communication device, including the following steps:
  • Step 701 The E1 interface communication device receives the data transmitted from the peer device through the E1 coaxial communication cable;
  • the E 1 interface communication device and the peer device may both be transmission devices, or may be separately transmitted. Transmission equipment and base stations.
  • the data transmission can be transmitted from the El interface communication device to the opposite device through the El coaxial communication cable, or from the opposite device to the E1 interface communication device via the E1 coaxial communication cable.
  • Step 702 The interference reduction module generates attenuation for an interference signal flowing between the E1 coaxial communication cable and the E1 communication transformer;
  • the interference reduction module can isolate the DC interference current and simultaneously generate a large attenuation of the coupled power frequency interference current.
  • Step 703 The TSS tube releases the inrush current flowing through the E1 coaxial communication cable through the communication device.
  • the inrush current that is, the inrush current
  • the inrush current may be combined by the E1 communication cable, and the TSS tube can quickly discharge the inrush current to the protection ground of the communication device, thereby protecting the circuit and device of the latter stage.
  • the third embodiment of the present invention further provides a third communication method
  • FIG. 8 is a schematic flow chart of the communication method.
  • the E1 interface communication device performs data transmission with the opposite device through the E1 communication cable
  • the E1 interface communication device includes an E1 communication processor, and communicates with the E1.
  • the E1 communication transformer connected to the processor, the E1 communication transformer is connected with the E1 communication cable, and the interference reduction module is arranged at the output end or the input end of the E1 communication transformer of the communication device, including the following steps:
  • Step 801 The E1 interface communication device receives the data transmitted from the peer device through the E1 coaxial communication cable;
  • the E1 interface communication device and the peer device may both be transmission devices, or may be transmission devices and base stations, respectively.
  • Data transmission can be transmitted from the E1 interface communication device to the peer device through the E1 coaxial communication cable, or from the peer device to the E1 interface through the E1 coaxial communication cable.
  • Information equipment can be transmitted from the E1 interface communication device to the peer device through the E1 coaxial communication cable, or from the peer device to the E1 interface through the E1 coaxial communication cable.
  • Step 802 The interference reduction module generates attenuation on an interference signal flowing between the E1 coaxial communication cable and the E1 communication transformer.
  • the interference reduction module can isolate the DC interference current and simultaneously generate a large attenuation of the coupled power frequency interference current.
  • Step 803 The TSS tube releases the inrush current flowing through the E1 coaxial communication cable through the communication device.
  • the surge current may be integrated into the E1 communication cable, that is, the inrush current, and the TSS tube can quickly discharge the surge current to the protection ground of the communication device; The purpose of the circuit and device.
  • Step 804 Connect the E1 interface communication device to the device protection ground through the DIP switch.
  • the DIP switch S1 can be closed or opened.
  • the receiving end or the transmitting end of the E1 coaxial communication cable can be grounded at one end, and the DIP switch S1 can be closed to enable E1 coaxial communication. Both the receiving end and the transmitting end of the cable are grounded to solve the EMI problem.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a Computer device (which can be a personal computer, server, or network device, etc.) All or part of the steps of the method described in various embodiments of the invention.
  • the foregoing storage medium includes: a medium that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the disclosed systems, devices, and methods may be implemented in other manners without departing from the scope of the present application.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as the units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. .
  • Some or all of the modules may be selected according to actual needs to achieve the objectives of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the described systems, devices, and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electronic, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

通讯设备、 方法及系统 本申请要求了 2009年 12月 11 日提交的、 申请号为 200910188863.5、 发明名称为"通讯设备、方法及系统"的中国申请的优先权,其全部内容通过 引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 尤其涉及一种通讯设备、 方法及系统。 背景技术
现有技术中, 通讯系统中的通讯设备之间进行数据传输时, 通讯设备 中的通讯变压器会受到各种干扰, 从而对通讯设备之间的传输数据信号产 生干扰信号。 现有技术通过对通讯设备的接地系统进行等电势体整改, 减 少信号干扰现象。 整改后的通讯系统要求每个通讯设备都有一根地线连接 到接地母排上, 然后接地母排再通过一根较粗的地线接到大地上, 保证两 通讯设备外壳为同一等电势体, 同时整改后的通讯设备也将通讯线缆与电 源线分开来走线。
但是整改通讯系统需要耗费的人力物力都特别大, 需要对通讯系统进 行重新规划和设置。 而且, 整改接地系统还是无法避免通讯系统中进行数 据传输的两个通信设备为等电势体带来的干扰信号, 也无法避免其他近场 的干扰信号。 发明内容
本发明实施例要解决的问题是: 提供一种通讯设备、 系统及方法, 削 减通讯设备间的通讯链路干扰信号的干扰。
为解决上述技术问题, 本发明实施例提供了一种通讯设备, 该通讯设 备通过通讯线缆与对端设备进行数据传输, 该通讯设备包括: 通讯变压器, 该通讯变压器与通讯线缆相连接; 干扰削减模块, 用于对干扰数据传输的 干扰信号进行干扰削减处理, 干扰削减模块设置在通讯变压器的输出端或 输入端的至少一端。
本发明实施例提供了一种通讯系统, 该通讯系统包括前述的通讯设备, 以及对端设备, 该通讯设备通过通讯线缆与对端设备进行数据传输。
本发明实施例提供了一种通讯方法, 通讯设备通过通讯线缆与对端设 备进行数据传输, 在通讯设备的通讯变压器输出端或输入端的至少一端设 置干扰削减模块, 该方法包括: 通讯设备通过通讯线缆接收从对端设备传 输的数据; 该通讯设备中的干扰削减模块对干扰数据传输的干扰信号进行 削减。
本发明实施例与现有技术相比, 主要区别及其效果在于:
在本发明实施例中, 在通讯设备的通讯变压器输入或输出端设置干扰 削减模块, 该干扰削减模块对干扰通讯设备之间数据传输的干扰信号进行 干扰削减处理。 相比于现有技术, 本发明实施例提高了通信设备的抗干扰 能力和可靠性, 保证了通讯设备的数据传输性能和整个通讯链路的信号质 量。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍。 图 1是本发明的通讯设备实施例一的结构示意图;
图 1是实施例一的实现方式 A的结构示意图;
图 3是实施例一的实现方式 B的结构示意图;
图 4是本发明的通讯设备实施例二的结构示意图;
图 5是本发明的通讯设备实施例三的结构示意图;
图 6是本发明的通讯方法实施例五的流程图;
图 7是本发明的通讯方法实施例六的流程图;
图 8是本发明的通讯方法实施例七的流程图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
为使本发明实施例的上述目的、 特征和优点能够更加明显易懂, 下面 结合附图和具体实施方式对本发明实施例作进一步详细的说明。
目前, 在通讯系统中, 通讯设备通过通讯线缆与对端设备进行数据传 输, 由于施工现场的复杂性, 通讯设备之间的传输数据信号可能会被多种 传输设备, 也可以是传输设备和基站设备, 或者, 也可以是传输设备和其 他网络设备(比如基站控制器等设备)。 对通讯设备之间的传输数据信号产 生干扰的干扰信号可以表现为:
由于通讯系统中可能会存在通讯线缆两端的两个通讯设备不在同一机 房, 而这两个通讯设备外壳接各自机房的大地。 由于两个机房的大地存在 地电势差, 两个通讯设备的外壳也就存在电势差, 此种情况下, 就会出现 从电势高的通讯设备外壳经过通讯线缆流入到电势低的通讯设备的通讯变 压器上的干扰电流, 这种干扰电流可以称之为地电势差电流。 经通讯线缆 流入通讯变压器的干扰电流只要几个毫安就足以导致通讯变压器磁饱和, 从而影响通讯系统中通讯设备之间的数据传输, 严重时会影响通讯业务。
或者, 由于通讯系统中通讯线缆两端的两个通讯设备中某个通讯设备 外壳未接地而存在的干扰电流, 这种干扰电流为泻放电流。
或者, 当通讯系统中通讯线缆两端的两个通讯设备外壳接同一个地排 的情况下, 其中一个通讯设备的电源供电方式为 DC-C ( DC-Return Common ), 而另一个通讯设备的电源供电方式为 DC-I ( DC-return Isolate ) 时,由于与采用 DC-C电源供电方式的通讯设备相连的通讯线缆的外皮与通 讯设备的外壳相连接, 而与采用 DC-I电源供电方式的通讯设备相连的通讯 线缆的外皮不与通讯设备的外壳相连接, 即使两个通讯设备共地, 也会产 生回流干扰电流, 此种干扰电流称为回流电流。
或者, 通讯系统中经常将通讯线缆与电源线捆绑在一起走长线, 通讯 线缆会輛合进电源线中产生的工频干扰电流, 此种干扰电流称为耦合工频 干 4尤电流。
此外, 在通讯系统中也经常由于近场的电磁场产生耦合干扰电流, 等 等。
在上述这些情况下, 通讯系统中通讯设备之间通过通讯线缆传输的数 据信号将受到干扰电流产生的干扰信号的干扰而产生畸变, 从而影响通讯 质量。
发明人经研究发现, 上述干扰电流中, 地电势差电流、 泻放电流以及 回流电流均为直流电流, 如果通过干扰削减模块装置 (例如阻抗转换器模 块或者隔直电容模块)将上述三种直流电流进行隔直处理, 那么, 直流电 流或者被隔直电容模块隔离, 或者被阻抗转换器模块阻隔, 而无法流入通 讯设备的通讯变压器, 从而解决了通讯变压器因直流干扰电流干扰产生磁 饱和而影响通讯设备之间数据传输的问题。 另外, 当干扰削减模块为隔直 电容值的选择对耦合工频干扰电流进行吸收或产生很大的衰减, 提升通讯 系统的抗干扰性能和可靠性能。
需要说明的是, 本发明实施例中的技术方案可以适用于任何使用了通 讯变压器的通讯设备的应用场景, 其原理和本发明实施例类似。 本发明实 施例为方便起见, 仅以采用 E1同轴通讯线缆的通讯系统为例。 在本发明实 施例所应用的系统中, 包含至少两个通过 E1同轴通讯线缆进行数据传输的 E 1接口的通讯设备, 这两个通讯设备可以都是传输设备, 也可以分别是传 输设备和基站设备, 传输设备和基站设备中都设有通讯变压器以及通讯处 理器。 通讯系统可以是两个传输设备通过 E1同轴通讯线缆进行数据传输, 也可以是传输设备和基站设备之间通过 E1同轴通讯线缆进行数据传输。 实施例一
本发明实施例一涉及一种通讯设备。 在本实施例中, 通讯设备包括通 讯变压器, 通讯变压器与通讯线缆相连接, 还包括设置在通讯变压器的输 出端或输入端的至少一端的干扰削减模块, 该模块可以是阻抗转换器或者 隔离器, 可以阻止流入通讯变压器的干扰电流的产生、 衰减流入通讯变压 器的干扰电流。
图 1 是本发明的通讯设备实施例一的结构示意图。 在本发明第一实施 例中, 如图 1 所示, 通讯设备为使用了 E1 接口的通信设备。 通讯线缆为 E1同轴通讯线缆, E1同轴通讯线缆包括芯线和外皮线, 芯线为 E1通讯线 缆内部的通讯线, 外皮即是 E1同轴通讯线缆的外线, 具体的, 该外线可以 为包在芯线之外的屏蔽线。 E1通讯变压器与 E1 同轴通讯线缆相串联, 传 输数据经由 E1同轴通讯线缆流向 E1通讯变压器的输入端,或者从 E1通讯 变压器的输出端经由 E1同轴通讯线缆向对端设备传输。 本发明实施例中, 可以将 E1同轴通讯线缆与 E1通讯变压器输入端相连的一端定义为 E1同轴 通讯线缆接收端, 将 E1同轴通讯线缆与 E1通讯变压器输出端相连的一端 定义为 E1同轴通讯线缆发送端, 干扰削减模块可以设置在 E1通讯变压器 的输出端或者输入端的至少一端。
该干扰削减模块能够隔断所有流向 E1通讯变压器的直流干扰电流,例 如切断通信设备因外壳不接地而产生的泻放电流, 切断通信设备两端不共 地存在地电势差而产生地电势差电流, 阻止回流电流的产生, 另外, 还可 以对耦合工频干扰电流直接吸收或进行很大的衰减。
具体而言, 在图 1中, 本实施例的通讯设备为使用了 E1接口的通信设 备, 包括: E1通讯变压器、 通讯处理器, 而通讯线缆例如为 E1 同轴通讯 线缆。 连接着 E1通讯变压器输出端的 E1同轴通讯线缆芯线为发送芯线, 连接着 El通讯变压器输出端的 El同轴通讯线缆外皮线为发送外皮线, 连 接着 E1通讯变压器输入端的 E1同轴通讯线缆芯线为接收芯线, 连接着 E1 通讯变压器输入端的 E1同轴通讯线缆外皮线为接收外皮线。 对于 E1同轴 通讯线缆, 用 RTIP表示接收端的一个芯线, R ING表示接收端的一个外 皮线, TTIP表示发送端的一个芯线, TRING表示发送端的一个外皮线。 E1 同轴通讯线缆中接收芯线 1 ( RTIP1 ), 接收外皮线 1 ( RRING1 ), 发送芯线 1 ( TTIP1 ), 发送外皮线 1 ( TRING1 )。 另夕卜, 通讯处理器例如为 E1收发 芯片 PEF22554。
在图 1中,作为干扰削减模块的两个电容分别串联在 E1通讯变压器输 出端和 E1同轴通讯线缆的电路上,以及 E1通讯变压器输入端和 E1同轴通 讯线缆的电路上,并且,两个电容都分别接入在 E1同轴通讯线缆的芯线中。 在本实施例 E1同轴传输 2.048M的速率下,可以采用表面贴装器件( Surface Mounted Devices , 简称 SMD ) 的陶瓷电容-50¥-10001^-+/-10%- 71 -1206 来实现, 其中, -50V-1000nF-+/-10%-X7R-1206表示该电容的额定工作电 压 50V,额定电容值 luF,对于 luF引起的电容值有 10%误差,材质为 X7R, 封装为 1206。
在本实施例中干扰削减模块采用 luF的电容, 对于 220V的电源电压, luF的电容将对 50HZ的 合工频干 4尤电流呈现 3.18K欧姆的阻抗, 而对频 率为 2.048M的有用 E1信号只产生 0.18欧姆的阻抗。 因此, 本发明实施例 中的电容不仅起到隔断流向 E1通讯变压器的直流干扰电流的作用, 而且能 够吸收輛合工频干扰电流或对耦合工频干扰电流产生很大的衰减, 而使有 用的 E1信号可以畅通无阻的经过电容。
本实施例中串联在 E1同轴通讯线缆和 E1通讯变压器之间的电容不仅 可以完全隔离直流干 ·ί尤电流,有效的将直流干 ·ί尤电流隔开不流入 E1通讯变 压器, 还能对耦合工频干扰电流和其他电磁场产生的干扰电流产生很大的 衰减。 因此, 接入电容之后, 即便通信设备的外壳没有接地, 或者两端的 通信设备没有共同接地存在电势差, 该电容也可以将产生的干扰电流直接 阻止、 隔离, 吸收和衰减, 从而保证了通讯变压器的性能, 提升了整个通 信系统的抗干扰性能和可靠性。
在本发明实施例中,电容可以有三种接入 E1同轴通讯线缆的实现方式, 根据电容接入 E1同轴通讯线缆的不同实现方式, 引申出本发明第一实施例 的其他两种实现方式。
图 2是本发明通讯设备实施例一的实现方式 A结构示意图。 如图 2所 示, 作为干扰削减模块的两个电容分别串联在 E1通讯变压器输出端和 E1 同轴通讯线缆的电路上以及 E1通讯变压器输入端和 E1同轴通讯线缆的电 路上, 并且两个电容都分别接入在 E1同轴通讯线缆的外皮线中。
图 3是本发明通讯设备实施例一的实现方式 B结构示意图。 如图 3所 示, 作为干扰削减模块的四个电容分别为串联在 E1 通讯变压器输出端和 E1 同轴通讯线缆的电路上并接入在 E1 同轴通讯线缆的外皮线中、 串联在 E1通讯变压器输入端和 E1同轴通讯线缆的电路上并接入在 E1同轴通讯线 缆的外皮线中, 串联在 E1通讯变压器输出端和 E1 同轴通讯线缆的电路上 并接入在 E1 同轴通讯线缆的芯线中, 串联在 E1通讯变压器输入端和 E1 同轴通讯线缆的电路上并接入在 E1同轴通讯线缆的芯线中。 即将电容同时 接入 E1同轴通讯线缆的芯线中及外皮中。
本实施例的其他实现方法还包括, 作为干扰削减模块的电容仅仅串联 接在 E1通讯变压器的输出端和 E1同轴通讯线缆之间, 或者作为干扰削减 模块的电容仅仅串联接在 E1通讯变压器的输入端和 E1同轴通讯线缆之间, 并且电容可以接入 E1同轴通讯线缆的外皮线中或者芯线中。 实施例二
本发明实施二例涉及一种通讯设备。 图 4是本发明的通讯设备实施例 二的结构示意图。 如图 4所示, 通讯设备为使用了 E1接口的通信设备。 通 讯设备包括通讯处理器例如 El收发芯片 PEF22554,与 E1收发芯片相连接 的 E1通讯变压器。 另外, 通讯线缆为 E1同轴通讯线缆, E1通讯变压器与 E1同轴通讯线缆相连接, E1同轴通讯线缆中有接收芯线 1 ( RTIP1 ), 接收 外皮线 1 ( RRING1 ), 发送芯线 1 ( ΤΉΡ1 ), 发送外皮线 1 ( TRING1 )。
该通讯设备还包括作为干扰削减模块的电容, 电容串联在 E1通讯变压 器与 E1同轴通讯线缆之间,并且电容的连接方式可以是实施例一中描述的 任意一种。 E1 同轴传输 2.048M 的速率下采用表面贴装器件的陶瓷电容 -50V-1000nF-+/-10%-X7R-1206来实现, 该电容的额定工作电压 50V, 额定 电容值 luF,对于 luF引起的电容值有 10%误差,材质为 X7R,封装为 1206。 本实施例中串联在 E1通讯变压器与 E1同轴通讯线缆之间的电容为 luF的 电容。
实施例二中,还可以在 E1通讯变压器的初级线圈端设置半导体放电管 ( Thyristor Surge Suppressors, TSS ) 简称 TSS管。 本实施例中具体采用瞬 态抑制二极管 ( Transient Suppression Diode )作为 TSS管, 该 TSS管的一 端连接在 El 同轴通讯线缆和 El通讯变压器之间的连线上, 一端与设备保 护地相连。 具体而言, 如图 4所示, 在 E1同轴通讯线缆与 E1通讯变压器 之间的连线(包括 RTIP1、 RRING1、 TTIP1以及 TRING1在内的四条连线 ) 与通讯设备 PGND之间连接一个 TSS管。 该 TSS管可以将通过 E1同轴通 讯线缆传进来的浪涌电流迅速泻放到通讯设备保护地, 从而起到沖击电流 保护装置特别是防雷保护装置的作用。打雷时通过 E1通讯线缆传进来的浪 涌雷击电流, 可以通过 TSS管迅速泻放到通讯设备保护地, 就不会有较大 的电流流经后级电路, 从而起到保护后级器件和芯片的作用。 后级器件包 括但不限于: 干扰削减模块、 通讯变压器, 通讯处理器等。 在本发明实施 例中也可以采用瞬态电压抑制器( Transient Voltage Suppressor, TVS )简称 TVS管代替 TSS管。 实施例三
本发明实施例三涉及一种通讯设备。 图 5是本发明的通讯设备实施例 三的结构示意图。 如图 5所示, 通讯设备为使用了 E1接口的通信设备。 通 讯设备包括通讯处理器例如 E1收发芯片 PEF22554,与 E1收发芯片相连接 的 E1通讯变压器。 另外, 通讯线缆为 E1同轴通讯线缆, E1通讯变压器与 E1同轴通讯线缆相连接, E1同轴通讯线缆中有接收芯线 1 ( RTIP1 ), 接收 外皮线 1 ( RRING1 ), 发送芯线 1 ( ΤΉΡ1 ), 发送外皮线 1 ( TRING1 )。
该通讯设备还包括作为干扰削减模块的电容, 电容串联在 E1通讯变压 器与 E1同轴通讯线缆之间, 电容的连接方式可以是实施例一中描述的任意 一种, 并且串联在 E1通讯变压器与 E1同轴通讯线缆之间的电容为 luF的 电容。
该通讯设备还包括设置在 E1通讯变压器的初级线圈端设置 TSS管,该 TSS管的一端连接在 E1同轴通讯线缆和 E1通讯变压器之间的连线上, 一 端与设备保护地相连。 例如, 可以在 E1同轴通讯线缆与 E1通讯变压器之 间的连线 (包括 RTIP1、 RRING1、 TTIP1以及 TRING1在内的四条连线) 与通讯设备 PGND之间连接一个 TSS管。
在本实施例中,还可以包括拨码开关 Sl,拨码开关 S1的一端连接设备 保护地, 一端接在连接 E1通讯变压器输入端的 E1 同轴通讯线缆接收端的 外皮线 RRING1上。
在连接通讯变压器输入端的 E1 同轴通讯线缆接收端的外皮线 R ING 与通讯设备保护地之间接一个拨码开关,可以根据对端设备与 E1通讯变压 器输出端连接的 E1同轴通讯线缆发送端外皮线的接地方式,灵活选择本发 明实施例技术方案中与通讯设备接收端连接的 E1同轴通讯线缆接收端的外 皮线是否接地。 当对端设备与 E1通讯变压器输出端连接的 E1同轴通讯线 缆发送端外皮不接地, 则通过拨码开关将本发明实施例技术方案中的通讯 设备中与 E1通讯变压器输入端相连的 E1同轴通讯线缆接收端接地; 当对 端设备与 El通讯变压器输出端连接的 E1同轴通讯线缆发送端外皮不接地, 则通过拨码开关将本发明实施例技术方案中的通讯设备中与 E1通讯变压器 输入端相连的 E1 同轴通讯线缆接收端接地选择接地或者不接地。 保证 E1 同轴通讯线缆的接收端或者发送端至少有一端接地。本实施例在与 E1通讯 变压器输入端相连的 E1同轴通讯线缆接收端外皮线 RRING1与通讯设备保 护地之间接入拨码开关后,可以实现 E1同轴通讯线缆接收端和发送端两端 设备的外壳共同连接到设备保护地上, 相当于在两个通讯设备的外壳加了 一个接地的展蔽罩, 有效解决电磁干扰 ( Electromagnetic Interference , 简称 EMI ) 的问题。
因此, 本实施例在接入了电容、 TSS管和拨码开关 S1之后, 可以有效 消除干扰电流对通讯变压器的干扰。
串联在 E1通讯变压器与 E1同轴通讯线缆之间的作为干扰削减模块的 电容能够有效的切断直流干扰电流, 如: 泻放电流、 地电势差电流和回流 电流, 使它们不流入 E1通讯变压器, 解决了 E1通信设备由于上述直流干 扰电流流经 E1通讯变压器导致 E1通讯变压器磁饱和进而影响 E1接口通讯 设备信号传输的问题。 另外, 本实施例通过根据信号传输的频率选择适当 的电容值, 还能够衰减或吸收輛合工频干扰电流。 另外, 该电容可以承受 浪涌电压,保护后级器件。设置在 E1通讯变压器初级线圈端的 TSS管, 对 于沖击电流可以迅速泻放到通讯设备保护地, 保护后级器件和芯片。 进一 步的, 在与 E1通讯变压器输入端相连的 E1 同轴传输线缆接收端 R ING1 与设备保护地之间接一个拨码开关,可以根据该 E1同轴传输线缆发送端的 接地方式灵活选择是否接地, 使 E1同轴传输线缆可以做到单端接地, 又可 以做到两端接地, 充分解决 EMI的问题。
此外, 在本发明实施例的通讯系统中, 可以将通讯变压器与干扰削减 模块直接替换为抗直流能力比较强的通讯变压器, 即采用抗直流能力较强 的通讯变压器与通讯线缆相连接来实现信号通讯。 与现有技术相比, 本发 明能够保证通讯系统中的通讯变压器的正常工作, 提升信号的通讯质量。 同时还可以在通讯变压器的初级线圈端增加一个 TSS管保护该抗直流能力 比较强的通讯变压器。 进一步, 还可以在连接通讯变压器输入端的 E1同轴 通讯线缆接收端外皮线与通讯设备保护地之间接一个拨码开关。
或者, 本发明实施例中阻止流入通讯变压器的干扰电流的产生、 衰减 流入所述通讯变压器的干扰电流的装置, 可以采用阻抗变换器实现, 阻抗 变换器串联在 E1通讯变压器和 E1同轴通讯线缆之间, 并且该阻抗变换器 同时接在 E1同轴通讯线缆的外皮线和芯线上。 在本实施例中, 同时还可以 在 E1通讯变压器的初级线圈端增加一个 TSS管保护该抗直流能力比较强的 E1通讯变压器。 进一步, 还可以在连接 E1通讯变压器输入端的 E1同轴通 讯线缆接收端外皮线与通讯设备保护地之间接一个拨码开关。 实施例四
本发明实施例还提供一种通讯系统, 该通讯系统包括通讯设备, 通讯 设备通过 E1同轴通讯线缆与对端设备进行数据传输,该通讯设备可以包括, E1通讯处理器, 与 E1通讯处理器相连的 E1通讯变压器, 该 E1通讯变压 器与 E1同轴通讯线缆相连与对端设备进行数据传输。其中通讯设备的具体 结构和前述通讯设备实施例相同, 在此不再重复描述。 实施例五
本发明实施例还提供一种通讯方法, 通讯设备通过通讯线缆与对端设 备进行数据传输, 在通讯设备的通讯变压器输出端或输入端的至少一端设 置干扰削减模块, 该方法包括: 通讯设备通过通讯线缆接收从对端设备传 输的数据; 通讯设备中的干扰削减模块对干扰数据传输的干扰信号进行干 扰削减处理。
图 6是该实施例五通讯方法的流程示意图, 如图 6所示, 在本发明实 施例中, El接口通讯设备通过 El通讯线缆与对端设备进行数据传输, E1 接口通讯设备包括, E1通讯处理器, 与 E1通讯处理器相连的 E1通讯变压 器, E1通讯变压器与 E1通讯线缆相连接, 在通讯设备的 E1通讯变压器输 出端或输入端的至少一端设置干扰削减模块, 该方法包括以下步骤:
步骤 601 : E1接口通讯设备通过 E1同轴通讯线缆接收从对端设备传输 的数据;
其中 E 1接口通讯设备和对端设备可以都是传输设备,也可以分别是传 输设备和基站。 数据传输可以从 E1接口通讯设备经过 E1 同轴通讯线缆传 输到对端设备, 也可以从对端设备经过 E1同轴通讯线缆传输到 E1接口通 讯设备。
步骤 602: 通讯设备中的干扰削减模块对流经 E1 同轴通讯线缆和 E1 通讯变压器之间干扰数据传输的干扰信号进行干扰削减处理。
其中, 当通信设备产生了回流电流、 泻放电流或者地电势差电流等直 流干扰电流时, 干扰削减模块可以对直流干扰电流进行隔离, 同时通过选 择适当的电容值还能对耦合工频干扰电流产生较大的衰减。 实施例六
本发明实施例六还提供第二种通讯方法, 图 7是该通讯方法的流程示 意图。 如图 7所示, 在实施本发明实施例第二种通讯方法中, E1接口通讯 设备通过 E1通讯线缆与对端设备进行数据传输, E1接口通讯设备包括, E1通讯处理器, 与 E1通讯处理器相连的 E1通讯变压器, E1通讯变压器 与 E1通讯线缆相连接, 在通讯设备的 E1通讯变压器输出端或输入端的至 少一端设置干扰削减模块, 包括以下步骤:
步骤 701 : E1接口通讯设备通过 E1同轴通讯线缆接收从对端设备传输 的数据;
其中 E 1接口通讯设备和对端设备可以都是传输设备,也可以分别是传 输设备和基站。 数据传输可以从 El接口通讯设备经过 El 同轴通讯线缆传 输到对端设备, 也可以从对端设备经过 E1同轴通讯线缆传输到 E1接口通 讯设备。
步骤 702: 干扰削减模块对流经 E1 同轴通讯线缆和 E1通讯变压器之 间的干扰信号产生衰减;
其中, 当通信设备产生了回流电流、 泻放电流或者地电势差电流等直 流干扰电流时, 干扰削减模块可以对直流干扰电流进行隔离, 同时还能对 耦合工频干扰电流产生较大的衰减。
步骤 703: TSS管将流经 E1同轴通讯线缆的沖击电流通过通讯设备保 护地进行释放。
当打雷时, 通过 E1通讯线缆可能会輛合进浪涌电流, 即沖击电流, 而 TSS 管可以迅速将浪涌电流泻放至通讯设备保护地, 从而起到保护后级电 路和器件的目的。 实施例七
本发明实施例还提供第三种通讯方法, 图 8是该通讯方法的流程示意 图。 如图 8所示, 在实施本发明实施例第三种通讯方法中, E1接口通讯设 备通过 E1通讯线缆与对端设备进行数据传输, E1接口通讯设备包括, E1 通讯处理器, 与 E1 通讯处理器相连的 E1通讯变压器, E1通讯变压器与 E1通讯线缆相连接, 在通讯设备的 E1通讯变压器输出端或输入端的至少 一端设置干扰削减模块, 包括以下步骤:
步骤 801 : E1接口通讯设备通过 E1同轴通讯线缆接收从对端设备传输 的数据;
其中 E 1接口通讯设备和对端设备可以都是传输设备,也可以分别是传 输设备和基站。 数据传输可以从 E1接口通讯设备经过 E1 同轴通讯线缆传 输到对端设备, 也可以从对端设备经过 E1同轴通讯线缆传输到 E1接口通 讯设备。
步骤 802: 所述干扰削减模块对流经 E1 同轴通讯线缆和 E1通讯变压 器之间的干扰信号产生衰减;
其中, 当通信设备产生了回流电流、 泻放电流或者地电势差电流等直 流干扰电流时, 干扰削减模块可以对直流干扰电流进行隔离, 同时还能对 耦合工频干扰电流产生较大的衰减。
步骤 803: TSS管将流经 E1同轴通讯线缆的沖击电流通过通讯设备保 护地进行释放。
当打雷时, 通过 E1通讯线缆可能会輛合进浪涌电流, 即是沖击电流, 而所述 TSS管可以迅速将所述浪涌电流泻放至通讯设备保护地; 从而起到 保护后级电路和器件的目的。
步骤 804: 通过拨码开关将 E1接口通讯设备连接至设备保护地。
可以看出, 拨码开关 S1可以闭合也可以打开, 拨码开关 S1打开时可 以做到使 E1 同轴通讯线缆的接收端或者发送端单端接地, 拨码开关 S1闭 合可以 E1同轴通讯线缆的接收端和发送端两端都接地, 解决 EMI的问题。
值得说明的是, 实施例的编号只是为了描述的方便而使用, 而不作为 实施例之间优劣比对的依据。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述 描述的系统、 设备、 模块和单元的具体工作过程, 可以参考前述方法实施 例中的对应过程, 在此不再赘述。
通过以上的实施例的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬 件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技 术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体 现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使 得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行 本发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读存储器(ROM )、 随机存取存储器(RAM )、 磁碟或者 光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 设备 和方法, 在没有超过本申请的范围内, 可以通过其他的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个 单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 其中所述作为分离部件说明的单元可以是或者也可以不是物理 上分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以 位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要 选择其中的部分或者全部模块来实现本实施例方案的目的。 本领域普通技 术人员在不付出创造性劳动的情况下, 即可以理解并实施。
另外, 所描述系统、 设备和方法以及不同实施例的示意图, 在不超出 本申请的范围内, 可以与其它系统, 模块, 技术或方法结合或集成。 另一 点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一 些接口, 装置或单元的间接耦合或通信连接, 可以是电子、 机械或其它的 形式。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权利要求
传输, 其特征在于, 包括:
通讯变压器, 所述通讯变压器与所述通讯线缆相连接;
干扰削减模块, 用于对干扰所述数据传输的干扰信号进行干扰削减 处理, 所述干扰削减模块设置在所述通讯变压器的输出端或输入端的至 少一端。
2、 根据权利要求 1所述的通讯设备, 其特征在于, 所述干扰信号为 干扰电流产生的干扰信号。
3、 根据权利要求 2所述的通讯设备, 其特征在于, 所述的干扰削减 模块为以下器件之一或其组合: 设置在所述通讯变压器的输出端或输入 端的至少一端, 并串联在所述通讯变压器与所述通讯线缆之间的阻抗转 换器或者电容。
4、 根据权利要求 3所述的通讯设备, 其特征在于, 串联在所述通讯 变压器与所述通讯线缆之间的电容分别设置在通讯变压器输出端和输入 端, 并接入通讯线缆的芯线中; 或者
串联在所述通讯变压器与所述通讯线缆之间的电容分别设置在通讯 变压器输出端和输入端, 并接入通讯线缆的外皮线中; 或者
串联在所述通讯变压器与所述通讯线缆之间的电容分别设置在通讯 变压器输出端和输入端, 并接入通讯线缆的外皮线和芯线中。
5、 根据权利要求 1至 4中任一项所述的通讯设备, 其特征在于, 所 述的干扰削减模块还包括:
半导体放电管或者瞬态电压抑制器, 所述半导体放电管或者瞬态电 压抑制器一端连接在所述通讯线缆和所述通讯变压器之间的连线上, 另 一端与所述通讯设备保护地相连。
6、 根据权利要求 5所述的通讯设备, 其特征在于, 所述的干扰削减 模块还包括:
拨码开关, 所述拨码开关的一端连接所述通讯设备保护地, 一端连 接所述通讯线缆接收端外皮线。
7、 一种通讯系统, 其特征在于, 包括如权利要求 1到 6任一项所述 的通讯设备, 以及对端设备, 所述通讯设备通过通讯线缆与所述对端设 备进行数据传输。
8、 一种通讯方法, 其特征在于, 通讯设备通过通讯线缆与对端设备 进行数据传输, 在通讯设备的通讯变压器输出端或输入端的至少一端设 置干扰削减模块, 该方法包括:
所述通讯设备通过所述通讯线缆接收从对端设备传输的数据; 所述通讯设备中的干扰削减模块对干扰数据传输的干扰信号进行干 扰削减处理。
9、 根据权利要求 8所述的通讯方法, 其特征在于, 在通讯线缆和通 讯变压器之间的连线上连接半导体放电管或者瞬态电压抑制器, 所述半 导体放电管或者瞬态电压抑制器的另一端与通讯设备保护地相连, 所述 方法还包括:
所述半导体放电管或者瞬态电压抑制器将流经通讯线缆的沖击电流 通过通讯设备保护地进行释放。
10、 根据权利要求 8或 9所述的通讯方法, 其特征在于, 在通讯设 备保护地与通讯线缆接收端外皮线之间设有拨码开关,所述方法还包括: 所述拨码开关将所述通讯线缆至少一端的外皮接地。
PCT/CN2010/079644 2009-12-11 2010-12-10 通讯设备、方法及系统 WO2011069465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910188863.5 2009-12-11
CN200910188863A CN101741476A (zh) 2009-12-11 2009-12-11 通讯设备、方法及系统

Publications (1)

Publication Number Publication Date
WO2011069465A1 true WO2011069465A1 (zh) 2011-06-16

Family

ID=42464432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079644 WO2011069465A1 (zh) 2009-12-11 2010-12-10 通讯设备、方法及系统

Country Status (2)

Country Link
CN (1) CN101741476A (zh)
WO (1) WO2011069465A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109344114A (zh) * 2018-09-28 2019-02-15 北京理工大学 一种计算机数据传输抗干扰处理器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741476A (zh) * 2009-12-11 2010-06-16 华为技术有限公司 通讯设备、方法及系统
CN103825771A (zh) * 2012-11-16 2014-05-28 华为技术有限公司 检测方法和准同步数字体系设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2831621Y (zh) * 2005-08-26 2006-10-25 中兴通讯股份有限公司 一种具有电磁兼容电路的e1接口
CN201260173Y (zh) * 2008-07-30 2009-06-17 烽火通信科技股份有限公司 一种通信设备密集e1接口电磁干扰抑制装置
CN101741476A (zh) * 2009-12-11 2010-06-16 华为技术有限公司 通讯设备、方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2831621Y (zh) * 2005-08-26 2006-10-25 中兴通讯股份有限公司 一种具有电磁兼容电路的e1接口
CN201260173Y (zh) * 2008-07-30 2009-06-17 烽火通信科技股份有限公司 一种通信设备密集e1接口电磁干扰抑制装置
CN101741476A (zh) * 2009-12-11 2010-06-16 华为技术有限公司 通讯设备、方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109344114A (zh) * 2018-09-28 2019-02-15 北京理工大学 一种计算机数据传输抗干扰处理器

Also Published As

Publication number Publication date
CN101741476A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
US9819500B2 (en) System and method for isolating and protecting a PoE (power over ethernet) device
BRPI0609339A2 (pt) interface de comunicações por linha de energia e protetor contra surtos
US20160323115A1 (en) Power Supply Protection System and Method for POE
CN204046638U (zh) 用于焊接设备的can通讯电路
JP2008047517A (ja) 連接装置
US20040257743A1 (en) LAN magnetic interface circuit with passive ESD protection
US10763919B1 (en) Galvanic barrier coupler for intrinsically safe power over data line applications
CN2845325Y (zh) 一种抑制以太网接口电磁干扰的电路
WO2012113216A1 (zh) 一种防雷保护电路
CN201830274U (zh) 一种具有浪涌保护功能的以太网接口电路集成模块
CN102842903A (zh) 一种以太网供电系统及其浪涌保护装置
CN201994655U (zh) 以太网供电网络防雷器
WO2011069465A1 (zh) 通讯设备、方法及系统
CN106464297A (zh) 收发器的浪涌保护器
CN107332675B (zh) 无网络变压器的PoE设备
CN202333790U (zh) 一种抑制干扰信号和浪涌防护的电路
CN102386619B (zh) 一种抑制干扰信号和浪涌防护的电路
CN101202443B (zh) 电源网络装置及其电涌防护电路
CN108242802A (zh) 接口防护电路及设备接口
CN207853914U (zh) 无网络变压器的PoE设备
CN206602359U (zh) 一种Arinc429接口基于DO160G防雷设计电路
Piparo et al. Procedure for selection of the SPD system according to the probability of damage
CN205646809U (zh) 基于lte技术具备防雷功能的cpe终端
CN205565722U (zh) 一种以太网高速网络电涌保护器及电涌保护装置
US9219462B2 (en) Modular interface systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835500

Country of ref document: EP

Kind code of ref document: A1