WO2011068342A2 - Stereoscopic image display device - Google Patents

Stereoscopic image display device Download PDF

Info

Publication number
WO2011068342A2
WO2011068342A2 PCT/KR2010/008497 KR2010008497W WO2011068342A2 WO 2011068342 A2 WO2011068342 A2 WO 2011068342A2 KR 2010008497 W KR2010008497 W KR 2010008497W WO 2011068342 A2 WO2011068342 A2 WO 2011068342A2
Authority
WO
WIPO (PCT)
Prior art keywords
film
liquid crystal
display device
organic
image display
Prior art date
Application number
PCT/KR2010/008497
Other languages
French (fr)
Korean (ko)
Other versions
WO2011068342A3 (en
Inventor
김태민
김성철
Original Assignee
주식회사 에프엠디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에프엠디 filed Critical 주식회사 에프엠디
Publication of WO2011068342A2 publication Critical patent/WO2011068342A2/en
Publication of WO2011068342A3 publication Critical patent/WO2011068342A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to a three-dimensional (3D) stereoscopic image display device, and more particularly, to a stereoscopic three-dimensional stereoscopic image display device of a polarization division method using a pattern retarder composed of photocrosslinkable liquid crystals.
  • Stereoscopic display has been progressively developed since its creation around the 20th century, and it has been developed as a stereoscopic stereoscopic display device (shutter glasses, micro polarizer, patterned retarder type, etc.), autostereoscopic stereoscopic image display device (parallax barrier, lenticular lens type, Etc.) and holograms have emerged to date.
  • the glasses type has a wider viewing angle and less dizziness when viewed, and can be produced at a relatively low cost, especially at a very low cost compared to holograms.
  • the market is expanding because there are advantages such as being able to use 2D and 3D with one display.
  • Representative methods of glasses type 3D include shutter glasses method, which is a time-crossing method, and polarization split method, which is a time-division method.
  • the shutter glasses method displays left and right images of the left and right eyes of the shutter glasses alternately on one screen.
  • the sequential opening / closing timing is matched with the time-interval time of the displayed image so that each image is recognized separately from the left eye and the right eye.
  • the shutter glasses method needs to increase the number of times per unit time in order to reduce fatigue and increase stereoscopic feeling.When this method is applied to the current LCD, the slow response speed of the liquid crystal and the screen addressing timing of the scan method are applied. It is known that flicker occurs because addressing timing does not completely match the timing of time crossing, which causes fatigue such as dizziness when listening.
  • the polarization splitting method does not cause flickering as described above, and causes less fatigue during viewing, but the resolution is reduced in half because two rows, columns, or pixels must be divided in order to display two images simultaneously on one screen. There is. However, since most of the current display devices such as LCDs are very high resolution, and it is possible to sufficiently improve the resolution in the future, there are many opinions that half resolution is not a problem in the polarization split 3D product configuration.
  • the shutter glasses method must be equipped with hardware or circuitry in the display to display the time difference, and expensive glasses called shutter glasses are required, and the cost is very high when multiple people are watching, whereas the polarization split method is used on the front of the display device.
  • a patterned polarization splitting optical medium patterned retarder, micro polarizer, etc. capable of dividing the polarization is relatively expensive because many people can wear the polarizing glasses which are very inexpensive and can view them. It costs very little.
  • the current LCD is a display device using polarization, and is very suitable for applying polarization splitting 3D, and a representative method is a patterned retarder method.
  • a patterned retarder forms (patterns) an optical medium with phase differences in two different directions in units of pixels, rows, or columns of an LCD and fits the LCD pixels or pixel units in front of the LCD ( When aligned, the output polarization is modulated to have different polarization directions.
  • the outgoing polarization of the LCD is linearly polarized, so if the phase retardation of the patterned retarder optical medium is 1/4 wavelength, the polarization of the outgoing polarization of the LCD is +45 degrees and -45 degrees, respectively.
  • the optical medium of 1/2 wavelength is arranged so that the first region is 45 degrees in the emission polarization direction and the second region is 0 with the emission polarization direction (or optically isotropic).
  • Polarization glasses with two linear polarizers arranged on a 90-degree optical axis allow the left and right images to be split.
  • the linear polarization method reduces the extinction ratio rapidly if the optical axis of the linear polarization is not fixed. There is a disadvantage that the three-dimensional feeling is not completely separated.
  • the use of circular polarization is preferred because there is almost no reduction in extinction ratio unless the circular polarization arrangement of the source polarization and the polarizing glasses is rotated by 90 degrees.
  • a method of separating polarized light into linearly or circularly polarized light using a polarizing plate and a phase delay plate may be a variety of methods using conventional physical methods.
  • the same circular polarization effect can be obtained by stacking a 1/8 wavelength first phase delay plate at a polarization axis with 22.5 degrees and a 1/8 wavelength second phase delay plate at 45 degrees (Fig. 7).
  • a phase delay plate of 1/4 wavelength By laminating a phase delay plate of 1/4 wavelength, a linearly polarized light effect can be obtained (Fig. 6).
  • a circular polarization effect can be obtained by stacking a half-wave and a quarter-wave phase retardation plate, where half-wavelength is patterned and quarter-wavelength is unpatterned photocrosslinked liquid crystal film or stretched film.
  • Fig. 4, 5 As for the 1/4 wavelength substrate, many products made by stretching films made of organic polymer materials such as PC, COP, PAc, PMMA, TAC, etc. are commercialized and can be used. . Examples of various methods of constructing a patterned phase delay plate (pattern retarder) having a polarization separation function as described above are well illustrated in FIGS. 2 to 7, and the method of manufacturing such a phase delay plate is also in the present invention. Of course, it can be used.
  • a pattern alignment method of coating a photocrosslinkable liquid crystal on a substrate and aligning the patterns to have different optical axes and then photocrosslinking to form a liquid crystal polymer film is common. to be.
  • the substrate is generally coated with a polyimide and subjected to a high temperature firing, followed by a pattern rubbing orientation method and a rubbing pattern.
  • Pattern photo-alignment method by applying a photo mask and polarizing irradiation (or non-polarization inclination) and aligning the substrate, or by applying a mask to the surface formed by coating the substrate itself or an alignment layer and ion beam Or a pattern alignment forming method such as obliquely irradiating a plasma beam in a vacuum.
  • the substrate used in the above process is mainly glass of tempered glass (soda lime, inorganic material of borosilicates) that is used as the upper and lower plates when manufacturing LCD cells. do.
  • tempered glass soda lime, inorganic material of borosilicates
  • the material is very expensive compared to ordinary glass, it is used because of its strong mechanical properties at the same thickness, excellent surface flatness, high transparency, uniform optical characteristics without birefringence, and an alignment film or a photocrosslinked liquid crystal on it. It is easy to coat with uniform thickness using general spin costing method and is easy to procure because it is widely distributed as LCD manufacturing glass.
  • this tempered glass generally does not completely block ultraviolet rays (UV), and when exposed to ultraviolet rays during long-term use, the photocrosslinkable liquid crystal polymer film is deteriorated and its phase difference value is changed, and at the same time, the polarization separation effect is lowered and 3D stereoscopic effect is lowered. There is a problem of long-term reliability.
  • UV ultraviolet rays
  • the glass has a disadvantage in that the reflection of the light is severe and the 3D three-dimensional effect is not only lowered due to the glare caused by the reflection of the external light, but also the fatigue caused by the glare when viewing the 2D image.
  • the light emitted from the LCD may cause fine internal diffuse reflection within the thickness and propagate to the surroundings. Therefore, the left and right images are not completely distinguished, and the image to be incident on one eye is also incident on the other eye. There is a problem that crosstalk occurs, which ultimately degrades 3D stereoscopic feeling.
  • spin coating method of high speed rotation should be used for uniform coating on glass.
  • spin coating equipment is 50 inches because there is virtually no equipment available except for low speed rotation (equipment for cleaning glass surface). It is almost impossible to produce a patterned retarder of more than a class, which makes it difficult to meet the trend of larger displays.
  • the technical problem to be solved by the present invention is to propose a stereoscopic image display device and a new method for manufacturing the same to replace the conventional glass used as the substrate of the patterned retarder (organic polymer film).
  • the present invention provides a new patterned retarder which can realize a cheaper and improved quality 3D stereoscopic display device while presenting new advantages that cannot be obtained in existing patterned retarder products and the same. It is possible to provide a used 3D LCD.
  • a polarization separator comprising a photocrosslinkable liquid crystal polymer film; And an organic film part composed of an organic polymer material having refractive index anisotropy of 0 ⁇ Rth ⁇ 30nm, or 0 ⁇ Re ⁇ 30nm, wherein the polarization passing through the organic film part includes both left circularly polarized light and right circularly polarized light.
  • a stereoscopic image display device is provided.
  • the organic polymer material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
  • TAC triacetyl cellulose
  • COP cyclo olefin copolymer
  • Pac polyacrylate
  • PES poly ether sulfone
  • PC polycarbonate
  • PEEK polyetheretherketon
  • PMMA polymethylmethaacrylate
  • PEI polyetherimide
  • PEN polyethylenemaph
  • the (-c) optical property is 0 ⁇ Rth ⁇ 10 nm, and when the organic film part has a ( ⁇ ) a optical property, the (- a) The optical property is 0 ⁇ Re ⁇ 10 nm, and when the organic film part has a optical property, the optical property is more preferably 0 ⁇ Re ⁇ 10 nm.
  • At least one coating of at least one of an anti reflection coating, an anti glare, and a hard coating is further added to one surface of the organic film portion.
  • the organic film portion is preferably composed of an organic polymer film having a phase difference of 1/4 wavelength.
  • an alignment layer between the polarization separator and the organic film layer wherein the alignment layer is formed on the organic film portion, or the alignment layer is formed separately from the alignment layer forming substrate on the alignment layer forming substrate, and the alignment layer is formed.
  • the organic film portion is preferably adhered to the alignment film, or the alignment film is any one or more of being formed by ultraviolet irradiation treatment on the surface of the organic film portion.
  • the alignment layer forming substrate is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
  • TAC triacetyl cellulose
  • COP cyclo olefin copolymer
  • Pac polyacrylate
  • PES poly ether sulfone
  • PC polycarbonate
  • PEEK polyetheretherketon
  • PMMA polymethylmethaacrylate
  • PEI polyetherimide
  • PEN polyethylenemap
  • the front polarizer further comprises;
  • the front polarizer is preferably bonded directly to the liquid crystal polymer film.
  • At least one polarization splitter including a photocrosslinkable liquid crystal polymer film; And an organic film part composed of a polymer organic material having a refractive index of 1.33 to 1.53, more preferably 1.33 to 1.50, wherein the refractive index of the organic film part is smaller than that of the liquid crystal polymer film part.
  • the polarized light passing through the organic film part includes a left circularly polarized light and a right circularly polarized light.
  • the polymer organic material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
  • TAC triacetyl cellulose
  • COP cyclo olefin copolymer
  • Pac polyacrylate
  • PES poly ether sulfone
  • PC polycarbonate
  • PEEK polyetheretherketon
  • PMMA polymethylmethaacrylate
  • PEI polyetherimide
  • PEN polyethylenemaph
  • the (-c) optical property is 0 ⁇ Rth ⁇ 10 nm
  • the (- a) The optical property is 0 ⁇ Re ⁇ 10 nm
  • the optical property is preferably 0 ⁇ Re ⁇ 10 nm.
  • At least one polarization splitter including a photocrosslinkable liquid crystal polymer film; And an organic film part composed of an organic polymer material including a UV blocking material, wherein the polarized light passing through the organic film part includes both left circularly polarized light and right circularly polarized light.
  • a stereoscopic image display device is featured.
  • the polymer organic material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
  • TAC triacetyl cellulose
  • COP cyclo olefin copolymer
  • Pac polyacrylate
  • PES poly ether sulfone
  • PC polycarbonate
  • PEEK polyetheretherketon
  • PMMA polymethylmethaacrylate
  • PEI polyetherimide
  • PEN polyethylenemaph
  • an alignment film by coating the alignment material on the organic film portion made of a polymer organic material; Surface-aligning the alignment layer; And forming a photocrosslinkable liquid crystal polymer film by adding and curing a photocrosslinkable liquid crystal layer to the surface-oriented alignment layer, wherein the organic polymer material has an index of refraction of 0 ⁇ Rth ⁇ 30 nm, or 0 ⁇ Re ⁇ 30 nm.
  • a method of manufacturing a stereoscopic image display device is provided.
  • the polymer material may have a refractive index of 1.33 to 1.53, more preferably 1.33 to 1.50.
  • the polymer material further comprises a sunscreen material.
  • the polymer organic material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
  • TAC triacetyl cellulose
  • COP cyclo olefin copolymer
  • Pac polyacrylate
  • PES poly ether sulfone
  • PC polycarbonate
  • PEEK polyetheretherketon
  • PMMA polymethylmethaacrylate
  • PEI polyetherimide
  • PEN polyethylenemaph
  • forming an alignment film by coating the alignment material on the alignment film forming substrate; Surface-aligning the alignment layer; Adding and curing a photocrosslinkable liquid crystal layer to the surface oriented alignment film to form a photocrosslinkable liquid crystal polymer film; And removing the alignment layer forming substrate, and forming the organic film part made of an organic polymer material on one surface of the liquid crystal polymer film part in a manner of attaching and bonding the organic film part, wherein the polymer organic material is 0 ⁇ .
  • a method of manufacturing a stereoscopic image display device having refractive index anisotropy of Rth ⁇ 30 nm or 0 ⁇ Re ⁇ 30 nm is provided.
  • the polymer organic material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
  • TAC triacetyl cellulose
  • COP cyclo olefin copolymer
  • Pac polyacrylate
  • PES poly ether sulfone
  • PC polycarbonate
  • PEEK polyetheretherketon
  • PMMA polymethylmethaacrylate
  • PEI polyetherimide
  • PEN polyethylenemaph
  • the cost of the material is low, there is almost no possibility of damage, and the processability is very excellent and the process cost is low in manufacturing the pattern retarder and manufacturing the stereoscopic image display device having the same.
  • the UV-blocking agent may be mixed with the organic polymer film, the UV-blocking function is provided to the organic polymer film, thereby improving long-term reliability of the photocrosslinkable liquid crystal film vulnerable to ultraviolet rays.
  • the organic polymer film has a thin film of 0.1 mm or less in actual use, the transmittance is higher than glass having a thickness of 0.5 to 0.7 mm, and there is almost no diffuse reflection in the film, thereby reducing the crosstalk phenomenon.
  • the organic polymer film has a film whose refractive index is lower than the refractive index of glass (1.5 ⁇ 1.54), and when the film is used, the refractive index of the photocrosslinkable liquid crystal film is further increased to improve the antireflection effect and improve the C / R. Can be.
  • FIG. 1 is a diagram illustrating an embodiment in which a stereoscopic image display device of the present invention is coupled to an LCD.
  • FIG. 2 is a diagram illustrating an example of a stereoscopic image display apparatus using a quarter wavelength (liquid crystal film).
  • FIG 3 is a diagram illustrating an example of a stereoscopic image display apparatus using 1 ⁇ 2 wavelength (liquid crystal film).
  • FIG. 4 is a diagram illustrating an example of a stereoscopic image display apparatus using 1 ⁇ 2 wavelength (liquid crystal film) and 1 ⁇ 4 wavelength (stretched film).
  • FIG. 5 is a diagram illustrating an example of a stereoscopic image display apparatus using 1 ⁇ 2 wavelength (liquid crystal film) and 1 ⁇ 4 wavelength (liquid crystal film or stretched film).
  • FIG. 6 is a diagram illustrating an example of a stereoscopic image display apparatus using a multilayer liquid crystal film (1/4 wavelength).
  • FIG. 7 is a diagram illustrating an example of a stereoscopic image display apparatus using a multilayer liquid crystal film (1/8 wavelength).
  • FIG. 8 is a view illustrating another example of a stereoscopic image display device in which a pattern retarder is laminated without a TAC protective film on the outer surface of the polarizer when the polarizer is laminated with the pattern retarder.
  • FIG. 9 is a flowchart illustrating a method of manufacturing a stereoscopic image according to the present invention.
  • FIG. 10 is a flowchart illustrating another embodiment of the method for manufacturing a stereoscopic image according to the present invention.
  • polarization separation unit 310 photocrosslinkable liquid crystal polymer film
  • 321 polarization axis and -22.5 degrees
  • 322 polarization axis and +22.5 degrees
  • 323 polarization axis and -45 degrees
  • 324 polarization axis and +45 degrees
  • polarizing plate protective film 650 PVA (polarizing layer)
  • FIG. 1 is a diagram illustrating a structure of a stereoscopic image display device according to an exemplary embodiment of the present invention.
  • 1 is a diagram illustrating an embodiment using an LCD as a stereoscopic image display device of the present invention.
  • the polarization separator 300 is composed of two photocrosslinkable liquid crystal polymer film portions 310.
  • the film between the alignment layer 200 and the photocrosslinkable liquid crystal polymer film 310 may be a photocrosslinkable liquid crystal polymer film or a stretched film 310a. It can be seen that the organic polymer film 100 of the present invention is disposed outside the polarization separator 300 and the alignment layer 200.
  • the size of the pattern formed in the patterned retarder corresponds to the pixel or pixel unit width and is very precise.
  • the pattern is formed in accordance with the rows or columns of the LCD, and the rows of the LCD pixels when mounted on the LCD, or It is easy in the manufacturing process to form a patterned retarder on the glass, which is a hard substrate, because it must be attached in exact alignment with the position of the rows.
  • a sophisticated patterned retarder may be used as a flexible substrate called the organic polymer film 100. It is possible to form on.
  • triacetyl cellulose as a new substrate that can be properly configured optically and mechanically and also has easy processability.
  • Cyclo olefin copolymer COP
  • polyacrylate Pac
  • poly ether sulfone PES
  • polycarbonate PC
  • polyetheretherketon PEEK
  • polymethylmethaacrylate PMMA
  • PEI polyetherimide
  • PEN polyethylenemaphthatlate
  • PET polyethyleneterephtalate
  • PI polyimide
  • PSF polysulfone
  • PVA polyvinylalcohol
  • PAR polyarylate
  • amorphous fluorine resin and the like were introduced.
  • the material of the organic polymer film 100 of the present invention preferably has a vertical birefringence property of 0 ⁇ Rth ⁇ 30 nm, or a planar birefringence property of 0 ⁇ Re ⁇ 30nm, and more preferably 0 ⁇ Rth It is preferable that ⁇ 10 nm, or 0 ⁇ Re ⁇ 10 nm. If Rth> 30nm, there is a problem of lowering the contrast in the lateral direction. If Re> 30nm, the circular polarization emitted in combination with the birefringence characteristic of the photocrosslinkable liquid crystal film is changed, which may lower the stereoscopic image quality. There is.
  • the refractive index of the organic polymer film 100 of the present invention is preferably 1.33 to 1.53, more preferably 1.33 to 1.50. If the refractive index exceeds 1.53, the refractive index of the photocrosslinkable liquid crystal film is about 1.53 ⁇ 1.8, so the difference between the refractive index of the photocrosslinkable liquid crystal film is not large and the antireflection effect obtained by the combination of high refractive index and low refractive index, and the C / R improvement effect will not be large. Can be.
  • the film 100 of the organic polymer material is a primary advantage that the price is very cheap compared to the conventional glass material.
  • these films are usually thin films of 0.1 mm or less, there is almost no crosstalk due to diffuse reflection in the thickness, so that the 3D stereoscopic effect is not reduced, and the absolute light transmittance (about 88 to 95% depending on the type) of the glass is absolute. There is no significant difference from the light transmittance (93%), and since it is used with a much thinner thickness than glass, the relative transmittance is very high, which has the advantage of minimizing luminance reduction.
  • the organic polymer film 100 used in the stereoscopic image display device of the present invention contains a predetermined amount of a sunscreen inhibitor.
  • the organic polymer film 100 is patterned on such a film substrate because it is possible to manufacture a film to block ultraviolet rays by adding a predetermined amount of ultraviolet (blocking) agent to the material during its manufacture. Forming a retarder and attaching it to the LCD can block incoming ultraviolet rays, thereby preventing long-term deterioration of the photocrosslinkable liquid crystal polymer film 310, thereby improving long-term reliability as a 3D display.
  • Sunscreen inhibitors include salicylic acid esters, benzophenones, oxybenzophenones, benzotriazols, cyanoacrylates, and benzoates (Substances based on organic substances such as benzoate) may be used, and the base material containing the benzoate may be disposed on the forefront and bonded to prevent deterioration of the photocrosslinkable liquid crystal polymer by UV transmission.
  • sunscreens are generally contained in a weight ratio of 0.1 to 25% by weight relative to the film main material in the film manufacturing to have a sunscreen effect.
  • Mineral sun-based zinc oxide, nickel complex salt, etc. may be used as the sunscreen, but it should be noted that the permeability of the film containing the same may be reduced.
  • the flexible rainy season polymer film can be a continuous coating rather than a batch type coating such as spin coating used for a glass substrate, and thus an alignment film which is excellent in mass production and an expensive material. As a result, it is possible to greatly reduce the optical cross-linking liquid crystals, which leads to a significant cost reduction.
  • the flexible organic polymer films 100 made of the polymer material introduced in the present invention may have various refractive indices, of which the intrinsic refractive index of the photocrosslinkable liquid crystal forms a patterned retarder (generally, It is preferable to use lower types as compared to about 1.525 to 1.8, on average 1.66).
  • a photocrosslinkable liquid crystal polymer is formed on a polymer organic film having a relatively large difference in refractive index compared to a photocrosslinked liquid crystal forming a patterned retarder, a high refractive index and a low refractive index combination of a patterned retarder and a polymer organic film is used. The effect of antireflection can also be obtained.
  • the light weight thin polymer organic film hardly increases in thickness and weight when attached to the front of the LCD, so it meets the trend of light weight thinning of the display, and is particularly advantageous when applied to a mobile LCD.
  • the birefringence characteristic such as) may be minutely retained.
  • Such optical characteristics may finely alter the properties of the polarized pattern divided into 1/4 or 1/2 wavelengths, and in some cases, the 3D stereoscopic feeling may be reduced while the relative extinction ratio of polarized light incident on both eyes is lowered. Therefore, it is common to see that the film should not have birefringence properties.
  • the minus sign is negative which is commonly applied herein.
  • the polarization degree of circularly polarized light or linearly polarized light emitted is hardly changed.
  • Optical media of negative (-) c properties are generally obtained by cholesteric orientation of liquid crystals (or photocrosslinkable liquid crystals).
  • liquid crystals or photocrosslinkable liquid crystals.
  • the light passing through the medium is partially diffracted into the left circularly polarized light or the right circularly polarized light, depending on whether the direction of rotation of the oriented cholesteric liquid crystal is left linearity or priority.
  • This effect can occur remarkably when the thickness of the liquid crystal oriented in the cholesteric phase is sufficient so that at least Rth is several tens of nm or more.
  • the negative (-) c properties of TAC films are due to the intrinsic properties of the material, tri-acetyle cellulose, which is usually at the level of 0 ⁇ Rth ⁇ 30 nm and no left-handedness or priority. Therefore, the compensation effect of the TAC film observed in the present invention affects the direction of rotation while the source polarized light in different rotation directions passing through the patterned retarder passes through the TAC film having a fine (-) c characteristic. It is assumed that each circular polarization is slightly increased or decreased without receiving. Experimentally, when the negative (-) c characteristic was too large, the contrast in the inclined direction out of the front direction tended to decrease. Therefore, even for this reason, it is appropriate that the (-) c property of the film used as the substrate does not exceed 30 nm.
  • a stretched film made of PC, COP, etc. having a three-dimensional refractive characteristic of fine a or (-) a characteristics may be used. These optical properties can be combined with the a-plate properties (1/4 or 1/2 wavelength) of the liquid crystal polymer film to modify the degree of polarization (or circular polarization) and affect the 3D stereoscopic effect.
  • the minimized one should be used. However, when Re is less than 30 nm, it does not appear to be substantially a problem.
  • the optical axis of the stretched film coincides with the optical axis of one of the two regions of the optical crosslinkable liquid crystal film, the birefringence characteristics of the two optical media are combined.
  • the coating film of the optical crosslinkable liquid crystal film is somewhat thin, the phase difference value is insufficient. This can be compensated for in part, so it may be an advantage to properly arrange each optical axis when constructing the product.
  • a base material is prepared.
  • an organic polymer film 100 made of triacetyl cellulose (TAC) was used.
  • TAC triacetyl cellulose
  • COP cyclo olefin copolymer
  • Pac Polyacrylate
  • PES poly ether sulfone
  • PC polycarbonate
  • PEEK polyetheretherketon
  • PMMA polymethylmethaacrylate
  • PEI polyetherimide
  • PEN Flexible organic polymer films are possible with materials such as polyethylenemaphthatlate (PET), polyethylene terephtalate (PET), polyimide (PI), polysulfone (PSF), polyvinylalcohol (PVA), polyarylate (PAR), and amorphous fluorine resin.
  • PET polyethylenemaphthatlate
  • PET polyethylene terephtalate
  • PI polyimide
  • PSF polysulfone
  • PVA polyvinylalcohol
  • PAR polyarylate
  • the alignment film 200 is formed (S110). Dissolve a certain amount (typically less than 15 wt%) of vinyl polymerized photosensitive polymer (Aldrich) with Cinnamate side chains in a solvent and filter (0.2 micrometer absolute pore) to prepare an alignment material solution to be coated.
  • PGMEA was used as a solvent.
  • the solvent various aromatic hydrocarbons, ketones, acetates, and general solvents of alcohols or mixed solvents thereof may be used.
  • the alignment solution is coated on the substrate by a gravure coating method, and the solvent is dried (less than 90 degrees) to obtain an alignment film 200 (about 1,000 kPa). At this time, it is coated on the opposite side of the substrate surface to which the alignment film 200 is treated, such as antireflection coating. Otherwise, it is carried out on any surface which is easy.
  • a photomask divided by rows of LCD pixels is applied to the surface of the alignment layer 200 to irradiate ultraviolet (230 nm to 350 nm) polarized light (linearly or elliptically) in the vertical direction (or non-polarized ultraviolet light (230 nm to 350 nm). )
  • the photomask is moved by the row spacing of the pixels to surface align the remaining portions in the same manner to form the second region.
  • the polarization direction (or oblique irradiation direction) of the ultraviolet light determines the orientation direction of the liquid crystal coated in the next step. Therefore, in order for the completed patterned retarder to emit circularly polarized light in opposite directions, the polarizations of ultraviolet rays should be 90 degrees apart from each other when irradiating 1 and 2 regions.
  • the photocrosslinkable liquid crystal polymer film deposition step (S130). Before this step, the preparation of the photocrosslinkable liquid crystal should be completed. Solid photocrosslinked liquid crystals (Reactive mesogen (RM), Merck's horizontal alignment RM, BASF's LC242) together with a photoinitiator (Ciba Irganox), alcohols such as acetates such as PGMEA and IPA A suitable amount was dissolved in (alcohols, solvents such as these, and a mixed solvent thereof) and a filter (0.2 micrometer absolute pore) was prepared to prepare a photocrosslinked liquid crystal solution to be coated.
  • a photocrosslinked liquid crystal solution to be coated.
  • the prepared liquid crystal solution is coated on the pattern oriented surface by a gravure coating method and the solvent is dried (less than 70 degrees). As the solvent is dried, the liquid crystals are horizontally arranged in the alignment direction of the alignment layer 200 to form optical axes of 90 degrees to each other.
  • An inert atmosphere nitrogen
  • the completed photocrosslinkable liquid crystal polymer film 310 becomes a patterned retarder film in which liquid crystal is pattern-oriented.
  • the patterned retarder film may be bonded to the display device.
  • the pattern-oriented liquid crystal film 310 must be bonded to face the front polarizer 400 of the display device, and between the film 310 and the front polarizer 400.
  • An adhesive 700 (epoxy, acrylic, etc.) layer is formed on the film 310 so as to be fixed to the front polarizing plate 400 after bonding. In this case, in order to prevent bubbles from forming between the film and the front polarizer 400 and to prevent foreign substances such as dust from entering, it is more advantageous to bond in a vacuum state.
  • the pattern formed on the patterned retarder and the pixel rows (or columns) of the display device must be bonded together so that the alignment mark 550 (align mark) is pre-set with the display device and the pattern retarder. It may be formed on a patterned retarder and aligned based on the patterned retarder, and an appropriate image may be placed on a display device in advance, and the method may be performed while visually checking. When the bonding of the patterned retarder is completed, the first 3D stereoscopic image display device is completed.
  • a coating process almost all film coating processes such as slot dies, rolls, and the like, in addition to gravure, may be selectively applied to the entire process flow.
  • a solution may be prepared using various solvents having compatibility according to the type of substrate or alignment material to be coated.
  • various methods such as the well-known rubbing method and the non-contact orientation method by inclined irradiation of ion beam or plasma, may be used in addition to the above-described optical alignment method. .
  • the alignment material a variety of material products that can be applied to various processes can be used, and in the case of the bonding process, there are various methods that can be predicted by general knowledge in addition to the examples above.
  • the front polarizer 400 is laminated with a patterned retarder and a method such as lamination in advance without attaching the front polarizer to the front polarizer 400 and the patterned retarder.
  • a method of attaching the film to the front surface of the LCD may be used.
  • the (front) polarizing plate 400 is composed of a PVA film having a polarizing function and laminated on both sides with a TAC film as a protective film.
  • the pattern retarder may be laminated without the outer surface TAC protective film of the polarizer.
  • the overall thickness and the cost may be reduced, and the pattern retarder and the display may be Since the distance to the device can be reduced, the viewing angle can be enlarged when viewing 3D.
  • the polarizer protective film 600 and the organic polymer film 100 may be made of the same material.
  • the photocrosslinkable liquid crystal polymer layer may be directly formed on the front polarizer 400 using the above-described alignment methods.
  • an alignment layer is formed by coating an alignment material on an alignment layer forming substrate (S210), and then the surface of the alignment layer is aligned (S220), and a photocrosslinkable liquid crystal layer is added to the surface aligned alignment layer and cured to form a photocrosslinkable liquid crystal polymer film 310.
  • the present invention can also be realized in a manner of forming (S230), and then removing the alignment layer forming substrate and forming an organic film 100 made of an organic polymer on one surface of the liquid crystal polymer (S240). .
  • the polymer organic film of the present invention is directly irradiated with an ion beam or a plasma beam to orient the surface of the polymer organic material film 100, and the price of the organic polymer film 100 subjected to the surface alignment treatment
  • the crosslinked liquid crystal may be coated to form a liquid crystal polymer film.
  • a patterned retarder substrate bonded together to further reinforce the characteristics (optical and mechanical properties) of the substrate placed on the front surface of the completed 3D display device as an additional method accessible by general knowledge.
  • the 3D display device may be completed by peeling off portions to transfer only the pattern-oriented liquid crystal polymer layer to the display device and attaching a substrate having desired optical and mechanical properties again.
  • glass may be coated on the outermost surface to commercialize it.
  • the use of the adhesive 700 having a very low refractive index (less than 1.5) as the adhesive 700 for attaching the glass will be advantageous in terms of anti-reflection, and may also be anti-ultraviolet (blocking) to the adhesive 700 for bonding the glass in advance. ) May be added to give a sunscreen effect.
  • an adhesive which does not require a solvent as an epoxy or acrylic having a natural hardening type, a photo hardening property, or an adhesive mixed therein as an adhesive used for bonding or lamination of a film.
  • the adhesive 700 also forms a thin film together with the base material and the liquid crystal film, there may be an influence of the refractive index.
  • the optical adhesive of the refractive index is less than about 1.6 it can be seen that little effect on the image quality.
  • the bonding time is very long and the thickness of the adhesive layer between them is required because the adhesive must be put in the center and press the glass from the center to diffuse the adhesive. There was a problem that is not constant or bubbles remain.
  • the flexible organic polymer film 100 of the present invention since the adhesive 700 was coated in advance and thus (pressurized) adhesion was possible at one time, the bonding time could be greatly reduced.
  • the pattern retarder may be detached during long-term use due to its own weight. Therefore, it is necessary to supplement the frame by installing an edge frame even after bonding.
  • the adhesive 700 alone can provide stability without further supplementation by an edge frame or the like.
  • the production of two or more patterned retarders by manifolding in one coating batch to improve productivity requires expensive mechanical or laser cutting equipment for glass products, while inexpensive for flexible film products. The facility not only enables the process but also yields high yields without fear of breakage.
  • flat panel displays such as organic EL, PDP, and FED, which do not use polarization, are provided with a polarizing plate (or equivalent polarizing medium) on the surface of the display element, and then a pattern retarder film is placed thereon. Since the effect can be obtained, the present invention can be applied to a general pixelated display device.
  • the present invention can be widely used in various electronic industries such as stereoscopic image display industry, stereoscopic image display module manufacturing industry, display industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention relates to a three-dimensional image display device, and more particularly to a stereoscopic three-dimensional image display device of a polarization division method using a patterned retarder composed of a photo-crosslinkable liquid crystal film. The present invention is characterized in that various organic polymer films instead of the existing glass are used as bases used for manufacturing a patterned retarder. The organic polymer films are very inexpensive, thin, and light and producibility in a manufacturing process of the image display device is high in comparison with the glass having an inorganic property and can enhance the long-term reliability of the patterned retarder by adding an ultraviolet-proof function thereto. A contrast ratio and a luminance and the like are improved by utilizing various optical characteristics like natural refractive indexes or double refraction of the films. Thereby, a three-dimensional stereoscopic image display device having improved three-dimensional sensitivity can be formed.

Description

입체 영상 표시 장치Stereoscopic video display
본 발명은 3차원(3D) 입체 영상 표시 장치에 관한 것으로써 특히 광가교성액정으로 구성되는 패턴드리타더를 이용한 편광 분할 방식의 안경식 (stereoscopic) 3차원 입체 영상 표시 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional (3D) stereoscopic image display device, and more particularly, to a stereoscopic three-dimensional stereoscopic image display device of a polarization division method using a pattern retarder composed of photocrosslinkable liquid crystals.
입체영상 디스플레이는 일찍이 20세기를 전후하여 창안된 이래 점진적으로 발전되어 안경식 입체 영상 표시 장치(셔터 안경, micro polarizer, patterned retarder type, 등), 무안경식 입체 영상 표시 장치(parallax barrier, lenticular lens type, 등), 그리고 홀로그램 등 각종 방식의 기술이 출현하며 현재에 이르고 있다. Stereoscopic display has been progressively developed since its creation around the 20th century, and it has been developed as a stereoscopic stereoscopic display device (shutter glasses, micro polarizer, patterned retarder type, etc.), autostereoscopic stereoscopic image display device (parallax barrier, lenticular lens type, Etc.) and holograms have emerged to date.
이 중 안경식는 무안경식에 비해 시야각이 넓고 감상 시 어지러움 증 유발이 적으며 비교적 저렴한 원가, 특히 홀로그램에 비해서는 매우 저렴한 원가로 제작이 가능할 뿐만 아니라 3D 감상 시에는 안경을 착용하고 2D는 안경을 착용치 않고 그냥 감상하면 되기 때문에 한 개의 디스플레이로 2D, 3D를 겸용할 수 있다는 등의 장점들이 있어서 현재 그 시장이 확대 일로에 있다.Of these, the glasses type has a wider viewing angle and less dizziness when viewed, and can be produced at a relatively low cost, especially at a very low cost compared to holograms. The market is expanding because there are advantages such as being able to use 2D and 3D with one display.
현재 안경식 3D의 대표적 방식으로는 시교차 방식인 셔터 안경 방식(shutter glasses)과 시분할 방식인 편광분할 방식이 있는데 셔터 안경 방식은 좌우 영상을 한 개의 화면에서 번갈아 표시되게 하면서 셔터 안경의 좌안과 우안의 순차적 개폐 타이밍(timing)을 표시되는 영상의 시교차 시간과 일치시켜서 각 영상이 좌안과 우안에 따로 인식되게 함으로써 입체감을 나타내는 방식이며 편광분할 방식은 한 화면에서 화소를 열, 행, 또는 화소 단위로 2 분할하여 2개의 서로 다른 영상을 서로 다른 편광방향으로 표시되게 하고 역시 서로 다른 편광방향을 갖은 좌,우의 편광자를 구비한 편광안경을 통하여 좌안, 우안이 2개의 서로 다른 영상만을 각기 인식하도록 하여 입체감을 느끼도록 하는 방식이다.Representative methods of glasses type 3D include shutter glasses method, which is a time-crossing method, and polarization split method, which is a time-division method. The shutter glasses method displays left and right images of the left and right eyes of the shutter glasses alternately on one screen. The sequential opening / closing timing is matched with the time-interval time of the displayed image so that each image is recognized separately from the left eye and the right eye. By dividing two images into two different polarization directions, and by using polarized glasses with left and right polarizers having different polarization directions, the left and right eyes recognize two different images. This is how you feel.
셔터 안경 방식은 감상 시 피로감을 줄이고 입체감을 높이기 위해 단위 시간 당 시교차의 횟수를 높일 필요가 있는데 이 방식을 현행하는 LCD에 적용하는 경우 액정의 느린 응답속도와 스캔(scan)방식의 화면 어드레싱 타이밍(addressing timing)이 시교차 타이밍에 완전히 일치하지 못하는데 기인한 flicker 현상이 발생하게 되며 이는 감상 시 어지러움 증과 같은 피로(fatigue)를 유발하는 것으로 알려져 있다.The shutter glasses method needs to increase the number of times per unit time in order to reduce fatigue and increase stereoscopic feeling.When this method is applied to the current LCD, the slow response speed of the liquid crystal and the screen addressing timing of the scan method are applied. It is known that flicker occurs because addressing timing does not completely match the timing of time crossing, which causes fatigue such as dizziness when listening.
편광 분할 방식은 위와 같은 명멸 현상(flicker) 발생 요인이 없으므로 감상 시 피로 유발이 적으나 한 화면에서 동시에 두 영상을 표시하기 위해 행, 열, 또는 화소를 2 분할해야 하기 때문에 해상도가 반으로 줄어드는 문제가 있다. 그러나 LCD와 같이 현행하는 표시 장치의 대부분이 매우 고해상도이며 향후 해상도를 향상시키는 것은 충분히 가능하기 때문에 사실상 편광분할방식의 3D 제품 구성에 있어서는 해상도 반감이 문제되지 않는 것으로 보는 견해가 많다.The polarization splitting method does not cause flickering as described above, and causes less fatigue during viewing, but the resolution is reduced in half because two rows, columns, or pixels must be divided in order to display two images simultaneously on one screen. There is. However, since most of the current display devices such as LCDs are very high resolution, and it is possible to sufficiently improve the resolution in the future, there are many opinions that half resolution is not a problem in the polarization split 3D product configuration.
또한 셔터 안경 방식은 시교차 표시를 위하여 디스플레이 내 하드웨어, 또는 회로 등이 구비되어야 하며 셔터 안경이라는 고가의 안경을 필요로 하여 여러 명이 감상할 경우 비용이 매우 상승되는 반면 편광분할 방식은 표시소자 전면에 편광을 분할할 수 있는 패터닝(patterning)된 편광분할 광학매체(패턴드리타더(patterned retarder), micro polarizer, 등)를 장착하면 가격이 매우 저렴한 편광안경을 착용하고 다수가 감상할 수 있으므로 비용이 상대적으로 매우 적게 든다.In addition, the shutter glasses method must be equipped with hardware or circuitry in the display to display the time difference, and expensive glasses called shutter glasses are required, and the cost is very high when multiple people are watching, whereas the polarization split method is used on the front of the display device. A patterned polarization splitting optical medium (patterned retarder, micro polarizer, etc.) capable of dividing the polarization is relatively expensive because many people can wear the polarizing glasses which are very inexpensive and can view them. It costs very little.
현행하는 LCD는 편광을 이용한 표시소자로써 편광분할 방식의 3D를 적용하기에 매우 적합하며 그 대표적인 방식은 패턴드리타더(patterned retarder) 방식이다. 패턴드리타더(patterned retarder)는 LCD의 화소, 행, 또는 열 단위로 2개의 서로 다른 방향의 위상차를 갖는 광학매질을 형성(패턴화)시키고 이를 LCD 전면에 LCD 픽셀, 또는 픽셀 단위 크기에 맞추어(align하여) 배치하면 출사편광을 변조, 서로 다른 편광방향을 갖도록 구성된다. LCD의 출사편광은 선편광이므로 패턴드리타더(patterned retarder) 광학매질의 위상지연(retardation)을 1/4파장으로 하여 LCD의 출사편광 방향과 각기 +45도, -45도로 배치하면 각기 좌원출사편광과 우원출사편광을 얻을 수 있고 이를 좌원편광자와 우원편광자를 구비한 편광안경을 착용하고 감상하면 양안은 입체감을 느끼도록 분할된 각기 다른 영상을 보게 되어 깊이와 돌출 등의 입체감을 느끼게 된다.(도2)The current LCD is a display device using polarization, and is very suitable for applying polarization splitting 3D, and a representative method is a patterned retarder method. A patterned retarder forms (patterns) an optical medium with phase differences in two different directions in units of pixels, rows, or columns of an LCD and fits the LCD pixels or pixel units in front of the LCD ( When aligned, the output polarization is modulated to have different polarization directions. The outgoing polarization of the LCD is linearly polarized, so if the phase retardation of the patterned retarder optical medium is 1/4 wavelength, the polarization of the outgoing polarization of the LCD is +45 degrees and -45 degrees, respectively. When the right-sided polarized light is obtained and the polarized eyeglasses equipped with the left-circle polarizer and the right-side polarizer are viewed and viewed, both eyes see different images divided to feel a three-dimensional effect and feel a three-dimensional effect such as depth and protrusion. )
선편광을 이용하는 경우(도3)는 1/2파장의 광학매질을 제 1영역은 출사편광 방향에 45도, 제 2영역은 출사편광 방향과 0가 되도록 배치(또는 광학적으로 isotropic 상태로)하고 서로 90도 광축으로 배치된 2개의 선편광자를 구비한 편광안경을 통하여 좌우 영상 분할이 가능한데 선편광을 이용하는 방식은 선편광의 광축이 고정되지 않으면 소광비가 급격히 감소하기 때문에 시청자가 감상 시 머리를 움직이는 경우 좌우 영상이 완전히 분리되지 않아 입체감이 떨어지는 단점이 있다. 반면 원편광을 이용하는 경우는 출사원편광과 편광안경의 원편광 배치가 90도로 회전하지 않는 한 소광비의 감소가 거의 없어서 감상 시 움직임이 보다 자유로운 방식으로써 선호적이다. 이와 같이 편광판과 위상지연판을 이용하여 선편광 또는 원편광으로 편광을 분리하는 방법은 통상의 물리적 방법으로 다양한 방법이 있다. 예를 들어 1/8파장의 제 1위상지연판을 편광축과 22.5도, 그리고 1/8파장의 제 2위상지연판을 45도로 적층 배치하면 같은 원편광 효과를 얻을 수 있으며(도7) 같은 방법으로 1/4 파장의 위상지연판을 적층하여 선편광 효과를 얻을 수 있다(도6). 또한 1/2파장과 1/4파장의 위상지연판을 적층하여 원편광 효과를 얻을 수도 있는데 이 때 1/2파장은 패턴화하고 1/4파장은 패턴화되지 않은 광가교성 액정필름 또는 연신필름을 사용할 수 있다.(도4,5) 1/4파장의 기재는 PC, COP, PAc, PMMA, TAC 등의 유기고분자소재로 만들어진 필름을 연신하여 제조한 많은 제품이 상업화 되어 있고 이들을 이용할 수 있다. 상기와 같은 편광분리 기능을 갖는 패턴화된 위상지연판(패턴드리타더)을 구성하는 다양한 방법의 예시로는 도 2에서 도 7에 잘 나타나 있으며, 이러한 위상지연판을 제조하는 방법은 본 발명에서도 당연히 사용될 수 있음은 물론이다.In the case of using linearly polarized light (Fig. 3), the optical medium of 1/2 wavelength is arranged so that the first region is 45 degrees in the emission polarization direction and the second region is 0 with the emission polarization direction (or optically isotropic). Polarization glasses with two linear polarizers arranged on a 90-degree optical axis allow the left and right images to be split. The linear polarization method reduces the extinction ratio rapidly if the optical axis of the linear polarization is not fixed. There is a disadvantage that the three-dimensional feeling is not completely separated. On the other hand, the use of circular polarization is preferred because there is almost no reduction in extinction ratio unless the circular polarization arrangement of the source polarization and the polarizing glasses is rotated by 90 degrees. As described above, a method of separating polarized light into linearly or circularly polarized light using a polarizing plate and a phase delay plate may be a variety of methods using conventional physical methods. For example, the same circular polarization effect can be obtained by stacking a 1/8 wavelength first phase delay plate at a polarization axis with 22.5 degrees and a 1/8 wavelength second phase delay plate at 45 degrees (Fig. 7). By laminating a phase delay plate of 1/4 wavelength, a linearly polarized light effect can be obtained (Fig. 6). In addition, a circular polarization effect can be obtained by stacking a half-wave and a quarter-wave phase retardation plate, where half-wavelength is patterned and quarter-wavelength is unpatterned photocrosslinked liquid crystal film or stretched film. (Fig. 4, 5) As for the 1/4 wavelength substrate, many products made by stretching films made of organic polymer materials such as PC, COP, PAc, PMMA, TAC, etc. are commercialized and can be used. . Examples of various methods of constructing a patterned phase delay plate (pattern retarder) having a polarization separation function as described above are well illustrated in FIGS. 2 to 7, and the method of manufacturing such a phase delay plate is also in the present invention. Of course, it can be used.
패턴드리타더(patterned retarder)를 제작하는 방법으로는 광가교성 액정을 기재에 코팅(coating)하고 이를 각기 다른 광축을 갖도록 패턴(pattern) 배향시킨 후 광가교시켜서 액정 고분자 필름으로 만드는 패턴배향 방식이 보편적이다. 광가교성 액정(reactive mesogene)을 배향시키기 위해서 일반적으로 기재에 배향막(polyimide)을 코팅하고 고온 소성한 후 마스크(mask)를 덧대고 러빙(rubbing)을 실시하는 패턴 러빙 배향법, 광배향막을 코팅하고 포토마스크(photo mask)를 덧대고 편광조사(또는 비편광의 경사조사)하여 배향시키는 패턴 광배향법, 그리고 기재 자체, 또는 배향막을 코팅하여 형성시켜 놓은 표면을 마스크를 덧대고 이온빔(ion beam)이나 플라즈마 빔(plasma beam)을 진공에서 경사 조사하는 등의 패턴 배향 형성 방법이 있다.As a method of manufacturing a patterned retarder, a pattern alignment method of coating a photocrosslinkable liquid crystal on a substrate and aligning the patterns to have different optical axes and then photocrosslinking to form a liquid crystal polymer film is common. to be. In order to align the photocrosslinkable liquid crystal (reactive mesogene), the substrate is generally coated with a polyimide and subjected to a high temperature firing, followed by a pattern rubbing orientation method and a rubbing pattern. Pattern photo-alignment method by applying a photo mask and polarizing irradiation (or non-polarization inclination) and aligning the substrate, or by applying a mask to the surface formed by coating the substrate itself or an alignment layer and ion beam Or a pattern alignment forming method such as obliquely irradiating a plasma beam in a vacuum.
위의 공정에서 사용되는 기재는 주로 LCD 셀(cell) 제작 시 상하판으로 사용되는 강화유리 재질(soda lime, borosilicate류의 무기질재료)의 유리(glass)이며 대개 0.5~0.7mm 두께의 재질이 사용된다. 이 재질은 일반 유리에 비해 매우 고가임에도 사용되는 이유는 일단 같은 두께에서 기계적 성질이 보다 강하고 표면의 편평도가 우수하며 투명도가 높고 재질의 복굴절이 없이 광학특성이 균일하면서 그 위에 배향막이나 광가교성 액정을 일반적인 spin costing법을 사용하여 균일한 두께로 코팅하기 용이하기 때문이며 현재 LCD 제조용 glass로써 대량 보급되고 있으므로 조달이 용이하다. The substrate used in the above process is mainly glass of tempered glass (soda lime, inorganic material of borosilicates) that is used as the upper and lower plates when manufacturing LCD cells. do. Although the material is very expensive compared to ordinary glass, it is used because of its strong mechanical properties at the same thickness, excellent surface flatness, high transparency, uniform optical characteristics without birefringence, and an alignment film or a photocrosslinked liquid crystal on it. It is easy to coat with uniform thickness using general spin costing method and is easy to procure because it is widely distributed as LCD manufacturing glass.
그러나 유리 재질은 일단 값이 고가라는 단점 외에도 많은 문제가 있다.However, glass materials have many problems besides the disadvantage that they are expensive.
먼저 제작 공정 중에 파손의 가능성이 매우 높다. 특히 코팅에서 균일한 막을 얻기 위한 spin coating의 고속회전에 의해 파손될 가능성이 상존하며 유리 위에 형성한 패턴드리타더(patterned retarder)를 LCD에 부착하기 위해 사이에 접착제를 충진하고 유리를 가압 부착해야 하는데 이때 역시 파손의 가능성이 높을 뿐만 아니라 공정시간(tact time)이 매우 길어서 수율과 양산성이 떨어진다. First of all, the possibility of breakage during the manufacturing process is very high. In particular, there is a possibility of breakage due to high-speed rotation of the spin coating to obtain a uniform film in the coating. In order to attach the patterned retarder formed on the glass to the LCD, an adhesive must be filled in between and the glass is pressurized. Not only is there a high possibility of breakage, but also the process time (tact time) is very long, yields and yields are poor.
또한 유리 재질 위에 균일한 액정코팅막을 형성할 수 있는 방법은 spin coating이 거의 유일한 방법인데 이 방법에서는 실제 도포되는 코팅액에 비해 회전 시 흩어지는 코팅액의 비율이 매우 커서 특수 소재로써 값이 매우 비싼 배향물질이나 광가교성 액정용액의 양적 손실이 매우 크다.In addition, spin coating is almost the only method to form a uniform liquid crystal coating film on the glass material. In this method, the ratio of the coating liquid to be dispersed during rotation is very high compared to the coating liquid, which is a special material, which is very expensive. However, the quantitative loss of the photocrosslinkable liquid crystal solution is very large.
또한 이 강화유리는 일반적으로 자외선(UV)를 완전히 차단하지 못하여 장기적으로 사용하면서 자외선에 노출되게 되면 광가교성 액정 고분자 필름이 퇴화되어 자체 위상차값이 변하게 되면서 동시에 편광분리 효과가 저하되어 3D 입체감이 저하되는 장기신뢰성의 문제를 안고 있다. In addition, this tempered glass generally does not completely block ultraviolet rays (UV), and when exposed to ultraviolet rays during long-term use, the photocrosslinkable liquid crystal polymer film is deteriorated and its phase difference value is changed, and at the same time, the polarization separation effect is lowered and 3D stereoscopic effect is lowered. There is a problem of long-term reliability.
또한 유리는 빛의 반사가 심하여 감상 시 외부 빛의 반사에 의한 눈부심 현상으로 3D 입체감이 저하될 뿐만 아니라 2D의 영상을 감상할 경우에도 눈부심에 의한 피로감을 준다는 단점이 있다.In addition, the glass has a disadvantage in that the reflection of the light is severe and the 3D three-dimensional effect is not only lowered due to the glare caused by the reflection of the external light, but also the fatigue caused by the glare when viewing the 2D image.
또한 유리는 그 자체 두께로 인하여 LCD의 출사광이 그 두께 내에서 미세한 내부 난반사를 일으키며 주변으로 전파되는 경우가 있기 때문에 좌우 영상이 완전히 구분되지 않고 한 쪽 눈에 입사될 영상이 다른 쪽 눈에도 입사되는 간섭현상(crosstalk)이 생겨서 결국 3D 입체감을 저하시키게 되는 문제가 있다.In addition, because glass has its own thickness, the light emitted from the LCD may cause fine internal diffuse reflection within the thickness and propagate to the surroundings. Therefore, the left and right images are not completely distinguished, and the image to be incident on one eye is also incident on the other eye. There is a problem that crosstalk occurs, which ultimately degrades 3D stereoscopic feeling.
또한 유리 위에 균일한 코팅을 위해서는 고속회전의 spin coating법을 이용해야 하는데 spin coating 설비는 50inch급 이상에서는 저속회전용(유리 표면의 세정을 위한 설비)를 제외하고는 사실상 가용한 설비가 없기 때문에 50inch급 이상의 패턴드리타더(patterned retarder)를 제작한다는 것이 거의 불가능하여 디스플레이의 대형화 추세에 부합하기 어렵다.In addition, spin coating method of high speed rotation should be used for uniform coating on glass. In case of 50 inches or more, spin coating equipment is 50 inches because there is virtually no equipment available except for low speed rotation (equipment for cleaning glass surface). It is almost impossible to produce a patterned retarder of more than a class, which makes it difficult to meet the trend of larger displays.
본 발명이 해결하고자 하는 기술적 과제는 패턴드리타더(patterned retarder)의 기재로 사용된 기존의 유리를 유기 고분자 필름으로 대체하는 입체 영상 표시 장치 및 이를 제조하는 새로운 방법을 제시하는 것이다.The technical problem to be solved by the present invention is to propose a stereoscopic image display device and a new method for manufacturing the same to replace the conventional glass used as the substrate of the patterned retarder (organic polymer film).
본 발명을 통하여 기존의 패턴드리타더(patterned retarder) 제품에서 구가할 수 없었던 새로운 장점들을 제시하면서 보다 값 싸고 향상된 품질의 3D 입체영상표시장치를 구현할 수 있는 새로운 패턴드리타더(patterned retarder) 및 이를 이용한 3D LCD를 제공할 수 있다.The present invention provides a new patterned retarder which can realize a cheaper and improved quality 3D stereoscopic display device while presenting new advantages that cannot be obtained in existing patterned retarder products and the same. It is possible to provide a used 3D LCD.
본 발명이 이루고자 하는 기술적 과제를 달성하기 위하여, 광가교성 액정고분자 필름을 포함하는 편광 분리부; 및 0 ≤ Rth ≤ 30nm, 또는 0 ≤ Re ≤ 30nm 의 굴절율이방성을 갖는 유기 고분자 물질로 구성되는 유기 필름부;를 포함하며, 상기 유기 필름부를 통과하는 편광은 좌원편광과 우원편광을 모두 포함하는 것인 것을 특징으로 하는 입체 영상 표시 장치를 제시한다.In order to achieve the technical problem to be achieved by the present invention, a polarization separator comprising a photocrosslinkable liquid crystal polymer film; And an organic film part composed of an organic polymer material having refractive index anisotropy of 0 ≦ Rth ≦ 30nm, or 0 ≦ Re ≦ 30nm, wherein the polarization passing through the organic film part includes both left circularly polarized light and right circularly polarized light. A stereoscopic image display device is provided.
상기 유기 고분자 물질은 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate), 비정질 불소 수지 중에서 선택되는 어느 하나인 것이 바람직하다.The organic polymer material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
상기 유기 필름부는 (-)c 의 광학특성을 가지는 경우, 상기 (-c) 광학 특성이 0 ≤ Rth ≤ 10nm인 것인 것이며, 상기 유기 필름부가 (-)a 광학특성을 가지는 경우, 상기 (-a) 광학 특성이 0 ≤ Re ≤ 10nm 인 것인 것이며, 상기 유기 필름부가 a 광학특성을 가지는 경우, 상기 광학 특성이 0 ≤ Re ≤ 10nm 인 것이 더욱 바람직하다.When the organic film part has an optical characteristic of (-) c, the (-c) optical property is 0 ≦ Rth ≦ 10 nm, and when the organic film part has a (−) a optical property, the (- a) The optical property is 0 ≤ Re ≤ 10 nm, and when the organic film part has a optical property, the optical property is more preferably 0 ≤ Re ≤ 10 nm.
상기 유기 필름부의 일면에는 반사 방지 코팅 (anti reflection), 눈부심 방지 코팅 (anti glare) 및 기계적 성질 강화 코팅 (hard coating) 중 어느 하나 이상의 코팅이 추가적으로 더 부가되어 있는 것인 것이 바람직하다.It is preferable that at least one coating of at least one of an anti reflection coating, an anti glare, and a hard coating is further added to one surface of the organic film portion.
상기 유기 필름부는 1/4 파장의 위상차를 가지는 유기 고분자 필름으로 구성되는 것인 것이 바람직하다.The organic film portion is preferably composed of an organic polymer film having a phase difference of 1/4 wavelength.
상기 편광 분리부과 상기 유기 필름층 사이의 배향막;를 포함하며, 상기 배향막은 상기 유기 필름부 상에 형성된 것이거나, 상기 배향막은 배향막 형성 기재상에 상기 배향막 형성 기재와 분리되어 형성되고, 상기 배향막 형성 기재가 상기 배향막으로부터 분리된 이후, 상기 유기 필름부가 상기 배향막에 접착되는 것이거나, 상기 배향막은 상기 유기 필름부의 표면에 자외선 조사 처리로 형성되는 것인 것 중 어느 하나 이상인 것이 바람직하다.And an alignment layer between the polarization separator and the organic film layer, wherein the alignment layer is formed on the organic film portion, or the alignment layer is formed separately from the alignment layer forming substrate on the alignment layer forming substrate, and the alignment layer is formed. After the substrate is separated from the alignment film, the organic film portion is preferably adhered to the alignment film, or the alignment film is any one or more of being formed by ultraviolet irradiation treatment on the surface of the organic film portion.
상기 배향막 형성 기재는 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate), 비정질 불소 수지 중에서 선택되는 어느 하나인 것인 것이 바람직하다.The alignment layer forming substrate is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
전면 평광판;을 더 포함하며, 상기 전면 편광판은 상기 액정고분자필름부에 직접 접착되는 것인 것이 바람직하다. The front polarizer further comprises; The front polarizer is preferably bonded directly to the liquid crystal polymer film.
본 발명이 이루고자 하는 기술적 과제를 달성하기 위하여, 광가교성 액정고분자 필름을 포함하는 적어도 하나 이상의 편광 분리부; 및 굴절율이 1.33 내지 1.53, 더욱 바람직하게는 1.33 내지 1.50인 특성을 갖는 고분자 유기 물질로 구성되는 유기 필름부;를 포함하며, 상기 유기 필름부의 굴절율은 상기 액정고분자필름부의 굴절율보다 작은 것인 것이며, 상기 유기 필름부를 통과하는 편광은 좌원편광과 우원편광을 모두 포함하는 것인 것을 특징으로 하는 입체 영상 표시 장치를 제시한다.In order to achieve the technical problem to be achieved by the present invention, at least one polarization splitter including a photocrosslinkable liquid crystal polymer film; And an organic film part composed of a polymer organic material having a refractive index of 1.33 to 1.53, more preferably 1.33 to 1.50, wherein the refractive index of the organic film part is smaller than that of the liquid crystal polymer film part. The polarized light passing through the organic film part includes a left circularly polarized light and a right circularly polarized light.
상기 고분자 유기 물질은 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate), 비정질 불소 수지 중에서 선택되는 어느 하나인 것인 것이 바람직하다.The polymer organic material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
상기 유기 필름부는 (-)c 의 광학특성을 가지는 경우, 상기 (-c) 광학 특성이 0 ≤ Rth ≤ 10nm인 것인 것이며, 상기 유기 필름부가 (-)a 광학특성을 가지는 경우, 상기 (-a) 광학 특성이 0 ≤ Re ≤ 10nm 인 것인 것이며, 상기 유기 필름부가 a 광학특성을 가지는 경우, 상기 광학 특성이 0 ≤ Re ≤ 10nm 인 것인 것이 바람직하다.When the organic film part has an optical characteristic of (-) c, the (-c) optical property is 0 ≦ Rth ≦ 10 nm, and when the organic film part has a (−) a optical property, the (- a) The optical property is 0 ≤ Re ≤ 10 nm, and when the organic film part has a optical property, the optical property is preferably 0 ≤ Re ≤ 10 nm.
본 발명이 이루고자 하는 기술적 과제를 달성하기 위하여, 광가교성 액정고분자 필름을 포함하는 적어도 하나 이상의 편광 분리부; 및 자외선 차단 물질을 포함하는 유기 고분자 물질로 구성되는 유기 필름부;를 포함하며, 상기 유기 필름부를 통과하는 편광은 좌원편광과 우원편광을 모두 포함하는 것인 것이 바람직하다. 특징으로 하는 입체 영상 표시 장치를 제시한다.In order to achieve the technical problem to be achieved by the present invention, at least one polarization splitter including a photocrosslinkable liquid crystal polymer film; And an organic film part composed of an organic polymer material including a UV blocking material, wherein the polarized light passing through the organic film part includes both left circularly polarized light and right circularly polarized light. A stereoscopic image display device is featured.
상기 고분자 유기 물질은 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate), 비정질 불소 수지 중에서 선택되는 어느 하나인 것인 것이 바람직하다.The polymer organic material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
상기 유기 필름부는 0 ≤ Rth ≤ 10nm, 또는 0 ≤ Re ≤ 10nm 의 굴절률 이방성을 갖는 것이 바람직하다.It is preferable that the said organic film part has refractive index anisotropy of 0 <= Rth <= 10nm, or 0 <Re <= 10nm.
본 발명이 이루고자 하는 기술적 과제를 달성하기 위하여, 고분자 유기 물질로 구성되는 유기 필름부에 배향 물질을 코팅하여 배향막을 형성하는 단계; 상기 배향막을 표면 배향하는 단계; 및 상기 표면 배향된 배향막에 광가교성 액정층을 부가하고 경화시켜 광가교성 액정고분자 필름을 형성하는 단계;를 포함하며, 상기 유기 고분자 물질은 0 ≤ Rth ≤ 30nm, 또는 0 ≤ Re ≤ 30nm 의 굴절율이방성을 갖는 것인 것을 특징으로 하는 입체 영상 표시 장치의 제조 방법을 제시한다.In order to achieve the technical problem to be achieved by the present invention, forming an alignment film by coating the alignment material on the organic film portion made of a polymer organic material; Surface-aligning the alignment layer; And forming a photocrosslinkable liquid crystal polymer film by adding and curing a photocrosslinkable liquid crystal layer to the surface-oriented alignment layer, wherein the organic polymer material has an index of refraction of 0 ≤ Rth ≤ 30 nm, or 0 ≤ Re ≤ 30 nm. A method of manufacturing a stereoscopic image display device is provided.
상기 고분자 물질은 굴절율이 1.33 내지 1.53 더욱 바람직하게는 1.33 내지 1.50인 특성을 갖는 것인 것이 바람직하다.The polymer material may have a refractive index of 1.33 to 1.53, more preferably 1.33 to 1.50.
상기 고분자 물질은 자외선 차단 물질을 더 포함하는 것인 것이 바람직하다.Preferably, the polymer material further comprises a sunscreen material.
상기 고분자 유기 물질은 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate), 비정질 불소 수지 중에서 선택되는 어느 하나인 것인 것이 바람직하다.The polymer organic material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
본 발명이 이루고자 하는 기술적 과제를 달성하기 위하여, 배향막 형성 기재에 배향 물질을 코팅하여 배향막을 형성하는 단계; 상기 배향막을 표면 배향하는 단계; 상기 표면 배향된 배향막에 광가교성 액정층을 부가하고 경화시켜 광가교성 액정고분자 필름을 형성하는 단계; 및 상기 배향막 형성 기재를 제거하고, 상기 액정고분자피름부의 일면에 유기 고분자 물질로 구성되는 유기 필름부를 부착 및 합착하는 방식 중 어느 한 방식으로 형성하는 단계;를 포함하며, 상기 고분자 유기 물질은 0 ≤ Rth ≤ 30nm, 또는 0 ≤ Re ≤ 30nm 의 굴절률이방성을 갖는 것을 특징으로 하는 입체 영상 표시 장치의 제조 방법을 제시한다.In order to achieve the technical problem to be achieved by the present invention, forming an alignment film by coating the alignment material on the alignment film forming substrate; Surface-aligning the alignment layer; Adding and curing a photocrosslinkable liquid crystal layer to the surface oriented alignment film to form a photocrosslinkable liquid crystal polymer film; And removing the alignment layer forming substrate, and forming the organic film part made of an organic polymer material on one surface of the liquid crystal polymer film part in a manner of attaching and bonding the organic film part, wherein the polymer organic material is 0 ≦. A method of manufacturing a stereoscopic image display device having refractive index anisotropy of Rth ≦ 30 nm or 0 ≦ Re ≦ 30 nm is provided.
상기 고분자 유기 물질은 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate), 비정질 불소 수지 중에서 선택되는 어느 하나인 것인 것이 바람직하다.The polymer organic material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), it is preferably any one selected from an amorphous fluorine resin.
입체 영상 표시 장치의 제조에서 유리 대신 유기 고분자 필름을 사용하는 경우에는 다음과 같은 장점이 있다.In the case of using an organic polymer film instead of glass in the manufacture of a stereoscopic image display device has the following advantages.
첫째, 소재의 가격이 저렴하며, 파손 가능성이 거의 없고, 패턴드리타더 제조 및 이를 부착한 입체영상표시장치를 제조하는데 있어서 공정성이 매우 우수하고 공정비용이 저렴하다.First, the cost of the material is low, there is almost no possibility of damage, and the processability is very excellent and the process cost is low in manufacturing the pattern retarder and manufacturing the stereoscopic image display device having the same.
둘째, 유기 고분자 필름의 제조 시에 자외선 차단제를 혼입하여 제조할 수 있기 때문에, 유기 고분자 필름에 자외선 차단 기능이 부여되어 자외선에 취약한 광가교성 액정필름의 장기신뢰성을 향상시킬 수 있다.Second, since the UV-blocking agent may be mixed with the organic polymer film, the UV-blocking function is provided to the organic polymer film, thereby improving long-term reliability of the photocrosslinkable liquid crystal film vulnerable to ultraviolet rays.
셋째, 유리에 비하여 외부 빛의 반사에 의한 눈부심 현상이 적어 입체 영상 감상 시 입체감의 저하가 적고, 눈의 피로가 적은 장점이 있다.Third, compared to glass, there is less glare due to reflection of external light, so there is less deterioration of stereoscopic feeling when viewing stereoscopic images, and less fatigue of eyes.
넷째, 유기 고분자 필름은 그 실제 사용 두께가 0.1mm 이하의 박막이므로 사용두께가 0.5~0.7mm인 유리에 비해 투과도가 높으며 박막의 필름 내 난반사가 거의 없어 crosstalk 현상을 줄일 수 있다.Fourth, since the organic polymer film has a thin film of 0.1 mm or less in actual use, the transmittance is higher than glass having a thickness of 0.5 to 0.7 mm, and there is almost no diffuse reflection in the film, thereby reducing the crosstalk phenomenon.
다섯째, 유기 고분자 필름에는 그 굴절률이 유리의 굴절률(1.5~1.54) 보다 낮은 필름이 있으며 이러한 필름의 사용시 광가교성액정필름의 굴절률과 차이를 더욱 크게 함으로써 반사방지 효과를 향상시키고 C/R을 향상시킬 수 있다. Fifth, the organic polymer film has a film whose refractive index is lower than the refractive index of glass (1.5 ~ 1.54), and when the film is used, the refractive index of the photocrosslinkable liquid crystal film is further increased to improve the antireflection effect and improve the C / R. Can be.
도 1은 본 발명의 입체 영상 표시 장치가 LCD에 결합한 형태에 대한 일 실시예적 도면이다. 1 is a diagram illustrating an embodiment in which a stereoscopic image display device of the present invention is coupled to an LCD.
도 2는 ¼ 파장(액정필름)을 이용한 입체 영상 표시 장치의 예시에 관한 일 실시예적 도면이다.2 is a diagram illustrating an example of a stereoscopic image display apparatus using a quarter wavelength (liquid crystal film).
도 3은 ½ 파장(액정필름)을 이용한 입체 영상 표시 장치의 예시에 관한 일 실시예적 도면이다.3 is a diagram illustrating an example of a stereoscopic image display apparatus using ½ wavelength (liquid crystal film).
도 4는 ½ 파장(액정필름)과 ¼ 파장(연신필름)을 이용한 입체 영상 표시 장치의 예시에 관한 일 실시예적 도면이다.4 is a diagram illustrating an example of a stereoscopic image display apparatus using ½ wavelength (liquid crystal film) and ¼ wavelength (stretched film).
도 5는 ½ 파장(액정필름)과 ¼ 파장(액정필름 또는 연신필름)을 이용한 입체 영상 표시 장치의 예시에 관한 일 실시예적 도면이다.FIG. 5 is a diagram illustrating an example of a stereoscopic image display apparatus using ½ wavelength (liquid crystal film) and ¼ wavelength (liquid crystal film or stretched film).
도 6은 다층의 액정필름(1/4 파장)을 이용한 입체 영상 표시 장치의 예시에 관한 일 실시예적 도면이다.FIG. 6 is a diagram illustrating an example of a stereoscopic image display apparatus using a multilayer liquid crystal film (1/4 wavelength).
도 7은 다층의 액정필름(1/8 파장)을 이용한 입체 영상 표시 장치의 예시에 관한 일 실시예적 도면이다.FIG. 7 is a diagram illustrating an example of a stereoscopic image display apparatus using a multilayer liquid crystal film (1/8 wavelength).
도 8은 본 발명의 편광판을 패턴드리타더와 합지하는 경우 편광판의 외면 TAC 보호필름 없이 패턴드리타더를 합지하는 방식이 적용된 입체 영상 표시 장치에 대한 다른 일 실시예적 도면이다.FIG. 8 is a view illustrating another example of a stereoscopic image display device in which a pattern retarder is laminated without a TAC protective film on the outer surface of the polarizer when the polarizer is laminated with the pattern retarder. FIG.
도 9는 본 발명의 입체 영상 제조 방법에 관한 일실시예적 흐름도이다.9 is a flowchart illustrating a method of manufacturing a stereoscopic image according to the present invention.
도 10은 본 발명의 입체 영상 제조 장법에 관한 다른 일실시예적 흐름도이다.10 is a flowchart illustrating another embodiment of the method for manufacturing a stereoscopic image according to the present invention.
*** 도면의 주요부에 대한 설명 ****** Description of the main parts of the drawings ***
100 : 유기 고분자 필름 200 : 배향막100: organic polymer film 200: alignment film
300 : 편광 분리부 310 : 광가교성 액정고분자 필름300: polarization separation unit 310: photocrosslinkable liquid crystal polymer film
310a : 광가교성 액정고분자 필름 또는 연신 필름310a: photocrosslinkable liquid crystal polymer film or stretched film
311 : 제 1 영역 312 : 제 2 영역311: first region 312: second region
321 : 편광축과 -22.5도 322 : 편광축과 +22.5도321: polarization axis and -22.5 degrees 322: polarization axis and +22.5 degrees
323 : 편광축과 -45도 324 : 편광축과 +45도323: polarization axis and -45 degrees 324: polarization axis and +45 degrees
400 : 전면 편광판 510 : 전면 유리400: front polarizer 510: front glass
520 : 칼라 필터 사이드 530 : 액정520: color filter side 530: liquid crystal
540 : TFT side 540: TFT side
550 : BM의 중앙과 패턴 간의 계면을 맞춘 가상의 정렬선550: Virtual alignment line that fits the interface between the center of the BM and the pattern
560 : 블랙 매트릭스(BM) 570 : 후면 유리560 black matrix (BM) 570 rear glass
580 : 후면 편광판 590 : 백라이트 유닛580: rear polarizer 590: backlight unit
600 : 편광판 보호필름 650 : PVA(편광층)600: polarizing plate protective film 650: PVA (polarizing layer)
700 : 접착제700: Adhesive
이하, 도면을 참조하면서 더욱 상세하게 설명한다.Hereinafter, it demonstrates in detail, referring drawings.
도 1은 본 발명은 입체 영상 표시 장치의 구조에 관한 일 실시예적 도면이다. 도 1은 본 발명의 입체 영상 표시 장치로써 LCD를 사용한 일 실시예적 도면이다. 본 실시예에서는 2개의 광가교성 액정고분자 필름부(310)로 편광 분리부(300)가 구성되고 있음을 보여주고 있다. 한편, 상기 배향막(200)과 상기 광가교성 액정고분자 필름(310) 사이에 있는 필름은 광가교성 액정고분자 필름 또는 연신 필름(310a)일 수 있다. 본 발명의 유기 고분자 필름(100)은 상기 편광 분리부(300)과 상기 배향막(200)의 외곽에 배치되어 있음을 알 수 있다.1 is a diagram illustrating a structure of a stereoscopic image display device according to an exemplary embodiment of the present invention. 1 is a diagram illustrating an embodiment using an LCD as a stereoscopic image display device of the present invention. In the present embodiment, it is shown that the polarization separator 300 is composed of two photocrosslinkable liquid crystal polymer film portions 310. Meanwhile, the film between the alignment layer 200 and the photocrosslinkable liquid crystal polymer film 310 may be a photocrosslinkable liquid crystal polymer film or a stretched film 310a. It can be seen that the organic polymer film 100 of the present invention is disposed outside the polarization separator 300 and the alignment layer 200.
패턴드리타더(patterned retarder)에 형성된 pattern의 크기는 화소 또는 화소 단위 넓이에 해당하여 매우 정교하며 대개 그 패턴의 형태가 LCD의 행, 또는 열에 맞추어 형성되고 이를 LCD에 장착 시 LCD 픽셀의 행, 또는 열의 위치와 정확히 일치(align)시켜 부착해야 하기 때문에 경질의 기재인 유리에 패턴드리타더(patterned retarder)를 형성하는 것이 제조 공정상 용이하다. 그러나 특정한 광학적 성질을 만족하는 유연한 고분자 유기 필름의 경우도 제조 공정에서 그 필름의 평활도를 유지시키는 것이 충분히 가능하기 때문에 정교한 패턴드리타더(patterned retarder)를 유기 고분자 필름(100)이라는 유연한 기재(substrate) 위에 형성시키는 것이 가능하다. The size of the pattern formed in the patterned retarder corresponds to the pixel or pixel unit width and is very precise. Usually, the pattern is formed in accordance with the rows or columns of the LCD, and the rows of the LCD pixels when mounted on the LCD, or It is easy in the manufacturing process to form a patterned retarder on the glass, which is a hard substrate, because it must be attached in exact alignment with the position of the rows. However, in the case of a flexible polymer organic film that satisfies specific optical properties, it is possible to maintain the smoothness of the film in the manufacturing process, so that a sophisticated patterned retarder may be used as a flexible substrate called the organic polymer film 100. It is possible to form on.
일반적으로 유연한 기재는 다양한 종류가 있으나 3D 디스플레이를 만들기 위한 패턴드리타더(patterned retarder)에서는 우수한 광학적 특성(높은 광투과도, 균일한 굴절률 분포 등)과 일정 수준 이상의 변형이 없는 기계적 특성, 제조공정의 용이성(코팅용이성) 등이 만족되는 기재가 필요하다.In general, there are various types of flexible substrates, but in patterned retarders for making 3D displays, excellent optical properties (high light transmittance, uniform refractive index distribution, etc.), mechanical properties without deformation above a certain level, and ease of manufacturing process The base material which satisfy | fills (ease of coating) etc. is required.
본 발명에서는 기존의 유리 재질의 단점을 개선하면서 전반적인 제품의 품질을 향상시키고 제조 원가를 크게 절감할 수 있는 방법으로써 광학적, 기계적으로 적절히 구성 가능하고 공정적 용이성도 갖춘 새로운 기재로써 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone), PVA(polyvinylalcohol), PAR(polyarylate), 비정질 불소 수지 등을 도입하였다. In the present invention, as a method to improve the overall product quality and significantly reduce the manufacturing cost while improving the shortcomings of the existing glass material, triacetyl cellulose (TAC) as a new substrate that can be properly configured optically and mechanically and also has easy processability. , Cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), polyethylenemaphthatlate (PEN), polyethyleneterephtalate (PET), PI (polyimide), PSF (polysulfone), PVA (polyvinylalcohol), PAR (polyarylate), amorphous fluorine resin and the like were introduced.
본 발명의 유기 고분자 필름(100)의 재질은 수직방향 복굴절 특성이 0 ≤ Rth ≤ 30nm이며, 또는 평면상 복굴절 특성이 0 ≤ Re ≤ 30nm 의 성질을 가지는 것이 바람직하며, 더욱 바람직하게는 0 ≤ Rth ≤ 10nm이며, 또는 0 ≤ Re ≤ 10nm인 것이 좋다. Rth > 30nm 이면 측면 방향에서의 콘트래스트를 저하시키게 되는 문제가 있으며, Re > 30nm 이면 광가교성액정필름이 갖는 복굴절 특성과 조합되어 출사되는 원편광도가 변하게 되어 입체영상 화질을 저하시킬 수 있는 문제가 있다.The material of the organic polymer film 100 of the present invention preferably has a vertical birefringence property of 0 ≦ Rth ≦ 30 nm, or a planar birefringence property of 0 ≦ Re ≦ 30nm, and more preferably 0 ≦ Rth It is preferable that ≤ 10 nm, or 0 ≤ Re ≤ 10 nm. If Rth> 30nm, there is a problem of lowering the contrast in the lateral direction. If Re> 30nm, the circular polarization emitted in combination with the birefringence characteristic of the photocrosslinkable liquid crystal film is changed, which may lower the stereoscopic image quality. There is.
본 발명의 유기 고분자 필름(100)의 굴절율은 1.33 내지 1.53 더욱 바람직하게는 1.33 내지 1.50인 것이 바람직하다. 굴절율이 1.53을 초과하면 광가교성액정필름의 굴절률이 1.53~1.8 정도이므로 광가교성액정필름의 굴절률과 차이가 크지 않아서 고굴절,저굴절의 조합으로 얻어지는 반사방지의 효과, C/R 향상 효과가 크지 않을 수 있다.The refractive index of the organic polymer film 100 of the present invention is preferably 1.33 to 1.53, more preferably 1.33 to 1.50. If the refractive index exceeds 1.53, the refractive index of the photocrosslinkable liquid crystal film is about 1.53 ~ 1.8, so the difference between the refractive index of the photocrosslinkable liquid crystal film is not large and the antireflection effect obtained by the combination of high refractive index and low refractive index, and the C / R improvement effect will not be large. Can be.
이러한 유기 고분자 소재의 필름(100)은 그 가격이 기존의 유리 재질에 비해 매우 저렴하다는 것이 일차적 장점이다. The film 100 of the organic polymer material is a primary advantage that the price is very cheap compared to the conventional glass material.
또한 이러한 필름은 대개 0.1mm 이하의 박막이므로 그 두께 내 난반사에 의한 crosstalk 발생이 거의 없어서 3D 입체감을 저하시키지 않을 뿐만 아니라 그 자체의 절대광투과도(종류에 따라 약 88~95%)가 유리의 절대광투과도(93%)와 크게 차이가 없고 유리 보다 훨씬 얇은 두께로 사용되므로 그 상대 투과도가 매우 높아서 휘도 감소도 최소화할 수 있다는 장점이 있다.In addition, since these films are usually thin films of 0.1 mm or less, there is almost no crosstalk due to diffuse reflection in the thickness, so that the 3D stereoscopic effect is not reduced, and the absolute light transmittance (about 88 to 95% depending on the type) of the glass is absolute. There is no significant difference from the light transmittance (93%), and since it is used with a much thinner thickness than glass, the relative transmittance is very high, which has the advantage of minimizing luminance reduction.
본 발명의 입체 영상 표시 장치에 사용되는 유기 고분자 필름(100)에는 소정량의 자외선 차단 방지제가 포함되어 있는 것이 바람직하다. 유리와는 달리 유기 고분자 필름(100)은 그 제조 시 그 소재에 소정량의 자외선 방지(차단)제를 첨가하여 자외선을 차단하도록 하는 필름 제조가 가능하기 때문에 이러한 필름기재 상에 패턴드리타더(patterned retarder)를 형성시켜 LCD에 부착 사용하게 되면 유입되는 자외선을 차단할 수 있어서 광가교성 액정폴리머필름(310)의 장기적 퇴화를 원천적으로 방지할 수 있으므로 3D 디스플레이로써 장기신뢰성을 향상시킬 수 있다. 자외선 차단 방지제는 살리실릭산에스테르(salicylic acid ester)계, 벤조페논(benzophenone)계, 옥시벤조페톤(oxybenzophenone)계, 벤조트리아졸(benzotriazol)계, 시아토크릴레이트계(cyanoacrylate)계, 벤조에이트(benzoate)계 등의 유기물질 계열의 물질이 사용될 수 있으며, 이를 함유한 기재를 최전면에 배치 합착하여 자외선 투과에 의한 광가교성 액정고분자의 퇴화를 방지할 수 있으면 된다. 이러한 자외선방지제는 일반적으로 필름 제조시 필름주재료에 대해 중량비로 0.1 ~ 25% 정도 함유되어 자외선 차단 효과를 갖게 한다. 자외선 차단제로써 무기질 기반의산화아연(zinc oxide), 니켈복염(nickel complex salt) 등을 사용할 수도 있으나 이를 함유한 필름의 경우 투과도가 하락될 수 있다는 점에 유의해야 한다. It is preferable that the organic polymer film 100 used in the stereoscopic image display device of the present invention contains a predetermined amount of a sunscreen inhibitor. Unlike glass, the organic polymer film 100 is patterned on such a film substrate because it is possible to manufacture a film to block ultraviolet rays by adding a predetermined amount of ultraviolet (blocking) agent to the material during its manufacture. Forming a retarder and attaching it to the LCD can block incoming ultraviolet rays, thereby preventing long-term deterioration of the photocrosslinkable liquid crystal polymer film 310, thereby improving long-term reliability as a 3D display. Sunscreen inhibitors include salicylic acid esters, benzophenones, oxybenzophenones, benzotriazols, cyanoacrylates, and benzoates ( Substances based on organic substances such as benzoate) may be used, and the base material containing the benzoate may be disposed on the forefront and bonded to prevent deterioration of the photocrosslinkable liquid crystal polymer by UV transmission. Such sunscreens are generally contained in a weight ratio of 0.1 to 25% by weight relative to the film main material in the film manufacturing to have a sunscreen effect. Mineral sun-based zinc oxide, nickel complex salt, etc. may be used as the sunscreen, but it should be noted that the permeability of the film containing the same may be reduced.
한편, 유연한 유기 고분자 필름(100)에 배향막(200) 및 광가교성액정을 코팅하는 공정으로는 슬롯다이(slot die), 롤(roll), 그라비아(gravure) 등의 방식을 이용한 매우 다양한 방식의 코팅 공법을 채택할 수 있다. 유연한 우기 고분자 필름에는 유리 기재에 사용되는 스핀코팅(spin coating)과 같은 배치 유형(batch type)의 코팅이 아니라 연속적인 코팅이 가능하며, 이에 따라 양산성이 원천적으로 우수하고 더불어 고가의 소재인 배향막, 광가교성액정 등을 크게 절감할 수 있는 장점이 있어서 매우 큰 폭의 원가 절감이 가능하다. On the other hand, as a process for coating the alignment layer 200 and the photocrosslinked liquid crystal on the flexible organic polymer film 100 using a variety of methods such as slot die (roll), roll (roll), gravure (gravure), etc. Adopt a public law. The flexible rainy season polymer film can be a continuous coating rather than a batch type coating such as spin coating used for a glass substrate, and thus an alignment film which is excellent in mass production and an expensive material. As a result, it is possible to greatly reduce the optical cross-linking liquid crystals, which leads to a significant cost reduction.
본 발명에 도입된 고분자 소재로 이루어진 상기의 유연한 유기 고분자 필름(100)들은 다양한 굴절률을 가질 수 있는데, 이 중 그 고유 굴절률이 패턴드리타더(patterned retarder)를 형성하는 광가교성 액정의 굴절률(일반적으로 약 1.525~ 1.8, 평균 1.66)에 비해 낮은 종류들이 사용되는 것이 바람직하다. 패턴드리타더(patterned retarder)를 형성하는 광가교성 액정에 비하여 굴절률 차이가 비교적 큰 고분자 유기 필름에 광가교성 액정폴리머를 형성하면 패턴드리타더(patterned retarder)와 고분자 유기 필름의 고굴절, 저굴절 조합을 이용한 반사 방지의 효과도 얻을 수 있게 된다. 이는 기존의 soda lime이나 borosilicate 재질의 유리(굴절율 1.5~1.54) 기재를 사용하는 경우에는 두드러지지 않은 효과이다. 또한 필름 자체의 외부 빛에 대한 반사율도 유리에 비해 매우 낮기 때문에 이러한 복합적인 효과에 의해 매우 향상된 화질을 얻을 수 있다.The flexible organic polymer films 100 made of the polymer material introduced in the present invention may have various refractive indices, of which the intrinsic refractive index of the photocrosslinkable liquid crystal forms a patterned retarder (generally, It is preferable to use lower types as compared to about 1.525 to 1.8, on average 1.66). When a photocrosslinkable liquid crystal polymer is formed on a polymer organic film having a relatively large difference in refractive index compared to a photocrosslinked liquid crystal forming a patterned retarder, a high refractive index and a low refractive index combination of a patterned retarder and a polymer organic film is used. The effect of antireflection can also be obtained. This is not noticeable when using a conventional soda lime or borosilicate glass (refractive index 1.5 ~ 1.54) substrate. In addition, since the reflectance of the film itself to the external light is also very low compared to glass, the combined effect can result in a much improved image quality.
한편, 1/4파장의 패턴드리타더(patterned retarder)를 전면에 부착하여 원편광을 이용한 3D 표시장치에서는 그 원편광에 의해 외부반사광이 줄어 드는 효과로써 콘트래스트(contrast) 향상 등의 부수적인 장점이 있다. 유기 고분자 필름(100)의 굴절률을 적절히 조합(예를 들어 광가교액정필름(310)의 평균굴절률 보다 낮은 굴절률을 갖는 유기 고분자 필름(100)을 사용하여)하여 상기의 선효과를 최대한 살릴 수 있어서 결국 3D 입체감의 향상 뿐만 아니라 2D 화질 자체도 개선하는 효과(콘트래스트 향상 효과)가 매우 뚜렷하다.On the other hand, in a 3D display device using a circularly polarized light by attaching a 1/4 wavelength patterned retarder to the front side, the externally reflected light is reduced by the circularly polarized light, thereby improving the contrast. There is an advantage. By properly combining the refractive index of the organic polymer film 100 (for example, by using the organic polymer film 100 having a refractive index lower than the average refractive index of the photocrosslinked liquid crystal film 310), the above linear effects can be maximized. As a result, the effect of improving not only 3D stereoscopic feeling but also 2D image quality itself (contrast enhancement effect) is very obvious.
그리고, 두껍고 무거운 유리에 비해 경량 박형의 고분자 유기 필름은 LCD 전면에 부착 시 두께 및 무게의 증가가 거의 없기 때문에 디스플레이의 경량 박형화 추세에 부합하며 특히 이동형의 LCD에 적용할 경우 절대적으로 유리하다.In addition, compared to thick and heavy glass, the light weight thin polymer organic film hardly increases in thickness and weight when attached to the front of the LCD, so it meets the trend of light weight thinning of the display, and is particularly advantageous when applied to a mobile LCD.
한편, 이러한 고분자 소재로 이루어진 필름은 제조공정상에서 미세한 연신이 간혹 발생함으로 인하여 또는 그 소재 자체의 특성으로 인하여 굴절률 이방성을 갖기도 하는 문제가 있다. 이에 따라 a-plate(nx>ny=nz), (-) a-plate(nx=nz>ny), c-plate(nx=ny<nz), (-)c-plate(nx=ny>nz) 등의 복굴절 특성을 미세하게 보유하는 경우가 있다. 이러한 광학적 특성은 1/4, 또는 1/2 파장으로 패턴 분할된 편광의 성질을 미세하게 변질시킬 수 있어서 경우에 따라서는 양안에 입사되는 편광의 상대적 소광비가 저하되면서 3D 입체감을 저하시킬 수 있다. 따라서 필름의 복굴절 특성이 없어야 한다고 보는 것이 일반적이다. (-) 표시는 네가티브(negative)를 이는 본 명세서에서 공통적으로 적용된다.On the other hand, a film made of such a polymer material has a problem that it may have refractive index anisotropy due to the occasional fine stretching occurs in the manufacturing process or due to the characteristics of the material itself. Accordingly, a-plate (nx> ny = nz), (-) a-plate (nx = nz> ny), c-plate (nx = ny <nz), and (-) c-plate (nx = ny> nz The birefringence characteristic such as) may be minutely retained. Such optical characteristics may finely alter the properties of the polarized pattern divided into 1/4 or 1/2 wavelengths, and in some cases, the 3D stereoscopic feeling may be reduced while the relative extinction ratio of polarized light incident on both eyes is lowered. Therefore, it is common to see that the film should not have birefringence properties. The minus sign is negative which is commonly applied herein.
그러나 본 발명에서는 미세한 (-)c 특성(0≤Rth≤30nm) 을 갖는 TAC을 본 발명의 상기 유기 고분자 필름(100) 기재로 사용한 경우 출사되는 원편광, 또는 선편광의 편광도를 거의 변질시키지 않는 것을 발견하였으며 특히 분리된 두 원편광을 이용하여 3D를 구성하는 경우에는 장점이 있을 수 있다는 것을 발견하였다. However, in the present invention, when the TAC having fine (-) c characteristics (0 ≦ Rth ≦ 30 nm) is used as the organic polymer film 100 of the present invention, the polarization degree of circularly polarized light or linearly polarized light emitted is hardly changed. We have found that there can be advantages, especially when constructing 3D using two separate circularly polarized light.
1/4파장을 갖는 광가교성 액정폴리머를 만들기 위해서는 매우 박막의 광가교성액정 코팅이 이루어져야 한다. 하지만, 광가교성 액정을 용매에 희석하여 코팅용액을 제조하는 과정에서 그 혼합비의 미세한 오차로 인해 코팅 두께의 미세한 편차가 유발되는 경우가 많다. 이에 따라 1/4파장, -1/4파장의 위상지연에 따른 좌,우원편광 발생 시 각 편광도에 미세한 편차를 초래하게 되며 이는 결과적으로 좌우안에 입사되는 두 영상의 분리도에 미세한 영향을 줄 수 있다. 본 발명에서는 이러한 출사 원편광의 미세한 편차가 (-)c 특성의 TAC필름을 투과하면서 다소 희석되는 효과가 있는 것이 관측되었다. 이는 코팅용액 제조 시의 미세한 편차를 최외면의 TAC 필름 층이 보상해 주게 되는 장점이 되며 결과적으로 3D 입체효과를 저하시키지 않으면서 패턴드리타더(patterned retarder) 필름 제조 공정상의 코팅용액 제조 공정의 마진(margin)을 비교적 넓게 가져갈 수 있다는 장점으로 나타나게 된다.In order to make a photocrosslinkable liquid crystal polymer having a 1/4 wavelength, a very thin photocrosslinkable liquid crystal coating should be applied. However, in the process of preparing the coating solution by diluting the photocrosslinkable liquid crystal in a solvent, a slight variation in the coating thickness is often caused by a slight error in the mixing ratio. As a result, when left and right polarized light is generated due to phase delay of 1/4 wavelength and -1/4 wavelength, a slight deviation is caused in each polarization degree, which may have a small effect on the separation of two images incident on the left and right eyes. . In the present invention, it was observed that the minute deviation of the emitted circularly polarized light was slightly diluted while passing through the TAC film having the (-) c characteristic. This is an advantage that the TAC film layer on the outermost surface compensates for the slight deviation in the coating solution manufacturing, and as a result, the margin of the coating solution manufacturing process in the patterned retarder film manufacturing process without degrading the 3D stereoscopic effect. The advantage is that you can take a margin relatively broadly.
(-)c 특성의 광학매질은 일반적으로 액정(또는 광가교성 액정)을 콜레스테릭(cholesteric) 배향하여 얻는다. 이때 배향된 콜레스테릭 액정의 회전 방향이 좌선성, 또는 우선성이냐에 따라 그 매질을 통과하는 빛을 부분적으로 좌원편광 또는 우원편광으로 회절시키는 것으로 알려져 있다. 이는 콜레스테릭상으로 적층 배향된 액정의 두께가 충분하여 적어도 Rth 가 수십 nm 이상일 경우에 그 효과가 현저히 발생할 수 있다. Optical media of negative (-) c properties are generally obtained by cholesteric orientation of liquid crystals (or photocrosslinkable liquid crystals). In this case, it is known that the light passing through the medium is partially diffracted into the left circularly polarized light or the right circularly polarized light, depending on whether the direction of rotation of the oriented cholesteric liquid crystal is left linearity or priority. This effect can occur remarkably when the thickness of the liquid crystal oriented in the cholesteric phase is sufficient so that at least Rth is several tens of nm or more.
TAC 필름이 갖는 (-)c 특성은 그 소재인 tri-acetyle cellulose의 고유한 특성에 기인한 것으로써 대개 그 값이 0 ≤ Rth ≤ 30 nm 의 수준이며 또한 좌선성, 우선성이 없는 것이다. 따라서 본 발명에서 관측된 TAC필름에 의한 보상효과는 패턴드리타더(patterned retarder)를 통과한 각기 서로 다른 회전방향의 출사원편광이 미세한 (-)c 특성의 TAC 필름을 통과하면서 그 회전방향에 영향을 받지 않으면서 각 원편광도가 소폭 증가 또는 감소되는 것으로 추측된다. 실험상 (-)c 특성이 너무 크게 되면 정면 방향에서 벗어난 경사방향에서의 콘트래스트가 감소하는 경향이 있었다. 따라서, 이러한 이유로도 기재로 사용되는 필름의 (-)c 특성은 Rth가 30 nm를 넘지 않는 것이 적절하다.The negative (-) c properties of TAC films are due to the intrinsic properties of the material, tri-acetyle cellulose, which is usually at the level of 0 ≦ Rth ≦ 30 nm and no left-handedness or priority. Therefore, the compensation effect of the TAC film observed in the present invention affects the direction of rotation while the source polarized light in different rotation directions passing through the patterned retarder passes through the TAC film having a fine (-) c characteristic. It is assumed that each circular polarization is slightly increased or decreased without receiving. Experimentally, when the negative (-) c characteristic was too large, the contrast in the inclined direction out of the front direction tended to decrease. Therefore, even for this reason, it is appropriate that the (-) c property of the film used as the substrate does not exceed 30 nm.
본 발명의 상기 유연한 유기 고분자 필름(100) 중에는 미세한 a 또는 (-)a 특성의 입체 굴절특성을 갖는 PC, COP 등을 소재로 한 연신 필름이 사용될 수 있다. 이러한 광학특성은 액정고분자 필름의 a-plate 특성(1/4, 또는 1/2 파장)과 합해져서 편광도(또는 원편광도)를 변형시키고 3D 입체효과에 영향을 줄 수 있으므로 가능한 그 특성이 최소화 된 것을 사용해야 하는데 본 발명에서는 Re가 30 nm 이하인 경우 실질적으로는 크게 문제가 되지 않는 것으로 나타났다. 또한 연신필름의 광축을 광가교성 액정필름의 2개 영역 중 1개 영역의 광축과 일치시킬 경우 2개 광학매질의 복굴절특성이 합하여지게 되는데 광가교성 액정필름의 코팅막이 다소 얇게 되어 위상차 값이 부족할 경우 이를 일부 보상해 줄 수 있게 되기 때문에 제품의 구성 시 각각의 광축 배치를 적절히 하면 장점이 될 수도 있다.In the flexible organic polymer film 100 of the present invention, a stretched film made of PC, COP, etc. having a three-dimensional refractive characteristic of fine a or (-) a characteristics may be used. These optical properties can be combined with the a-plate properties (1/4 or 1/2 wavelength) of the liquid crystal polymer film to modify the degree of polarization (or circular polarization) and affect the 3D stereoscopic effect. In the present invention, the minimized one should be used. However, when Re is less than 30 nm, it does not appear to be substantially a problem. In addition, when the optical axis of the stretched film coincides with the optical axis of one of the two regions of the optical crosslinkable liquid crystal film, the birefringence characteristics of the two optical media are combined. However, when the coating film of the optical crosslinkable liquid crystal film is somewhat thin, the phase difference value is insufficient. This can be compensated for in part, so it may be an advantage to properly arrange each optical axis when constructing the product.
이하, 도 9 내지 도 10을 참조하면서 본 발명의 입체 영상 표시 장치를 제조하는 방법을 설명한다.Hereinafter, a method of manufacturing the stereoscopic image display device of the present invention will be described with reference to FIGS. 9 to 10.
먼저, 기재를 준비한다. 기재로써 TAC(triacetyl cellulose) 재질의 유기 고분자 필름(100)이 사용되었다. 기재는 TAC(triacetyl cellulose) 재질 이외에도 COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone), PVA(polyvinylalcohol), PAR(polyarylate) , 비정질 불소 수지 등의 재질로 유연한 유기 고분자 필름이 가능하다. 상기 여러 재질의 필름에 패턴드리타더(patterned retarder)를 코팅 형성할 면의 반대면에 hard coating, 반사방지(anti reflection) 눈부심 방지(anti glare) coating 등이 코팅된 필름이 사용되는 것이 공정상 더 바람직할 수 있다.First, a base material is prepared. As a substrate, an organic polymer film 100 made of triacetyl cellulose (TAC) was used. In addition to TAC (triacetyl cellulose), COP (cyclo olefin copolymer), Pac (Polyacrylate), PES (poly ether sulfone), PC (polycarbonate), PEEK (polyetheretherketon), PMMA (polymethylmethaacrylate), PEI (polyetherimide), PEN ( Flexible organic polymer films are possible with materials such as polyethylenemaphthatlate (PET), polyethylene terephtalate (PET), polyimide (PI), polysulfone (PSF), polyvinylalcohol (PVA), polyarylate (PAR), and amorphous fluorine resin. In the process of using a film coated with a hard coating, an anti reflection anti-glare coating, etc., on the opposite side of the surface on which the patterned retarder is to be coated on the films of various materials. It may be desirable.
다음으로, 배향막(200) 형성 단계(S110)이다. Cinnamate 측쇄를 갖고 vinyl 중합된 광감응성 고분자(Aldrich사)를 용매에 일정량(일반적으로 15wt% 미만) 녹이고 필터(0.2micrometer absolute pore)하여 코팅할 배향물질 용액을 준비한다. 사용하는 용매는 PGMEA를 사용하였다. 한편 용매로는 각종 방향족 탄화수소류, 케톤류, 아세테이트류 및 알코올계통의 일반적인 용매나 또는 이들의 혼합용매를 사용할 수도 있다. 상기의 배향 용액을 gravure 코팅법으로 상기의 기재에 코팅하고 용매를 건조(90도 미만)시켜 배향막(200)(약 1,000Å 내외)을 얻는다. 이 때 배향막(200)의 반사방지 코팅 등의 처리가 되어 있는 기재면의 반대면에 코팅한다. 그렇지 않으면 용이한 임의의 면에 실시한다. 한편, gravure 코팅법 이외의 다른 통상의 배향막 코딩법을 사용할 수도 있다.Next, the alignment film 200 is formed (S110). Dissolve a certain amount (typically less than 15 wt%) of vinyl polymerized photosensitive polymer (Aldrich) with Cinnamate side chains in a solvent and filter (0.2 micrometer absolute pore) to prepare an alignment material solution to be coated. PGMEA was used as a solvent. As the solvent, various aromatic hydrocarbons, ketones, acetates, and general solvents of alcohols or mixed solvents thereof may be used. The alignment solution is coated on the substrate by a gravure coating method, and the solvent is dried (less than 90 degrees) to obtain an alignment film 200 (about 1,000 kPa). At this time, it is coated on the opposite side of the substrate surface to which the alignment film 200 is treated, such as antireflection coating. Otherwise, it is carried out on any surface which is easy. In addition, you may use the conventional orientation film coding method other than the gravure coating method.
이어, 표면 배향 단계(S120)이다. LCD 픽셀의 행 단위로 구분된 포트마스크(photomask)를 상기 배향막(200) 표면에 대고 편광(선편광 또는 타원편광)된 자외선(230nm~350nm)을 수직방향에서 조사(또는 비편광 자외선(230nm~350nm)을 경사방향에서 조사)하여 제 1영역을 표면 배향시킨다. 포토마스크를 픽셀의 행 간격 만큼 이동하여 나머지 부분을 같은 방법으로 표면 배향시켜 제 2영역을 형성한다. 이 때 자외선의 편광방향(또는 경사조사방향)은 다음 공정에서 코팅되는 액정의 배향방향을 결정한다. 따라서 완성된 패턴드리타더(patterned retarder)가 서로 반대방향의 원편광을 출사하도록 하려면 1, 2 영역을 조사할 때 자외선의 편광은 서로 90도의 차이를 갖도록 해야 한다.Then, the surface alignment step (S120). A photomask divided by rows of LCD pixels is applied to the surface of the alignment layer 200 to irradiate ultraviolet (230 nm to 350 nm) polarized light (linearly or elliptically) in the vertical direction (or non-polarized ultraviolet light (230 nm to 350 nm). ) In the oblique direction to surface-orientate the first region. The photomask is moved by the row spacing of the pixels to surface align the remaining portions in the same manner to form the second region. At this time, the polarization direction (or oblique irradiation direction) of the ultraviolet light determines the orientation direction of the liquid crystal coated in the next step. Therefore, in order for the completed patterned retarder to emit circularly polarized light in opposite directions, the polarizations of ultraviolet rays should be 90 degrees apart from each other when irradiating 1 and 2 regions.
이어, 광가교성 액정 폴리머 필름 성막 단계(S130)이다. 이 단계 이전에 광가교성 액정의 준비가 끝나야 된다. 고형분의 광가교성 액정(Reactive mesogen(RM), 머크(Merck)사의 수평배향용 RM, 바스프(BASF)사의 LC242)을 광개시제(Ciba사 Irganox)와 함께 용매(PGMEA 등의 acetate류, IPA 등의 알콜(alcohol)류, 등의 용매 및 이들의 혼합용매)에 적정 양 녹이고 필터(0.2micrometer absolute pore)하여 코팅할 광가교성 액정 용액을 준비하였다. 상기의 패턴 배향된 표면에 상기 준비된 액정용액을 그라비아(gravure) 코팅법으로 코팅하고 용매를 건조(70도 미만)시킨다. 용매가 건조되면서 액정은 배향막(200)의 배향방향으로 수평 배열되어 서로 90도의 광축을 이룬다. 이 액정코팅면에 inert 분위기(질소)를 조성하여 산소를 차단하고 비편광된 자외선(270~450nm)을 조사하여 경화시켜 광가교성 액정폴리머필름(310)을 성막한다. 완성된 광가교성 액정폴리머필름(310)은 액정이 패턴 배향된 패턴드리타더(patterned retarder)필름이 된다.Subsequently, the photocrosslinkable liquid crystal polymer film deposition step (S130). Before this step, the preparation of the photocrosslinkable liquid crystal should be completed. Solid photocrosslinked liquid crystals (Reactive mesogen (RM), Merck's horizontal alignment RM, BASF's LC242) together with a photoinitiator (Ciba Irganox), alcohols such as acetates such as PGMEA and IPA A suitable amount was dissolved in (alcohols, solvents such as these, and a mixed solvent thereof) and a filter (0.2 micrometer absolute pore) was prepared to prepare a photocrosslinked liquid crystal solution to be coated. The prepared liquid crystal solution is coated on the pattern oriented surface by a gravure coating method and the solvent is dried (less than 70 degrees). As the solvent is dried, the liquid crystals are horizontally arranged in the alignment direction of the alignment layer 200 to form optical axes of 90 degrees to each other. An inert atmosphere (nitrogen) is formed on the liquid crystal coated surface to block oxygen, and irradiated and cured by irradiating with unpolarized ultraviolet rays (270 to 450 nm) to form a photocrosslinkable liquid crystal polymer film 310. The completed photocrosslinkable liquid crystal polymer film 310 becomes a patterned retarder film in which liquid crystal is pattern-oriented.
상기 과정 이후에, 패턴드리타더(patterned retarder) 필름을 표시장치에 합착하는 단계를 더 거칠 수 있다. 상기의 완성된 필름(310)을 표시장치에 합착할 때는 패턴 배향된 액정필름(310)면이 표시장치의 전면 편광판(400)을 향하도록 합착해야 하며 필름(310)과 전면편광판(400) 사이에 접착제(700)(에폭시류, 아크릴류, 등)층을 형성하여 합착 후 필름(310)이 전면편광판(400)에 고정되도록 한다. 이때 필름과 전면 편광판(400) 사이에 기포가 생기지 않도록 하고 먼지 등의 이물질이 이입되지 않도록 하기 위해 진공 상태에서 접착하는 것이 보다 유리하다. 또한 패턴드리타더(patterned retarder)에 형성된 패턴(pattern)과 표시장치의 픽셀 행(또는 열)이 정확히 일치하도록 합착해야 하는데 이를 위해 정렬마크(550)(align mark)를 미리 표시장치와 패턴드리타더 (patterned retarder)에 형성시켜 놓고 이를 기준으로 정렬(align) 하여 합착할 수도 있으며 표시장치에 미리 적절한 영상을 띄어 놓고 육안으로 확인하면서 합착하는 등의 방법을 사용할 수 있다. 패턴드리타더(patterned retarder)의 합착이 완료되면 1차 완성된 3D 입체영상표시장치가 된다.After the above process, the patterned retarder film may be bonded to the display device. When the completed film 310 is bonded to the display device, the pattern-oriented liquid crystal film 310 must be bonded to face the front polarizer 400 of the display device, and between the film 310 and the front polarizer 400. An adhesive 700 (epoxy, acrylic, etc.) layer is formed on the film 310 so as to be fixed to the front polarizing plate 400 after bonding. In this case, in order to prevent bubbles from forming between the film and the front polarizer 400 and to prevent foreign substances such as dust from entering, it is more advantageous to bond in a vacuum state. In addition, the pattern formed on the patterned retarder and the pixel rows (or columns) of the display device must be bonded together so that the alignment mark 550 (align mark) is pre-set with the display device and the pattern retarder. It may be formed on a patterned retarder and aligned based on the patterned retarder, and an appropriate image may be placed on a display device in advance, and the method may be performed while visually checking. When the bonding of the patterned retarder is completed, the first 3D stereoscopic image display device is completed.
상기의 실시예는 하나의 예이며 이러한 기본 공정 개념하에 각 부분 공정들은 다양한 방법에 의해 이루어질 수 있다. The above embodiment is an example and under this basic process concept, each of the partial processes can be made by various methods.
예를 들어 코팅 공정의 경우는 그라비아(gravure) 외에 슬롯다이(slot die), 롤(roll), 등 거의 모든 필름 코팅 공정을 전체 공정의 흐름에 맞추어 선택적으로 적용할 수 있다. 또한 배향물질이나 광가교성액정의 용액을 준비하는 과정에서는 코팅되는 기재나 배향물질의 종류에 따라 호환성을 갖춘 다양한 용매를 이용하여 용액을 제조할 수 있다. 그리고, 배향공정의 경우에도 위에 예를 든 광배향법 외에도 일반적으로 잘 알려진 러빙(rubbing)법, 이온빔(ion beam)이나 플라즈마(plasma)의 경사 조사에 의한 비접촉배향법 등 다양한 방법을 사용할 수 있다. 배향물질의 경우에도 다양한 공정에 적용이 가능한 다양한 물질 제품을 사용할 수 있으며, 합착공정의 경우에도 상기에 예 외에도 일반적인 지식으로 예측할 수 있는 다양한 방법이 있다. 예를 들어 LCD의 경우에 전면예 편광판을 부착해 놓지 않고 이 전면 편광판(400)을 패턴드리타더(patterned retarder)와 미리 lamination 등의 방법으로 합지하여 전면편광판(400)과 패턴드리타더(patterned retarder)의 합체필름을 만들고 이를 LCD에 전면에 부착하는 방식을 사용할 수도 있으며 이 때에도 정렬마크(550)(align mark)를 이용하거나 미리 적절한 영상을 띄어 놓고 합착하는 것이 가능하다. For example, in the case of a coating process, almost all film coating processes such as slot dies, rolls, and the like, in addition to gravure, may be selectively applied to the entire process flow. In addition, in preparing a solution of an alignment material or a photocrosslinkable liquid crystal, a solution may be prepared using various solvents having compatibility according to the type of substrate or alignment material to be coated. In addition, in the alignment process, various methods, such as the well-known rubbing method and the non-contact orientation method by inclined irradiation of ion beam or plasma, may be used in addition to the above-described optical alignment method. . In the case of the alignment material, a variety of material products that can be applied to various processes can be used, and in the case of the bonding process, there are various methods that can be predicted by general knowledge in addition to the examples above. For example, in the case of LCD, the front polarizer 400 is laminated with a patterned retarder and a method such as lamination in advance without attaching the front polarizer to the front polarizer 400 and the patterned retarder. ) And a method of attaching the film to the front surface of the LCD may be used. In this case, it is also possible to use the alignment mark 550 or to attach the appropriate image in advance.
일반적으로 (전면)편광판(400)은 편광 기능을 갖는 PVA 필름에 TAC필름을 보호필름으로써 양쪽에 합지한 것으로 구성된다. 이때, 상기 전면편광판(400)을 패턴드리타더와 합지하는 경우 편광판의 외면 TAC 보호필름 없이 패턴드리타더를 합지하는 것이 가능하여 이 경우 전체 두께와 비용을 줄일 수 있는 효과가 있으며 패턴드리타더와 표시소자와의 거리를 줄일 수 있어서 3D 감상 시 시야각 확대가 되는 장점이 있다. 이에 관한 실시예는 도 8에 잘 나타나 있다. 도 8에서 상기 편광판 보호 필름(600)과 유기 고분자 필름(100)은 동일한 재질일 수도 있다.In general, the (front) polarizing plate 400 is composed of a PVA film having a polarizing function and laminated on both sides with a TAC film as a protective film. In this case, when the front polarizing plate 400 is laminated with the pattern retarder, the pattern retarder may be laminated without the outer surface TAC protective film of the polarizer. In this case, the overall thickness and the cost may be reduced, and the pattern retarder and the display may be Since the distance to the device can be reduced, the viewing angle can be enlarged when viewing 3D. Embodiments in this regard are well illustrated in FIG. 8. In FIG. 8, the polarizer protective film 600 and the organic polymer film 100 may be made of the same material.
그리고, 전면 편광판(400)에 위에 예시된 배향 방법들을 사용하여 직접 광가교성 액정고분자층을 형성시킬 수도 있다.In addition, the photocrosslinkable liquid crystal polymer layer may be directly formed on the front polarizer 400 using the above-described alignment methods.
도 10은 배향막 형성 기재와 본 발명의 고분자 유기 물질로 구성되는 유기 필름이 다른 경우를 예시하고 있다. 먼저, 배향막 형성 기재에 배향 물질을 코팅하여 배향막을 형성(S210)한 다음, 배향막 표면을 배향(S220)하고, 표면 배향된 배향막에 광가교성 액정층을 부가하고 경화시켜 광가교성 액정고분자 필름(310)을 형성(S230)한 다음, 상기 배향막 형성 기재를 제거하고, 액정고분자부의 일면에 유기 고분자 물질로 구성되는 유기 필름(100)을 형성(S240)하는 방식으로도 본 발명 사상이 실현될 수 있다.10 illustrates a case where the alignment film-forming substrate and the organic film composed of the polymer organic material of the present invention are different. First, an alignment layer is formed by coating an alignment material on an alignment layer forming substrate (S210), and then the surface of the alignment layer is aligned (S220), and a photocrosslinkable liquid crystal layer is added to the surface aligned alignment layer and cured to form a photocrosslinkable liquid crystal polymer film 310. The present invention can also be realized in a manner of forming (S230), and then removing the alignment layer forming substrate and forming an organic film 100 made of an organic polymer on one surface of the liquid crystal polymer (S240). .
한편, 배향막을 형성하지 않고, 본 발명의 고분자 유기 필름에 직접 이온 빔 또는 프라즈마 빔을 조사하여 고분자 유기 물질 필름(100)의 표면을 배향 처리하고, 표면 배향 처리된 유기 고분자 필름(100)에 광가교성 액정을 코팅하여 액정고분자필름을 형성할 수도 있다. 이에 대한 상세한 설명은 본 특허의 발명자가 발명한 대한민국 등록 특허 제10-0641746-0000호에 상세히 기록되어 있는 바, 당 업자에게는 자명할 것이다.On the other hand, without forming an alignment film, the polymer organic film of the present invention is directly irradiated with an ion beam or a plasma beam to orient the surface of the polymer organic material film 100, and the price of the organic polymer film 100 subjected to the surface alignment treatment The crosslinked liquid crystal may be coated to form a liquid crystal polymer film. A detailed description thereof will be apparent to those skilled in the art as described in detail in Korean Patent Registration No. 10-0641746-0000 invented by the inventor of the present patent.
한편, 일반적인 지식으로 접근이 가능한 추가적인 방법으로써 완성된 3D 표시장치의 최전면에 위치하게 되는 기재의 특성(광학적, 기계적 특성 등)을 더욱 보강하기 위해 합착해 놓은 패턴드리타더(patterned retarder)의 기재 부분을 벗겨내어 패턴 배향된 액정고분자층 만을 표시장치에 전사시키고 다시 원하는 광학적, 기계적 물성을 갖는 기재를 다시 부착하여 3D 표시장치를 완성할 수도 있다. 이 경우 3D 표시장치의 사용환경이 통상의 사용 환경에 비해 매우 열악(severe)하여 표면의 높은 강도 등을 요구하는 경우 최외면에 유리를 덧대어 제품화할 수도 있을 수 있을 것이다. 이때, 유리를 부착하기 위한 접착제(700)로써 굴절률이 매우 낮은(1.5 이하) 접착제(700)를 사용하는 것이 반사방지 측면에서 유리할 것이며 또한 유리를 접착시키기 위한 접착제(700)에 미리 자외선방지(차단)제를 혼입하여 자외선 차단 효과를 부여할 수도 있을 것이다. On the other hand, a patterned retarder substrate bonded together to further reinforce the characteristics (optical and mechanical properties) of the substrate placed on the front surface of the completed 3D display device as an additional method accessible by general knowledge. The 3D display device may be completed by peeling off portions to transfer only the pattern-oriented liquid crystal polymer layer to the display device and attaching a substrate having desired optical and mechanical properties again. In this case, when the use environment of the 3D display device is very poor compared to the normal use environment and demands high strength of the surface, glass may be coated on the outermost surface to commercialize it. At this time, the use of the adhesive 700 having a very low refractive index (less than 1.5) as the adhesive 700 for attaching the glass will be advantageous in terms of anti-reflection, and may also be anti-ultraviolet (blocking) to the adhesive 700 for bonding the glass in advance. ) May be added to give a sunscreen effect.
또한 본 발명에서 필름의 합착, 라미네이션(lamination) 등에 사용되는 접착제로써 자연경화형, 광경화형 특성의 에폭시 또는 아크릴 또는 이들이 혼합된 접착제로서 용제를 필요로 하지 않는 접착제를 사용하는 것이 바람직하다. 이들 접착제(700)도 역시 기재, 액정필름과 함께 박막의 필름을 이루게 되므로 그 굴절률의 영향이 있을 수 있는데 본 발명에서는 접착제(700)의 굴절률이 일반적으로 작을수록(1.5 이하) 유리한 것으로 확인되었으며 보통의 광학접착제를 사용하는 경우 그 굴절률이 약 1.6 이하의 수준이므로 화질에 거의 영향을 주지 않음을 알 수 있었다.In addition, in the present invention, it is preferable to use an adhesive which does not require a solvent as an epoxy or acrylic having a natural hardening type, a photo hardening property, or an adhesive mixed therein as an adhesive used for bonding or lamination of a film. Since the adhesive 700 also forms a thin film together with the base material and the liquid crystal film, there may be an influence of the refractive index. In the present invention, the smaller the refractive index of the adhesive 700, the lower it is (1.5 or less). In the case of using the optical adhesive of the refractive index is less than about 1.6 it can be seen that little effect on the image quality.
한편, 패턴드리타더의 합착 시 종래 기계적 유연성이 없는 유리제품의 경우 합착을 위해 정중앙에 접착제를 넣고 유리를 중심부로부터 가압하여 접착제를 확산시켜 접착해야 하기 때문에 합착 시간이 매우 길고 사이의 접착제 층의 두께가 일정치 않거나 기포가 남게 되는 등의 문제점이 있었다. 이에 반해서 본 발명의 유연한 유기 고분자 필름(100)을 사용한 경우에는 미리 접착제(700)를 코팅해 놓고 한번에 (가압)접착이 가능하기 때문에 합착공정 시간(tact time)을 크게 감소시킬 수 있었다. 또한 유리 기재가 사용된 경우 그 자체 무게로 인하여 장기 사용시 패턴드리타더가 탈착될 가능성이 있기 때문에 접착 후에도 테두리 프레임을 설치하여 추가적으로 보완해 줄 필요가 있는데 유연한 필름의 패턴드리타더의 경우 그 자체 무게가 거의 없기 때문에 테두리 프레임 등에 의한 추가적 보완 없이 접착제(700)만으로도 그 안정성을 구가할 수 있다. 그리고, 생산성 향상을 위해 한 번의 코팅 배치(batch)에서 다면취하여 2개 이상의 패턴드 리타더를 생산할 경우 유리제품의 경우 값비싼 기계적 또는 레이저(laser) 절취 설비가 필요한 반면 유연한 필름제품의 경우에 값싼 설비로 동 공정 수행이 가능할 뿐만 아니라 파손의 우려 없이 수율이 매우 높다. On the other hand, in the case of glass products without conventional mechanical flexibility when the pattern retarder is bonded, the bonding time is very long and the thickness of the adhesive layer between them is required because the adhesive must be put in the center and press the glass from the center to diffuse the adhesive. There was a problem that is not constant or bubbles remain. On the contrary, when the flexible organic polymer film 100 of the present invention was used, since the adhesive 700 was coated in advance and thus (pressurized) adhesion was possible at one time, the bonding time could be greatly reduced. In addition, when the glass base material is used, the pattern retarder may be detached during long-term use due to its own weight. Therefore, it is necessary to supplement the frame by installing an edge frame even after bonding. Since there is little, the adhesive 700 alone can provide stability without further supplementation by an edge frame or the like. In addition, the production of two or more patterned retarders by manifolding in one coating batch to improve productivity requires expensive mechanical or laser cutting equipment for glass products, while inexpensive for flexible film products. The facility not only enables the process but also yields high yields without fear of breakage.
또한 본 발명에 언급된 유기 고분자소재 외에 많은 다양한 고분자소재로써 본 발명의 목적에 부합하는 유연한 필름의 제조가 가능하며 이러한 필름을 본 발명의 용도로 사용할 수 있음을 알 수 있다.In addition to the organic polymer materials mentioned in the present invention, as many various polymer materials, it is possible to manufacture a flexible film that meets the purpose of the present invention, and it can be seen that such a film can be used for the purposes of the present invention.
일반적으로 편광을 이용하지 않는 표시소자인 유기EL, PDP, FED 등의 평면디스플레이에도 그 표시소자의 표면에 편광판(또는 이에 준하는 편광 매체)을 설치하고 다시 그 위에 패턴드리타더 필름을 설치하면 편광 분할 효과를 얻을 수 있으므로 본 발명 사상은 일반적인 픽셀화된 표시소자에 공히 적용될 수 있다. In general, flat panel displays such as organic EL, PDP, and FED, which do not use polarization, are provided with a polarizing plate (or equivalent polarizing medium) on the surface of the display element, and then a pattern retarder film is placed thereon. Since the effect can be obtained, the present invention can be applied to a general pixelated display device.
본 발명은 입체 영상 디스플레이 산업, 입체 영상 디스플레이 모듈 제조 산업, 디스플레이 산업 등 각종 전자 산업에 광범위하게 사용될 수 있다.The present invention can be widely used in various electronic industries such as stereoscopic image display industry, stereoscopic image display module manufacturing industry, display industry.

Claims (12)

  1. 적어도 하나 이상의 광가교성 액정고분자 필름을 포함하는 편광 분리부; 및A polarization separator including at least one photocrosslinkable liquid crystal polymer film; And
    0 < Rth ≤ 30nm 또는 0 < Re ≤ 30nm 의 광학 특성을 가지며, 굴절율이 1.33 내지 1.53 인 특성을 갖는 유기 고분자 물질로 구성되는 유기 필름부;를 포함하며,It includes; an organic film portion made of an organic polymer material having an optical property of 0 <Rth ≤ 30nm or 0 <Re ≤ 30nm, the refractive index is 1.33 to 1.53;
    상기 유기 필름부를 통과하는 편광은 좌원편광과 우원편광을 모두 포함하는 것인 것을 특징으로 하는 입체 영상 표시 장치.The polarized light passing through the organic film part includes both left circularly polarized light and right circularly polarized light.
  2. 제 1항에 있어서,The method of claim 1,
    상기 유기 고분자 물질은 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate) , 비정질 불소 수지 재질 중에서 선택되는 어느 하나인 것인 것을 특징으로 하는 입체 영상 표시 장치.The organic polymer material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), poly ether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), 3D image display device characterized in that it is any one selected from polyethylenemaphthatlate (PEN), polyethyleneterephtalate (PET), polyimide (PI), polysulfone (PSF) and polyvinylalcohol (PVA), polyarylate (PAR), and amorphous fluorine resin .
  3. 제1항에 있어서,The method of claim 1,
    상기 유기 필름부는 (-)c 의 광학특성을 가지는 경우, 상기 (-c) 광학 특성이 0 < Rth ≤ 10nm인 것인 것이며,When the organic film part has an optical property of (-) c, the (-c) optical property is one of 0 <Rth ≤ 10 nm,
    상기 유기 필름부가 (-)a 광학특성을 가지는 경우, 상기 (-a) 광학 특성이 0 < Re ≤ 10nm 인 것인 것이며When the organic film part has (-) a optical property, the (-a) optical property is 0 <Re ≤ 10 nm.
    상기 유기 필름부가 a 광학특성을 가지는 경우, 상기 광학 특성이 0 < Re ≤ 10nm 인 것인 것을 특징으로 하는 입체 영상 표시 장치.And wherein the optical property is 0 <Re ≤ 10 nm when the organic film part has a optical property.
  4. 제1항에 있어서,The method of claim 1,
    상기 유기 필름부의 일면에는 반사 방지 코팅, 눈부심 방지 코팅 및 기계적 성질 강화 코팅 중 어느 하나 이상의 코팅이 추가적으로 더 부가되어 있는 것인 것을 특징으로 하는 입체 영상 표시 장치.One side of the organic film portion is an anti-reflective coating, an anti-glare coating and a mechanically enhanced coating further comprises a three-dimensional image display device, characterized in that further added.
  5. 제1항에 있어서,The method of claim 1,
    상기 유기 필름부는 1/4 파장의 위상차를 갖는 유기 고분자 물질로 구성되는 것인 것을 특징으로 하는 입체 영상 표시 장치.And the organic film part is made of an organic polymer material having a phase difference of 1/4 wavelength.
  6. 제1항에 있어서,The method of claim 1,
    전면 평광판;을 더 포함하며,Further comprising;
    상기 전면 편광판은 상기 액정고분자부에 직접 접착되는 것인 것을 특징으로 하는 입체 영상 표시 장치.And the front polarizer is directly bonded to the liquid crystal polymer.
  7. 제1항에 있어서,The method of claim 1,
    상기 유기 필름부는 자외선 차단 물질을 포함하는 것인 것을 특징으로 하는 입체 영상 표시 장치.The organic film unit is a three-dimensional image display device comprising a sunscreen material.
  8. 유기 고분자 물질로 구성되는 유기 필름부에 배향 물질을 코팅하여 배향막을 형성하는 단계;Forming an alignment layer by coating an alignment material on an organic film part formed of an organic polymer material;
    상기 배향막을 표면 배향하는 단계; 및Surface-aligning the alignment layer; And
    상기 표면 배향된 배향막에 광가교성 액정층을 부가하고 경화시켜 광가교성 액정고분자 필름을 형성하는 단계;를 포함하며,And adding and curing a photocrosslinkable liquid crystal layer to the surface oriented alignment film to form a photocrosslinkable liquid crystal polymer film.
    상기 유기 고분자 물질은 0 < Rth ≤ 30nm 또는 0 < Re ≤ 30nm 의 광학 특성을 가지며, 굴절율이 1.33 내지 1.53인 특성을 갖는 것인 것을 특징으로 하는 입체 영상 표시 장치 제조 방법.The organic polymer material has an optical property of 0 <Rth ≤ 30nm or 0 <Re ≤ 30nm, and has a refractive index of 1.33 to 1.53 has a characteristic of producing a stereoscopic image display device.
  9. 제 8항에 있어서,The method of claim 8,
    상기 유기 고분자 물질은 자외선 차단 물질을 더 포함하는 것인 특징으로 하는 입체 영상 표시 장치 제조 방법.The organic polymer material further comprises a UV blocking material.
  10. 제 8항에 있어서,The method of claim 8,
    상기 유기 고분자 물질은 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate) , 비정질 불소 수지 중에서 선택되는 어느 하나인 것인 것을 특징으로 하는 입체 영상 표시 장치 제조 방법.The organic polymer material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), polyether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), manufacturing a stereoscopic image display device characterized in that it is any one selected from Way.
  11. 배향막 형성 기재에 배향 물질을 코팅하여 배향막을 형성하는 단계;Forming an alignment layer by coating the alignment material on the alignment layer forming substrate;
    상기 배향막을 표면 배향하는 단계;Surface-aligning the alignment layer;
    상기 표면 배향된 배향막에 광가교성 액정층을 부가하고 경화시켜 광가교성 액정고분자 필름을 형성하는 단계; 및Adding and curing a photocrosslinkable liquid crystal layer to the surface oriented alignment film to form a photocrosslinkable liquid crystal polymer film; And
    상기 배향막 형성 기재를 제거하고, 상기 액정고분자부의 일면에 고분자 유기 물질로 구성되는 유기 필름부를 부착 및 합착 중 어느 한 방식 이상으로 형성하는 단계;를 포함하며,And removing the alignment layer forming substrate and forming an organic film part made of a polymer organic material on one surface of the liquid crystal polymer part in at least one of adhesion and bonding methods.
    상기 유기 고분자 물질은 0 < Rth ≤ 30nm 또는 0 < Re ≤ 30nm 의 광학 특성을 가지며, 굴절율이 1.33 내지 1.53인 특성을 갖는 것인 것을 특징으로 하는 입체 영상 표시 장치 제조 방법.The organic polymer material has an optical property of 0 <Rth ≤ 30nm or 0 <Re ≤ 30nm, and has a refractive index of 1.33 to 1.53 has a characteristic of producing a stereoscopic image display device.
  12. 제 11항에 있어서,The method of claim 11,
    상기 유기 고분자 물질은 TAC(triacetyl cellulose), COP(cyclo olefin copolymer), Pac(Polyacrylate), PES(poly ether sulfone), PC(polycarbonate), PEEK(polyetheretherketon), PMMA(polymethylmethaacrylate), PEI(polyetherimide), PEN(polyethylenemaphthatlate), PET(polyethyleneterephtalate), PI(polyimide), PSF(polysulfone) 및 PVA(polyvinylalcohol), PAR(polyarylate) , 비정질 불소 수지 중에서 선택되는 어느 하나인 것인 것을 특징으로 하는 입체 영상 표시 장치 제조 방법.The organic polymer material is triacetyl cellulose (TAC), cyclo olefin copolymer (COP), polyacrylate (Pac), polyether sulfone (PES), polycarbonate (PC), polyetheretherketon (PEEK), polymethylmethaacrylate (PMMA), polyetherimide (PEI), PEN (polyethylenemaphthatlate), PET (polyethyleneterephtalate), PI (polyimide), PSF (polysulfone) and PVA (polyvinylalcohol), PAR (polyarylate), manufacturing a stereoscopic image display device characterized in that it is any one selected from Way.
PCT/KR2010/008497 2009-12-04 2010-11-29 Stereoscopic image display device WO2011068342A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090119920A KR100967899B1 (en) 2009-12-04 2009-12-04 3d image display device
KR10-2009-0119920 2009-12-04

Publications (2)

Publication Number Publication Date
WO2011068342A2 true WO2011068342A2 (en) 2011-06-09
WO2011068342A3 WO2011068342A3 (en) 2011-11-10

Family

ID=42645170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008497 WO2011068342A2 (en) 2009-12-04 2010-11-29 Stereoscopic image display device

Country Status (2)

Country Link
KR (1) KR100967899B1 (en)
WO (1) WO2011068342A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032809A (en) * 2022-07-04 2022-09-09 宁波维真显示科技股份有限公司 Liquid crystal splicing large screen compatible with 2D and 3D display and preparation method of large screen

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078471A2 (en) * 2009-12-22 2011-06-30 Lg Chem, Ltd. 3d glasses for stereoscopic display device and stereoscopic display device including the same
WO2012008750A2 (en) 2010-07-13 2012-01-19 (주)Lg화학 Polarizing eyeglasses
KR101282012B1 (en) * 2010-08-17 2013-07-04 솔브레인 주식회사 3 dimensional display device and 3 dimensional display system having thesame
KR101781504B1 (en) * 2010-08-30 2017-09-26 엘지디스플레이 주식회사 3D image displayable device
KR101843177B1 (en) * 2010-12-20 2018-03-28 엘지디스플레이 주식회사 Stereoscopic Image Display And Method For Manufacturing Of The Same
TWI483001B (en) 2011-08-09 2015-05-01 Lg Chemical Ltd Optical filter, method of manufacturing thereof, and stereoscopic image display device comprising the same
JP5783846B2 (en) * 2011-08-19 2015-09-24 富士フイルム株式会社 3D image display optical film, 3D image display device, and 3D image display system
KR101602014B1 (en) 2012-02-27 2016-03-10 주식회사 엘지화학 Optical filter
KR101299184B1 (en) 2012-02-28 2013-08-21 엘지디스플레이 주식회사 3 dimensional stereography image displayable system
TWI522653B (en) 2012-11-29 2016-02-21 Lg化學股份有限公司 Display device and polarizing glasses
EP2927742B1 (en) 2012-11-29 2018-07-04 LG Chem, Ltd. Patterned retardation film having periodic micropattern
KR102055004B1 (en) * 2012-12-21 2019-12-12 엘지디스플레이 주식회사 Display device and method for manufacturing of the same
KR101822224B1 (en) 2014-09-01 2018-01-25 주식회사 엘지화학 Liquid crystal lens
KR20160066849A (en) 2014-12-03 2016-06-13 주식회사 엘지화학 Optical filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040026032A (en) * 2002-09-17 2004-03-27 김진곤 3-dimension display system
JP2006348269A (en) * 2005-05-20 2006-12-28 Fujifilm Holdings Corp Cellulose acylate film, method for producing the same, polarizing plate and liquid crystal display

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148649A (en) * 1992-11-10 1994-05-27 Sumitomo Bakelite Co Ltd Liquid crystal element
JP4010810B2 (en) * 1999-07-29 2007-11-21 帝人株式会社 Retardation film, retardation film composite, and liquid crystal display using the same
KR100603455B1 (en) * 2000-12-30 2006-07-20 엘지.필립스 엘시디 주식회사 Polarizing Stereoscopic Apparatus and Fabricating method thereof
GB2384318A (en) * 2002-01-18 2003-07-23 Sharp Kk Method of making a passive patterned retarder
KR100641746B1 (en) * 2004-05-10 2006-11-02 김태민 Optical Retarder and Method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040026032A (en) * 2002-09-17 2004-03-27 김진곤 3-dimension display system
JP2006348269A (en) * 2005-05-20 2006-12-28 Fujifilm Holdings Corp Cellulose acylate film, method for producing the same, polarizing plate and liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032809A (en) * 2022-07-04 2022-09-09 宁波维真显示科技股份有限公司 Liquid crystal splicing large screen compatible with 2D and 3D display and preparation method of large screen
CN115032809B (en) * 2022-07-04 2023-08-08 杭州大昱光电科技有限公司 Liquid crystal spliced large screen compatible with 2D and 3D display and large screen preparation method

Also Published As

Publication number Publication date
KR100967899B1 (en) 2010-07-06
WO2011068342A3 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011068342A2 (en) Stereoscopic image display device
US8120718B2 (en) Parallax barrier device for viewing three-dimensional images, method for fabricating the same and display apparatus including a parallax barrier device
JP3635559B2 (en) Autostereoscopic display
US8610852B2 (en) Patterned retardation film and method for manufacturing the same
US8223280B2 (en) Phase difference element and display device
TWI504935B (en) Optical filter and stereoscopic image display device including the same
WO2011090355A2 (en) Tacky adhesive film for use in photoalignment-layer alignment processing
JPH1184413A (en) Production of space optical modulator, formation of cell walls for space optical modulator, space optical modulator and cell wall for space optical modulator
US20110157698A1 (en) Retardation plate for stereoscopic image display, polarizing element, and methods for production thereof, and stereoscopic image display device
KR20120138236A (en) Bendable liquid crystal polarization switch for direct view stereoscopic display
WO2011049326A2 (en) Patterned retardation film and method for manufacturing the same
JPH10161108A (en) Phase difference element, its production and solid-state display device provided with the same
KR101324403B1 (en) Stereoscopic image display and method for manufacturing of the same
KR101321871B1 (en) Polarizer, Method of fabricating the same and Liquid crystal display having the same
US9036098B2 (en) Liquid crystal display device and method for manufacturing the same
WO2019235792A1 (en) Laminate and liquid crystal display device comprising same
GB2326727A (en) Liquid crystal device
WO2011142587A2 (en) Patterned retarder laminated composite polarizing plate and display apparatus using the same
US11927775B2 (en) 3D glasses, optical device, and three-dimensional image display device
WO2022000694A1 (en) Display apparatus and electronic device
TWI408457B (en) Transparent film, polarizing plate and liquid crystal display device
KR101706579B1 (en) Method of fabricating retarder for image display device
KR20040061498A (en) Optical Device for Multiple Function in Display
WO2012026693A2 (en) Method for manufacturing a phase contrast film
CN102540573A (en) Method for manufacturing three-dimensional display panel and three-dimensional display film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834757

Country of ref document: EP

Kind code of ref document: A2