WO2011068112A1 - Highly adhesive thermoplastic resin film - Google Patents

Highly adhesive thermoplastic resin film Download PDF

Info

Publication number
WO2011068112A1
WO2011068112A1 PCT/JP2010/071434 JP2010071434W WO2011068112A1 WO 2011068112 A1 WO2011068112 A1 WO 2011068112A1 JP 2010071434 W JP2010071434 W JP 2010071434W WO 2011068112 A1 WO2011068112 A1 WO 2011068112A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
film
layer
coating layer
resin
Prior art date
Application number
PCT/JP2010/071434
Other languages
French (fr)
Japanese (ja)
Inventor
晃侍 伊藤
淳史 山崎
寛子 矢吹
薫 澤田
水野 直樹
東浦 真哉
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to KR1020127015500A priority Critical patent/KR101404875B1/en
Priority to CN201080054922.0A priority patent/CN102648094B/en
Publication of WO2011068112A1 publication Critical patent/WO2011068112A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/46Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
    • C08G18/4676Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/706Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/765Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group alpha, alpha, alpha', alpha', -tetraalkylxylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the present invention relates to an easily-adhesive thermoplastic resin film excellent in adhesion and heat and moisture resistance. Specifically, it is suitable as a base material for functional films such as hard coat films, antireflection films, light diffusion sheets, prismatic lens sheets, near-infrared shielding films, transparent conductive films, and antiglare films, which are mainly used for displays and the like.
  • the present invention relates to an easily adhesive thermoplastic film.
  • a transparent thermoplastic resin made of polyethylene terephthalate (PET), acrylic, polycarbonate (PC), triacetyl cellulose (TAC), polyolefin or the like is used as a base material for a functional film used as a liquid crystal display (LCD) member.
  • a film is used.
  • thermoplastic resin film When using the thermoplastic resin film as a base material for various functional films, functional layers corresponding to various uses are laminated. For example, in a liquid crystal display (LCD), a protective film (hard coat layer) that prevents scratches on the surface, an antireflection layer (AR layer) that prevents reflection of external light, and a prism layer that is used to collect and diffuse light And a functional layer such as a light diffusion layer for improving luminance.
  • a protective film hard coat layer
  • AR layer antireflection layer
  • prism layer that is used to collect and diffuse light
  • a functional layer such as a light diffusion layer for improving luminance.
  • a functional layer such as a light diffusion layer for improving luminance.
  • polyester films are widely used as substrates for various functional films because they are excellent in transparency, dimensional stability and chemical resistance and are relatively inexpensive.
  • thermoplastic film such as a biaxially oriented polyester film or a biaxially oriented polyamide film
  • the film surface is highly crystallized, so it has good adhesion to various paints, adhesives, inks, etc.
  • a method of imparting easy adhesion to a base film by providing a coating layer mainly composed of various resins such as polyester, acrylic, polyurethane, and acrylic graft polyester on the surface of the thermoplastic resin film of the base Is generally known.
  • an aqueous coating solution containing the resin solution or a dispersion obtained by dispersing the resin in a dispersion medium is coated on a thermoplastic resin film before completion of crystal orientation, and dried. Thereafter, the film is stretched at least in a uniaxial direction and then subjected to heat treatment to complete the orientation of the thermoplastic resin film (so-called in-line coating method), or after the production of the thermoplastic resin film, the film is water-based or solvent-based.
  • a method of drying after applying a coating solution has been industrially implemented.
  • LCDs displays such as PDPs
  • portable devices using hard coat films as members are used in various environments, both indoors and outdoors.
  • portable devices may require moisture and heat resistance that can withstand a bathroom, a hot and humid area, and the like.
  • the optical functional film used for such applications is required to have high adhesion such that delamination does not occur even under high temperature and high humidity. Therefore, in the following patent document, an easy-adhesive thermoplastic resin film imparted with moisture and heat resistance is disclosed by adding a crosslinking agent to the coating solution and forming a crosslinked structure in the coating layer resin when forming the coating layer by the in-line coating method. Has been.
  • JP 2000-141574 A Japanese Patent No. 3900191 Japanese Patent No. 3773738 JP 2007-253512 A JP 2000-355086 A Japanese Patent No. 2544792
  • the functional film used as a member also needs to maintain adhesion for a long time even under high temperature and high humidity.
  • the easy-adhesion film as disclosed in the above-mentioned patent document shows good adhesion at first, but a decrease in adhesion strength is inevitable in long-term use under high temperature and high humidity. . Due to such a decrease in adhesion, there is a problem that the initial performance is not maintained for a long time.
  • the present invention provides an easily-adhesive thermoplastic resin film that hardly causes deterioration of a coating layer under high temperature and high humidity, which has been conventionally considered to be unavoidable, that is, hardly causes a decrease in adhesion under high temperature and high humidity. To do.
  • the adhesiveness under high temperature and high humidity referred to in the present invention is a layer of a photocurable acrylic layer, placed in an environment of 80 ° C., 95% RH, 48 hours, and using a cutter guide with a gap interval of 2 mm, Apply 100 cell-shaped cuts that penetrate the photocurable acrylic layer to the base film on the surface of the photocurable acrylic layer, and then apply cellophane adhesive tape to the cell-shaped cut surface and rub it with an eraser to complete Means the adhesiveness when the same part is peeled off 5 times vigorously, and the adhesiveness is based on stricter criteria than the evaluation method described in JIS K5600-5-6, which is generally used. Therefore, it is a problem that the adhesiveness under such high temperature and high humidity shows the adhesiveness equal to or higher than the initial adhesiveness.
  • the present inventor improves adhesion under high temperature and high humidity by using a coating layer containing a specific urethane resin and / or a specific polyester resin and a carbodiimide compound.
  • a coating layer containing a specific urethane resin and / or a specific polyester resin and a carbodiimide compound.
  • the present inventors have found the fact that overturns the conventional technical common sense, and have arrived at the present invention.
  • it in order to improve the adhesion of the coating layer in the conventional technical common sense, it is mixed with a crosslinking agent and a resin having a functional group capable of reacting with it, and a highly crosslinked structure is formed when the coating layer is formed. It has been considered desirable to form.
  • the present invention uses a urethane resin and / or polyester resin that does not substantially have a carboxylic acid group that is a functional group that reacts with a carbodiimide group, and has substantially no crosslinked structure or a low degree of crosslinking.
  • the present inventors have found a fact contrary to the prior art to maintain high adhesion even under high temperature and high humidity by leaving the carbodiimide group in the coating layer in the state, and have reached the present invention.
  • An easily adhesive thermoplastic resin film comprising a polyester resin substantially free of carboxylic acid groups and (b) a carbodiimide compound.
  • thermoplastic resin film in which the said polyester resin contains the dicarboxylic acid component represented by following formula (1) and / or the diol component represented by following formula (2) (1) HOOC— (CH 2 ) n —COOH (where n is an integer satisfying 4 ⁇ n ⁇ 10) (2) HO— (CH 2 ) n —OH (where n is an integer satisfying 4 ⁇ n ⁇ 10) (3) The said easily adhesive thermoplastic resin film in which the said polyester resin contains naphthalene dicarboxylic acid as an acid component.
  • the coating layer comprises a urethane resin having a polycarbonate polyol as a constituent component and a carbodiimide compound as main components, and the coating layer contains 0.5 to 3.5 mmol / g of carbodiimide groups.
  • Plastic resin film (6)
  • the coating layer is mainly composed of a polyester resin having a number average molecular weight of 15000 or more and substantially having no carboxylic acid group and a carbodiimito compound, and carbodiimide groups are contained in the coating layer in an amount of 0.3 to 3.
  • the said easily-adhesive thermoplastic resin film containing 3 mmol / g.
  • the coating layer is mainly composed of a urethane resin having a polycarbonate polyol as a constituent component, a polyester resin having a number average molecular weight of 15000 or more and substantially having no carboxylic acid group, and a carbodiimide compound.
  • the above-mentioned easily-adhesive thermoplastic resin film containing 0.1 to 2.0 mmol / g of carbodiimide group.
  • the said easily adhesive polyester film whose said carbodiimide compound is water-soluble and whose haze is 2.5% or less.
  • At least one layer selected from a hard coat layer, a light diffusion layer, a prismatic lens layer, an electromagnetic wave absorption layer, a near infrared ray blocking layer, and a transparent conductive layer is formed on the coating layer of the easily adhesive thermoplastic resin film.
  • the first effect of the easy-adhesive thermoplastic resin film of the present invention is excellent in adhesiveness (wet heat resistance) with the optical functional layer under high temperature and high humidity. Therefore, as a preferred embodiment, the adhesion at the high temperature and high humidity treatment is equal to or improved from the initial adhesion.
  • the adhesion with the lens layer under high temperature and high humidity is good.
  • the blocking resistance is excellent.
  • thermoplastic resin film The thermoplastic resin constituting the thermoplastic resin film used as a base material in the present invention includes polyolefin resins such as polyethylene and polypropylene, polyamide resins such as nylon 6 and nylon 66, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6- Naphthalate, polymethylene terephthalate, and copolymer components such as diol components such as diethylene glycol, neopentyl glycol, polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, etc.
  • a polyester resin copolymerized with a dicarboxylic acid component or the like can be used. Of these, polyester resins are preferred from the viewpoint of mechanical strength and chemical resistance.
  • Polyester resins preferably used in the present invention include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polymethylene terephthalate, and copolymer components such as diols such as diethylene glycol, neopentyl glycol, and polyalkylene glycol.
  • a polyester resin obtained by copolymerizing a component, a dicarboxylic acid component such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, or 2,6-naphthalenedicarboxylic acid can be used.
  • the polyester resin suitably used in the present invention mainly contains at least one of polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate as a constituent component.
  • polyethylene terephthalate is most preferable from the balance between physical properties and cost.
  • these polyester films can improve chemical resistance, heat resistance, mechanical strength, etc. by biaxially stretching.
  • the biaxially stretched polyester film may be a single layer or a multilayer. Moreover, as long as it exists in the range with the effect of this invention, each of these layers can contain various additives in a polyester resin as needed. Examples of the additive include an antioxidant, a light resistance agent, an antigelling agent, an organic wetting agent, an antistatic agent, an ultraviolet absorber, and a surfactant.
  • inert particles may be included in the polyester film.
  • the total light transmittance of the easily adhesive polyester film is preferably 85% or more, more preferably 87% or more, and even more preferably 88% or more. 89% or more is more preferable, and 90% or more is particularly preferable.
  • the content of inert particles in the base film is as small as possible. Therefore, it is preferable to make a multilayer structure in which particles are contained only in the surface layer of the film, or to contain fine particles only in the coating layer without substantially containing particles in the film.
  • an inorganic and / or heat-resistant polymer particle is contained in the aqueous coating solution in order to improve the handleability of the film. It is also preferable to form irregularities on the surface of the coating layer.
  • substantially no inert particles means, for example, in the case of inorganic particles, when the element derived from the particles is quantitatively analyzed by fluorescent X-ray analysis, 50 ppm or less, preferably 10 ppm or less, Preferably, the content is below the detection limit. This means that even if particles are not actively added to the base film, contaminants derived from foreign substances and raw material resin or dirt adhering to the line or equipment in the film manufacturing process will be peeled off and mixed into the film. It is because there is a case to do.
  • inert particles only to the surface layer from the viewpoint of achieving both high transparency and handling properties.
  • particles are contained in the outermost layer (A layer in the case of A layer / B layer / A layer), and the center layer (B layer) is substantially free of particles. .
  • the type and content of the particles contained in the outermost layer may be inorganic particles or organic particles, and are not particularly limited, but include metal oxidation such as silica, titanium dioxide, talc, and kaolinite.
  • metal oxidation such as silica, titanium dioxide, talc, and kaolinite.
  • examples thereof include inorganic particles that are inert to polyesters such as products, calcium carbonate, calcium phosphate, and barium sulfate. Any one of these inert inorganic particles may be used alone, or two or more thereof may be used in combination.
  • the above particles preferably have an average particle size of 0.1 to 3.5 ⁇ m. If the average particle size is less than the lower limit, sufficient handling properties may not be obtained. If the upper limit is exceeded, the transparency may decrease.
  • the content of inorganic particles in the outermost layer is preferably 0.01 to 0.20% by mass with respect to the polyester constituting the outermost layer. If it is less than the lower limit, sufficient handling properties cannot be obtained. When the upper limit is exceeded, the transparency decreases.
  • a whitening film having a high void content may be used by adding a cavity developer in the base film.
  • a molding film imparted with moldability by adding a copolymer component as a polyester resin may be used.
  • the thickness of the base film used in the present invention is not particularly limited, but can be arbitrarily determined in the range of 30 to 500 ⁇ m according to the standard to be used.
  • the upper limit of the thickness of the base film is preferably 350 ⁇ m, particularly preferably 250 ⁇ m.
  • the lower limit of the film thickness is preferably 50 ⁇ m, more preferably 75 ⁇ m, and particularly preferably 100 ⁇ m.
  • the film thickness is less than the lower limit, rigidity and mechanical strength tend to be insufficient.
  • the film thickness exceeds the upper limit the cost may increase.
  • the easy-adhesive thermoplastic resin film of the present invention includes (a) a urethane resin having a polycarbonate polyol as a constituent component and / or a polyester resin having a number average molecular weight of 15000 or more and having substantially no carboxylic acid group, (B) It is important to provide a coating layer containing a carbodiimide compound. Among these, a coating layer mainly composed of the above (a) and (b) is preferable.
  • the “main component” means that 50% by mass or more is contained in the total solid component contained in the coating layer.
  • the unreacted carbodiimide group reacts with the generated carboxylic acid terminal to form a crosslink.
  • the deterioration of the coating film strength under high temperature and high humidity can be prevented by self-healing the deterioration of the coating film strength due to hydrolysis.
  • the coating layer of the present invention does not contain a carboxyl group or a salt thereof, which is a functional group having high reactivity with the carbodiimide group, or its salt is very small, and therefore there are many unreacted carbodiimide groups in the coating layer.
  • a functional group such as a carboxyl group is present in a resin used for a functional layer to be laminated, such as a photocurable acrylic resin and an unreacted product.
  • a functional group exists also in the thermoplastic resin which is a base film. It is presumed that in a high-temperature and high-humidity environment, the interaction between the functional group and / or the carbodiimide group present in these functional layers and / or base film proceeds, and strong adhesion can be obtained.
  • the present invention can improve the adhesion (humidity heat resistance) to the lens layer and other functional layers under high temperature and high humidity according to the above embodiment. Further, the configuration of the present invention will be described in detail below.
  • the urethane resin used in the present invention contains at least a polyol component and a polyisocyanate component as constituent components, and further contains a chain extender as necessary.
  • the urethane resin of the present invention is a polymer compound in which these constituent components are mainly copolymerized by urethane bonds.
  • it has the polycarbonate polyol as a structural component of a urethane resin, It is characterized by the above-mentioned.
  • Moisture heat resistance can be improved by including a urethane resin containing polycarbonate as a constituent component in the coating layer of the present invention.
  • the components of these urethane resins can be specified by nuclear magnetic resonance analysis or the like.
  • polycarbonate diol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1,5.
  • a polycarbonate diol obtained by reacting one or more diols such as bisphenol-A with carbonates such as dimethyl carbonate, diphenyl carbonate, ethylene carbonate, and phosgene. And the like.
  • the number average molecular weight of the polycarbonate diol is preferably 300 to 5000, and more preferably 500 to 3000.
  • the composition molar ratio of the polycarbonate polyol which is a constituent component of the urethane resin, is preferably 3 to 100 mol% when the total polyisocyanate component of the urethane resin is 100 mol%, preferably 5 to 50 mol%. More preferably, it is 6 to 20 mol%.
  • the composition molar ratio is low, the durability effect by the polycarbonate polyol may not be obtained.
  • the said composition molar ratio is high, initial adhesiveness may fall.
  • aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate
  • aromatic aliphatic diisocyanates such as xy
  • Chain extenders include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, ethylenediamine Diamines such as hexamethylenediamine and piperazine, aminoalcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water.
  • glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol
  • polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol
  • ethylenediamine Diamines such as hexamethylenediamine and piperazine
  • the coating layer of the present invention is preferably provided by an in-line coating method described later using an aqueous coating solution. Therefore, it is desirable that the urethane resin of the present invention is water-soluble. When a water-soluble urethane resin is used, compatibility with a carbodiimide compound increases, and transparency can be improved.
  • the “water-soluble” means that it dissolves in water or an aqueous solution containing less than 50% by mass of a water-soluble organic solvent.
  • a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton. Since the sulfonic acid (salt) group is strongly acidic and it may be difficult to maintain moisture resistance due to its hygroscopic performance, it is preferable to introduce a weakly acidic carboxylic acid (salt) group.
  • a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid is introduced as a copolymer component to form a salt.
  • the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, and tri-n-butylamine, N such as N-methylmorpholine and N-ethylmorpholine.
  • -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine and N-diethylethanolamine. These can be used alone or in combination of two or more.
  • the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the urethane resin is the same as that of the urethane resin.
  • the total polyisocyanate component is 100 mol%, it is preferably 3 to 60 mol%, and more preferably 10 to 40 mol%. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult.
  • the said composition molar ratio exceeds 60 mol%, since the residual carbodiimide group at the time of coating layer formation reduces, heat-and-moisture resistance may fall.
  • the carbodiimide group may react with the carbodiimide group in the coating solution, and the unreacted carbodiimide group may be reduced when the coating layer is formed. Therefore, it is desirable that the coating layer has substantially no carboxylic acid (salt) group. Therefore, in order to impart water solubility to the urethane resin, it is a preferred embodiment of the present invention to introduce a polyoxyalkylene group instead of the carboxylate group.
  • a coating layer does not have a carboxyl group substantially. Therefore, an unreacted carbodiimide group remains stably and can exhibit more excellent moisture and heat resistance.
  • Examples of the polyoxyalkylene group introduced into the urethane resin include a polyoxyethylene group, a polyoxypropylene group, and a polytetramethylene glycol chain, and these can be used alone or in combination of two or more. Among these, a polyoxyethylene group can be preferably used.
  • polyisocyanate and one-end blocked polyoxyethylene glycol (alkoxyethylene glycol whose one end is blocked with an alkyl group having 1 to 20 carbon atoms) are blocked at one end.
  • the polyoxyethylene chain-containing monoisocyanate was obtained by removing the unreacted polyisocyanate if necessary. Then, the obtained polyoxyethylene chain-containing monoisocyanate and diisocyanate can be obtained by an allophanatization reaction.
  • the composition molar ratio of the polyoxyethylene groups in the urethane resin is 100 mol% of the total polyisocyanate component of the urethane resin. It is preferably 3 mol% or more, more preferably 10 mol% or more, and further preferably 20 mol% or more. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult.
  • the urethane resin is preferably contained in the coating layer in an amount of 10% by mass to 90% by mass.
  • the urethane resin is more preferably 20% by mass or more and 80% by mass or less.
  • the lower limit of the carbodiimide group concentration in the coating layer is 0.5 mmol / g, preferably 0.7 mmol / g, more preferably 1.0 mmol / g, and the upper limit. Is 3.5 mmol / g, preferably 3.3 mmol / g, more preferably 3.0 mmol / g. If the amount is less than the above lower limit, sufficient adhesiveness at high temperature and high humidity may not be obtained. When the above upper limit is exceeded, the ratio of the polycarbonate-based urethane resin becomes relatively small, and the adhesiveness, particularly the initial adhesiveness, may be lowered.
  • the polyester resin used in the present invention preferably has fewer carboxylic acid groups which are reactive groups with carbodiimide groups. More preferably, it has substantially no carboxylic acid group.
  • having substantially no carboxylic group means that it contains no carboxylic acid group other than the terminal group.
  • an acid value can be measured.
  • the polyester resin having substantially no carboxylic acid group has an acid value of 3 KOHmg / g or less, more preferably 2 KOHmg / g or less. More preferably, it is a polyester resin of 1 KOHmg / g or less.
  • the number average molecular weight of the polyester resin needs to be 15000 or more.
  • the number average molecular weight is low, the terminal carboxylic acid group increases, which may cause a reaction with a carbodiimide group.
  • the hydrolysis is accelerated, the coating film is not sufficiently repaired, and not only the adhesiveness under high temperature and high humidity is not obtained, but also the adhesiveness with the substrate film is lowered.
  • the number average molecular weight is more preferably 20000 or more, and it is preferably higher as long as it can be produced.
  • the number average molecular weight is preferably 60000 or less because the solubility in the coating solution may be reduced as the number average molecular weight increases.
  • Polyester resin has acid components such as terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid, Examples include dimer acid, 5-sodium sulfoisophthalic acid, 4-sodium sulfonaphthalene-2,7-dicarboxylic acid, and the like.
  • Diol components include ethylene glycol, propane glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylene glycol, ethylene oxide adducts of bisphenol A, etc. Is mentioned.
  • a hard coat layer mainly made of an acrylic resin is provided on the film of the present invention, interference fringes are generated due to the difference in refractive index between the coating layer and the other layer, which may cause a problem in terms of visibility.
  • the dicarboxylic acid component of following formula (1) and / or the diol component of following formula (2) may contain the dicarboxylic acid component of following formula (1) and / or the diol component of following formula (2) as a component of a polyester resin.
  • the dicarboxylic acid component of the following formula (1) and / or the diol component of the following formula (2) in the polyester resin is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more.
  • the dicarboxylic acid component of the following formula (1) and / or the diol component of the following formula (2) in the polyester resin is preferably 70% or less, more preferably 60% or less, and further preferably 50% or less.
  • a coating film When exceeding the said upper limit, a coating film may become soft too much and heat-and-moisture resistance may fall. When it is less than the above lower limit, the flexibility of the polyester resin is lowered, the coating film becomes too hard, and the adhesion may be lowered.
  • the polyester resin is based on water or a water-soluble organic solvent (for example, an aqueous solution containing less than 50% by weight of alcohol, alkyl cellosolve, ketone, or ether) or an organic solvent (for example, toluene, ethyl acetate, etc.). Those dissolved or dispersed can be used.
  • a water-soluble organic solvent for example, an aqueous solution containing less than 50% by weight of alcohol, alkyl cellosolve, ketone, or ether
  • an organic solvent for example, toluene, ethyl acetate, etc.
  • a water-soluble or water-dispersible polyester resin is used.
  • a compound containing a sulfonate group or a carboxyl group is used. It is preferable to copolymerize a compound containing an acid base. Therefore, in addition to the dicarboxylic acid component described above, in order to impart water dispersibility to the polyester, it is preferable to use 5-sulfoisophthalic acid or an alkali metal salt thereof in the range of 1 to 10 mol%.
  • the molar ratio of the third component having three or more carboxyl groups / one molecule or three or more hydroxyl groups / one molecule is 5.0 mol% or less in the total dicarboxylic acid component. Preferably, it is 1.0 mol% or less more preferably.
  • the polyester resin is preferably contained in the coating layer in an amount of 10% by mass to 85% by mass.
  • high adhesiveness it is more preferably 20% by mass or more and 80% by mass or less.
  • the lower limit of the carbodiimide group concentration in the coating layer is 0.3 mmol / g, preferably 0.5 mmol / g, more preferably 0.8 mmol / g, and the upper limit. Is 3.3 mmol / g, preferably 3.0 mmol / g, more preferably 2.8 mmol / g. If the amount is less than the above lower limit, sufficient adhesiveness at high temperature and high humidity may not be obtained. When the upper limit is exceeded, the ratio of the polyester resin becomes relatively small, and the adhesion, particularly the initial adhesion, may be lowered.
  • the polycarbonate-based urethane resin having excellent durability and the polyester resin are used to improve the coating film hardness and exhibit excellent blocking resistance as well as adhesion. Can do.
  • the polyester resin preferably has a low glass transition temperature from the viewpoint of adhesion, but preferably has a high glass transition temperature from the viewpoint of blocking resistance. Therefore, the glass transition temperature of the polyester resin is preferably 10 to 100 ° C., and more preferably 30 to 70 ° C. When the glass transition temperature is higher than 100 ° C., the melt viscosity becomes high, and it is difficult to obtain a product having a sufficient molecular weight, so that the adhesiveness is lowered. When the glass transition temperature is lower than 10 ° C., the blocking resistance of the film is lowered.
  • the molar ratio of the third component having three or more carboxyl groups / one molecule or three or more hydroxyl groups / one molecule is 5.0 mol% or less in the total dicarboxylic acid component. Preferably, it is 1.0 mol% or less more preferably.
  • the concentration of the polyurethane resin and the polyester resin is preferably 10% by mass to 80% by mass in the coating layer.
  • high adhesiveness it is more preferably 20% by mass or more and 70% by mass or less.
  • the content of the urethane resin is large, the adhesiveness under high temperature and high humidity is lowered, and conversely, when the content is small, the initial adhesiveness is lowered.
  • the adhesiveness under high temperature, high humidity falls, and conversely, when there is little content, adhesiveness with a base film and blocking resistance fall.
  • the lower limit of the carbodiimide group concentration in the coating layer is 0.1 mmol / g, preferably 0.2 mmol / g, more preferably 0.4 mmol / g.
  • the upper limit is 2.0 mmol / g, preferably 1.8 mmol / g, more preferably 1.5 mmol / g. If the amount is less than the above lower limit, sufficient adhesiveness at high temperature and high humidity may not be obtained. When the above upper limit is exceeded, the ratio of the urethane resin and the polyester resin becomes relatively small, and the adhesiveness, particularly the initial adhesiveness, may be lowered.
  • a resin other than the urethane resin and / or the polyester resin may be contained in order to improve adhesion.
  • an acrylic resin, a polyester resin, etc. are mentioned.
  • the carboxylic acid group content is low. More preferably, it does not contain a carboxylic acid group. When there are many carboxylic acid groups, it will react with a carbodiimide group, and the carbodiimide group which reacts with the carboxylic acid group generated from a urethane resin under high temperature and high humidity will decrease.
  • Carbodiimide compound In the present invention, it is necessary to contain a carbodiimide compound.
  • the carbodiimide compound include a monocarbodiimide compound and a polycarbodiimide compound.
  • monocarbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t − butylisopropylcarbodiimide, diphenylcarbodiimide, di − t − butylcarbodiimide, di − ⁇ − naphthylcarbodiimide and the like.
  • polycarbodiimide compound those produced by a conventionally known method can be used.
  • it can be produced by synthesizing an isocyanate-terminated polycarbodiimide by a condensation reaction involving decarbonization of diisocyanate.
  • diisocyanate that is a raw material for synthesizing a polycarbodiimide compound
  • diisocyanate examples include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and 4 Alicyclic diisocyanates such as 1,4-dicyclohexylmethane diisocyanate and 1,3-bis (isocyanatemethyl) cyclohexane, and aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate. From the problem of yellowing, aromatic aliphatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates are preferred.
  • the diisocyanate may be used with a molecule controlled to an appropriate degree of polymerization using a compound that reacts with a terminal isocyanate such as monoisocyanate.
  • a compound that reacts with a terminal isocyanate such as monoisocyanate.
  • monoisocyanates for sealing the ends of polycarbodiimide and controlling the degree of polymerization thereof include phenyl isocyanate, toluylene isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, and naphthyl isocyanate.
  • a compound having an —OH group, —NH 2 group, —COOH group, or —SO 2 H group can be used as a terminal blocking agent.
  • the condensation reaction accompanied by decarbonization of diisocyanate proceeds in the presence of a carbodiimidization catalyst.
  • the catalyst include 1 − phenyl − 2 − phospholene − 1 − oxide, 3 − methyl − 2 − phospholene − 1 − Oxide, 1 − ethyl − 2 − phospholene − 1 − oxide, 3 − methyl − 1 − phenyl − 2 − phospholene − 1 − Oxides and phospholene isomers such as these 3 − phospholene isomers, etc., and 3 − Me
  • the mono- or polycarbodiimide compound described above is desirably kept in a uniform dispersed state when blended with an aqueous coating material.
  • it is emulsified with an appropriate emulsifier and used as an emulsion, or a polycarbodiimide compound.
  • the carbodiimide compound used in the present invention includes water dispersibility and water solubility.
  • Water solubility is preferred because it is highly compatible with other water-soluble resins and improves the transparency of the coating layer and the crosslinking reaction efficiency.
  • the degree of polymerization (n) of the polycarbodiimide compound is preferably 2 to 10, more preferably 3 to 7.
  • the degree of polymerization is small, the crosslinking reaction rate is deteriorated and the adhesion with the functional layer is lowered.
  • the degree of polymerization is large, the compatibility with the resin is deteriorated and haze may be increased.
  • an isocyanate-terminated polycarbodiimide is synthesized by a condensation reaction involving decarbonization of isocyanate, and then a hydrophilic part having a functional group having reactivity with an isocyanate group is added. Can be manufactured.
  • hydrophilic sites include (1) quaternary ammonium salts of dialkylamino alcohols and quaternary ammonium salts of dialkylaminoalkylamines, (2) alkyl sulfonates having at least one reactive hydroxyl group, and the like (3)
  • examples thereof include poly (ethylene oxide) end-capped with an alkoxy group, poly (propylene oxide), a mixture of poly (ethylene oxide) and poly (propylene oxide), and the like.
  • the repeating unit of ethylene oxide and / or propylene oxide is preferably 3 to 50, more preferably 5 to 35. When the repeating unit is small, the compatibility with the resin is deteriorated and the haze is increased.
  • the carbodiimide compound is (1) cationic, (2) anionic, and (3) nonionic when the above hydrophilic moiety is introduced.
  • the nonionic property which can be compatible regardless of the ionicity of other water-soluble resin is preferable.
  • transduce an ionic hydrophilic group is preferable.
  • the carbodiimide equivalent of the carbodiimide compound used in the present invention is not particularly limited, but specifically, for example, it is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less. is there.
  • the said carbodiimide equivalent exceeds an upper limit, sufficient interaction with a carboxyl group etc. contained in a base film or a functional layer is not expressed, but durability and water resistance may not be obtained satisfactorily.
  • the said carbodiimide equivalent shall be a chemical formula amount per 1 mol of carbodiimide groups. Therefore, the smaller the carbodiimide equivalent value, the larger the amount of carbodiimide groups in the polymer, and the larger the value, the smaller the amount of carbodiimide groups in the polymer.
  • the carbodiimide compound is preferably contained in the coating layer in an amount of 5% by mass to 90% by mass. More preferably, it is 10% by mass or more and 70% by mass or less.
  • the content of the carbodiimide compound is large, the adhesion with the functional layer is lowered, and conversely, when the content is small, the adhesion under high temperature and high humidity may be lowered.
  • the coating layer may contain a crosslinking agent different from the carbodiimide compound or a resin having a crosslinking group.
  • the crosslinking agent include urea, epoxy, melamine, isocyanate, oxazoline, silanol and the like.
  • a catalyst etc. are used suitably as needed.
  • particles may be contained in the coating layer.
  • Particles are (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, titanium dioxide, zirconium dioxide, tin oxide, satin White, titanium black, aluminum silicate, diatomaceous earth, calcium silicate, aluminum hydroxide, hydrous halloysite, magnesium carbonate, magnesium hydroxide, inorganic particles, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, Nylon, styrene / acrylic, styrene / butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / isoprene, methyl methacrylate / butyl methacrylate, melamine, polycarbonate, urea , Epoxy, urethane,
  • the particles preferably have an average particle diameter of 1 to 500 nm.
  • the average particle size is not particularly limited, but is preferably 1 to 100 nm from the viewpoint of maintaining the transparency of the film.
  • the particles may contain two or more kinds of particles having different average particle diameters.
  • said average particle diameter measures the maximum diameter of the 10 or more particle
  • TEM transmission electron microscope
  • the particle content is preferably 0.5% by mass or more and 20% by mass or less.
  • the amount is small, sufficient blocking resistance cannot be obtained. Further, scratch resistance is deteriorated.
  • the amount is large, not only the transparency of the coating layer is deteriorated, but also the coating strength is lowered.
  • the coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution.
  • the surfactant may be any of cationic, anionic and nonionic surfactants, but is preferably a silicon-based, acetylene glycol-based or fluorine-based surfactant. These surfactants are preferably contained in a range that does not impair the adhesion to the functional layer, for example, 0.005 to 0.5% by mass in the coating solution.
  • the easily adhesive polyester film of the present invention preferably has a haze value of 2.5% or less, more preferably 2.0% or less, and even more preferably 1.5% or less.
  • Such an easily adhesive thermoplastic resin film can be improved in compatibility with other resins by making the carbodiimide compound contained in the coating layer described above water-soluble.
  • additives may be contained within a range that does not impair the adhesion to the functional layer.
  • the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam suppressors, antifoaming agents, preservatives, and antistatic agents.
  • a method of applying a coating solution containing a solvent, particles, and a resin to a polyester film and drying may be mentioned.
  • the solvent include organic solvents such as toluene, water, or a mixed system of water and a water-soluble organic solvent.
  • water alone or a mixture of a water-soluble organic solvent and water is used from the viewpoint of environmental problems. preferable.
  • the laminated thermoplastic resin film of the present invention comprises a hard coat layer, a light diffusion layer, a prismatic lens layer, an electromagnetic wave absorption layer, a near-infrared shielding layer, and a transparent conductive layer on at least one surface of the above-mentioned thermoplastic resin film coating layer. It is obtained by at least one optical functional layer selected.
  • the material used for the optical functional layer is not particularly limited.
  • PET polyethylene terephthalate
  • the PET resin After sufficiently drying the PET resin in a vacuum, it is supplied to an extruder, melted and extruded at about 280 ° C. from a T-die into a rotating cooling roll into a sheet, cooled and solidified by an electrostatic application method, and unstretched PET. Get a sheet.
  • the unstretched PET sheet may have a single layer structure or a multilayer structure by a coextrusion method. Moreover, it is preferable not to contain an inert particle substantially in PET resin.
  • the obtained unstretched PET sheet is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film. Further, the end of the film is gripped with a clip, led to a hot air zone heated to 70 to 140 ° C., and stretched 2.5 to 5.0 times in the width direction. Subsequently, the film is guided to a heat treatment zone of 160 to 240 ° C., and heat treatment is performed for 1 to 60 seconds to complete crystal orientation.
  • a coating solution is applied to at least one surface of the PET film to form the coating layer.
  • the solid concentration of the resin composition in the coating solution is preferably 2 to 35% by weight, particularly preferably 4 to 15% by weight.
  • any known method can be used as a method for applying this coating solution to the PET film.
  • reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.
  • the coating layer is formed by applying the coating solution to an unstretched or uniaxially stretched PET film, drying it, stretching it at least in a uniaxial direction, and then performing a heat treatment.
  • the thickness of the finally obtained coating layer is preferably 20 to 350 nm, and the coating amount after drying is preferably 0.02 to 0.5 g / m 2 .
  • the coating amount of the coating layer is less than 0.02 g / m 2 , the effect on adhesiveness is almost lost.
  • the coating amount exceeds 0.5 g / m 2 , haze increases.
  • the coating layer of the easy-adhesive thermoplastic resin film obtained in the present invention has good adhesion to a hard coat layer, a light diffusion layer, a prismatic lens layer, an electromagnetic wave absorption layer, a near-infrared shielding layer, and a transparent conductive layer.
  • a hard coat layer a hard coat layer
  • a prismatic lens layer a prismatic lens layer
  • an electromagnetic wave absorption layer a near-infrared shielding layer
  • a transparent conductive layer a transparent conductive layer.
  • adhesion such as photographic photosensitive layer, diazo photosensitive layer, matte layer, magnetic layer, inkjet ink receiving layer, hard coat layer, UV curable resin, thermosetting resin, printing ink and UV ink, dry laminate, extrusion laminate, etc.
  • adhesion such as photographic photosensitive layer, diazo photosensitive layer, matte layer, magnetic layer, inkjet ink receiving layer, hard coat layer, UV curable resin, thermosetting resin, printing ink and UV ink, dry laminate, extrusion laminate, etc.
  • examples thereof include vacuum deposition, electron beam deposition, sputtering, ion plating, CVD, plasma polymerization and the like of an agent, a metal or an inorganic substance, or an oxide thereof, and an organic barrier layer.
  • Resin composition The resin was dissolved in deuterated chloroform and subjected to 1 H-NMR analysis using a nuclear magnetic resonance analyzer (NMR) Gemini-200 manufactured by Varian, Inc. From the integration ratio, 100 moles of all isocyanate components were obtained. The mole% ratio of each composition was determined.
  • NMR nuclear magnetic resonance analyzer
  • Number average molecular weight 0.03 g of a resin was dissolved in 10 ml of tetrahydrofuran, and a GPC-LALLS apparatus low angle light scattering photometer LS-8000 (manufactured by Tosoh Corporation, tetrahydrofuran solvent, reference: polystyrene) was used.
  • the number average molecular weight was measured using a column (showex KF-802, 804, 806 manufactured by Showa Denko KK) at a flow rate of 1 ml / min.
  • Acid value 1 g (solid content) of a sample was dissolved in 30 ml of chloroform or dimethylformamide, and titrated with 0.1 N potassium hydroxide ethanol solution using phenolphthalein as an indicator to determine the carboxyl groups per gram of the sample. The amount (mg) of KOH required for neutralization was determined.
  • Carbodiimide value The carbodiimide compound was freeze-dried and analyzed by 1 H-NMR, and the carbodiimide value was calculated from the absorption peak intensity derived from the carbodiimide group and the absorption peak intensity derived from other monomers.
  • Total light transmittance of easy-adhesive polyester film The total light transmittance of the obtained easily-adhesive polyester film was measured using a turbidimeter (Nippon Denshoku, NDH2000) in accordance with JIS K 7105. .
  • the absorbance derived from the carbodiimide group is the height of the absorption peak having an absorption maximum in the region of 2120 ⁇ 10 cm ⁇ 1 (A 2120 ), and the absorbance derived from PET has the absorption maximum in the region of 1340 ⁇ 10 cm ⁇ 1.
  • the height of the absorption peak (A 1340 ) was used.
  • the base line was a line connecting the sleeves on both sides of each maximum absorption peak.
  • the thickness of the coating layer was determined with a transmission electron microscope.
  • a sample of the laminated film was embedded in a visible light curable resin (D-800 manufactured by Nippon Shin-EM Co., Ltd.) and cured by exposure to visible light at room temperature.
  • an ultrathin section having a thickness of about 70 to 100 nm was prepared using an ultramicrotome equipped with a diamond knife, and stained in ruthenium tetroxide vapor for 30 minutes. Furthermore, after performing carbon vapor deposition, the cross section was observed using the transmission electron microscope (the JEOL Co., Ltd. make, TEM2010), the photograph was image
  • the carbodiimide group concentration in the coating layer was determined using a calibration curve prepared from a standard sample that had been coated in advance with a coating solution with a known carbodiimide concentration and air-dried. Asked.
  • the mixture was adjusted so that the fixed component concentration was 30% by mass), and the coating layer after drying was applied so that the thickness of the coating layer was 50 nm, 100 nm, and 200 nm.
  • the infrared absorbance ratio A 2120 / A 1340 was measured by external spectroscopy, and the following primary formula consisting of three variables of oxazoline group concentration, coating layer thickness, infrared absorbance ratio A 2120 / A 1340 was obtained from the obtained results. This was used as a calibration curve.
  • Carbodiimide concentration A ⁇ (infrared absorbance ratio A 2120 / A 1340 ) / (coating layer thickness) + B (Here, A and B are constants obtained from the data obtained by creating the calibration curve)
  • Adhesiveness (%) (1 ⁇ number of peeled squares / 100) ⁇ 100 ⁇ : 100% or photocuring acrylic layer material failure ⁇ : 99-90% ⁇ : 89-70% ⁇ : 69 to 0%
  • the results of visual observation are ranked according to the following criteria. The observation is performed by five people who are familiar with the evaluation, and the highest rank is the evaluation rank. If two ranks have the same number, the center of the rank divided into three is adopted. ⁇ : Almost no iris color is seen ⁇ : Slightly iris color is observed ⁇ : Clear iris color is observed
  • copolyester resin (A-1) was light yellow and transparent.
  • the reduced viscosity of the obtained copolyester resin (A-1) was measured and found to be 0.70 dl / g.
  • the glass transition temperature by DSC was 40 ° C.
  • copolymer polyester resins (A-2) to (A-7) having different compositions were obtained.
  • Table 1 shows the composition (mole% ratio) and other characteristics of these copolyester resins measured by 1 H-NMR.
  • water-soluble polyurethane resins (D-3) to (D-4) having different compositions were obtained.
  • Table 2 shows the composition (mole% ratio) and other characteristics measured by 1 H-NMR for these water-soluble polyurethane resins.
  • Example 1 Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created.
  • the polyester resin has a number average molecular weight of 20000.
  • Polyester aqueous dispersion (B-1) 13.16% by mass
  • Water-soluble carbodiimide compound (C-1) 4.23% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Surfactant 0.05% by mass (Silicon, solid content concentration of 100% by mass)
  • the unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
  • a coating liquid for forming a hard coat layer (C-1) having the following composition was applied to the coating layer surface of the above-mentioned easy-adhesive polyester film using a # 10 wire bar. Dry for minutes to remove the solvent. Next, the film coated with the hard coat layer was irradiated with 300 mJ / cm 2 ultraviolet rays using a high-pressure mercury lamp to obtain a laminated polyester film having a hard coat layer with a thickness of 5 ⁇ m.
  • Comparative Example 1 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester water dispersion (B-6) having a molecular weight of 8000.
  • Comparative Example 2 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester aqueous dispersion (B-7) having an acid value of 50 KOHmg / g.
  • Comparative Example 3 An easy-adhesive polyester film and a laminated polyester film were prepared in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to an epoxy compound (Denacol EX-521, solid content concentration: 100%, manufactured by Nagase ChemteX Corporation). Obtained.
  • Comparative Example 4 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to a melamine compound (Becamine M-3 solid content concentration: 60%, manufactured by DIC). .
  • Example 2 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the coating solution was changed to the following.
  • Water 51.31% by mass Isopropanol 30.00% by mass Polyester water dispersion (B-1) 15.04 mass%
  • Water-soluble carbodiimide compound (C-1) 2.82% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Example 3 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the coating solution was changed to the following.
  • Water 53.19% by mass Isopropanol 30.00% by mass Polyester water dispersion (B-1) 7.52% by mass
  • Water-soluble carbodiimide compound (C-1) 8.46% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Example 4 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the coating solution was changed to the following.
  • Water 53.66% by mass Isopropanol 30.00% by mass Polyester aqueous dispersion (B-1) 5.64% by mass
  • Water-soluble carbodiimide compound (C-1) 9.87% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Surfactant 0.05% by mass (Silicon, solid content concentration of 100% by mass)
  • Example 5 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-2).
  • Example 6 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-3).
  • Example 7 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester aqueous dispersion (B-2) having a molecular weight of 15000.
  • Example 8 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester aqueous dispersion (B-3) having a molecular weight of 23,000.
  • Example 9 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester water dispersion was changed to a polyester water dispersion (B-4) having a molecular weight of 46000.
  • Example 10 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester aqueous dispersion (B-5) having a molecular weight of 50000.
  • Example 11 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to the water-dispersible carbodiimide compound (C-4).
  • Example 12 (1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created. Water 53.66% by mass Isopropanol 30.00% by mass Polyurethane resin (D-1) 11.28% by mass Water-soluble carbodiimide compound (C-1) 4.23 mass% Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass) Surfactant 0.05% by mass (Silicon, solid content concentration of 100% by mass)
  • the unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
  • Comparative Example 5 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin was changed to a polyurethane resin (D-5) containing polyester polyol as a constituent component.
  • Comparative Example 6 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin was changed to a polyurethane resin (D-6) containing polyether polyol as a constituent component.
  • Comparative Example 7 An easily adhesive polyester film and a laminated polyester film were prepared in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to an epoxy compound (Denacol EX-521, solid content concentration 100%, manufactured by Nagase ChemteX Corporation). Obtained.
  • Comparative Example 8 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to a melamine compound (Becamine M-3 solid content concentration: 60% by DIC). .
  • Example 13 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the coating solution was changed to the following.
  • Polyurethane resin (D-1) 12.89% by mass
  • Water-soluble carbodiimide compound (C-1) 2.82% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Example 14 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the coating solution was changed to the following.
  • Water 54.26% by mass Isopropanol 30.00% by mass Polyurethane resin (D-1) 6.45% by mass
  • Water-soluble carbodiimide compound (C-1) 8.46% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Example 15 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the coating solution was changed to the following.
  • Water 54.47% by mass Isopropanol 30.00% by mass Polyurethane resin (D-1) 4.83% by mass
  • Water-soluble carbodiimide compound (C-1) 9.87% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Example 16 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-2).
  • Example 17 An easy-adhesive polyester film and a laminated polyether film were obtained in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-3).
  • Example 18 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin (D-1) was changed to the polyurethane resin (D-2).
  • Example 19 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin (D-1) was changed to the polyurethane resin (D-3).
  • Example 20 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin (D-1) was changed to the polyurethane resin (D-4).
  • Example 21 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to the water-dispersible carbodiimide compound (C-4).
  • Example 22 (1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created. Water 52.65% by mass Isopropanol 30.00% by mass Polyester resin (B-2) 7.15% by mass Polyurethane resin (D-1) 6.95% by mass Water-soluble carbodiimide compound (C-1) 1.35% by mass 1.35% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.54% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • the unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
  • Photo-curing acrylic coating solution Photo-curing acrylic resin 60.00% by mass (Shin Nakamura Chemical 4G) Photo-curing acrylic resin 20.00% by mass (Shin Nakamura Chemical A-TMMT) Photo-curing acrylic resin 10.00% by mass (Shin-Nakamura Chemical A-BPE-4) Photo-curing acrylic resin 8.00% by mass (Shin Nakamura Chemical U-6HA) Photopolymerization initiator 2.00% by mass (Irgacure 184 manufactured by Ciba Specialty Chemicals)
  • Example 23 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the polyester water dispersion was changed to a polyester water dispersion (B-1) having a molecular weight of 20000.
  • Example 24 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the polyester water dispersion was changed to a polyester water dispersion (B-3) having a molecular weight of 23000.
  • Example 25 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following. 52.54% by mass of water Isopropanol 30.00% by mass Polyester resin (B-2) 7.55 mass% Polyurethane resin (D-1) 7.34% by mass Water-soluble carbodiimide compound (C-1) 0.68% by mass 1.35% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.54% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Example 26 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following.
  • Example 27 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following.
  • Example 28 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following. 52.56% by mass of water Isopropanol 30.00% by mass Polyester resin (B-2) 10.33% by mass Polyurethane resin (D-1) 3.86% by mass Water-soluble carbodiimide compound (C-1) 1.35% by mass 1.35% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.54% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Example 29 An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following.
  • Polyurethane resin (D-1) 10.04% by mass
  • Water-soluble carbodiimide compound (C-1) 1.35% by mass 1.35% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.54% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
  • Example 30 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-3).
  • Example 31 An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the water-soluble carbodiimide compound (C-1) was changed to the water-dispersible carbodiimide compound (C-4).
  • the easily adhesive polyester film of the present invention is excellent in adhesion with an optical functional layer and adhesion under high temperature and high humidity (moisture and heat resistance), so that it is mainly used for displays and the like, and a reflection using the film. It is suitable as a base film for optical functional films such as prevention films, light diffusion sheets, prismatic lens sheets, near-infrared shielding films, transparent conductive films, and antiglare films.

Abstract

Disclosed is a highly adhesive thermoplastic resin film which is substantially free from decrease in adhesion under high temperature high humidity conditions. Specifically disclosed is a highly adhesive thermoplastic resin film which comprises a coating layer on at least one surface of a base film. The highly adhesive thermoplastic resin film is characterized in that the coating layer contains (a) a urethane resin that contains a polycarbonate polyol as a component, and/or a polyester resin that does not substantially contain a carboxylic acid group and has a number average molecular weight of not less than 15,000, and (b) a carbodiimide compound.

Description

易接着性熱可塑性樹脂フィルムEasy-adhesive thermoplastic film
 本発明は、密着性と耐湿熱性に優れた易接着性熱可塑性樹脂フィルムに関する。詳しくは、ディスプレイなどに主として用いられる、ハードコートフィルム、反射防止フィルム、光拡散シート、プリズム状レンズシート、近赤外線遮断フィルム、透明導電性フィルム、防眩フィルムなどの機能性フィルムの基材として好適な易接着性熱可塑性樹脂フィルムに関する。 The present invention relates to an easily-adhesive thermoplastic resin film excellent in adhesion and heat and moisture resistance. Specifically, it is suitable as a base material for functional films such as hard coat films, antireflection films, light diffusion sheets, prismatic lens sheets, near-infrared shielding films, transparent conductive films, and antiglare films, which are mainly used for displays and the like. The present invention relates to an easily adhesive thermoplastic film.
 一般に、液晶ディスプレイ(LCD)の部材として用いられる機能性フィルムの基材には、ポリエチレンテレフタレート(PET)、アクリル、ポリカーボネート(PC)、トリアセチルセルロース(TAC)、ポリオレフィン等からなる透明な熱可塑性樹脂フィルムが用いられている。 In general, a transparent thermoplastic resin made of polyethylene terephthalate (PET), acrylic, polycarbonate (PC), triacetyl cellulose (TAC), polyolefin or the like is used as a base material for a functional film used as a liquid crystal display (LCD) member. A film is used.
 前記の熱可塑性樹脂フィルムを各種機能性フィルムの基材として用いる場合には、各種用途に応じた機能層が積層される。例えば、液晶ディスプレイ(LCD)では、表面の傷つきを防止する保護膜(ハードコート層)、外光の映り込みを防止する反射防止層(AR層)、光の集光や拡散に用いられるプリズム層、輝度を向上する光拡散層等の機能層が挙げられる。このような基材の中でも、特に、ポリエステルフィルムは、優れた透明性、寸法安定性、耐薬品性に優れ、比較的安価であるため各種機能性フィルムの基材として広く使用されている。 When using the thermoplastic resin film as a base material for various functional films, functional layers corresponding to various uses are laminated. For example, in a liquid crystal display (LCD), a protective film (hard coat layer) that prevents scratches on the surface, an antireflection layer (AR layer) that prevents reflection of external light, and a prism layer that is used to collect and diffuse light And a functional layer such as a light diffusion layer for improving luminance. Among such substrates, particularly polyester films are widely used as substrates for various functional films because they are excellent in transparency, dimensional stability and chemical resistance and are relatively inexpensive.
 一般に、二軸配向ポリエステルフィルムや二軸配向ポリアミドフィルムのような二軸配向熱可塑性フィルムの場合、フィルム表面は高度に結晶配向しているため、各種塗料、接着剤、インキなどとの密着性が乏しいという欠点がある。このため、従来から二軸配向熱可塑性樹脂フィルム表面に種々の方法で易接着性を付与する方法が提案されてきた。 In general, in the case of a biaxially oriented thermoplastic film such as a biaxially oriented polyester film or a biaxially oriented polyamide film, the film surface is highly crystallized, so it has good adhesion to various paints, adhesives, inks, etc. There is a disadvantage of being scarce. For this reason, methods for imparting easy adhesion to the biaxially oriented thermoplastic resin film surface by various methods have been proposed.
 例えば、基材の熱可塑性樹脂フィルムの表面に、ポリエステル、アクリル、ポリウレタン、アクリルグラフトポリエステルなどの各種樹脂を主たる構成成分とする塗布層を設けることにより、基材フィルムに易接着性を付与する方法が一般的に知られている。この塗布法の中でも、結晶配向が完了する前の熱可塑性樹脂フィルムに、前記樹脂の溶液または樹脂を分散媒で分散させた分散体を含有する水性塗布液を基材フィルムに塗工し、乾燥後、少なくとも一軸方向に延伸し、次いで熱処理を施して、熱可塑性樹脂フィルムの配向を完了させる方法(いわゆる、インラインコート法)や、熱可塑性樹脂フィルムの製造後、該フィルムに水系または溶剤系の塗布液を塗布後、乾燥する方法(いわゆる、オフラインコート法)が工業的に実施されている。 For example, a method of imparting easy adhesion to a base film by providing a coating layer mainly composed of various resins such as polyester, acrylic, polyurethane, and acrylic graft polyester on the surface of the thermoplastic resin film of the base Is generally known. Among these coating methods, an aqueous coating solution containing the resin solution or a dispersion obtained by dispersing the resin in a dispersion medium is coated on a thermoplastic resin film before completion of crystal orientation, and dried. Thereafter, the film is stretched at least in a uniaxial direction and then subjected to heat treatment to complete the orientation of the thermoplastic resin film (so-called in-line coating method), or after the production of the thermoplastic resin film, the film is water-based or solvent-based. A method of drying after applying a coating solution (so-called off-line coating method) has been industrially implemented.
 LCD、PDP等のディスプレイや、ハードコートフィルムを部材とする携帯用機器などは、屋内、屋外を問わず種々の環境で用いられる。特に、携帯用機器では、浴室、高温多湿地域などにも耐えうる耐湿熱性が要求される場合がある。このような用途に使用される光学機能性フィルムでは、高温高湿下でも層間剥離がおきないような高い密着性が求められる。そのため下記特許文献では、塗布液に架橋剤を添加し、インラインコート法による塗布層形成時に塗布層樹脂中に架橋構造を形成させることで、耐湿熱性を付与した易接着性熱可塑性樹脂フィルムが開示されている。 LCDs, displays such as PDPs, and portable devices using hard coat films as members are used in various environments, both indoors and outdoors. In particular, portable devices may require moisture and heat resistance that can withstand a bathroom, a hot and humid area, and the like. The optical functional film used for such applications is required to have high adhesion such that delamination does not occur even under high temperature and high humidity. Therefore, in the following patent document, an easy-adhesive thermoplastic resin film imparted with moisture and heat resistance is disclosed by adding a crosslinking agent to the coating solution and forming a crosslinked structure in the coating layer resin when forming the coating layer by the in-line coating method. Has been.
特開2000-141574号公報JP 2000-141574 A 特許第3900191号公報Japanese Patent No. 3900191 特許第3737738号公報Japanese Patent No. 3773738 特開2007-253512号公報JP 2007-253512 A 特開2000-355086号公報JP 2000-355086 A 特許第2544792号公報Japanese Patent No. 2544792
 地球環境負荷の低減のためディスプレイを有する家電製品などで、従来以上の長寿命化が期待されている。そのため、部材として用いられる機能性フィルムにおいても、高温高湿下でも長期間、密着性を保持することが必要であると考えられた。しかしながら、上記特許文献に開示されるような易接着性フィルムは、当初は良好な密着性を示すものの、高温高湿下の長期間の使用においては密着強度の低下は避けられないものであった。このような密着性の低下のため、初期性能が長期間維持しないという問題があった。 Longer life expectancy is expected for home appliances with a display to reduce global environmental impact. Therefore, it was considered that the functional film used as a member also needs to maintain adhesion for a long time even under high temperature and high humidity. However, the easy-adhesion film as disclosed in the above-mentioned patent document shows good adhesion at first, but a decrease in adhesion strength is inevitable in long-term use under high temperature and high humidity. . Due to such a decrease in adhesion, there is a problem that the initial performance is not maintained for a long time.
 本発明は上記課題に鑑み、従来避けられないと考えられてきた高温高湿下における塗布層の劣化、すなわち高温高湿下における密着性の低下をほとんど引き起こさない易接着性熱可塑性樹脂フィルムを提供するものである。 In view of the above problems, the present invention provides an easily-adhesive thermoplastic resin film that hardly causes deterioration of a coating layer under high temperature and high humidity, which has been conventionally considered to be unavoidable, that is, hardly causes a decrease in adhesion under high temperature and high humidity. To do.
 なお、本発明で言う高温高湿下での密着性とは光硬化型アクリル層を積層した後80℃、95%RH、48時間の環境下に置き、隙間間隔2mmのカッターガイドを用いて、光硬化型アクリル層を貫通して基材フィルムに達する100個のマス目状の切り傷を光硬化型アクリル層面につけ次いで、セロハン粘着テープをマス目状の切り傷面に貼り付け、消しゴムでこすって完全に密着させ、同一箇所を、勢いよく5回引きはがした時の密着性を意味し、一般に用いられるJIS K5600-5-6記載の評価方法より厳しい判定基準における密着性であり、本発明は、このような高温高湿下での密着性が初期に示す密着性と同等もしくはそれ以上の密着性を示すことが課題である。 In addition, the adhesiveness under high temperature and high humidity referred to in the present invention is a layer of a photocurable acrylic layer, placed in an environment of 80 ° C., 95% RH, 48 hours, and using a cutter guide with a gap interval of 2 mm, Apply 100 cell-shaped cuts that penetrate the photocurable acrylic layer to the base film on the surface of the photocurable acrylic layer, and then apply cellophane adhesive tape to the cell-shaped cut surface and rub it with an eraser to complete Means the adhesiveness when the same part is peeled off 5 times vigorously, and the adhesiveness is based on stricter criteria than the evaluation method described in JIS K5600-5-6, which is generally used. Therefore, it is a problem that the adhesiveness under such high temperature and high humidity shows the adhesiveness equal to or higher than the initial adhesiveness.
 本発明者は上記課題を解決するため鋭意検討を行った結果、特定のウレタン樹脂および/または特定のポリエステル樹脂とカルボジイミド化合物を含む塗布層を用いることにより、高温高湿下で密着性が向上するという従来の技術常識を覆す事実を見出し、本発明に至ったものである。上記特許文献にもあるように、これまでの技術常識では塗布層の密着性を向上させるために、架橋剤とそれに反応しうる官能基を有する樹脂と混合し、塗布層形成時に高度に架橋構造を形成させることが望ましいと考えられてきた。しかしながら、本発明は、カルボジイミド基と反応する官能基であるカルボン酸基を実質的に有さないウレタン樹脂および/またはポリエステル樹脂を用い、実質的に架橋構造を有しないか、または架橋度を低い状態にしてカルボジイミド基を塗布層中に残存させることで、高温高湿下においても高い密着性を維持するという、従来技術に反する事実を見出し、本発明に至ったものである。 As a result of intensive studies to solve the above problems, the present inventor improves adhesion under high temperature and high humidity by using a coating layer containing a specific urethane resin and / or a specific polyester resin and a carbodiimide compound. Thus, the present inventors have found the fact that overturns the conventional technical common sense, and have arrived at the present invention. As described in the above-mentioned patent document, in order to improve the adhesion of the coating layer in the conventional technical common sense, it is mixed with a crosslinking agent and a resin having a functional group capable of reacting with it, and a highly crosslinked structure is formed when the coating layer is formed. It has been considered desirable to form. However, the present invention uses a urethane resin and / or polyester resin that does not substantially have a carboxylic acid group that is a functional group that reacts with a carbodiimide group, and has substantially no crosslinked structure or a low degree of crosslinking. The present inventors have found a fact contrary to the prior art to maintain high adhesion even under high temperature and high humidity by leaving the carbodiimide group in the coating layer in the state, and have reached the present invention.
 前記の課題は、以下の解決手段により達成することができる。
(1)基材フィルムの少なくとも片面に塗布層を有する易接着性熱可塑性樹脂フィルムであり、前記塗布層が、(a)ポリカーボネートポリオールを構成成分とするウレタン樹脂および/もしくは数平均分子量15000以上であって実質的にカルボン酸基を有さないポリエステル樹脂と、(b)カルボジイミド化合物を含有する、易接着性熱可塑性樹脂フィルム。
(2)前記ウレタン樹脂がポリオキシアルキレン基を有する、上記易接着性熱可塑性樹脂フィルム。
(3)前記ポリエステル樹脂が下記式(1)で表されるジカルボン酸成分および/または下記式(2)で表されるジオール成分を含む、上記易接着性熱可塑性樹脂フィルム。
(1)HOOC-(CH-COOH (式中、nは4≦n≦10の整数)
(2)HO-(CH-OH (式中、nは4≦n≦10の整数)
(3)前記ポリエステル樹脂が酸成分としてナフタレンジカルボン酸を含む、上記易接着性熱可塑性樹脂フィルム。
(5)前記塗布層が、ポリカーボネートポリオールを構成成分とするウレタン樹脂とカルボジイミド化合物とを主成分とし、前記塗布層中にカルボジイミド基を0.5~3.5mmol/g含む、上記易接着性熱可塑性樹脂フィルム。
(6)前記塗布層が、数平均分子量15000以上であって実質的にカルボン酸基を有さないポリエステル樹脂とカルボジイミト化合物とを主成分とし、塗布層中にカルボジイミド基を0.3~3.3mmol/g含む、上記易接着性熱可塑性樹脂フィルム。
(7)前記塗布層が、ポリカーボネートポリオールを構成成分とするウレタン樹脂、数平均分子量15000以上であって実質的にカルボン酸基を有さないポリエステル樹脂、およびカルボジイミド化合物を主成分とし、塗布層中にカルボジイミド基を0.1~2.0mmol/g含む、上記易接着性熱可塑性樹脂フィルム。
(8)前記カルボジイミド化合物が水溶性であり、ヘイズが2.5%以下である、上記易接着性ポリエステルフィルム。
(9)上記易接着性熱可塑性樹脂フィルムの前記塗布層に、ハードコート層、光拡散層、プリズム状レンズ層、電磁波吸収層、近赤外線遮断層、透明導電層から選択される少なくとも1層の機能層を積層してなる積層熱可塑性樹脂フィルム。
The above-described problem can be achieved by the following solution means.
(1) An easy-adhesive thermoplastic resin film having a coating layer on at least one side of a base film, and the coating layer is (a) a urethane resin containing polycarbonate polyol as a constituent component and / or a number average molecular weight of 15000 or more. An easily adhesive thermoplastic resin film comprising a polyester resin substantially free of carboxylic acid groups and (b) a carbodiimide compound.
(2) The easily adhesive thermoplastic resin film, wherein the urethane resin has a polyoxyalkylene group.
(3) The said easily-adhesive thermoplastic resin film in which the said polyester resin contains the dicarboxylic acid component represented by following formula (1) and / or the diol component represented by following formula (2).
(1) HOOC— (CH 2 ) n —COOH (where n is an integer satisfying 4 ≦ n ≦ 10)
(2) HO— (CH 2 ) n —OH (where n is an integer satisfying 4 ≦ n ≦ 10)
(3) The said easily adhesive thermoplastic resin film in which the said polyester resin contains naphthalene dicarboxylic acid as an acid component.
(5) The above easy-adhesive heat, wherein the coating layer comprises a urethane resin having a polycarbonate polyol as a constituent component and a carbodiimide compound as main components, and the coating layer contains 0.5 to 3.5 mmol / g of carbodiimide groups. Plastic resin film.
(6) The coating layer is mainly composed of a polyester resin having a number average molecular weight of 15000 or more and substantially having no carboxylic acid group and a carbodiimito compound, and carbodiimide groups are contained in the coating layer in an amount of 0.3 to 3. The said easily-adhesive thermoplastic resin film containing 3 mmol / g.
(7) The coating layer is mainly composed of a urethane resin having a polycarbonate polyol as a constituent component, a polyester resin having a number average molecular weight of 15000 or more and substantially having no carboxylic acid group, and a carbodiimide compound. The above-mentioned easily-adhesive thermoplastic resin film containing 0.1 to 2.0 mmol / g of carbodiimide group.
(8) The said easily adhesive polyester film whose said carbodiimide compound is water-soluble and whose haze is 2.5% or less.
(9) At least one layer selected from a hard coat layer, a light diffusion layer, a prismatic lens layer, an electromagnetic wave absorption layer, a near infrared ray blocking layer, and a transparent conductive layer is formed on the coating layer of the easily adhesive thermoplastic resin film. A laminated thermoplastic resin film formed by laminating functional layers.
 本発明の易接着熱可塑性樹脂フィルムの第一の効果は光学機能層との高温高湿下での密着性(耐湿熱性)に優れる。そのため、好ましい実施態様としては、上記高温、高湿処理での密着性が、当初の密着性と同等、もしくは向上する。本発明の好ましい実施態様としては、本発明の易接着ポリエステルフィルムをレンズシートの基材として用いた場合、高温高湿下でのレンズ層との密着性が良好である。
 さらに、本発明の好ましい態様においては、第一の効果に加えて、ハードコート層を積層した場合であっても光干渉縞が抑制され、視認性に優れる。
 また、さらに本発明の好ましい態様においては、第一の効果に加えて、耐ブロッキング性に優れる。
The first effect of the easy-adhesive thermoplastic resin film of the present invention is excellent in adhesiveness (wet heat resistance) with the optical functional layer under high temperature and high humidity. Therefore, as a preferred embodiment, the adhesion at the high temperature and high humidity treatment is equal to or improved from the initial adhesion. As a preferred embodiment of the present invention, when the easily adhesive polyester film of the present invention is used as a substrate for a lens sheet, the adhesion with the lens layer under high temperature and high humidity is good.
Furthermore, in a preferred embodiment of the present invention, in addition to the first effect, even when the hard coat layer is laminated, the light interference fringes are suppressed and the visibility is excellent.
Furthermore, in a preferred embodiment of the present invention, in addition to the first effect, the blocking resistance is excellent.
(熱可塑性樹脂フィルム)
 本発明で基材として用いる熱可塑性樹脂フィルムを構成する熱可塑性樹脂は、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、ナイロン6、ナイロン66などのポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリメチレンテレフタレート、および共重合成分として、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを共重合したポリエステル樹脂などを用いることができる。なかでも、機械的強度、耐薬品性の点からポリエステル樹脂が好ましい。
(Thermoplastic resin film)
The thermoplastic resin constituting the thermoplastic resin film used as a base material in the present invention includes polyolefin resins such as polyethylene and polypropylene, polyamide resins such as nylon 6 and nylon 66, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6- Naphthalate, polymethylene terephthalate, and copolymer components such as diol components such as diethylene glycol, neopentyl glycol, polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, etc. A polyester resin copolymerized with a dicarboxylic acid component or the like can be used. Of these, polyester resins are preferred from the viewpoint of mechanical strength and chemical resistance.
 本発明で好適に用いられるポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリメチレンテレフタレート、および共重合成分として、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを共重合したポリエステル樹脂などを用いることができる。 Polyester resins preferably used in the present invention include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polymethylene terephthalate, and copolymer components such as diols such as diethylene glycol, neopentyl glycol, and polyalkylene glycol. A polyester resin obtained by copolymerizing a component, a dicarboxylic acid component such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, or 2,6-naphthalenedicarboxylic acid can be used.
 本発明で好適に用いられるポリエステル樹脂は、主に、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートの少なくとも1種を構成成分とする。これらのポリエステル樹脂の中でも、物性とコストのバランスからポリエチレンテレフタレートが最も好ましい。また、これらのポリエステルフィルムは二軸延伸することで耐薬品性、耐熱性、機械的強度などを向上させることができる。 The polyester resin suitably used in the present invention mainly contains at least one of polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate as a constituent component. Among these polyester resins, polyethylene terephthalate is most preferable from the balance between physical properties and cost. Moreover, these polyester films can improve chemical resistance, heat resistance, mechanical strength, etc. by biaxially stretching.
 また、前記の二軸延伸ポリエステルフィルムは、単層であっても複層であってもかまわない。また、本発明の効果を奏する範囲内であれば、これらの各層には、必要に応じて、ポリエステル樹脂中に各種添加剤を含有させることができる。添加剤としては、例えば、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、紫外線吸収剤、界面活性剤などが挙げられる。 The biaxially stretched polyester film may be a single layer or a multilayer. Moreover, as long as it exists in the range with the effect of this invention, each of these layers can contain various additives in a polyester resin as needed. Examples of the additive include an antioxidant, a light resistance agent, an antigelling agent, an organic wetting agent, an antistatic agent, an ultraviolet absorber, and a surfactant.
 また、フィルムの滑り性、巻き性、耐ブロッキング性などのハンドリング性や、耐摩耗性、耐スクラッチ性などの摩耗特性を改善するために、ポリエステルフィルム中に不活性粒子を含有させる場合がある。しかしながら、光学用部材の基材フィルムに用いる場合は、高度な透明性を維持しながらハンドリング性に優れていることが要求される。具体的には、光学用部材の基材フィルムとして使用する場合、易接着性ポリエステルフィルムの全光線透過率が85%以上であることが好ましく、87%以上がより好ましく、88%以上がさらに好ましく、89%以上がよりさらに好ましく、90%以上が特に好ましい。 In addition, in order to improve handling characteristics such as film slipperiness, rollability and blocking resistance, and wear characteristics such as wear resistance and scratch resistance, inert particles may be included in the polyester film. However, when used for a base film of an optical member, it is required to have excellent handling properties while maintaining high transparency. Specifically, when used as a substrate film for an optical member, the total light transmittance of the easily adhesive polyester film is preferably 85% or more, more preferably 87% or more, and even more preferably 88% or more. 89% or more is more preferable, and 90% or more is particularly preferable.
 また、高い鮮明度のためには、基材フィルム中への不活性粒子の含有量はできるだけ少ない方が好ましい。したがって、フィルムの表層のみに粒子を含有させた多層構成にするか、あるいは、フィルム中に実質的に粒子を含有させず、塗布層にのみ微粒子を含有させることが好ましい。 For high definition, it is preferable that the content of inert particles in the base film is as small as possible. Therefore, it is preferable to make a multilayer structure in which particles are contained only in the surface layer of the film, or to contain fine particles only in the coating layer without substantially containing particles in the film.
 特に、透明性の点から、ポリエステルフィルム中に不活性粒子を事実上含有させない場合は、フィルムのハンドリング性を向上させるために、無機及び/または耐熱性高分子粒子を水系塗布液中に含有させ、塗布層表面に凹凸を形成させることも好ましい。 In particular, from the viewpoint of transparency, when an inert particle is practically not contained in the polyester film, an inorganic and / or heat-resistant polymer particle is contained in the aqueous coating solution in order to improve the handleability of the film. It is also preferable to form irregularities on the surface of the coating layer.
 なお、「不活性粒子が実質上含有されていない」とは、例えば、無機粒子の場合、蛍光X線分析で粒子に由来する元素を定量分析した際に、50ppm以下、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子を基材フィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。 Note that “substantially no inert particles” means, for example, in the case of inorganic particles, when the element derived from the particles is quantitatively analyzed by fluorescent X-ray analysis, 50 ppm or less, preferably 10 ppm or less, Preferably, the content is below the detection limit. This means that even if particles are not actively added to the base film, contaminants derived from foreign substances and raw material resin or dirt adhering to the line or equipment in the film manufacturing process will be peeled off and mixed into the film. It is because there is a case to do.
 また、高い透明性とハンドリング性を両立させる点からは、表層にのみ不活性粒子を添加することも好ましい態様である。例えば、3層構成とする場合、最外層(A層/B層/A層の場合はA層)に粒子を含有し、中心層(B層)には実質的に粒子を含まないことが好ましい。 In addition, it is also a preferable aspect to add inert particles only to the surface layer from the viewpoint of achieving both high transparency and handling properties. For example, in the case of a three-layer structure, it is preferable that particles are contained in the outermost layer (A layer in the case of A layer / B layer / A layer), and the center layer (B layer) is substantially free of particles. .
 最外層に含まれる粒子の種類及び含有量は、無機粒子であっても、有機粒子であってもよく、特に限定されるものではないが、シリカ、二酸化チタン、タルク、カオリナイト等の金属酸化物、炭酸カルシウム、リン酸カルシウム、硫酸バリウムなどのポリエステルに対し不活性な無機粒子が例示される。これらの不活性な無機粒子は、いずれか一種を単独で用いてもよく、また2種以上を併用してもよい。 The type and content of the particles contained in the outermost layer may be inorganic particles or organic particles, and are not particularly limited, but include metal oxidation such as silica, titanium dioxide, talc, and kaolinite. Examples thereof include inorganic particles that are inert to polyesters such as products, calcium carbonate, calcium phosphate, and barium sulfate. Any one of these inert inorganic particles may be used alone, or two or more thereof may be used in combination.
 前記の粒子は、平均粒子径が0.1~3.5μmであることが好ましい。平均粒子径が下限未満では十分なハンドリング性が得られない場合がある。上限を越えると透明性が低下する場合がある。最外層の無機粒子の含有量は最外層を構成するポリエステルに対し、0.01~0.20質量%であることが好ましい。下限未満では十分なハンドリング性が得られない。上限を越えると透明性が低下する。 The above particles preferably have an average particle size of 0.1 to 3.5 μm. If the average particle size is less than the lower limit, sufficient handling properties may not be obtained. If the upper limit is exceeded, the transparency may decrease. The content of inorganic particles in the outermost layer is preferably 0.01 to 0.20% by mass with respect to the polyester constituting the outermost layer. If it is less than the lower limit, sufficient handling properties cannot be obtained. When the upper limit is exceeded, the transparency decreases.
 さらに、反射性や高い隠蔽性が求められる場合は、基材フィルム中に空洞発現剤を添加し、ボイド含有率の高い白色フィルムを用いてもよい。また、成形性が要求される用途では、ポリエステル樹脂として共重合成分を添加することで成形性を付与した成形用フィルムを用いても良い。 Furthermore, when reflectivity and high concealability are required, a whitening film having a high void content may be used by adding a cavity developer in the base film. In applications where moldability is required, a molding film imparted with moldability by adding a copolymer component as a polyester resin may be used.
 本発明で用いる基材フィルムの厚さは、特に制限しないが、30~500μmの範囲で、使用する規格に応じて任意に決めることができる。基材フィルムの厚みの上限は、350μmが好ましく、特に好ましくは250μmである。一方、フィルム厚みの下限は、50μmが好ましく、さらに好ましくは75μmであり、特に好ましくは100μmである。フィルム厚みが下限未満では、剛性や機械的強度が不十分となりやすい。一方、フィルム厚みが上限を超えると、コスト高となる場合がある。 The thickness of the base film used in the present invention is not particularly limited, but can be arbitrarily determined in the range of 30 to 500 μm according to the standard to be used. The upper limit of the thickness of the base film is preferably 350 μm, particularly preferably 250 μm. On the other hand, the lower limit of the film thickness is preferably 50 μm, more preferably 75 μm, and particularly preferably 100 μm. When the film thickness is less than the lower limit, rigidity and mechanical strength tend to be insufficient. On the other hand, when the film thickness exceeds the upper limit, the cost may increase.
(塗布層)
 本発明の易接着性熱可塑性樹脂フィルムには、(a)ポリカーボネートポリオールを構成成分とするウレタン樹脂および/もしくは数平均分子量15000以上であって実質的にカルボン酸基を有さないポリエステル樹脂と、(b)カルボジイミド化合物を含む塗布層を設けることが重要である。中でも、上記(a)と(b)を主成分とする塗布層が好ましい。ここで、「主成分」とは、塗布層に含まれる全固形成分中として50質量%以上含有することを意味する。
(Coating layer)
The easy-adhesive thermoplastic resin film of the present invention includes (a) a urethane resin having a polycarbonate polyol as a constituent component and / or a polyester resin having a number average molecular weight of 15000 or more and having substantially no carboxylic acid group, (B) It is important to provide a coating layer containing a carbodiimide compound. Among these, a coating layer mainly composed of the above (a) and (b) is preferable. Here, the “main component” means that 50% by mass or more is contained in the total solid component contained in the coating layer.
 従来、塗布層の耐湿熱性を向上させる点からは架橋構造を積極的に導入することが望ましいと考えられていた。しかし、本願発明では塗布層を上記のような構成にすることにより耐湿熱性が向上することを見出した。このような構成により、高温高湿下での密着性が向上することの機序はよくわからないが、本発明者は以下のように考えている。本発明の塗布層には、カルボジイミド基と反応する官能基であるカルボン酸基が実質的にないため、塗布層形成時には未反応のカルボジイミド基が塗布層中に残存する。一方、高温高湿下では塗布層中のポリエステル樹脂が加水分解を起し、エステル結合が分断され、カルボン酸基末端が発生する。ここで、未反応のカルボジイミド基が、発生したカルボン酸末端と反応し、架橋を形成する。いわば、加水分解による塗布膜強度の劣化を自己修復することにより、高温高湿下での塗布膜強度劣化を防止できると考えている。 Conventionally, it was considered desirable to positively introduce a crosslinked structure from the viewpoint of improving the heat and moisture resistance of the coating layer. However, in this invention, it discovered that heat-and-moisture resistance improved by making a coating layer into the above structures. Although the mechanism by which the adhesiveness under high temperature and high humidity is improved by such a configuration is not well understood, the present inventor thinks as follows. Since the coating layer of the present invention is substantially free of carboxylic acid groups that are functional groups that react with carbodiimide groups, unreacted carbodiimide groups remain in the coating layer when the coating layer is formed. On the other hand, under high temperature and high humidity, the polyester resin in the coating layer undergoes hydrolysis, the ester bond is broken, and carboxylic acid group terminals are generated. Here, the unreacted carbodiimide group reacts with the generated carboxylic acid terminal to form a crosslink. In other words, it is considered that the deterioration of the coating film strength under high temperature and high humidity can be prevented by self-healing the deterioration of the coating film strength due to hydrolysis.
 すなわち、本発明の塗布層には、カルボジイミド基と高い反応性を示す官能基であるカルボキシル基またはその塩を含まないか、または、極めて少ないため、塗布層中には未反応のカルボジイミド基が多く存在する。一方、積層される機能層に用いられる樹脂、例えば光硬化型アクリル樹脂及び未反応物にはカルボキシル基などの官能基が存在する。さらに基材フィルムである熱可塑性樹脂にも官能基が存在する。高温高湿の環境下ではこれらの機能性層および/もしくは基材フィルムに存在する官能基とカルボジイミド基の相互作用が進行し、強固な密着性が得られるものと推察している。 In other words, the coating layer of the present invention does not contain a carboxyl group or a salt thereof, which is a functional group having high reactivity with the carbodiimide group, or its salt is very small, and therefore there are many unreacted carbodiimide groups in the coating layer. Exists. On the other hand, a functional group such as a carboxyl group is present in a resin used for a functional layer to be laminated, such as a photocurable acrylic resin and an unreacted product. Furthermore, a functional group exists also in the thermoplastic resin which is a base film. It is presumed that in a high-temperature and high-humidity environment, the interaction between the functional group and / or the carbodiimide group present in these functional layers and / or base film proceeds, and strong adhesion can be obtained.
 本発明は、上記態様により、レンズ層、さらに他の機能層との高温高湿下での密着性(耐湿熱性)を向上させることができる。さらに、本発明の構成を以下に詳細する。 The present invention can improve the adhesion (humidity heat resistance) to the lens layer and other functional layers under high temperature and high humidity according to the above embodiment. Further, the configuration of the present invention will be described in detail below.
(ウレタン樹脂)
 本発明に用いられるウレタン樹脂は、構成成分として、少なくともポリオール成分、ポリイソシアネート成分を含み、さらに必要に応じて鎖延長剤を含む。本発明のウレタン樹脂は、これら構成成分が主としてウレタン結合により共重合された高分子化合物である。本発明では、ウレタン樹脂の構成成分としてポリカーボネートポリオールを有することを特徴とする。本発明の塗布層にポリカーボネートを構成成分とするウレタン樹脂を含有させることで、耐湿熱性を向上させることができる。なお、これらウレタン樹脂の構成成分は、核磁気共鳴分析などにより特定することが可能である。
(Urethane resin)
The urethane resin used in the present invention contains at least a polyol component and a polyisocyanate component as constituent components, and further contains a chain extender as necessary. The urethane resin of the present invention is a polymer compound in which these constituent components are mainly copolymerized by urethane bonds. In this invention, it has the polycarbonate polyol as a structural component of a urethane resin, It is characterized by the above-mentioned. Moisture heat resistance can be improved by including a urethane resin containing polycarbonate as a constituent component in the coating layer of the present invention. The components of these urethane resins can be specified by nuclear magnetic resonance analysis or the like.
 本発明のウレタン樹脂の構成成分であるポリカーボネートポリオールとしては、ポリカーボネートジオール、ポリカーボネートトリオールなどが挙げられるが、好適にはポリカーボネートジオールを用いることができる。本発明のウレタン樹脂の構成成分であるポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチルー1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ビスフェノール-Aなどのジオール類の1種または2種以上と、例えば、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、ホスゲンなどのカーボネート類とを反応させることにより得られるポリカーボネートジオールなどが挙げられる。ポリカーボネートジオールの数平均分子量としては、好ましくは300~5000であり、より好ましくは500~3000である。 Examples of the polycarbonate polyol which is a constituent component of the urethane resin of the present invention include polycarbonate diol, polycarbonate triol and the like, and polycarbonate diol can be preferably used. Examples of the polycarbonate diol that is a constituent of the urethane resin of the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1,5. -Pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, A polycarbonate diol obtained by reacting one or more diols such as bisphenol-A with carbonates such as dimethyl carbonate, diphenyl carbonate, ethylene carbonate, and phosgene. And the like. The number average molecular weight of the polycarbonate diol is preferably 300 to 5000, and more preferably 500 to 3000.
 本発明において、ウレタン樹脂の構成成分であるポリカーボネートポリオールの組成モル比は、ウレタン樹脂の全ポリイソシアネート成分を100モル%とした場合、3~100モル%であることが好ましく、5~50モル%であることがより好ましく、6~20モル%であることがさらに好ましい。前記組成モル比が低い場合は、ポリカーボネートポリオールによる耐久性の効果が得られない場合がある。また、前記組成モル比が高い場合は、初期密着性が低下する場合がある。 In the present invention, the composition molar ratio of the polycarbonate polyol, which is a constituent component of the urethane resin, is preferably 3 to 100 mol% when the total polyisocyanate component of the urethane resin is 100 mol%, preferably 5 to 50 mol%. More preferably, it is 6 to 20 mol%. When the composition molar ratio is low, the durability effect by the polycarbonate polyol may not be obtained. Moreover, when the said composition molar ratio is high, initial adhesiveness may fall.
 本発明のウレタン樹脂の構成成分であるポリイソシアネートとしては、例えば、トルイレンジイソシアネートの異性体類、4,4-ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート類、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいはこれらの化合物を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。 Examples of the polyisocyanate that is a constituent of the urethane resin of the present invention include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, aromatic aliphatic diisocyanates such as xylylene diisocyanate, Aliphatic diisocyanates such as isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene diisocyanate, and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate Or polyisocyanates obtained by adding these compounds in advance with trimethylolpropane or the like alone or in plural.
 鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール及び1,6-ヘキサンジオール等のグリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオジグリコール類、あるいは水が挙げられる。 Chain extenders include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, ethylenediamine Diamines such as hexamethylenediamine and piperazine, aminoalcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water.
 本発明の塗布層は、水系の塗布液を用い後述のインラインコート法により設けることが好ましい。そのため、本発明のウレタン樹脂は水溶性であることが望ましい。水溶性ウレタン樹脂を用いると、カルボジイミド化合物との相溶性が増し、透明性が向上することができる。なお、前記の「水溶性」とは、水、または水溶性の有機溶剤を50質量%未満含む水溶液に対して溶解することを意味する。 The coating layer of the present invention is preferably provided by an in-line coating method described later using an aqueous coating solution. Therefore, it is desirable that the urethane resin of the present invention is water-soluble. When a water-soluble urethane resin is used, compatibility with a carbodiimide compound increases, and transparency can be improved. The “water-soluble” means that it dissolves in water or an aqueous solution containing less than 50% by mass of a water-soluble organic solvent.
 ウレタン樹脂に水溶性を付与させるためには、ウレタン分子骨格中にスルホン酸(塩)基又はカルボン酸(塩)基を導入(共重合)することができる。スルホン酸(塩)基は強酸性であり、その吸湿性能により耐湿性を維持するのが困難な場合があるので、弱酸性であるカルボン酸(塩)基を導入するのが好適である。 In order to impart water solubility to the urethane resin, a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton. Since the sulfonic acid (salt) group is strongly acidic and it may be difficult to maintain moisture resistance due to its hygroscopic performance, it is preferable to introduce a weakly acidic carboxylic acid (salt) group.
 ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸などのカルボン酸基を有するポリオール化合物を共重合成分として導入し、塩形成剤により中和する。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミンなどのトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリンなどのN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミンなどのN-ジアルキルアルカノールアミン類が挙げられる。これらは単独で使用できるし、2種以上併用することもできる。 In order to introduce a carboxylic acid (salt) group into a urethane resin, for example, as a polyol component, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid is introduced as a copolymer component to form a salt. Neutralize with an agent. Specific examples of the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, and tri-n-butylamine, N such as N-methylmorpholine and N-ethylmorpholine. -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine and N-diethylethanolamine. These can be used alone or in combination of two or more.
 水溶性を付与するために、カルボン酸(塩)基を有するポリオール化合物を共重合成分として用いる場合は、ウレタン樹脂中のカルボン酸(塩)基を有するポリオール化合物の組成モル比は、ウレタン樹脂の全ポリイソシアネート成分を100モル%としたときに、3~60モル%であることが好ましく、10~40モル%であることが好ましい。前記組成モル比が3モル%未満の場合は、水分散性が困難になる場合がある。また、前記組成モル比が60モル%を超える場合は、塗布層形成時の残存カルボジイミド基が減少するため耐湿熱性が低下する場合がある。 In order to impart water solubility, when a polyol compound having a carboxylic acid (salt) group is used as a copolymerization component, the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the urethane resin is the same as that of the urethane resin. When the total polyisocyanate component is 100 mol%, it is preferably 3 to 60 mol%, and more preferably 10 to 40 mol%. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult. Moreover, when the said composition molar ratio exceeds 60 mol%, since the residual carbodiimide group at the time of coating layer formation reduces, heat-and-moisture resistance may fall.
 しかしながら、上記のようにウレタン樹脂としてカルボン酸を導入したウレタン樹脂を用いる場合、塗布液中でカルボジイミド基と反応し、塗布層形成時の未反応のカルボジイミド基が低下する場合がある。そのため、塗布層中にカルボン酸(塩)基が実質的に有さないことが望ましい。そこで、ウレタン樹脂に水溶性を付与するため、カルボン酸塩基の代わりに、ポリオキシアルキレン基を導入することは、本発明の好ましい実施態様である。ウレタン樹脂としてポリオキシアルキレン基を導入したウレタン樹脂を用いる場合、塗布層中には実質的にカルボキシル基を有さない。そのため、未反応のカルボジイミド基が安定的に残存し、より優れた耐湿熱性を発揮することができる。 However, when a urethane resin into which a carboxylic acid is introduced is used as the urethane resin as described above, the carbodiimide group may react with the carbodiimide group in the coating solution, and the unreacted carbodiimide group may be reduced when the coating layer is formed. Therefore, it is desirable that the coating layer has substantially no carboxylic acid (salt) group. Therefore, in order to impart water solubility to the urethane resin, it is a preferred embodiment of the present invention to introduce a polyoxyalkylene group instead of the carboxylate group. When using the urethane resin which introduce | transduced the polyoxyalkylene group as a urethane resin, a coating layer does not have a carboxyl group substantially. Therefore, an unreacted carbodiimide group remains stably and can exhibit more excellent moisture and heat resistance.
 ウレタン樹脂に導入するポリオキシアルキレン基としては、ポリオキシエチレン基、ポリオキシプロピレン基、ポリテトラメチレングリコール鎖などが挙げられ、これらは単独で使用できるし、2種以上併用することもできる。中でも、ポリオキシエチレン基が好適に用いることができる。 Examples of the polyoxyalkylene group introduced into the urethane resin include a polyoxyethylene group, a polyoxypropylene group, and a polytetramethylene glycol chain, and these can be used alone or in combination of two or more. Among these, a polyoxyethylene group can be preferably used.
 ウレタン樹脂にポリオキシエチレン基を導入するには、例えば、ポリイソシアネートと片末端封鎖ポリオキシエチレングリコール(炭素数1~20のアルキル基で片末端封止したアルコキシエチレングリコール)とを、片末端封鎖ポリオキシエチレングリコールのヒドロキシル基に対してジイソシアネートのイソシアネート基が過剰となる割合でウレタン化反応させた後、必要により未反応のポリイソシアネートを除去することにより、ポリオキシエチレン鎖含有モノイソシアネートを得て、次いで、得られたポリオキシエチレン鎖含有モノイソシアネートとジイソシアネートをアロファネート化反応させることにより、得ることができる。 In order to introduce a polyoxyethylene group into a urethane resin, for example, polyisocyanate and one-end blocked polyoxyethylene glycol (alkoxyethylene glycol whose one end is blocked with an alkyl group having 1 to 20 carbon atoms) are blocked at one end. After the urethanation reaction in an excess ratio of the isocyanate group of the diisocyanate with respect to the hydroxyl group of the polyoxyethylene glycol, the polyoxyethylene chain-containing monoisocyanate was obtained by removing the unreacted polyisocyanate if necessary. Then, the obtained polyoxyethylene chain-containing monoisocyanate and diisocyanate can be obtained by an allophanatization reaction.
 水溶性を付与するために、ウレタン樹脂にポリオキシエチレン基を導入する場合は、ウレタン樹脂中のポリオキシエチレン基の組成モル比は、ウレタン樹脂の全ポリイソシアネート成分を100モル%とした場合、3モル%以上であることが好ましく、10モル%以上であることがより好ましく、20モル%以上であることがさらに好ましい。前記組成モル比が3モル%未満の場合は、水分散性が困難になる場合がある。 In order to impart water solubility, when introducing polyoxyethylene groups into the urethane resin, the composition molar ratio of the polyoxyethylene groups in the urethane resin is 100 mol% of the total polyisocyanate component of the urethane resin. It is preferably 3 mol% or more, more preferably 10 mol% or more, and further preferably 20 mol% or more. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult.
 (a)成分としてウレタン樹脂のみを用いる場合、前記ウレタン樹脂は塗布層中に10質量%以上90質量%以下含有することが好ましい。特に、レンズ層のように高い密着性が求められる場合、より好ましくは20%質量%以上80質量%以下である。ウレタン樹脂の含有量が多い場合には、高温高湿下での密着性が低下し、逆に、含有量が少ない場合には、初期での密着性が低下する。 When using only the urethane resin as the component (a), the urethane resin is preferably contained in the coating layer in an amount of 10% by mass to 90% by mass. In particular, when high adhesion is required as in a lens layer, it is more preferably 20% by mass or more and 80% by mass or less. When the content of the urethane resin is large, the adhesiveness under high temperature and high humidity is lowered, and conversely, when the content is small, the initial adhesiveness is lowered.
 (a)成分として前記ウレタン樹脂のみを用いる場合、塗布層中のカルボジイミド基の濃度の下限は0.5mmol/g、好ましくは0.7mmol/g、さらに好ましくは1.0mmol/gであり、上限は3.5mmol/g、好ましくは3.3mmol/g、さらに好ましくは3.0mmol/gである。上記下限未満では十分な高温、高湿下での密着性が得られない場合がある。上記上限を越えると相対的にポリカーボネート系ウレタン樹脂の比率が小さくなり、密着性、特に初期密着性が低下する場合がある。 When only the urethane resin is used as the component (a), the lower limit of the carbodiimide group concentration in the coating layer is 0.5 mmol / g, preferably 0.7 mmol / g, more preferably 1.0 mmol / g, and the upper limit. Is 3.5 mmol / g, preferably 3.3 mmol / g, more preferably 3.0 mmol / g. If the amount is less than the above lower limit, sufficient adhesiveness at high temperature and high humidity may not be obtained. When the above upper limit is exceeded, the ratio of the polycarbonate-based urethane resin becomes relatively small, and the adhesiveness, particularly the initial adhesiveness, may be lowered.
(ポリエステル樹脂)
 本発明に用いるポリエステル樹脂はカルボジイミド基との反応基であるカルボン酸基が少ない方が好ましい。より好ましくは実質的にカルボン酸基を有さないものである。ここで実質的にカルボン基を有さないとは末端基以外のカルボン酸基を含有していないものである。カルボン酸基を規定する方法としては酸価の測定が挙げられるが、実質的にカルボン酸基を有さないポリエステル樹脂とは、酸価が3KOHmg/g以下であり、より好ましくは2KOHmg/g以下であり、さらに好ましくは1KOHmg/g以下のポリエステル樹脂である。
(Polyester resin)
The polyester resin used in the present invention preferably has fewer carboxylic acid groups which are reactive groups with carbodiimide groups. More preferably, it has substantially no carboxylic acid group. Here, having substantially no carboxylic group means that it contains no carboxylic acid group other than the terminal group. As a method for defining a carboxylic acid group, an acid value can be measured. However, the polyester resin having substantially no carboxylic acid group has an acid value of 3 KOHmg / g or less, more preferably 2 KOHmg / g or less. More preferably, it is a polyester resin of 1 KOHmg / g or less.
 ポリエステル樹脂の数平均分子量は15000以上であることが必要である。数平均分子量が低い場合、末端のカルボン酸基が増加するため、カルボジイミド基と反応してしまうことがある。また、加水分解が促進され、塗膜の修復が十分に行われず、高温高湿下の密着性が得られないだけでなく、基材フィルムとの密着性も低下させてしまう。また、上記数平均分子量は、20000以上がより好ましく、さらに製造可能な限り、高い方が好ましい。しかし、数平均分子量が大きくなると、塗布液への溶解性が低下する場合もあることから、上記数平均分子量は、60000以下であることが好ましい。 The number average molecular weight of the polyester resin needs to be 15000 or more. When the number average molecular weight is low, the terminal carboxylic acid group increases, which may cause a reaction with a carbodiimide group. In addition, the hydrolysis is accelerated, the coating film is not sufficiently repaired, and not only the adhesiveness under high temperature and high humidity is not obtained, but also the adhesiveness with the substrate film is lowered. Further, the number average molecular weight is more preferably 20000 or more, and it is preferably higher as long as it can be produced. However, the number average molecular weight is preferably 60000 or less because the solubility in the coating solution may be reduced as the number average molecular weight increases.
 ポリエステル樹脂は酸成分として、テレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2,6-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、ピロメリット酸、ダイマー酸、5-ナトリウムスルホイソフタル酸、4-ナトリウムスルホナフタレン-2,7-ジカルボン酸等が挙げられる。ジオール成分としては、エチレングリコール、プロパングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、キシレングリコール、ビスフェノールAのエチレンオキサイド付加物等が挙げられる。本発明のフィルムに主としてアクリル樹脂よりなるハードコート層などを設けた場合、塗布層と他層との屈折率の差により干渉縞が発生し、視認性の点で問題となる場合がある。そのため、耐湿熱性、虹彩状色彩の抑制効果を向上させることから、酸成分としてより高い屈折率が得られるナフタレンジカルボン酸を含有させることが好ましい。 Polyester resin has acid components such as terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid, Examples include dimer acid, 5-sodium sulfoisophthalic acid, 4-sodium sulfonaphthalene-2,7-dicarboxylic acid, and the like. Diol components include ethylene glycol, propane glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylene glycol, ethylene oxide adducts of bisphenol A, etc. Is mentioned. When a hard coat layer mainly made of an acrylic resin is provided on the film of the present invention, interference fringes are generated due to the difference in refractive index between the coating layer and the other layer, which may cause a problem in terms of visibility. For this reason, it is preferable to contain naphthalenedicarboxylic acid capable of obtaining a higher refractive index as an acid component because it improves the heat and moisture resistance and the effect of suppressing iris-like colors.
 また、ハードコート層を設けた際の虹彩状色彩の抑制の点から、ポリエステル樹脂の成分として、下記式(1)のジカルボン酸成分および/または下記式(2)のジオール成分を含有することが好ましい。ポリエステル樹脂中の下記式(1)のジカルボン酸成分および/または下記式(2)のジオール成分は10%以上が好ましく、15%以上がよりに好ましく、20%以上がさらに好ましい。また、上記ポリエステル樹脂中の下記式(1)のジカルボン酸成分および/または下記式(2)のジオール成分は70%以下が好ましく、60%以下がより好ましく、50%以下がさらに好ましい。上記上限を超える場合は、塗膜が柔軟になりすぎて、耐湿熱性が低下する場合がある。上記下限未満の場合は、ポリエステル樹脂の柔軟性が低下し、塗膜が硬くなりすぎ、密着性が低下する場合がある。
(1)HOOC-(CH-COOH (式中、nは4≦n≦10の整数)
(2)HO-(CH-OH (式中、nは4≦n≦10の整数)
Moreover, from the point of suppression of the iris-like color at the time of providing a hard-coat layer, it may contain the dicarboxylic acid component of following formula (1) and / or the diol component of following formula (2) as a component of a polyester resin. preferable. The dicarboxylic acid component of the following formula (1) and / or the diol component of the following formula (2) in the polyester resin is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more. Further, the dicarboxylic acid component of the following formula (1) and / or the diol component of the following formula (2) in the polyester resin is preferably 70% or less, more preferably 60% or less, and further preferably 50% or less. When exceeding the said upper limit, a coating film may become soft too much and heat-and-moisture resistance may fall. When it is less than the above lower limit, the flexibility of the polyester resin is lowered, the coating film becomes too hard, and the adhesion may be lowered.
(1) HOOC— (CH 2 ) n —COOH (where n is an integer satisfying 4 ≦ n ≦ 10)
(2) HO— (CH 2 ) n —OH (where n is an integer satisfying 4 ≦ n ≦ 10)
 ポリエステル樹脂は水、または、水溶性の有機溶剤(例えば、アルコール、アルキルセルソルブ、ケトン系、エーテル系を50質量%未満含む水溶液)または、有機溶剤(例えば、トルエン、酢酸エチル等)に対して溶解または分散したものが使用できる。 The polyester resin is based on water or a water-soluble organic solvent (for example, an aqueous solution containing less than 50% by weight of alcohol, alkyl cellosolve, ketone, or ether) or an organic solvent (for example, toluene, ethyl acetate, etc.). Those dissolved or dispersed can be used.
 ポリエステル樹脂を水系塗液として用いる場合には、水溶性あるいは水分散性のポリエステル樹脂が用いられるが、このような水溶性化あるいは水分散化のためには、スルホン酸塩基を含む化合物や、カルボン酸塩基を含む化合物を共重合させることが好ましい。そのために、前記のジカルボン酸成分の他に、ポリエステルに水分散性を付与させるため、5-スルホイソフタル酸そのアルカリ金属塩を1~10モル%の範囲で使用するのが好ましく、例えば、スルホテレフタル酸、5-スルホイソフタル酸、4-スルホナフタレンイソフタル酸-2,7-ジカルボン酸および5-(4-スルホフェノキシ)イソフタル酸またはそのアルカリ金属塩を挙げることができる。 When the polyester resin is used as an aqueous coating liquid, a water-soluble or water-dispersible polyester resin is used. For such water-solubilization or water-dispersion, a compound containing a sulfonate group or a carboxyl group is used. It is preferable to copolymerize a compound containing an acid base. Therefore, in addition to the dicarboxylic acid component described above, in order to impart water dispersibility to the polyester, it is preferable to use 5-sulfoisophthalic acid or an alkali metal salt thereof in the range of 1 to 10 mol%. Mention may be made of acids, 5-sulfoisophthalic acid, 4-sulfonaphthaleneisophthalic acid-2,7-dicarboxylic acid and 5- (4-sulfophenoxy) isophthalic acid or alkali metal salts thereof.
 ポリエステル樹脂の数平均分子量を15000以上とし、かつブロッキングを抑制する程度のガラス転移温度を有するには、ポリエステル樹脂に分岐構造を導入することが好ましい。しかしながら、分岐構造が多くなると酸価も高くなる傾向にある。そのため、本願発明のポリエステル樹脂は、カルボキシル基が3個以上/1分子あるいは水酸基が3個以上/1分子有する第三成分のモル比は全ジカルボン酸成分中5.0モル%以下であることが好ましく、さらに好ましくは1.0モル%以下である。 In order to set the number average molecular weight of the polyester resin to 15000 or more and to have a glass transition temperature enough to suppress blocking, it is preferable to introduce a branched structure into the polyester resin. However, as the number of branched structures increases, the acid value tends to increase. Therefore, in the polyester resin of the present invention, the molar ratio of the third component having three or more carboxyl groups / one molecule or three or more hydroxyl groups / one molecule is 5.0 mol% or less in the total dicarboxylic acid component. Preferably, it is 1.0 mol% or less more preferably.
 (a)成分としてポリエステル樹脂のみを用いる場合、前記ポリエステル樹脂は塗布層中に10質量%以上85質量%以下含有することが好ましい。高い密着性が求められる場合、より好ましくは20%質量%以上80質量%以下である。ポリエステル樹脂の含有量が多い場合には、高温高湿下での密着性が低下し、逆に、含有量が少ない場合には、基材フィルムとの密着性が低下する。 When only the polyester resin is used as the component (a), the polyester resin is preferably contained in the coating layer in an amount of 10% by mass to 85% by mass. When high adhesiveness is required, it is more preferably 20% by mass or more and 80% by mass or less. When the content of the polyester resin is large, the adhesiveness under high temperature and high humidity decreases, and conversely, when the content is small, the adhesiveness with the base film decreases.
  (a)成分として前記ポリエステル樹脂のみを用いる場合、塗布層中のカルボジイミド基の濃度の下限は0.3mmol/g、好ましくは0.5mmol/g、さらに好ましくは0.8mmol/gであり、上限は3.3mmol/g、好ましくは3.0mmol/g、さらに好ましくは2.8mmol/gである。上記下限未満では十分な高温、高湿下での密着性が得られない場合がある。上記上限を越えると相対的にポリエステル樹脂の比率が小さくなり、密着性、特に初期密着性が低下する場合がある。 When only the polyester resin is used as the component (a), the lower limit of the carbodiimide group concentration in the coating layer is 0.3 mmol / g, preferably 0.5 mmol / g, more preferably 0.8 mmol / g, and the upper limit. Is 3.3 mmol / g, preferably 3.0 mmol / g, more preferably 2.8 mmol / g. If the amount is less than the above lower limit, sufficient adhesiveness at high temperature and high humidity may not be obtained. When the upper limit is exceeded, the ratio of the polyester resin becomes relatively small, and the adhesion, particularly the initial adhesion, may be lowered.
(ポリウレタン樹脂およびポリエステル樹脂)
 また本発明では、(a)成分として、耐久性に優れた前記ポリカーボネート系ウレタン樹脂と、前記ポリエステル樹脂を用いることで塗布膜硬度を向上させ、密着性と同時に優れた耐ブロッキング性も発揮することができる。
(Polyurethane resin and polyester resin)
In the present invention, as the component (a), the polycarbonate-based urethane resin having excellent durability and the polyester resin are used to improve the coating film hardness and exhibit excellent blocking resistance as well as adhesion. Can do.
 ポリエステル樹脂は,密着性の点からガラス転移温度が低いことが好ましいが、耐ブロッキング性の点からはガラス転移温度は高いことが好ましい。そこで、ポリエステル樹脂のガラス転移温度は10~100℃であることが好ましく、30~70℃であることがより好ましい。ガラス転移温度が100℃を超えて高いと、溶融粘度が高くなり十分な分子量のものが得られにくく、そのため密着性が低下する。ガラス転移温度が10℃を越えて低いと、フィルムの耐ブロッキング性が低下する。 The polyester resin preferably has a low glass transition temperature from the viewpoint of adhesion, but preferably has a high glass transition temperature from the viewpoint of blocking resistance. Therefore, the glass transition temperature of the polyester resin is preferably 10 to 100 ° C., and more preferably 30 to 70 ° C. When the glass transition temperature is higher than 100 ° C., the melt viscosity becomes high, and it is difficult to obtain a product having a sufficient molecular weight, so that the adhesiveness is lowered. When the glass transition temperature is lower than 10 ° C., the blocking resistance of the film is lowered.
 ポリエステル樹脂の数平均分子量を15000以上とし、かつガラス転移温度を上記範囲にするには、ポリエステル樹脂に分岐構造を導入することが好ましい。しかしながら、分岐構造が多くなると酸価も高くなる傾向にある。そのため、本願発明のポリエステル樹脂は、カルボキシル基が3個以上/1分子あるいは水酸基が3個以上/1分子有する第三成分のモル比は全ジカルボン酸成分中5.0モル%以下であることが好ましく、さらに好ましくは1.0モル%以下である。 In order to set the number average molecular weight of the polyester resin to 15000 or more and make the glass transition temperature in the above range, it is preferable to introduce a branched structure into the polyester resin. However, as the number of branched structures increases, the acid value tends to increase. Therefore, in the polyester resin of the present invention, the molar ratio of the third component having three or more carboxyl groups / one molecule or three or more hydroxyl groups / one molecule is 5.0 mol% or less in the total dicarboxylic acid component. Preferably, it is 1.0 mol% or less more preferably.
 (a)成分として前記ポリウレタン樹脂および前記ポリエステル樹脂を用いる場合、ポリウレタン樹脂およびポリエステル樹脂の濃度はそれぞれ塗布層中に10質量%以上80質量%以下含有することが好ましい。高い密着性が求められる場合、より好ましくは20%質量%以上70質量%以下である。ウレタン樹脂の含有量が多い場合には、高温高湿下での密着性が低下し、逆に、含有量が少ない場合には、初期での密着性が低下する。また、ポリエステル樹脂の含有量が多い場合には、高温高湿下での密着性が低下し、逆に、含有量が少ない場合には、基材フィルムとの密着性および耐ブロッキング性が低下する When the polyurethane resin and the polyester resin are used as the component (a), the concentration of the polyurethane resin and the polyester resin is preferably 10% by mass to 80% by mass in the coating layer. When high adhesiveness is required, it is more preferably 20% by mass or more and 70% by mass or less. When the content of the urethane resin is large, the adhesiveness under high temperature and high humidity is lowered, and conversely, when the content is small, the initial adhesiveness is lowered. Moreover, when there is much content of a polyester resin, the adhesiveness under high temperature, high humidity falls, and conversely, when there is little content, adhesiveness with a base film and blocking resistance fall.
 (a)成分として前記ポリウレタン樹脂および前記ポリエステル樹脂を用いる場合、塗布層中のカルボジイミド基の濃度の下限は0.1mmol/g、好ましくは0.2mmol/g、さらに好ましくは0.4mmol/gであり、上限は2.0mmol/g、好ましくは1.8mmol/g、さらに好ましくは1.5mmol/gである。上記下限未満では十分な高温、高湿下での密着性が得られない場合がある。上記上限を越えると相対的にウレタン樹脂およびポリエステル樹脂の比率が小さくなり、密着性、特に初期密着性が低下する場合がある。 When the polyurethane resin and the polyester resin are used as the component (a), the lower limit of the carbodiimide group concentration in the coating layer is 0.1 mmol / g, preferably 0.2 mmol / g, more preferably 0.4 mmol / g. Yes, the upper limit is 2.0 mmol / g, preferably 1.8 mmol / g, more preferably 1.5 mmol / g. If the amount is less than the above lower limit, sufficient adhesiveness at high temperature and high humidity may not be obtained. When the above upper limit is exceeded, the ratio of the urethane resin and the polyester resin becomes relatively small, and the adhesiveness, particularly the initial adhesiveness, may be lowered.
 本発明では、前記ウレタン樹脂および/または前記ポリエステル樹脂以外の樹脂でも、密着性を向上させるために含有させても良い。例えば、アクリル樹脂、ポリエステル樹脂などが挙げられる。好ましくは、カルボン酸基の含有量が少ないものである。より好ましくは、カルボン酸基を含有していないものである。カルボン酸基が多い場合は、カルボジイミド基と反応してしまい、高温高湿下でウレタン樹脂から発生するカルボン酸基と反応するカルボジイミド基が減少してしまう。 In the present invention, a resin other than the urethane resin and / or the polyester resin may be contained in order to improve adhesion. For example, an acrylic resin, a polyester resin, etc. are mentioned. Preferably, the carboxylic acid group content is low. More preferably, it does not contain a carboxylic acid group. When there are many carboxylic acid groups, it will react with a carbodiimide group, and the carbodiimide group which reacts with the carboxylic acid group generated from a urethane resin under high temperature and high humidity will decrease.
(カルボジイミド化合物)
 本発明では、カルボジイミド化合物を含有させる必要がある。カルボジイミド化合物としては、モノカルボジイミド化合物やポリカルボジイミド化合物が挙げられる。
(Carbodiimide compound)
In the present invention, it is necessary to contain a carbodiimide compound. Examples of the carbodiimide compound include a monocarbodiimide compound and a polycarbodiimide compound.
 モノカルボジイミド化合物としては、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t−ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ−t−ブチルカルボジイミド、ジ−β−ナフチルカルボジイミド等を挙げることができる。 Examples of monocarbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t − butylisopropylcarbodiimide, diphenylcarbodiimide, di − t − butylcarbodiimide, di − β − naphthylcarbodiimide and the like.
 ポリカルボジイミド化合物としては、従来公知の方法で製造したものを使用することができる。例えば、ジイソシアネートの脱二酸化炭素を伴う縮合反応によりイソシアネート末端ポリカルボジイミドを合成することにより製造することができる。 As the polycarbodiimide compound, those produced by a conventionally known method can be used. For example, it can be produced by synthesizing an isocyanate-terminated polycarbodiimide by a condensation reaction involving decarbonization of diisocyanate.
 ポリカルボジイミド化合物の合成原料であるジイソシアネートとしては、例えばトルイレンジイソシアネートの異性体類、4,4-ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート類、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類が挙げられる。黄変の問題から、芳香族脂肪族ジイソシアネート類、脂環式ジイソシアネート類、脂肪族ジイソシアネート類が好ましい。 Examples of the diisocyanate that is a raw material for synthesizing a polycarbodiimide compound include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and 4 Alicyclic diisocyanates such as 1,4-dicyclohexylmethane diisocyanate and 1,3-bis (isocyanatemethyl) cyclohexane, and aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate. From the problem of yellowing, aromatic aliphatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates are preferred.
 また、上記ジイソシアネートは、モノイソシアネート等の末端イソシアネートと反応する化合物を用いて分子を適当な重合度に制御して使用しても差し支えない。このようにポリカルボジイミドの末端を封止してその重合度を制御するためのモノイソシアネートとしては、例えばフェニルイソシアネート、トルイレンイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等が挙げられる。また、この他にも末端封止剤として-OH基、-NH基、-COOH基、-SOH基を有する化合物を使用することができる。 The diisocyanate may be used with a molecule controlled to an appropriate degree of polymerization using a compound that reacts with a terminal isocyanate such as monoisocyanate. Examples of monoisocyanates for sealing the ends of polycarbodiimide and controlling the degree of polymerization thereof include phenyl isocyanate, toluylene isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, and naphthyl isocyanate. In addition, a compound having an —OH group, —NH 2 group, —COOH group, or —SO 2 H group can be used as a terminal blocking agent.
 ジイソシアネートの脱二酸化炭素を伴う縮合反応は、カルボジイミド化触媒の存在下に進行する。触媒としては、例えば1−フェニル−2−ホスホレン−1−オキシド、3−メチル−2−ホスホレン−1−オキシド、1−エチル−2−ホスホレン−1−オキシド、3−メチル−1−フェニル−2−ホスホレン−1−オキシドや、これらの3−ホスホレン異性体等のホスホレンオキシドなどが挙げられ、反応性の面から3−メチル−1−フェニル−2−ホスホレン−1−オキシドが好ましい。なお、上記触媒の使用量は触媒量とすることができる。 The condensation reaction accompanied by decarbonization of diisocyanate proceeds in the presence of a carbodiimidization catalyst. Examples of the catalyst include 1 − phenyl − 2 − phospholene − 1 − oxide, 3 − methyl − 2 − phospholene − 1 − Oxide, 1 − ethyl − 2 − phospholene − 1 − oxide, 3 − methyl − 1 − phenyl − 2 − phospholene − 1 − Oxides and phospholene isomers such as these 3 − phospholene isomers, etc., and 3 − Methyl − 1 − Phenyl − 2 − phospholene − 1 − oxide is preferred. The amount of the catalyst used can be a catalyst amount.
 上記したモノ又はポリカルボジイミド化合物は、水性塗料への配合時に均一な分散状態に保たれることが望ましく、このために適切な乳化剤を用いて乳化加工して乳濁液として使用したり、ポリカルボジイミド化合物の分子構造内に親水性のセグメントを付加して自己乳化物の形態で、あるいは自己溶解物の形態で塗料に配合することが好ましい The mono- or polycarbodiimide compound described above is desirably kept in a uniform dispersed state when blended with an aqueous coating material. For this purpose, it is emulsified with an appropriate emulsifier and used as an emulsion, or a polycarbodiimide compound. It is preferable to add a hydrophilic segment in the molecular structure of the compound and mix it with the paint in the form of a self-emulsified product or in the form of a self-dissolved product.
 本発明で用いられるカルボジイミド化合物は、水分散性、水溶性が挙げられる。他の水溶性樹脂との相溶性がよく、塗布層の透明性や架橋反応効率を向上させることから、水溶性が好ましい。 The carbodiimide compound used in the present invention includes water dispersibility and water solubility. Water solubility is preferred because it is highly compatible with other water-soluble resins and improves the transparency of the coating layer and the crosslinking reaction efficiency.
 ポリカルボジイミド化合物の重合度(n)としては、2~10が好ましく、より好ましくは、3~7である。重合度が小さい場合は架橋反応率が悪くなり、機能層との密着性が低下し、大きい場合は、樹脂との相溶性が悪くなり、ヘイズが上昇する場合がある。 The degree of polymerization (n) of the polycarbodiimide compound is preferably 2 to 10, more preferably 3 to 7. When the degree of polymerization is small, the crosslinking reaction rate is deteriorated and the adhesion with the functional layer is lowered. When the degree of polymerization is large, the compatibility with the resin is deteriorated and haze may be increased.
 カルボジイミド化合物を水溶性にするためには、イソシアネートの脱二酸化炭素を伴う縮合反応によりイソシアネート末端ポリカルボジイミドを合成した後、更にイソシアネート基との反応性を有する官能基を持つ親水性部位を付加することにより製造することができる。 In order to make a carbodiimide compound water-soluble, an isocyanate-terminated polycarbodiimide is synthesized by a condensation reaction involving decarbonization of isocyanate, and then a hydrophilic part having a functional group having reactivity with an isocyanate group is added. Can be manufactured.
 親水性部位としては、(1)ジアルキルアミノアルコールの四級アンモニウム塩やジアルキルアミノアルキルアミンの四級アンモニウム塩など、(2)反応性ヒドロキシル基を少なくとも1個有するアルキルスルホン酸塩など、(3)アルコキシ基で末端封鎖されたポリ(エチレンオキサイド)、ポリ(プロピレンオキサイド)、ポリ(エチレンオキサイド)とポリ(プロピレンオキサイド)との混合物などが挙げられる。エチレンオキサイドおよび/またはプロピレンオキサイドの繰り返し単位は3~50が好ましく、より好ましくは、5~35である。繰り返し単位が小さい場合は、樹脂との相溶性が悪くなり、ヘイズが上昇し、大きい場合は、高温高湿下の接着性が低下する場合がある。カルボジイミド化合物は上記親水性部位を導入した場合は(1)カチオン性、(2)アニオン性、(3)ノニオン性となる。なかでも、他の水溶性樹脂のイオン性に関係なく、相溶できるノニオン性が好ましい。また、耐湿熱性を向上させるためにも、イオン性の親水基を導入する必要がないノニオン性が好ましい。 Examples of hydrophilic sites include (1) quaternary ammonium salts of dialkylamino alcohols and quaternary ammonium salts of dialkylaminoalkylamines, (2) alkyl sulfonates having at least one reactive hydroxyl group, and the like (3) Examples thereof include poly (ethylene oxide) end-capped with an alkoxy group, poly (propylene oxide), a mixture of poly (ethylene oxide) and poly (propylene oxide), and the like. The repeating unit of ethylene oxide and / or propylene oxide is preferably 3 to 50, more preferably 5 to 35. When the repeating unit is small, the compatibility with the resin is deteriorated and the haze is increased. When the repeating unit is large, the adhesiveness under high temperature and high humidity may be decreased. The carbodiimide compound is (1) cationic, (2) anionic, and (3) nonionic when the above hydrophilic moiety is introduced. Especially, the nonionic property which can be compatible regardless of the ionicity of other water-soluble resin is preferable. Moreover, in order to improve heat-and-moisture resistance, the nonionic property which does not need to introduce | transduce an ionic hydrophilic group is preferable.
 また、本発明に用いるカルボジイミド化合物のカルボジイミド当量は、特に限定されるものではないが、具体的には、例えば、1000以下であることが好ましく、より好ましくは500以下、さらにより好ましくは300以下である。上記カルボジイミド当量が上限を超える場合は、十分な基材フィルムや機能層に含まれるカルボキシル基などとの相互作用が発現されず、耐久性、耐水性が満足に得られない場合がある。なお、上記カルボジイミド当量は、カルボジイミド基1mol当たりの化学式量であるとする。よって、該カルボジイミド当量の値が小さいほど重合体中のカルボジイミド基の量は多く、値が大きいほど重合体中のカルボジイミド基の量は少ないということを表す。 The carbodiimide equivalent of the carbodiimide compound used in the present invention is not particularly limited, but specifically, for example, it is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less. is there. When the said carbodiimide equivalent exceeds an upper limit, sufficient interaction with a carboxyl group etc. contained in a base film or a functional layer is not expressed, but durability and water resistance may not be obtained satisfactorily. In addition, the said carbodiimide equivalent shall be a chemical formula amount per 1 mol of carbodiimide groups. Therefore, the smaller the carbodiimide equivalent value, the larger the amount of carbodiimide groups in the polymer, and the larger the value, the smaller the amount of carbodiimide groups in the polymer.
 前記カルボジイミド化合物は塗布層中に5質量%以上90質量%以下含有することが好ましい。より好ましくは10%質量%以上70質量%以下である。カルボジイミド化合物の含有量が多い場合には、機能層との密着性が低下し、逆に、含有量が少ない場合には、高温高湿下の密着性が低下する場合がある。 The carbodiimide compound is preferably contained in the coating layer in an amount of 5% by mass to 90% by mass. More preferably, it is 10% by mass or more and 70% by mass or less. When the content of the carbodiimide compound is large, the adhesion with the functional layer is lowered, and conversely, when the content is small, the adhesion under high temperature and high humidity may be lowered.
 本発明において、塗膜強度を向上させるために、塗布層中にカルボジイミド化合物とは別の架橋剤、または、架橋基を有する樹脂を含有させても良い。架橋剤としては、尿素系、エポキシ系、メラミン系、イソシアネート系、オキサゾリン系、シラノール系等が挙げられる。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用される。 In the present invention, in order to improve the coating film strength, the coating layer may contain a crosslinking agent different from the carbodiimide compound or a resin having a crosslinking group. Examples of the crosslinking agent include urea, epoxy, melamine, isocyanate, oxazoline, silanol and the like. Moreover, in order to promote a crosslinking reaction, a catalyst etc. are used suitably as needed.
 本発明において、塗布層中に粒子を含有させることもできる。粒子は(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、二酸化チタン、二酸化ジルコニウム、酸化錫、サチンホワイト、チタンブラック、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム、等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられる。 In the present invention, particles may be contained in the coating layer. Particles are (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, titanium dioxide, zirconium dioxide, tin oxide, satin White, titanium black, aluminum silicate, diatomaceous earth, calcium silicate, aluminum hydroxide, hydrous halloysite, magnesium carbonate, magnesium hydroxide, inorganic particles, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, Nylon, styrene / acrylic, styrene / butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / isoprene, methyl methacrylate / butyl methacrylate, melamine, polycarbonate, urea , Epoxy, urethane, phenolic, diallyl phthalate, and organic particles of a polyester or the like.
 前記粒子は、平均粒径が1~500nmのものが好適である。平均粒子径は特に限定されないが、フィルムの透明性を維持する点から1~100nmであれば好ましい。 The particles preferably have an average particle diameter of 1 to 500 nm. The average particle size is not particularly limited, but is preferably 1 to 100 nm from the viewpoint of maintaining the transparency of the film.
 前記粒子は、平均粒径の異なる粒子を2種類以上含有させても良い。 The particles may contain two or more kinds of particles having different average particle diameters.
 なお、上記の平均粒径は、透過型電子顕微鏡(TEM)を用いて、倍率12万倍で積層フィルムの断面を撮影し、塗布層の断面に存在する10ヶ以上の粒子の最大径を測定し、それらの平均値として求めることができる。また、コールターカウンター法で求めてもよい。 In addition, said average particle diameter measures the maximum diameter of the 10 or more particle | grains which exist in the cross section of a coating layer by image | photographing the cross section of a laminated film at a magnification of 120,000 times using a transmission electron microscope (TEM). And can be obtained as an average value of them. Moreover, you may obtain | require by the Coulter counter method.
 粒子の含有量としては、0.5質量%以上20質量%以下が好ましい。少ない場合は、十分な耐ブロッキング性を得ることができない。また、対スクラッチ性が悪化してしまう。多い場合は、塗布層の透明性が悪くなるだけでなく、塗膜強度が低下する。 The particle content is preferably 0.5% by mass or more and 20% by mass or less. When the amount is small, sufficient blocking resistance cannot be obtained. Further, scratch resistance is deteriorated. When the amount is large, not only the transparency of the coating layer is deteriorated, but also the coating strength is lowered.
 塗布層には、コート時のレベリング性の向上、コート液の脱泡を目的に界面活性剤を含有させることもできる。界面活性剤は、カチオン系、アニオン系、ノニオン系などいずれのものでも構わないが、シリコン系、アセチレングリコール系又はフッ素系界面活性剤が好ましい。これらの界面活性剤は、機能層との密着性を損なわない程度の範囲、例えば、塗布液中に0.005~0.5質量%の範囲で含有させることも好ましい。 The coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution. The surfactant may be any of cationic, anionic and nonionic surfactants, but is preferably a silicon-based, acetylene glycol-based or fluorine-based surfactant. These surfactants are preferably contained in a range that does not impair the adhesion to the functional layer, for example, 0.005 to 0.5% by mass in the coating solution.
 本発明の易接着性ポリエステルフィルムは、ヘイズ値が2.5%以下であることが好ましく、より好ましくは2.0%以下であり、さらに好ましくは1.5%以下である。このような易接着性熱可塑性樹脂フィルムは前記記載の塗布層中に含まれるカルボジイミド化合物を水溶性にすることで他の樹脂との相溶性が向上し得られる。 The easily adhesive polyester film of the present invention preferably has a haze value of 2.5% or less, more preferably 2.0% or less, and even more preferably 1.5% or less. Such an easily adhesive thermoplastic resin film can be improved in compatibility with other resins by making the carbodiimide compound contained in the coating layer described above water-soluble.
 塗布層に他の機能性を付与するために、機能層との密着性を損なわない程度の範囲で、各種の添加剤を含有させても構わない。前記添加剤としては、例えば、蛍光染料、蛍光増白剤、可塑剤、紫外線吸収剤、顔料分散剤、抑泡剤、消泡剤、防腐剤、帯電防止剤等が挙げられる。 In order to impart other functionality to the coating layer, various additives may be contained within a range that does not impair the adhesion to the functional layer. Examples of the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam suppressors, antifoaming agents, preservatives, and antistatic agents.
 本発明において、熱可塑性樹脂フィルム上に塗布層を設ける方法としては、溶媒、粒子、樹脂を含有する塗布液をポリエステルフィルムに塗布、乾燥する方法が挙げられる。溶媒として、トルエン等の有機溶剤、水、あるいは水と水溶性の有機溶剤の混合系が挙げられるが、好ましくは、環境問題の点から水単独あるいは水に水溶性の有機溶剤を混合したものが好ましい。 In the present invention, as a method of providing a coating layer on a thermoplastic resin film, a method of applying a coating solution containing a solvent, particles, and a resin to a polyester film and drying may be mentioned. Examples of the solvent include organic solvents such as toluene, water, or a mixed system of water and a water-soluble organic solvent. Preferably, water alone or a mixture of a water-soluble organic solvent and water is used from the viewpoint of environmental problems. preferable.
 本発明の積層熱可塑性樹脂フィルムは、前述の熱可塑性樹脂フィルムの塗布層の少なくとも片面に、ハードコート層、光拡散層、プリズム状レンズ層、電磁波吸収層、近赤外線遮断層、透明導電層から選択される、少なくとも1層の光学機能層により得られる。 The laminated thermoplastic resin film of the present invention comprises a hard coat layer, a light diffusion layer, a prismatic lens layer, an electromagnetic wave absorption layer, a near-infrared shielding layer, and a transparent conductive layer on at least one surface of the above-mentioned thermoplastic resin film coating layer. It is obtained by at least one optical functional layer selected.
 前記光学機能層に用いられる材料は特に限定されるものではない。 The material used for the optical functional layer is not particularly limited.
(易接着性熱可塑性樹脂フィルムの製造)
 本発明の易接着性熱可塑性樹脂フィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと略記する)フィルムを例にして説明するが、当然これに限定されるものではない。
(Manufacture of easy-adhesive thermoplastic resin film)
Although the production method of the easily adhesive thermoplastic resin film of the present invention will be described by taking a polyethylene terephthalate (hereinafter abbreviated as PET) film as an example, it is naturally not limited thereto.
 PET樹脂を十分に真空乾燥した後、押出し機に供給し、Tダイから約280℃の溶融PET樹脂を回転冷却ロールにシート状に溶融押出しし、静電印加法により冷却固化せしめて未延伸PETシートを得る。前記未延伸PETシートは、単層構成でもよいし、共押出し法による複層構成であってもよい。また、PET樹脂中に不活性粒子を実質的に含有させないことが好ましい。 After sufficiently drying the PET resin in a vacuum, it is supplied to an extruder, melted and extruded at about 280 ° C. from a T-die into a rotating cooling roll into a sheet, cooled and solidified by an electrostatic application method, and unstretched PET. Get a sheet. The unstretched PET sheet may have a single layer structure or a multilayer structure by a coextrusion method. Moreover, it is preferable not to contain an inert particle substantially in PET resin.
 得られた未延伸PETシートを、80~120℃に加熱したロールで長手方向に2.5~5.0倍に延伸して、一軸延伸PETフィルムを得る。さらに、フィルムの端部をクリップで把持して、70~140℃に加熱された熱風ゾーンに導き、幅方向に2.5~5.0倍に延伸する。引き続き、160~240℃の熱処理ゾーンに導き、1~60秒間の熱処理を行ない、結晶配向を完了させる。 The obtained unstretched PET sheet is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film. Further, the end of the film is gripped with a clip, led to a hot air zone heated to 70 to 140 ° C., and stretched 2.5 to 5.0 times in the width direction. Subsequently, the film is guided to a heat treatment zone of 160 to 240 ° C., and heat treatment is performed for 1 to 60 seconds to complete crystal orientation.
 このフィルム製造工程の任意の段階で、PETフィルムの少なくとも片面に、塗布液を塗布し、前記塗布層を形成する。塗布層はPETフィルムの両面に形成させても特に問題はない。塗布液中の樹脂組成物の固形分濃度は、2~35重量%であることが好ましく、特に好ましくは4~15重量%である。 In any stage of the film manufacturing process, a coating solution is applied to at least one surface of the PET film to form the coating layer. There is no particular problem even if the coating layer is formed on both sides of the PET film. The solid concentration of the resin composition in the coating solution is preferably 2 to 35% by weight, particularly preferably 4 to 15% by weight.
 この塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工する。 Any known method can be used as a method for applying this coating solution to the PET film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.
 本発明においては、塗布層は未延伸あるいは一軸延伸後のPETフィルムに前記塗布液を塗布、乾燥した後、少なくとも一軸方向に延伸し、次いで熱処理を行って形成させる。 In the present invention, the coating layer is formed by applying the coating solution to an unstretched or uniaxially stretched PET film, drying it, stretching it at least in a uniaxial direction, and then performing a heat treatment.
 本発明において、最終的に得られる塗布層の厚みは20~350nm、乾燥後の塗布量は、0.02~0.5g/mであることが好ましい。塗布層の塗布量が0.02g/m未満であると、接着性に対する効果がほとんどなくなる。一方、塗布量が0.5g/mを越えると、ヘイズが増加してしまう。 In the present invention, the thickness of the finally obtained coating layer is preferably 20 to 350 nm, and the coating amount after drying is preferably 0.02 to 0.5 g / m 2 . When the coating amount of the coating layer is less than 0.02 g / m 2 , the effect on adhesiveness is almost lost. On the other hand, when the coating amount exceeds 0.5 g / m 2 , haze increases.
 本発明で得られた易接着性熱可塑性樹脂フィルムの塗布層は、ハードコート層、光拡散層、プリズム状レンズ層、電磁波吸収層、近赤外線遮断層、透明導電層に対して良好な接着性を有する。これら光学機能層を積層させることで耐湿熱環境下でも長期間初期機能が保持できる光学積層熱可塑性樹脂フィルムを提供することができる。また、光学用途以外でも良好な接着強度が得られる。具体的には、写真感光層、ジアゾ感光層、マット層、磁性層、インクジェットインキ受容層、ハードコート層、紫外線硬化樹脂、熱硬化樹脂、印刷インキやUVインキ、ドライラミネートや押し出しラミネート等の接着剤、金属あるいは無機物またはそれらの酸化物の真空蒸着、電子ビーム蒸着、スパッタリング、イオンプレーティング、CVD、プラズマ重合等で得られる薄膜層、有機バリアー層等が挙げられる。 The coating layer of the easy-adhesive thermoplastic resin film obtained in the present invention has good adhesion to a hard coat layer, a light diffusion layer, a prismatic lens layer, an electromagnetic wave absorption layer, a near-infrared shielding layer, and a transparent conductive layer. Have By laminating these optical functional layers, it is possible to provide an optical laminated thermoplastic resin film that can maintain an initial function for a long period of time even in a moisture and heat resistant environment. Also, good adhesive strength can be obtained even for applications other than optical applications. Specifically, adhesion such as photographic photosensitive layer, diazo photosensitive layer, matte layer, magnetic layer, inkjet ink receiving layer, hard coat layer, UV curable resin, thermosetting resin, printing ink and UV ink, dry laminate, extrusion laminate, etc. Examples thereof include vacuum deposition, electron beam deposition, sputtering, ion plating, CVD, plasma polymerization and the like of an agent, a metal or an inorganic substance, or an oxide thereof, and an organic barrier layer.
 次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は当然以下の実施例に限定されるものではない。また、本発明で用いた評価方法は以下の通りである。 Next, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to the following examples. The evaluation method used in the present invention is as follows.
(1)固有粘度
 JIS K 7367-5に準拠し、溶媒としてフェノール(60質量%)と1,1,2,2-テトラクロロエタン(40質量%)の混合溶媒を用い、30℃で測定した。
(1) Intrinsic viscosity Based on JIS K 7367-5, a mixed solvent of phenol (60% by mass) and 1,1,2,2-tetrachloroethane (40% by mass) was used as a solvent and measured at 30 ° C.
(2)還元粘度
 樹脂0.1gに対し、溶媒としてフェノール(60質量%)と1,1,2,2-テトラクロロエタン(40質量%)の混合溶媒25mLを用い、30℃で測定した。
(2) Reduced viscosity Measured at 30 ° C. using 25 mL of a mixed solvent of phenol (60 mass%) and 1,1,2,2-tetrachloroethane (40 mass%) as a solvent with respect to 0.1 g of resin.
(3)ガラス転移温度
 JIS K7121に準拠し、示差走査熱量計(セイコーインスツルメンツ製、DSC6200)を使用して、樹脂サンプル10mgを25~300℃の温度範囲にわたって20℃/分で昇温させ、DSC曲線から得られた補外ガラス転移開始温度をガラス転移温度とした。
(3) Glass transition temperature In accordance with JIS K7121, using a differential scanning calorimeter (Seiko Instruments, DSC6200), 10 mg of a resin sample was heated at a rate of 20 ° C / min over a temperature range of 25 to 300 ° C. The extrapolated glass transition start temperature obtained from the curve was defined as the glass transition temperature.
(4)樹脂組成
 樹脂を重クロロホルムに溶解し、ヴァリアン社製核磁気共鳴分析計(NMR)ジェミニ-200を用いて、H-NMR分析を行ってその積分比より、全イソシアネート成分を100モル%とした場合の各組成のモル%比を決定した。
(4) Resin composition The resin was dissolved in deuterated chloroform and subjected to 1 H-NMR analysis using a nuclear magnetic resonance analyzer (NMR) Gemini-200 manufactured by Varian, Inc. From the integration ratio, 100 moles of all isocyanate components were obtained. The mole% ratio of each composition was determined.
(5)数平均分子量
 樹脂0.03gをテトラヒドロフラン 10ml に溶かし、GPC-LALLS装置低角度光散乱光度計 LS-8000(東ソー株式会社製、テトラヒドロフラン溶媒、リファレンス:ポリスチレン)を用い、カラム温度30℃、流量1ml/分、カラム(昭和電工社製shodex KF-802、804、806)を用い、数平均分子量を測定した。
(5) Number average molecular weight 0.03 g of a resin was dissolved in 10 ml of tetrahydrofuran, and a GPC-LALLS apparatus low angle light scattering photometer LS-8000 (manufactured by Tosoh Corporation, tetrahydrofuran solvent, reference: polystyrene) was used. The number average molecular weight was measured using a column (showex KF-802, 804, 806 manufactured by Showa Denko KK) at a flow rate of 1 ml / min.
(6)酸価
 1g(固形分)の試料を30mlのクロロホルムまたはジメチルホルムアミドに溶解し、フェノールフタレインを指示薬として0.1Nの水酸化カリウムエタノール溶液で滴定して、試料1g当たりのカルボキシル基を中和するのに必要なKOHの量(mg)を求めた。
(6) Acid value 1 g (solid content) of a sample was dissolved in 30 ml of chloroform or dimethylformamide, and titrated with 0.1 N potassium hydroxide ethanol solution using phenolphthalein as an indicator to determine the carboxyl groups per gram of the sample. The amount (mg) of KOH required for neutralization was determined.
(7)カルボジイミド価
 カルボジイミド化合物を凍結乾燥し、これをH-NMRにて分析し、カルボジイミド基に由来する吸収ピーク強度、その他のモノマーに由来する吸収ピーク強度から、カルボジイミド価を算出した。
(7) Carbodiimide value The carbodiimide compound was freeze-dried and analyzed by 1 H-NMR, and the carbodiimide value was calculated from the absorption peak intensity derived from the carbodiimide group and the absorption peak intensity derived from other monomers.
(8)易接着性ポリエステルフィルムの全光線透過率
 得られた易接着性ポリエステルフィルムの全光線透過率はJIS K 7105に準拠し、濁度計(日本電色製、NDH2000)を用いて測定した。
(8) Total light transmittance of easy-adhesive polyester film The total light transmittance of the obtained easily-adhesive polyester film was measured using a turbidimeter (Nippon Denshoku, NDH2000) in accordance with JIS K 7105. .
(9)易接着性ポリエステルフィルムのヘイズ
 得られた易接着性ポリエステルフィルムのヘイズはJIS K 7136に準拠し、濁度計(日本電色製、NDH2000)を用いて測定した。
(9) Haze of easy-adhesive polyester film The haze of the obtained easy-adhesive polyester film was measured using a turbidimeter (Nippon Denshoku, NDH2000) in accordance with JIS K7136.
(10)塗布層中のカルボジイミド基濃度の定量
 実施例および比較例で得られたフィルムの塗布層面について、全反射吸収赤外分光法で測定し、基材フィルムから特異的に得られる吸光度を対照として塗布層中のカルボジイミド基濃度を求めた。
 すなわち、下記に示す条件により全反射吸収赤外分光法で測定し、赤外吸収スペクトルを得、カルボジイミド由来の吸光度と基材フィルムの吸光度(PETフィルムの場合、エチレングリコール)の比(赤外吸光度比A2120/A1340)を求めた。尚、カルボジイミド基由来の吸光度は2120±10cm-1の領域に吸収極大を持つ吸収ピークの高さの値(A2120)とし、PET由来の吸光度は1340±10cm-1の領域に吸収極大を持つ吸収ピークの高さの値(A1340)とした。ベースラインはそれぞれの極大吸収ピークの両側の袖を結ぶ線とした。
 また、塗布層の厚みは、透過型電子顕微鏡により求めた。積層フィルムの試料を可視光硬化型樹脂(日本新EM社製、D-800)に包埋し、室温で可視光にさらして硬化させた。得られた包埋ブロックから、ダイアモンドナイフを装着したウルトラミクロトームを用いて70~100nm程度の厚みの超薄切片を作製し、四酸化ルテニウム蒸気中で30分間染色した。さらにカーボン蒸着を施した後、透過型電子顕微鏡(日本電子株式会社製、TEM2010)を用いて断面を観察し、写真を撮影し、これより塗布層の厚みを計測した。なお、撮影は、10,000~100,000倍の範囲で適宜設定した。
 得られた赤外吸光度比A2120/A1340および塗布層の厚みより、予めカルボジイミド濃度が既知の塗布液を塗布、風乾した標準サンプルから作成した検量線を用いて塗布層中のカルボジイミド基濃度を求めた。
 なお、検量線の作成においては、カルボジイミド基濃度を0.5、1.4、2.7、4.5mmol/gとした塗布液(溶媒:水/イソプロピルアルコール=1/1、アクリル樹脂との混合量を調整し固定分濃度30質量%とした)を、乾燥後の塗布層の厚みが50nm、100nm、200nmとなるように塗布し、風乾した試料について、下記に示す条件で全反射吸収赤外分光法にて赤外吸光度比A2120/A1340を測定し、得られた結果からオキサゾリン基濃度、塗布層厚み、赤外吸光度比A2120/A1340の3つの変量からなる下記一次式をもとめ、これを検量線とした。
(カルボジイミド濃度)=A×(赤外吸光度比A2120/A1340)/(塗布層厚み)+B
(ここで、A、Bは上記検量線作成により得られたデータから求まる定数)
(10) Determination of carbodiimide group concentration in the coating layer The coating layer surfaces of the films obtained in Examples and Comparative Examples were measured by total reflection absorption infrared spectroscopy, and the absorbance specifically obtained from the base film was controlled. As a result, the carbodiimide group concentration in the coating layer was determined.
That is, it is measured by total reflection absorption infrared spectroscopy under the conditions shown below to obtain an infrared absorption spectrum, and the ratio of the absorbance derived from carbodiimide to the absorbance of the substrate film (ethylene glycol in the case of PET film) (infrared absorbance) The ratio A2120 / A1340 ) was determined. The absorbance derived from the carbodiimide group is the height of the absorption peak having an absorption maximum in the region of 2120 ± 10 cm −1 (A 2120 ), and the absorbance derived from PET has the absorption maximum in the region of 1340 ± 10 cm −1. The height of the absorption peak (A 1340 ) was used. The base line was a line connecting the sleeves on both sides of each maximum absorption peak.
The thickness of the coating layer was determined with a transmission electron microscope. A sample of the laminated film was embedded in a visible light curable resin (D-800 manufactured by Nippon Shin-EM Co., Ltd.) and cured by exposure to visible light at room temperature. From the obtained embedding block, an ultrathin section having a thickness of about 70 to 100 nm was prepared using an ultramicrotome equipped with a diamond knife, and stained in ruthenium tetroxide vapor for 30 minutes. Furthermore, after performing carbon vapor deposition, the cross section was observed using the transmission electron microscope (the JEOL Co., Ltd. make, TEM2010), the photograph was image | photographed, and the thickness of the coating layer was measured from this. The photographing was appropriately set in the range of 10,000 to 100,000 times.
Based on the obtained infrared absorbance ratio A 2120 / A 1340 and the thickness of the coating layer, the carbodiimide group concentration in the coating layer was determined using a calibration curve prepared from a standard sample that had been coated in advance with a coating solution with a known carbodiimide concentration and air-dried. Asked.
In preparing the calibration curve, the coating solution with a carbodiimide group concentration of 0.5, 1.4, 2.7, 4.5 mmol / g (solvent: water / isopropyl alcohol = 1/1, with acrylic resin) The mixture was adjusted so that the fixed component concentration was 30% by mass), and the coating layer after drying was applied so that the thickness of the coating layer was 50 nm, 100 nm, and 200 nm. The infrared absorbance ratio A 2120 / A 1340 was measured by external spectroscopy, and the following primary formula consisting of three variables of oxazoline group concentration, coating layer thickness, infrared absorbance ratio A 2120 / A 1340 was obtained from the obtained results. This was used as a calibration curve.
(Carbodiimide concentration) = A × (infrared absorbance ratio A 2120 / A 1340 ) / (coating layer thickness) + B
(Here, A and B are constants obtained from the data obtained by creating the calibration curve)
(測定条件)
装置:Varian社製 FTS-60A/896
1回反射ATRアタッチメント:SPECTRA TECH社製 Silver Gate
光学結晶:Ge
入射角:45°
分解能:4cm-1
積算回数:128回
 なお、塗布層の厚さが薄く、十分な感度が得られない場合は、使用する1回反射アタッチメントを、より入射角が大きい(65度)アタッチメント(例えばエス・ティ・ジャパン社製 VeeMax)に代えて測定しても良い。
(Measurement condition)
Apparatus: FTS-60A / 896 manufactured by Varian
Single reflection ATR attachment: Silver Gate manufactured by SPECTRA TECH
Optical crystal: Ge
Incident angle: 45 °
Resolution: 4cm -1
Cumulative number: 128 times If the coating layer is thin and sufficient sensitivity cannot be obtained, use a one-time reflection attachment with a larger incident angle (65 degrees) (for example, ST Japan Instead of VeeMax), the measurement may be performed.
(11)接着性
 得られた積層ポリエステルフィルムの光硬化型アクリル層面に、隙間間隔2mmのカッターガイドを用いて、光硬化型アクリル層を貫通して基材フィルムに達する100個のマス目状の切り傷をつける。次いで、セロハン粘着テープ(ニチバン社製、405番;24mm幅)をマス目状の切り傷面に貼り付け、消しゴムでこすって完全に密着させた。その後、垂直にセロハン粘着テープを積層ポリエステルフィルムの光硬化型アクリル層面から引き剥がす作業を5回行った後、積層ポリエステルフィルムの光硬化型アクリル層面から剥がれたマス目の数を目視で数え、下記の式から光硬化型アクリル層と基材フィルムとの密着性を求めた。なお、マス目の中で部分的に剥離しているものも剥がれたマス目として数え、下記の基準でランク分けをした。
密着性(%)=(1-剥がれたマス目の数/100)×100
   ◎:100%、または、光硬化型アクリル層の材破
   ○:99~90%
   △:89~70%
   ×:69~0%
(11) Adhesiveness 100 square grids that reach the base film through the photocurable acrylic layer on the photocurable acrylic layer surface of the obtained laminated polyester film using a cutter guide with a gap interval of 2 mm Make a cut. Next, a cellophane adhesive tape (manufactured by Nichiban Co., Ltd., No. 405; 24 mm width) was attached to the cut surface of the grid and rubbed with an eraser for complete adhesion. Then, after performing the work of peeling the cellophane adhesive tape vertically from the photocurable acrylic layer surface of the laminated polyester film 5 times, the number of squares peeled off from the photocurable acrylic layer surface of the laminated polyester film was visually counted, From the formula, the adhesion between the photocurable acrylic layer and the substrate film was determined. In addition, what peeled partially among squares was also counted as the square which peeled, and was ranked according to the following references | standards.
Adhesiveness (%) = (1−number of peeled squares / 100) × 100
◎: 100% or photocuring acrylic layer material failure ○: 99-90%
Δ: 89-70%
×: 69 to 0%
(12)耐湿熱性
 得られた積層ポリエステルフィルムを、高温高湿槽中で80℃、95%RHの環境下48時間放置した。次いで、積層ポリエステルフィルムを取りだし、室温常湿で12時間放置した。その後、垂直にセロハン粘着テープを積層ポリエステルフィルムの光硬化型アクリル層面から引き剥がす作業を5回行う以外は、前記(11)と同様の方法で光硬化型アクリル層と基材フィルムの接密着性を求め、下記の基準でランク分けをした。
   ◎:100%、または、光硬化型アクリル層の材破
   ○:99~90%
   △:89~70%
   ×:69~0%
(12) Heat-and-moisture resistance The obtained laminated polyester film was allowed to stand in an environment of 80 ° C. and 95% RH for 48 hours in a high-temperature and high-humidity tank. Next, the laminated polyester film was taken out and allowed to stand at room temperature and humidity for 12 hours. Thereafter, the adhesiveness between the photocurable acrylic layer and the substrate film is the same as the above (11) except that the cellophane adhesive tape is peeled off from the photocurable acrylic layer surface of the laminated polyester film five times. Was ranked according to the following criteria.
◎: 100% or photocuring acrylic layer material failure ○: 99-90%
Δ: 89-70%
×: 69 to 0%
(13)干渉斑改善性(虹彩状色彩)
 得られた積層ポリエステルフィルムを10cm(フィルム幅方向)×15cm(フィルム長手方向)の面積に切り出し、試料フィルムを作成した。得られた試料フィルムのハードコート層とは反対面に、黒色光沢テープ(日東電工製、ビニルテープNo21;黒)を張り合わせた。この試料フィルムのハードコート面を上面にして3波長形昼白色(ナショナル パルック、F.L
15EX-N 15W)を光源として斜め上から目視でもっとも反射が強く見える位置関係(光源からの距離40~60cm、フィルム面の垂線に対して15~45°の角度)で観察した。
(13) Interference plaque improvement (iris color)
The obtained laminated polyester film was cut into an area of 10 cm (film width direction) × 15 cm (film longitudinal direction) to prepare a sample film. A black glossy tape (manufactured by Nitto Denko, vinyl tape No. 21; black) was attached to the surface of the obtained sample film opposite to the hard coat layer. Three-wavelength daylight white (National Parrook, FL)
15EX-N 15W) was used as a light source, and was observed in a positional relationship (distance 40 to 60 cm from the light source and an angle of 15 to 45 ° with respect to the perpendicular to the film surface) where reflection was most intense visually from above.
 目視で観察した結果を、下記の基準でランク分けをする。なお、観察は該評価に精通した5名で行ない、最も多いランクを評価ランクとする。仮に、2つのランクで同数となった場合には、3つに分かれたランクの中心を採用した。
   ○:ほとんど虹彩状色彩が見られない
   △:僅かに虹彩状色彩が観察される
   ×:はっきりとした虹彩状色彩が観察される
The results of visual observation are ranked according to the following criteria. The observation is performed by five people who are familiar with the evaluation, and the highest rank is the evaluation rank. If two ranks have the same number, the center of the rank divided into three is adopted.
○: Almost no iris color is seen △: Slightly iris color is observed ×: Clear iris color is observed
(ポリエステル樹脂の重合)
 攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量部、ジメチルイソフタレート184.5質量部、ジメチルー5-ナトリウムスルホイソフタレート14.8質量部、ジエチレングリコール233.5質量部、エチレングリコール136.6質量部、およびテトラーnーブチルチタネート0.2質量部を仕込み、160℃から220℃まで4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(A-1)を得た。得られた共重合ポリエステル樹脂(A-1)は、淡黄色透明であった。得られた共重合ポリエステル樹脂(A-1)の還元粘度を測定したところ,0.70dl/gであった。DSCによるガラス転移温度は40℃であった。
(Polyester resin polymerization)
In a stainless steel autoclave equipped with a stirrer, a thermometer, and a partial reflux condenser, 194.2 parts by weight of dimethyl terephthalate, 184.5 parts by weight of dimethyl isophthalate, 14.8 parts by weight of dimethyl-5-sodium sulfoisophthalate, 233.5 parts by mass of diethylene glycol, 136.6 parts by mass of ethylene glycol, and 0.2 parts by mass of tetra-n-butyl titanate were charged, and a transesterification reaction was performed from 160 ° C. to 220 ° C. over 4 hours. Next, the temperature was raised to 255 ° C., and the pressure of the reaction system was gradually reduced, followed by reaction for 1 hour 30 minutes under a reduced pressure of 30 Pa to obtain a copolyester resin (A-1). The obtained copolyester resin (A-1) was light yellow and transparent. The reduced viscosity of the obtained copolyester resin (A-1) was measured and found to be 0.70 dl / g. The glass transition temperature by DSC was 40 ° C.
 同様の方法で、別の組成の共重合ポリエステル樹脂(A-2)~(A-7)を得た。これらの共重合ポリエステル樹脂に対し、H-NMRで測定した組成(モル%比)及びその他特性を表1に示す。 In the same manner, copolymer polyester resins (A-2) to (A-7) having different compositions were obtained. Table 1 shows the composition (mole% ratio) and other characteristics of these copolyester resins measured by 1 H-NMR.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(ポリエステル水分散体の調整)
 攪拌機、温度計と還流装置を備えた反応器に、ポリエステル樹脂(A-1)30質量部、エチレングリコールn-ブチルエーテル15質量部を入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、水55質量部をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、液を攪拌しつつ室温まで冷却して、固形分30質量%の乳白色のポリエステル水分散体(B-1)を作製した。同様にポリエステル樹脂(A-1)の代わりにポリエステル樹脂(A-2)~(A-7)を使用して、水分散体を作製し、それぞれ水分散体(B-2)~(B-7)とした。
(Adjustment of polyester aqueous dispersion)
In a reactor equipped with a stirrer, a thermometer, and a reflux device, 30 parts by mass of polyester resin (A-1) and 15 parts by mass of ethylene glycol n-butyl ether were added and heated at 110 ° C. and stirred to dissolve the resin. After the resin was completely dissolved, 55 parts by mass of water was gradually added to the polyester solution while stirring. After the addition, the liquid was cooled to room temperature while stirring to prepare a milky white polyester aqueous dispersion (B-1) having a solid content of 30% by mass. Similarly, by using polyester resins (A-2) to (A-7) instead of polyester resin (A-1), water dispersions were prepared, and water dispersions (B-2) to (B- 7).
(水溶性カルボジイミド化合物の重合)
 温度計、窒素ガス導入管、還流冷却器、滴下ロート、および攪拌機を備えたフラスコにテトラメチルキシリレンジイソシアネート200質量部、カルボジイミド化触媒の3-メチル-1-フェニル-2-ホスホレン-1-オキシド4質量部を投入し、窒素雰囲気下、180℃において40時間撹拌し、イソシアネート末端テトラメチルキシリレンカルボジイミド(重合度=5)を得た。次いで、得られたカルボジイミド94.5g、ポリエチレングリコールモノメチルエーテル(分子量220)40.0gを100℃で24時間反応させた。これに水を50℃で徐々に加え、固形分40質量%の黄色透明な水溶性カルボジイミド化合物(C-1)を得た。カルボジイミド当量は246であった。
(Polymerization of water-soluble carbodiimide compounds)
A flask equipped with a thermometer, a nitrogen gas introduction tube, a reflux condenser, a dropping funnel, and a stirrer was mixed with 200 parts by mass of tetramethylxylylene diisocyanate and carbodiimidization catalyst 3-methyl-1-phenyl-2-phospholene-1-oxide 4 parts by mass was added and stirred at 180 ° C. for 40 hours under a nitrogen atmosphere to obtain isocyanate-terminated tetramethylxylylene carbodiimide (degree of polymerization = 5). Next, 94.5 g of the obtained carbodiimide and 40.0 g of polyethylene glycol monomethyl ether (molecular weight 220) were reacted at 100 ° C. for 24 hours. Water was gradually added thereto at 50 ° C. to obtain a yellow transparent water-soluble carbodiimide compound (C-1) having a solid content of 40% by mass. The carbodiimide equivalent was 246.
(水溶性カルボジイミド化合物の重合)
 温度計、窒素ガス導入管、還流冷却器、滴下ロート、および攪拌機を備えたフラスコにイソホロンジイソシアネート200質量部、カルボジイミド化触媒の3-メチル-1-フェニル-2-ホスホレン-1-オキシド4質量部を投入し、窒素雰囲気下、180℃において12時間撹拌し、イソシアネート末端イソホロンカルボジイミド(重合度=6)を得た。次いで、得られたカルボジイミド129.2g、ポリエチレングリコールモノメチルエーテル(分子量400)80gを100℃で24時間反応させた。これに水を50℃で徐々に加え、固形分40質量%の黄色透明な水溶性カルボジイミド化合物(C-2)を得た。カルボジイミド当量は349であった。
(Polymerization of water-soluble carbodiimide compounds)
In a flask equipped with a thermometer, a nitrogen gas inlet tube, a reflux condenser, a dropping funnel, and a stirrer, 200 parts by mass of isophorone diisocyanate and 4 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide as a carbodiimidization catalyst And stirred at 180 ° C. for 12 hours under a nitrogen atmosphere to obtain an isocyanate-terminated isophorone carbodiimide (degree of polymerization = 6). Next, 129.2 g of the obtained carbodiimide and 80 g of polyethylene glycol monomethyl ether (molecular weight 400) were reacted at 100 ° C. for 24 hours. Water was gradually added thereto at 50 ° C. to obtain a yellow transparent water-soluble carbodiimide compound (C-2) having a solid content of 40% by mass. The carbodiimide equivalent was 349.
(水溶性カルボジイミド化合物の重合)
 温度計、窒素ガス導入管、還流冷却器、滴下ロート、および攪拌機を備えたフラスコに4,4-ジシクロヘキシルメタンジイソシアネート200質量部、カルボジイミド化触媒の3-メチル-1-フェニル-2-ホスホレン-1-オキシド4質量部を投入し、窒素雰囲気下、180℃において10時間撹拌し、イソシアネート末端4,4-ジシクロヘキシルメタン(重合度=4)を得た。次いで、得られたカルボジイミド113.6g、ポリエチレングリコールモノメチルエーテル(分子量400)80gを100℃で24時間反応させた。これに水を50℃で徐々に加え、固形分40質量%の黄色透明な水溶性カルボジイミド化合物(C-3)を得た。カルボジイミド当量は484であった。
(Polymerization of water-soluble carbodiimide compounds)
In a flask equipped with a thermometer, a nitrogen gas inlet tube, a reflux condenser, a dropping funnel, and a stirrer, 200 parts by mass of 4,4-dicyclohexylmethane diisocyanate, 3-methyl-1-phenyl-2-phospholene-1 as a carbodiimidization catalyst -4 parts by mass of oxide was added and stirred at 180 ° C for 10 hours in a nitrogen atmosphere to obtain isocyanate-terminated 4,4-dicyclohexylmethane (degree of polymerization = 4). Next, 113.6 g of the obtained carbodiimide and 80 g of polyethylene glycol monomethyl ether (molecular weight 400) were reacted at 100 ° C. for 24 hours. Water was gradually added thereto at 50 ° C. to obtain a yellow transparent water-soluble carbodiimide compound (C-3) having a solid content of 40% by mass. The carbodiimide equivalent was 484.
(水分散性カルボジイミド化合物の重合)
温度計、窒素ガス導入管、還流冷却器、滴下ロート、および攪拌機を備えたフラスコにテトラメチルキシリレンジイソシアネート200質量部、カルボジイミド化触媒の3-メチル-1-フェニル-2-ホスホレン-1-オキシド4質量部を投入し、窒素雰囲気下、180℃において40時間撹拌し、イソシアネート末端テトラメチルキシリレンカルボジイミド(重合度=10)を得た。次いで、得られたカルボジイミド169.7g、ポリエチレングリコールモノメチルエーテル(分子量400)80gを100℃で24時間反応させた。これに水を50℃で徐々に加え、固形分40質量%の水分散性カルボジイミド化合物(C-4)を得た。カルボジイミド当量は250であった。
(Polymerization of water-dispersible carbodiimide compound)
A flask equipped with a thermometer, a nitrogen gas introduction tube, a reflux condenser, a dropping funnel, and a stirrer was mixed with 200 parts by mass of tetramethylxylylene diisocyanate and carbodiimidization catalyst 3-methyl-1-phenyl-2-phospholene-1-oxide 4 parts by mass was added and stirred at 180 ° C. for 40 hours in a nitrogen atmosphere to obtain isocyanate-terminated tetramethylxylylene carbodiimide (degree of polymerization = 10). Next, 169.7 g of the obtained carbodiimide and 80 g of polyethylene glycol monomethyl ether (molecular weight 400) were reacted at 100 ° C. for 24 hours. Water was gradually added thereto at 50 ° C. to obtain a water-dispersible carbodiimide compound (C-4) having a solid content of 40% by mass. The carbodiimide equivalent was 250.
(ポリカーボネートポリオールを構成成分とし、ポリオキシエチレン基を有するウレタン樹脂の重合)
 温度計、窒素ガス導入管および攪拌機を備えた反応器中で、窒素ガスを導入しながら、ヘキサメチレンジイソシアネート627.1質量部、50℃に加温した数平均分子量1000のメトキシポリエチレングリコール372.9質量部を仕込み、80℃で6時間反応させた。所定のイソシアネート基含有量に到達した後、スミス式薄膜蒸留器にて未反応のヘキサメチレンジイソシアネートを取り除き、ポリオキシエチレン基含有モノイソシアネート(D)を得た。このポリオキシエチレン鎖含有モノイソシアネート(D)の計算上の数平均分子量は、1168g/モルであった。
(Polymerization of polycarbonate resin and polyoxyethylene group urethane resin)
In a reactor equipped with a thermometer, a nitrogen gas inlet tube and a stirrer, while introducing nitrogen gas, 627.1 parts by mass of hexamethylene diisocyanate and methoxypolyethylene glycol 372.9 having a number average molecular weight of 1000 heated to 50 ° C. A mass part was charged and reacted at 80 ° C. for 6 hours. After reaching a predetermined isocyanate group content, unreacted hexamethylene diisocyanate was removed with a Smith-type thin film distiller to obtain a polyoxyethylene group-containing monoisocyanate (D). The calculated number average molecular weight of this polyoxyethylene chain-containing monoisocyanate (D) was 1168 g / mol.
 次いで、温度計、窒素ガス導入管、攪拌機を備えた反応器中で、室温下、窒素ガスを導入しながら、ジエタノールアミン83.9質量部を仕込んだ。冷却しながら、ポリオキシエチレン鎖含有モノイソシアネート(D)916.1質量部を添加し、60℃で3時間反応させた。赤外スペクトルにて尿素結合の生成を確認し、ポリオキシエチレン基含有ポリオール(D)を得た。 Next, 83.9 parts by mass of diethanolamine was charged while introducing nitrogen gas at room temperature in a reactor equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer. While cooling, 916.1 parts by mass of polyoxyethylene chain-containing monoisocyanate (D) was added and reacted at 60 ° C. for 3 hours. Formation of urea bonds was confirmed by infrared spectrum, and a polyoxyethylene group-containing polyol (D) was obtained.
 還流冷却管、窒素導入管、温度計、攪拌機を備えた4つ口フラスコ中に、ポリイソシアネートとして、1,3-シクロヘキサンビス(メチルイソシアネート)53.69質量部と、疎水性マクロポリオールとして、数平均分子量2000のポリカーボネートジオール88.6質量部と、ネオペンチルグリコール14.97質量部と、上記ポリオキシエチレン基含有ポリオール(D)52.87質量部と、有機溶媒として、アセトニトリル60質量部、N-メチルピロリドン30質量部とを仕込み、窒素雰囲気下で、反応液温度を75~78℃に調整して、反応触媒としてオクチル酸第1錫を0.06質量部加え、7時間で反応率99%以上まで反応させた。次いで、これを30℃まで冷却し、イソシアネート基末端プレポリマーを得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、イソシアネート基末端プレポリマーを添加して水分散した。その後、減圧下で、アセトニトリルおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂(D-1)を調製した。 In a four-necked flask equipped with a reflux condenser, a nitrogen inlet tube, a thermometer, and a stirrer, 53.69 parts by mass of 1,3-cyclohexanebis (methylisocyanate) as a polyisocyanate and several as a hydrophobic macropolyol Polycarbonate diol having an average molecular weight of 2000, 88.6 parts by mass, neopentyl glycol 14.97 parts by mass, the above polyoxyethylene group-containing polyol (D) 52.87 parts by mass, an organic solvent, 60 parts by mass of acetonitrile, N -30 parts by mass of methylpyrrolidone was charged, the reaction solution temperature was adjusted to 75 to 78 ° C under a nitrogen atmosphere, 0.06 parts by mass of stannous octylate was added as a reaction catalyst, and the reaction rate was 99 in 7 hours. It was made to react to above%. Subsequently, this was cooled to 30 degreeC and the isocyanate group terminal prepolymer was obtained. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and mixed with stirring at 2000 min −1 while adding an isocyanate group-terminated prepolymer to disperse in water. did. Thereafter, acetonitrile and a part of water were removed under reduced pressure to prepare a water-soluble polyurethane resin (D-1) having a solid content of 35%.
 (ポリカーボネートポリオールを構成成分とするウレタン樹脂の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、1,3-ビス(イソシアネートメチル)シクロヘキサン72.96質量部、ジメチロールプロピオン酸12.60質量部、ネオペンチルグリコール11.74質量部、数平均分子量2000のポリカーボネートジオール112.70質量部、及び溶剤としてアセトニトリル85.00質量部、N-メチルピロリドン5.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン9.03質量部を添加し、ポリウレタンプレポリマーD溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、イソシアネート基末端プレポリマーを添加して水分散した。その後、減圧下で、アセトニトリルおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂(D-2)を調製した。
(Polymerization of urethane resin containing polycarbonate polyol)
In a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 72.96 parts by mass of 1,3-bis (isocyanatomethyl) cyclohexane, 12.60 dimethylolpropionic acid A nitrogen atmosphere was charged with 11 parts by weight of neopentyl glycol, 112.70 parts by weight of polycarbonate diol having a number average molecular weight of 2000, 85.00 parts by weight of acetonitrile and 5.00 parts by weight of N-methylpyrrolidone as a solvent. Under stirring at 75 ° C. for 3 hours, it was confirmed that the reaction solution reached a predetermined amine equivalent. Next, after lowering the temperature of the reaction solution to 40 ° C., 9.03 parts by mass of triethylamine was added to obtain a polyurethane prepolymer D solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and mixed with stirring at 2000 min −1 while adding an isocyanate group-terminated prepolymer to disperse in water. did. Thereafter, acetonitrile and a part of water were removed under reduced pressure to prepare a water-soluble polyurethane resin (D-2) having a solid content of 35%.
 同様の方法で、別の組成の水溶性ポリウレタン樹脂(D-3)~(D-4)を得た。これらの水溶性ポリウレタン樹脂に対し、H-NMRで測定した組成(モル%比)及びその他特性を表2に示す。 In the same manner, water-soluble polyurethane resins (D-3) to (D-4) having different compositions were obtained. Table 2 shows the composition (mole% ratio) and other characteristics measured by 1 H-NMR for these water-soluble polyurethane resins.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例1
(1)塗布液の調整
 下記の塗剤を混合し、塗布液を作成した。ポリエステル樹脂は数平均分子量20000である。
水                        51.78質量%
イソプロパノール                 30.00質量%
ポリエステル水分散体(B-1)          13.16質量%
水溶性カルボジイミド化合物(C-1)               
4.23質量%
粒子                            0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                            0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                      0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 1
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created. The polyester resin has a number average molecular weight of 20000.
Water 51.78% by mass
Isopropanol 30.00% by mass
Polyester aqueous dispersion (B-1) 13.16% by mass
Water-soluble carbodiimide compound (C-1)
4.23% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
(2)易接着性ポリエステルフィルムの製造
 フィルム原料ポリマーとして、固有粘度が0.62dl/gで、かつ粒子を実質上含有していないPET樹脂ペレットを、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Production of easy-adhesive polyester film PET film pellets having an intrinsic viscosity of 0.62 dl / g and substantially free of particles as a film raw material polymer are dried at 135 ° C. for 6 hours under a reduced pressure of 133 Pa. did. Thereafter, the sheet was supplied to an extruder, melted and extruded into a sheet at about 280 ° C., and rapidly cooled and solidified on a rotating cooling metal roll maintained at a surface temperature of 20 ° C. to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 The unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
 次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/mになるように調整した。引続いてテンターで、120℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに230℃で10秒間3%の幅方向の弛緩処理を行ない、厚さ100μmの易接着性ポリエステルフィルムを得た。評価結果を表3に示す。 Subsequently, after apply | coating the said coating liquid on the single side | surface of PET film by the roll coat method, it dried at 80 degreeC for 20 second. The final coating amount (after biaxial stretching) was adjusted so that the coating amount after drying was 0.15 g / m 2 . Subsequently, the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, and heated at 230 ° C. for 0.5 seconds with the length in the width direction fixed, and further at 230 ° C. for 10 seconds. % Relaxation treatment in the width direction was performed to obtain an easily adhesive polyester film having a thickness of 100 μm. The evaluation results are shown in Table 3.
(3)積層ポリエステルフィルムの製造
 前記の易接着性ポリエステルフィルムの塗布層面に、下記組成のハードコート層形成用塗布液(C-1)を#10ワイヤーバーを用いて塗布し、70℃で1分間乾燥し、溶剤を除去した。次いで、ハードコート層を塗布したフィルムに高圧水銀灯を用いて300mJ/cmの紫外線を照射し、厚み5μmのハードコート層を有する積層ポリエステルフィルムを得た。
ハードコート層形成用塗布液
メチルエチルケトン                  39.00質量%
トルエン                       26.00質量%
ジペンタエリスリトールヘキサアクリレート       22.83質量%
(新中村化学製A-DPH)           
ポリエチレンジアクリレート              11.17質量%
(新中村化学製A-400)
光重合開始剤                      1.00質量%
(チバスペシャリティーケミカルズ社製イルガキュア184)
(3) Manufacture of laminated polyester film A coating liquid for forming a hard coat layer (C-1) having the following composition was applied to the coating layer surface of the above-mentioned easy-adhesive polyester film using a # 10 wire bar. Dry for minutes to remove the solvent. Next, the film coated with the hard coat layer was irradiated with 300 mJ / cm 2 ultraviolet rays using a high-pressure mercury lamp to obtain a laminated polyester film having a hard coat layer with a thickness of 5 μm.
Hard coat layer forming coating liquid methyl ethyl ketone 39.00% by mass
Toluene 26.00% by mass
Dipentaerythritol hexaacrylate 22.83 mass%
(Shin-Nakamura Chemical A-DPH)
Polyethylene diacrylate 11.17% by mass
(Shin-Nakamura Chemical A-400)
Photopolymerization initiator 1.00% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
比較例1
 ポリエステル水分散体を分子量8000のポリエステル水分散体(B-6)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Comparative Example 1
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester water dispersion (B-6) having a molecular weight of 8000.
比較例2
 ポリエステル水分散体を酸価50KOHmg/gのポリエステル水分散体(B-7)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Comparative Example 2
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester aqueous dispersion (B-7) having an acid value of 50 KOHmg / g.
比較例3
 水溶性カルボジイミド化合物(C-1)をエポキシ化合物(ナガセケムテックス社製 デナコールEX-521 固形分濃度100%)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Comparative Example 3
An easy-adhesive polyester film and a laminated polyester film were prepared in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to an epoxy compound (Denacol EX-521, solid content concentration: 100%, manufactured by Nagase ChemteX Corporation). Obtained.
比較例4
 水溶性カルボジイミド化合物(C-1)をメラミン化合物(DIC社製 ベッカミンM-3 固形分濃度60%)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Comparative Example 4
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to a melamine compound (Becamine M-3 solid content concentration: 60%, manufactured by DIC). .
実施例2
 塗布液を下記に変更したこと以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       51.31質量%
イソプロパノール                30.00質量%
ポリエステル水分散体(B-1)         15.04質量%
水溶性カルボジイミド化合物(C-1)         2.82質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 2
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the coating solution was changed to the following.
Water 51.31% by mass
Isopropanol 30.00% by mass
Polyester water dispersion (B-1) 15.04 mass%
Water-soluble carbodiimide compound (C-1) 2.82% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
実施例3
 塗布液を下記に変更したこと以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       53.19質量%
イソプロパノール                30.00質量%
ポリエステル水分散体(B-1)          7.52質量%
水溶性カルボジイミド化合物(C-1)         8.46質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 3
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the coating solution was changed to the following.
Water 53.19% by mass
Isopropanol 30.00% by mass
Polyester water dispersion (B-1) 7.52% by mass
Water-soluble carbodiimide compound (C-1) 8.46% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
実施例4
 塗布液を下記に変更したこと以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       53.66質量%
イソプロパノール                30.00質量%
ポリエステル水分散体(B-1)          5.64質量%
水溶性カルボジイミド化合物(C-1)         9.87質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 4
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the coating solution was changed to the following.
Water 53.66% by mass
Isopropanol 30.00% by mass
Polyester aqueous dispersion (B-1) 5.64% by mass
Water-soluble carbodiimide compound (C-1) 9.87% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
実施例5
 水溶性カルボジイミド化合物(C-1)を水溶性カルボジイミド化合物(C-2)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 5
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-2).
実施例6
 水溶性カルボジイミド化合物(C-1)を水溶性カルボジイミド化合物(C-3)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 6
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-3).
実施例7
 ポリエステル水分散体を分子量15000のポリエステル水分散体(B-2)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 7
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester aqueous dispersion (B-2) having a molecular weight of 15000.
実施例8
 ポリエステル水分散体を分子量23000のポリエステル水分散体(B-3)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 8
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester aqueous dispersion (B-3) having a molecular weight of 23,000.
実施例9
 ポリエステル水分散体を分子量46000のポリエステル水分散体(B-4)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 9
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester water dispersion was changed to a polyester water dispersion (B-4) having a molecular weight of 46000.
実施例10
 ポリエステル水分散体を分子量50000のポリエステル水分散体(B-5)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 10
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the polyester aqueous dispersion was changed to a polyester aqueous dispersion (B-5) having a molecular weight of 50000.
実施例11
 水溶性カルボジイミド化合物(C-1)を水分散性カルボジイミド化合物(C-4)に変更した以外は実施例1と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 11
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 1 except that the water-soluble carbodiimide compound (C-1) was changed to the water-dispersible carbodiimide compound (C-4).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例12
(1)塗布液の調整
 下記の塗剤を混合し、塗布液を作成した。
水                       53.66質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂(D-1)           11.28質量%
水溶性カルボジイミド化合物(C-1)         4.23質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 12
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created.
Water 53.66% by mass
Isopropanol 30.00% by mass
Polyurethane resin (D-1) 11.28% by mass
Water-soluble carbodiimide compound (C-1) 4.23 mass%
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
(2)易接着性ポリエステルフィルムの製造
 フィルム原料ポリマーとして、固有粘度が0.62dl/gで、かつ粒子を実質上含有していないPET樹脂ペレットを、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Production of easy-adhesive polyester film PET film pellets having an intrinsic viscosity of 0.62 dl / g and substantially free of particles as a film raw material polymer are dried at 135 ° C. for 6 hours under a reduced pressure of 133 Pa. did. Thereafter, the sheet was supplied to an extruder, melted and extruded into a sheet at about 280 ° C., and rapidly cooled and solidified on a rotating cooling metal roll maintained at a surface temperature of 20 ° C. to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 The unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
 次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/mになるように調整した。引続いてテンターで、120℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに230℃で10秒間3%の幅方向の弛緩処理を行ない、厚さ100μmの易接着性熱可塑性樹脂フィルムを得た。評価結果を表4に示す。 Subsequently, after apply | coating the said coating liquid on the single side | surface of PET film by the roll coat method, it dried at 80 degreeC for 20 second. The final coating amount (after biaxial stretching) was adjusted so that the coating amount after drying was 0.15 g / m 2 . Subsequently, the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, and heated at 230 ° C. for 0.5 seconds with the length in the width direction fixed, and further at 230 ° C. for 10 seconds. % Relaxation treatment in the width direction was performed to obtain an easily adhesive thermoplastic resin film having a thickness of 100 μm. The evaluation results are shown in Table 4.
比較例5
 ポリウレタン樹脂をポリエステルポリオールを構成成分とするポリウレタン樹脂(D-5)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Comparative Example 5
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin was changed to a polyurethane resin (D-5) containing polyester polyol as a constituent component.
比較例6
 ポリウレタン樹脂をポリエーテルポリオールを構成成分とするポリウレタン樹脂(D-6)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Comparative Example 6
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin was changed to a polyurethane resin (D-6) containing polyether polyol as a constituent component.
比較例7
 水溶性カルボジイミド化合物(C―1)をエポキシ化合物(ナガセケムテックス社製 デナコールEX-521 固形分濃度100%)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Comparative Example 7
An easily adhesive polyester film and a laminated polyester film were prepared in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to an epoxy compound (Denacol EX-521, solid content concentration 100%, manufactured by Nagase ChemteX Corporation). Obtained.
比較例8
 水溶性カルボジイミド化合物(C-1)をメラミン化合物(DIC社製 ベッカミンM-3 固形分濃度60%)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Comparative Example 8
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to a melamine compound (Becamine M-3 solid content concentration: 60% by DIC). .
実施例13
 塗布液を下記に変更したこと以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       53.46質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂(D-1)           12.89質量%
水溶性カルボジイミド化合物(C-1)         2.82質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 13
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the coating solution was changed to the following.
Water 53.46% by mass
Isopropanol 30.00% by mass
Polyurethane resin (D-1) 12.89% by mass
Water-soluble carbodiimide compound (C-1) 2.82% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
実施例14
 塗布液を下記に変更したこと以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       54.26質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂(D-1)            6.45質量%
水溶性カルボジイミド化合物(C-1)         8.46質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 14
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the coating solution was changed to the following.
Water 54.26% by mass
Isopropanol 30.00% by mass
Polyurethane resin (D-1) 6.45% by mass
Water-soluble carbodiimide compound (C-1) 8.46% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
実施例15
 塗布液を下記に変更したこと以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       54.47質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂(D-1)            4.83質量%
水溶性カルボジイミド化合物(C-1)         9.87質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 15
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the coating solution was changed to the following.
Water 54.47% by mass
Isopropanol 30.00% by mass
Polyurethane resin (D-1) 4.83% by mass
Water-soluble carbodiimide compound (C-1) 9.87% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
実施例16
 水溶性カルボジイミド化合物(C-1)を水溶性カルボジイミド化合物(C-2)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 16
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-2).
実施例17
 水溶性カルボジイミド化合物(C-1)を水溶性カルボジイミド化合物(C-3)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエテルフィルムを得た。
Example 17
An easy-adhesive polyester film and a laminated polyether film were obtained in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-3).
実施例18
 ポリウレタン樹脂(D-1)をポリウレタン樹脂(D-2)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 18
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin (D-1) was changed to the polyurethane resin (D-2).
実施例19
 ポリウレタン樹脂(D-1)をポリウレタン樹脂(D-3)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 19
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin (D-1) was changed to the polyurethane resin (D-3).
実施例20
 ポリウレタン樹脂(D-1)をポリウレタン樹脂(D-4)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 20
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the polyurethane resin (D-1) was changed to the polyurethane resin (D-4).
実施例21
 水溶性カルボジイミド化合物(C-1)を水分散性カルボジイミド化合物(C-4)に変更した以外は実施例12と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 21
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 12 except that the water-soluble carbodiimide compound (C-1) was changed to the water-dispersible carbodiimide compound (C-4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例22
(1)塗布液の調整
 下記の塗剤を混合し、塗布液を作成した。
水                       52.65質量%
イソプロパノール                30.00質量%
ポリエステル樹脂 (B-2)              7.15質量%
ポリウレタン樹脂(D-1)            6.95質量%
水溶性カルボジイミド化合物 (C-1)          1.35質量% 
粒子                          1.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.54質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
Example 22
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created.
Water 52.65% by mass
Isopropanol 30.00% by mass
Polyester resin (B-2) 7.15% by mass
Polyurethane resin (D-1) 6.95% by mass
Water-soluble carbodiimide compound (C-1) 1.35% by mass
1.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.54% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
(2)易接着性ポリエステルフィルムの製造
 フィルム原料ポリマーとして、固有粘度が0.62dl/gで、かつ粒子を実質上含有していないPET樹脂ペレットを、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Production of easy-adhesive polyester film PET film pellets having an intrinsic viscosity of 0.62 dl / g and substantially free of particles as a film raw material polymer are dried at 135 ° C. for 6 hours under a reduced pressure of 133 Pa. did. Thereafter, the sheet was supplied to an extruder, melted and extruded into a sheet at about 280 ° C., and rapidly cooled and solidified on a rotating cooling metal roll maintained at a surface temperature of 20 ° C. to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 The unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
 次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/mになるように調整した。引続いてテンターで、120℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに230℃で10秒間3%の幅方向の弛緩処理を行ない、厚さ100μmの易接着性ポリエステルフィルムを得た。評価結果を表5に示す。 Subsequently, after apply | coating the said coating liquid on the single side | surface of PET film by the roll coat method, it dried at 80 degreeC for 20 second. The final coating amount (after biaxial stretching) was adjusted so that the coating amount after drying was 0.15 g / m 2 . Subsequently, the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, and heated at 230 ° C. for 0.5 seconds with the length in the width direction fixed, and further at 230 ° C. for 10 seconds. % Relaxation treatment in the width direction was performed to obtain an easily adhesive polyester film having a thickness of 100 μm. The evaluation results are shown in Table 5.
(3)積層ポリエステルフィルムの製造
 清浄に保った厚さ1mmのSUS板上(SUS304)に、下記光硬化型アクリル系塗布液を約5gのせ、フィルム試料の塗布層面と光硬化型アクリル系塗布液が接するように重ね合わせ、フィルム試料の上から幅10cm、直径4cmの手動式荷重ゴムローラーで光硬化型アクリル系塗布液を引き延ばすように圧着した。次いで、フィルム面側から、高圧水銀灯を用いて800mJ/cmの紫外線を照射し、光硬化型アクリル樹脂を硬化させた。厚み20μmの光硬化型アクリル層を有するフィルム試料をSUS板から剥離し、積層ポリエステルフィルムを得た。
光硬化型アクリル系塗布液
光硬化型アクリル系樹脂               60.00質量%
(新中村化学製4G)
光硬化型アクリル系樹脂               20.00質量%
 (新中村化学製A-TMMT)
光硬化型アクリル系樹脂               10.00質量%
(新中村化学製A-BPE-4)           
光硬化型アクリル系樹脂                8.00質量%
(新中村化学製U-6HA)
光重合開始剤                     2.00質量%
(チバスペシャリティーケミカルズ社製イルガキュア184)
(3) Manufacture of a laminated polyester film About 5 g of the following photocurable acrylic coating solution is placed on a 1 mm thick SUS plate (SUS304) kept clean, and the coating layer surface of the film sample and the photocurable acrylic coating solution And a pressure-sensitive acrylic coating liquid was stretched by a manually loaded rubber roller having a width of 10 cm and a diameter of 4 cm from above the film sample. Subsequently, 800 mJ / cm < 2 > of ultraviolet rays were irradiated from the film surface side using the high pressure mercury lamp, and the photocurable acrylic resin was hardened. A film sample having a photocurable acrylic layer having a thickness of 20 μm was peeled from the SUS plate to obtain a laminated polyester film.
Photo-curing acrylic coating solution Photo-curing acrylic resin 60.00% by mass
(Shin Nakamura Chemical 4G)
Photo-curing acrylic resin 20.00% by mass
(Shin Nakamura Chemical A-TMMT)
Photo-curing acrylic resin 10.00% by mass
(Shin-Nakamura Chemical A-BPE-4)
Photo-curing acrylic resin 8.00% by mass
(Shin Nakamura Chemical U-6HA)
Photopolymerization initiator 2.00% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
実施例23
 ポリエステル水分散体を分子量20000のポリエステル水分散体(B-1)に変更した以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 23
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the polyester water dispersion was changed to a polyester water dispersion (B-1) having a molecular weight of 20000.
実施例24
 ポリエステル水分散体を分子量23000のポリエステル水分散体(B-3)に変更した以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 24
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the polyester water dispersion was changed to a polyester water dispersion (B-3) having a molecular weight of 23000.
実施例25
 塗布液を下記に変更したこと以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       52.54質量%
イソプロパノール                30.00質量%
ポリエステル樹脂 (B-2)              7.55質量%
ポリウレタン樹脂(D-1)            7.34質量%
水溶性カルボジイミド化合物 (C-1)          0.68質量% 
粒子                          1.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.54質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
Example 25
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following.
52.54% by mass of water
Isopropanol 30.00% by mass
Polyester resin (B-2) 7.55 mass%
Polyurethane resin (D-1) 7.34% by mass
Water-soluble carbodiimide compound (C-1) 0.68% by mass
1.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.54% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
実施例26
 塗布液を下記に変更したこと以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       52.87質量%
イソプロパノール                30.00質量%
ポリエステル樹脂 (B-2)              6.36質量%
ポリウレタン樹脂(D-1)            6.18質量%
水溶性カルボジイミド化合物 (C-1)          2.70質量% 
粒子                          1.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.54質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
Example 26
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following.
Water 52.87% by mass
Isopropanol 30.00% by mass
Polyester resin (B-2) 6.36 mass%
Polyurethane resin (D-1) 6.18% by mass
Water-soluble carbodiimide compound (C-1) 2.70% by mass
1.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.54% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
実施例27
 塗布液を下記に変更したこと以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       53.08質量%
イソプロパノール                30.00質量%
ポリエステル樹脂 (B-2)             5.56質量%
ポリウレタン樹脂(D-1)            5.41質量%
水溶性カルボジイミド化合物 (C-1)           4.05質量% 
粒子                          1.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.54質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
Example 27
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following.
Water 53.08 mass%
Isopropanol 30.00% by mass
Polyester resin (B-2) 5.56 mass%
Polyurethane resin (D-1) 5.41% by mass
Water-soluble carbodiimide compound (C-1) 4.05 mass%
1.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.54% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
実施例28
 塗布液を下記に変更したこと以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       52.56質量%
イソプロパノール                30.00質量%
ポリエステル樹脂 (B-2)            10.33質量%
ポリウレタン樹脂(D-1)            3.86質量%
水溶性カルボジイミド化合物 (C-1)          1.35質量% 
粒子                          1.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.54質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
Example 28
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following.
52.56% by mass of water
Isopropanol 30.00% by mass
Polyester resin (B-2) 10.33% by mass
Polyurethane resin (D-1) 3.86% by mass
Water-soluble carbodiimide compound (C-1) 1.35% by mass
1.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.54% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
実施例29
 塗布液を下記に変更したこと以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
水                       52.74質量%
イソプロパノール                30.00質量%
ポリエステル樹脂 (B-2)             3.97質量%
ポリウレタン樹脂(D-1)           10.04質量%
水溶性カルボジイミド化合物 (C-1)          1.35質量% 
粒子                          1.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.54質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
Example 29
An easy-adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the coating solution was changed to the following.
Water 52.74% by mass
Isopropanol 30.00% by mass
Polyester resin (B-2) 3.97 mass%
Polyurethane resin (D-1) 10.04% by mass
Water-soluble carbodiimide compound (C-1) 1.35% by mass
1.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.54% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
実施例30
 水溶性カルボジイミド化合物(C-1)を水溶性カルボジイミド化合物(C-3)に変更た以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 30
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the water-soluble carbodiimide compound (C-1) was changed to the water-soluble carbodiimide compound (C-3).
実施例31
 水溶性カルボジイミド化合物(C-1)を水分散性カルボジイミド化合物(C-4)に変更した以外は実施例22と同様にして易接着性ポリエステルフィルムおよび積層ポリエステルフィルムを得た。
Example 31
An easily adhesive polyester film and a laminated polyester film were obtained in the same manner as in Example 22 except that the water-soluble carbodiimide compound (C-1) was changed to the water-dispersible carbodiimide compound (C-4).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の易接着ポリエステルフィルムは、光学機能層との密着性及び高温高湿下での密着性(耐湿熱性)に優れるため、ディスプレイなどに主として用いられる、ハードコートフィルム及び該フィルムを用いた反射防止フィルム、光拡散シート、プリズム状レンズシート、近赤外線遮断フィルム、透明導電性フィルム、防眩フィルム、などの光学機能性フィルムの基材フィルムとして好適である。 The easily adhesive polyester film of the present invention is excellent in adhesion with an optical functional layer and adhesion under high temperature and high humidity (moisture and heat resistance), so that it is mainly used for displays and the like, and a reflection using the film. It is suitable as a base film for optical functional films such as prevention films, light diffusion sheets, prismatic lens sheets, near-infrared shielding films, transparent conductive films, and antiglare films.

Claims (9)

  1.  基材フィルムの少なくとも片面に塗布層を有する易接着性熱可塑性樹脂フィルムであり、
     前記塗布層が、
    (a)ポリカーボネートポリオールを構成成分とするウレタン樹脂および/もしくは数平均分子量15000以上であって実質的にカルボン酸基を有さないポリエステル樹脂と、
    (b)カルボジイミド化合物を含有する、
     易接着性熱可塑性樹脂フィルム。
    It is an easy-adhesive thermoplastic resin film having a coating layer on at least one side of the base film,
    The coating layer is
    (A) a urethane resin having a polycarbonate polyol as a constituent component and / or a polyester resin having a number average molecular weight of 15000 or more and having substantially no carboxylic acid group;
    (B) containing a carbodiimide compound,
    Easy-adhesive thermoplastic film.
  2.  前記ウレタン樹脂がポリオキシアルキレン基を有する、請求項1に記載の易接着性熱可塑性樹脂フィルム。 The easily adhesive thermoplastic resin film according to claim 1, wherein the urethane resin has a polyoxyalkylene group.
  3.  前記ポリエステル樹脂が下記式(1)で表されるジカルボン酸成分および/または下記式(2)で表されるジオール成分を含む、請求項1に記載の易接着性熱可塑性樹脂フィルム。
    (1)HOOC-(CH-COOH (式中、nは4≦n≦10の整数)
    (2)HO-(CH-OH (式中、nは4≦n≦10の整数)
    The easily adhesive thermoplastic resin film of Claim 1 in which the said polyester resin contains the dicarboxylic acid component represented by following formula (1) and / or the diol component represented by following formula (2).
    (1) HOOC— (CH 2 ) n —COOH (where n is an integer satisfying 4 ≦ n ≦ 10)
    (2) HO— (CH 2 ) n —OH (where n is an integer satisfying 4 ≦ n ≦ 10)
  4.  前記ポリエステル樹脂が酸成分としてナフタレンジカルボン酸を含む、請求項1に記載の易接着性熱可塑性樹脂フィルム。 The easily adhesive thermoplastic resin film according to claim 1, wherein the polyester resin contains naphthalenedicarboxylic acid as an acid component.
  5.  前記塗布層が、ポリカーボネートポリオールを構成成分とするウレタン樹脂とカルボジイミド化合物とを主成分とし、前記塗布層中にカルボジイミド基を0.5~3.5mmol/g含む、請求項1に記載の易接着性熱可塑性樹脂フィルム。 The easy adhesion according to claim 1, wherein the coating layer contains a urethane resin having a polycarbonate polyol as a constituent component and a carbodiimide compound as main components, and the coating layer contains a carbodiimide group of 0.5 to 3.5 mmol / g. Thermoplastic resin film.
  6.  前記塗布層が、数平均分子量15000以上であって実質的にカルボン酸基を有さないポリエステル樹脂とカルボジイミト化合物とを主成分とし、塗布層中にカルボジイミド基を0.3~3.3mmol/g含む、請求項1に記載の易接着性熱可塑性樹脂フィルム。 The coating layer is composed mainly of a polyester resin having a number average molecular weight of 15000 or more and substantially having no carboxylic acid group and a carbodiimito compound, and carbodiimide groups are contained in the coating layer in an amount of 0.3 to 3.3 mmol / g. The easy-adhesive thermoplastic resin film according to claim 1.
  7.  前記塗布層が、ポリカーボネートポリオールを構成成分とするウレタン樹脂、数平均分子量15000以上であって実質的にカルボン酸基を有さないポリエステル樹脂、およびカルボジイミド化合物を主成分とし、塗布層中にカルボジイミド基を0.1~2.0mmol/g含む、請求項1に記載の易接着性熱可塑性樹脂フィルム。 The coating layer is mainly composed of a urethane resin containing polycarbonate polyol as a constituent component, a polyester resin having a number average molecular weight of 15000 or more and substantially having no carboxylic acid group, and a carbodiimide group in the coating layer. The easy-adhesive thermoplastic resin film according to claim 1, comprising 0.1 to 2.0 mmol / g.
  8.  前記カルボジイミド化合物が水溶性であり、ヘイズが2.5%以下である、請求項1に記載の易接着性ポリエステルフィルム。 The easily adhesive polyester film according to claim 1, wherein the carbodiimide compound is water-soluble and has a haze of 2.5% or less.
  9.  請求項1~8のいずれかに記載する易接着性熱可塑性樹脂フィルムの前記塗布層に、ハードコート層、光拡散層、プリズム状レンズ層、電磁波吸収層、近赤外線遮断層、透明導電層から選択される少なくとも1層の機能層を積層してなる積層熱可塑性樹脂フィルム。 A hard coat layer, a light diffusion layer, a prismatic lens layer, an electromagnetic wave absorption layer, a near-infrared shielding layer, and a transparent conductive layer are applied to the coating layer of the easily adhesive thermoplastic resin film according to any one of claims 1 to 8. A laminated thermoplastic resin film obtained by laminating at least one selected functional layer.
PCT/JP2010/071434 2009-12-04 2010-12-01 Highly adhesive thermoplastic resin film WO2011068112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127015500A KR101404875B1 (en) 2009-12-04 2010-12-01 Highly adhesive thermoplastic resin film
CN201080054922.0A CN102648094B (en) 2009-12-04 2010-12-01 Highly adhesive thermoplastic resin film

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2009-276654 2009-12-04
JP2009276654 2009-12-04
JP2009277440 2009-12-07
JP2009-277440 2009-12-07
JP2009297970 2009-12-28
JP2009297971 2009-12-28
JP2009297967 2009-12-28
JP2009-297970 2009-12-28
JP2009-297972 2009-12-28
JP2009-297971 2009-12-28
JP2009297972 2009-12-28
JP2009-297967 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011068112A1 true WO2011068112A1 (en) 2011-06-09

Family

ID=44114958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071434 WO2011068112A1 (en) 2009-12-04 2010-12-01 Highly adhesive thermoplastic resin film

Country Status (3)

Country Link
KR (1) KR101404875B1 (en)
CN (1) CN102648094B (en)
WO (1) WO2011068112A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126066A (en) * 2009-12-16 2011-06-30 Toyobo Co Ltd Easy adhesive polyester film
JP2014168875A (en) * 2013-03-02 2014-09-18 Mitsubishi Plastics Inc Laminated polyester film
JP2015040267A (en) * 2013-08-23 2015-03-02 三菱樹脂株式会社 Laminated polyester film
WO2015147013A1 (en) * 2014-03-26 2015-10-01 日本ゼオン株式会社 Multilayered film and method for manufacturing same
WO2016080256A1 (en) * 2014-11-21 2016-05-26 東洋紡株式会社 Laminated polyester film containing cavities
JPWO2016114367A1 (en) * 2015-01-15 2017-07-06 富士フイルム株式会社 Lenticular sheet, manufacturing method thereof, and lenticular display
WO2022030123A1 (en) * 2020-08-06 2022-02-10 東洋紡株式会社 Layered polyester film
EP3950348A4 (en) * 2019-03-26 2023-01-11 Toyobo Co., Ltd. Laminated polyester film
EP3925776A4 (en) * 2019-02-13 2023-01-11 Toyobo Co., Ltd. Laminated polyester film

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628468B1 (en) * 2014-08-05 2016-06-08 이명구 Method for composition comprising carbodiimide-polyurethane dispersion resin
TWI661021B (en) * 2014-11-06 2019-06-01 日商大倉工業股份有限公司 Easy adhesive composition, optical film using the same, and manufacturing method thereof
WO2016088633A1 (en) * 2014-12-04 2016-06-09 大倉工業株式会社 Highly-adhesive composition, optical film using same, and production method therefor
CN107835845B (en) * 2015-07-15 2021-06-25 Dic株式会社 Adhesive composition and surface protective film
CN108349228B (en) * 2015-11-13 2019-03-26 东洋纺株式会社 Laminated polyester film
JP6473705B2 (en) * 2016-03-10 2019-02-20 富士フイルム株式会社 Gas barrier film and wavelength conversion film
KR102352256B1 (en) * 2017-09-22 2022-01-17 도요보 가부시키가이샤 Easily Adhesive Polyester Film
JP7316755B2 (en) * 2018-02-05 2023-07-28 藤森工業株式会社 Electrode lead wire member and battery
JP7138459B2 (en) * 2018-03-20 2022-09-16 株式会社きもと Functional material
JP7042661B2 (en) * 2018-03-20 2022-03-28 株式会社きもと Functional member
JP6991929B2 (en) * 2018-05-31 2022-01-13 ダイニック株式会社 Transparent conductive sheet
JP7259559B2 (en) * 2019-06-03 2023-04-18 東洋紡株式会社 metallized polyester film
CN114616284B (en) * 2019-10-29 2024-03-19 东洋纺株式会社 Laminated polyester film
CN111285975B (en) * 2020-03-18 2021-06-08 华南理工大学 Polyurethane photosensitive resin for clinical customized medical instruments and preparation and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332706A (en) * 1995-06-06 1996-12-17 Teijin Ltd Layered film
JP2001207111A (en) * 2000-01-28 2001-07-31 Seikoh Chem Co Ltd Coating agent for molded product of polyolefinbased resin and molded product coated therewith
WO2007032295A1 (en) * 2005-09-12 2007-03-22 Toray Industries, Inc. Laminate film
JP2008255266A (en) * 2007-04-06 2008-10-23 Toppan Printing Co Ltd Primer composition and gas barrier film using the same
JP2009234009A (en) * 2008-03-27 2009-10-15 Toray Ind Inc Laminated film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203559B (en) * 2005-06-21 2012-09-12 日清纺织株式会社 Filler for substrate and composition for use as material for inorganic/organic composite substrate formation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332706A (en) * 1995-06-06 1996-12-17 Teijin Ltd Layered film
JP2001207111A (en) * 2000-01-28 2001-07-31 Seikoh Chem Co Ltd Coating agent for molded product of polyolefinbased resin and molded product coated therewith
WO2007032295A1 (en) * 2005-09-12 2007-03-22 Toray Industries, Inc. Laminate film
JP2008255266A (en) * 2007-04-06 2008-10-23 Toppan Printing Co Ltd Primer composition and gas barrier film using the same
JP2009234009A (en) * 2008-03-27 2009-10-15 Toray Ind Inc Laminated film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126066A (en) * 2009-12-16 2011-06-30 Toyobo Co Ltd Easy adhesive polyester film
JP2014168875A (en) * 2013-03-02 2014-09-18 Mitsubishi Plastics Inc Laminated polyester film
JP2015040267A (en) * 2013-08-23 2015-03-02 三菱樹脂株式会社 Laminated polyester film
WO2015147013A1 (en) * 2014-03-26 2015-10-01 日本ゼオン株式会社 Multilayered film and method for manufacturing same
JPWO2015147013A1 (en) * 2014-03-26 2017-04-13 日本ゼオン株式会社 Multi-layer film and method for producing the same
TWI664081B (en) * 2014-11-21 2019-07-01 Toyobo Co., Ltd. Laminated polyester film with voids
WO2016080256A1 (en) * 2014-11-21 2016-05-26 東洋紡株式会社 Laminated polyester film containing cavities
JPWO2016114367A1 (en) * 2015-01-15 2017-07-06 富士フイルム株式会社 Lenticular sheet, manufacturing method thereof, and lenticular display
EP3246733A4 (en) * 2015-01-15 2018-04-04 Fujifilm Corporation Lenticular sheet and method for manufacturing same, and lenticular display element
US10408977B2 (en) 2015-01-15 2019-09-10 Fujifilm Corporation Lenticular sheet, method for manufacturing same, and lenticular display body
EP3925776A4 (en) * 2019-02-13 2023-01-11 Toyobo Co., Ltd. Laminated polyester film
EP3950348A4 (en) * 2019-03-26 2023-01-11 Toyobo Co., Ltd. Laminated polyester film
WO2022030123A1 (en) * 2020-08-06 2022-02-10 東洋紡株式会社 Layered polyester film

Also Published As

Publication number Publication date
CN102648094B (en) 2015-04-08
KR101404875B1 (en) 2014-06-09
KR20120091370A (en) 2012-08-17
CN102648094A (en) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2011068112A1 (en) Highly adhesive thermoplastic resin film
JP4780245B2 (en) Easy-adhesive thermoplastic film
JP4770971B2 (en) Easy-adhesive polyester film for optics
JP4457322B2 (en) Easy-adhesive polyester film for optics
JP4623239B1 (en) Laminated film
JP2011153290A (en) Highly adhesive thermoplastic resin film
JP5835405B2 (en) Easy-adhesive polyester film
JP4771022B2 (en) Easy-adhesive polyester film for optics
JP5621642B2 (en) Easy-adhesive polyester film
JP4771021B2 (en) Easy-adhesive polyester film for optics
JP5493811B2 (en) Easy-adhesive polyester film
JP5544884B2 (en) Easy-adhesive thermoplastic film
JP5434605B2 (en) Easy-adhesive white polyester film
JP5493810B2 (en) Easy-adhesive polyester film
JP5304635B2 (en) Easy-adhesive thermoplastic film
JP2012250498A (en) Easily adhesive thermoplastic resin film
JP5720205B2 (en) Easy-adhesive thermoplastic film
JP2011152783A (en) Easily bondable thermoplastic resin film
JP2011153289A (en) Easily adhesive thermoplastic resin film
JP4771020B2 (en) Easy-adhesive polyester film for optics
JP5544861B2 (en) Easy-adhesive thermoplastic film
JP2011136551A (en) Easily adhesive polyester film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054922.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015500

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10834562

Country of ref document: EP

Kind code of ref document: A1