WO2011067440A2 - Bacterial strain cect7624, use of said strain in order to enhance the growth and water stress tolerance of a plant and xeroprotectant compound produced from same - Google Patents

Bacterial strain cect7624, use of said strain in order to enhance the growth and water stress tolerance of a plant and xeroprotectant compound produced from same Download PDF

Info

Publication number
WO2011067440A2
WO2011067440A2 PCT/ES2010/000516 ES2010000516W WO2011067440A2 WO 2011067440 A2 WO2011067440 A2 WO 2011067440A2 ES 2010000516 W ES2010000516 W ES 2010000516W WO 2011067440 A2 WO2011067440 A2 WO 2011067440A2
Authority
WO
WIPO (PCT)
Prior art keywords
plant
microorganism
plants
composition
capsicum
Prior art date
Application number
PCT/ES2010/000516
Other languages
Spanish (es)
French (fr)
Other versions
WO2011067440A3 (en
Inventor
Maximino Manzanera Ruiz
Juan Ignacio VÍLCHEZ MORILLAS
Original Assignee
Universidad De Granada
GONZÁLEZ LÓPEZ, Jesús Juan
NARVÁEZ REINALDO, Juan Jesús
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada, GONZÁLEZ LÓPEZ, Jesús Juan, NARVÁEZ REINALDO, Juan Jesús filed Critical Universidad De Granada
Priority to BR112012013505A priority Critical patent/BR112012013505A2/en
Publication of WO2011067440A2 publication Critical patent/WO2011067440A2/en
Publication of WO2011067440A3 publication Critical patent/WO2011067440A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/04Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • Bacterial strain CECT7624 use of said strain to increase growth and tolerance to water stress of a plant and
  • the present invention relates to a microorganism of the bacterial species Microbacterium sp. with access number CECT7624. Also the present invention relates to the use of said microorganism or a population thereof to increase the tolerance to water stress of a plant or to increase the growth of a plant under optimum conditions of water content of said plant. Furthermore, the present invention relates to the use of said microorganism or a population thereof for the production of an xeroprotective composition, wherein said composition comprises trehalose, oxoglucuronic acid, lactate, glutamate, glutamine and pyruvate, or further comprises fucose. The present invention also relates to the method for increasing the water stress tolerance of a plant or for producing the xeroproctector composition of the present invention.
  • the selection of phenotypes has shown good results in obtaining better varieties, however, the role of biotechnology is especially important since the use of microorganisms to plant roots has led to great progress in understanding the effect of the microorganisms of the rhizosphere in the metabolic and genetic regulation of plants such as, for example, the use of Agrobacterium to obtain transgenic plants, or the use of nitrogen fixing bacteria associated with leguminous plants.
  • the rhizosphere is one of the main sources of organic matter in soils. This rhizosphere stimulates microbial activity.
  • the water potential of the rhizosphere is a key aspect that determines the bioavailability of water, oxygen and substrates of plants and microorganisms. Exudates of certain microorganisms can protect bacteria from water stress. In Mediterranean agriculture, water stress is one of the main factors that limit crop production.
  • mycorrhizal fungi colonize the roots of most plants. These fungi are obligate symbionts and receive carbon compounds in the form of energy from host plants; during this association they transfer nutrients, usually phosphorus and zinc (Ryan and Angus, 2003. Plant and Soil, 250 (2): 225-239). Mycorrhizal fungi significantly increase the surface area of absorption of the radical system of plants, improving their ability to absorb water and nutrients, maintain soil structure and increase resistance to stresses and diseases. There is evidence that indicates the influence of these fungi on the water relations of the host plants and the increase in drought resistance of them.
  • non-pathogenic bacterial strains are capable of stimulating the defensive metabolism of the plant in such a way that when there is a pathogen attack, the plants are protected and can survive with a much lower mortality than if not were treated with the bacteria.
  • the effect is very specific, and it is only effective against certain pathogens, while in others, the effect is much broader, even being effective against abiotic factors such as saline or water stress.
  • the application of bacteria in certain crops is a biotechnological alternative that respects the environment since the bacteria would produce a double beneficial effect, on the one hand, it stimulates plant defenses against a pathogen, thus reducing the use of substances chemical, and on the other, it allows to obtain better yields under certain stress conditions.
  • the selection of said microorganism is a complex aspect that requires the testing and characterization of numerous species and strains to obtain a microorganism capable of producing significant benefits to plants.
  • amorphous crystals The formation and use of amorphous crystals is well documented (Manzanera et al., 2002. Appl Environ Microbiol, 68: 4328-4333). Some of the preservatives that form these crystals are suitable for this type of preservation and include non-reducing carbohydrates such as trehalose, hydroxyectoin, maltitol, lactitol (4-OaD-glucopyranosyl-D-glucitol), palatinit [GPS mixture (aD -glucopyranosyl-1-6-sorbitol) and GPM (aD-glucopyranosyl-1-6-mannitol)] and its individual components GPS and GPM.
  • non-reducing carbohydrates such as trehalose, hydroxyectoin, maltitol, lactitol (4-OaD-glucopyranosyl-D-glucitol)
  • palatinit [GPS mixture (aD -glucopyranosyl-1-6
  • Non-reducing glycosides of polyhydroxy compounds can be neotrehalose, laconeotrehalose, galactosyl trehalose, sucrose, lactosecarose, raffinose, etc.
  • Other amorphous crystal-forming preservatives include amino acids such as hydroxyectoin.
  • the presence of water in the dry state is generally less than 0.2 g / g dry cell weight in most cryptobionts. These water levels are sufficient for these invertebrate organisms or microorganisms to resist extreme dehydration, high temperatures, ionizing radiation or, in some species of tardigrades, pressures of up to 600 MPa. It is known that biofilms (subaerial biofilms), formed by bacteria of the genus Rhodococcus sp among others, are capable of producing osmoprotective compounds, that is, polymeric extracellular substances (EPS) (Gorbushina, 2007. Environmental Microbiology, 9 (7): 1613 -1631). Likewise, LeBlanc (2008) (LeBlanc, 2008.
  • Rhodococcus jostii RHA1 an actinomycete with favorable metabolic capacities for bioremediation of contaminated soils, capable of secreting the ectoin and trehalose osmoprotectors.
  • the present invention relates to a microorganism of the bacterial species Microbacterium sp. with access number CECT7624. Also the present invention relates to the use of said microorganism or a population thereof to increase the tolerance to water stress of a plant or to increase the growth of a plant under optimum conditions of water content of said plant. Furthermore, the present invention relates to the use of said microorganism or a population thereof for the production of an xeroprotective composition, wherein said composition comprises trehalose, oxoglucuronic acid, lactate, glutamate, glutamine and pyruvate, or further comprises fucose. The present invention also relates to the method for increasing the water stress tolerance of a plant or for producing the xeroproctector composition of the present invention.
  • the ability to increase the tolerance to water stress of a plant is of importance in the agricultural sector to obtain fruits in conditions of low water content in soils or other conditions that limit the water absorption capacity of said plants.
  • tools are provided to prevent or combat the negative effects suffered by plants subjected to water stress conditions.
  • both the content and the proportion of various xeroprotective compositions obtained from cultures of strain CECT7624 are offered in the present invention.
  • one aspect of the present invention relates to a microorganism of the bacterial species Microbacter ⁇ um sp. with access number CECT7624. Said microorganism is tolerant to desiccation. This strain has been deposited in the Spanish collection of type crops (CECT) on November 10, 2009 and was assigned the deposit number CECT7624. The address of said International Deposit Authority is: University of Valencia / Research building / Campus of Burjassot / 46100 Burjassot (Valencia).
  • strain CECT7624 of the present invention is: Kingdom: Bacteria I Phylum: Actinobacteria I Order: Actinomycetales I Family: Micrococcineae I Genus: Microbacter ⁇ um.
  • the substrates that the CECT7624 bacteria oxidize or ferment are: Dextrin, glycogen, manan, tween 40, tween 80, L-arabinose, D-arbulin, D-cellobiose, D-fructose, L-fucose, D-galactose, D acid -galacturonic, gentiobious, D-gluconic acid, ⁇ -D-glucose, maltose, maltotriose, D-mannitol, D-mannose, D-melezitose, 3-methyl glucose, palatinous, D-psychosa, salicin, sedoheptulose, D-sorbitol , sucrose, D-trehalose, turanosa, xylose, acetic acid, ⁇ -hydroxybutyric acid, -ketoglutaric acid, L-lactic acid, methyl pyruvate, succinamic acid, L-alaninamide, L-alan
  • the maximum temperature tolerated for the growth of this strain was between 35 ° C and 40 ° C.
  • the minimum temperature to detect growth was between 15 ° C and 20 ° C, while its optimum growth temperature was around 35 ° C. It was unable to grow at pH equal to or greater than 13 although if it proliferated at pH 12.
  • the minimum pH tolerated for the growth of this strain was between pH 5 and pH 7, considering around 12 as the optimum pH for the growth of this strain.
  • the present invention also relates to a microorganism derived from the microorganism deposited with accession number CECT7624.
  • the derived microorganism can be produced intentionally, by mutagenic methods known in the state of the art such as, for example, the growth of said original microorganism on exposure with known agents capable of forcing mutagenesis.
  • Another aspect of the present invention relates to a bacterial population comprising the microorganism deposited with access number CECT7624.
  • the bacterial population can be formed by other strains of microorganisms of any species.
  • the bacterial population is a set of microorganism cells where at least one cell of said microorganism is deposited with access number CECT7624, at any stage of the development state and at any stage of growth, seasonal or stationary, regardless of the morphology that present, in the form of coconut, bacillus or intermediate morphologies of the above.
  • microorganism or the bacterial population may be referred to as the "microorganism of the present invention” or the “microorganism of the invention”.
  • Another aspect of the present invention relates to the use of the microorganism of the present invention to increase the tolerance to water stress of a plant, with respect to a control.
  • the control refers to a plant of the same species, subspecies or variety as the previous plant, which has not been exposed to said microorganism or to a plant that has been exposed to the rhizobacterium P. putida KT2440.
  • water stress as understood in the present invention refers to the reduction of water content in plant tissues that causes alterations in metabolic processes, causing negative effects on plant growth and development. The magnitude of these alterations in the metabolic processes involved depends on the species, moment of the development cycle of the affected plant, the intensity and duration of the situation that causes such stress, among others factors.
  • the techniques for estimating water stress in a plant are known by the person skilled in the art, for example, but not limited to, measure of leaf expansion, measure of stomatic closure, measure of leaf death.
  • Water stress can be caused by various causes, including saline stress, since it is known that the concentration of soluble salts in the soil raises the osmotic pressure of the solution of said soil. Since water tends to pass from less concentrated to more concentrated solutions, equalizing the osmotic pressures of both, when the saline concentration of the soil solution is higher than that of the plant cells, the water will tend to leave the latter towards soil solution. Therefore, in saline environments, although there is sufficient available water, the plant suffers water stress.
  • the characteristics of a plant that can increase its tolerance to water stress can be, among others, but if limited, the maintenance of tissue turgidity by increasing the water retention index or, maintaining or increasing the absorption of Water.
  • Another preferred embodiment of the present invention relates to the use of the microorganism of the invention to increase the amount of water absorbed (recovered) by a plant, with respect to a control, under conditions of water stress.
  • the amount of water recovered by a plant is measured by means of (see in embodiments of the invention):
  • the measure of the weight of the totally turgid plant. The measure of water recovery potential or water recovery index, which consists in calculating the difference between the water recovered by the plant and its fresh weight. - The measure of the relative water content. This data indicates the relationship between the water present in the plants at the time of extraction with respect to the total water. In this way, the maximum value of 1 would be given in the theoretical situation in which, due to its good water state, the plant could not or would not need to recover water in its totally turgid state with respect to the fresh weight.
  • Another preferred embodiment of the present invention relates to the use of the microorganism of the invention to increase the water retention rate of a plant, with respect to a control, under conditions of water stress.
  • the water retention rate in a plant is the difference between the fresh weight and the dry weight of that plant.
  • a preferred embodiment of the present invention relates to the use of the microorganism of the invention to increase the biomass of a plant, with respect to a control, under conditions of water stress.
  • the increase in biomass is determined primarily by calculating the dry weight of the plant, as well as by measuring the length of the stem and roots under conditions of water stress.
  • the amount of water recovered by a plant, the water retention index or the increase of the biomass of said plant can be determined by means of the measurement of other parameters different from those specified above and in the section of examples of embodiment .
  • Another aspect of the present invention relates to the use of the microorganism of the present invention to increase the growth of a plant with respect to a control. This aspect of the invention relates to conditions in which the plant does not experience water stress, that is, in optimal water conditions for the development and growth of said plant.
  • a preferred embodiment of the present invention relates to the use of the microorganism of the invention to increase the growth of a plant with respect to a control, where the increase in growth refers to the increase in the length of the stem or the increase in the length of the plant. root of said plant.
  • the term "plant” encompasses each part of it, which can be preserved or cultivated in isolation or in combination, as well as the germplasm.
  • the germplasm is defined by that biological material that contains the intraspecific genetic variability or to the genetic materials that can perpetuate a species or a population of an organism. Thus, germplasm is the seed, tissue of any part of the plant or plants established in ex situ collections, without excluding any other material that falls within this definition.
  • the plant of the present invention can be, for example, but not limited to, any plant intended for human or animal consumption, plants whose fruit is of interest for its fresh or industrial processed consumption, plants that are used in the generation of beneficial products for human health, such as drugs (biofarms), plants that are used for the generation of biomass to manufacture biodiesel, plants used in the bioremediation of different types of substrates (phytoremediation).
  • the plant can be selected from the list that includes, but is not limited to, the genus Solanum, Cucumis, Citrullus, Cuc ⁇ rbita, Capsicum, Brasica, Nicotiana, Citrullus or Lactuca.
  • Another preferred embodiment relates to the use of the microorganism of the invention to increase the tolerance to water stress of a plant with respect to a control, or to the use of the microorganism of the invention to increase the growth of a plant with respect to a control, where the plant It is of the genus Capsicum.
  • the plant species of the genus Capsicum is selected from the list comprising, but not limited to, Capsicum angulosum, Capsicum annuum, Capsicum pendulum, Capsicum minimum, Capsicum baccatum, Capsicum abbreviatum, Capsicum anomalum, Capsicum breviflorum, Capsicum bu Forum, Capsicum brasilianum, Capsicum brasilianum, Capsicum brasilianum campylopodium, Capsicum cardenasii, Capsicum chacoense, Capsicum ch ⁇ nense, Capsicum chlorocladium, Capsicum ciliatum, Capsicum coccineum, Capsicum cordiforme, Capsicum cornutum, Capsicum dimorphum, Capsicum dusenii, Capsicum exile, Capsicum eximicumum Capsicumum capsicumum capsicum capsicum caps
  • the plant is of the species Capsicum annuum.
  • Another aspect of the present invention relates to a method for increasing the tolerance to water stress of a plant with respect to a control, which comprises inoculating the microorganism of the invention to a plant cell, any part of a plant or to a seed. This method increases the growth of a plant that is not in conditions of water stress, with respect to control.
  • inocular refers to introducing the microorganism of the invention into a plant by any technique known in the state of the art, such as, but not limited to, through a solution in hydroponics, through a solution applied to the soil, through the application of the microorganism of the invention by spraying any aerial part of the plant, by germinating the seeds of the plant in the presence of said microorganism, by cultivating plant material in vitro in contact with the microorganism of the invention or by microinjection of the microorganism of the invention in at least one plant cell or protoplast.
  • a preferred embodiment of the present invention relates to the method described in the preceding paragraphs, which comprises contacting the microorganism of the invention with at least one root of said plant.
  • a more preferred embodiment refers to the method where said microorganism or bacterial population is contacted with at least one root by means of an aqueous solution.
  • a further aspect of the present invention relates to the xeroprotective composition produced by the microorganism of the invention.
  • xeroprotective composition refers to a composition that prevents the adverse effects of water stress, that decreases the effects of said water stress on a plant or that promotes the growth of a plant.
  • a preferred embodiment of the present invention relates to the xeroprotective composition produced by the microorganism of the invention, or to a synthetic xeroprotective composition, comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine, fucose and pyruvate.
  • a more preferred embodiment of the present invention relates to the xeroprotective composition produced by the microorganism of the invention, or to a synthetic xeroprotective composition, comprising a ratio of between 0.5 and 1.5 trehalose: 0.15 and 0, 45 of oxoglucuronic acid: 0.7 and 1, 7 of lactate: 0.1 and 0.2 of glutamate: 0.15 and 0.45 of glutamine: 1, 2 and 3.4 of fucose: 0.15 and 0 , 3 pyruvate.
  • An even more preferred embodiment refers to the xeroprotective composition where the ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( fucose) :( pyruvate), is (0.7 to 1, 3): (0.25 to 0.35): (0.9 to 1, 6): (0.12 to 0.18): (0.2 to 0.4): (1, 8 to 2.8): (0.2 to 0.25).
  • the xeroprotective composition has a ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( fucose): (pyruvate) of (1) :( 0.31) :( 1, 18) :( 0.14) :( 0.28) :( 2.26) :( 0.23), respectively.
  • Another preferred embodiment of the present invention relates to the xeroprotective composition produced by the microorganism of the invention, or to a synthetic xeroprotective composition, comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine and pyruvate.
  • a more preferred embodiment of the present invention relates to the xeroprotective composition produced by the microorganism of the invention, or to a synthetic xeroprotective composition, comprising a ratio of between 0.5 and 1.5 trehalose: 0.03 and 0, 09 of oxoglucuronic acid: 0.3 and 0.9 of lactate: 0.05 and 0.15 of glutamate: 0.05 and 0.15 of glutamine: 0.1 and 0.3 of pyruvate. That is, a ratio (trehalose) :( acid
  • oxoglucuronic ( lactate) :( glutamate) :( glutamine) :( pyruvate), of (0.5 to 1.5): (0.03 to 0.09): (0.3 to 0.9): (0.05 to 0.15): (0.05 to 0.15): (0.1 to 0.3), respectively.
  • An even more preferred embodiment refers to the xeroprotective composition where the ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( fucose) :( pyruvate), is (0.7 at 1, 3): (0.05 to 0.07): (0.5 to 0.7): (0.07 to 0.12): (0.07 to 0.12): (0.15 to 0.25).
  • the xeroprotective composition has a ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( pyruvate) of (1) :( 0.06) :( 0.62) :( 0.1) :( 0.1) :( 0.21), respectively.
  • proportion refers to the due correspondence of the elements of the composition related to each other. That is, it refers to a mathematical relationship that links the elements of the composition.
  • the xeroprotective composition that has a ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( pyruvate) of (1) :( 0.06) :( 0.62) :( 0.1) :( 0.1) :( 0.21), respectively, may have, for example, concentrations of (2) :( 0.12) :( 1, 24) :( 0 , 2) :( 0.2) :( 0.42) mg of each element respectively / ml.
  • composition of the present invention or composition of the invention.
  • Another aspect of the present invention relates to the use of the composition of the invention for the conservation of biological material with a residual moisture content equal to or less than 10%.
  • the residual moisture content of the biological material may be equal to or less than 9, 8, 7, 6 5, 4, 3, 2 or 1% residual moisture.
  • the preservation of said material can be carried out by stabilizing it.
  • the term "dry material biological material” can be used to refer to this type of biological material. Under these conditions, the preservative or stabilizer coalesces to reach a non-crystalline, vitreous, and solid state (for example an amorphous crystal).
  • the organic crystal particles that are formed by drying the biological material with the stabilizer are covered by the stabilizer that produces high stability by drastically reducing chemical reactions. In this way the dried biological material is embedded in the amorphous crystal formed by the stabilizer.
  • the dry biological material in the presence of the stabilizer that forms the amorphous crystal is resistant to plastics in a liquid state, while the material that is not dry in the presence of these stabilizers is not resistant to plastics in a liquid state.
  • the dry biological material in these forms can be in a non-particulate state and can be supplied in forms, for example, but not limited to, moldings or solids in 3 dimensions such as, but not limited to, blocks, pads, patches, sheets, balls, or seeds of dry biological material.
  • residual moisture refers to the amount of moisture a product contains after it has passed through some type of process capable of removing water from it.
  • Residual humidity is the mass percentage of the product that corresponds to water with respect to the total mass. In other words, a residual moisture value of a product equal to 10% means that 10 g of every 100 g of the product correspond to water. Residual humidity can be measured by methods known in the state of the art such as, but not limited to, by the titrimetric method, the azeotropic method or the gravimetric method.
  • the term "conservation of biological material” refers to the maintenance or care of the permanence of the intrinsic characteristics of the biological material.
  • a preferred embodiment relates to the use of the composition of the invention for the conservation of biological material in the dry state, where the biological material is an invertebrate organism, a seed, a seedling, a microorganism, an isolated organ, an isolated biological tissue or a cell.
  • the cell can be prokaryotic or eukaryotic.
  • the cell can be a cell of a microorganism in any state of development.
  • the cell can be somatic or germinal, plant or animal.
  • That cell It can come from any organism or microorganism and can occur in any state of differentiation, such as, but not limited to, from a culture of a cellular tissue or organs, sperm, ovules or embryos.
  • the cell can be a totipotent, multipotent or unipotent stem cell.
  • the microorganism can be unicellular or multicellular.
  • the unicellular microorganism is selected from the list comprising, but not limited to, E. coli, S. typhimurium, P. putida., Salmonella spp, Rhizobium spp, Pseudomonas spp, Rhodococcus spp, Lactobacillus spp. or Bifidobacterium spp.
  • the multicellular microorganism can be, for example, but not limited to, a nematode.
  • the cell conserved by the composition of the present invention is a viable cell that is, it is capable of performing the normal functions of the cell including cell replication and division.
  • the cell may have been treated, manipulated or mutated before preservation.
  • a cell may have become competent for transformations or transfections, or it may contain recombinant nucleic acids.
  • the cells that are conserved can form a homogeneous or heterogeneous population, for example, but not limited to, a library of cells in which each cell contains a variation of some nucleic acid.
  • the cells are non-anhydrobotic cells (desiccation-sensitive cells) such as, but not limited to, cells from non-anhydrobial prokaryotic microorganisms that are generally not sporulant.
  • the conservation of the microorganism can be improved by culture under conditions that increase the intracellular concentration of trehalose or other amorphous crystal-forming stabilizers.
  • the invertebrate organism is, but is not limited to, an insect larva or a crustacean. Said invertebrate organisms can be preserved under drying conditions, allowing the vital activity thereof, so that, when rehydrated, said organisms have the ability to move.
  • the seedling is a plant in its early stages of development, from germination until it develops
  • composition of the invention can be used for the conservation of biological material in the dry state, where the biological material is a vertebrate organism belonging to the Tetrapoda Superclass (with four limbs),
  • Amphibia class (amphibians) or Reptilia class (reptiles), or any of its parts (Vernon and Jackson, 1931. The biological bulletin, 60: 80-93).
  • Vernon and Jackson carried out a study on the Leopard frog (Rana pipiens), in which their skin, tongue, spleen, and liver naturally dries with a water loss of between 43-81% of the water content total.
  • composition of the present invention An isolated organ, or an isolated biological tissue (including blood) can be preserved by the composition of the present invention.
  • results of cryopreservation protocols of biological tissues can be observed (Serrato et al., 2009. Histology and histopathology, 24: 1531-1540).
  • a more preferred embodiment relates to the use of the composition of the invention, where the biological material is a molecule with biological activity.
  • the term "molecule with biological activity” as understood in the present invention refers to a biological molecule whose origin is a living organism or that has been alive, or derivatives or analogs of said molecule.
  • derivatives refers to molecules obtained by the modification of a molecule with biological activity, which They have similar functionality.
  • analogs refers to molecules that have a function similar to the molecule with biological activity.
  • the molecule with biological activity is an enzyme.
  • An even more preferred embodiment of the present invention relates to the use of the composition of the invention, where the enzyme is an enzyme with lipase activity.
  • the enzyme with lipase activity is selected from the list of enzymes with EC numbers (Enzyme Commission numbers) comprising carboxylic ester hydrolases (EC 3.1 .1) EC 3.1.1 .1 (Carboxylesterase), EC 3.1 .1.2 (Arilesterase) , EC 3.1 .1 .3 (Triacylglycerol lipase), EC 3.1 .1 .4 (Phospholipase A (2)), EC 3.1.1.5 (Lysophospholipase), EC 3.1 .1 .23 (Acylglycerol lipase), EC 3.1 .1.
  • EC numbers Enzyme Commission numbers
  • carboxylic ester hydrolases EC 3.1 .1
  • Carboxylesterase Carboxylesterase
  • EC 3.1 .1.2 Arilesterase
  • EC 3.1 .1 .3 Triacylglycerol lipase
  • Another aspect of the present invention relates to a method of obtaining the xeroprotective composition of the invention comprising: a) culturing the microorganism of the invention in a culture medium with glucose as a carbon source,
  • step (b) dehydrate the microorganisms obtained in the culture of step (a) until they have a residual humidity equal to or less than 10%
  • step (b) rehydrate the dehydrated microorganisms of step (b) in a hypotonic medium
  • the culture medium is any culture medium known in the state of the art for the growth of a microorganism of the present invention, for example but not limited to, the M9 mineral medium. Rich media such as Luria Bertani (LB) medium in which xeroprotectors, or natural osmolytes are not present, because the bacteria would prefer to take them from outside to synthesize them.
  • LB Luria Bertani
  • a preferred embodiment of the present invention relates to the method of obtaining the xeroprotective composition, where the culture medium of step (a) is solid.
  • the term "solid" as understood in the present invention refers to a gelled culture medium to a greater or lesser extent, that is, comprising agar to facilitate its gelation or any gelling compound.
  • Dehydration of the microorganisms in step (b) is carried out by means of any technique known in the state of the art.
  • Another preferred embodiment of the present invention relates to the method, where the dehydration of the microorganisms according to step (b) is carried out by means of a hypertonic solution or by means of an air current.
  • the hypertonic solution or the air stream have sterility conditions.
  • the hypertonic solution is a solution that has a higher concentration of solute in the external environment than in the cytoplasm of the cells of the microorganism of the present invention, therefore, the cell releases water, that is, it is dehydrated.
  • the rehydration of the microorganisms, described in step (c), is carried out in a hypotonic medium.
  • the hypotonic medium or hypotonic solution is a solution that has a lower concentration of solute in the external medium than in the cytoplasm of the cell of the microorganism of the present invention, therefore, the cell recovers water, that is, it is rehydrated.
  • a further preferred embodiment refers to the method, where the hypotonic medium for the rehydration of the microorganisms according to step (c) it is water, partially or totally distilled, partially or totally deionized or partially or totally demineralized.
  • the cells and the hypotonic medium must be in contact for at least 5 minutes. Preferably they will be in contact for at least 20 minutes with stirring.
  • Obtaining the medium containing the stabilizing substances will be carried out by any method that guarantees the separation of cells from the liquid content, preferably by gentle centrifugation, followed by a filtration step. Preferably 0.4 micrometer pore diameter filters
  • Another preferred embodiment relates to the method, where, in addition, the liquid fraction of step (d) is dehydrated until the xeroprotector product has a residual humidity equal to or less than 10%.
  • the xeroprotector product of the invention can be separated from the culture medium by any method of concentration.
  • lyophilizer-type dryers that produce the stabilizer in the dry state will be used.
  • the stabilizing molecules may be dissolved or dispersed in a proportion of between 10 and 30%. This solution or dispersion is added to the biological material that is to be preserved and will be dried.
  • Another preferred embodiment of the present invention relates to the method of obtaining the xeroprotective composition, where the dehydration of the microorganisms according to step (b) is carried out by means of a hypertonic solution or by means of an air current.
  • Another preferred embodiment of the present invention relates to the method of obtaining the xeroprotective composition, where the hypotonic medium for the rehydration of the microorganisms according to step (c) it is water partially or totally distilled, deionized or demineralized.
  • Another preferred embodiment of the present invention relates to the method of obtaining the xeroprotective composition, where in addition, the liquid fraction of step (d) is dehydrated until the xeroprotector product has a residual humidity equal to or less than 10%.
  • FIG. 1 Shows the viability of the different bacterial isolates selected by exposure to chloroform after 24 hours of air drying.
  • Error bars show the standard deviation of at least three replicas.
  • the microorganism strains represented in this figure are:
  • FIG. 2 Shows the lipase activity (in percentage relative to 100% positive control activity) after drying of the lipase enzyme in the presence of the different components of 10% bacterial milking products (w / v).
  • the positive control is trehalose at 10%.
  • the negative control (-) corresponds to the absence of any compound as an additive prior to the drying of the enzyme.
  • 3J1 is the value of lipase activity recorded after drying stabilization and subsequent reconstitution of the enzyme in the presence of POB extracted from strain 3J1 by hyper / hypoosmotic shock respectively.
  • 3J1 D is the lipase activity recorded after drying stabilization and subsequent reconstitution of the enzyme in the presence of POBSIA (Bacterial Milking Product extracted by Drying by Air Incubation) extracted from strain 3J1 by drying and subsequent hydration treatment.
  • POBSIA Bacterial Milking Product extracted by Drying by Air Incubation
  • FIG. 3 Shows the state of the plants inoculated with Microbacterium sp. 3J1, P. putida KT2440 and non-inoculated plants after 33 days without irrigation.
  • FIG. 4 Shows the Fresh Weight of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
  • FIG. 5. Shows the Dry Weight of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation.
  • FIG. 6 Shows the Totally Turbid Weight of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation.
  • FIG. 7 Shows the Relative Content of Water in plants inoculated with the different strains at the different times of the test after the cessation of irrigation. In ordinates show the dimensionless values of the CRA. In abscissa the sampling times are indicated.
  • FIG. 8 Shows the water retention potential of the plants inoculated with each of the strains at different test times after the cessation of irrigation.
  • FIG. 9. Shows the stem height of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation.
  • FIG. 10 Shows the root length of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation.
  • FIG. 11 Shows the stem height of the plants inoculated with each of the strains at the different times of the test in humid conditions. In ordinates the height in cm of the plant is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
  • FIG. 12. Shows the root length of the plants inoculated with each of the strains at the different test times in humid conditions.
  • FIG. 13 Shows the Fresh Weight of the plants inoculated with each of the strains at the different times of the test in humid conditions.
  • FIG. 14 Shows the Dry Weight of the plants inoculated with each of the strains at the different times of the test and grown in humid conditions. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
  • FIG. 15. Shows the Totally Turbid Weight of the plants inoculated with each one of the strains at the different times of the test and cultivated in humid conditions. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
  • FIG. 16. Shows the water retention potential of the plants inoculated with each of the strains at the different times of the test and grown in humid conditions.
  • EXAMPLE 1 Isolation of the microorganism belonging to strain 3J1, extraction of POB (Bacterial Milking Products).
  • 1 g of dry soil was homogenized, from Granada (37,182 Latitude N and 3,624 Longitude O), not exposed to rain or irrigation, for a period exceeding three months.
  • the soil was taken from the area surrounding oleander roots (Nerium oleander).
  • the samples were homogenized to obtain a fine earth grain that would guarantee their contact with the chloroform.
  • the earth was deposited in glass vials to which 3 ml of pure chloroform was added. After the addition of the chloroform, they were incubated at room temperature for 30 minutes with sporadic agitation to maximize contact of the sample with the solvent.
  • the soil samples were deposited in a sterile glass petri dish without a lid until the evaporation of the chloroform was completed. Once the soil samples were dried, they were resuspended in 10 ml of TSB. Serial dilutions were made with the soil suspensions and seeded in TSA plates that were incubated 48 hours at 30 ° C. After this time, the number of colony forming units (CFU) per milliliter of each sample was quantified. Thus, 2-10 5 CFU / g of soil was detected in the untreated samples, while these were reduced to 1, 3-10 5 CFU / g of soil after 30 minutes of treatment.
  • CFU colony forming units
  • microplates were placed under a stream of sterile air in a laminar flow hood for 24 hours. The plates remained dry after 2-3 hours of incubation. After 24 hours of incubation, they were resuspended in 1 ml of sterile M9 solution. Starting from this solution, serial dilutions were made and seeded on TSA plates. From the CFU / ml count of this second sowing, survival rates were calculated in reference to the first count. These tests were performed in triplicate. The results were expressed as the average of the three trials in percentage, using the wet data as a reference of 100%. The standard deviation to the mean allowed the calculation of the student's T to study if the differences in survival were significant.
  • Halomononas elongata was included as a positive control, since it is a strain recognized as a halotolerant (Sauer and Galinski, 1998. Biotechnol. Bioeng., 57: 306-313) and P. putida KT2440 as a halosensitive strain (De Castro et al., 2000 Appl. Environ. Microbiol., 66: 4142-4144). To this end, the selected strain (3J1), hypertolerant at drying, was inoculated. In addition, H. elongata was included as a positive control since it had already been used by Sauer and Galinski to obtain hydroxyectoin, and as a negative control, E.
  • coli was included as an example of a halo and xerosensitive strain. Said inoculums were incubated with shaking for 48 hours. The samples were then centrifuged for 10 minutes at 10,000 rpm in a Beckman Avanti-J25 centrifuge and removed the supernatant fraction, resuspending the bacterial sediment in 20 ml of sterile M9 solution and deposited on filters. After 24 hours, the filters, subjected to desiccation by a stream of sterile air, were separated from the medium and deposited in tubes with sterile distilled water allowing to incubate 20 minutes at 30 ° C and 150 rpm.
  • Table 1 shows the compositions of the bacterial milking products of strain 3J1 after extraction by hyper / hypoosmotic shock (3J1), or after extraction by drying by air incubation (3J1 D).
  • Table 1 Composition of the bacterial milking product (POB) of strain 4J27.
  • 3J1 is the composition of the POB of said strain after its extraction by hyper / hypoosmotic shock.
  • 3J1 D is the composition of the POB of said strain after extraction by drying by incubation in air.
  • EXAMPLE 2 Enzyme xeroprotection assay. The objective of this test was to determine the ability of the bacterial milking product fraction to protect enzymes from drying out. For this, the enzyme lipase was used. Starting from 1 ⁇ containing 0.00554 units of Burkholderia cepacia lipase (Sigma-Aldrich 62309-100 mg), 15 ⁇ of the product fraction of the bacterial milking to study were added.
  • the reaction was stopped by incubation at 100 ° C for 4 minutes in thermoblock and 2 minutes at -20 ° C.
  • the absorbance was measured on a Hitachi U-2000 spectrophotometer at a wavelength of 410 nm.
  • the substrate solution (SS) was prepared by mixing 10 ml of solution A (30 mg of pNPP in 10 ml of isopropanol) with 90 ml of solution B (0.1 g of gum arabic and 0.4 ml of Triton X-100 in 90 my 50mM Tris-HCI buffer pH8). The mixture of solution A and B was gently stirred until completely dissolved.
  • FIG. 2 shows the protection values of the lipase enzyme on drying generated by the POBs and POBSIAs produced by the strain.
  • strain 3J1 The capacity of strain 3J1 on plants to protect them against drought conditions and / or promote their growth was studied.
  • sweet pepper plants Capsicum annuum
  • the Relative Water Content (ARC) of the study plants was the numerical value that indicated the degree of resistance to drought stress that the plants have with their respective treatments. Although other calculations were also carried out with the parameters initially taken to study all aspects that reflected the effects of water scarcity for plants.
  • the Water Retention Index (IRA) determined as the difference between the Fresh Weight (PF) and Dry Weight (PS) as well as the Water Recovery Potential (PRA) for the plants given by the difference between Totally Turgid Weight (PTT) and Fresh Weight (PF).
  • PTT Totally Turgid Weight
  • PF Fresh Weight
  • the Dry Weight (PS) of the plants was measured on days 7, 14, 20 and 33 after the irrigation ceased.
  • the PS of the different plants was much lower than the PF, with values always below 12 mg.
  • the dry weight of the different inoculated plants increased slightly more or less regularly in all conditions during the first sampling points. Again the plants inoculated with Microbacterium sp. 3J1 showed the highest values, doubling at 33 the final values of the plants inoculated with both P. putida KT2440, as well as those of the non-inoculated plants.
  • CRA Relative Water Content
  • the IRA values of the plants inoculated with Microbacterium sp. 3J1 for day 33 of sampling were approximately five times higher than those of plants inoculated with P. putida as well as those of non-inoculated plants.
  • EXAMPLE 4 Test of the increase in biomass of plants inoculated with Microbacterium sp under conditions of water stress.
  • the length in cm was taken from the whitish stem base or the point where the first roots were found, to the horizontal plane formed by the first pair of leaves (seminal leaves).
  • the length in cm was taken from the whitish stem base or the point where the first roots were found, to the tip of the longest radical apex without forcing the same.
  • FIG. 9 it can be observed how, in the conditions of water deficit, the inoculated plants reached greater height than the non-inoculated plants.
  • Plants inoculated with Microbacterium sp. 3J1 grew steadily even up to 33 days after starting the water deficit process, which was not observed in plants inoculated with P. putida as well as in non-inoculated plants. In the latter cases, it was observed that in both the plants inoculated with P. putida KT2440 and in the non-inoculated plants the growth was very reduced and even reduced at the last sampling point (day 33).
  • the height difference of the plants inoculated with Microbacterium sp. 3J1 was more than three times higher than the values of plants inoculated with P. putida as well as those of non-inoculated plants.
  • root length data For the treatment of root length data, we chose the measurement of the root lengths of each plant inoculated at the sampling points on days 7, 14, 20 and 33. The measurement was performed as in the case of the height of the plants at the time of the extraction of the plants for the measurement of the fresh weight. The data obtained are shown in FIG. 10. The length of the roots of the plants inoculated with Microbacterium sp. 3J1 increased to the last point (day 33), while in plants inoculated with P. putida strain and in non-inoculated plants, growth was even reduced at this same sampling point.
  • the length in cm was taken from the whitish stem base or the point where the first roots were found, to the horizontal plane formed by the first pair of leaves (seminal leaves).
  • the length in cm was taken from the whitish stem base or the point where the first roots were found, to the tip of the longest radical apex without forcing the same.
  • the heights reached by the plants inoculated with strains were in all cases greater than those obtained by the plants without inoculation on day 33 of the experiment.
  • the values obtained by the plants inoculated with Microbacterium sp. 3J1 became 1.5 times higher than those obtained by plants inoculated with P. putida KT2440, and 6 times higher than those obtained by non-inoculated plants.
  • the values obtained by the plants inoculated with P. putida KT2440 on day 33 of the test became three times higher than those obtained by non-inoculated plants.
  • the Dry Weight (PS) of the plants was measured at days 7, 14, 20 and 33.
  • the PS of the different plants was much lower than the FP, with values always below 12 mg.
  • the dry weight of the different inoculated plants increased slightly more or less regularly in all conditions during the first sampling points.
  • the plants inoculated with Microbacterium sp. 3J1 had a slight decrease in their PS values.
  • Plants inoculated with Microbacterium sp. 3J1 and with P. putida KT2440 showed higher values than those obtained by non-inoculated plants, becoming at day 33 of the test around 40% higher.
  • ARI structural water retention index

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to a microorganism of the Microbacterium sp. bacterial species (access number CECT7624). The invention also relates to the use of said microorganism or a population of same in order to enhance the water stress tolerance of a plant or to enhance the growth of a plant with said plant under optimum water content conditions. The invention further relates to the use of said microorganism or a population of same for the production of a xeroprotectant composition, said composition comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine and pyruvate or also comprising fucose. Furthermore, the invention relates to a method for enhancing the water stress tolerance of a plant or producing the xeroprotectant composition.

Description

Cepa bacteriana CECT7624, uso de dicha cepa para aumentar el crecimiento y la tolerancia al estrés hídrico de una planta y  Bacterial strain CECT7624, use of said strain to increase growth and tolerance to water stress of a plant and
compuesto xeroprotector producido por la misma. La presente invención se refiere a un microorganismo de la especie bacteriana Microbacterium sp. con número de acceso CECT7624. Asimismo la presente invención se refiere al uso de dicho microorganismo o de una población del mismo para aumentar la tolerancia al estrés hídrico de una planta o para aumentar el crecimiento de una planta en condiciones óptimas de contenido hídrico de dicha planta. Además, la presente invención se refiere al uso de dicho microorganismo o de una población del mismo para la producción de una composición xeroprotectora, donde dicha composición comprende trehalosa, ácido oxoglucurónico, lactato, glutamato, glutamina y piruvato, o además comprende fucosa. La presente invención también se refiere al método para aumentar la tolerancia al estrés hídrico de una planta o para producir la composición xeroproctectora de la presente invención.  xeroprotector compound produced by it. The present invention relates to a microorganism of the bacterial species Microbacterium sp. with access number CECT7624. Also the present invention relates to the use of said microorganism or a population thereof to increase the tolerance to water stress of a plant or to increase the growth of a plant under optimum conditions of water content of said plant. Furthermore, the present invention relates to the use of said microorganism or a population thereof for the production of an xeroprotective composition, wherein said composition comprises trehalose, oxoglucuronic acid, lactate, glutamate, glutamine and pyruvate, or further comprises fucose. The present invention also relates to the method for increasing the water stress tolerance of a plant or for producing the xeroproctector composition of the present invention.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
La búsqueda de mejores fenotipos y genotipos de plantas de cultivo para aumentar la producción, mejoras nutricionales, calidad en el fruto y planta, es de gran interés para la comunidad científica. La selección de fenotipos ha mostrado buenos resultados en la obtención de mejores variedades, sin embargo, el papel de la biotecnología tiene especial importancia ya que la utilización de microorganismos a las raices de las plantas ha propiciado que se logren grandes avances en la comprensión del efecto de los microorganismos de la rizosfera en la regulación metabólica y genética del las plantas como por ejemplo, la utilización de Agrobacterium para la obtención de plantas transgénicas, o el empleo de bacterias fijadoras de nitrógeno asociadas a las plantas leguminosas. En las plantas de cultivo, la rizosfera constituye una de las principales fuentes de materia orgánica en los suelos. Dicha rizosfera estimula la actividad microbiana. En la rizosfera se dan complejas interacciones entre los microorganismos y las raíces de las plantas. El potencial hídrico de la rizosfera es un aspecto clave que determina la biodisponibilidad de agua, oxígeno y sustratos de plantas y microorganismos. Los exudados de determinados microorganismos pueden proteger a bacterias del estrés hídrico. El la agricultura mediterránea, el estrés hídrico es uno de los principales factores que limitan la producción de los cultivos. The search for better phenotypes and genotypes of crop plants to increase production, nutritional improvements, quality in the fruit and plant, is of great interest to the scientific community. The selection of phenotypes has shown good results in obtaining better varieties, however, the role of biotechnology is especially important since the use of microorganisms to plant roots has led to great progress in understanding the effect of the microorganisms of the rhizosphere in the metabolic and genetic regulation of plants such as, for example, the use of Agrobacterium to obtain transgenic plants, or the use of nitrogen fixing bacteria associated with leguminous plants. In crop plants, the rhizosphere is one of the main sources of organic matter in soils. This rhizosphere stimulates microbial activity. Complex interactions between microorganisms and plant roots occur in the rhizosphere. The water potential of the rhizosphere is a key aspect that determines the bioavailability of water, oxygen and substrates of plants and microorganisms. Exudates of certain microorganisms can protect bacteria from water stress. In Mediterranean agriculture, water stress is one of the main factors that limit crop production.
Es conocido que los hongos micorrízicos colonizan las raíces de la mayoría de las plantas. Estos hongos son simbiontes obligados y reciben compuestos carbonados en forma de energía de las plantas hospedantes; durante esta asociación les transfieren nutrientes, generalmente fósforo y cinc (Ryan y Angus, 2003. Plant and Soil, 250(2): 225-239). Los hongos micorrízicos aumentan significativamente la superficie de absorción del sistema radical de las plantas, mejorando la habilidad de las mismas para absorber agua y nutrientes, mantener la estructura del suelo e incrementar la resistencia a estreses y enfermedades. Hay evidencias que indican la influencia de estos hongos en las relaciones hídricas de las plantas hospedantes y el incremento a la resistencia a sequía de las mismas. Se ha sugerido que los hongos podrían tener efectos positivos sobre las plantas hospedantes en condiciones de campo durante períodos de estrés para las mismas como es el estrés hídrico (Alien y Alien, 1986. New Phytologist, 104: 559-71 ; Fitter, 1986. New Phytologist, 103: 767-776). It is known that mycorrhizal fungi colonize the roots of most plants. These fungi are obligate symbionts and receive carbon compounds in the form of energy from host plants; during this association they transfer nutrients, usually phosphorus and zinc (Ryan and Angus, 2003. Plant and Soil, 250 (2): 225-239). Mycorrhizal fungi significantly increase the surface area of absorption of the radical system of plants, improving their ability to absorb water and nutrients, maintain soil structure and increase resistance to stresses and diseases. There is evidence that indicates the influence of these fungi on the water relations of the host plants and the increase in drought resistance of them. It has been suggested that fungi could have positive effects on host plants in field conditions during periods of stress for them such as water stress (Alien and Alien, 1986. New Phytologist, 104: 559-71; Fitter, 1986. New Phytologist, 103: 767-776).
Está demostrado que algunas cepas bacterianas no patógenas son capaces de estimular el metabolismo defensivo de la planta de tal forma que cuando existe el ataque de un patógeno, las plantas se encuentran protegidas y pueden sobrevivir con una mortalidad mucho menor que si no estuvieran tratadas con la bacteria. En algunos casos, el efecto es muy específico, y solo es efectivo frente a determinados patógenos, mientras que en otros, el efecto es mucho más amplio, siendo incluso efectivo frente a factores abióticos como puede ser el estrés salino o hídrico. It is shown that some non-pathogenic bacterial strains are capable of stimulating the defensive metabolism of the plant in such a way that when there is a pathogen attack, the plants are protected and can survive with a much lower mortality than if not were treated with the bacteria. In some cases, the effect is very specific, and it is only effective against certain pathogens, while in others, the effect is much broader, even being effective against abiotic factors such as saline or water stress.
En este sentido, la aplicación de bacterias en ciertos cultivos resulta una alternativa biotecnológica respetuosa con el medioambiente ya que la bacteria produciría un doble efecto beneficioso, por una parte, estimula las defensas de planta frente a un patógeno, disminuyendo por tanto el uso de sustancias químicas, y por otra, permite obtener mejores rendimientos bajo determinadas condiciones de estrés. Sin embargo, la selección de dicho microorganismo es un aspecto complejo que requiere el ensayo y caracterización de numerosas especies y cepas para lograr obtener un microorganismo capaz de producir beneficios de importancia a las plantas. In this sense, the application of bacteria in certain crops is a biotechnological alternative that respects the environment since the bacteria would produce a double beneficial effect, on the one hand, it stimulates plant defenses against a pathogen, thus reducing the use of substances chemical, and on the other, it allows to obtain better yields under certain stress conditions. However, the selection of said microorganism is a complex aspect that requires the testing and characterization of numerous species and strains to obtain a microorganism capable of producing significant benefits to plants.
Por otra parte, la conservación de materiales biológicos mediante deshidratación y osmoconcentración es una tecnología conocida. Sin embargo, los métodos actuales de conservación requieren de gran costo en energía y generalmente necesitan de almacenaje a bajas temperaturas. En ocasiones, después de su conservación, el material biológico tiene una actividad y/o viabilidad que no alcanza los niveles satisfactorios. Los métodos de conservación, tales como el secado a temperatura ambiente, formulaciones en líquido, el congelado con crioprotectores o la liofilización producen reducciones significativas en la actividad/viabilidad del material conservado. On the other hand, the conservation of biological materials by dehydration and osmoconcentration is a known technology. However, current conservation methods require high energy costs and generally need storage at low temperatures. Sometimes, after its conservation, the biological material has an activity and / or viability that does not reach satisfactory levels. Conservation methods, such as drying at room temperature, liquid formulations, freezing with cryoprotectants or lyophilization produce significant reductions in the activity / viability of the conserved material.
Los procesos usados actualmente son lentos e implican un elevado consumo de energía. Además, la liofilización confiere sólo un nivel modesto de termotolerancia en el producto final, y se requiere aún refrigeración para reducir el deterioro durante el almacenamiento. Durante la selección natural evolutiva, ciertas especies de plantas y animales adquirieron la notable capacidad de tolerar la deshidratación extrema, permaneciendo latentes en medios hostiles durante períodos muy largos de tiempo y aún capaces de adquirir una actividad vital completa una vez hidratadas nuevamente. Ejemplos incluyen la "planta de la resurrección" Selaginella lepidophyla, el camarón de mar Artemia salina, la levadura Saccharomyces cerevisiae o el tardígrado Macrobiotus hufelandi. Estos organismos se denominan criptiobióticos y el procedimiento por el que sobreviven se conoce como anhidrobiosis. Todas las especies de animales y plantas que presentan esta capacidad, contienen moléculas protectoras formadoras de cristales amorfos como el disacárido trehalosa (a-D-glucopiranosil-a-D-glucopiranósido). The processes currently used are slow and involve high energy consumption. In addition, lyophilization confers only a modest level of thermotolerance in the final product, and cooling is still required to reduce deterioration during storage. During evolutionary natural selection, certain species of plants and animals acquired the remarkable ability to tolerate extreme dehydration, remaining dormant in hostile environments for very long periods of time and still capable of acquiring a complete vital activity once hydrated again. Examples include the "resurrection plant" Selaginella lepidophyla, Artemia salina sea shrimp, Saccharomyces cerevisiae yeast or Macrobiotus hufelandi tardigrade. These organisms are called cryptiobiotics and the procedure by which they survive is known as anhydrobiosis. All species of animals and plants that have this capacity contain protective molecules that form amorphous crystals such as the disaccharide trehalose (aD-glucopyranosyl-aD-glucopyranoside).
La formación y uso de los cristales amorfos está bien documentada (Manzanera et al., 2002. Appl Environ Microbiol, 68: 4328-4333). Algunos de los conservantes que forman estos cristales son adecuados para este tipo de conservación e incluyen hidratos de carbono no reductores como la trehalosa, hidroxiectoina, maltitol, lactitol (4-O-a-D-glucopyranosyl-D- glucitol), palatinit [mezcla de GPS (a-D-glucopiranosil-1 -6-sorbitol) y GPM (a-D-glucopiranosil-1 -6-manitol)] y sus componentes individuales GPS y GPM. Los glicósidos no reductores de compuestos polihidroxilados pueden ser neotrehalosa, laconeotrehalosa, galactosil-trehalosa, sacarosa, lactosacarosa, rafinosa, etc. Otros conservantes formadores de cristales amorfos incluyen aminoácidos tales como la hidroxiectoina. The formation and use of amorphous crystals is well documented (Manzanera et al., 2002. Appl Environ Microbiol, 68: 4328-4333). Some of the preservatives that form these crystals are suitable for this type of preservation and include non-reducing carbohydrates such as trehalose, hydroxyectoin, maltitol, lactitol (4-OaD-glucopyranosyl-D-glucitol), palatinit [GPS mixture (aD -glucopyranosyl-1-6-sorbitol) and GPM (aD-glucopyranosyl-1-6-mannitol)] and its individual components GPS and GPM. Non-reducing glycosides of polyhydroxy compounds can be neotrehalose, laconeotrehalose, galactosyl trehalose, sucrose, lactosecarose, raffinose, etc. Other amorphous crystal-forming preservatives include amino acids such as hydroxyectoin.
La presencia de agua en el estado seco es generalmente inferior a 0,2 g/g de peso celular seco en la mayoría de los criptobiontes. Estos niveles de agua son suficientes para que estos organismos invertebrados o microorganismos resistan la deshidratación extrema, temperaturas elevadas, radiaciones ionizantes o también, en algunas especies de tardígrados, presiones de hasta 600 MPa. Es conocido que las biopelículas (subaerial biofilms), formadas por bacterias del género Rhodococcus sp entre otras, son capaces de producir compuestos osmoprotectores, es decir, sustancias extracelulares poliméricas (EPS) (Gorbushina, 2007. Environmental Microbiology, 9(7): 1613-1631 ). Asimismo, LeBlanc (2008) (LeBlanc, 2008. Applied and environmental microbiology, 74(9): 2627-2636), se refiere al microorganismo Rhodococcus jostii RHA1 , un actinomiceto con capacidades metabólicas favorables para la biorremediación de suelos contaminados, capaz de secretar los osmoprotectores ectoina y trehalosa. The presence of water in the dry state is generally less than 0.2 g / g dry cell weight in most cryptobionts. These water levels are sufficient for these invertebrate organisms or microorganisms to resist extreme dehydration, high temperatures, ionizing radiation or, in some species of tardigrades, pressures of up to 600 MPa. It is known that biofilms (subaerial biofilms), formed by bacteria of the genus Rhodococcus sp among others, are capable of producing osmoprotective compounds, that is, polymeric extracellular substances (EPS) (Gorbushina, 2007. Environmental Microbiology, 9 (7): 1613 -1631). Likewise, LeBlanc (2008) (LeBlanc, 2008. Applied and environmental microbiology, 74 (9): 2627-2636), refers to the microorganism Rhodococcus jostii RHA1, an actinomycete with favorable metabolic capacities for bioremediation of contaminated soils, capable of secreting the ectoin and trehalose osmoprotectors.
EXPLICACIÓN DE LA INVENCIÓN La presente invención se refiere a un microorganismo de la especie bacteriana Microbacterium sp. con número de acceso CECT7624. Asimismo la presente invención se refiere al uso de dicho microorganismo o de una población del mismo para aumentar la tolerancia al estrés hídrico de una planta o para aumentar el crecimiento de una planta en condiciones óptimas de contenido hídrico de dicha planta. Además, la presente invención se refiere al uso de dicho microorganismo o de una población del mismo para la producción de una composición xeroprotectora, donde dicha composición comprende trehalosa, ácido oxoglucurónico, lactato, glutamato, glutamina y piruvato, o además comprende fucosa. La presente invención también se refiere al método para aumentar la tolerancia al estrés hídrico de una planta o para producir la composición xeroproctectora de la presente invención. EXPLANATION OF THE INVENTION The present invention relates to a microorganism of the bacterial species Microbacterium sp. with access number CECT7624. Also the present invention relates to the use of said microorganism or a population thereof to increase the tolerance to water stress of a plant or to increase the growth of a plant under optimum conditions of water content of said plant. Furthermore, the present invention relates to the use of said microorganism or a population thereof for the production of an xeroprotective composition, wherein said composition comprises trehalose, oxoglucuronic acid, lactate, glutamate, glutamine and pyruvate, or further comprises fucose. The present invention also relates to the method for increasing the water stress tolerance of a plant or for producing the xeroproctector composition of the present invention.
La capacidad para aumentar la tolerancia al estrés hídrico de una planta es de importancia en el sector agrícola para la obtención de frutos en condiciones de bajo contenido de agua en los suelos o en otras condiciones que limiten la capacidad de absorción de agua de dichas plantas. En la presente invención se ofrecen herramientas para prevenir o combatir los efectos negativos que padecen las plantas sometidas a condiciones de estrés hídrico. Además, en la presente invención se ofrece tanto el contenido como la proporción de varias composiciones xeroprotectoras obtenidas de cultivos de la cepa CECT7624. The ability to increase the tolerance to water stress of a plant is of importance in the agricultural sector to obtain fruits in conditions of low water content in soils or other conditions that limit the water absorption capacity of said plants. In the present invention, tools are provided to prevent or combat the negative effects suffered by plants subjected to water stress conditions. In addition, both the content and the proportion of various xeroprotective compositions obtained from cultures of strain CECT7624 are offered in the present invention.
Por tanto, un aspecto de la presente invención se refiere a un microorganismo de la especie bacteriana Microbacteríum sp. con número de acceso CECT7624. Dicho microorganismo es tolerante a la desecación. Dicha cepa ha sido depositada en la colección española de cultivos tipo (CECT) el 10 de noviembre de 2009 y le correspondió el n° de depósito CECT7624. La dirección de dicha Autoridad Internacional de depósito es: Universidad de Valencia / Edificio de investigación / Campus de Burjassot / 46100 Burjassot (Valencia). Therefore, one aspect of the present invention relates to a microorganism of the bacterial species Microbacteríum sp. with access number CECT7624. Said microorganism is tolerant to desiccation. This strain has been deposited in the Spanish collection of type crops (CECT) on November 10, 2009 and was assigned the deposit number CECT7624. The address of said International Deposit Authority is: University of Valencia / Research building / Campus of Burjassot / 46100 Burjassot (Valencia).
La clasificación científica de la cepa CECT7624 de la presente invención es: Reino: Bacteria I Filo: Actinobacteria I Orden: Actinomycetales I Familia: Micrococcineae I Género: Microbacteríum. The scientific classification of strain CECT7624 of the present invention is: Kingdom: Bacteria I Phylum: Actinobacteria I Order: Actinomycetales I Family: Micrococcineae I Genus: Microbacteríum.
Las características de dicha cepa son: The characteristics of said strain are:
- Los sustratos que la bacteria CECT7624 oxida o fermenta son: Dextrina, glicógeno, manan, tween 40, tween 80, L-arabinosa, D-arbulina, D- celobiosa, D-fructosa, L-fucosa, D-galactosa, ácido D-galacturónico, gentiobiosa, ácido D-glucónico, α-D-glucosa, maltosa, maltotriosa, D- manitol, D-manosa, D-melezitosa, 3-metil glucosa, palatinosa, D-psicosa, salicina, sedoheptulosa, D-sorbitol, sacarosa, D-trehalosa, turanosa, xilosa, ácido acético, ácido α-hidroxibutírico, -cetoglutárico, ácido L- láctico, metil piruvato, ácido succinámico, L-alaninamida, L-alanina, L- alanil-glicina, L-aspargina, ácido L-glutámico, ácido glicil-L-glutámico, L- serina, putrescina, glicerol, adenosina, 2'-deoxiadenosina, inopina, timidina, adenosina-5'-monofosfato, timidina-5'-monofosfato, D-L-a- glicerolfosfato. - The substrates that the CECT7624 bacteria oxidize or ferment are: Dextrin, glycogen, manan, tween 40, tween 80, L-arabinose, D-arbulin, D-cellobiose, D-fructose, L-fucose, D-galactose, D acid -galacturonic, gentiobious, D-gluconic acid, α-D-glucose, maltose, maltotriose, D-mannitol, D-mannose, D-melezitose, 3-methyl glucose, palatinous, D-psychosa, salicin, sedoheptulose, D-sorbitol , sucrose, D-trehalose, turanosa, xylose, acetic acid, α-hydroxybutyric acid, -ketoglutaric acid, L-lactic acid, methyl pyruvate, succinamic acid, L-alaninamide, L-alanine, L-alanyl-glycine, L-aspargina , L-glutamic acid, glycyl-L-glutamic acid, L-serine, putrescine, glycerol, adenosine, 2'- deoxyadenosine, inopin, Thymidine, adenosine-5 ' -monophosphate, thymidine-5 ' -monophosphate, DL-glycerolphosphate.
- La temperatura máxima tolerada para el crecimiento de esta cepa se encontrón entre 35°C y 40°C. La temperatura mínima para detectar crecimiento se encontró entre 15°C y 20°C, mientras que su temperatura óptima de crecimiento fue de entorno a 35°C. Fue incapaz de crecer a pH igual o superior a 13 aunque si proliferó a pH 12. - El pH mínimo tolerado para el crecimiento de esta cepa se encontró entre pH 5 y pH 7, considerándose alrededor de 12 como pH óptimo para el crecimiento de esta cepa. - The maximum temperature tolerated for the growth of this strain was between 35 ° C and 40 ° C. The minimum temperature to detect growth was between 15 ° C and 20 ° C, while its optimum growth temperature was around 35 ° C. It was unable to grow at pH equal to or greater than 13 although if it proliferated at pH 12. - The minimum pH tolerated for the growth of this strain was between pH 5 and pH 7, considering around 12 as the optimum pH for the growth of this strain. strain
- Igualmente fue capaz de proliferar en medio LB en ausencia de NaCI aunque fue incapaz de crecer en este medio con una concentración de- He was also able to proliferate in LB medium in the absence of NaCI although he was unable to grow in this medium with a concentration of
NaCI igual o superior a 1 ,2 M, quedando la concentración máxima tolerada entre 0,8 M y 1 ,2 M de NaCI. Esta cepa mostró un crecimiento óptimo a una concentración de 0,2 M de NaCI. - Ensayos de sensibilidad a antibióticos mostraron halos de inhibición del crecimiento en los cinco antibióticos ensayados en disco: rifampicina30 (3,37 cm); estreptomicina25 (2,07 cm); tetraciclina2o (1 ,07 cm); cloramfenicol50 (4,28 cm); kanamicina30 (1 ,53 cm). Asimismo, la presente invención también se refiere a un microorganismo derivado del microorganismo depositado con n° de acceso CECT7624. El microorganismo derivado puede producirse de forma intencionada, por métodos mutagénicos conocidos en el estado de la técnica como por ejemplo, el crecimiento de dicho microorganismo original en exposición con conocidos agentes capaces de forzar mutagénesis. Otro aspecto de la presente invención se refiere a una población bacteriana que comprende el microorganismo depositado con n° de acceso CECT7624. La población bacteriana puede estar formada por otras cepas de microorganismos de cualquier especie. La población bacteriana es un conjunto de células de microorganismos donde al menos hay una célula de dicho microorganismo depositado con n° de acceso CECT7624, en cualquier fase del estado de desarrollo y en cualquier fase de crecimiento, estacional o estacionaria, independientemente de la morfología que presente, en forma de coco, bacilo o morfologías intermediarias de las anteriores. NaCI equal to or greater than 1.2 M, with the maximum concentration tolerated between 0.8 M and 1.2 M NaCI. This strain showed optimal growth at a concentration of 0.2 M NaCl. - Antibiotic sensitivity tests showed growth inhibition halos in the five antibiotics tested on disk: rifampin 3 0 (3.37 cm); Streptomycin 2 5 (2.07 cm); tetracycline 2 or (1, 07 cm); Chloramphenicol 50 (4.28 cm); Kanamycin 30 (1, 53 cm). Likewise, the present invention also relates to a microorganism derived from the microorganism deposited with accession number CECT7624. The derived microorganism can be produced intentionally, by mutagenic methods known in the state of the art such as, for example, the growth of said original microorganism on exposure with known agents capable of forcing mutagenesis. Another aspect of the present invention relates to a bacterial population comprising the microorganism deposited with access number CECT7624. The bacterial population can be formed by other strains of microorganisms of any species. The bacterial population is a set of microorganism cells where at least one cell of said microorganism is deposited with access number CECT7624, at any stage of the development state and at any stage of growth, seasonal or stationary, regardless of the morphology that present, in the form of coconut, bacillus or intermediate morphologies of the above.
En adelante se podrá hacer referencia al microorganismo o a la población bacteriana como el "microorganismo de la presente invención" o el "microorganismo de la invención". Hereinafter, the microorganism or the bacterial population may be referred to as the "microorganism of the present invention" or the "microorganism of the invention".
Otro aspecto de la presente invención se refiere al uso del microorganismo de la presente invención para aumentar la tolerancia al estrés hídrico de una planta, respecto de un control. En la presente invención, el control hace referencia a una planta de la misma especie, subespecie o variedad que la planta anterior, que no ha sido expuesta a dicho microorganismo o a una planta que ha sido expuesta a la rizobacteria P. putida KT2440. El término "estrés hídrico" tal como se entiende en la presente invención se refiere a la reducción del contenido de agua en los tejidos vegetales que provoca alteraciones en los procesos metabolicos, originando efectos negativos en el crecimiento y desarrollo de las plantas. La magnitud de dichas alteraciones en los procesos metabolicos involucrados dependen de la especie, momento del ciclo de desarrollo de la planta afectada, de la intensidad y duración de la situación que provoca dicho estrés, entre otros factores. Las técnicas para estimar el estrés hídrico en una planta son conocidas por el experto en la materia como por ejemplo, pero sin limitarse, medida de la expansión de las hojas, medida del cierre estomático, medida de la muerte foliar. Another aspect of the present invention relates to the use of the microorganism of the present invention to increase the tolerance to water stress of a plant, with respect to a control. In the present invention, the control refers to a plant of the same species, subspecies or variety as the previous plant, which has not been exposed to said microorganism or to a plant that has been exposed to the rhizobacterium P. putida KT2440. The term "water stress" as understood in the present invention refers to the reduction of water content in plant tissues that causes alterations in metabolic processes, causing negative effects on plant growth and development. The magnitude of these alterations in the metabolic processes involved depends on the species, moment of the development cycle of the affected plant, the intensity and duration of the situation that causes such stress, among others factors. The techniques for estimating water stress in a plant are known by the person skilled in the art, for example, but not limited to, measure of leaf expansion, measure of stomatic closure, measure of leaf death.
El estrés hídrico puede ser provocado por diversas causas, entre las que se encuentra el estrés salino, ya que es conocido que la concentración de sales solubles en el suelo eleva la presión osmótica de la solución de dicho suelo. Puesto que el agua tiende a pasar de las soluciones menos concentradas a las más concentradas, igualando las presiones osmóticas de ambas, cuando la concentración salina de la solución del suelo es superior a la de las células de la planta, el agua tenderá a salir de éstas últimas hacia la solución del suelo. Por tanto, en medios salinos, aunque exista agua disponible suficiente, la planta sufre estrés hídrico. Water stress can be caused by various causes, including saline stress, since it is known that the concentration of soluble salts in the soil raises the osmotic pressure of the solution of said soil. Since water tends to pass from less concentrated to more concentrated solutions, equalizing the osmotic pressures of both, when the saline concentration of the soil solution is higher than that of the plant cells, the water will tend to leave the latter towards soil solution. Therefore, in saline environments, although there is sufficient available water, the plant suffers water stress.
Las características de una planta que pueden aumentar su tolerancia al estrés hídrico pueden ser, entre otras, pero si limitarse, el mantenimiento de la turgencia de los tejidos mediante el aumento del índice de retención de agua o, el mantenimiento o aumento de la absorción de agua. The characteristics of a plant that can increase its tolerance to water stress can be, among others, but if limited, the maintenance of tissue turgidity by increasing the water retention index or, maintaining or increasing the absorption of Water.
Otra realización preferida de la presente invención se refiere al uso del microorganismo de la invención para aumentar la cantidad de agua absorbida (recuperada) por una planta, respecto de un control, en condiciones de estrés hídrico. En la presente invención se mide la cantidad de agua recuperada por una planta por medio de (ver en ejemplos de realización de la invención): Another preferred embodiment of the present invention relates to the use of the microorganism of the invention to increase the amount of water absorbed (recovered) by a plant, with respect to a control, under conditions of water stress. In the present invention the amount of water recovered by a plant is measured by means of (see in embodiments of the invention):
- La medida del peso de la planta totalmente túrgida. - La medida del potencial de recuperación de agua o índice de recuperación de agua, que consiste en calcular la diferencia entre el agua recuperada por la planta y su peso fresco. - La medida del contenido relativo de agua. Este dato indica la relación entre el agua presente en las plantas en el momento de la extracción respecto del agua total. De esta forma, el valor máximo de 1 se daría en la situación teórica en que por su buen estado hídrico, la planta no pudiera o no necesitara recuperar agua en su estado totalmente túrgido con respecto al peso fresco. - The measure of the weight of the totally turgid plant. - The measure of water recovery potential or water recovery index, which consists in calculating the difference between the water recovered by the plant and its fresh weight. - The measure of the relative water content. This data indicates the relationship between the water present in the plants at the time of extraction with respect to the total water. In this way, the maximum value of 1 would be given in the theoretical situation in which, due to its good water state, the plant could not or would not need to recover water in its totally turgid state with respect to the fresh weight.
Otra realización preferida de la presente invención se refiere al uso del microorganismo de la invención para aumentar el índice de retención de agua de una planta, respecto de un control, en condiciones de estrés hídrico. El índice de retención de agua en una planta es la diferencia entre el peso fresco y el peso seco de dicha planta. Another preferred embodiment of the present invention relates to the use of the microorganism of the invention to increase the water retention rate of a plant, with respect to a control, under conditions of water stress. The water retention rate in a plant is the difference between the fresh weight and the dry weight of that plant.
Una realización preferida de la presente invención se refiere al uso del microorganismo de la invención para aumentar la biomasa de una planta, respecto de un control, en condiciones de estrés hídrico. En la presente invención, el aumento de la biomasa se determina fundamentalmente mediante el cálculo del peso seco de la planta, así como por la medida de la longitud de tallo y raíces en condiciones de estrés hídrico. La cantidad de agua recuperada por una planta, el índice de retención de agua o el aumento de la biomasa de dicha planta pueden ser determinados por medio de la medida de otros parámetros diferentes a los que se especifica anteriormente y en el apartado de ejemplos de realización. Otro aspecto de la presente invención se refiere al uso del microorganismo de la presente invención para aumentar el crecimiento de una planta respecto de un control. Este aspecto de la invención se refiere a condiciones en las que la planta no experimenta estrés hídrico, es decir, en condiciones hídricas óptimas para el desarrollo y crecimiento de dicha planta. A preferred embodiment of the present invention relates to the use of the microorganism of the invention to increase the biomass of a plant, with respect to a control, under conditions of water stress. In the present invention, the increase in biomass is determined primarily by calculating the dry weight of the plant, as well as by measuring the length of the stem and roots under conditions of water stress. The amount of water recovered by a plant, the water retention index or the increase of the biomass of said plant can be determined by means of the measurement of other parameters different from those specified above and in the section of examples of embodiment . Another aspect of the present invention relates to the use of the microorganism of the present invention to increase the growth of a plant with respect to a control. This aspect of the invention relates to conditions in which the plant does not experience water stress, that is, in optimal water conditions for the development and growth of said plant.
Una realización preferida de la presente invención se refiere al uso del microorganismo de la invención para aumentar el crecimiento de una planta respecto de un control, donde el aumento del crecimiento se refiere al aumento de la longitud del tallo o al aumento de la longitud de la raíz de dicha planta. A preferred embodiment of the present invention relates to the use of the microorganism of the invention to increase the growth of a plant with respect to a control, where the increase in growth refers to the increase in the length of the stem or the increase in the length of the plant. root of said plant.
El término "planta" engloba cada una de las partes de la misma, que pueden ser conservadas o cultivadas de forma aislada o en combinación, así como el germoplasma. El germoplasma queda definido por aquel material biológico que contiene la variabilidad genética intraespecífica o a los materiales genéticos que pueden perpetuar una especie o una población de un organismo. Así pues germoplasma es la semilla, tejido de cualquier parte de la planta o plantas establecidas en colecciones ex situ, sin excluir cualquier otro material que entre en esta definición. The term "plant" encompasses each part of it, which can be preserved or cultivated in isolation or in combination, as well as the germplasm. The germplasm is defined by that biological material that contains the intraspecific genetic variability or to the genetic materials that can perpetuate a species or a population of an organism. Thus, germplasm is the seed, tissue of any part of the plant or plants established in ex situ collections, without excluding any other material that falls within this definition.
La planta de la presente invención puede ser, por ejemplo, pero sin limitarse, cualquier planta destinada al consumo humano o animal, plantas cuyo fruto tenga interés para su consumo fresco o procesado industrial, plantas que se utilicen en la generación de productos beneficiosos para la salud humana, como por ejemplo fármacos (biofarms), plantas que se utilicen para la generación de biomasa para fabricar biodiesel, plantas utilizadas en la biorremediación de diferentes tipos de sustratos (fitorremediación). En este sentido, la planta se puede seleccionar de la lista que comprende, pero sin limitarse, del género Solanum, Cucumis, Citrullus, Cucúrbita, Capsicum, Brasica, Nicotiana, Citrullus o Lactuca. The plant of the present invention can be, for example, but not limited to, any plant intended for human or animal consumption, plants whose fruit is of interest for its fresh or industrial processed consumption, plants that are used in the generation of beneficial products for human health, such as drugs (biofarms), plants that are used for the generation of biomass to manufacture biodiesel, plants used in the bioremediation of different types of substrates (phytoremediation). In this sense, the plant can be selected from the list that includes, but is not limited to, the genus Solanum, Cucumis, Citrullus, Cucúrbita, Capsicum, Brasica, Nicotiana, Citrullus or Lactuca.
Otra realización preferida se refiere al uso del microorganismo de la invención para aumentar la tolerancia al estrés hídrico de una planta respecto de un control, o al uso del microorganismo de la invención para aumentar el crecimiento de una planta respecto de un control, donde la planta es del género Capsicum. La especie de planta del género Capsicum se selecciona de la lista que comprende, pero sin limitarse, Capsicum angulosum, Capsicum annuum, Capsicum pendulum, Capsicum mínimum, Capsicum baccatum, Capsicum abbreviatum, Capsicum anomalum, Capsicum breviflorum, Capsicum buforum, Capsicum brasilianum, Capsicum campylopodium, Capsicum cardenasii, Capsicum chacoense, Capsicum chínense, Capsicum chlorocladium, Capsicum ciliatum, Capsicum coccineum, Capsicum cordiforme, Capsicum cornutum, Capsicum dimorphum, Capsicum dusenii, Capsicum exile, Capsicum eximium, Capsicum fasciculatum, Capsicum fastigiatum, Capsicum frutescens, Capsicum flexuosum, Capsicum galapagoensis, Capsicum geminifolum, Capsicum hookerianum, Capsicum lanceolatum, Capsicum leptopodum, Capsicum luteum, Capsicum microcarpum, Capsicum minutiflorum, Capsicum mirabile, Capsicum parvifolium, Capsicum praetermissum, Capsicum pubescens, Capsicum schottianum, Capsicum scolnikianum, Capsicum stramonifolium, Capsicum tetragonum, Capsicum tovarii, Capsicum villosum o Capsicum violaceum. Según una realización más preferida, la planta es de la especie Capsicum annuum. Otro aspecto de la presente invención se refiere a un método para aumentar la tolerancia al estrés hídrico de una planta respecto de un control, que comprende inocular el microorganismo de la invención a una célula vegetal, cualquier parte de una planta o a una semilla. Mediante este método se aumenta el crecimiento de una planta que no está en condiciones de estrés hídrico, respecto del control. Another preferred embodiment relates to the use of the microorganism of the invention to increase the tolerance to water stress of a plant with respect to a control, or to the use of the microorganism of the invention to increase the growth of a plant with respect to a control, where the plant It is of the genus Capsicum. The plant species of the genus Capsicum is selected from the list comprising, but not limited to, Capsicum angulosum, Capsicum annuum, Capsicum pendulum, Capsicum minimum, Capsicum baccatum, Capsicum abbreviatum, Capsicum anomalum, Capsicum breviflorum, Capsicum buforum, Capsicum brasilianum, Capsicum brasilianum, Capsicum brasilianum campylopodium, Capsicum cardenasii, Capsicum chacoense, Capsicum chínense, Capsicum chlorocladium, Capsicum ciliatum, Capsicum coccineum, Capsicum cordiforme, Capsicum cornutum, Capsicum dimorphum, Capsicum dusenii, Capsicum exile, Capsicum eximicumum Capsicumum capsicumum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum capsicum field galapagoensis capsicum, capsicum geminifolum, hookerianum Capsicum, Capsicum lanceolatum, leptopodum Capsicum, Capsicum luteum, microcarpum capsicum, capsicum minutiflorum, Capsicum mirabile, parvifolium capsicum, capsicum praetermissum, Capsicum pubescens, schottianum capsicum, capsicum scolnikianum, stramonifolium capsicum, capsicum tetragonum, Capsi cum tovarii, Capsicum villosum or Capsicum violaceum. According to a more preferred embodiment, the plant is of the species Capsicum annuum. Another aspect of the present invention relates to a method for increasing the tolerance to water stress of a plant with respect to a control, which comprises inoculating the microorganism of the invention to a plant cell, any part of a plant or to a seed. This method increases the growth of a plant that is not in conditions of water stress, with respect to control.
El término "inocular" tal como se emplea en la presente invención se refiere a introducir el microorganismo de la invención en una planta mediante cualquier técnica conocida en el estado de la técnica, como por ejemplo, pero sin limitarse, a través de una solución en hidroponía, a través de una solución aplicada al suelo, por medio de la aplicación del microorganismo de la invención por pulverización de cualquier parte aérea de la planta, mediante la germinación de semillas de la planta en presencia de dicho microorganismo, mediante cultivo de material vegetal in vitro en contacto con el microorganismo de la invención o mediante microinyección del microorganismo de la invención en al menos una célula vegetal o protoplasto. Una realización preferida de la presente invención se refiere al método descrito en los párrafos anteriores, que comprende poner en contacto el microorganismo de la invención con al menos una raíz de dicha planta. Una realización más preferida se refiere al método donde dicho microorganismo o población bacteriana se ponen en contacto con al menos una raíz por medio de una solución acuosa. The term "inocular" as used in the present invention refers to introducing the microorganism of the invention into a plant by any technique known in the state of the art, such as, but not limited to, through a solution in hydroponics, through a solution applied to the soil, through the application of the microorganism of the invention by spraying any aerial part of the plant, by germinating the seeds of the plant in the presence of said microorganism, by cultivating plant material in vitro in contact with the microorganism of the invention or by microinjection of the microorganism of the invention in at least one plant cell or protoplast. A preferred embodiment of the present invention relates to the method described in the preceding paragraphs, which comprises contacting the microorganism of the invention with at least one root of said plant. A more preferred embodiment refers to the method where said microorganism or bacterial population is contacted with at least one root by means of an aqueous solution.
Otra realización preferida se refiere a cualquier método descrito en párrafos anteriores, para aumentar el crecimiento de una planta respecto de un control, donde la planta es del género Capsicum. Según una realización más preferida, la planta es de la especie Capsicum annuum. Otro aspecto de la presente invención se refiere al uso del microorganismo de la invención para la producción de una composición xeroprotectora. Another preferred embodiment refers to any method described in previous paragraphs, to increase the growth of a plant with respect to a control, where the plant is of the genus Capsicum. According to a more preferred embodiment, the plant is of the species Capsicum annuum. Another aspect of the present invention relates to the use of the microorganism of the invention for the production of an xeroprotective composition.
Otro aspecto más de la presente invención se refiere a la composición xeroprotectora producida por el microorganismo de la invención. A further aspect of the present invention relates to the xeroprotective composition produced by the microorganism of the invention.
Para referirse a la composición xeroprotectora de la presente invención se puede emplear el término Producto de Ordeñado Bacteriano (POB). El término "composición xeroprotectora" tal como se entiende en la presente invención, se refiere a una composición que previene los efectos adversos del estrés hídrico, que disminuye los efectos de dicho estrés hídrico en una planta o que promueve el crecimiento de una planta. To refer to the xeroprotective composition of the present invention, the term Bacterial Milking Product (POB) can be used. The term "xeroprotective composition" as understood in the present invention refers to a composition that prevents the adverse effects of water stress, that decreases the effects of said water stress on a plant or that promotes the growth of a plant.
Una realización preferida de la presente invención se refiere a la composición xeroprotectora producida por el microorganismo de la invención, o a una composición xeroprotectora sintética, que comprende trehalosa, ácido oxoglucurónico, lactato, glutamato, glutamina, fucosa y piruvato. Una realización más preferida de la presente invención se refiere a la composición xeroprotectora producida por el microorganismo de la invención, o a una composición xeroprotectora sintética, que comprende una proporción de entre 0,5 y 1 ,5 de trehalosa: 0,15 y 0,45 de ácido oxoglucurónico: 0,7 y 1 ,7 de lactato: 0,1 y 0,2 de glutamato: 0,15 y 0,45 de glutamina: 1 ,2 y 3,4 de fucosa: 0,15 y 0,3 de piruvato. Es decir, una proporción(trehalosa):(ácidooxoglucurónico):(lactato):(glutamato):(glutamin a):(fucosa):(piruvato), de (0,5 a 1 ,5) : (0,15 a 0,45) : (0,7 a 1 ,7) : (0,1 a 0,2) : (0,15 a 0,45) : (1 ,2 a 3,4) : (0,15 a 0,3), respectivamente. Una realización aún más preferida se refiere a la composición xeroprotectora donde la proporción de (trehalosa):(ácido oxoglucurónico):(lactato):(glutamato):(glutamina):(fucosa):(piruvato), es de (0,7 a 1 ,3) : (0,25 a 0,35) : (0,9 a 1 ,6) : (0,12 a 0,18) : (0,2 a 0,4) : (1 ,8 a 2,8) : (0,2 a 0,25). Preferiblemente la composición xeroprotectora tiene una proporción de (trehalosa):(ácido oxoglucurónico):(lactato):(glutamato):(glutamina):(fucosa): (piruvato) de (1 ):(0,31 ):(1 ,18):(0,14):(0,28):(2,26):(0,23), respectivamente. A preferred embodiment of the present invention relates to the xeroprotective composition produced by the microorganism of the invention, or to a synthetic xeroprotective composition, comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine, fucose and pyruvate. A more preferred embodiment of the present invention relates to the xeroprotective composition produced by the microorganism of the invention, or to a synthetic xeroprotective composition, comprising a ratio of between 0.5 and 1.5 trehalose: 0.15 and 0, 45 of oxoglucuronic acid: 0.7 and 1, 7 of lactate: 0.1 and 0.2 of glutamate: 0.15 and 0.45 of glutamine: 1, 2 and 3.4 of fucose: 0.15 and 0 , 3 pyruvate. That is, a ratio (trehalose) :(oxyglucuronic acid) :( lactate) :( glutamate) :( glutamin a) :( fucose) :( pyruvate), of (0.5 to 1, 5): (0.15 to 0.45): (0.7 to 1, 7): (0.1 to 0.2): (0.15 to 0.45): (1, 2 to 3.4): (0.15 to 0.3), respectively. An even more preferred embodiment refers to the xeroprotective composition where the ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( fucose) :( pyruvate), is (0.7 to 1, 3): (0.25 to 0.35): (0.9 to 1, 6): (0.12 to 0.18): (0.2 to 0.4): (1, 8 to 2.8): (0.2 to 0.25). Preferably the xeroprotective composition has a ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( fucose): (pyruvate) of (1) :( 0.31) :( 1, 18) :( 0.14) :( 0.28) :( 2.26) :( 0.23), respectively.
Otra realización preferida de la presente invención se refiere a la composición xeroprotectora producida por el microorganismo de la invención, o a una composición xeroprotectora sintética, que comprende trehalosa, ácido oxoglucurónico, lactato, glutamato, glutamina y piruvato. Another preferred embodiment of the present invention relates to the xeroprotective composition produced by the microorganism of the invention, or to a synthetic xeroprotective composition, comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine and pyruvate.
Una realización más preferida de la presente invención se refiere a la composición xeroprotectora producida por el microorganismo de la invención, o a una composición xeroprotectora sintética, que comprende una proporción de entre 0,5 y 1 ,5 de trehalosa: 0,03 y 0,09 de ácido oxoglucurónico: 0,3 y 0,9 de lactato: 0,05 y 0,15 de glutamato: 0,05 y 0,15 de glutamina: 0,1 y 0,3 de piruvato. Es decir, una proporción (trehalosa):(ácido A more preferred embodiment of the present invention relates to the xeroprotective composition produced by the microorganism of the invention, or to a synthetic xeroprotective composition, comprising a ratio of between 0.5 and 1.5 trehalose: 0.03 and 0, 09 of oxoglucuronic acid: 0.3 and 0.9 of lactate: 0.05 and 0.15 of glutamate: 0.05 and 0.15 of glutamine: 0.1 and 0.3 of pyruvate. That is, a ratio (trehalose) :( acid
oxoglucurónico):(lactato):(glutamato):(glutamina):(piruvato), de (0,5 a 1 ,5) : (0,03 a 0,09) : (0,3 a 0,9) : (0,05 a 0,15) : (0,05 a 0,15) : (0,1 a 0,3), respectivamente. Una realización aún más preferida se refiere a la composición xeroprotectora donde la proporción de (trehalosa):(ácido oxoglucurónico):(lactato):(glutamato):(glutamina):(fucosa):(piruvato), es de (0,7 a 1 ,3) : (0,05 a 0,07) : (0,5 a 0,7) : (0,07 a 0,12) : (0,07 a 0,12) : (0,15 a 0,25). Preferiblemente la composición xeroprotectora tiene una proporción de (trehalosa):(ácido oxoglucurónico):(lactato):(glutamato):(glutamina):(piruvato) de (1 ):(0,06):(0,62):(0,1 ):(0,1 ):(0,21 ), respectivamente. El término "proporción" tal como se entiende en la presente invención se refiere a la correspondencia debida de los elementos de la composición relacionados entre sí. Es decir, se refiere a una relación matemática que vincula los elementos de la composición. Para que sirva de ejemplo, la composición xeroprotectora que tiene una proporción de (trehalosa):(ácido oxoglucurónico):(lactato):(glutamato):(glutamina):(piruvato) de (1 ):(0,06):(0,62):(0,1 ):(0,1 ):(0,21 ), respectivamente, puede tener por ejemplo, concentraciones de (2):(0,12):(1 ,24):(0,2):(0,2):(0,42) mg de cada elemento respectivamente/ml. oxoglucuronic) :( lactate) :( glutamate) :( glutamine) :( pyruvate), of (0.5 to 1.5): (0.03 to 0.09): (0.3 to 0.9): (0.05 to 0.15): (0.05 to 0.15): (0.1 to 0.3), respectively. An even more preferred embodiment refers to the xeroprotective composition where the ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( fucose) :( pyruvate), is (0.7 at 1, 3): (0.05 to 0.07): (0.5 to 0.7): (0.07 to 0.12): (0.07 to 0.12): (0.15 to 0.25). Preferably the xeroprotective composition has a ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( pyruvate) of (1) :( 0.06) :( 0.62) :( 0.1) :( 0.1) :( 0.21), respectively. The term "proportion" as understood in the present invention refers to the due correspondence of the elements of the composition related to each other. That is, it refers to a mathematical relationship that links the elements of the composition. As an example, the xeroprotective composition that has a ratio of (trehalose) :( oxoglucuronic acid) :( lactate) :( glutamate) :( glutamine) :( pyruvate) of (1) :( 0.06) :( 0.62) :( 0.1) :( 0.1) :( 0.21), respectively, may have, for example, concentrations of (2) :( 0.12) :( 1, 24) :( 0 , 2) :( 0.2) :( 0.42) mg of each element respectively / ml.
En adelante se podrá hacer referencia a cualquier composición descrita en los párrafos anteriores como "composición de la presente invención" o "composición de la invención". Hereinafter reference may be made to any composition described in the preceding paragraphs as "composition of the present invention" or "composition of the invention".
Otro aspecto de la presente invención se refiere al uso de la composición de la invención para la conservación de material biológico con un contenido de humedad residual igual o inferior al 10%. El contenido de humedad residual del material biológico puede ser igual o inferior al 9, 8, 7, 6 5, 4, 3, 2 ó 1 % de humedad residual. La conservación de dicho material puede llevarse a cabo mediante la estabilización del mismo. En la presente invención, para referirse a este tipo de material biológico se puede emplear la expresión "material biológico en estado seco". En estas condiciones, el conservante o estabilizador coalesce para alcanzar un estado no-cristalino, vitreo, y sólido (por ejemplo un cristal amorfo). Las partículas de cristal orgánico que están formadas al secar el material biológico con el estabilizador están cubiertas por el estabilizador que produce una alta estabilidad al reducir drásticamente las reacciones químicas. De esta forma el material biológico seco está incrustado en el cristal amorfo formado por el estabilizador. Another aspect of the present invention relates to the use of the composition of the invention for the conservation of biological material with a residual moisture content equal to or less than 10%. The residual moisture content of the biological material may be equal to or less than 9, 8, 7, 6 5, 4, 3, 2 or 1% residual moisture. The preservation of said material can be carried out by stabilizing it. In the present invention, the term "dry material biological material" can be used to refer to this type of biological material. Under these conditions, the preservative or stabilizer coalesces to reach a non-crystalline, vitreous, and solid state (for example an amorphous crystal). The organic crystal particles that are formed by drying the biological material with the stabilizer are covered by the stabilizer that produces high stability by drastically reducing chemical reactions. In this way the dried biological material is embedded in the amorphous crystal formed by the stabilizer.
El material biológico seco en presencia del estabilizador que forma el cristal amorfo es resistente a plásticos en estado líquido, mientras que el material que no está seco en presencia de estos estabilizadores no es resistente a plásticos en estado líquido. The dry biological material in the presence of the stabilizer that forms the amorphous crystal is resistant to plastics in a liquid state, while the material that is not dry in the presence of these stabilizers is not resistant to plastics in a liquid state.
El material biológico seco en estas formas puede encontrarse en estado no particulado y puede suministrarse en formas por ejemplo, pero sin limitarse, molduras o sólidos en 3 dimensiones como por ejemplo, pero sin limitarse, bloques, pastillas, parches, hojas, bolas, o pepitas de material biológico seco. El término "humedad residual" tal como se emplea en la presente invención se refiere a la cantidad de humedad que contiene un producto después de pasado por algún tipo de proceso capaz de eliminar agua del mismo. La humedad residual es el porcentaje de masa del producto que corresponde a agua respecto del total de la masa. Es decir un valor de humedad residual de un producto igual a un 10% significa que 10 g de cada 100 g del producto corresponden a agua. La humedad residual puede ser medida mediante métodos conocidos en el estado de la técnica como por ejemplo, pero sin limitarse, mediante el método titrimétrico, el método azeotrópico o el método gravimétrico. The dry biological material in these forms can be in a non-particulate state and can be supplied in forms, for example, but not limited to, moldings or solids in 3 dimensions such as, but not limited to, blocks, pads, patches, sheets, balls, or seeds of dry biological material. The term "residual moisture" as used in the present invention refers to the amount of moisture a product contains after it has passed through some type of process capable of removing water from it. Residual humidity is the mass percentage of the product that corresponds to water with respect to the total mass. In other words, a residual moisture value of a product equal to 10% means that 10 g of every 100 g of the product correspond to water. Residual humidity can be measured by methods known in the state of the art such as, but not limited to, by the titrimetric method, the azeotropic method or the gravimetric method.
El término "conservación de material biológico" hace referencia al mantenimiento o cuidado de la permanencia de las características intrínsecas del material biológico. Una realización preferida se refiere al uso de la composición de la invención para la conservación de material biológico en estado seco, donde el material biológico es un organismo invertebrado, una semilla, una plántula, un microorganismo, un órgano aislado, un tejido biológico aislado o una célula. La célula puede ser procariota o eucariota. La célula puede ser una célula de un microorganismo en cualquier estado de desarrollo. La célula puede ser somática o germinal, vegetal o animal. Dicha célula puede proceder de cualquier organismo o microorganismo y puede presentarse en cualquier estado de diferenciación, como por ejemplo, pero sin limitarse, procedente de un cultivo de un tejido celular o de órganos, esperma, óvulos o embriones. La célula puede ser una célula madre totipotente, multipotente o unipotente. El microorganismo puede ser unicelular o multicelular. El microorganismo unicelular se selecciona de la lista que comprende, pero sin limitarse, E. coli, S. typhimurium, P. putida., Salmonella spp, Rhizobium spp, Pseudomonas spp, Rhodococcus spp, Lactobacillus spp. o Bifidobacterium spp. El microorganismo pluricelular puede ser por ejemplo, pero sin limitarse, un nematodo. The term "conservation of biological material" refers to the maintenance or care of the permanence of the intrinsic characteristics of the biological material. A preferred embodiment relates to the use of the composition of the invention for the conservation of biological material in the dry state, where the biological material is an invertebrate organism, a seed, a seedling, a microorganism, an isolated organ, an isolated biological tissue or a cell. The cell can be prokaryotic or eukaryotic. The cell can be a cell of a microorganism in any state of development. The cell can be somatic or germinal, plant or animal. That cell It can come from any organism or microorganism and can occur in any state of differentiation, such as, but not limited to, from a culture of a cellular tissue or organs, sperm, ovules or embryos. The cell can be a totipotent, multipotent or unipotent stem cell. The microorganism can be unicellular or multicellular. The unicellular microorganism is selected from the list comprising, but not limited to, E. coli, S. typhimurium, P. putida., Salmonella spp, Rhizobium spp, Pseudomonas spp, Rhodococcus spp, Lactobacillus spp. or Bifidobacterium spp. The multicellular microorganism can be, for example, but not limited to, a nematode.
La célula conservada por la composición de la presente invención es una célula viable es decir, es capaz de realizar las funciones normales de la célula incluyendo la replicación y división celular. Por otra parte la célula puede haber sido tratada, manipulada o mutada antes de su conservación. Por ejemplo, pero sin limitarse, una célula puede haberse hecho competente para transformaciones o transfecciones, o puede contener ácidos nucleicos recombinantes. Las células que se conservan pueden formar una población homogénea o heterogénea, por ejemplo, pero sin limitarse, una librería de células en las que cada célula contiene una variación de algún ácido nucleico. Preferentemente las células son células no anhidrobióticas (células sensibles a desecación) como por ejemplo, pero sin limitarse, células procedentes de microorganismos procariotas no anhidrobiontes que generalmente no sean esporulantes. The cell conserved by the composition of the present invention is a viable cell that is, it is capable of performing the normal functions of the cell including cell replication and division. On the other hand, the cell may have been treated, manipulated or mutated before preservation. For example, but not limited to, a cell may have become competent for transformations or transfections, or it may contain recombinant nucleic acids. The cells that are conserved can form a homogeneous or heterogeneous population, for example, but not limited to, a library of cells in which each cell contains a variation of some nucleic acid. Preferably, the cells are non-anhydrobotic cells (desiccation-sensitive cells) such as, but not limited to, cells from non-anhydrobial prokaryotic microorganisms that are generally not sporulant.
La conservación del microorganismo puede mejorarse mediante cultivo bajo condiciones que aumenten la concentración intracelular de trehalosa o de otros estabilizadores formadores de cristales amorfos. Por ejemplo, pero sin limitarse, en condiciones de alta osmolaridad (alta concentración de sales) que estimulen la producción intracelular de trehalosa o de otros estabilizantes formadores de cristales amorfos. El organismo invertebrado es pero sin limitarse, una larva de insecto o un crustáceo. Dichos organismos invertebrados pueden ser preservados en condiciones de desecación, permitiendo la actividad vital del mismo, de modo que, cuando se rehidratan, dichos organismos presentan la capacidad de movimiento. La plántula es una planta en sus primeros estadios de desarrollo, desde que germina hasta que se desarrolla The conservation of the microorganism can be improved by culture under conditions that increase the intracellular concentration of trehalose or other amorphous crystal-forming stabilizers. For example, but not limited, under conditions of high osmolarity (high concentration of salts) that stimulate the intracellular production of trehalose or other amorphous crystal-forming stabilizers. The invertebrate organism is, but is not limited to, an insect larva or a crustacean. Said invertebrate organisms can be preserved under drying conditions, allowing the vital activity thereof, so that, when rehydrated, said organisms have the ability to move. The seedling is a plant in its early stages of development, from germination until it develops
La composición de la invención puede usarse para la conservación de material biológico en estado seco, donde el material biológico es un organismo vertebrado perteneciente a la Superclase Tetrápoda (con cuatro extremidades), The composition of the invention can be used for the conservation of biological material in the dry state, where the biological material is a vertebrate organism belonging to the Tetrapoda Superclass (with four limbs),
Clase Amphibia (anfibios) o Clase Reptilia (reptiles), o cualquiera de sus partes (Vernon y Jackson, 1931 . The biological bulletin, 60: 80-93). Vernon y Jackson llevaron a cabo un estudio sobre la rana Leopardo (Rana pipiens), en el que de forma natural se seca su piel, lengua, bazo, e hígado con una pérdida de agua de entre un 43-81 % del contenido de agua total.  Amphibia class (amphibians) or Reptilia class (reptiles), or any of its parts (Vernon and Jackson, 1931. The biological bulletin, 60: 80-93). Vernon and Jackson carried out a study on the Leopard frog (Rana pipiens), in which their skin, tongue, spleen, and liver naturally dries with a water loss of between 43-81% of the water content total.
Un órgano aislado, o un tejido biológico aislado (incluida la sangre) pueden conservarse mediante la composición de la presente invención. En Serrato et al. (2009) pueden observarse resultados de protocolos de crioperservación de tejidos biológicos (Serrato et al., 2009. Histology and histopathology, 24: 1531 -1540). Una realización más preferida se refiere al uso de la composición de la invención, donde el material biológico es una molécula con actividad biológica. El término "molécula con actividad biológica" tal como se entiende en la presente invención se refiere a una molécula biológica cuyo origen sea un organismo vivo o que haya estado vivo, o derivados o análogos de dicha molécula. El término "derivados" se refiere a moléculas obtenidas por la modificación de una molécula con actividad biológica, que presentan una funcionalidad similar. Por otra parte, el término "análogos" se refiere a moléculas que presentan una función similar a la molécula con actividad biológica. Según otra realización aún más preferida de la composición de la presente invención la molécula con actividad biológica es una enzima. Una realización todavía más preferida de la presente invención se refiere al uso de la composición de la invención, donde la enzima es una enzima con actividad lipasa. La enzima con actividad lipasa se selecciona de la lista de enzimas con números EC (Enzyme Commission numbers) que comprende las hidrolasas de éster carboxílico (EC 3.1 .1 ) EC 3.1.1 .1 (Carboxilesterasa), EC 3.1 .1.2 (Arilesterasa), EC 3.1 .1 .3 (Triacilglicerol lipasa), EC 3.1 .1 .4 (Fosfolipasa A(2)), EC 3.1.1.5 (Lisofosfolipasa), EC 3.1 .1 .23 (Acilglicerol lipasa), EC 3.1 .1 .24 (3-oxoadipato enol-lactonasa), EC 3.1 .1 .25 (1 ,4-lactonasa), EC 3.1 .1 .26 (Galactolipasa), EC 3.1 .1 .32 (Fosfolipasa A(1 )), EC 3.1 .1 .33 (6-acetilglucosa deacetilasa), EC 3.1 .1 .34 (Lipoproteína lipasa). Preferiblemente la enzima lipasa tiene actividad Triacilglicerol lipasa (EC 3.1 .1 .3). Otro aspecto de la presente invención se refiere a un método de obtención de la composición xeroprotectora de la invención que comprende: a) cultivar el microorganismo de la invención en un medio de cultivo con glucosa como fuente de carbono, An isolated organ, or an isolated biological tissue (including blood) can be preserved by the composition of the present invention. In Serrato et al. (2009) results of cryopreservation protocols of biological tissues can be observed (Serrato et al., 2009. Histology and histopathology, 24: 1531-1540). A more preferred embodiment relates to the use of the composition of the invention, where the biological material is a molecule with biological activity. The term "molecule with biological activity" as understood in the present invention refers to a biological molecule whose origin is a living organism or that has been alive, or derivatives or analogs of said molecule. The term "derivatives" refers to molecules obtained by the modification of a molecule with biological activity, which They have similar functionality. On the other hand, the term "analogs" refers to molecules that have a function similar to the molecule with biological activity. According to another even more preferred embodiment of the composition of the present invention the molecule with biological activity is an enzyme. An even more preferred embodiment of the present invention relates to the use of the composition of the invention, where the enzyme is an enzyme with lipase activity. The enzyme with lipase activity is selected from the list of enzymes with EC numbers (Enzyme Commission numbers) comprising carboxylic ester hydrolases (EC 3.1 .1) EC 3.1.1 .1 (Carboxylesterase), EC 3.1 .1.2 (Arilesterase) , EC 3.1 .1 .3 (Triacylglycerol lipase), EC 3.1 .1 .4 (Phospholipase A (2)), EC 3.1.1.5 (Lysophospholipase), EC 3.1 .1 .23 (Acylglycerol lipase), EC 3.1 .1. 24 (3-oxoadipate enol-lactonase), EC 3.1 .1 .25 (1, 4-lactonase), EC 3.1 .1 .26 (Galactolipase), EC 3.1 .1 .32 (Phospholipase A (1)), EC 3.1 .1 .33 (6-acetylglucose deacetylase), EC 3.1 .1 .34 (Lipoprotein lipase). Preferably the enzyme lipase has Triacylglycerol lipase activity (EC 3.1 .1 .3). Another aspect of the present invention relates to a method of obtaining the xeroprotective composition of the invention comprising: a) culturing the microorganism of the invention in a culture medium with glucose as a carbon source,
b) deshidratar los microorganismos obtenidos en el cultivo del paso (a) hasta que tengan una humedad residual igual o inferior al 10%, b) dehydrate the microorganisms obtained in the culture of step (a) until they have a residual humidity equal to or less than 10%,
c) rehidratar los microorganismos deshidratados del paso (b) en un medio hipotónico y c) rehydrate the dehydrated microorganisms of step (b) in a hypotonic medium and
d) seleccionar la fracción líquida del producto obtenido en el paso (c) que comprende la composición xeroprotectora. El medio de cultivo es cualquier medio de cultivo conocido en el estado de la técnica para el crecimiento de un microorganismo de la presente invención, por ejemplo pero sin limitarse, el medio mineral M9. Medios ricos como el medio Luria Bertani (LB) en los que hay presentes xeroprotectores, u osmolitos naturales no sirven, porque la bacteria preferiría tomarlos del exterior a sintentizarlos. d) select the liquid fraction of the product obtained in step (c) comprising the xeroprotective composition. The culture medium is any culture medium known in the state of the art for the growth of a microorganism of the present invention, for example but not limited to, the M9 mineral medium. Rich media such as Luria Bertani (LB) medium in which xeroprotectors, or natural osmolytes are not present, because the bacteria would prefer to take them from outside to synthesize them.
Una realización preferida de la presente invención se refiere al método de obtención de la composición xeroprotectora, donde el medio de cultivo del paso (a) es sólido. El término "sólido" tal como se entiende en la presente invención se refiere a un medio de cultivo gelificado en mayor o menor grado, es decir, que comprende agar para facilitar su gelificación o cualquier compuesto gelificante. La deshidratación de los microorganismos del paso (b) se lleva a cabo por medio de cualquier técnica conocida en el estado de la técnica. Otra realización preferida de la presente invención se refiere al método, donde la deshidratación de los microorganismos según el paso (b) se lleva a cabo por medio de una solución hipertónica o por medio de una corriente de aire. Preferiblemente la solución hipertónica o la corriente de aire tienen condiciones de esterilidad. La solución hipertónica es una solución que tiene mayor concentración de soluto en el medio externo que en el citoplasma de la células del microorganismo de la presente invención, por tanto, la célula libera agua, es decir, se deshidrata. A preferred embodiment of the present invention relates to the method of obtaining the xeroprotective composition, where the culture medium of step (a) is solid. The term "solid" as understood in the present invention refers to a gelled culture medium to a greater or lesser extent, that is, comprising agar to facilitate its gelation or any gelling compound. Dehydration of the microorganisms in step (b) is carried out by means of any technique known in the state of the art. Another preferred embodiment of the present invention relates to the method, where the dehydration of the microorganisms according to step (b) is carried out by means of a hypertonic solution or by means of an air current. Preferably the hypertonic solution or the air stream have sterility conditions. The hypertonic solution is a solution that has a higher concentration of solute in the external environment than in the cytoplasm of the cells of the microorganism of the present invention, therefore, the cell releases water, that is, it is dehydrated.
La rehidratación de los microorganismos, descrita en el paso (c), se lleva a cabo en un medio hipotónico. El medio hipotónico o solución hipotónica es una solución que tiene menor concentración de soluto en el medio externo que en el citoplasma de la célula del microorganismo de la presente invención, por tanto, la célula recupera agua, es decir, se rehidrata. Una realización preferida más se refiere al método, donde el medio hipotónico para la rehidratación de los microorganismos según el paso (c) es agua, parcial o totalmente destilada, parcial o totalmente desionizada o parcial o totalmente desmineralizada. Las células y el medio hipotonico han de estar en contacto al menos 5 minutos. Preferiblemente estarán en contacto al menos 20 minutos en agitación. La obtención del medio que contiene las sustancias estabilizantes se realizará por cualquier método que garantice la separación de células del contenido líquido, preferiblemente mediante centrifugado suave, seguido de un paso de filtración. Preferiblemente se utilizarán filtros de 0,4 micrómetros de diámetro de poro. The rehydration of the microorganisms, described in step (c), is carried out in a hypotonic medium. The hypotonic medium or hypotonic solution is a solution that has a lower concentration of solute in the external medium than in the cytoplasm of the cell of the microorganism of the present invention, therefore, the cell recovers water, that is, it is rehydrated. A further preferred embodiment refers to the method, where the hypotonic medium for the rehydration of the microorganisms according to step (c) it is water, partially or totally distilled, partially or totally deionized or partially or totally demineralized. The cells and the hypotonic medium must be in contact for at least 5 minutes. Preferably they will be in contact for at least 20 minutes with stirring. Obtaining the medium containing the stabilizing substances will be carried out by any method that guarantees the separation of cells from the liquid content, preferably by gentle centrifugation, followed by a filtration step. Preferably 0.4 micrometer pore diameter filters will be used.
Otra realización preferida se refiere al método, donde además, la fracción líquida del paso (d) se deshidrata hasta que el producto xeroprotector tenga una humedad residual igual o inferior al 10%. Another preferred embodiment relates to the method, where, in addition, the liquid fraction of step (d) is dehydrated until the xeroprotector product has a residual humidity equal to or less than 10%.
El producto xeroprotector de la invención se puede separar del medio de cultivo por cualquier método de concentración. Preferiblemente se utilizarán secadores de tipo liofilizador que produzcan el estabilizador en estado seco. Las moléculas estabilizadoras se podrán disolver o dispersar en una proporción de entre el 10 y el 30%. Esta disolución o dispersión se añade al material biológico que se desee conservar y se someterá a desecación. Otra realización preferida de la presente invención se refiere al método de obtención de la composición xeroprotectora, donde la deshidratación de los microorganismos según el paso (b) se lleva a cabo por medio de una solución hipertónica o por medio de una corriente de aire. Otra realización preferida de la presente invención se refiere al método de obtención de la composición xeroprotectora, donde el medio hipotonico para la rehidratación de los microorganismos según el paso (c) es agua parcial o totalmente destilada, desionizada o desmineralizada. The xeroprotector product of the invention can be separated from the culture medium by any method of concentration. Preferably, lyophilizer-type dryers that produce the stabilizer in the dry state will be used. The stabilizing molecules may be dissolved or dispersed in a proportion of between 10 and 30%. This solution or dispersion is added to the biological material that is to be preserved and will be dried. Another preferred embodiment of the present invention relates to the method of obtaining the xeroprotective composition, where the dehydration of the microorganisms according to step (b) is carried out by means of a hypertonic solution or by means of an air current. Another preferred embodiment of the present invention relates to the method of obtaining the xeroprotective composition, where the hypotonic medium for the rehydration of the microorganisms according to step (c) it is water partially or totally distilled, deionized or demineralized.
Otra realización preferida de la presente invención se refiere al método de obtención de la composición xeroprotectora, donde además, la fracción líquida del paso (d) se deshidrata hasta que el producto xeroprotector tenga una humedad residual igual o inferior al 10%. Another preferred embodiment of the present invention relates to the method of obtaining the xeroprotective composition, where in addition, the liquid fraction of step (d) is dehydrated until the xeroprotector product has a residual humidity equal to or less than 10%.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following figures and examples are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCION DE LAS FIGURAS Con la intención de complementar la descripción que se ha llevado a cabo, así como de ayudar a un mejor entendimiento de las características de la invención, de acuerdo con algunos ejemplos realizados, se muestran aquí, con carácter ilustrativo y no limitante, las siguientes figuras: FIG. 1. Muestra la viabilidad de los distintos aislados bacterianos seleccionados mediante exposición a cloroformo tras 24 horas de secado al aire. DESCRIPTION OF THE FIGURES With the intention of complementing the description that has been carried out, as well as helping to better understand the characteristics of the invention, according to some examples made, they are shown here, for illustrative and non-limiting purposes. , the following figures: FIG. 1. Shows the viability of the different bacterial isolates selected by exposure to chloroform after 24 hours of air drying.
Las barras de error muestran la desviación estándar de al menos tres réplicas. Las cepas de microorganismos representadas en esta figura son: Error bars show the standard deviation of at least three replicas. The microorganism strains represented in this figure are:
1 J3A, 1 J14, 2J2, 2J8A, 2J12B, 2J15B, 2J16A, 2J30, 3J18, 6J30, Acitenobacter calcoaceticus, Pseudomonas putida, además de la cepa Microbacterium sp. 3J1 . 1 J3A, 1 J14, 2J2, 2J8A, 2J12B, 2J15B, 2J16A, 2J30, 3J18, 6J30, Acitenobacter calcoaceticus, Pseudomonas putida, in addition to the Microbacterium sp. 3J1.
FIG. 2. Muestra la actividad lipasa (en porcentaje relativo a un 100% de actividad del control positivo) tras secado de la enzima lipasa en presencia de los distintos componentes de productos del ordeñado bacteriano al 10% (p/v). FIG. 2. Shows the lipase activity (in percentage relative to 100% positive control activity) after drying of the lipase enzyme in the presence of the different components of 10% bacterial milking products (w / v).
El control positivo es trehalosa al 10%. El control negativo (-) se corresponde con la ausencia de compuesto alguno como aditivo previo a la desecación de la enzima. 3J1 es el valor de actividad lipasa registrada tras la estabilización por secado y posterior reconstitución de la enzima en presencia de POB extraídos de la cepa 3J1 mediante choque hiper/hipoosmótico respectivamente. 3J1 D es la actividad lipasa registrada tras la estabilización por secado y posterior reconstitución de la enzima en presencia de POBSIA (Producto de Ordeñado Bacteriano extraído por Secado mediante Incubación al Aire) extraídos de la cepa 3J1 mediante tratamiento de secado y posterior hidratación. The positive control is trehalose at 10%. The negative control (-) corresponds to the absence of any compound as an additive prior to the drying of the enzyme. 3J1 is the value of lipase activity recorded after drying stabilization and subsequent reconstitution of the enzyme in the presence of POB extracted from strain 3J1 by hyper / hypoosmotic shock respectively. 3J1 D is the lipase activity recorded after drying stabilization and subsequent reconstitution of the enzyme in the presence of POBSIA (Bacterial Milking Product extracted by Drying by Air Incubation) extracted from strain 3J1 by drying and subsequent hydration treatment.
FIG. 3. Muestra el estado de las plantas inoculadas con Microbacterium sp. 3J1 , P. putida KT2440 y de las plantas sin inocular tras 33 días sin riego. FIG. 3. Shows the state of the plants inoculated with Microbacterium sp. 3J1, P. putida KT2440 and non-inoculated plants after 33 days without irrigation.
Se muestran dos plantas de cada tipo de muestra en el último punto de muestreo que incluyen plantas no inoculadas (Agua); inoculadas con P. putida e inoculadas con 3J1. FIG. 4. Muestra el Peso Fresco de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo tras el cese del riego. En ordenadas se muestra el peso en mg de las plantas. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. FIG. 5. Muestra el Peso Seco de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo tras el cese del riego. Two plants of each type of sample are shown at the last sampling point that include non-inoculated plants (Water); inoculated with P. putida and inoculated with 3J1. FIG. 4. Shows the Fresh Weight of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33. FIG. 5. Shows the Dry Weight of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation.
En ordenadas se muestra el peso en mg de las plantas. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
FIG. 6. Muestra el Peso Totalmente Túrgido de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo tras el cese del riego. FIG. 6. Shows the Totally Turbid Weight of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation.
En ordenadas se muestra el peso en mg de las plantas. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
FIG. 7. Muestra el Contenido Relativo de Agua en plantas inoculadas con las distintas cepas a los diferentes tiempos del ensayo tras el cese del riego. En ordenadas de muestran los valores adimensionales del CRA. En abscisas se indican los tiempos de muestreo. FIG. 7. Shows the Relative Content of Water in plants inoculated with the different strains at the different times of the test after the cessation of irrigation. In ordinates show the dimensionless values of the CRA. In abscissa the sampling times are indicated.
FIG. 8. Muestra el Potencial de retención agua de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo tras el cese del riego. FIG. 8. Shows the water retention potential of the plants inoculated with each of the strains at different test times after the cessation of irrigation.
En ordenadas se muestra el agua retenida estructuralmente por las plantas en mg. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. In ordinates the water structurally retained by the plants in mg is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
FIG. 9. Muestra la altura tallo de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo tras el cese del riego. FIG. 9. Shows the stem height of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation.
En ordenadas se muestra la altura en cm de la planta. En abscisas se indican los inóculos utilizados. La escala de grises de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. In ordinates the height in cm of the plant is shown. In abscissa the inoculums used are indicated. The grayscale of the bars refers to the sample time, with the target corresponding to day 7 of sampling, light gray, day 14 being dark gray at 20 and black at day 33.
FIG. 10. Muestra la longitud de la raíz de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo tras el cese del riego. FIG. 10. Shows the root length of the plants inoculated with each of the strains at the different times of the test after the cessation of irrigation.
En ordenadas se muestra la altura en cm de la planta. En abscisas se indican los inóculos utilizados. La escala de grises de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. FIG. 11. Muestra la altura tallo de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo en condiciones de humedad. En ordenadas se muestra la altura en cm de la planta. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. FIG. 12. Muestra la longitud de la raíz de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo en condiciones de humedad. In ordinates the height in cm of the plant is shown. In abscissa the inoculums used are indicated. The grayscale of the bars refers to the sample time, with the target corresponding to day 7 of sampling, light gray, day 14 being dark gray at 20 and black at day 33. FIG. 11. Shows the stem height of the plants inoculated with each of the strains at the different times of the test in humid conditions. In ordinates the height in cm of the plant is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33. FIG. 12. Shows the root length of the plants inoculated with each of the strains at the different test times in humid conditions.
En ordenadas de muestra la longitud en cm de las raíces. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. In sample ordinates the length in cm of the roots. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
FIG. 13. Muestra el Peso Fresco de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo en condiciones de humedad. FIG. 13. Shows the Fresh Weight of the plants inoculated with each of the strains at the different times of the test in humid conditions.
En ordenadas se muestra el peso en mg de las plantas. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
FIG. 14. Muestra el Peso Seco de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo y cultivadas en condiciones de humedad. En ordenadas se muestra el peso en mg de las plantas. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. FIG. 14. Shows the Dry Weight of the plants inoculated with each of the strains at the different times of the test and grown in humid conditions. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
FIG. 15. Muestra el Peso Totalmente Túrgido de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo y cultivadas en condiciones de humedad. En ordenadas se muestra el peso en mg de las plantas. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. FIG. 16. Muestra el Potencial de retención agua de las plantas inoculadas con cada una de las cepas a los diferentes tiempos del ensayo y cultivadas en condiciones de humedad. FIG. 15. Shows the Totally Turbid Weight of the plants inoculated with each one of the strains at the different times of the test and cultivated in humid conditions. In ordinates the weight in mg of the plants is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33. FIG. 16. Shows the water retention potential of the plants inoculated with each of the strains at the different times of the test and grown in humid conditions.
En ordenadas se muestra el agua retenida estructuralmente por las plantas en mg. En abscisas se indican los inóculos utilizados. Los colores de las barras hacen referencia al tiempo de muestra, siendo el blanco correspondiente al día 7 de muestreo, el gris claro, al día 14 el gris oscuro al 20 y el negro al día 33. In ordinates the water structurally retained by the plants in mg is shown. In abscissa the inoculums used are indicated. The colors of the bars refer to the sample time, with the white corresponding to day 7 of sampling, light gray, at day 14, dark gray at 20 and black at day 33.
EJEMPLOS EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos ilustrativos y de carácter no limitante, realizados por los inventores que describen el aislamiento de la cepa de la presente invención así como sus usos. EJEMPLO 1. Aislamiento del microorganismo perteneciente a la cepa 3J1, extracción de POB (Productos del Ordeñado Bacteriano). The invention will now be illustrated by illustrative and non-limiting tests carried out by the inventors who describe the isolation of the strain of the present invention as well as its uses. EXAMPLE 1. Isolation of the microorganism belonging to strain 3J1, extraction of POB (Bacterial Milking Products).
1.2. Aislamiento de la cepa 3J1 (CECT7624). 1.2. Isolation of strain 3J1 (CECT7624).
Se homogeneizó 1 g de suelo seco, procedente de Granada (37.182 Latitud N y 3.624 Longitud O), no expuesto a lluvia, ni riego, por un periodo superior a tres meses. El suelo se tomó del área circundante a raíces de adelfa (Nerium oleander). Las muestras fueron homogeneizadas para obtener un grano de tierra fino que garantizara su contacto con el cloroformo. La tierra se depositó en viales de vidrio a los que se les añadió 3 mi de cloroformo puro. Tras la adición del cloroformo se incubaron a temperatura ambiente durante 30 minutos con agitación esporádica para maximizar el contacto de la muestra con el disolvente. Para eliminar el cloroformo de las muestras una vez transcurrido el tiempo de contacto, las muestras de suelo fueron depositadas en placa petri de vidrio estéril sin tapadera hasta completar la evaporación del cloroformo. Una vez secas las muestras de suelo se resuspendieron en 10 mi de TSB. Con las suspensiones de suelo se realizaron diluciones seriadas y se sembraron en placas de TSA que se incubaron 48 horas a 30°C. Trascurrido este tiempo se cuantificó el número de unidades formadoras de colonias (UFC) por mililitro de cada muestra. Así, se detectaron 2- 105 UFC/g de suelo en las muestras sin tratar, mientras que estas se redujeron a 1 ,3- 105 UFC/g de suelo tras 30 minutos de tratamiento. 1 g of dry soil was homogenized, from Granada (37,182 Latitude N and 3,624 Longitude O), not exposed to rain or irrigation, for a period exceeding three months. The soil was taken from the area surrounding oleander roots (Nerium oleander). The samples were homogenized to obtain a fine earth grain that would guarantee their contact with the chloroform. The earth was deposited in glass vials to which 3 ml of pure chloroform was added. After the addition of the chloroform, they were incubated at room temperature for 30 minutes with sporadic agitation to maximize contact of the sample with the solvent. To remove the chloroform from the samples after the contact time had elapsed, the soil samples were deposited in a sterile glass petri dish without a lid until the evaporation of the chloroform was completed. Once the soil samples were dried, they were resuspended in 10 ml of TSB. Serial dilutions were made with the soil suspensions and seeded in TSA plates that were incubated 48 hours at 30 ° C. After this time, the number of colony forming units (CFU) per milliliter of each sample was quantified. Thus, 2-10 5 CFU / g of soil was detected in the untreated samples, while these were reduced to 1, 3-10 5 CFU / g of soil after 30 minutes of treatment.
Se seleccionaron aleatoriamente 36 cepas y para identificar las cepas que producían esporas se realizó un ensayo basado en la diferente sensibilidad de las células vegetativas con respecto a las esporas al tratamiento con calor y en base al método descrito por Vilchez y colaboradores (Vilchez et al., 2008. Extremophiles, 12: 297-299). De esta forma se tomaron colonias independientes procedentes de placas de TSA de al menos 24 horas de crecimiento. Estas colonias se resuspendieron en 1 mi de solución M9 en microtubos estériles de 1 ,5 mi. Seguidamente se sembraron 10 μΙ de esta suspensión en TSA. Acto seguido se incubó el resto de la suspensión en termobloque Mixing Block MB-102 a 72°C durante 30 minutos. Nuevamente se tomaron 10 μΙ de cada muestra y se sembraron en placa de TSA. Aquellas cepas con capacidad para tolerar el tratamiento con calor se consideraron como esporulantes, mientras que aquellas que no toleraron el tratamiento por calor se consideraron no esporulantes. Como controles positivos y negativos se utilizaron colonias de Bacillus pumilus y de Burkholderia cepacia respectivamente. La proporción de cepas esporulantes pasó de niveles inferiores al 40% para muestras no tratadas a niveles superiores al 50% tras 30 min de exposición de las muestras de suelo al cloroformo. Con el fin de analizar la capacidad de tolerar la desecación de las cepas aisladas no esporulantes se realizó un estudio de desecación al aire. En este ensayo se incluyó una cepa de Acinetobacter calcoaceticus (PADD68) aislada del desierto de Tabernas (Almería) identificada como tolerante a la desecación en un estudio previo y que se utilizó como control positivo. Además también se incluyó en el estudio células de Pseudomonas putida KT2440 que se utilizaron como controles negativos al ser una cepa sensible a la desecación (Antheunisse et al., 1981 . Antonie Leeuwnhoek, 47: 539-545; Manzanera et al., 2002. Appl. Environ. Microbiol., 68: 4328-4333). Para este ensayo se utilizaron colonias independientes de las 17 cepas identificadas como no esporulantes aisladas en el estudio anterior y procedentes de placas de TSA de 72 horas para calcular su nivel de tolerancia a la desecación tal y como se indica a continuación. Para calcular la tolerancia a la desecación se partió de colonias aisladas procedentes de placas de TSA de 48 horas de crecimiento. Utilizando un asa estéril se tomó una única colonia que se resuspendió en 1 mi de solución M9 estéril. Partiendo de esta suspensión celular se realizaron diluciones seriadas que se sembraron en placas de TSA con objeto de identificar el número de UFC/ml de partida. Por otra parte se tomaron 100 μΙ de cada suspensión y se depositaron en gotas de 5-10 μΙ sobre microplacas de petri estériles sin medio. Las microplacas se situaron bajo una corriente de aire estéril en una campana de flujo laminar durante 24 horas. Las placas quedaron secas tras 2-3 horas de incubación. Transcurridas 24 horas de incubación se resuspendieron en 1 mi de solución M9 estéril. Partiendo de esta solución se realizaron diluciones seriadas que se sembraron en placas de TSA. Del recuento de UFC/ml de esta segunda siembra se calcularon las proporciones de supervivencia en referencia al primer conteo. Estos ensayos se realizaron por triplicado. Los resultados se expresaron como la media de los tres ensayos en porcentaje, tomando como referencia del 100% los datos húmedos. La desviación estándar a la media permitió el cálculo de la T de student para estudiar si las diferencias en supervivencia fueron significativas. Se aislaron 17 cepas en estas condiciones con niveles de tolerancia significativamente superiores a los del control positivo Acinetobacter calcoaceticus (PADD68). Una de las cepas aisladas se nombró como 3J1 y pertenece al género Microbacterium sp. Esta cepa se caracterizó mediante secuenciación del ADNr 16S y comparación de la secuencia con los presentes en la bases de datos, así como mediante estudios metabólicos BIOLOG e hibridación del ADN-ADN con la especie más cercana. La FIG. 1 muestra los valores de tolerancia de las cepas aisladas. 36 strains were randomly selected and to identify the strains that produced spores, a test was conducted based on the different sensitivity of the vegetative cells with respect to the spores to heat treatment and based on the method described by Vilchez et al. (Vilchez et al. , 2008. Extremophiles, 12: 297-299). In this way independent colonies from TSA plates were taken of at least 24 hours of growth. These colonies were resuspended in 1 ml of M9 solution in sterile microtubes of 1.5 ml. Then 10 μΙ of this suspension was seeded in TSA. The rest of the suspension was then incubated in Mixing Block MB-102 thermoblock at 72 ° C for 30 minutes. Again 10 μΙ of each sample was taken and seeded on TSA plate. Those strains capable of tolerating heat treatment were considered sporulants, while those that did not tolerate heat treatment were considered non-sporulants. As positive and negative controls, colonies of Bacillus pumilus and Burkholderia cepacia were used respectively. The proportion of sporulant strains went from levels below 40% for untreated samples to levels above 50% after 30 min of exposure of soil samples to chloroform. In order to analyze the ability to tolerate desiccation of isolated non-sporulant strains, an air drying study was conducted. In this trial, a strain of Acinetobacter calcoaceticus (PADD68) isolated from the Tabernas desert (Almería) identified as tolerant to desiccation was included in a previous study and was used as a positive control. In addition, Pseudomonas putida KT2440 cells were also included in the study, which were used as negative controls as a strain sensitive to desiccation (Antheunisse et al., 1981. Antonie Leeuwnhoek, 47: 539-545; Manzanera et al., 2002. Appl. Environ. Microbiol., 68: 4328-4333). Independent colonies of the 17 strains identified as non-sporulants isolated in the previous study and from 72-hour TSA plates were used for this test to calculate their level of drying tolerance as indicated below. To calculate the tolerance to desiccation, we started from isolated colonies from TSA plates with 48 hours of growth. Using a Sterile handle was taken a single colony that was resuspended in 1 ml of sterile M9 solution. Starting from this cell suspension, serial dilutions were made that were seeded on TSA plates in order to identify the starting CFU / ml number. On the other hand, 100 μΙ of each suspension was taken and deposited in 5-10 μΙ drops on sterile petri dishes without medium. The microplates were placed under a stream of sterile air in a laminar flow hood for 24 hours. The plates remained dry after 2-3 hours of incubation. After 24 hours of incubation, they were resuspended in 1 ml of sterile M9 solution. Starting from this solution, serial dilutions were made and seeded on TSA plates. From the CFU / ml count of this second sowing, survival rates were calculated in reference to the first count. These tests were performed in triplicate. The results were expressed as the average of the three trials in percentage, using the wet data as a reference of 100%. The standard deviation to the mean allowed the calculation of the student's T to study if the differences in survival were significant. 17 strains were isolated under these conditions with tolerance levels significantly higher than those of the positive control Acinetobacter calcoaceticus (PADD68). One of the isolated strains was named as 3J1 and belongs to the genus Microbacterium sp. This strain was characterized by sequencing the 16S rDNA and comparing the sequence with those present in the databases, as well as by BIOLOG metabolic studies and DNA-DNA hybridization with the nearest species. FIG. 1 shows the tolerance values of the isolated strains.
1.2. Extracción de productos del ordeñado bacteriano. 1.2. Extraction of products from bacterial milking.
Para la extracción de los productos del ordeñado bacteriano y con el fin de identificar las moléculas acumuladas con capacidad para proteger biomoléculas sensibles a la desecación se recurrió a una estrategia basada en tres pasos. En un primer paso se realizó una extracción de las moléculas acumuladas mediante una variación de la técnica conocida como "ordeñado bacteriano" generada por los inventores. En un segundo paso se realizó un ensayo de xeroprotección con las sustancias obtenidas para identificar la capacidad de las mismas para proteger enzimas frente a la desecación. For the extraction of the products of the bacterial milking and in order to identify the accumulated molecules with the capacity to protect biomolecules sensitive to desiccation, a strategy was used Based on three steps. In a first step an extraction of the accumulated molecules was carried out by means of a variation of the technique known as "bacterial milking" generated by the inventors. In a second step an xeroprotection test was carried out with the substances obtained to identify their capacity to protect enzymes against desiccation.
Dado que la producción y acúmulo de sustancias xeroprotectoras se realizó en medio con minerales, se procedió a identificar las fuentes de carbono más apropiadas para el cultivo de las cepas en medio mineral M9. Para la obtención de sustancias con capacidad xeroprotectora se cultivaron en medio mineral con la fuente de carbono apropiada (glucosa) las células de dicha cepa hasta la obtención de una biomasa suficiente. Tras este acúmulo, las células se depositaron sobre placas del mismo medio con agar para la producción de medio sólido. Entre las células y el medio se depositó un filtro estéril de 0,4 mieras para permitir el paso de nutrientes a las células y su posterior recogida y manipulación. Las placas con filtros y células se sometieron a un secado por corriente de aire estéril durante 24 horas. Como control positivo se incluyó Halomononas elongata, dado que es una cepa reconocida como halotolerante (Sauer y Galinski, 1998. Biotechnol. Bioeng., 57: 306-313) y a P. putida KT2440 como cepa halosensible (De Castro et al., 2000. Appl. Environ. Microbiol., 66:4142- 4144). Con este fin se inoculó la cepa seleccionada (3J1 ), hipertolerante a desecación. Además se incluyó a H. elongata como control positivo dado que ya había sido empleada por Sauer y Galinski para la obtención de hidroxiectoína, y como control negativo se incluyó E. coli como ejemplo de cepa halo y xerosensible. Dichos inóculos se incubaron en agitación durante 48 horas. A continuación, se centrifugaron las muestras durante 10 minutos a 10.000 rpm en una centrifuga Beckman Avanti-J25 y se retiró la fracción sobrenadante, resuspendiendo el sedimento bacteriano en 20 mi de solución M9 estéril y se depositaron sobre filtros. Tras 24 horas, los filtros, sometidos a desecación mediante una corriente de aire estéril, se separaron del medio y se depositaron en tubos con agua destilada estéril dejando incubar 20 minutos a 30°C y 150 rpm. Consecutivamente se repitió el mismo proceso de centrifugado, se desechó el precipitado bacteriano y se filtró el sobrenadante (utilizando un filtro de 0,22 pm). El producto filtrado de cada muestra se dividió en dos fracciones, una de las cuales se utilizó para determinar la actividad xeroprotectora del sobrenadante (fracción de ordeñado) y la otra para la identificación y caracterización de los compuestos presentes en esta fracción. Ambas fracciones se sometieron a un proceso de secado utilizando un liofilizador (Labconco Freezone 6) durante 48 horas obteniéndose un sedimento que fue resuspendido en 100 μΙ de agua milliQ estéril. Una vez liofilizado, el Producto de Ordeñado Bacteriano (POB), éste se solubilizó en 100 microlitros de agua. Estas soluciones de POBs se utilizaron en estudios de xeroprotección. Given that the production and accumulation of xeroprotective substances was carried out in a medium with minerals, we proceeded to identify the most appropriate carbon sources for the cultivation of the strains in M9 mineral medium. To obtain substances with xeroprotective capacity, the cells of said strain were grown in mineral medium with the appropriate carbon source (glucose) until obtaining a sufficient biomass. After this accumulation, the cells were deposited on plates of the same medium with agar for the production of solid medium. A sterile 0.4 micron filter was deposited between the cells and the medium to allow the passage of nutrients to the cells and their subsequent collection and handling. The plates with filters and cells were subjected to sterile air drying for 24 hours. Halomononas elongata was included as a positive control, since it is a strain recognized as a halotolerant (Sauer and Galinski, 1998. Biotechnol. Bioeng., 57: 306-313) and P. putida KT2440 as a halosensitive strain (De Castro et al., 2000 Appl. Environ. Microbiol., 66: 4142-4144). To this end, the selected strain (3J1), hypertolerant at drying, was inoculated. In addition, H. elongata was included as a positive control since it had already been used by Sauer and Galinski to obtain hydroxyectoin, and as a negative control, E. coli was included as an example of a halo and xerosensitive strain. Said inoculums were incubated with shaking for 48 hours. The samples were then centrifuged for 10 minutes at 10,000 rpm in a Beckman Avanti-J25 centrifuge and removed the supernatant fraction, resuspending the bacterial sediment in 20 ml of sterile M9 solution and deposited on filters. After 24 hours, the filters, subjected to desiccation by a stream of sterile air, were separated from the medium and deposited in tubes with sterile distilled water allowing to incubate 20 minutes at 30 ° C and 150 rpm. Consecutively the same centrifugation process was repeated, the bacterial precipitate was discarded and the supernatant was filtered (using a 0.22 pm filter). The filtrate of each sample was divided into two fractions, one of which was used to determine the xeroprotective activity of the supernatant (milking fraction) and the other for the identification and characterization of the compounds present in this fraction. Both fractions were subjected to a drying process using a lyophilizer (Labconco Freezone 6) for 48 hours, obtaining a sediment that was resuspended in 100 μΙ of sterile milliQ water. Once lyophilized, the Bacterial Milking Product (POB), it was solubilized in 100 microliters of water. These POB solutions were used in xeroprotection studies.
En la tabla 1 se pueden observar las composiciones de los productos de ordeñado bacteriano de la cepa 3J1 tras su extracción mediante choque hiper/hipoosmótico (3J1 ), o tras su extracción por secado mediante incubación al aire (3J1 D). Table 1 shows the compositions of the bacterial milking products of strain 3J1 after extraction by hyper / hypoosmotic shock (3J1), or after extraction by drying by air incubation (3J1 D).
Tabla 1. Composición del producto de ordeñado bacteriano (POB) de la cepa 4J27. Table 1. Composition of the bacterial milking product (POB) of strain 4J27.
3J1 3J1D  3J1 3J1D
Trehalosa 1 Trehalosa 1  Trehalosa 1 Trehalosa 1
Ac. oxoglucurónico 0,31 Ac. oxoglucurónico 0,06  Ac. oxoglucuronic 0.31 Ac. oxoglucuronic 0.06
Lactato 1 ,18 Lactato 0,62  Lactate 1, 18 Lactate 0.62
Glutamato 0,14 Glutamato 0, 1  Glutamate 0.14 Glutamate 0.1
Glutamina 0,28 Glutamina 0, 1 Fucosa 2,26 - -Glutamine 0.28 Glutamine 0.1 Fucose 2.26 - -
Piruvato 0,23 Piruvato 0,21 Pyruvate 0.23 Pyruvate 0.21
3J1 es la composición del POB de dicha cepa tras su extracción mediante choque hiper/hipoosmótico. 3J1 D es la composición del POB de dicha cepa tras su extracción por secado mediante incubación al aire. 3J1 is the composition of the POB of said strain after its extraction by hyper / hypoosmotic shock. 3J1 D is the composition of the POB of said strain after extraction by drying by incubation in air.
EJEMPLO 2. Ensayo de xeroprotección de enzimas. El objetivo de este ensayo fue determinar la capacidad de la fracción producto del ordeñado bacteriano para proteger enzimas frente a la desecación. Para ello se utilizó la enzima lipasa. Partiendo de 1 μΙ que contenía 0,00554 unidades de lipasa de Burkholderia cepacia (Sigma- Aldrich 62309-100 mg) se adicionaron 15 μΙ de la fracción producto del ordeñado bacteriano a estudiar. Como control positivo se adicionaron 15 μΙ de una solución al 10% de trehalosa a 1 μΙ (0,00554 U) de solución de lipasa y como control negativo se añadió 15 μΙ de agua a 1 μΙ (0,00554 U) de solución de lipasa. Las mezclas de 16 μΙ con lipasa se depositaron en un microtubo de 2ml de capacidad y se secaron a 50°C durante 120 minutos. Una vez secas se incubaron a 100°C durante 5 minutos. Finalmente fueron almacenadas en un desecador a temperatura ambiente durante 24 horas. Pasado el tiempo de incubación, las reacciones se resuspendieron en 50 μΙ de una solución de TrisHCI (50 mM) y se transfirieron a un microtubo junto con 950 μΙ de Tris HCI (50 mM) pH8 y 1 mi de Solución de Sustrato. La determinación de la capacidad xeroprotectora de cada fracción producto de ordeñado bacteriano (POB) se determinó por el ensayo de medición de la actividad lipasa. Para la medida de la actividad lipasa se utilizó una variación del método descrito por Gupta y colaboradores (2002) consistente en la cuantificación espectrofotométrica del p-nitrofenol liberado por la enzima lipasa de Burkholderia cepacia (Sigma-Aldrich 62309-100 mg) a partir del sustrato p- nitrofenol palmitato (pNPP) (Gupta et al., 2002. Analytical Biochemistry, 31 1 : 98-99). Para ello se utilizó 1 mi de medio libre de células (985 μΙ de Tris-HCI 0,05M junto a 15 μΙ de POB obtenido por el método del "ordeñado bacteriano") mezclado con 1 mi de solución sustrato de un cultivo en fase estacionaria. Esta mezcla de ensayo se incubó a 30°C durante 30 minutos en microtubos estériles de 2 mi. La reacción se paró mediante incubación a 100°C durante 4 minutos en termobloque y 2 minutos a -20°C. La absorbancia se midió en un espectrofotómetro Hitachi U-2000 a una longitud de onda de 410 nm. La solución sustrato (SS) se preparó mezclando 10 mi de solución A (30 mg de pNPP en 10 mi de isopropanol) con 90 mi de solución B (0,1 g de goma arábiga y 0,4 mi de Tritón X-100 en 90 mi tampón Tris-HCI 50mM pH8). La mezcla de solución A y B se agitó suavemente hasta su total disolución. La FIG. 2 muestra los valores de protección de la enzima lipasa al secado generados por los POBs y POBSIAs producidos por la cepa. EXAMPLE 2. Enzyme xeroprotection assay. The objective of this test was to determine the ability of the bacterial milking product fraction to protect enzymes from drying out. For this, the enzyme lipase was used. Starting from 1 μΙ containing 0.00554 units of Burkholderia cepacia lipase (Sigma-Aldrich 62309-100 mg), 15 μΙ of the product fraction of the bacterial milking to study were added. As a positive control, 15 μΙ of a 10% solution of trehalose was added to 1 μΙ (0.00554 U) of lipase solution and as a negative control 15 μΙ of water was added to 1 μΙ (0.00554 U) of the solution of lipase The 16 μΙ mixtures with lipase were deposited in a 2 ml capacity microtube and dried at 50 ° C for 120 minutes. Once dried, they were incubated at 100 ° C for 5 minutes. They were finally stored in a desiccator at room temperature for 24 hours. After the incubation time, the reactions were resuspended in 50 μΙ of a TrisHCI solution (50 mM) and transferred to a microtube together with 950 μΙ of Tris HCI (50 mM) pH8 and 1 ml of Substrate Solution. The xeroprotective capacity determination of each bacterial milking product fraction (POB) was determined by the lipase activity measurement test. For the measurement of lipase activity, a variation of the method described by Gupta et al. (2002) consisting of the spectrophotometric quantification of p-nitrophenol released by the enzyme lipase of Burkholderia cepacia (Sigma-Aldrich 62309-100 mg) from the p-nitrophenol palmitate (pNPP) substrate (Gupta et al., 2002. Analytical Biochemistry, 31 1: 98-99). For this, 1 ml of cell-free medium (985 μΙ of 0.05M Tris-HCI was used together with 15 μΙ of POB obtained by the "bacterial milking" method) mixed with 1 ml of substrate solution of a stationary phase culture . This test mixture was incubated at 30 ° C for 30 minutes in sterile 2 ml microtubes. The reaction was stopped by incubation at 100 ° C for 4 minutes in thermoblock and 2 minutes at -20 ° C. The absorbance was measured on a Hitachi U-2000 spectrophotometer at a wavelength of 410 nm. The substrate solution (SS) was prepared by mixing 10 ml of solution A (30 mg of pNPP in 10 ml of isopropanol) with 90 ml of solution B (0.1 g of gum arabic and 0.4 ml of Triton X-100 in 90 my 50mM Tris-HCI buffer pH8). The mixture of solution A and B was gently stirred until completely dissolved. FIG. 2 shows the protection values of the lipase enzyme on drying generated by the POBs and POBSIAs produced by the strain.
EJEMPLO 3. Ensayo del aumento de la tolerancia al estrés hídrico de plantas. EXAMPLE 3. Test of the increased tolerance to water stress of plants.
Se estudió la capacidad que tenía la cepa 3J1 sobre las plantas para protegerlas frente a condiciones de sequía y/o de promocionar el crecimiento de las mismas. En esta primera fase de experimentación, se utilizaron plantas de pimiento dulce (Capsicum annuum). The capacity of strain 3J1 on plants to protect them against drought conditions and / or promote their growth was studied. In this first phase of experimentation, sweet pepper plants (Capsicum annuum) were used.
14 días después de la germinación de las semillas de dichas plantas, se cesó el riego de todas las macetas para comenzar a provocar condiciones de estrés por sequía en las plantas considerando este momento como el tiempo 0. A partir de este momento se tomaron muestras a los 7, 14, 20 y 33 días, mediante la toma de tres plantas inoculadas con la cepa bacteriana Microbacterium sp. 3J1 . Como control positivo se utilizaron plantas inoculadas con la rizobacteria P. putida KT2440 y como control negativo se utilizaron plantas a las que se añadió el volumen equivalente de inoculo en forma de agua y por tanto, no inoculadas. En cada extracción se procedió a la toma de parámetros de Peso Fresco (PF) como el peso de la planta recién extraída; Peso Totalmente Túrgido (PTT) como el peso de la planta después de 48 horas incubada en oscuridad y a una humedad del 100% justo después de su extracción; Peso Seco (PS) como el peso después de incubar la planta durante 48 horas a 75-80°C y el Contenido Relativo de Agua (CRA) definido a través de la ecuación CRA= (PF-PS)/(PTT-PS). Los datos obtenidos se desglosan a continuación. En general, transcurridos 33 días en ausencia de riego las plantas inoculadas con Microbacterium sp. 3J1 toleraron mejor la sequía mostrando una mejor apariencia y tamaño que las plantas inoculadas con P. putida KT2440 o que las plantas no inoculadas como se puede observar en la FIG. 3. 14 days after the germination of the seeds of these plants, the irrigation of all the pots was stopped to begin to cause drought stress conditions in the plants considering this moment as the time 0. From this moment, samples were taken at 7, 14, 20 and 33 days, by taking three plants inoculated with the bacterial strain Microbacterium sp. 3J1. As a positive control, plants inoculated with the rhizobacterium P. putida KT2440 were used and as a negative control plants were used to which the equivalent volume of inoculum was added as water and therefore not inoculated. In each extraction the Fresh Weight (PF) parameters were taken as the weight of the newly extracted plant; Totally Turbid Weight (PTT) as the weight of the plant after 48 hours incubated in darkness and at a humidity of 100% right after its extraction; Dry Weight (PS) as the weight after incubating the plant for 48 hours at 75-80 ° C and the Relative Water Content (CRA) defined through the equation CRA = (PF-PS) / (PTT-PS) . The data obtained are broken down below. In general, after 33 days in the absence of irrigation, the plants inoculated with Microbacterium sp. 3J1 tolerated drought better by showing a better appearance and size than plants inoculated with P. putida KT2440 or than non-inoculated plants as can be seen in FIG. 3.
Así, el Contenido Relativo de Agua (CRA) de las plantas de estudio, fue el valor numérico que indicó el grado de resistencia al estrés por sequía que tienen las plantas con sus respectivos tratamientos. Aunque también se llevaron a cabo otros cálculos con los parámetros tomados inicialmente para estudiar todos los aspectos que reflejaron los efectos de la escasez de agua para las plantas. Así, se obtuvo el índice de Retención de Agua (IRA) determinado como la diferencia entre el Peso Fresco (PF) y el Peso Seco (PS) así como el Potencial de Recuperación de Agua (PRA) por las plantas dada por la diferencia entre el Peso Totalmente Túrgido (PTT) y el Peso Fresco (PF). Como se puede observar en la FIG. 4 el Peso Fresco (PF) de las plantas inoculadas con cada una de las cepas, sufrió un incremento regular en todas las condiciones durante los primeros puntos de muestreo correspondientes a los días 7 y 20. En las muestras tomadas el día 33 únicamente las plantas inoculadas con Microbacterium sp. 3J1 mostraron un peso fresco superior al registrado el día 20. Así, en las plantas inoculadas con Microbacterium sp. 3J1 , sus valores de PF fueron cuatro veces superiores a los de P. putida KT2440 y a los de las plantas no inoculadas. Thus, the Relative Water Content (ARC) of the study plants was the numerical value that indicated the degree of resistance to drought stress that the plants have with their respective treatments. Although other calculations were also carried out with the parameters initially taken to study all aspects that reflected the effects of water scarcity for plants. Thus, the Water Retention Index (IRA) determined as the difference between the Fresh Weight (PF) and Dry Weight (PS) as well as the Water Recovery Potential (PRA) for the plants given by the difference between Totally Turgid Weight (PTT) and Fresh Weight (PF). As can be seen in FIG. 4 Fresh Weight (PF) of the plants inoculated with each of the strains, suffered a regular increase in all conditions during the first sampling points corresponding to days 7 and 20. In the samples taken on day 33 only the plants inoculated with Microbacterium sp. 3J1 showed a fresh weight greater than that recorded on day 20. Thus, in plants inoculated with Microbacterium sp. 3J1, their PF values were four times higher than those of P. putida KT2440 and those of non-inoculated plants.
Análogamente se midió el Peso Seco (PS) de las plantas a los días 7, 14, 20 y 33 después de cesar el riego. El PS de las distintas plantas fue muy inferior al PF, con valores siempre por debajo de 12 mg. Como se observa en la FIG. 5, el peso seco de las distintas plantas inoculadas aumentó ligeramente de forma más o menos regular en todas las condiciones durante los primeros puntos de muestreo. Nuevamente las plantas inoculadas con Microbacterium sp. 3J1 mostraron los valores más elevados, llegando a duplicar al día 33 los valores finales de las plantas inoculadas tanto con P. putida KT2440, así como a los de las plantas no inoculadas. Similarly, the Dry Weight (PS) of the plants was measured on days 7, 14, 20 and 33 after the irrigation ceased. The PS of the different plants was much lower than the PF, with values always below 12 mg. As shown in Fig. 5, the dry weight of the different inoculated plants increased slightly more or less regularly in all conditions during the first sampling points. Again the plants inoculated with Microbacterium sp. 3J1 showed the highest values, doubling at 33 the final values of the plants inoculated with both P. putida KT2440, as well as those of the non-inoculated plants.
También se tomaron los valores correspondientes al peso totalmente túrgido (PTT) de las plantas a los días 7, 14, 20 y 33 tras el cese del riego. Como se observa en la FIG. 6, el peso totalmente túrgido de las plantas inoculadas con los distintos inóculos estas siguieron un patrón similar al del peso fresco, pero con unidades más altas. Así, aumentó regularmente en todas las condiciones durante los puntos de muestreo de los días 7, 14 y 20. En el punto de muestreo del día 33 es cuando se comenzó a apreciar diferencias, ya que a partir del mismo únicamente las plantas inoculadas con Microbacterium sp. 3J1 aumentaron su PTT, llegando a triplicar a los 33 días a los de P. putida y los de las plantas no inoculadas. The values corresponding to the fully turgid weight (PTT) of the plants were also taken on days 7, 14, 20 and 33 after the cessation of irrigation. As shown in Fig. 6, the totally turgid weight of the plants inoculated with the different inoculums followed a pattern similar to that of the fresh weight, but with higher units. Thus, it increased regularly in all conditions during the sampling points of days 7, 14 and 20. At the sampling point of day 33 it is when differences began to be appreciated, since from it only inoculated plants with Microbacterium sp. 3J1 increased their PTT, reaching triples after 33 days to those of P. putida and those of non-inoculated plants.
Un dato más representativo para conocer el estado de estrés hídrico de las plantas es el Contenido Relativo de Agua (CRA), dado que indica la relación entre el agua presente en las plantas en el momento de la extracción respecto del agua total. De esta forma, el valor máximo de 1 se daría en la situación teórica en que por su buen estado hídrico, la planta no pudiera o no necesitara recuperar agua en su estado totalmente túrgido (PTT) con respecto al Peso Fresco (PF). A more representative data to know the state of water stress of plants is the Relative Water Content (CRA), since it indicates the relationship between the water present in the plants at the time of extraction with respect to the total water. In this way, the maximum value of 1 would be given in the theoretical situation in which, due to its good water state, the plant could not or would not need to recover water in its totally turgid state (PTT) with respect to the Fresh Weight (PF).
En general se observa que para el punto de muestreo del día 14, en todas las plantas inoculadas, salvo en las no inoculadas, el parámetro CRA descendió aunque de manera leve respecto al valor que se registró en el día 7 aunque este parámetro volvió a aumentar entre los días 14 y 20. Respecto a las plantas inoculadas con Microbacterium sp. 3J1 , el valor de CRA aumentó entre los días 14 y 20. Para las plantas inoculadas con P. putida KT2440, el valor de CRA se redujo levemente entre los días 14 y 20 (menos del 5%) y aumentó algo más del 5% entre los días 20 y 33. Para las plantas no inoculadas, el valor de CRA se redujo muy levemente entre los días 7 y 14, y se mantuvo prácticamente estable entre los días 14 y 20. Sin embargo al día 33, sólo el valor de CRA en las plantas inoculadas con Microbacterium sp. 3J1 mostró una tendencia a seguir aumentando, generando valores en torno a 0,95. Cabe destacar que el aumento en el valor de CRA para las plantas inoculadas con Microbacterium sp. 3J1 se produjo tanto en el día 20 como en el 33. Los resultados pueden observarse en la FIG. 7. In general, it is observed that for the sampling point on day 14, in all the inoculated plants, except for those not inoculated, the CRA parameter decreased although slightly compared to the value recorded on day 7 although this parameter increased again between days 14 and 20. Regarding plants inoculated with Microbacterium sp. 3J1, the value of CRA increased between days 14 and 20. For plants inoculated with P. putida KT2440, the value of CRA decreased slightly between days 14 and 20 (less than 5%) and increased somewhat more than 5% between days 20 and 33. For non-inoculated plants, the value of CRA was reduced very slightly between days 7 and 14, and remained practically stable between days 14 and 20. However, at day 33, only the value of CRA in plants inoculated with Microbacterium sp. 3J1 showed a tendency to continue increasing, generating values around 0.95. It should be noted that the increase in the value of ARC for plants inoculated with Microbacterium sp. 3J1 occurred on both day 20 and day 33. The results can be seen in FIG. 7.
Para poder cuantificar el índice de retención de agua estructural (IRA) en las distintas plantas, se calculó la diferencia entre PF y PS, aunque este valor no sea tan representativo como el CRA, también permite conocer el estado hídrico de las plantas. Así, como puede observarse en la FIG. 8, los valores más altos se dieron en las plantas inoculadas con Microbacterium sp. 3J1 . Para las plantas inoculadas con P. putida KT2440 y las plantas no inoculadas, también se observó un marcado descenso tras el día 20, llegando a tener el día 33 cerca de la mitad del valor que tenían en el día 20. In order to quantify the structural water retention index (ARI) in the different plants, the difference between PF and PS was calculated, although this value is not as representative as the CRA, it also allows to know the water status of plants. Thus, as can be seen in FIG. 8, the highest values were in the plants inoculated with Microbacterium sp. 3J1. For plants inoculated with P. putida KT2440 and non-inoculated plants, a marked decrease was also observed after day 20, reaching day 33 about half the value they had on day 20.
De esta forma, los valores de IRA de las plantas inoculadas con Microbacterium sp. 3J1 para el día 33 de muestreo fueron aproximadamente cinco veces superiores a los de las plantas inoculadas con P. putida así como a los de las plantas no inoculadas. In this way, the IRA values of the plants inoculated with Microbacterium sp. 3J1 for day 33 of sampling were approximately five times higher than those of plants inoculated with P. putida as well as those of non-inoculated plants.
EJEMPLO 4. Ensayo del aumento de la biomasa de las plantas inoculadas con Microbacterium sp en condiciones de estrés hídrico. EXAMPLE 4. Test of the increase in biomass of plants inoculated with Microbacterium sp under conditions of water stress.
Con objeto de identificar si la cepa bacteriana 3J1 tenía algún tipo de efecto promotor de crecimiento sobre las plantas en condiciones de estrés hídrico, se decidió cuantificar la longitud de las plantas y de sus raíces. Así, para los datos de altura se tomó como medida la longitud en cm desde la base blanquecina de tallo o el punto donde se encontraran las primeras raíces, hasta el plano horizontal formado por el primer par de hojas (hojas seminales). Para las raíces se tomó como medida la longitud en cm desde la base blanquecina de tallo o el punto donde se encontraran las primeras raíces, hasta la punta del ápice radical más largo sin forzar el estiramiento del mismo. In order to identify if the bacterial strain 3J1 had some kind of growth promoting effect on plants under conditions of water stress, it was decided to quantify the length of the plants and their roots. Thus, for the height data, the length in cm was taken from the whitish stem base or the point where the first roots were found, to the horizontal plane formed by the first pair of leaves (seminal leaves). For the roots, the length in cm was taken from the whitish stem base or the point where the first roots were found, to the tip of the longest radical apex without forcing the same.
Para el tratamiento de los datos de altura de las plantas, se optó por calcular la diferencia de altura respecto a un punto inicial (tiempo 0). Estos aumentos de altura de las plantas se realizaron en cada punto de muestreo en el momento de la extracción de las mismas a la vez que se tomaba el peso fresco y comparando la altura en ese punto de muestreo con la altura inicial de la planta. For the treatment of plant height data, we chose to calculate the difference in height from an initial point (time 0). These plant height increases were made at each sampling point at the time of their extraction at the same time as I took the fresh weight and comparing the height at that sampling point with the initial height of the plant.
En la FIG. 9 se puede observar cómo, en las condiciones de déficit hídrico, las plantas inoculadas alcanzaron mayor altura que las plantas no inoculadas. Las plantas inoculadas con Microbacterium sp. 3J1 crecieron de forma sostenida incluso hasta 33 días tras iniciar el proceso de déficit hídrico, caso que no se observó en las plantas inoculadas con P. putida así como en las plantas no inoculadas. En estos últimos casos se pudo observar que tanto en las plantas inoculadas con P. putida KT2440 como en las plantas no inoculadas el crecimiento fue muy reducido e incluso se redujo en el último punto de muestreo (día 33). De este modo, a día 33 del ensayo, la diferencia de altura de las plantas inoculadas con Microbacterium sp. 3J1 fue más de tres veces superior a los valores de las plantas inoculadas con P. putida así como los de las plantas no inoculadas. In FIG. 9 it can be observed how, in the conditions of water deficit, the inoculated plants reached greater height than the non-inoculated plants. Plants inoculated with Microbacterium sp. 3J1 grew steadily even up to 33 days after starting the water deficit process, which was not observed in plants inoculated with P. putida as well as in non-inoculated plants. In the latter cases, it was observed that in both the plants inoculated with P. putida KT2440 and in the non-inoculated plants the growth was very reduced and even reduced at the last sampling point (day 33). Thus, on day 33 of the test, the height difference of the plants inoculated with Microbacterium sp. 3J1 was more than three times higher than the values of plants inoculated with P. putida as well as those of non-inoculated plants.
Para el tratamiento de los datos de longitud de las raíces, se optó por la medida de las longitudes de las raíces de cada planta inoculada en los puntos de muestreo de los días 7, 14, 20 y 33. La medida se realizó como en el caso de la altura de las plantas en el momento de la extracción de las plantas para la medida del peso fresco. Los datos obtenidos se muestran en la FIG. 10. La longitud de las raíces de las plantas inoculadas con Microbacterium sp. 3J1 aumentó hasta el último punto (día 33), mientras que en las plantas inoculadas con la cepa P. putida y en las plantas no inoculadas, el crecimiento incluso se redujo en este mismo punto de muestreo. For the treatment of root length data, we chose the measurement of the root lengths of each plant inoculated at the sampling points on days 7, 14, 20 and 33. The measurement was performed as in the case of the height of the plants at the time of the extraction of the plants for the measurement of the fresh weight. The data obtained are shown in FIG. 10. The length of the roots of the plants inoculated with Microbacterium sp. 3J1 increased to the last point (day 33), while in plants inoculated with P. putida strain and in non-inoculated plants, growth was even reduced at this same sampling point.
EJEMPLO 5. Ensayo del aumento del crecimiento de las plantas inoculadas con Microbacterium sp en condiciones h id ricas óptimas. En este ensayo se aplicó la misma metodología empleada con los anteriores con la excepción de que el riego se mantuvo periódicamente (40ml cada 48-72 horas) desde t=0. A partir de este momento se tomaron muestras a los 7, 14, 20 y 33 días, mediante la toma de tres plantas inoculadas con la cepa bacteriana Microbacterium sp. 3J1 . Como control positivo se utilizaron plantas inoculadas con la rizobacteria promotora del crecimiento de plantas P. putida KT2440 y como control negativo se utilizaron plantas a las que se añadió el volumen equivalente de inoculo en forma de agua y por tanto, no inoculadas. EXAMPLE 5. Test of the increase of the growth of the plants inoculated with Microbacterium sp in optimal hygienic conditions. In this trial the same methodology used with the previous ones was applied with the exception that irrigation was maintained periodically (40ml every 48-72 hours) from t = 0. From this moment, samples were taken at 7, 14, 20 and 33 days, by taking three plants inoculated with the bacterial strain Microbacterium sp. 3J1. As a positive control plants inoculated with the rhizobacterium promoting growth of P. putida KT2440 plants were used and as a negative control plants were used to which the equivalent volume of inoculum was added as water and therefore not inoculated.
Para los datos de altura se tomó como medida la longitud en cm desde la base blanquecina de tallo o el punto donde se encontraran las primeras raíces, hasta el plano horizontal formado por el primer par de hojas (hojas seminales). Para las raíces se tomó como medida la longitud en cm desde la base blanquecina de tallo o el punto donde se encontraran las primeras raíces, hasta la punta del ápice radical más largo sin forzar el estiramiento del mismo. For the height data, the length in cm was taken from the whitish stem base or the point where the first roots were found, to the horizontal plane formed by the first pair of leaves (seminal leaves). For the roots, the length in cm was taken from the whitish stem base or the point where the first roots were found, to the tip of the longest radical apex without forcing the same.
Para el tratamiento de los datos de altura de las plantas, se optó por calcular la diferencia de altura respecto a un punto inicial (tiempo 0). Estos aumentos de altura de las plantas se realizaron en cada punto de muestreo en el momento de la extracción de las mismas a la vez que se tomaba el peso fresco y comparando la altura en ese punto de muestreo con la altura inicial de la planta. For the treatment of plant height data, we chose to calculate the difference in height from an initial point (time 0). These increases in plant height were made at each sampling point at the time of their extraction at the same time as the fresh weight was taken and comparing the height at that sampling point with the initial height of the plant.
Como puede observarse en la FIG. 1 1 , las alturas alcanzadas por las plantas inoculadas con cepas fueron en todos los casos mayores que las obtenidas por las plantas sin inocular al día 33 del experimento. Los mayores aumentos de altura se dieron entre los días 20 y 33 del ensayo, llegando a ser de casi 4 veces para las plantas inoculadas con Microbacterium sp. 3J1 . Este aumento no fue significativo para las plantas no inoculadas. Al día 33 del experimento, los valores obtenidos por las plantas inoculadas con Microbacterium sp. 3J1 llegaron a ser 1 ,5 veces superiores a los obtenidos por las plantas inoculadas con P. putida KT2440, y 6 veces superiores a los obtenidos por plantas no inoculadas. Los valores obtenidos por las plantas inoculadas con P. putida KT2440 al día 33 del ensayo llegaron a ser tres veces superiores a los obtenidos por plantas no inoculadas. As can be seen in FIG. 1 1, the heights reached by the plants inoculated with strains were in all cases greater than those obtained by the plants without inoculation on day 33 of the experiment. The greatest increases in height occurred between days 20 and 33 of the trial, becoming almost 4 times for plants inoculated with Microbacterium sp. 3J1. This increase was not significant for the plants not inoculated. On day 33 of the experiment, the values obtained by the plants inoculated with Microbacterium sp. 3J1 became 1.5 times higher than those obtained by plants inoculated with P. putida KT2440, and 6 times higher than those obtained by non-inoculated plants. The values obtained by the plants inoculated with P. putida KT2440 on day 33 of the test became three times higher than those obtained by non-inoculated plants.
Para el tratamiento de los datos de longitud de las raíces, se optó por la medida de las longitudes de las raíces de cada planta inoculada en los puntos de muestreo de los días 7, 14, 20 y 33. La medida se realizó como en el caso de la altura de las plantas en el momento de la extracción de las plantas para la medida del peso fresco. Los datos obtenidos se muestran en la FIG. 12. For the treatment of root length data, we chose the measurement of the root lengths of each plant inoculated at the sampling points on days 7, 14, 20 and 33. The measurement was performed as in the case of the height of the plants at the time of the extraction of the plants for the measurement of the fresh weight. The data obtained are shown in FIG. 12.
Únicamente los datos obtenidos por las plantas inoculadas con Microbacterium sp. 3J1 fueron estadísticamente superiores respecto al resto de valores obtenidos por las plantas con otro inoculo. De tal modo, los valores obtenidos por las plantas inoculadas con Microbacterium sp. 3J1 fueron casi 1 ,5 veces superiores a los valores obtenidos por las plantas inoculadas con P. putida KT2440, así como por los obtenidos por las plantas sin inocular. Only the data obtained by the plants inoculated with Microbacterium sp. 3J1 were statistically superior to the rest of the values obtained by the plants with another inoculum. Thus, the values obtained by the plants inoculated with Microbacterium sp. 3J1 were almost 1.5 times higher than the values obtained by the plants inoculated with P. putida KT2440, as well as those obtained by the plants without inoculation.
Como parámetros indirectos relacionados con el tamaño de la planta se tomaron medidas de Peso Fresco (PF), Peso Seco (PS), Peso Totalmente Túrgido (PTT), así como la combinación de los mismos para obtener los parámetros de Contenido Relativo de Agua (CRA), Potencial de Recuperación de Agua (PRA) e índice de Retención del Agua (IRA), descritos también para el ensayo anterior. Como se puede observar en la FIG. 13, el Peso Fresco (PF) de las plantas inoculadas con cada una de las cepas, sufrió un incremento regular en todas las condiciones durante los primeros puntos de muestreo correspondientes a los días 7 y 20. En las muestras tomadas el día 33, las plantas inoculadas con Microbacterium sp. 3J1 mostraron un peso fresco superior al resto, en torno a 10% superior al de las plantas inoculadas con P. putida KT2440 y casi el doble superior al de las plantas no inoculadas. As indirect parameters related to the size of the plant, measures of Fresh Weight (PF), Dry Weight (PS), Totally Turgid Weight (PTT) were taken, as well as their combination to obtain the parameters of Relative Water Content ( CRA), Water Recovery Potential (PRA) and Water Retention Index (IRA), also described for the previous trial. As can be seen in FIG. 13, the Fresh Weight (PF) of the plants inoculated with each of the strains, underwent a regular increase in all conditions during the first sampling points corresponding to days 7 and 20. In the samples taken on day 33, the plants inoculated with Microbacterium sp. 3J1 showed a fresh weight greater than the rest, around 10% higher than that of the plants inoculated with P. putida KT2440 and almost double that of the non-inoculated plants.
Análogamente se midió el Peso Seco (PS) de las plantas a los días 7, 14, 20 y 33. El PS de las distintas plantas fue muy inferior al PF, con valores siempre por debajo de 12 mg. Como se puede observar en la FIG. 14, el peso seco de las distintas plantas inoculadas aumentó ligeramente de forma más o menos regular en todas las condiciones durante los primeros puntos de muestreo. En el día 14 del ensayo las plantas inoculadas con Microbacterium sp. 3J1 tuvieron una disminución leve en sus valores de PS. Las plantas inoculadas con Microbacterium sp. 3J1 y con P. putida KT2440 mostraron los valores más elevados que los obtenidos por las plantas no inoculadas, llegando a ser en el día 33 del ensayo en torno al 40% superiores. Similarly, the Dry Weight (PS) of the plants was measured at days 7, 14, 20 and 33. The PS of the different plants was much lower than the FP, with values always below 12 mg. As can be seen in FIG. 14, the dry weight of the different inoculated plants increased slightly more or less regularly in all conditions during the first sampling points. On day 14 of the test the plants inoculated with Microbacterium sp. 3J1 had a slight decrease in their PS values. Plants inoculated with Microbacterium sp. 3J1 and with P. putida KT2440 showed higher values than those obtained by non-inoculated plants, becoming at day 33 of the test around 40% higher.
También se tomaron los valores correspondientes al peso totalmente túrgido (PTT) de las plantas a los días 7, 14, 20 y 33. Como se puede observar en la FIG. 15, el peso totalmente túrgido de las plantas inoculadas con los distintos inóculos siguió un patrón similar al del peso fresco, pero con unidades más altas. Así, aumentó más o menos regularmente en todas las condiciones durante los puntos de muestreo de los días 7, 14 y 20. The values corresponding to the fully turgid weight (PTT) of the plants were also taken at days 7, 14, 20 and 33. As can be seen in FIG. 15, the totally turgid weight of the plants inoculated with the different inoculums followed a pattern similar to that of the fresh weight, but with higher units. Thus, it increased more or less regularly in all conditions during the sampling points on days 7, 14 and 20.
En el punto de muestreo del día 33 se alcanzó el mayor valor en este crecimiento en las plantas inoculadas con Microbacterium sp., llegando a ser este cerca del 10% mayor al obtenido por las plantas inoculadas con P. putida, y en torno al 75% respecto al de las plantas no inoculadas. At the sampling point on day 33, the highest value in this growth was achieved in plants inoculated with Microbacterium sp., Reaching this is about 10% higher than that obtained by the plants inoculated with P. putida, and around 75% with respect to the non-inoculated plants.
Respecto al índice de retención de agua estructural (IRA) en las distintas plantas, nos muestra que la retención de agua aumentó muy levemente entre los días 1 y 20 del experimento en todas las plantas, pero que en el día 33 se produjo un aumento de la retención estructural de agua en las plantas inoculadas con Microbacterium sp. 3J1 y con P. putida KT2440 de entre el 25 y el 50%. No se observa tal aumento en el valor de IRA para las plantas no inoculadas, llegando a ser el valor de IRA de las mismas incluso la mitad que el de las plantas inoculadas con Microbacterium sp. 3J1 . Los datos pueden observarse en la FIG. 16. Regarding the structural water retention index (ARI) in the different plants, it shows that the water retention increased very slightly between days 1 and 20 of the experiment in all plants, but that on day 33 there was an increase in Structural water retention in plants inoculated with Microbacterium sp. 3J1 and with P. putida KT2440 of between 25 and 50%. There is no such increase in the value of ARI for non-inoculated plants, the ARI value of them being even half that of the plants inoculated with Microbacterium sp. 3J1. The data can be seen in FIG. 16.

Claims

REIVINDICACIONES
1 . Microorganismo de la especie bacteriana Microbacterium sp. con número de acceso CECT7624. one . Microorganism of the bacterial species Microbacterium sp. with access number CECT7624.
2. Población bacteriana que comprende el microorganismo según la reivindicación 1 . 2. Bacterial population comprising the microorganism according to claim 1.
3. Uso del microorganismo según la reivindicación 1 o de la población bacteriana según la reivindicación 2 para aumentar la tolerancia al estrés hídrico de una planta, respecto de un control. 3. Use of the microorganism according to claim 1 or the bacterial population according to claim 2 to increase the tolerance to water stress of a plant, with respect to a control.
4. Uso del microorganismo según la reivindicación 1 o de la población bacteriana según la reivindicación 2 para aumentar la biomasa de una planta, respecto de un control, en condiciones de estrés hídrico. 4. Use of the microorganism according to claim 1 or of the bacterial population according to claim 2 to increase the biomass of a plant, with respect to a control, under conditions of water stress.
5. Uso del microorganismo según la reivindicación 1 o de la población bacteriana según la reivindicación 2 para aumentar la cantidad de agua absorbida por una planta, respecto de un control, en condiciones de estrés hídrico. 5. Use of the microorganism according to claim 1 or the bacterial population according to claim 2 to increase the amount of water absorbed by a plant, with respect to a control, under conditions of water stress.
6. Uso del microorganismo según la reivindicación 1 o de la población bacteriana según la reivindicación 2 para aumentar índice de retención de agua de una planta, respecto de un control, en condiciones de estrés hídrico. 6. Use of the microorganism according to claim 1 or the bacterial population according to claim 2 to increase water retention rate of a plant, with respect to a control, under conditions of water stress.
7. Uso del microorganismo según la reivindicación 1 o de la población bacteriana según la reivindicación 2 para aumentar el crecimiento de una planta respecto de un control. 7. Use of the microorganism according to claim 1 or the bacterial population according to claim 2 to increase the growth of a plant with respect to a control.
8. Uso según la reivindicación 7, donde el aumento del crecimiento se refiere al aumento de la longitud del tallo de dicha planta. 8. Use according to claim 7, wherein the increase in growth refers to the increase in the stem length of said plant.
9. Uso según la reivindicación 7, donde el aumento del crecimiento se refiere al aumento de la longitud de la raíz de dicha planta. 9. Use according to claim 7, wherein the increase in growth refers to the increase in the root length of said plant.
10. Uso según cualquiera de las reivindicaciones 3 a 9, donde la planta es del género Capsicum. 10. Use according to any of claims 3 to 9, wherein the plant is of the genus Capsicum.
1 1 . Uso según la reivindicación 10, donde la planta es de la especie Capsicum annuum. eleven . Use according to claim 10, wherein the plant is of the Capsicum annuum species.
12. Método para aumentar la tolerancia al estrés hídrico de una planta respecto de un control, que comprende inocular el microorganismo según la reivindicación 1 o la población bacteriana según la reivindicación 2 a una célula vegetal, a cualquier parte de una planta o a una semilla. 12. Method for increasing the tolerance to water stress of a plant with respect to a control, which comprises inoculating the microorganism according to claim 1 or the bacterial population according to claim 2 to a plant cell, to any part of a plant or to a seed.
13. Método según la reivindicación 12, donde el microorganismo según la reivindicación 1 o la población bacteriana según la reivindicación 2 se pone en contacto con al menos una raíz de dicha planta. 13. Method according to claim 12, wherein the microorganism according to claim 1 or the bacterial population according to claim 2 is contacted with at least one root of said plant.
14. Método según la reivindicación 13, donde dicho microorganismo o población bacteriana se ponen en contacto con al menos una raíz por medio de una solución acuosa. 14. A method according to claim 13, wherein said microorganism or bacterial population is contacted with at least one root by means of an aqueous solution.
15. Método según cualquiera de las reivindicaciones 12 a 14, donde la planta es del género Capsicum. 15. Method according to any of claims 12 to 14, wherein the plant is of the genus Capsicum.
16. Método según la reivindicación 15, donde la planta es de la especie Capsicum annuum. 16. Method according to claim 15, wherein the plant is of the Capsicum annuum species.
17. Uso del microorganismo según la reivindicación 1 o de la población bacteriana según la reivindicación 2 para la producción de una composición xeroprotectora. 17. Use of the microorganism according to claim 1 or the bacterial population according to claim 2 for the production of an xeroprotective composition.
18. Composición xeroprotectora producida por el microorganismo según la reivindicación 1 o por la población bacteriana según la reivindicación 2. 18. Xeroprotective composition produced by the microorganism according to claim 1 or by the bacterial population according to claim 2.
19. Composición según la reivindicación 18 que comprende trehalosa, ácido oxoglucurónico, lactato, glutamato, glutamina, fucosa y piruvato. 19. Composition according to claim 18 comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine, fucose and pyruvate.
20. Composición xeroprotectora sintética que comprende trehalosa, ácido oxoglucurónico, lactato, glutamato, glutamina, fucosa y piruvato. 20. Synthetic xeroprotective composition comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine, fucose and pyruvate.
21 . Composición según cualquiera de las reivindicaciones 19 ó 20 que comprende una proporción de trehalosa : ácido oxoglucurónico : lactato : glutamato : glutamina : fucosa : piruvato, de entre (0,5 y 1 ,5) : (0,15 y 0,45) : (0,7 y 1 ,7) : (0,1 y 0,2) : (0,15 y 0,45), (1 ,2 y 3,4), (0,15 y 0,3), respectivamente. twenty-one . Composition according to any of claims 19 or 20 comprising a proportion of trehalose: oxoglucuronic acid: lactate: glutamate: glutamine: fucose: pyruvate, between (0.5 and 1.5): (0.15 and 0.45) : (0.7 and 1, 7): (0.1 and 0.2): (0.15 and 0.45), (1, 2 and 3.4), (0.15 and 0.3) respectively.
22. Composición según la reivindicación 21 , donde la proporción de trehalosa : ácido oxoglucurónico : lactato : glutamato : glutamina : fucosa : piruvato es de entre (0,7 y 1 ,3) : (0,25 y 0,35) : (0,9 y 1 ,6) : (0,12 y 0,18) : (0,2 y 0,4) : (1 ,8 y 2,8) : (0,2 y 0,25), respectivamente. 22. Composition according to claim 21, wherein the ratio of trehalose: oxoglucuronic acid: lactate: glutamate: glutamine: fucose: pyruvate is between (0.7 and 1, 3): (0.25 and 0.35): ( 0.9 and 1, 6): (0.12 and 0.18): (0.2 and 0.4): (1, 8 and 2.8): (0.2 and 0.25), respectively .
23. Composición según la reivindicación 18, que comprende trehalosa, ácido oxoglucurónico, lactato, glutamato, glutamina y piruvato. 23. Composition according to claim 18, comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine and pyruvate.
24. Composición xeroprotectora sintética que comprende trehalosa, ácido oxoglucurónico, lactato, glutamato, glutamina, fucosa y piruvato. 24. Synthetic xeroprotective composition comprising trehalose, oxoglucuronic acid, lactate, glutamate, glutamine, fucose and pyruvate.
25. Composición según cualquiera de las reivindicaciones 23 ó 24, que comprende una proporción de trehalosa : ácido oxoglucurónico : lactato : glutamato : glutamina : piruvato, de entre (0,5 y 1 ,5) : (0,03 y 0,09) : (0,3 y 0,9) : (0,05 y 0,15) : (0,05 y 0,15), (0,1 y 0,3), respectivamente. 25. Composition according to any of claims 23 or 24, comprising a proportion of trehalose: oxoglucuronic acid: lactate: glutamate: glutamine: pyruvate, between (0.5 and 1.5): (0.03 and 0.09 ): (0.3 and 0.9): (0.05 and 0.15): (0.05 and 0.15), (0.1 and 0.3), respectively.
26. Composición según la reivindicación 25, donde la proporción de trehalosa : ácido oxoglucurónico : lactato : glutamato : glutamina : piruvato es de entre (0,7 y 1 ,3) : (0,05 y 0,07) : (0,5 y 0,7) : (0,07 y 0,12) : (0,07 y 0,12) : (0,15 y 0,25), respectivamente. 26. Composition according to claim 25, wherein the ratio of trehalose: oxoglucuronic acid: lactate: glutamate: glutamine: pyruvate is between (0.7 and 1, 3): (0.05 and 0.07): (0, 5 and 0.7): (0.07 and 0.12): (0.07 and 0.12): (0.15 and 0.25), respectively.
27. Uso de la composición según cualquiera de las reivindicaciones 19 a 26 para la conservación de material biológico con un contenido de humedad residual igual o inferior al 10%. 27. Use of the composition according to any of claims 19 to 26 for the conservation of biological material with a residual moisture content equal to or less than 10%.
28. Uso según la reivindicación 27, donde el material biológico es un organismo invertebrado, una semilla, una plántula, un microorganismo, un órgano aislado, un tejido biológico aislado o una célula. 28. Use according to claim 27, wherein the biological material is an invertebrate organism, a seed, a seedling, a microorganism, an isolated organ, an isolated biological tissue or a cell.
29. Uso según la reivindicación 27, donde el material biológico es una molécula con actividad biológica. 29. Use according to claim 27, wherein the biological material is a molecule with biological activity.
30. Uso según la reivindicación 29, donde la molécula con actividad biológica es una enzima. 30. Use according to claim 29, wherein the molecule with biological activity is an enzyme.
31 . Uso según la reivindicación 30, donde la enzima es una lipasa. 31. Use according to claim 30, wherein the enzyme is a lipase.
32. Método para obtener la composición xeroprotectora según la reivindicación 18 que comprende: a) cultivar el microorganismo de la reivindicación 1 o la población de la reivindicación 2 en un medio mineral con fructosa como fuente de carbono, 32. Method for obtaining the xeroprotective composition according to claim 18 comprising: a) culturing the microorganism of claim 1 or the population of claim 2 in a mineral medium with fructose as a carbon source,
b) deshidratar los microorganismos obtenidos en el cultivo del paso (a) hasta que tengan una humedad residual igual o inferior al 10%,  b) dehydrate the microorganisms obtained in the culture of step (a) until they have a residual humidity equal to or less than 10%,
c) rehidratar los microorganismos deshidratados del paso (b) en un medio hipotónico, y  c) rehydrate the dehydrated microorganisms of step (b) in a hypotonic medium, and
d) seleccionar la fracción líquida del producto obtenido en el paso (c) que comprende la composición xeroprotectora.  d) select the liquid fraction of the product obtained in step (c) comprising the xeroprotective composition.
33. Método según la reivindicación 32, donde la deshidratación de los microorganismos según el paso (b) se lleva a cabo por medio de una solución hipertónica o por medio de una corriente de aire. 33. A method according to claim 32, wherein the dehydration of the microorganisms according to step (b) is carried out by means of a hypertonic solution or by means of an air current.
34. Método según cualquiera de las reivindicaciones 32 ó 33, donde el medio hipotónico para la rehidratación de los microorganismos según el paso (c) es agua parcial o totalmente destilada, desionizada o desmineralizada. 34. A method according to any of claims 32 or 33, wherein the hypotonic means for rehydration of the microorganisms according to step (c) is water partially or totally distilled, deionized or demineralized.
35. Método según cualquiera de las reivindicaciones 32 a 34, donde además, la fracción líquida del paso (d) se deshidrata hasta que el producto xeroprotector tenga una humedad residual igual o inferior al 10%. 35. Method according to any of claims 32 to 34, wherein, in addition, the liquid fraction of step (d) is dehydrated until the xeroprotective product has a residual humidity equal to or less than 10%.
PCT/ES2010/000516 2009-12-04 2010-12-03 Bacterial strain cect7624, use of said strain in order to enhance the growth and water stress tolerance of a plant and xeroprotectant compound produced from same WO2011067440A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112012013505A BR112012013505A2 (en) 2009-12-04 2010-12-03 bacterial strain cect7626, use of said strain to increase water stress tolerance growth of a plant, and xenoprotective compound produced from it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200931119 2009-12-04
ES200931119A ES2362035B2 (en) 2009-12-04 2009-12-04 BACTERIAN CEPA CECT7624, USES AND XEROPROTECTOR PRODUCT PRODUCED BY THE SAME.

Publications (2)

Publication Number Publication Date
WO2011067440A2 true WO2011067440A2 (en) 2011-06-09
WO2011067440A3 WO2011067440A3 (en) 2011-10-13

Family

ID=44115359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000516 WO2011067440A2 (en) 2009-12-04 2010-12-03 Bacterial strain cect7624, use of said strain in order to enhance the growth and water stress tolerance of a plant and xeroprotectant compound produced from same

Country Status (3)

Country Link
BR (1) BR112012013505A2 (en)
ES (2) ES2389366B2 (en)
WO (1) WO2011067440A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2673942B1 (en) 2016-11-23 2019-04-09 Consejo Superior Investigacion ACRYLIC COMPOUNDS FOR THE TREATMENT OF EYE PATHOLOGIES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080034452A1 (en) * 2002-06-20 2008-02-07 Cornell Research Foundation, Inc. Method for increasing resistance of monocot plants against abiotic stresses, tps plant gene constructs, and transformants
MXPA06014490A (en) * 2006-12-13 2008-10-10 Gabriel Iturriaga De La Fuente Method for improving the yield and tolerance to abiotic stress in leguminous and grass inoculated with bacteria having and increased trehalose content.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660153B2 (en) * 2004-10-19 2011-03-30 近江窯業株式会社 Wall structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080034452A1 (en) * 2002-06-20 2008-02-07 Cornell Research Foundation, Inc. Method for increasing resistance of monocot plants against abiotic stresses, tps plant gene constructs, and transformants
MXPA06014490A (en) * 2006-12-13 2008-10-10 Gabriel Iturriaga De La Fuente Method for improving the yield and tolerance to abiotic stress in leguminous and grass inoculated with bacteria having and increased trehalose content.

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAI Z. ET AL.: 'Trehalose-6-phosphate synthase 1 from Metarhizium anisopliae: clone, expression and properties of the recombinant.' JOURNAL OF BIOSCIENCE AND BIOENGINEERING. vol. 107., no. 5, 22 April 2009, pages 499 - 505 *
EGAMBERDIEVA D.: 'Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil.' TURK. J. BIOL. vol. 32, pages 9 - 15 *
GNEIDING K. ET AL.: 'Identities of Microbacterium sp. encountered in human clinical specimens.' JOURNAL OF CLINICAL MICROBIOLOGY. vol. 46, no. 11, 2008, pages 3646 - 3652 *
KARLIDAG H. ET AL.: 'Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple.' SCIENTIA HORTICULTURAE. vol. 114, 2007, pages 16 - 20 *

Also Published As

Publication number Publication date
WO2011067440A3 (en) 2011-10-13
ES2389366A1 (en) 2012-10-25
ES2362035B2 (en) 2011-11-15
BR112012013505A2 (en) 2019-09-24
ES2362035A1 (en) 2011-06-27
ES2389366B2 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
El-Esawi et al. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression
Wu et al. Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress
BR112015018618A2 (en) ISOLATED ENDOPHYTE, COMPOSITION, SEED AND METHODS TO IMPROVE SEED VITALITY, HEALTH AND/OR PLANT YIELD
ES2707807T3 (en) New fluorescent pseudomonas of the species Pseudomonas azotoformans for the stimulation of the emergence and growth of plants
ES2819255T3 (en) Bacteria with nematicidal activity and the ability to promote plant growth
ES2428513T3 (en) Biofungicidal composition for the control of phytopathogenic fungi
Elster et al. Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia
Day et al. Cryo-injury in algae and the implications this has to the conservation of micro-algae
Jha et al. Paddy physiology and enzymes level is regulated by rhizobacteria under saline stress
CN107460151B (en) Bacillus sphaericus and application thereof in preventing and treating meloidogyne incognita
Wang et al. Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions
WO2011067440A2 (en) Bacterial strain cect7624, use of said strain in order to enhance the growth and water stress tolerance of a plant and xeroprotectant compound produced from same
Hmaeid et al. Comparative effects of Rhizobacteria in promoting growth of Hordeum maritimum L. plants under salt stress
ES2361316B1 (en) Bacterial strain CECT7626, uses and xeroprotector product produced by it.
Dircio et al. Bacillus licheniformis M2-7 improves growth, development and yield of Capsicum annuum L.
ES2362026B2 (en) BACTERIAN CEPA CECT7623, USES AND XEROPROTECTOR PRODUCT PRODUCED BY THE SAME.
Goncharuk et al. The Biotesting of tap water treated with silicon mineral using plant test organisms
Day Conservation strategies for algae
ES2902976B2 (en) Pseudomonas atacamensis CECT 30419 enhancer of plant production and stimulant of the secondary metabolism of plants.
WO2011067441A2 (en) Bacterial strain cect7625, uses thereof and xeroprotectant product produced from same
El Shalakany et al. Mitigation Negative Effects of Salt Stress on Common Bean (Phaseolus vulgaris) Using Seaweed Extracts
ES2943002T3 (en) Biofertilizing bacterial strain
Zene et al. The Effect of Bacillus Bacteria on Tomato Plants and Fruits
Liu et al. Preliminary study on component analysis of Amaranthus tricolor leaf extracts against plant pathogenic bacteria.
Hejduková Freezing tolerance of freshwater diatoms as a key to their success in polar regions

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013505

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10834259

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112012013505

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120604