WO2011067434A2 - Metodo de distribucion de heliostatos en planta de torre - Google Patents

Metodo de distribucion de heliostatos en planta de torre Download PDF

Info

Publication number
WO2011067434A2
WO2011067434A2 PCT/ES2010/000485 ES2010000485W WO2011067434A2 WO 2011067434 A2 WO2011067434 A2 WO 2011067434A2 ES 2010000485 W ES2010000485 W ES 2010000485W WO 2011067434 A2 WO2011067434 A2 WO 2011067434A2
Authority
WO
WIPO (PCT)
Prior art keywords
heliostats
tower
plant
solar
distribution
Prior art date
Application number
PCT/ES2010/000485
Other languages
English (en)
French (fr)
Other versions
WO2011067434A3 (es
Inventor
Manuel Quero Garcia
Markus Pfander
Christian Gertig
Rafael Osuna Gonzales-Aguilar
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Priority to EP10834253A priority Critical patent/EP2520873A2/en
Priority to MX2012006172A priority patent/MX2012006172A/es
Priority to US13/513,181 priority patent/US20130092156A1/en
Priority to CN201080062794.4A priority patent/CN102753906B/zh
Publication of WO2011067434A2 publication Critical patent/WO2011067434A2/es
Publication of WO2011067434A3 publication Critical patent/WO2011067434A3/es
Priority to ZA2012/04006A priority patent/ZA201204006B/en
Priority to MA34999A priority patent/MA33844B1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/16Preventing shading effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S2201/00Prediction; Simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention is included within the sector of electric power generation from solar radiation by means of a plant of the type of central tower receiver.
  • the object of the invention is to achieve optimum performance of the thermoelectric plant by selective distribution of heliostats with respect to the receiving tower.
  • thermoelectric solar plant is an industrial installation in which, from the heating of a fluid by means of solar radiation and its use in a conventional thermodynamic cycle, the necessary power is produced to move an alternator for electric power generation as in a thermal power plant classic
  • a tower plant - also known as a central receiver system - is composed of a concentrator system or heliostat field, which captures and concentrates the direct component of solar radiation on a receiver - where the conversion of radiant energy into energy occurs thermal— that is usually installed on top of a tower.
  • the working fluid can be, among others, air, water vapor, molten sodium or molten salts, according to the chosen technology. In water vapor, it directly moves a turbine. In the others, the fluid transports the heat to a steam generator, with which a turbine that moves the electric generator is operated.
  • the object of the invention is the application of the arrangement of the leaves, stems and seeds of the plants to the specific distribution of heliostats in the solar field. This provision is called phyloxis and is characteristic of each plant species. Its function is that these leaves, stems and seeds are exposed to the sun with the minimum possible interference by their partners maximizing the capture of light.
  • This specific distribution allows the heliostats to be placed in such a way that the optical losses caused by shadows and blockages between neighboring heliostats, atmospheric attenuation and increased interception caused by large distances between heliostats and the tower are minimized, thus optimizing the use of solar radiation to maximize the density of heliostats in the solar field.
  • the golden section or "divine proportion" results from the division of a linear quantity (magnitude of distance, duration, etc., abstract by the length of a segment) so that the relationship between the total length and the longest part is identical to that between the longest and the shortest part.
  • the arrangement of the different elements or heliostats of a plant is described by a regularity in the divergence of the angle formed by the successive arranged elements. This angle divides a complete circle into a fraction that coincides with the Fibonacci series numbers (1/2, 1/3, 2/5, 3/8, 5/13 ...) that converge to the irrational limit of the Golden section 0.382 ..., corresponding to the angle of 137.5 ... degrees.
  • n e N natural number that corresponds to the heliostat number that we want to place in a certain area.
  • is the irrational limit of the golden section 0.382 ..., corresponding to the angle of 137.5 ... degrees. Being the irrational limit of the golden section:
  • ⁇ C n is a parameter that corresponds to the index of compactness of heliostats in the solar field. This parameter can be constant for all heliostats or be different for each one of them, optimizing the field based on the following variables:
  • o L e [-] corresponds to the latitude at which the solar field will be located.
  • ⁇ ⁇ e [0.2TT] corresponds to the location angle of each heliostat.
  • thermoelectric plant configured through this arrangement of heliostats allows:
  • system object of the invention eliminates the presence of current transition lines and, if desired, eliminates symmetry, both present in thermoelectric plants that are in operation today.
  • Figure 1. Shows the state of the art, "radial staggered” (three bobbin) and "corn field” distributions.
  • Figure 2 - Shows a scheme of the distribution of heliostats resulting from the system object of the invention.
  • Figure 3. Shows a scheme of the distribution of the elements of the plant object of the invention.
  • Figure 1 shows the distribution of heliostats according to the configurations used so far: “radial staggered” and “corn field”.
  • Figure 2 shows how the heliostat field would look if it is distributed following the method of the invention.
  • FIG 3 shows a thermoelectric plant (1) located in a certain location with latitude "L", in which a receiver tower (2) of a certain height "h” is erected to which the solar rays (4) will reach a once reflected by heliostats (3) that are arranged around said receiving tower (2).
  • the generation of electrical energy is given by the incidence of solar rays (4) reflected in said receiving tower (2) where they are concentrated, heating a heat transfer fluid that will be used to move a turbine and generate electrical energy.
  • thermoelectric plant (1) has a number "n N " of heliostats determined by the capacity or needs of the plant.
  • each of the "n" heliostats (3, 3 ', 3 ") is performed according to a radius r n (r 3 , r 3 >, r 3 ) , which corresponds to the line that joins the heliostat (3, 3 ', 3 ") to the tower (2) and according to an angle ⁇ ⁇ ( ⁇ , ⁇ ,, ⁇ ⁇ ) corresponding to the angle formed by the radius r n with the radius r n- i.
  • c n can be a constant for all heliostats or can be varied for each of them.
  • c n we obtain a field distribution of the heliostats (3) whose plan view of the heliostats (3) of the thermoelectric plant (1) results in an identical scheme to the one that follows the distribution found, by example in composite flowers and set of seeds, the most famous example being the distribution of the seeds in a sunflower, as shown in figure 2. This arrangement is described mathematically by parabolic or Fermat spirals in a number belonging to the Fibonacci series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Método de distribución de heliostatos en planta solar de torre rodeada de un campo de heliostatos los cuales reflejan la radiación solar a dicha torre. El método distribución de dichos heliostatos consiste en imitar los sistemas que se encuentran en la naturaleza para maximizar la captación de luz (semillas de plantas, hojas o pétalos) y que viene descrito matemáticamente por espirales de Fermat en un número perteneciente a la serie de Fibonacci, mediante la colocación, en coordenadas polares, de cada heliostato según un radio y un ángulo definido por Formula (I) siendo: rn distancia desde la torre (2) hasta la posición del heliostato (3), θ n el ángulo que forman el radio rn con el radio rn-1, n número del heliostato (3) que deseamos emplazar, Cn una constante que depende de cada emplazamiento y corresponde al índice de compacidad de los heliostatos (3) en la planta, ī el límite irracional de la sección áurea, es decir. (Formula II)

Description

MÉTODO DE DISTRIBUCIÓN DE HELIOSTATOS EN PLANTA DE TORRE
Sector técnico de la invención
La presente invención se engloba dentro del sector de generación de energía eléctrica a partir de la radiación solar mediante una planta del tipo de receptor central de torre. El objeto de la invención consiste en conseguir un óptimo rendimiento de la planta termoeléctrica mediante la distribución selectiva de los heliostatos con respecto de la torre receptora.
Antecedentes de la invención
Una planta solar termoeléctrica es una instalación industrial en la que, a partir del calentamiento de un fluido mediante radiación solar y su uso en un ciclo termodinámico convencional, se produce la potencia necesaria para mover un alternador para generación de energía eléctrica como en una central térmica clásica.
Constructivamente, es necesario concentrar la radiación solar para que se puedan alcanzar temperaturas elevadas, de más de 300° C, y obtener así un rendimiento aceptable en el ciclo termodinámico, que no se podría obtener con temperaturas más bajas. La captación y concentración de los rayos solares se lleva a cabo por medio de espejos con orientación automática que apuntan a una torre central donde se calienta el fluido. El conjunto de la superficie reflectante y su dispositivo de orientación se denomina heliostato.
Una planta de torre— también conocida como sistema de receptor central— está compuesta por un sistema concentrador o campo de heliostatos, que capta y concentra la componente directa de la radiación solar sobre un receptor— donde se produce la conversión de la energía radiante en energía térmica— que suele instalarse en la parte superior de una torre. El fluido de trabajo puede ser, entre otros, aire, vapor de agua, sodio fundido o sales fundidas, según la tecnología escogida. En las de vapor de agua, este mueve directamente una turbina. En los otros, el fluido transporta el calor a un generador de vapor de agua, con el que se hace funcionar una turbina que mueve al generador eléctrico.
Todos estos tipos de plantas disponen de una configuración en la que los heliostatos están distribuidos en función del tamaño y de la distancia a la torre, siguiendo ciertas disposiciones habitualmente radiales desde la torre y conocidas como "corn field" ("campo de maíz") y "radial staggered" ("tres bolillos"). Dichas configuraciones tienen la desventaja de que se producen sombras y bloqueos entre los heliostatos vecinos y por lo tanto se necesita eliminar alguno de ellos con el fin de minimizar este efecto. Además este tipo de configuraciones cuentan con líneas de transición o zonas vacías de helióstatos que provocan un menor aprovechamiento del terreno.
Descripción de la invención
El objeto de la invención es la aplicación de la disposición que presentan las hojas, tallos y semillas de las plantas a la distribución específica de los helióstatos en el campo solar. A dicha disposición se la denomina filotaxis y es característica de cada especie de planta. Su función es que dichas hojas, tallos y semillas estén expuestos al sol con el mínimo de interferencias posibles por parte de sus compañeras maximizando la captación de luz.
Esta distribución específica permite que los helióstatos puedan ser colocados de tal forma que se minimicen las pérdidas ópticas producidas por las sombras y bloqueos entre helióstatos vecinos, atenuación atmosférica y aumento de la interceptación provocado por las grandes distancias entre los helióstatos y la torre, optimizando así el aprovechamiento de la radiación solar al poder maximizar la densidad de helióstatos en el campo solar.
La sección áurea o "proporción divina" (empleada en el clasicismo griego) resulta de la división de una cantidad lineal (magnitud de distancia, duración, etc., abstraíbles mediante la longitud de un segmento) de manera que la relación entre la longitud total y la parte más larga sea idéntica a la que se da entre la parte más larga y la más corta. Resuelta la ecuación necesaria (a/b = b/(a+b)), el valor de la sección larga (sobre un segmento de longitud 1) es de 0.618 aproximadamente (en realidad es un número irracional), y la de la más corta sobre 0.382.
Este valor coincide con el límite al que tiende la relación entre dos términos consecutivos de la serie de Fibonacci.
La disposición de los diferentes elementos o helióstatos de una planta está descrita por una regularidad en la divergencia del ángulo formado por los sucesivos elementos dispuestos. Este ángulo divide un círculo completo en una fracción que coincide con los números de la serie de Fibonacci (1/2, 1/3, 2/5, 3/8, 5/13...) que convergen al límite irracional de la sección áurea 0.382..., correspondiente al ángulo de 137.5... grados.
Para la determinación de dicho ángulo y el posicionamiento de los helióstatos en la planta termoeléctrica, el sistema objeto de la invención se basa en el emplazamiento de los helióstatos siguiendo un patrón marcado por la disposición que presentan las hojas, tallos y semillas. Éstos vienen descritos por las siguientes ecuaciones que definen espirales bidimensionales de Fermat, también llamada espiral parabólica, en un número perteneciente a la serie de Fibonacci. xn = rn-cos6>n
yn = rn-s\n 0n
Donde:
Figure imgf000005_0001
Siendo: n e N número natural que corresponde con el número de heliostato que deseamos emplazar en un área determinada.
rn e Q, rn > 0 número racional mayor que cero y que se corresponde con el radio o la distancia a la que cada heliostato será situado en el campo solar con respecto al centro del eje de coordenadas de la torre.
θη e [0, 2TT] correspondiendo al ángulo de emplazamiento de cada heliostato en el campo solar.
τ es el límite irracional de la sección áurea 0.382..., correspondiente al ángulo de 137.5... grados. Siendo el límite irracional de la sección áurea:
= / Ι + Λ/Ι + /Ι + i + T TT
• xn la coordenada polar en eje X del heliostato n.
yn la coordenada polar en eje Y del heliostato n.
· cn es un parámetro que corresponde al índice de compacidad de los heliostatos en el campo solar. Este parámetro puede ser constante para todos los heliostatos o bien ser diferente para cada uno de ellos, consiguiendo optimizar el campo en función de las siguientes variables :
o h e Q, h > 0 número racional mayor que cero y corresponde a la altura de la torre. o d e Q, d > 0 número racional mayor que cero y corresponde a la distancia mínima a la que deben emplazarse los heliostatos para evitar el contacto entre ellos.
71 71
o L e [- ] corresponde a la latitud en la que el campo solar será emplazado.
o θη e [0, 2TT] corresponde al ángulo de emplazamiento de cada heliostato.
La planta termoeléctrica configurada mediante esta disposición de heliostatos permite:
• Obtener un mayor rendimiento del campo de heliostatos debido a:
- la minimización de las pérdidas por sombras y bloqueos, al encontrarse los heliostatos en un posicionamiento óptimo.
disminución de la atenuación atmosférica y aumento de la interceptación por emplazar más densamente los heliostatos.
• Lograr un menor coste:
El mayor rendimiento a causa de la disminución de pérdidas, incrementa la producción anual y ahorra heliostatos.
La menor superficie utilizada por emplazamiento más denso, conlleva una menor distancia entre heliostatos. Consecuentemente hay una reducción considerable en la distancia a cablear y en la necesaria construcción de caminos para acceder a cada uno de los heliostatos para su limpieza y mantenimiento.
Evitar el uso de un software complejo, incluido el personal especializado.
Esto deja de ser necesario con la presente invención, mucho más sencilla.
Se evita realizar una optimización intensa hasta conseguir un posicionamiento óptimo que implica un ahorro de tiempo y recursos.
Asimismo el sistema objeto de la invención permite eliminar la presencia de las actuales líneas de transición y, si se desea, eliminar la simetría, ambas presentes en las plantas termoeléctricas que se encuentran en funcionamiento hoy en día.
Descripción de los dibujos
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de la invención, se acompaña un juego de dibujos donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: Figura 1.- Muestra el estado de la técnica actual, distribuciones "radial staggered" (tres bolillos) y "corn field" (campo de maíz).
Figura 2 - Muestra un esquema de la distribución de heliostatos resultante del sistema objeto de la invención.
Figura 3.- Muestra un esquema de la distribución de los elementos de la planta objeto de la invención.
Figura 4.- Esquema en el que se definen los parámetros de ubicación de los heliostatos respecto de la torre. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras se describe a continuación un modo de realización preferente del método de distribución de heliostatos objeto de esta invención.
En la figura 1 se muestra la distribución de los heliostatos según las configuraciones utilizadas hasta el momento: "radial staggered" y "corn field".
En la figura 2 se observa como quedaría el campo de heliostatos si se distribuye siguiendo el método de la invención.
La figura 3 muestra una planta termoeléctrica (1 ) emplazada en una determinada localización con latitud "L", en la cual se erige una torre receptora (2) de una determinada altura "h" a la cual llegarán los rayos solares (4) una vez reflejados por unos heliostatos (3) que se encuentran dispuestos alrededor de dicha torre receptora (2). La generación de energía eléctrica viene dada por la incidencia de los rayos solares (4) reflejados en dicha torre receptora (2) donde se concentran, calentando un fluido caloportador que se utilizará para mover una turbina y generar energía eléctrica.
Para que la concentración de los rayos solares (4) reflejados por los heliostatos (3) sea óptima, dichos heliostatos (3) se ubican a una determinada distancia mínima "d" entre ellos para evitar el contacto entre los mismos. La planta termoeléctrica (1) cuenta con un número "nN" de heliostatos determinado por la capacidad o necesidades de la planta. Asimismo, tal y como se muestra en la figura 4, la ubicación de cada uno de los "n" heliostatos (3, 3', 3") se realiza según un radio rn (r3, r3>, r3 ), que se corresponde con la línea que une el heliostato (3, 3', 3") a la torre (2) y según un ángulo θη ( θ , θ , , θτ) correspondiente al ángulo que forman el radio rn con el radio rn-i . Para realizar la distribución óptima de los heliostatos (3) en la planta termoeléctrica (1), determinamos la ubicación en coordenadas polares de cada uno de los heliostatos (3) alrededor de la torres (2) siguiendo el patrón determinado por:
Figure imgf000008_0001
θ = n- τ2
según las fórmulas anteriormente expuestas.
Como se comentó en la descripción de la invención, cn puede ser una constante para todos los heliostatos o se puede hacer variar para cada uno de ellos. Para valores de cn constantes, obtenemos una distribución en campo de los heliostatos (3) cuya vista en planta de los heliostatos (3) de la planta termoeléctrica (1) resulta en un esquema idéntico al que sigue la distribución que se encuentra, por ejemplo en flores compuestas y conjunto de semillas, siendo el ejemplo más famoso la distribución de las semillas en un girasol, tal y como se aprecia en la figura 2. Esta disposición viene descrita matemáticamente por espirales parabólicas o de Fermat en un número perteneciente a la serie de Fibonacci.
Para valores de cn variables, adaptados a la latitud terrestre en la que la planta termosolar (1) es emplazada y a las demás variables L, d, h y θη , se obtiene una distribución de los heliostatos (3) que aumenta el rendimiento del campo solar. Dicha adaptación de cn se puede ver en la Figura 2.
Un ejemplo de formulación que podría servir para definir cn para cada helióstato sería:
Figure imgf000008_0002
En este caso dependería de las siguientes variables:
· d e Q, d > 0 número racional mayor que cero. Corresponde a la distancia mínima a la que deben emplazarse los heliostatos para evitar el contacto entre ellos.
π π
• Le , ]. Corresponde a la latitud en la que el campo solar sera emplazado.
• θη e [0, 2TT]. Corresponde al ángulo de emplazamiento de cada helióstato. • L y θη no deben ser cero al mismo tiempo.
• ki , k2, k3 e Q. Constantes racionales mayores que cero.
En este caso se ha dejado fuera la altura de la torre pero sería otro parámetro que podría tenerse en cuenta a la hora de obtener una ecuación general para cn. Este método de distribución de elementos, cuyo desarrollo matemático ya era conocido en el estado de la técnica (aunque se le han añadido ciertos parámetros para ajustarlo a las condiciones especiales de cada emplazamiento), produce un efecto sorprendente y hasta ahora desconocido si se aplica a la distribución de heliostatos en el campo solar de una torre receptora solar, ya que se minimizan las pérdidas ópticas de la planta, incluyendo las provocadas por las sombras y los bloqueos entre heliostatos, logrando una mayor eficiencia del sistema y, en consecuencia, una disminución del coste.
Aunque este método está desarrollado especialmente para su aplicación en plantas de energía solar de receptor central, no se descarta su extensión a otros campos de la industria que requieran características similares.

Claims

Método de distribución de heliostatos en planta solar de torre (1 ) para la generación de energía eléctrica a partir de energía solar, de las que comprenden una torre receptora (2) rodeada de un campo de heliostatos (3) los cuales reflejan la radiación solar a dicha torre (2), caracterizado porque el método de distribución de dichos heliostatos (3) consiste en imitar los sistemas que se encuentran en la naturaleza para la captación de luz (semillas de plantas, hojas o pétalos) medíante la colocación de cada heliostato según un radio y un ángulo definido, en coordenadas polares, por: rn = c„- ñ ; θ„ = n- ; siendo:
T
• n número del heliostato (3) que deseamos emplazar,
• rn distancia desde la torre (2) hasta la posición del heliostato n (3) ,
• θη el ángulo que forman el radio rn con el radio rn-i,
• cn parámetro que corresponde al índice de compacidad de los heliostatos (3) en la planta,
τ el límite irra ecir,
Figure imgf000010_0001
Método de distribución de heliostatos en planta solar de torre (1) según reivindicación 1 caracterizado porque cn o el índice de compacidad de los heliostatos (3) en la planta es una constante idéntica para todos los heliostatos del campo.
Método de distribución de heliostatos en planta solar de torre (1) según reivindicación 1 caracterizado porque cn o el índice de compacidad de los heliostatos (3) en la planta es diferente para cada uno de ellos, consiguiendo optimizar el campo en función de las siguientes variables:
• h e Q, h > 0 número racional mayor que cero y corresponde a la altura de la torre.
• d e Q, d > 0 número racional mayor que cero y corresponde a la distancia mínima a la que deben emplazarse los heliostatos para evitar el contacto entre ellos. ττ π
• L e [- -- ,— ] corresponde a la latitud en la que el campo solar sera emplazado.
• θη e [0, 2TT] corresponde al ángulo de emplazamiento de cada helióstato.
Método de distribución de heliostatos en planta solar de torre (1) según reivindicación 3 caracterizado porque cn se puede calcular como: cn (d, L,en) = ^ d ^ s¡endo:
• d e Q, d > 0 número racional mayor que cero. Corresponde a la distancia mínima a la que deben emplazarse los heliostatos para evitar el contacto entre ellos.
TT 71
• Le [- , 2 ]· Corresponde a la latitud en la que el campo solar será emplazado.
• θη e [0, 2π]. Corresponde al ángulo de emplazamiento de cada helióstato.
• L y θη no deben ser cero al mismo tiempo.
• ki , k2, k3 e Q. Constantes racionales mayores que cero.
Método de distribución de heliostatos en planta solar de torre (1) según reivindicación 1 caracterizado porque θη tiene unos valores comprendidos entre 0 y 2π para todo n.
Método de distribución de heliostatos en planta solar de torre (1) según reivindicación 1 caracterizado porque evita los bloqueos y las sombras entre heliostatos (3) sin tener líneas de transición entre ellos y con la máxima densidad de heliostatos posible.
Método de distribución de heliostatos en planta solar de torre (1) según reivindicación 1 caracterizado porque está descrito matemáticamente por la colocación de los heliostatos siguiendo la forma de las espirales parabólicas o de Fermat, las cuales se generan en números de Fibonacci, o lo que es lo mismo, el ángulo en el que se dispone cada una de las sucesivas espirales tiende al número áureo.
PCT/ES2010/000485 2009-12-01 2010-11-30 Metodo de distribucion de heliostatos en planta de torre WO2011067434A2 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10834253A EP2520873A2 (en) 2009-12-01 2010-11-30 Method for distributing heliostats in tower plant
MX2012006172A MX2012006172A (es) 2009-12-01 2010-11-30 Metodo de distribucion de heliostatos en planta de torre.
US13/513,181 US20130092156A1 (en) 2009-12-01 2010-11-30 Method for distributing heliostats in tower plant
CN201080062794.4A CN102753906B (zh) 2009-12-01 2010-11-30 塔式发电站中的定日镜的分布方法
ZA2012/04006A ZA201204006B (en) 2009-12-01 2012-05-31 Method for distributing heliostats in tower plant
MA34999A MA33844B1 (fr) 2009-12-01 2012-06-25 Procédé de repartition des d'heliostats dans une centrale a tour

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200902268 2009-12-01
ES200902268A ES2369594B1 (es) 2009-12-01 2009-12-01 Método de distribución de heliostatos en planta de torre.

Publications (2)

Publication Number Publication Date
WO2011067434A2 true WO2011067434A2 (es) 2011-06-09
WO2011067434A3 WO2011067434A3 (es) 2011-07-28

Family

ID=44115355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000485 WO2011067434A2 (es) 2009-12-01 2010-11-30 Metodo de distribucion de heliostatos en planta de torre

Country Status (9)

Country Link
US (1) US20130092156A1 (es)
EP (1) EP2520873A2 (es)
CN (1) CN102753906B (es)
CL (1) CL2012001447A1 (es)
ES (1) ES2369594B1 (es)
MA (1) MA33844B1 (es)
MX (1) MX2012006172A (es)
WO (1) WO2011067434A2 (es)
ZA (1) ZA201204006B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223429A1 (de) 2012-12-17 2013-12-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur wirkungsgradoptimierten Anordnung von Heliostaten in einem Heliostatfeld eines Solarkraftwerkes
US9726154B2 (en) 2011-12-30 2017-08-08 General Electric Technology Gmbh Steam power plant with integrated solar receiver

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2346395B1 (es) * 2009-04-01 2011-10-03 Lledo Iluminacion S.A. Reflector de revolucion con estructura facetada basada en el numero aureo.
US20130087139A1 (en) * 2010-06-16 2013-04-11 Brightsource Industries (Israel) Ltd. Solar field layout and systems and methods for arranging, maintaining, and operating heliostats therein
WO2014080375A2 (en) * 2012-11-26 2014-05-30 Brightsource Industries (Israel) Ltd. Systems and methods for wireless communications
CN103019220B (zh) * 2012-12-26 2015-09-30 首航节能光热技术股份有限公司 用于塔式太阳能热电站的定日镜分区控制系统
CN105402901A (zh) * 2015-11-17 2016-03-16 浙江大学 塔式太阳能热电系统镜场在柱状接收器上的成像方法
CN106524529B (zh) * 2016-09-30 2019-12-17 浙江中控太阳能技术有限公司 一种用于塔式太阳能热发电厂的定日镜镜场
CN106951642B (zh) * 2017-03-22 2020-05-22 中国电建集团西北勘测设计研究院有限公司 一种新型的仿生型太阳能光热镜场的排布方法
CN109341108B (zh) * 2018-08-22 2020-05-29 中国电建集团河北省电力勘测设计研究院有限公司 一种塔式太阳能热发电站定日镜场
CN109798678B (zh) * 2019-01-10 2020-11-06 中国电建集团西北勘测设计研究院有限公司 基于最大密度布置与仿生型布置组合定日镜场排布方法
CN114585865B (zh) 2019-04-04 2024-07-30 瓦斯特太阳能有限公司 用于将定日镜附接到底座的组件和方法
IT201900007620A1 (it) * 2019-05-30 2020-11-30 Centro Di Ricerca Sviluppo E Studi Superiori In Sardegna Crs4 Srl Uninominale Metodo per l'ottimizzazione di impianti ad energia solare a torre
CN111881576B (zh) * 2020-07-27 2024-03-01 国网综合能源服务集团有限公司 太阳能塔式光热电站定日镜场优化调度控制方法
CN113359868B (zh) * 2021-06-23 2022-11-22 中国气象局公共气象服务中心(国家预警信息发布中心) 塔式发电辐射在定日镜到吸收器间折减计算方法、介质
CN114034128B (zh) * 2021-11-01 2023-12-12 浙江可胜技术股份有限公司 一种镜场内来云分布测量方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110009A (en) * 1975-12-19 1978-08-29 Bunch Jesse C Heliostat apparatus
US4117682A (en) * 1976-11-01 1978-10-03 Smith Otto J M Solar collector system
US4172443A (en) * 1978-05-31 1979-10-30 Sommer Warren T Central receiver solar collector using analog coupling mirror control
SU989265A1 (ru) * 1980-09-09 1983-01-15 Проектно-Конструкторское Бюро По Механизации Энергетического Строительства Солнечна электростанци
US4365618A (en) * 1980-12-05 1982-12-28 Dedger Jones Heliostatic solar energy conversion system
AUPR356601A0 (en) * 2001-03-07 2001-04-05 University Of Sydney, The Solar energy reflector array
CN1854639A (zh) * 2005-04-29 2006-11-01 孙迎光 一种控制定日镜阵列同步跟踪的方法
US20090126364A1 (en) * 2007-06-06 2009-05-21 Ausra, Inc. Convective/radiative cooling of condenser coolant
CN101952669B (zh) * 2007-11-26 2014-03-12 伊苏勒有限公司 用于多塔中心接收器太阳能发电站的定日镜阵列布局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9726154B2 (en) 2011-12-30 2017-08-08 General Electric Technology Gmbh Steam power plant with integrated solar receiver
DE102012223429A1 (de) 2012-12-17 2013-12-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur wirkungsgradoptimierten Anordnung von Heliostaten in einem Heliostatfeld eines Solarkraftwerkes

Also Published As

Publication number Publication date
ZA201204006B (en) 2013-03-27
MA33844B1 (fr) 2012-12-03
US20130092156A1 (en) 2013-04-18
EP2520873A2 (en) 2012-11-07
ES2369594B1 (es) 2012-09-07
CN102753906A (zh) 2012-10-24
MX2012006172A (es) 2012-09-07
ES2369594A1 (es) 2011-12-02
WO2011067434A3 (es) 2011-07-28
CL2012001447A1 (es) 2013-06-07
CN102753906B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2011067434A2 (es) Metodo de distribucion de heliostatos en planta de torre
US10041700B1 (en) Heliostat array layouts for multi-tower central receiver solar power plants
JP5898674B2 (ja) クロスライン型太陽熱集光装置
WO2010116430A1 (ja) 太陽光集光受熱器
FR2941038A1 (fr) Concentrateur solaire statique optimal forme en spirale et muni de miroirs
HRP20171065T1 (hr) Optički sklop s visokom razinom učinkovitosti za skladištenje i uporabu energije iz solarnih izvora
ES2425466A1 (es) Dispositivo de generación solar mediante sistema de haz descendente
CN103530697A (zh) 辐射型塔式太阳能热电系统的镜场优化设计方法
US20190063408A1 (en) Enclosure structure provided with directionally-liad power transmission conductors, and laying method
ES2370553B1 (es) Torre para planta de concentración solar con refrigeración de tiro natural.
CN102393084A (zh) 菲涅尔式太阳能二次反射装置
KR101304959B1 (ko) 태양 추적식 집광기와 보조 조명원을 이용한 태양광 조명장치
CN100368831C (zh) 一种采聚太阳能的掩模片及采用掩模片的太阳能装置
ES2750551T3 (es) Aparato colector de energía solar y método de diseño
ES2746299T3 (es) Dispositivo colector de calor solar
Renzi et al. Experimental investigation and numerical model validation of a 2.5 kWt concentrated solar thermal plant
Bayeh et al. Comparison between PV farms, solar chimneys and CSP towers in Lebanon: Influence of temperature and solar irradiance on the output power
CN101619897B (zh) 准直式太阳能收集装置
RU2622495C1 (ru) Походная гелиотермоэлектростанция
Pavlović et al. Optical design of a solar parabolic thermal concentrator based on trapezoidal reflective petals
CN102798967A (zh) Cdc免跟踪太阳能复合聚光器及其阵列
CN202382441U (zh) 一种用于太阳能热发电系统的非等高定日镜场
KR100804184B1 (ko) 타워형 태양열 발전기의 리시버 구조
CN102434978A (zh) 一种用于太阳能热发电系统的非等高定日镜场
CN202281860U (zh) 菲涅尔式太阳能二次反射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062794.4

Country of ref document: CN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/006172

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012001447

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: 5635/CHENP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010834253

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010834253

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834253

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13513181

Country of ref document: US