WO2011065778A2 - Method for configuring converter of waveguide - Google Patents

Method for configuring converter of waveguide Download PDF

Info

Publication number
WO2011065778A2
WO2011065778A2 PCT/KR2010/008446 KR2010008446W WO2011065778A2 WO 2011065778 A2 WO2011065778 A2 WO 2011065778A2 KR 2010008446 W KR2010008446 W KR 2010008446W WO 2011065778 A2 WO2011065778 A2 WO 2011065778A2
Authority
WO
WIPO (PCT)
Prior art keywords
converter
substrate
waveguide
dielectric
present
Prior art date
Application number
PCT/KR2010/008446
Other languages
French (fr)
Korean (ko)
Other versions
WO2011065778A3 (en
Inventor
김삼동
문성운
이진구
이재서
오정훈
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2011065778A2 publication Critical patent/WO2011065778A2/en
Publication of WO2011065778A3 publication Critical patent/WO2011065778A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/006Manufacturing dielectric waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present invention relates to a transducer implementation method of a waveguide, and more particularly, to a transducer implementation method that can be implemented in a single process (monolithic process).
  • SoCs Monolithic Microwave ICs
  • SoCs System on Chips
  • electromagnetic signals e.g., millimeter waves (electromagnetic waves in the 30 to 300 GHz band)
  • a chip it is common for a chip to be implemented inside a module composed of waveguides. These chips consist of planar circuits and a converter is needed to facilitate the transfer of electromagnetic signals between these chips (planar circuits) and the waveguide.
  • Each chip and waveguide has its own mode through which signals can be transmitted, and the transducers match the two modes with each other and minimize the discontinuity effects of the modes that can result from mode mismatches. do.
  • the transducer is implemented as a substrate.
  • the substrate acting as a transducer (transformer substrate) has a smaller dielectric constant and a thinner thickness, which facilitates matching efforts with air and reduces inconsistency between the two modes. This can minimize the loss of electromagnetic signals transmitted and received through the waveguide.
  • the optimized converter substrate must be connected again through chip bonding with wire bonding or flip-chip bonding, and thus suffers from process complexity and loss of transmission and reception signals.
  • the present invention was conceived by recognizing the above needs, and the technical problem of the present invention is to propose a method for implementing a waveguide converter in a single process.
  • FIG. 1 is a view showing an embodiment of a conventional substrate for a converter.
  • transducers hereafter referred to as 'converter substrates'
  • 'converter substrates' have a lower dielectric constant and a thinner thickness, which facilitates matching efforts with air and the loss of electromagnetic signals transmitted and received through waveguides. Can be minimized.
  • the process of implementing an integrated circuit (planar circuit) and the process of implementing a substrate for a converter were performed separately.
  • an integrated circuit (MMIC or SoC) is mounted on a jig on which epoxy is deposited, and a substrate for a converter is implemented to mount on a jig on which epoxy is deposited, and then wire bonding ( wire bonding or ribbon bonding) to connect the integrated circuit and substrate for the converter.
  • the bonding wire is mainly implemented in gold.
  • Another conventional solution is to implement the converter substrate separately, then mount it over the epoxy-deposited jig and connect the integrated circuit and the converter substrate using bumps (flip chip bonding). In this case, bumps are mainly implemented in gold.
  • the present invention was devised to overcome the above-mentioned problems due to a separate process, and the present invention is to directly connect a substrate for a converter, which was implemented as a process separate from the process of implementing an integrated circuit, to the process of implementing an integrated circuit. That is, by implementing in a single process (monolithic process), to improve the above problems caused by a separate process for implementing the substrate for the converter.
  • the converter substrate since a dielectric having a low dielectric constant and a thin thickness is directly deposited on a substrate on which an integrated circuit (planar circuit) is implemented, the converter substrate may be implemented in a single process instead of a separate process. Because it can be implemented in a single process, it does not require a sensitive process directly related to performance, such as flip chip bonding and ribbon bonding for connecting the converter substrate and the integrated circuit. In addition, it can reduce the discontinuity effect with air in the waveguide and maximize the matching property with the air.
  • FIG. 1 is a view showing an embodiment of a conventional substrate for a converter.
  • FIG. 2 is a view showing an implementation process of a converter according to the present invention.
  • FIG. 3 is a perspective view of a transducer according to the invention embodied in a spherical waveguide
  • FIG. 4 is a diagram illustrating a back-to-back waveguide system (transmission and reception system) in which a transducer according to the present invention is implemented.
  • the transducer implementation method directly implements a transducer on a substrate on which an integrated circuit (planar circuit) for processing an electromagnetic wave signal transmitted and received through a waveguide is implemented.
  • Trench etching ; Depositing a dielectric in the trench and the remaining surface except for the partial surface; Depositing a metal on a surface of the deposited dielectric and forming a metal pattern; And backside etching a portion of the back surface of the substrate that overlaps the trench.
  • SiO x silicon oxide
  • FIG. 2 is a view showing an implementation process of a converter according to the present invention.
  • the converter according to the invention is implemented directly on the substrate on which the integrated circuit is implemented.
  • the integrated circuit is implemented with CMOS (Complementary Metal Oxide Semiconductor), which is expected to be used as an ultra-high frequency device, and the material of the substrate is silicon (Si), which is a substrate of CMOS.
  • CMOS Complementary Metal Oxide Semiconductor
  • Si silicon
  • the reason for using silicon substrates is that CMOS-based devices deal with many SiO x dielectric layers.
  • the material of the substrate is not necessarily limited to silicon, and other materials (eg GaAs, InP, GaN) may be used.
  • the first step for the implementation of the transducer according to the present invention is to trench-etch a portion of the surface of the substrate on which the integrated circuit (planar circuit) for processing the electromagnetic wave signals transmitted and received through the waveguide is implemented (S1). ).
  • the trench may be formed by wet etching after applying photoresist (PR) to the substrate.
  • PR photoresist
  • the trench is formed to deposit the dielectric, and is etched to an appropriate depth to reflect the characteristic that the thickness of the dielectric should be thin. For example, the thickness of the dielectric should be reflected, and if the operating frequency is considered 60 GHz, it is etched to a depth of 100 ⁇ 300 ⁇ m.
  • a dielectric is deposited on the remaining surface and the trench except for the partial surface of the substrate (S2).
  • a silicon oxide (SiO x ) -based material is used, which is intended to express characteristics in which the dielectric constant of the dielectric used in the converter should be low.
  • Deposition of the dielectric involves a curing process to ensure the robustness of the substrate for the converter, and the curing is performed at a temperature of 500 degrees centigrade.
  • SiO x has a dielectric constant of 3.9.
  • the lowest dielectric constant in conventional converter substrates is known as the Duroid RT 5880 substrate, which has a low dielectric constant of 2.2 but is not robust (well bent and bent) and is only used for wire bonding without problems. There is a problem in utilization.
  • the substrate mainly used in flip chip bonding is mainly a sapphire substrate, but has a very high dielectric constant (11).
  • SiO x is an alternative that solves these problems at once, and the use of SiO x as a dielectric has the advantage of trading off the low dielectric constant required for the converter and the robustness of the substrate for the converter.
  • SiO x dielectric can be made specifically using the SOD (Spin On Dielectric) technique.
  • SOD Spin On Dielectric
  • PHPS Perhydropolysilazane
  • the precursor of Dielectric is coated using spin coating or dip coating and then converted into SiO x by applying heat.
  • a dielectric of several hundred ⁇ m thick can be made in a very short time.
  • a metal is deposited on the surface of the deposited dielectric and a metal pattern is implemented (metalization, S3).
  • Deposition of the metal occurs after the CMP (Chemical Mechanical Process) leaves the dielectric only in the trench and removes the dielectric that was deposited in the rest.
  • the implementation of the metal pattern in the deposited metal is achieved through a lift-off process.
  • the metal pattern performs a function of coupling (coupling) electromagnetic wave signals (eg, TE10 mode signals) transmitted and received through the waveguide to a transmission line (Slotline-to-CPW (Coplanar waveguide) transition) of a planar circuit.
  • the backside of the substrate is etched (S4), and only the portion of the backside of the substrate that overlaps the trench in which the dielectric is deposited is etched to expose the deposited dielectric to air to improve the matching property with the air.
  • Back etching may be by dry etching.
  • FIG. 3 shows a perspective view of a transducer according to the invention embodied in a spherical waveguide.
  • the dielectric SiO x
  • MMIC or SoC integrated circuit
  • FIG. 4 is a front view of a back-to-back waveguide system (transmission / reception system) in which a transducer according to the present invention is implemented, and shows that the transducer according to an embodiment of the present invention is directly implemented on a substrate on which an integrated circuit is implemented.
  • a back-to-back waveguide system transmission / reception system
  • the present invention can be embodied as computer readable codes on a computer readable recording medium.
  • Computer-readable recording media include all types of recording devices that store data that can be read by a computer system. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like.
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. In the case of the present invention, it may be implemented as a program for process simulation before actually embarking on the converter implementation process.
  • the invention can be used to implement transducers of waveguides of electromagnetic waves, in particular millimeter waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

The present invention relates to a method for configuring a converter of a waveguide, and more particularly to a method for configuring a converter which can be configured by a monolithic process. The method for configuring the converter in the present invention solves a technical problem by directly forming the converter on a substrate on which an integrated circuit (flat circuit) for processing an electromagnetic wave signal transmitted and received through a waveguide is provided. The present invention does not additionally require a sensitive process related to performance thereof like a flip-chip bonding process and a ribbon bonding process for connecting the substrate for the converter with the integrated circuit since the substrate for the converter is not additionally required. In addition, the present invention can reduce a discontinuous effect with respect to the air within the waveguide and can maximize a matching characteristic with respect to the air.

Description

도파관의 변환기 구현 방법How to implement a transducer in a waveguide
본 발명은 도파관의 변환기 구현 방법에 관한 것으로, 보다 상세하게는 단일 공정(monolithic process)으로 구현이 가능한 변환기 구현 방법에 관한 것이다.The present invention relates to a transducer implementation method of a waveguide, and more particularly, to a transducer implementation method that can be implemented in a single process (monolithic process).
도파관(waveguide)을 통해 송수신되는 전자기파(예를 들어 밀리미터파(30 ~ 300 GHz 대역의 전자기파)) 신호의 제반 처리를 담당하는 고주파 단일 집적 회로(Monolithic Microwave IC) 또는 SoC(System on Chip)와 같은 칩(chip)이 도파관으로 구성된 모듈 내부에 구현되는 것이 통상적이다. 이들 칩은 평면 회로(planar circuit)로 구성되며, 이들 칩(평면 회로)과 도파관과의 전자기파 신호의 전달을 원활히 하기 위한 변환기가 필요하다. 칩과 도파관은 각각 신호가 전달될 수 있는 고유의 모드(mode)가 존재하는데, 변환기는 이 두 모드를 서로 정합(matching)시키고 모드의 불일치로 발생할 수 있는 모드의 불연속 효과를 최소화시키는 기능을 수행한다.Such as Monolithic Microwave ICs (SoCs) or System on Chips (SoCs), which are responsible for the overall processing of electromagnetic signals (e.g., millimeter waves (electromagnetic waves in the 30 to 300 GHz band)) transmitted and received through waveguides. It is common for a chip to be implemented inside a module composed of waveguides. These chips consist of planar circuits and a converter is needed to facilitate the transfer of electromagnetic signals between these chips (planar circuits) and the waveguide. Each chip and waveguide has its own mode through which signals can be transmitted, and the transducers match the two modes with each other and minimize the discontinuity effects of the modes that can result from mode mismatches. do.
변환기는 기판(substrate)으로 구현되는데, 이러한 변환기 역할을 하는 기판(변환기용 기판)은 유전율이 작을수록 그리고 두께가 얇을수록 공기(air)와의 정합을 위한 노력이 수월해지고 두 모드간의 불일치 현상을 줄일 수 있어 도파관을 통해 송수신되는 전자기파 신호의 손실을 최소화할 수 있다. 그러나 최적화된 변환기용 기판은 다시 칩과 와이어 본딩(wire bonding) 또는 플립칩 본딩(flip-chip bonding)을 통해 연결되어야 하기 때문에 이때 야기되는 공정상의 복잡성과 송수신 신호의 손실을 감수해야 한다.The transducer is implemented as a substrate. The substrate acting as a transducer (transformer substrate) has a smaller dielectric constant and a thinner thickness, which facilitates matching efforts with air and reduces inconsistency between the two modes. This can minimize the loss of electromagnetic signals transmitted and received through the waveguide. However, the optimized converter substrate must be connected again through chip bonding with wire bonding or flip-chip bonding, and thus suffers from process complexity and loss of transmission and reception signals.
따라서 평면 회로와 도파관과의 신호 전달을 원활하게 해주고 신호의 손실을 최소화할 수 있음과 동시에 본딩과 같은 손실을 야기하는 부가적인 공정없이 단일 공정으로 칩과 함께 같은 기판위에 변환기를 구현하기 위한 공정 방안이 필요하다.Therefore, it is possible to facilitate signal transmission between planar circuits and waveguides, minimize signal loss, and at the same time, implement a converter on the same substrate together with a chip in a single process without additional processes causing loss such as bonding. This is necessary.
본 발명은 상기와 같은 필요를 인식하여 창안된 것으로, 본 발명의 기술적 과제는 도파관의 변환기를 단일 공정으로 구현하는 방안을 제시하는 것이다.The present invention was conceived by recognizing the above needs, and the technical problem of the present invention is to propose a method for implementing a waveguide converter in a single process.
도 1은 기존의 변환기용 기판의 구현 예를 제시한 도면이다.1 is a view showing an embodiment of a conventional substrate for a converter.
위에서 언급한 바와 같이, 변환기(이하'변환기용 기판'과 혼용한다)는 유전율이 작을수록 그리고 두께가 얇을수록 공기와의 정합(matching)을 위한 노력이 수월해지고 도파관을 통해 송수신되는 전자기파 신호의 손실을 최소화할 수 있다. 기존에는 집적 회로(평면 회로)의 구현 공정과 변환기용 기판 구현 공정이 별도로 이루어졌다.As mentioned above, transducers (hereafter referred to as 'converter substrates') have a lower dielectric constant and a thinner thickness, which facilitates matching efforts with air and the loss of electromagnetic signals transmitted and received through waveguides. Can be minimized. In the past, the process of implementing an integrated circuit (planar circuit) and the process of implementing a substrate for a converter were performed separately.
즉, 에폭시(epoxy)가 증착된 지그(JIG)상에 집적 회로(MMIC 또는 SoC)를 마운팅(mounting)하고, 변환기용 기판을 별도로 구현하여 에폭시가 증착된 지그상에 마운팅한 후, 와이어 본딩(wire bonding, 또는 리본 본딩)을 통해 집적 회로와 변환기용 기판을 연결시킨다. 이때 본딩용 와이어는 주로 금(gold)으로 구현된다. 또 다른 기존 방안은 변환기용 기판을 별도로 구현한 후 에폭시가 증착된 지그 전체에 마운팅하고 범프(Bump)를 이용하여 집적 회로와 변환기용 기판을 연결시킨다(플립 칩 본딩: flip chip bonding). 이때 범프도 주로 금(gold)으로 구현된다.That is, an integrated circuit (MMIC or SoC) is mounted on a jig on which epoxy is deposited, and a substrate for a converter is implemented to mount on a jig on which epoxy is deposited, and then wire bonding ( wire bonding or ribbon bonding) to connect the integrated circuit and substrate for the converter. In this case, the bonding wire is mainly implemented in gold. Another conventional solution is to implement the converter substrate separately, then mount it over the epoxy-deposited jig and connect the integrated circuit and the converter substrate using bumps (flip chip bonding). In this case, bumps are mainly implemented in gold.
이러한 기존 방안들은 전송 선로간의 전자기파 신호의 불연속 효과를 야기하므로 상기한 두 모드간 매칭이 곤란하고 전자기파 신호의 손실이 발생할 수밖에 없으며, 아울러 집적 회로의 구현 공정과 별도의 공정으로 구현되므로 송수신 시스템의 제작 공정의 복잡성을 배가시킨다.Since these conventional methods cause discontinuous effects of electromagnetic signals between transmission lines, it is difficult to match between the two modes and loss of electromagnetic signals is generated. In addition, the process is implemented in a separate process from the implementation of an integrated circuit, thus fabricating a transmission / reception system. It adds to the complexity of the process.
따라서 본 발명은 별도의 공정으로 인한 상기한 제반 문제점을 극복하기 위해 창안된 것으로, 본 발명은 집적 회로의 구현 공정과는 별도의 공정으로 구현되었던 변환기용 기판을 집적 회로의 구현 공정에 직접 결합시켜 즉, 단일 공정(monolithic process)으로 구현하여, 변환기용 기판 구현을 위한 별도의 공정으로 인해 발생하는 상기한 문제점들을 개선하는 것이다.Therefore, the present invention was devised to overcome the above-mentioned problems due to a separate process, and the present invention is to directly connect a substrate for a converter, which was implemented as a process separate from the process of implementing an integrated circuit, to the process of implementing an integrated circuit. That is, by implementing in a single process (monolithic process), to improve the above problems caused by a separate process for implementing the substrate for the converter.
단일 공정으로 변환기용 기판을 구현한다 함은 집적 회로가 구현되는 기판에 변환기를 직접 구현하는 것이다.Implementing a substrate for a transducer in a single process is to implement the transducer directly on the substrate on which the integrated circuit is implemented.
본 발명에 의하면, 유전율이 낮고 두께가 얇은 유전체를 집적 회로(평면형 회로)가 구현되는 기판 위에 직접 증착시키므로 변환기용 기판을 별도 공정이 아닌 단일 공정으로 구현할 수 있다. 단일 공정으로 구현이 가능하므로 변환기용 기판과 집적 회로를 연결시키기 위한 플립칩 본딩과 리본 본딩과 같이 성능과 직결되는 민감한 공정을 별도로 요구하지 아니한다. 아울러 도파관내 공기와의 불연속 효과를 줄이고 공기와의 정합 특성을 극대화 할 수 있다.According to the present invention, since a dielectric having a low dielectric constant and a thin thickness is directly deposited on a substrate on which an integrated circuit (planar circuit) is implemented, the converter substrate may be implemented in a single process instead of a separate process. Because it can be implemented in a single process, it does not require a sensitive process directly related to performance, such as flip chip bonding and ribbon bonding for connecting the converter substrate and the integrated circuit. In addition, it can reduce the discontinuity effect with air in the waveguide and maximize the matching property with the air.
도 1은 기존의 변환기용 기판의 구현예를 제시한 도면이다.1 is a view showing an embodiment of a conventional substrate for a converter.
도 2는 본 발명에 의한 변환기의 구현 과정을 제시한 도면이다.2 is a view showing an implementation process of a converter according to the present invention.
도 3은 구형 도파관 내에 구현된 본 발명에 의한 변환기의 사시도이다.3 is a perspective view of a transducer according to the invention embodied in a spherical waveguide;
도 4는 본 발명에 의한 변환기가 구현된 Back-to-Back 도파관 시스템(송수신 시스템)을 나타낸 도면이다.4 is a diagram illustrating a back-to-back waveguide system (transmission and reception system) in which a transducer according to the present invention is implemented.
본 발명에 의한 변환기 구현 방법은 도파관을 통해 송수신되는 전자기파 신호를 소정 처리하는 집적 회로(평면 회로)가 구현되는 기판(substrate)에 변환기를 직접 구현하며, 상기 변환기의 구현은 상기 기판의 일부 표면을 트렌치 식각(trench etching)하는 단계; 상기 일부 표면을 제외한 나머지 표면과 상기 트렌치에 유전체를 증착하는 단계; 상기 증착된 유전체의 표면에 금속을 증착하고 금속 패턴을 형성하는 단계; 및 상기 기판의 이면 중 상기 트렌치와 겹치는 부분을 식각(backside etching)하는 단계를 포함한다.The transducer implementation method according to the present invention directly implements a transducer on a substrate on which an integrated circuit (planar circuit) for processing an electromagnetic wave signal transmitted and received through a waveguide is implemented. Trench etching; Depositing a dielectric in the trench and the remaining surface except for the partial surface; Depositing a metal on a surface of the deposited dielectric and forming a metal pattern; And backside etching a portion of the back surface of the substrate that overlaps the trench.
이때 상기 유전체로는 산화규소(SiOx) 계통의 물질을 채용하는 것이 바람직하다.In this case, it is preferable to use a silicon oxide (SiO x ) -based material as the dielectric.
이하, 본 발명의 기술적 과제의 해결 방안을 명확하게 하기 위한 발명의 실시예를 본 발명의 바람직한 실시예에 근거하여 첨부 도면을 참조하여 상세히 설명하되, 도면의 구성요소들에 참조번호를 부여함에 있어서 동일 구성요소에 대해서는 비록 다른 도면상에 있더라도 동일 참조번호를 부여하였으며 당해 도면에 대한 설명이 필요한 경우 다른 도면의 구성요소를 인용할 수 있음을 미리 밝혀둔다. 아울러 본 발명의 실시예와 관련된 공지 기능 혹은 구성에 대한 구체적인 설명 그리고 그 이외의 제반 사항이 본 발명의 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings based on the preferred embodiments of the present invention for clarifying the technical solutions of the present invention. The same reference numerals are given to the same components even in different drawings, and it is to be noted that components of the other drawings may be cited when the description of the drawings is required. In addition, when it is determined that the detailed description of the known function or configuration and other matters related to the embodiment of the present invention may unnecessarily obscure the gist of the embodiment of the present invention, the detailed description thereof will be omitted.
도 2는 본 발명에 의한 변환기의 구현 과정을 제시한 도면이다.2 is a view showing an implementation process of a converter according to the present invention.
본 발명에 의한 변환기는, 위에서 언급한 바와 같이, 집적 회로가 구현되는 기판에 직접 구현된다. 이때 집적 회로는 앞으로 초고주파 소자로 활용의 기대가 큰 CMOS(Complementary Metal Oxide Semiconductor)로 구현되며, 기판의 재질은 CMOS의 기판인 실리콘(Si)이다. 실리콘 기판을 사용하는 이유는 SiOx 유전체층을 많이 다루는 소자가 CMOS 기반이기 때문이다. 다만, 기판의 재질이 반드시 실리콘으로 한정되는 것은 아니며 다른 재질(예를 들어 GaAs, InP, GaN)도 가능하다.The converter according to the invention, as mentioned above, is implemented directly on the substrate on which the integrated circuit is implemented. At this time, the integrated circuit is implemented with CMOS (Complementary Metal Oxide Semiconductor), which is expected to be used as an ultra-high frequency device, and the material of the substrate is silicon (Si), which is a substrate of CMOS. The reason for using silicon substrates is that CMOS-based devices deal with many SiO x dielectric layers. However, the material of the substrate is not necessarily limited to silicon, and other materials (eg GaAs, InP, GaN) may be used.
본 발명에 의한 변환기의 구현을 위한 첫 단계는 도파관을 통해 송수신되는 전자기파 신호를 소정 처리하는 집적 회로(평면 회로)가 구현되는 기판(substrate)의 일부 표면을 트렌치 식각(trench etching)하는 것이다(S1). 트렌치는 기판에 포토 레지스트(Photo Resist: PR)를 입힌 후 건식 에칭(wet etching)에 의해 형성될 수 있다. 트렌치는 유전체를 증착시키기 위해 형성되며, 유전체의 두께가 얇아야 하는 특성이 반영되도록 적정한 깊이로 식각한다. 예를 들어 유전체의 두께가 얇아야 하는 특성이 반영되어야 하고 동작 주파수를 60 GHz로 고려할 경우 100 ~ 300 ㎛ 깊이로 식각한다.The first step for the implementation of the transducer according to the present invention is to trench-etch a portion of the surface of the substrate on which the integrated circuit (planar circuit) for processing the electromagnetic wave signals transmitted and received through the waveguide is implemented (S1). ). The trench may be formed by wet etching after applying photoresist (PR) to the substrate. The trench is formed to deposit the dielectric, and is etched to an appropriate depth to reflect the characteristic that the thickness of the dielectric should be thin. For example, the thickness of the dielectric should be reflected, and if the operating frequency is considered 60 GHz, it is etched to a depth of 100 ~ 300 ㎛.
다음으로 기판의 상기 일부 표면을 제외한 나머지 표면과 상기 트렌치에 유전체를 증착한다(S2). 유전체로는 산화규소(SiOx) 계통의 물질을 사용하는데 이는 변환기에 사용되는 유전체의 유전율이 낮아야 하는 특성을 발현시키기 위한 것이다. 유전체를 증착함에는 변환기용 기판의 견고성을 확보하기 위한 경화(curing) 과정이 수반되며, 경화는 섭씨(centigrade) 500도의 온도로 이루어진다.Next, a dielectric is deposited on the remaining surface and the trench except for the partial surface of the substrate (S2). As the dielectric, a silicon oxide (SiO x ) -based material is used, which is intended to express characteristics in which the dielectric constant of the dielectric used in the converter should be low. Deposition of the dielectric involves a curing process to ensure the robustness of the substrate for the converter, and the curing is performed at a temperature of 500 degrees centigrade.
SiOx는 3.9의 유전율을 갖는다. 기존 변환기용 기판에서 제일 유전율이 낮은 기판은 Duroid RT 5880 기판으로 알려져 있는데, 이 기판의 유전율은 2.2로 낮은 편이지만 견고하지 못하여(잘 휘고 구부러짐) 와이어 본딩의 경우에만 문제없이 활용되고 나머지의 경우에는 활용상에 애로사항이 있다. 한편 플립칩 본딩에서 주로 사용되는 기판은 주로 사파이어 기판으로 견고하기는 하나 유전율이 매우 높다(유전율 11).SiO x has a dielectric constant of 3.9. The lowest dielectric constant in conventional converter substrates is known as the Duroid RT 5880 substrate, which has a low dielectric constant of 2.2 but is not robust (well bent and bent) and is only used for wire bonding without problems. There is a problem in utilization. Meanwhile, the substrate mainly used in flip chip bonding is mainly a sapphire substrate, but has a very high dielectric constant (11).
SiOx는 이러한 문제들을 일거에 해결할 수 있는 대안으로, SiOx를 유전체로 이용하면 변환기에 요청되는 낮은 유전율의 유전체와 변환기용 기판의 견고성을 trade-off 할 수 있는 장점을 갖는다.SiO x is an alternative that solves these problems at once, and the use of SiO x as a dielectric has the advantage of trading off the low dielectric constant required for the converter and the robustness of the substrate for the converter.
한편 SiOx 유전체는 구체적으로 SOD(Spin On Dielectric) 기법을 이용하여 만들 수 있다. SOD 기법에는 주로 Perhydropolysilazane(PHPS) 라는 물질이 사용되는데, Spin Coating 또는 Dip 코팅 등의 방법을 사용하여 Dielectric의 전구체를 코팅한 후 열을 가하여 SiOx로 변환시킨다. SOD 기법을 이용하면 수백 ㎛ 두께의 유전체를 매우 짧은 시간에 만들 수 있다.On the other hand, SiO x dielectric can be made specifically using the SOD (Spin On Dielectric) technique. In the SOD technique, a material called Perhydropolysilazane (PHPS) is mainly used. The precursor of Dielectric is coated using spin coating or dip coating and then converted into SiO x by applying heat. Using the SOD technique, a dielectric of several hundred μm thick can be made in a very short time.
다음으로 증착된 유전체의 표면에 금속을 증착하고 금속 패턴을 구현한다(metalization, S3). 금속의 증착은 CMP(Chemical Mechanical Process)를 통해 트렌치에만 유전체를 남기고 나머지 부분에 증착되었던 유전체를 없앤 후에 이루어진다. 증착된 금속에서 금속 패턴의 구현은 lift-off 공정을 통해 이루어진다. 금속 패턴은 도파관을 통해 송수신되는 전자기파 신호(예를 들어 TE10 모드의 신호)를 평면회로의 전송 선로(Slotline-to-CPW(Coplanar waveguide) transition)로 커플링(coupling)하는 기능을 수행한다.Next, a metal is deposited on the surface of the deposited dielectric and a metal pattern is implemented (metalization, S3). Deposition of the metal occurs after the CMP (Chemical Mechanical Process) leaves the dielectric only in the trench and removes the dielectric that was deposited in the rest. The implementation of the metal pattern in the deposited metal is achieved through a lift-off process. The metal pattern performs a function of coupling (coupling) electromagnetic wave signals (eg, TE10 mode signals) transmitted and received through the waveguide to a transmission line (Slotline-to-CPW (Coplanar waveguide) transition) of a planar circuit.
다음으로 기판의 이면을 식각(backside etching)하는데(S4), 기판의 이면 중 유전체가 증착된 트렌치와 겹치는 부분만을 식각하여 증착된 유전체를 공기에 노출시켜 공기와의 정합 특성을 향상시키도록 한다. 이면 식각은 건식 에칭에 의할 수 있다.Next, the backside of the substrate is etched (S4), and only the portion of the backside of the substrate that overlaps the trench in which the dielectric is deposited is etched to expose the deposited dielectric to air to improve the matching property with the air. Back etching may be by dry etching.
최종적으로 Edge sawing을 통해 유전체만을 공기에 노출시킨다(S5).Finally, only the dielectric is exposed to air through the edge sawing (S5).
도 3은 구형 도파관 내에 구현된 본 발명에 의한 변환기의 사시도를 제시한 것이다.3 shows a perspective view of a transducer according to the invention embodied in a spherical waveguide.
위에서 언급한 바대로 집적 회로(MMIC 또는 SoC)가 구현된 실리콘 기판의 표면에 유전체(SiOx)가 직접 증착되고, 기판의 이면 중 유전체가 증착된 부분만을 식각하여(backside etching) 얇은 유전체가 공기(도파관 내)에 노출되어 있음을 확인할 수 있다.As mentioned above, the dielectric (SiO x ) is deposited directly on the surface of the silicon substrate on which the integrated circuit (MMIC or SoC) is implemented, and only a portion of the backside of the substrate on which the dielectric is deposited is etched (backside etching). It can be confirmed that it is exposed to (in the waveguide).
도 4는 본 발명에 의한 변환기가 구현된 Back-to-Back 도파관 시스템(송수신 시스템)의 전면도로, 본 발명의 실시예에 의한 변환기가 집적 회로가 구현되는 기판에 직접 구현됨을 잘 보여주고 있다.4 is a front view of a back-to-back waveguide system (transmission / reception system) in which a transducer according to the present invention is implemented, and shows that the transducer according to an embodiment of the present invention is directly implemented on a substrate on which an integrated circuit is implemented.
본 발명은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 본 발명의 경우에는 변환기 구현 공정에 실제 착수하기 이전에 공정 시뮬레이션용 프로그램으로 구현할 수 있을 것이다.The present invention can be embodied as computer readable codes on a computer readable recording medium. Computer-readable recording media include all types of recording devices that store data that can be read by a computer system. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. In the case of the present invention, it may be implemented as a program for process simulation before actually embarking on the converter implementation process.
이제까지 본 발명에 대하여 그 바람직한 실시예를 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention.
그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 균등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope will be construed as being included in the present invention.
본 발명은 전자기파 특히 밀리미터파의 도파관의 변환기 구현에 이용될 수 있다.The invention can be used to implement transducers of waveguides of electromagnetic waves, in particular millimeter waves.

Claims (4)

  1. 도파관을 통해 송수신되는 전자기파 신호를 소정 처리하는 집적 회로(평면 회로)가 구현되는 기판(substrate)에 변환기를 직접 구현하며, 상기 변환기의 구현은The converter is directly implemented on a substrate on which an integrated circuit (planar circuit) for processing an electromagnetic wave signal transmitted and received through the waveguide is implemented.
    상기 기판의 일부 표면을 트렌치 식각(trench etching)하는 단계;Trench etching a portion of the surface of the substrate;
    상기 일부 표면을 제외한 나머지 표면과 상기 트렌치에 유전체를 증착하는 단계;Depositing a dielectric in the trench and the remaining surface except for the partial surface;
    상기 증착된 유전체의 표면에 금속을 증착하고 금속 패턴을 형성하는 단계; 및Depositing a metal on a surface of the deposited dielectric and forming a metal pattern; And
    상기 기판의 이면 중 상기 트렌치와 겹치는 부분을 식각(backside etching)하는 단계를 포함하는 변환기 구현 방법.And backside etching a portion of the back surface of the substrate overlapping the trench.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 유전체는 산화규소(SiOx) 계통의 물질인 것을 특징으로 하는 변환기 구현 방법.The dielectric is a method of implementing a converter, characterized in that the silicon oxide (SiO x ) -based material.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 전자기파는 밀리미터파인 것을 특징으로 하는 변환기 구현 방법.The electromagnetic wave is a millimeter wave, characterized in that the converter implementation method.
  4. 제 1 항 내지 제 3 항 중 어느 한 항의 방법을 컴퓨터에서 실행하기 위한 프로그램을 기록하는 컴퓨터 판독 가능한 기록 매체.A computer-readable recording medium for recording a program for executing the method of any one of claims 1 to 3 on a computer.
PCT/KR2010/008446 2009-11-27 2010-11-26 Method for configuring converter of waveguide WO2011065778A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0115776 2009-11-27
KR1020090115776A KR100951183B1 (en) 2009-11-27 2009-11-27 Method for configuring waveguide-transition

Publications (2)

Publication Number Publication Date
WO2011065778A2 true WO2011065778A2 (en) 2011-06-03
WO2011065778A3 WO2011065778A3 (en) 2011-11-03

Family

ID=42219558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008446 WO2011065778A2 (en) 2009-11-27 2010-11-26 Method for configuring converter of waveguide

Country Status (2)

Country Link
KR (1) KR100951183B1 (en)
WO (1) WO2011065778A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340371A1 (en) * 2016-12-23 2018-06-27 TE Connectivity Nederland B.V. Connection arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101689353B1 (en) * 2015-04-13 2016-12-23 성균관대학교산학협력단 On-chip waveguide feeder for silicon millimiter wave ics and feeding method using said feeder, and multiple input and output millimeter wave transceivers using said feeder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583468A (en) * 1995-04-03 1996-12-10 Motorola, Inc. High frequency transition from a microstrip transmission line to an MMIC coplanar waveguide
KR19990002609A (en) * 1997-06-20 1999-01-15 양승택 Optical mode size converter
US20090136173A1 (en) * 2007-11-26 2009-05-28 Onechip Photonics Inc. Integrated lateral mode converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063557B1 (en) 1998-03-12 2004-01-21 Toyota Jidosha Kabushiki Kaisha Method of fabricating optical nonlinear thin film waveguide and optical nonlinear thin film waveguide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583468A (en) * 1995-04-03 1996-12-10 Motorola, Inc. High frequency transition from a microstrip transmission line to an MMIC coplanar waveguide
KR19990002609A (en) * 1997-06-20 1999-01-15 양승택 Optical mode size converter
US20090136173A1 (en) * 2007-11-26 2009-05-28 Onechip Photonics Inc. Integrated lateral mode converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340371A1 (en) * 2016-12-23 2018-06-27 TE Connectivity Nederland B.V. Connection arrangement
WO2018115201A1 (en) * 2016-12-23 2018-06-28 Te Connectivity Nederland Bv Connection arrangement

Also Published As

Publication number Publication date
WO2011065778A3 (en) 2011-11-03
KR100951183B1 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US9537199B2 (en) Package structure having an integrated waveguide configured to communicate between first and second integrated circuit chips
US8760342B2 (en) Circuit board, high frequency module, and radar apparatus
CN100456468C (en) Package for a high-frequency electronic device
US20180131084A1 (en) Printed-circuit board having antennas and electromagnetic-tunnel-embedded architecture and manufacturing method thereof
US20130104387A1 (en) On pcb dielectric waveguide
KR100986230B1 (en) Multilayer package and a transmitter-receiver module package of active phase array radar using the same
EP2467897B1 (en) Precision waveguide interface
EP2862230A1 (en) Directional coupler waveguide structure and method
EP1077502A3 (en) MMIC-to-waveguide RF transition and associated method
JP6372113B2 (en) High frequency module and manufacturing method thereof
US20030016162A1 (en) High frequency transmitter-receiver
CN111952196A (en) Groove chip embedding process
US8022784B2 (en) Planar transmission line-to-waveguide transition apparatus having an embedded bent stub
US9502382B2 (en) Coplaner waveguide transition
WO2011065778A2 (en) Method for configuring converter of waveguide
JP7358371B2 (en) Thin film surface mountable high frequency coupler
JP3631667B2 (en) Wiring board and its connection structure with waveguide
CN111370316A (en) Six-surface surrounding embedded packaging method
US11658403B2 (en) Device, package and/or substrate comprising curved antenna
KR100964984B1 (en) Cavity resonator and filter
Kopp et al. Quilt Packaging: A robust coplanar chip-to-chip interconnect offering very high bandwidth
JP2009302167A (en) Package
Sakai et al. A millimeter-wave flip-chip IC using micro-bump bonding technology
Okuyama et al. Wireless inter-chip signal transmission by electromagnetic coupling of open-ring resonators
KR20020070739A (en) MMIC and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833590

Country of ref document: EP

Kind code of ref document: A2