WO2011065154A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2011065154A1
WO2011065154A1 PCT/JP2010/068330 JP2010068330W WO2011065154A1 WO 2011065154 A1 WO2011065154 A1 WO 2011065154A1 JP 2010068330 W JP2010068330 W JP 2010068330W WO 2011065154 A1 WO2011065154 A1 WO 2011065154A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
formula
resin composition
curable resin
solvent
Prior art date
Application number
PCT/JP2010/068330
Other languages
French (fr)
Japanese (ja)
Inventor
田中 義人
崇 金村
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2011543172A priority Critical patent/JP5418602B2/en
Publication of WO2011065154A1 publication Critical patent/WO2011065154A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a solventless curable resin composition containing a fluorine-containing polymer that is cured by a hydrosilylation reaction.
  • Patent Document 1 a composition relating to a curable fluorine-containing polymer having an ethylenic carbon-carbon double bond at a terminal
  • Patent Document 2 proposes that a fluorine-containing polymer having an ethylenic carbon-carbon double bond is cured by a hydrosilylation reaction.
  • Patent Document 3 describes that a hydroxyl group-containing curable fluororesin is dissolved in an acrylic monomer and cured by adding an isocyanate curing agent.
  • the crosslinking reaction disclosed in Patent Document 1 is a photocuring reaction, and a curing system based on a hydrosilylation reaction is not disclosed.
  • the fluorine-containing polymer described in Patent Document 2 is a copolymer of a fluorinated ethylenic monomer and a non-fluorinated ethylenic monomer, and is a structural unit that provides an ethylenic carbon-carbon double bond Is a polymer derived from a non-fluorinated ethylenic monomer.
  • the structural unit giving an ethylenic carbon-carbon double bond is a non-fluorinated ethylenic structural unit, the fluorine content of the fluoropolymer cannot be increased, and optical properties such as light transmittance and refractive index are not obtained. There is room for further improvement in terms of characteristics, heat resistance at high temperatures, and light resistance.
  • the curing system described in Patent Document 3 is a condensation reaction between a hydroxyl group and an isocyanate group. Depending on the use, the influence of water that is eliminated cannot be ignored, and the formed crosslinked structure is a urethane bond. There is room for improvement in heat resistance.
  • An object of the present invention is to provide a curable resin composition that uses a hydrosilylation reaction that is an addition reaction and can be easily cured without containing an organic solvent that does not participate in the hydrosilylation reaction.
  • the present invention (A) Formula (1): -(M)-(A1)-(N)- Wherein M is a structural unit derived from a fluoroolefin; A1 is the formula (I): (Wherein X 1 and X 2 are the same or different and are a fluorine atom or a hydrogen atom; X 3 is a fluorine atom, a hydrogen atom, a chlorine atom, a methyl group, a trifluoromethyl group; R 1 is a carbon-carbon at the terminal) C2-C29 chain or branched alkyl group, fluoroalkyl group, perfluoroalkyl group containing at least one double bond, including ether bond, ester bond, urethane bond in the chain N is a structural unit derived from a monomer copolymerizable with the monomer giving structural units M and A1), and the structural unit M is 1 to A fluorine-containing polymer comprising 80 mol%, 20 to 80 mol% of structural unit A
  • the present invention also provides (A) a fluorine-containing polymer represented by the formula (1) and comprising 1 to 80 mol% of the structural unit M, 20 to 80 mol% of the structural unit A1, and 0 to 79 mol% of the structural unit N; (B) a hydrosilylation catalyst, (D) a non-silicon reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and participating in the hydrosilylation crosslinking reaction; and (E) a solvent not participating in the hydrosilylation crosslinking reaction (F) ) In the absence of the curable resin composition (second invention).
  • A a fluorine-containing polymer represented by the formula (1) and comprising 1 to 80 mol% of the structural unit M, 20 to 80 mol% of the structural unit A1, and 0 to 79 mol% of the structural unit N
  • B a hydrosilylation catalyst
  • D a non-silicon reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and
  • the present invention also relates to a cured product obtained by curing the curable resin composition of the first or second invention.
  • the hydrosilylation crosslinking reaction of the curable resin composition of the present invention is not a reaction in which a desorbing component such as water or salt is generated but an addition reaction, and thus does not require a step of removing a by-product.
  • the curable resin composition of the present invention is a solvent-free type that does not contain a solvent that does not participate in the hydrosilylation crosslinking reaction, so that removal of the organic solvent is unnecessary, and the molding process and the like can be simplified. Furthermore, the solventless curable resin composition is useful even in cases where volatile components are not allowed due to molding processing conditions. For example, it is advantageous in applications such as filling and sealing in an airtight container.
  • the first curable resin composition of the present invention comprises (A) a fluoropolymer represented by the formula (1) containing the structural unit (I) represented by the formula (I), (B) a hydrosilylation catalyst, And (C) a liquid siloxane-based reactive solvent capable of dissolving or dispersing the fluorine-containing polymer (A) and having two or more groups in which hydrogen atoms are directly bonded to silicon atoms, and hydrosilylation crosslinking reaction It is a solventless composition that does not contain the solvent (F) that does not participate in the process.
  • the second curable resin composition of the present invention comprises (A) a fluoropolymer represented by the formula (1) containing the structural unit (I) represented by the formula (I), (B) a hydrosilylation catalyst, And (D) a non-silicon reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and participating in the hydrosilylation crosslinking reaction, and (E) a hydrosilylation crosslinking agent, It is a solventless composition that does not contain a solvent (F) that does not participate.
  • formula (1) -(M)-(A1)-(N)-
  • M is a structural unit derived from a fluoroolefin
  • A1 is the formula (I): (Wherein X 1 and X 2 are the same or different and are a fluorine atom or a hydrogen atom; X 3 is a fluorine atom, a hydrogen atom, a chlorine atom, a methyl group, a trifluoromethyl group; R 1 is a carbon-carbon at the terminal) C2-C29 chain or branched alkyl group, fluoroalkyl group, perfluoroalkyl group containing at least one double bond, including ether bond, ester bond, urethane bond in the chain N is a structural unit derived from a monomer copolymerizable with the monomer giving structural units M and A1), and the structural unit derived from a monomer cop
  • This fluoropolymer (A) is characterized in that it contains a structural unit (I) having a chain having an ethylenic carbon-carbon double bond at the terminal, and a skeleton having high solubility, transparency and light resistance. There is a point.
  • Such structural unit A1 includes, among others, formula (Ia): (Wherein X 1 to X 3 are the same as those in formula (I); Y is a linear or branched alkylene group, a fluoroalkylene group or a perfluoroalkylene group having 1 to 27 carbon atoms, An ether bond, an ester bond, a urethane bond, or an ethylenic carbon-carbon double bond may be included; Z is preferably a structural unit represented by H or CH 3 ) from the viewpoint of good hydrosilylation crosslinking reaction.
  • Y is preferably a linear alkylene group having 1 to 8 carbon atoms, and preferably contains an ether bond and / or an ester bond and / or a urethane bond in the chain, and has particularly good heat resistance and compatibility. Therefore, a chain alkylene group having 5 or less carbon atoms and containing an ether bond in the chain is preferable.
  • the following structural units are preferable from the viewpoint of good heat resistance, light resistance, and compatibility.
  • the structural unit M of the fluoropolymer (A) is a structural unit derived from a fluoroolefin.
  • the fluoroolefin include a perfluoroolefin such as a tetrafluoroethylene (TFE) unit, a hexafluoropropylene (HFP) unit, a perfluoromethyl vinyl ether unit, a perfluoropropyl vinyl ether unit, or two or more of these; chlorotrifluoroethylene (CTFE) ) Units, vinyl fluoride units, vinylidene fluoride (VdF) units, trifluoroethylene units and other non-perfluoroolefins.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • CTE chlorotrifluoroethylene
  • TFE and HFP are preferable from the viewpoint of weather resistance and light resistance
  • CTFE and VdF are preferable from the viewpoint of compatibility.
  • Examples of the structural unit N include non-fluorinated vinyl ether units and / or non-fluorinated vinyl ester units that do not contain an ethylenic carbon-carbon double bond.
  • R 3 is —OR 2 or —CH 2 OR 2 (where R 2 is an alkyl group having a hydroxyl group)
  • R 2 is, for example, one having 1 to 3, preferably 1 hydroxyl group bonded to a linear or branched alkyl group having 1 to 8 carbon atoms.
  • Examples of these are, for example, 2-hydroxyethyl vinyl ether unit, 3-hydroxypropyl vinyl ether unit, 2-hydroxypropyl vinyl ether unit, 2-hydroxy-2-methylpropyl vinyl ether unit, 4-hydroxybutyl vinyl ether unit, 4-hydroxy- 2-methylbutyl vinyl ether unit, 5-hydroxypentyl vinyl ether unit, 6-hydroxyhexyl vinyl ether unit, 2-hydroxyethyl allyl ether unit, 4-hydroxybutyl allyl ether unit, ethylene glycol monoallyl ether unit, diethylene glycol monoallyl ether unit, Examples include triethylene glycol monoallyl ether unit and glycerin monoallyl ether unit. Hydroxyalkyl vinyl ether of 3 to 8, these, 4-hydroxybutyl vinyl ether unit and 2-hydroxyethyl vinyl ether unit are most preferred from the viewpoint of polymerization is easy.
  • R 3 is an alkyl vinyl ether or an alkyl allyl ether represented by —OR 4 , —COOR 4 or —OCOR 4 (where R 4 is an alkyl group).
  • R 4 is, for example, a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. Examples of these are, for example, cyclohexyl vinyl ether units, methyl vinyl ether units, ethyl vinyl ether units, propyl vinyl ether units, n-butyl vinyl ether units, isobutyl vinyl ether units, vinyl acetate units, vinyl propionate units, vinyl butyrate units, vinyl isobutyrate units.
  • Vinyl pivalate units, vinyl caproate units, vinyl versatate units, vinyl laurate units, vinyl stearate units and vinyl cyclohexylcarboxylate units are preferred.
  • vinyl versatate, vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, and vinyl acetate from the viewpoint of excellent weather resistance, solubility, and low cost.
  • non-aromatic carboxylic acid vinyl esters particularly carboxylic acid vinyl esters having a carboxylic acid having 6 or more carbon atoms, more preferably carboxylic acids having 9 or more carbon atoms. Esters are preferred.
  • the upper limit of the carbon number of the carboxylic acid in the carboxylic acid vinyl ester is preferably 20 or less, and more preferably 15 or less.
  • vinyl versatate is most preferable.
  • the copolymerization ratio is preferably such that structural unit A / structural unit M / structural unit N is 1 to 80/20 to 80/0 to 79 (molar ratio), more preferably 5 to 65/35 to 65/0 to 60. (Mole% ratio).
  • the number average molecular weight of the fluorinated polymer (A) is not particularly limited, but as described later, it is 1,000 to 1,000,000, particularly 3,000 to 50,000 from the viewpoint of solubility in hydrosilylation crosslinking agents and solvents. Is preferred.
  • Hydrosilylation catalyst A compound that catalyzes a known hydrosilylation reaction can be used.
  • those described in International Publication No. 2008/153002, International Publication No. 2008/044765, International Patent Application PCT / JP2007 / 074066, International Patent Application PCT / JP2008 / 060555, etc. Can be used.
  • B1, B2, and B3 described in International Publication No. 2008/044765 pamphlet can be used as they are.
  • the hydrosilylation catalyst (B) is a catalyst for promoting the hydrosilylation reaction of the composition of the present invention.
  • catalysts include platinum-based catalysts, palladium-based catalysts, rhodium-based catalysts, ruthenium-based catalysts, and iridium-based catalysts, and platinum-based catalysts are preferred because they are relatively easily available.
  • platinum-based catalyst include chloroplatinic acid, alcohol-modified chloroplatinic acid, platinum carbonyl complex, platinum olefin complex, and platinum alkenylsiloxane complex.
  • platinum complexes include platinum carbonylcyclovinylmethylsiloxane complex, platinum-divinyltetramethyldisiloxane complex, platinum-cyclovinylmethylsiloxane complex, etc. It can be obtained as a reagent having a platinum concentration of 1 to 5%, such as a methyl cyclic siloxane solution, a vinyl polydimethylsiloxane solution having both ends of a platinum-divinyltetramethyldisiloxane complex, and a cyclic methylvinylsiloxane solution of a platinum-cyclovinylmethylsiloxane complex.
  • the content of the hydrosilylation catalyst (B) is a catalyst amount that promotes the curing of the composition of the present invention.
  • the content of the catalyst metal in the composition of the present invention is The amount is preferably in the range of 0.1 to 1,000 ppm in terms of mass unit, and particularly preferably in the range of 1 to 500 ppm. If the content of the component (B) is less than the lower limit of the above range, curing of the resulting composition tends not to be sufficiently promoted. This is because problems such as coloring may occur in the cured product.
  • (C) Liquid siloxane-based reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and having two or more groups in which hydrogen atoms are directly bonded to silicon atoms
  • the solvent used in the first curable resin composition of the present invention and a compound that also functions as a crosslinking agent in the hydrosilylation crosslinking reaction are a compound that also functions as a crosslinking agent in the hydrosilylation crosslinking reaction.
  • the hydrosilylation reaction is an addition reaction between an ethylenic carbon-carbon double bond and a hydrogen atom directly bonded to a silicon atom. Therefore, in the present invention, the compound that functions as a hydrosilylation crosslinking agent is a siloxane compound having two or more groups in which hydrogen atoms are directly bonded to silicon atoms.
  • siloxane-based reactive solvent examples include, for example, International Publication No. 2008/153002, International Publication No. 2008/044765, International Patent Application PCT / JP2007 / 074066, International Patent Application PCT / JP2008 / 060555.
  • liquid compounds capable of dissolving or dispersing the fluoropolymer (A) can be used.
  • the solvent (F) for dissolving and dispersing the fluoropolymer (A) is not required, and a so-called solventless curable composition can be obtained. it can.
  • the solvent-free curable composition When a solvent-free curable composition is used, it is not necessary to remove the organic solvent, and the molding process and the like can be simplified. In addition, if the removal of the organic solvent is insufficient, there is a problem that the organic solvent remains in the cured product, and the influence of the remaining organic solvent causes problems such as heat resistance, a decrease in mechanical strength, cloudiness, Although voids may occur due to volatilization, these problems can be solved by using a solvent-free type. Furthermore, the solventless curable resin composition is useful even in cases where volatile components are not allowed due to molding processing conditions. For example, it is advantageous in applications such as filling and sealing in an airtight container.
  • a hydrosilylation crosslinking agent that does not have the ability to dissolve and disperse the fluoropolymer (A) may be used in combination, or a non-silicon reactive solvent (D) involved in the hydrosilylation crosslinking reaction may be used in combination. Also good.
  • siloxane-based reactive solvent (C) for example, B1 and B2 described in International Publication No. 2008/044765 pamphlet can be used as they are.
  • the compounding quantity of a siloxane type reactive solvent (C) is 5 mass parts or more with respect to 100 mass parts of fluoropolymer (A), Furthermore, 10 mass parts or more, Especially 20 mass parts or more, and 90 It is preferably at most 70 parts by mass, more preferably at most 50 parts by mass.
  • Non-silicon reactive solvent that can dissolve or disperse the fluoropolymer (A) and participates in the hydrosilylation crosslinking reaction. This solvent is used in the second curable resin composition of the present invention.
  • the siloxane-based reactive solvent (C) is also a compound that dissolves and disperses the fluoropolymer (A) and participates in the hydrosilylation crosslinking reaction. However, since it is a siloxane-based compound, the non-silicon reactive solvent (D) )is not.
  • “involved in the hydrosilylation crosslinking reaction” means any reaction involved in the hydrosilylation reaction, which is an addition reaction between an ethylenic carbon-carbon double bond and a hydrogen atom directly bonded to a silicon atom. It has a group (ethylenic carbon-carbon double bond or silicon atom-bonded hydrogen atom-containing group), and as a result, is incorporated into the reaction product of the hydrosilylation crosslinking reaction.
  • polyvalent allyl compounds such as ethylene glycol diallyl, diethylene glycol diallyl, triethylene glycol diallyl, 1,4-cyclohexanedimethanol diallyl, triallyl isocyanurate (TAIC); ethylene glycol divinyl ether, diethylene glycol Divinyl ether, triethylene glycol divinyl ether, bisphenol A bis (vinyloxyethylene) ether, bis (vinyloxyethylene) ether, hydroquinone bis (vinyloxyethylene) ether, 1,4-cyclohexanedimethanol divinyl ether, Polyvalent vinyl ether compounds such as ethylene glycol diacrylate (EDA), diethylene glycol diacrylate (DiEDA), triethylene glycol diacrylate (TriEDA), 1,4-butanediol diacrylate (1,4-BuDA), 1,3 -Butanediol diacrylate (1,3-BuDA), 2,2-bis [4- (2-hydroxy-3-acryloxypropoxy) phenyl
  • TAIC EDMA
  • EDA EDA
  • TMPT TMPA
  • TMPA TMPA
  • the non-silicon-based reactive solvent (D) may be used alone as the reactive solvent for the fluoropolymer (A), or the fluoropolymer (A). You may use together with the said siloxane type reactive solvent (C) which functions as a solvent.
  • the compounding amount of the non-silicon-based reactive solvent (D) varies depending on the type of the fluorine-containing polymer, the type of the solvent, the presence / absence of the siloxane-based reactive solvent (C), and the type, but the fluorine-containing polymer (A)
  • the amount is 5 parts by mass or more, further 10 parts by mass or more, particularly 20 parts by mass or more, and 100 parts by mass or less, more preferably 80 parts by mass or less, and particularly preferably 70 parts by mass or less.
  • (E) Hydrosilylation cross-linking agent A siloxane-based compound having two or more silicon-bonded hydrogen atoms, and an essential component in the second composition of the present invention.
  • the hydrosilylation crosslinking agent (E) may be the siloxane-based reactive solvent (C), or a liquid that does not dissolve or disperse the fluorinated polymer (A) other than the siloxane-based reactive solvent (C).
  • it may be a siloxane compound (E1) that is solid and has two or more silicon-bonded hydrogen atoms (hereinafter sometimes referred to as “insoluble hydrosilylation crosslinking agent (E1)”).
  • the siloxane-based reactive solvent (C) when used as the crosslinking agent (E), it overlaps with the embodiment of the first composition of the present invention.
  • the non-soluble hydrosilylation crosslinking agent (E1) is essential. is there.
  • non-soluble hydrosilylation crosslinking agent (E1) for example, B3 described in International Publication No. 2008/044765 pamphlet can be used as it is.
  • n is an integer of 3 or more and 8 or less
  • formula which is a cyclic siloxane type compound: (—Si (CH 3 ) HO—) n (Wherein n is an integer of 3 or more and 8 or less) can also be used, and among these, n is 4 in terms of good heat resistance: Is preferred.
  • the blending amount of the hydrosilylation crosslinking agent (E) in the second invention varies depending on the type of the fluoropolymer, the type of the hydrosilylation crosslinking agent, the presence or absence of the siloxane-based reactive solvent (C), the type, etc. From the viewpoint of the function, it is 1 part by mass or more, further 2 parts by mass or more, particularly 5 parts by mass or more, and 50 parts by mass or less, further 100 parts by mass of the fluoropolymer (A). It is preferably 20 parts by mass or less, particularly 10 parts by mass or less.
  • (F) Solvent that does not participate in hydrosilylation crosslinking reaction
  • the curable resin composition of the present invention does not use a solvent (F) that does not participate in the hydrosilylation crosslinking reaction, regardless of whether it is the first invention or the second invention. .
  • the solvent that is used only to dissolve or disperse the fluoropolymer (A) and does not participate in the hydrosilylation crosslinking reaction needs to be finally removed, which is undesirable from the viewpoint of environment and cost, including energy for that purpose.
  • solvent (F) not used in the present invention examples include aliphatic hydrocarbons such as hexane, cyclohexane, heptane, octane, nonane, decane, undecane, dodecane, and mineral spirits; benzene, toluene, xylene, naphthalene, Aromatic hydrocarbons such as solvent naphtha; methyl acetate, ethyl acetate, propyl acetate, n-butyl acetate, isobutyl acetate, isopropyl acetate, cellosolve acetate, propylene glycol methyl ether acetate, carbitol acetate, diethyl oxalate, ethyl pyruvate , Ethyl-2-hydroxybutyrate, ethyl acetoacetate, amyl acetate, methyl lactate, ethyl lactate, methyl 3-me
  • fluorine-based solvent for example, CH 3 CCl 2 F (HCFC-141b), CF 3 CF 2 CHCl 2 / CClF 2 CF 2 CHClF mixture (HCFC-225), perfluorohexane, perfluoro (2- Butyltetrahydrofuran), methoxy-nonafluorobutane, 1,3-bistrifluoromethylbenzene, etc.
  • fluorinated solvents may be used alone, or may be fluorinated solvents, or a mixed solvent of one or more of non-fluorinated and fluorinated solvents.
  • the curable resin composition of the present invention can be a so-called solventless curable resin composition that does not use the solvent (F) that does not participate in the hydrosilylation crosslinking reaction.
  • the solventless type refers to the case where only the reactive solvents (C) and (D) are used, and is distinguished from the solvent type using the solvent (F) that does not participate in the hydrosilylation crosslinking reaction.
  • the curable resin composition of the present invention varies depending on the application, for example, for applications such as sealing, if the viscosity at 30 ° C. is too low, there is a lot of liquid dripping, and on the contrary, the handleability is lowered. It is preferably 1 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more from the viewpoint of good thin film formability, and further preferably 10 mPa ⁇ s or more from the viewpoint of small curing shrinkage during curing.
  • mPa ⁇ s or less is preferable, and from the viewpoint that the curable composition spreads over the details during molding, 5000 mPa ⁇ s or less is more preferable, and when a thin film is formed. From the viewpoint of good leveling (surface smoothness), 2000 mPa ⁇ s or less is more preferable.
  • First curable resin composition (A) fluorinated polymer:
  • the structural unit A1 is the formula (Ia)
  • the structural unit M is hydroxyethyl vinyl ether.
  • the fluorine-containing polymer having a number average molecular weight of 2000 to 50000
  • B hydrosilylation catalyst
  • Platinum catalyst C
  • Siloxane system Reactive solvent C 6 H 5 Si (OSi (CH 3 ) 2 H) 3
  • Preparation method After (A) is uniformly dissolved in (C), (B) is added to obtain a curable composition.
  • Second curable resin composition (A) fluorinated polymer: In the formula (1), the fluorine-containing polymer (B) hydrosilylation catalyst having a number average molecular weight of 2,000 to 50,000, wherein the structural unit A1 is the formula (Ia) and the structural unit M is hydroxyethyl vinyl ether. Platinum catalyst (D) Non-silicon Reactive solvent TAIC (E) Hydrosilylation crosslinking agent (Preparation method) (A) is uniformly dissolved in (D), (E) is added, and (B) is further added to obtain a curable composition.
  • First or second curable resin composition (A) fluorinated polymer:
  • the structural unit A1 is the formula (Ia)
  • the structural unit M is hydroxyethyl vinyl ether.
  • the fluorine-containing polymer having a number average molecular weight of 2000 to 50000
  • B hydrosilylation catalyst Platinum catalyst
  • C siloxane system Reactive solvent C 6 H 5 Si (OSi (CH 3 ) 2 H) 3
  • D Non-silicon reactive solvent TAIC
  • E Hydrosilylation crosslinking agent (Preparation method)
  • (A) is uniformly dissolved therein, (E) is added, and (B) is further added to obtain a curable composition.
  • the curable resin composition of the present invention optionally includes, for example, reaction inhibitors, pigments, dispersants, thickeners, preservatives, ultraviolet absorbers, antifoaming agents, leveling agents, etc. May be.
  • reaction inhibitor examples include 1-ethynyl-1-cyclohexanol, 2-ethynylisopropanol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, and 2-phenyl.
  • Acetylenic alcohols such as -3-butyn-2-ol; alkenyl siloxanes such as 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane; malate compounds such as diallyl fumarate, dimethyl fumarate and diethyl fumarate;
  • Other examples include triallyl cyanurate and triazole.
  • the effect of being able to make the obtained composition one component and the pot life (pot life) of the resulting composition to be sufficiently long is exhibited.
  • the content of the reaction inhibitor is not particularly limited, but is preferably such an amount that it is 10 to 50,000 ppm (mass basis) in the composition of the present invention.
  • the curable resin composition of the present invention is cured by hydrosilylation crosslinking, and the resulting cured product can be used in various forms for various applications.
  • a cured film can be formed and used for various purposes.
  • a method of forming the film a known method suitable for the application can be employed. For example, when it is necessary to control the film thickness, roll coating, gravure coating, micro gravure coating, flow coating, bar coating, spray coating, die coating, spin coating, dip coating, etc. are used. it can.
  • the curable resin composition of the present invention may be used for film formation, but is particularly useful as a molding material for various molded products.
  • As the molding method extrusion molding, injection molding, compression molding, blow molding, transfer molding, stereolithography, nanoimprinting, vacuum molding and the like can be adopted.
  • Examples of the use of the curable resin composition of the present invention include a sealing member, an optical material, an optoelectronic imaging tube, various sensors, and an antireflection material.
  • sealing member examples include packages (encapsulation) and mounting of light-emitting elements such as light-emitting diodes (LEDs), EL elements, and nonlinear optical elements, and optical functional elements such as light-receiving elements such as CCD, CMOS, and PD. Can be illustrated. Moreover, sealing materials (or fillers) for optical members such as lenses for deep ultraviolet microscopes are also included. Sealed light elements are used in various places, but non-limiting examples include light emission from high-mount stop lamps, meter panels, mobile phone backlights, and light sources for remote control devices for various electrical products. Elements: Camera autofocus, CD / DVD optical pickup light receiving element, and the like.
  • the optical material contains fluorine in particular, it becomes an optical material with a low refractive index.
  • it is useful as an optical transmission medium.
  • cladding material of plastic clad optical fiber whose core material is quartz or optical glass, cladding material of all plastic optical fiber whose core material is plastic, anti-reflection coating material, lens material, optical waveguide material, prism material, optical window
  • lens material optical waveguide material
  • prism material optical window
  • optical materials such as materials, optical storage disk materials, nonlinear optical elements, hologram materials, photolithographic materials, and light emitting element sealing materials. It can also be used as a material for optical devices.
  • optical devices such as optical waveguides, OADMs, optical switches, optical filters, optical connectors, multiplexers / demultiplexers, and other optical devices are known and useful for forming these devices. Material. Furthermore, various functional compounds (non-linear optical materials, fluorescent light-emitting functional dyes, photorefractive materials, etc.) are contained and used as functional elements for optical devices such as modulators, wavelength conversion elements, and optical amplifiers. Is suitable.
  • the sealing member material for electronic semiconductors, a water and moisture resistant adhesive, and an adhesive for optical components and elements.
  • IR analyzer Fourier transform infrared spectrophotometer 1760X manufactured by PERKIN ELMER Conditions: Measure at room temperature.
  • Hydroxyl value (mgKOH / g) The hydroxyl value is determined according to a conventional method by an acetylation method using acetic anhydride.
  • Fluorine content (% by mass) By burning 10 mg of sample by the oxygen flask combustion method, absorbing the decomposition gas in 20 ml of deionized water, and measuring the fluorine ion concentration in the absorption liquid by the fluorine selective electrode method (fluorine ion meter, model 901 manufactured by Orion) Ask.
  • Viscosity (mPa ⁇ s) Using a cone-plate viscometer CV-1E manufactured by Tokai Yagami Co., Ltd., the viscosity at 25 ° C. is measured under the condition of 100 rpm using CP-100 cone, and a stable value is adopted for 60 seconds.
  • Refractive index (n D ) Measurement is performed using an Abbe refractometer manufactured by Atago Optical Instruments Co., Ltd. at 25 ° C. using sodium D line (589 nm) as a light source.
  • Light transmittance (%) A value obtained by measuring a spectral transmittance curve of a sample (cured film) having a thickness of about 100 ⁇ m at a wavelength of 300 to 800 nm using a self-recording spectrophotometer (U-3310 (trade name) manufactured by Hitachi, Ltd.) is adopted.
  • Synthesis Example 1 (Production of hydroxyl-containing fluorine-containing polymer) According to the method described in JP-A-2004-204205, the following hydroxyl group-containing fluorine-containing copolymer (A-1) polymers (a) to (d) were synthesized.
  • each monomer in said polymer is the following compound.
  • TFE tetrafluoroethylene
  • VV9 vinyl versatate (Veoba 9 (trade name of aliphatic carboxylic acid vinyl ester of 9 carbon atoms manufactured by Shell Chemical Co., Ltd.))
  • VV10 vinyl versatate (Veoba 10 (trade name of aliphatic carboxylic acid vinyl ester having 10 carbon atoms manufactured by Shell Chemical Co., Ltd.))
  • HBVE hydroxybutyl vinyl ether
  • HEVE hydroxyethyl vinyl ether
  • VtBz tert-butyl vinyl benzoate
  • VBz vinyl benzoate
  • CA crotonic acid
  • Synthesis example 2 20 g of polymer (a) was weighed and dissolved in 20 g of n-butyl acetate previously dehydrated with Molecular Sieves 4A, and charged into a 100 ml glass four-necked flask equipped with a stirrer and a thermometer. From the dropping funnel, 1.6 g of allyl isocyanate (CH 2 ⁇ CHCH 2 NCO) was added dropwise at room temperature, and the mixture was sufficiently stirred and homogenized. Thereafter, it was placed in an oil bath, and the internal temperature was kept at 70 ⁇ 5 ° C. and stirred for 5 hours. By measuring the IR of the reaction solution, it was confirmed that the raw material allyl isocyanate was not present in the system.
  • allyl isocyanate CH 2 ⁇ CHCH 2 NCO
  • the reaction solution was concentrated with a rotary evaporator, the solvent was removed by a casting method, and the precipitated solid was dissolved again in a small amount of acetone.
  • the polymer was purified by reprecipitation of this solution in a sufficiently large amount of n-hexane. This purification operation was repeated three times in total, and the obtained polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis. It was found that the polymer was a fluorine-containing polymer containing 16 mol% in the molecule.
  • reaction solution was concentrated with a rotary evaporator, the solvent was removed by a casting method, and the precipitated solid was dissolved again in a small amount of acetone.
  • the polymer was purified by reprecipitation of this solution in a sufficiently large amount of n-hexane. This purification operation was repeated three times in total, and the obtained polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis. It was found to be a fluorine-containing polymer containing 15 mol% of the unit represented by
  • CH 2 CHCOOCH 2 CH 2 NCO
  • Synthesis example 5 20 g of the polymer (d) was weighed and dissolved in 20 g of n-butyl acetate previously dehydrated with Molecular Sieves 4A, and charged into a 100 ml glass four-necked flask equipped with a stirrer and a thermometer. From a dropping funnel, 1.55 g of Karenz MOI (CH 2 ⁇ C (CH 3 ) COOCH 2 CH 2 NCO) manufactured by Showa Denko KK was added dropwise at room temperature, and the mixture was sufficiently stirred and homogenized. Thereafter, it was placed in an oil bath, and the internal temperature was kept at 80 ⁇ 5 ° C. and stirred for 5 hours.
  • Karenz MOI CH 2 ⁇ C (CH 3 ) COOCH 2 CH 2 NCO
  • the fluoropolymer (3) was fluid at room temperature and had a number average molecular weight of 5400.
  • the reaction solution was concentrated with a rotary evaporator, the solvent was removed by a casting method, and the precipitated solid was dissolved again in a small amount of acetone.
  • the polymer was purified by reprecipitation of this solution in a sufficiently large amount of n-hexane. This purification operation was repeated a total of three times, and the obtained polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis.
  • Example 1 10 g of the polymer obtained in Synthesis Example 2, 10 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl- as a siloxane reactive solvent 3-phenyltrisiloxane: 14.5 g (theoretical equivalent of hydrosilylation reaction) was added and placed in a constant temperature bath at 40 ° C. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 ⁇ L of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
  • TAIC triallyl isocyanurate
  • 3-phenyltrisiloxane 14.5 g (theoretical equivalent of hydrosilylation reaction) was added and placed in a constant temperature bath at 40 ° C. When
  • Table 1 shows the evaluation results of the viscosity of the liquid composition at 25 ° C. and the appearance of the liquid composition before curing.
  • NF-0100 thickness: 100 ⁇ m
  • Daikin Industries, Ltd. which is a fluororesin film for release
  • the fluorine content, refractive index (n), thermal decomposition temperature (Td), and light transmittance visible (550 nm) (T) of the sample film (after curing) were measured.
  • the evaluation criteria are as follows. ⁇ : Transparent and uniform. ⁇ : Some cloudiness is observed. X: Opaque and cloudy.
  • the evaluation criteria are as follows. ⁇ : No swelling is visually observed. ⁇ : Swelling is visually observed. X: Dissolve.
  • Example 2 10 g of the polymer obtained in Synthesis Example 3, 10 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl- as a siloxane reactive solvent 3-phenyltrisiloxane: 13 g and 1,3,5,7-tetramethyl-cyclo-tetrasiloxane as hydrosilylation crosslinker: 3.1 g was put into a 50 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 ⁇ L of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
  • TAIC triallyl isocyanurate
  • 3-phenyltrisiloxane 13 g
  • Example 3 10 g of the polymer obtained in Synthesis Example 4, 3 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl- as a siloxane reactive solvent 3-phenyltrisiloxane: 5.2g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 ⁇ L of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
  • TAIC triallyl isocyanurate
  • Example 4 10 g of the polymer obtained in Synthesis Example 5, 3 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl- as a siloxane reactive solvent 3-phenyltrisiloxane: 4.5g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 ⁇ L of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
  • TAIC triallyl isocyanurate
  • Example 5 10 g of the polymer obtained in Synthesis Example 1 and tetrakis (dimethylsilyloxy) silane as a siloxane-based reactive solvent: 0.5g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 ⁇ L of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
  • a platinum-cyclovinylmethylsiloxane complex product number SIP6832.2 manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
  • Example 6 10 g of the polymer obtained in Synthesis Example 1 and 1.0 g, 1,1,3 of 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl-3-phenyltrisiloxane as a siloxane-based reactive solvent , 3-tetramethyldisiloxane 0.2 g, 1,3,5,7-tetramethyl-cyclo-tetrasiloxane as hydrosilylation crosslinking agent: 3.1 g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 ⁇ L of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
  • a platinum-cyclovinylmethylsiloxane complex product number SIP6832.2 manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free
  • Example 7 10 g of the polymer obtained in Synthesis Example 5, 3 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 1,3,5,7-tetramethyl-cyclo-tetrasiloxane as a hydrosilylation crosslinking agent: 4.5g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 ⁇ L of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
  • TAIC triallyl isocyanurate
  • Example 8 As a hydrosilylation crosslinker in Example 7, HPM-502 from Gelest: A curable composition was prepared and various physical properties were measured in the same manner as in Example 7 except that was used. The results are shown in Table 1.
  • Comparative Example 1 5 g of the polymer obtained in Synthesis Example 4, 1 g of methyl methacrylate and 4 g of 1H, 1H, 5H-octafluoropentyl acrylate (CH 2 ⁇ CHCOOCH 2 C 4 F 8 H) are dissolved in 1 g of trimethylolpropane triacrylate (TMPA). A uniform composition was obtained. 0.1 g of 2-hydroxy-2-methylpropiophenone was added as a UV initiator to obtain a curable composition.
  • TMPA trimethylolpropane triacrylate
  • NF-0100 thinness: 100 ⁇ m
  • NF-0100 thinness: 100 ⁇ m
  • Comparative Example 2 To 2.5 g of the polymer obtained in Comparative Synthesis Example 1, 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl-3-phenyltrisiloxane as a siloxane-based reactive solvent: Was added to a constant temperature bath at 40 ° C. Even when taken out after 24 hours, a non-uniform and cloudy composition was obtained. Further, the temperature was raised to 70 ° C., but the non-uniform state did not change.
  • Comparative Example 3 To 2.0 g of the polymer obtained in Comparative Synthesis Example 2, 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl-3-phenyltrisiloxane as a siloxane-based reactive solvent: 0.21 g and 2.5 g of methyl isobutyl ketone (MIBK) as a non-silicon reactive solvent were added and placed in a constant temperature bath at 40 ° C. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 ⁇ L of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-type curable composition.
  • MIBK methyl isobutyl ketone
  • a cured product was prepared in the same manner as in Example 1 except that after the solvent was volatilized and coated so that the thickness became about 100 ⁇ m and dried at 100 ° C. for 20 minutes, various physical properties were measured. The results are shown in Table 1. As is clear from Table 1, the heat resistance was clearly inferior.
  • Comparative Example 4 In Example 1, the same amount (weight) of butyl acetate was added to the prepared curable composition to obtain a solvent-type curable composition.
  • Example 5 Comparative Example 5 In Example 1, only the platinum catalyst was not added. The initial appearance and the like were not different from those of Example 1 but were not cured at all at 100 ° C. for 2 hours and then at 150 ° C. for 1 hour. The temperature was further raised to 200 ° C., but it was not cured.
  • the curable composition of the present invention gives a transparent cured product having excellent heat resistance. Further, since the refractive index can be controlled by controlling the fluorine content, it can be seen that application to various optical devices is possible.

Abstract

Disclosed is a curable resin composition, which utilizes a hydrosilylation reaction that is an addition reaction, and which can be easily cured without containing an organic solvent that does not take part in the hydrosilylation reaction. The curable resin composition contains (A) a fluorine-containing polymer that is represented by formula (1): -(M)-(A1)-(N)- (wherein M represents a structural unit that is derived from a fluoroolefin, A1 represents a vinyl ether structural unit that contains a carbon-carbon bond, and N represents a structural unit that is derived from a copolymerizable monomer) and (B) a hydrosilylation catalyst. The curable resin composition also contains, in the absence of (F) a solvent that does not take part in a hydrosilylation crosslinking reaction, one or more of (C) a liquid siloxane-based reactive solvent which is capable of dissolving or dispersing the fluorine-containing polymer (A) and has two or more groups wherein a hydrogen atom is directly bonded to a silicon atom, (D) a non-silicon reactive solvent which is capable of dissolving or dispersing the fluorine-containing polymer (A) and takes part in a hydrosilylation crosslinking reaction, and (E) a hydrosilylation crosslinking agent.

Description

硬化性樹脂組成物Curable resin composition
 本発明は、ヒドロシリル化反応により硬化する含フッ素重合体を含む無溶剤型の硬化性樹脂組成物に関する。 The present invention relates to a solventless curable resin composition containing a fluorine-containing polymer that is cured by a hydrosilylation reaction.
 従来、含フッ素重合体を用いた硬化性樹脂組成物としては、末端にエチレン性炭素-炭素二重結合を有する硬化性含フッ素重合体に関する組成物(特許文献1)が提案されている。また、エチレン性炭素-炭素二重結合を有する含フッ素重合体をヒドロシリル化反応により硬化させることが、特許文献2で提案されている。 Conventionally, as a curable resin composition using a fluorine-containing polymer, a composition relating to a curable fluorine-containing polymer having an ethylenic carbon-carbon double bond at a terminal (Patent Document 1) has been proposed. Further, Patent Document 2 proposes that a fluorine-containing polymer having an ethylenic carbon-carbon double bond is cured by a hydrosilylation reaction.
 また、無溶剤型の硬化性樹脂組成物としては、水酸基含有硬化性フッ素樹脂をアクリルモノマーに溶解させ、イソシアネート系硬化剤を加えて硬化させることが特許文献3に記載されている。 In addition, as a solvent-free curable resin composition, Patent Document 3 describes that a hydroxyl group-containing curable fluororesin is dissolved in an acrylic monomer and cured by adding an isocyanate curing agent.
国際公開第02/18457号パンフレットInternational Publication No. 02/18457 Pamphlet 国際公開第2008/153002号パンフレットInternational Publication No. 2008/153002 Pamphlet 国際公開第2008/093776号パンフレットInternational Publication No. 2008/093776 Pamphlet
 特許文献1に開示されている架橋反応は光硬化反応であり、ヒドロシリル化反応による硬化系は開示されていない。 The crosslinking reaction disclosed in Patent Document 1 is a photocuring reaction, and a curing system based on a hydrosilylation reaction is not disclosed.
 特許文献2に記載されている含フッ素重合体はフッ化エチレン性単量体と非フッ化エチレン性単量体との共重合体であって、エチレン性炭素-炭素二重結合を与える構造単位は非フッ化エチレン性単量体に由来する重合体である。エチレン性炭素-炭素二重結合を与える構造単位が非フッ化エチレン性の構造単位の場合、含フッ素重合体のフッ素含有率を高くすることができず、光透過性や屈折率などの光学的特性や高温での耐熱性、耐光性などの点で、さらなる改善の余地がある。 The fluorine-containing polymer described in Patent Document 2 is a copolymer of a fluorinated ethylenic monomer and a non-fluorinated ethylenic monomer, and is a structural unit that provides an ethylenic carbon-carbon double bond Is a polymer derived from a non-fluorinated ethylenic monomer. When the structural unit giving an ethylenic carbon-carbon double bond is a non-fluorinated ethylenic structural unit, the fluorine content of the fluoropolymer cannot be increased, and optical properties such as light transmittance and refractive index are not obtained. There is room for further improvement in terms of characteristics, heat resistance at high temperatures, and light resistance.
 特許文献3に記載されている硬化系は水酸基とイソシアネート基との縮合反応であり、用途によっては脱離する水による影響が無視できず、また形成される架橋構造がウレタン結合であるため、高温での耐熱性に改善の余地がある。 The curing system described in Patent Document 3 is a condensation reaction between a hydroxyl group and an isocyanate group. Depending on the use, the influence of water that is eliminated cannot be ignored, and the formed crosslinked structure is a urethane bond. There is room for improvement in heat resistance.
 有機溶媒の除去が不充分な場合、有機溶剤が硬化物内に残存するといった問題が生じる。また、残存する有機溶剤の影響として耐熱性、機械的強度が低下したり、白濁したりするといった問題があり、さらに、溶剤の揮発によってボイドが発生する場合がある。 If the removal of the organic solvent is insufficient, there arises a problem that the organic solvent remains in the cured product. In addition, there is a problem that the heat resistance and mechanical strength are lowered or white turbidity due to the influence of the remaining organic solvent, and voids may be generated due to volatilization of the solvent.
 本発明の目的は、付加反応であるヒドロシリル化反応を利用し、しかもヒドロシリル化反応に関与しない有機溶剤を含有しなくても容易に硬化可能な硬化性樹脂組成物を提供することにある。 An object of the present invention is to provide a curable resin composition that uses a hydrosilylation reaction that is an addition reaction and can be easily cured without containing an organic solvent that does not participate in the hydrosilylation reaction.
 本発明は、
(A)式(1):
 -(M)-(A1)-(N)-
(式中、Mはフルオロオレフィンに由来する構造単位;
A1は式(I):
Figure JPOXMLDOC01-appb-C000004
(式中、X1およびX2は、同じかまたは異なり、フッ素原子または水素原子;X3はフッ素原子、水素原子、塩素原子、メチル基、トリフルオロメチル基;R1は末端に炭素-炭素二重結合を少なくとも1個含有する炭素数2~29の鎖状または分岐鎖状のアルキル基、フルオロアルキル基、パーフルオロアルキル基であって、鎖中にエーテル結合、エステル結合、ウレタン結合を含んでいてもよい)で表される構造単位;Nは構造単位MおよびA1を与える単量体と共重合可能な単量体由来の構造単位)で表わされ、かつ、構造単位Mを1~80モル%、構造単位A1を20~80モル%および構造単位Nを0~79モル%含む含フッ素重合体、
(B)ヒドロシリル化触媒、および
(C)該含フッ素重合体(A)を溶解または分散可能でかつ水素原子がケイ素原子に直接結合した基を2個以上有する液状のシロキサン系反応性溶剤
をヒドロシリル化架橋反応に関与しない溶剤(F)の不存在下に含む硬化性樹脂組成物(第1の発明)に関する。
The present invention
(A) Formula (1):
-(M)-(A1)-(N)-
Wherein M is a structural unit derived from a fluoroolefin;
A1 is the formula (I):
Figure JPOXMLDOC01-appb-C000004
(Wherein X 1 and X 2 are the same or different and are a fluorine atom or a hydrogen atom; X 3 is a fluorine atom, a hydrogen atom, a chlorine atom, a methyl group, a trifluoromethyl group; R 1 is a carbon-carbon at the terminal) C2-C29 chain or branched alkyl group, fluoroalkyl group, perfluoroalkyl group containing at least one double bond, including ether bond, ester bond, urethane bond in the chain N is a structural unit derived from a monomer copolymerizable with the monomer giving structural units M and A1), and the structural unit M is 1 to A fluorine-containing polymer comprising 80 mol%, 20 to 80 mol% of structural unit A1 and 0 to 79 mol% of structural unit N;
(B) a hydrosilylation catalyst, and (C) a liquid siloxane-based reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and having two or more groups in which hydrogen atoms are directly bonded to silicon atoms. The present invention relates to a curable resin composition (first invention) that is contained in the absence of a solvent (F) that does not participate in the chemical crosslinking reaction.
 本発明はまた、
(A)前記式(1)で表わされ、かつ、構造単位Mを1~80モル%、構造単位A1を20~80モル%および構造単位Nを0~79モル%含む含フッ素重合体、
(B)ヒドロシリル化触媒、
(D)該含フッ素重合体(A)を溶解または分散可能でかつヒドロシリル化架橋反応に関与する非ケイ素反応性溶剤、および
(E)ヒドロシリル化架橋剤
をヒドロシリル化架橋反応に関与しない溶剤(F)の不存在下に含む硬化性樹脂組成物(第2の発明)に関する。
The present invention also provides
(A) a fluorine-containing polymer represented by the formula (1) and comprising 1 to 80 mol% of the structural unit M, 20 to 80 mol% of the structural unit A1, and 0 to 79 mol% of the structural unit N;
(B) a hydrosilylation catalyst,
(D) a non-silicon reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and participating in the hydrosilylation crosslinking reaction; and (E) a solvent not participating in the hydrosilylation crosslinking reaction (F) ) In the absence of the curable resin composition (second invention).
 また本発明は、第1または第2の本発明の硬化性樹脂組成物を硬化して得られる硬化物にも関する。 The present invention also relates to a cured product obtained by curing the curable resin composition of the first or second invention.
 また、本発明の硬化性樹脂組成物のヒドロシリル化架橋反応は、水や塩などの脱離成分が発生する反応ではなく付加反応であるため、副生成物を除去する工程を必要としない。 In addition, the hydrosilylation crosslinking reaction of the curable resin composition of the present invention is not a reaction in which a desorbing component such as water or salt is generated but an addition reaction, and thus does not require a step of removing a by-product.
 本発明の硬化性樹脂組成物は、ヒドロシリル化架橋反応に関与しない溶剤を含まない無溶剤型とすることで、有機溶剤の除去が不要となり、成形工程などを簡略化できる。さらに成形加工条件の関係から揮発分が許されないケースに対しても無溶剤型の硬化性樹脂組成物は有用である。例えば、密閉容器内の充填、封止のような用途において有利である。 The curable resin composition of the present invention is a solvent-free type that does not contain a solvent that does not participate in the hydrosilylation crosslinking reaction, so that removal of the organic solvent is unnecessary, and the molding process and the like can be simplified. Furthermore, the solventless curable resin composition is useful even in cases where volatile components are not allowed due to molding processing conditions. For example, it is advantageous in applications such as filling and sealing in an airtight container.
 本発明の第1の硬化性樹脂組成物は、(A)式(I)で表される構造単位(I)を含む式(1)で表わされる含フッ素重合体、(B)ヒドロシリル化触媒、および(C)該含フッ素重合体(A)を溶解または分散可能でかつ水素原子がケイ素原子に直接結合した基を2個以上有する液状のシロキサン系反応性溶剤を含み、かつ、ヒドロシリル化架橋反応に関与しない溶剤(F)を含まない無溶剤型組成物である。 The first curable resin composition of the present invention comprises (A) a fluoropolymer represented by the formula (1) containing the structural unit (I) represented by the formula (I), (B) a hydrosilylation catalyst, And (C) a liquid siloxane-based reactive solvent capable of dissolving or dispersing the fluorine-containing polymer (A) and having two or more groups in which hydrogen atoms are directly bonded to silicon atoms, and hydrosilylation crosslinking reaction It is a solventless composition that does not contain the solvent (F) that does not participate in the process.
 本発明の第2の硬化性樹脂組成物は、(A)式(I)で表される構造単位(I)を含む式(1)で表わされる含フッ素重合体、(B)ヒドロシリル化触媒、および(D)該含フッ素重合体(A)を溶解または分散可能でかつヒドロシリル化架橋反応に関与する非ケイ素反応性溶剤、および(E)ヒドロシリル化架橋剤を含み、かつ、ヒドロシリル化架橋反応に関与しない溶剤(F)を含まない無溶剤型組成物である。 The second curable resin composition of the present invention comprises (A) a fluoropolymer represented by the formula (1) containing the structural unit (I) represented by the formula (I), (B) a hydrosilylation catalyst, And (D) a non-silicon reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and participating in the hydrosilylation crosslinking reaction, and (E) a hydrosilylation crosslinking agent, It is a solventless composition that does not contain a solvent (F) that does not participate.
 以下、各成分について説明する。 Hereinafter, each component will be described.
(A)式(I)で表わされる構造単位(I)を含む式(1)で表わされる含フッ素重合体
 本発明の硬化性樹脂組成物では、式(1):
 -(M)-(A1)-(N)-
(式中、Mはフルオロオレフィンに由来する構造単位;
A1は式(I):
Figure JPOXMLDOC01-appb-C000005
(式中、X1およびX2は、同じかまたは異なり、フッ素原子または水素原子;X3はフッ素原子、水素原子、塩素原子、メチル基、トリフルオロメチル基;R1は末端に炭素-炭素二重結合を少なくとも1個含有する炭素数2~29の鎖状または分岐鎖状のアルキル基、フルオロアルキル基、パーフルオロアルキル基であって、鎖中にエーテル結合、エステル結合、ウレタン結合を含んでいてもよい)で表される構造単位;Nは構造単位MおよびA1を与える単量体と共重合可能な単量体由来の構造単位)で表わされ、かつ、構造単位Mを1~80モル%、構造単位A1を20~80モル%および構造単位Nを0~79モル%含む含フッ素重合体を用いる。
(A) Fluoropolymer represented by formula (1) containing structural unit (I) represented by formula (I) In the curable resin composition of the present invention, formula (1):
-(M)-(A1)-(N)-
Wherein M is a structural unit derived from a fluoroolefin;
A1 is the formula (I):
Figure JPOXMLDOC01-appb-C000005
(Wherein X 1 and X 2 are the same or different and are a fluorine atom or a hydrogen atom; X 3 is a fluorine atom, a hydrogen atom, a chlorine atom, a methyl group, a trifluoromethyl group; R 1 is a carbon-carbon at the terminal) C2-C29 chain or branched alkyl group, fluoroalkyl group, perfluoroalkyl group containing at least one double bond, including ether bond, ester bond, urethane bond in the chain N is a structural unit derived from a monomer copolymerizable with the monomer giving structural units M and A1), and the structural unit M is 1 to A fluorine-containing polymer containing 80 mol%, 20 to 80 mol% of the structural unit A1, and 0 to 79 mol% of the structural unit N is used.
 この含フッ素重合体(A)の特徴は、末端にエチレン性炭素-炭素二重結合を有する鎖を有する構造単位(I)を含む点、および高い溶解性、透明性、耐光性を有する骨格である点にある。 This fluoropolymer (A) is characterized in that it contains a structural unit (I) having a chain having an ethylenic carbon-carbon double bond at the terminal, and a skeleton having high solubility, transparency and light resistance. There is a point.
 かかる構造単位A1としては、なかでも、式(Ia):
Figure JPOXMLDOC01-appb-C000006
(式中、X1~X3は式(I)と同じ;Yは炭素数1~27の鎖状または分岐鎖状のアルキレン基、フルオロアルキレン基、パーフルオロアルキレン基であって、鎖中にエーテル結合、エステル結合、ウレタン結合、エチレン性炭素-炭素二重結合を含んでいてもよい;ZはHまたはCH3)で表わされる構造単位が、ヒドロシリル化架橋反応が良好な点から好ましい。
Such structural unit A1 includes, among others, formula (Ia):
Figure JPOXMLDOC01-appb-C000006
(Wherein X 1 to X 3 are the same as those in formula (I); Y is a linear or branched alkylene group, a fluoroalkylene group or a perfluoroalkylene group having 1 to 27 carbon atoms, An ether bond, an ester bond, a urethane bond, or an ethylenic carbon-carbon double bond may be included; Z is preferably a structural unit represented by H or CH 3 ) from the viewpoint of good hydrosilylation crosslinking reaction.
 Yとしては、炭素数1~8の鎖状のアルキレン基であって、鎖中にエーテル結合および/もしくはエステル結合および/もしくはウレタン結合を含むものが好ましく、特に耐熱性、相溶性が良好な点から、鎖中にエーテル結合を含む炭素数5以下の鎖状のアルキレン基が好ましい。 Y is preferably a linear alkylene group having 1 to 8 carbon atoms, and preferably contains an ether bond and / or an ester bond and / or a urethane bond in the chain, and has particularly good heat resistance and compatibility. Therefore, a chain alkylene group having 5 or less carbon atoms and containing an ether bond in the chain is preferable.
 具体的には、これらの中で耐熱性、耐光性、相溶性が良好な点から、つぎの構造単位が好ましい。 Specifically, among these, the following structural units are preferable from the viewpoint of good heat resistance, light resistance, and compatibility.
Figure JPOXMLDOC01-appb-C000007
(式中、hは2または4)
Figure JPOXMLDOC01-appb-C000007
(Where h is 2 or 4)
 含フッ素重合体(A)の構造単位Mはフルオロオレフィンに由来する構造単位である。フルオロオレフィンとしては、テトラフルオロエチレン(TFE)単位、ヘキサフルオロプロピレン(HFP)単位、パーフルオロメチルビニルエーテル単位、パーフルオロプロピルビニルエーテル単位またはこれらの2種以上などのパーフルオロオレフィン;クロロトリフルオロエチレン(CTFE)単位、フッ化ビニル単位、フッ化ビニリデン(VdF)単位、トリフルオロエチレン単位などの非パーフルオロオレフィンの1種または2種以上が例示できる。 The structural unit M of the fluoropolymer (A) is a structural unit derived from a fluoroolefin. Examples of the fluoroolefin include a perfluoroolefin such as a tetrafluoroethylene (TFE) unit, a hexafluoropropylene (HFP) unit, a perfluoromethyl vinyl ether unit, a perfluoropropyl vinyl ether unit, or two or more of these; chlorotrifluoroethylene (CTFE) ) Units, vinyl fluoride units, vinylidene fluoride (VdF) units, trifluoroethylene units and other non-perfluoroolefins.
 なかでも、耐候性、耐光性の観点からはTFE、HFPなどが好ましく、相溶性の観点からはCTFE、VdFなどが好ましい。 Among these, TFE and HFP are preferable from the viewpoint of weather resistance and light resistance, and CTFE and VdF are preferable from the viewpoint of compatibility.
 構造単位Nとしては、たとえばエチレン性炭素-炭素二重結合を含まない非フッ素ビニルエーテル単位および/または非フッ素ビニルエステル単位があげられる。 Examples of the structural unit N include non-fluorinated vinyl ether units and / or non-fluorinated vinyl ester units that do not contain an ethylenic carbon-carbon double bond.
 具体例としては、たとえば式(II):
Figure JPOXMLDOC01-appb-C000008
(式中、R3は-OR2または-CH2OR2(ただし、R2は水酸基を有するアルキル基である))で表わされるヒドロキシアルキルビニルエーテルやヒドロキシアルキルアリルエーテルがあげられる。R2としては、たとえば炭素数1~8の直鎖状または分岐鎖状のアルキル基に1~3個、好ましくは1個の水酸基が結合したものである。これらの例としては、たとえば2-ヒドロキシエチルビニルエーテル単位、3-ヒドロキシプロピルビニルエーテル単位、2-ヒドロキシプロピルビニルエーテル単位、2-ヒドロキシ-2-メチルプロピルビニルエーテル単位、4-ヒドロキシブチルビニルエーテル単位、4-ヒドロキシ-2-メチルブチルビニルエーテル単位、5-ヒドロキシペンチルビニルエーテル単位、6-ヒドロキシヘキシルビニルエーテル単位、2-ヒドロキシエチルアリルエーテル単位、4-ヒドロキシブチルアリルエーテル単位、エチレングリコールモノアリルエーテル単位、ジエチレングリコールモノアリルエーテル単位、トリエチレングリコールモノアリルエーテル単位、グリセリンモノアリルエーテル単位があげられるが、これらの中で、特に炭素数が3~8のヒドロキシアルキルビニルエーテル、なかでも、4-ヒドロキシブチルビニルエーテル単位または2-ヒドロキシエチルビニルエーテル単位が、重合が容易であるという観点から最も好ましい。
Specific examples include, for example, formula (II):
Figure JPOXMLDOC01-appb-C000008
(Wherein R 3 is —OR 2 or —CH 2 OR 2 (where R 2 is an alkyl group having a hydroxyl group)), and hydroxyalkyl vinyl ethers and hydroxyalkyl allyl ethers. R 2 is, for example, one having 1 to 3, preferably 1 hydroxyl group bonded to a linear or branched alkyl group having 1 to 8 carbon atoms. Examples of these are, for example, 2-hydroxyethyl vinyl ether unit, 3-hydroxypropyl vinyl ether unit, 2-hydroxypropyl vinyl ether unit, 2-hydroxy-2-methylpropyl vinyl ether unit, 4-hydroxybutyl vinyl ether unit, 4-hydroxy- 2-methylbutyl vinyl ether unit, 5-hydroxypentyl vinyl ether unit, 6-hydroxyhexyl vinyl ether unit, 2-hydroxyethyl allyl ether unit, 4-hydroxybutyl allyl ether unit, ethylene glycol monoallyl ether unit, diethylene glycol monoallyl ether unit, Examples include triethylene glycol monoallyl ether unit and glycerin monoallyl ether unit. Hydroxyalkyl vinyl ether of 3 to 8, these, 4-hydroxybutyl vinyl ether unit and 2-hydroxyethyl vinyl ether unit are most preferred from the viewpoint of polymerization is easy.
 また、R3は-OR4、-COOR4または-OCOR4(ただし、R4はアルキル基である))で表わされるアルキルビニルエーテルやアルキルアリルエーテルがあげられる。R4としては、たとえば炭素数1~8の直鎖状、分岐鎖状または環状のアルキル基である。これらの例としては、たとえばシクロヘキシルビニルエーテル単位、メチルビニルエーテル単位、エチルビニルエーテル単位、プロピルビニルエーテル単位、n-ブチルビニルエーテル単位、イソブチルビニルエーテル単位、酢酸ビニル単位、プロピオン酸ビニル単位、酪酸ビニル単位、イソ酪酸ビニル単位、ピバリン酸ビニル単位、カプロン酸ビニル単位、バーサティック酸ビニル単位、ラウリン酸ビニル単位、ステアリン酸ビニル単位、シクロヘキシルカルボン酸ビニル単位が好ましい。また、耐候性、溶解性、廉価性に優れる点からバーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、酢酸ビニルである。これらのなかでも耐薬品性の点から、非芳香族系カルボン酸ビニルエステル、特にカルボン酸の炭素数が6以上のカルボン酸ビニルエステル、さらに好ましくはカルボン酸の炭素数が9以上のカルボン酸ビニルエステルが好ましい。カルボン酸ビニルエステルにおけるカルボン酸の炭素数の上限は20以下、さらには15以下が好ましい。具体例としてはバーサティック酸ビニルが最も好ましい。 R 3 is an alkyl vinyl ether or an alkyl allyl ether represented by —OR 4 , —COOR 4 or —OCOR 4 (where R 4 is an alkyl group). R 4 is, for example, a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. Examples of these are, for example, cyclohexyl vinyl ether units, methyl vinyl ether units, ethyl vinyl ether units, propyl vinyl ether units, n-butyl vinyl ether units, isobutyl vinyl ether units, vinyl acetate units, vinyl propionate units, vinyl butyrate units, vinyl isobutyrate units. , Vinyl pivalate units, vinyl caproate units, vinyl versatate units, vinyl laurate units, vinyl stearate units and vinyl cyclohexylcarboxylate units are preferred. Also, vinyl versatate, vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, and vinyl acetate from the viewpoint of excellent weather resistance, solubility, and low cost. Among these, from the viewpoint of chemical resistance, non-aromatic carboxylic acid vinyl esters, particularly carboxylic acid vinyl esters having a carboxylic acid having 6 or more carbon atoms, more preferably carboxylic acids having 9 or more carbon atoms. Esters are preferred. The upper limit of the carbon number of the carboxylic acid in the carboxylic acid vinyl ester is preferably 20 or less, and more preferably 15 or less. As a specific example, vinyl versatate is most preferable.
 共重合割合は、好ましくは、構造単位A/構造単位M/構造単位Nが1~80/20~80/0~79(モル%比)、さらには5~65/35~65/0~60(モル%比)である。 The copolymerization ratio is preferably such that structural unit A / structural unit M / structural unit N is 1 to 80/20 to 80/0 to 79 (molar ratio), more preferably 5 to 65/35 to 65/0 to 60. (Mole% ratio).
 含フッ素重合体(A)の数平均分子量としては、特に限定はないが、後述するように、ヒドロシリル化架橋剤や溶剤への溶解性の点から、1000~1000000、特に3000~50000であることが好ましい。 The number average molecular weight of the fluorinated polymer (A) is not particularly limited, but as described later, it is 1,000 to 1,000,000, particularly 3,000 to 50,000 from the viewpoint of solubility in hydrosilylation crosslinking agents and solvents. Is preferred.
(B)ヒドロシリル化触媒
 公知のヒドロシリル化反応を触媒する化合物が使用できる。たとえば、国際公開第2008/153002号パンフレット、国際公開第2008/044765号パンフレット、国際特許出願PCT/JP2007/074066号明細書、国際特許出願PCT/JP2008/060555号明細書などに記載されているものが使用できる。
(B) Hydrosilylation catalyst A compound that catalyzes a known hydrosilylation reaction can be used. For example, those described in International Publication No. 2008/153002, International Publication No. 2008/044765, International Patent Application PCT / JP2007 / 074066, International Patent Application PCT / JP2008 / 060555, etc. Can be used.
 具体的には、たとえば国際公開第2008/044765号パンフレット記載のB1、B2、B3がそのまま使用できる。 Specifically, for example, B1, B2, and B3 described in International Publication No. 2008/044765 pamphlet can be used as they are.
 ヒドロシリル化触媒(B)は、本発明の組成物のヒドロシリル化反応を促進するための触媒である。このような触媒としては、白金系触媒、パラジウム系触媒、ロジウム系触媒、ルテニウム系触媒、イリジウム系触媒が例示され、比較的入手しやすいことから白金系触媒が好ましい。この白金系触媒としては、塩化白金酸、塩化白金酸のアルコール変性物、白金のカルボニル錯体、白金のオレフィン錯体、白金のアルケニルシロキサン錯体が例示される。 The hydrosilylation catalyst (B) is a catalyst for promoting the hydrosilylation reaction of the composition of the present invention. Examples of such catalysts include platinum-based catalysts, palladium-based catalysts, rhodium-based catalysts, ruthenium-based catalysts, and iridium-based catalysts, and platinum-based catalysts are preferred because they are relatively easily available. Examples of the platinum-based catalyst include chloroplatinic acid, alcohol-modified chloroplatinic acid, platinum carbonyl complex, platinum olefin complex, and platinum alkenylsiloxane complex.
 具体的な白金錯体の例としては、白金カルボニルシクロビニルメチルシロキサン錯体、白金-ジビニルテトラメチルジシロキサン錯体、白金-シクロビニルメチルシロキサン錯体などがあげられ、一般には白金カルボニルシクロビニルメチルシロキサン錯体のビニルメチル環状シロキサン溶液、白金-ジビニルテトラメチルジシロキサン錯体の両末端ビニルポリジメチルシロキサン溶液、白金-シクロビニルメチルシロキサン錯体の環状メチルビニルシロキサン溶液といった白金濃度で1~5%の試薬として入手できる。 Specific examples of platinum complexes include platinum carbonylcyclovinylmethylsiloxane complex, platinum-divinyltetramethyldisiloxane complex, platinum-cyclovinylmethylsiloxane complex, etc. It can be obtained as a reagent having a platinum concentration of 1 to 5%, such as a methyl cyclic siloxane solution, a vinyl polydimethylsiloxane solution having both ends of a platinum-divinyltetramethyldisiloxane complex, and a cyclic methylvinylsiloxane solution of a platinum-cyclovinylmethylsiloxane complex.
 本発明の組成物において、ヒドロシリル化触媒(B)の含有量は本発明の組成物の硬化を促進する触媒量であり、具体的には、本発明の組成物中、触媒金属の含有量が質量単位で0.1~1,000ppmの範囲内となる量であることが好ましく、特に1~500ppmの範囲内となる量であることが好ましい。これは、(B)成分の含有量が上記範囲の下限未満であると、得られる組成物の硬化を十分に促進することができなくなる傾向があり、一方、上記範囲の上限を超えると、得られる硬化物に着色等の問題を生じるからである。 In the composition of the present invention, the content of the hydrosilylation catalyst (B) is a catalyst amount that promotes the curing of the composition of the present invention. Specifically, the content of the catalyst metal in the composition of the present invention is The amount is preferably in the range of 0.1 to 1,000 ppm in terms of mass unit, and particularly preferably in the range of 1 to 500 ppm. If the content of the component (B) is less than the lower limit of the above range, curing of the resulting composition tends not to be sufficiently promoted. This is because problems such as coloring may occur in the cured product.
(C)該含フッ素重合体(A)を溶解または分散可能でかつ水素原子がケイ素原子に直接結合した基を2個以上有する液状のシロキサン系反応性溶剤 (C) Liquid siloxane-based reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and having two or more groups in which hydrogen atoms are directly bonded to silicon atoms
 本発明の第1の硬化性樹脂組成物に使用される溶剤であり、かつ、ヒドロシリル化架橋反応における架橋剤としても機能する化合物である。 The solvent used in the first curable resin composition of the present invention and a compound that also functions as a crosslinking agent in the hydrosilylation crosslinking reaction.
 ヒドロシリル化反応は、エチレン性炭素-炭素二重結合とケイ素原子に直接結合している水素原子との付加反応である。したがって、本発明において、ヒドロシリル化架橋剤として機能する化合物は、水素原子がケイ素原子に直接結合した基を2個以上有するシロキサン系化合物である。 The hydrosilylation reaction is an addition reaction between an ethylenic carbon-carbon double bond and a hydrogen atom directly bonded to a silicon atom. Therefore, in the present invention, the compound that functions as a hydrosilylation crosslinking agent is a siloxane compound having two or more groups in which hydrogen atoms are directly bonded to silicon atoms.
 シロキサン系反応性溶剤としては、たとえば国際公開第2008/153002号パンフレット、国際公開第2008/044765号パンフレット、国際特許出願PCT/JP2007/074066号明細書、国際特許出願PCT/JP2008/060555号明細書などにヒドロシリル化架橋剤として記載されている化合物のうち、含フッ素重合体(A)を溶解または分散可能な液状の化合物が使用できる。 Examples of the siloxane-based reactive solvent include, for example, International Publication No. 2008/153002, International Publication No. 2008/044765, International Patent Application PCT / JP2007 / 074066, International Patent Application PCT / JP2008 / 060555. Among the compounds described as hydrosilylation crosslinking agents in the above, liquid compounds capable of dissolving or dispersing the fluoropolymer (A) can be used.
 このシロキサン系反応性溶剤(C)を用いるときは、含フッ素重合体(A)を溶解・分散するための溶剤(F)を必要とせず、いわゆる無溶剤型の硬化性組成物とすることができる。 When this siloxane-based reactive solvent (C) is used, the solvent (F) for dissolving and dispersing the fluoropolymer (A) is not required, and a so-called solventless curable composition can be obtained. it can.
 無溶剤型の硬化性組成物とするときは、有機溶剤の除去が不要となり、成形工程などを簡略化できる。また、有機溶媒の除去が不充分な場合、有機溶剤が硬化物内に残存するといった問題が生じ、残存する有機溶剤の影響として耐熱性、機械的強度の低下、白濁するといった問題や、溶剤の揮発によってボイドが発生する場合があるが、無溶剤型にすることにより、これらの問題点が解消される。さらに成形加工条件の関係から揮発分が許されないケースに対しても無溶剤型の硬化性樹脂組成物は有用である。例えば、密閉容器内の充填、封止のような用途において有利である。 When a solvent-free curable composition is used, it is not necessary to remove the organic solvent, and the molding process and the like can be simplified. In addition, if the removal of the organic solvent is insufficient, there is a problem that the organic solvent remains in the cured product, and the influence of the remaining organic solvent causes problems such as heat resistance, a decrease in mechanical strength, cloudiness, Although voids may occur due to volatilization, these problems can be solved by using a solvent-free type. Furthermore, the solventless curable resin composition is useful even in cases where volatile components are not allowed due to molding processing conditions. For example, it is advantageous in applications such as filling and sealing in an airtight container.
 なお、含フッ素重合体(A)を溶解・分散する能力を有さないヒドロシリル化架橋剤を併用してもよいし、ヒドロシリル化架橋反応に関与する非ケイ素反応性溶剤(D)を併用してもよい。 A hydrosilylation crosslinking agent that does not have the ability to dissolve and disperse the fluoropolymer (A) may be used in combination, or a non-silicon reactive solvent (D) involved in the hydrosilylation crosslinking reaction may be used in combination. Also good.
 シロキサン系反応性溶剤(C)としては、たとえば国際公開第2008/044765号パンフレット記載のB1、B2がそのまま使用できる。 As the siloxane-based reactive solvent (C), for example, B1 and B2 described in International Publication No. 2008/044765 pamphlet can be used as they are.
 具体的には、式:
CH3Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
CH3(C65)Si{OSi(CH32H}2
で表されるシロキサン化合物、式:
37Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
49Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
613Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
817Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
65Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
(C652Si{OSi(CH32H}2
で表されるシロキサン化合物、式:
CF324Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
Figure JPOXMLDOC01-appb-C000009
で表されるシロキサン系化合物、式:
Figure JPOXMLDOC01-appb-C000010
で表されるシロキサン系化合物、式:
Figure JPOXMLDOC01-appb-C000011
で表されるシロキサン系化合物、式:
Figure JPOXMLDOC01-appb-C000012
で表されるシロキサン系化合物、式:
Figure JPOXMLDOC01-appb-C000013
で表されるシロキサン系化合物、式:
Figure JPOXMLDOC01-appb-C000014
で表されるシロキサン系化合物、式:
{(CH32HSiO}3Si-C24-Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
{(CH32HSiO}3Si-C612-Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
{(CH32HSiO}2CH3Si-C24-SiCH3{OSi(CH32H}2
で表されるシロキサン化合物、式:
{(CH32HSiO}2CH3Si-C612-SiCH3{OSi(CH32H}2
で表されるシロキサン化合物、式:
{(C652HSiO}3Si-C24-Si{OSi(C652H}3
で表されるシロキサン化合物、式:
{(C652HSiO}3Si-C612-Si{OSi(C652H}3
で表されるシロキサン化合物、式:
{(CH32HSiO}3Si-C36(OC24m(OC36nOC36-Si{OSi(CH32H}3
(式中、mは0以上の整数であり、nは0以上の整数であり、但し、m、nは共に0となることはない。)
で表されるシロキサン化合物などがあげられる。
Specifically, the formula:
CH 3 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
CH 3 (C 6 H 5 ) Si {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
C 3 H 7 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 4 H 9 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 6 H 13 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 8 H 17 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 6 H 5 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
(C 6 H 5 ) 2 Si {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
CF 3 C 2 H 4 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000009
A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000010
A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000011
A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000012
A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000013
A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000014
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 3 Si—C 2 H 4 —Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 3 Si—C 6 H 12 —Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 2 CH 3 Si—C 2 H 4 —SiCH 3 {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 2 CH 3 Si—C 6 H 12 —SiCH 3 {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
{(C 6 H 5 ) 2 HSiO} 3 Si—C 2 H 4 —Si {OSi (C 6 H 5 ) 2 H} 3
A siloxane compound represented by the formula:
{(C 6 H 5 ) 2 HSiO} 3 Si—C 6 H 12 —Si {OSi (C 6 H 5 ) 2 H} 3
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 3 Si—C 3 H 6 (OC 2 H 4 ) m (OC 3 H 6 ) n OC 3 H 6 —Si {OSi (CH 3 ) 2 H} 3
(In the formula, m is an integer of 0 or more, and n is an integer of 0 or more, provided that m and n are not 0.)
A siloxane compound represented by
 特に溶解性や相溶性が良好な点から、式:
CH3(C65)Si{OSi(CH32H}2
で表されるシロキサン化合物、式:
37Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
49Si{OSi(CH32H}3
で表されるシロキサン化合物、式:
613Si{OSi(CH32H}3
で表されるシロキサン化合物が好ましい。
In particular, because of its good solubility and compatibility, the formula:
CH 3 (C 6 H 5 ) Si {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
C 3 H 7 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 4 H 9 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 6 H 13 Si {OSi (CH 3 ) 2 H} 3
The siloxane compound represented by these is preferable.
 シロキサン系反応性溶剤(C)の配合量は、含フッ素重合体(A)100質量部に対して、5質量部以上、さらには10質量部以上、特に20質量部以上であり、また、90質量部以下、さらには70質量部以下、特に50質量部以下が好ましい。 The compounding quantity of a siloxane type reactive solvent (C) is 5 mass parts or more with respect to 100 mass parts of fluoropolymer (A), Furthermore, 10 mass parts or more, Especially 20 mass parts or more, and 90 It is preferably at most 70 parts by mass, more preferably at most 50 parts by mass.
(D)該含フッ素重合体(A)を溶解または分散可能でかつヒドロシリル化架橋反応に関与する非ケイ素反応性溶剤
 本発明の第2の硬化性樹脂組成物に使用される溶剤である。
(D) Non-silicon reactive solvent that can dissolve or disperse the fluoropolymer (A) and participates in the hydrosilylation crosslinking reaction. This solvent is used in the second curable resin composition of the present invention.
 前記シロキサン系反応性溶剤(C)も、同じく含フッ素重合体(A)を溶解・分散しヒドロシリル化架橋反応に関与する化合物であるが、シロキサン系化合物であるので、非ケイ素反応性溶剤(D)ではない。 The siloxane-based reactive solvent (C) is also a compound that dissolves and disperses the fluoropolymer (A) and participates in the hydrosilylation crosslinking reaction. However, since it is a siloxane-based compound, the non-silicon reactive solvent (D) )is not.
 本発明で「ヒドロシリル化架橋反応に関与する」とは、エチレン性炭素-炭素二重結合とケイ素原子に直接結合している水素原子との付加反応であるヒドロシリル化反応に関与するいずれかの反応基(エチレン性炭素-炭素二重結合またはケイ素原子結合水素原子含有基)を有し、結果として、ヒドロシリル化架橋反応の反応物中に組み込まれることを意味する。 In the present invention, “involved in the hydrosilylation crosslinking reaction” means any reaction involved in the hydrosilylation reaction, which is an addition reaction between an ethylenic carbon-carbon double bond and a hydrogen atom directly bonded to a silicon atom. It has a group (ethylenic carbon-carbon double bond or silicon atom-bonded hydrogen atom-containing group), and as a result, is incorporated into the reaction product of the hydrosilylation crosslinking reaction.
 具体的には、たとえばエチレングリコールジアリル、ジエチレングリコールジジアリル、トリエチレングリコールジジアリル、1,4-シクロヘキサンジメタノールジジアリル、トリアリルイソシアヌレート(TAIC)などの多価アリル化合物;エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ビスフェノールAビス(ビニルオキシエチレン)エーテル、ビス(ビニルオキシエチレン)エーテル、ヒドロキノンビス(ビニルオキシエチレン)エーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、
Figure JPOXMLDOC01-appb-C000015
などの多価ビニルエーテル化合物;エチレングリコールジアクリレート(EDA)、ジエチレングリコールジアクリレート(DiEDA)、トリエチレングリコールジアクリレート(TriEDA)、1,4-ブタンジオールジアクリレート(1,4-BuDA)、1,3-ブタンジオールジアクリレート(1,3-BuDA)、2,2-ビス〔4-(2-ヒドロキシ-3-アクリロキシプロポキシ)フェニル〕プロパン(Bis-GA)、2,2-ビス(4-アクリロキシフェニル)プロパン(BPDA)、2,2-ビス(4-アクリロキシエトキシフェニル)プロパン(Bis-AEPP)、2,2-ビス(4-アクリロキシポリエトキシフェニル)プロパン(Bis-APEPP)、ジ(アクリロキシエチル)トリメチルヘキサメチレンジウレタン(UDA)、トリメチロールプロパントリアクリレート(TMPA)などの多価アクリル化合物;エチレングリコールジメタクリレート(EDMA)、ジエチレングリコールジメタクリレート(DiEDMA)、トリエチレングリコールジメタクリレート(TriEDMA)、1,4-ブタンジオールジメタクリレート(1,4-BuDMA)、1,3-ブタンジオールジメタクリレート(1,3-BuDMA)、2,2-ビス〔4-(2-ヒドロキシ-3-メタクリロキシプロポキシ)フェニル〕プロパン(Bis-GMA)、2,2-ビス(4-メタクリロキシフェニル)プロパン(BPDMA)、2,2-ビス(4-メタクリロキシエトキシフェニル)プロパン(Bis-MEPP)、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン(Bis-MPEPP)、ジ(メタクリロキシエチル)トリメチルヘキサメチレンジウレタン(UDMA)、トリメチロールプロパントリメタクリレート(TMPT)などの多価メタクリル化合物などがあげられる。
Specifically, polyvalent allyl compounds such as ethylene glycol diallyl, diethylene glycol diallyl, triethylene glycol diallyl, 1,4-cyclohexanedimethanol diallyl, triallyl isocyanurate (TAIC); ethylene glycol divinyl ether, diethylene glycol Divinyl ether, triethylene glycol divinyl ether, bisphenol A bis (vinyloxyethylene) ether, bis (vinyloxyethylene) ether, hydroquinone bis (vinyloxyethylene) ether, 1,4-cyclohexanedimethanol divinyl ether,
Figure JPOXMLDOC01-appb-C000015
Polyvalent vinyl ether compounds such as ethylene glycol diacrylate (EDA), diethylene glycol diacrylate (DiEDA), triethylene glycol diacrylate (TriEDA), 1,4-butanediol diacrylate (1,4-BuDA), 1,3 -Butanediol diacrylate (1,3-BuDA), 2,2-bis [4- (2-hydroxy-3-acryloxypropoxy) phenyl] propane (Bis-GA), 2,2-bis (4-acrylic) Roxyphenyl) propane (BPDA), 2,2-bis (4-acryloxyethoxyphenyl) propane (Bis-AEPP), 2,2-bis (4-acryloxypolyethoxyphenyl) propane (Bis-APPP), di (Acryloxyethyl) trimethylhexamethyle Polyacrylic compounds such as diurethane (UDA) and trimethylolpropane triacrylate (TMPA); ethylene glycol dimethacrylate (EDMA), diethylene glycol dimethacrylate (DiEDMA), triethylene glycol dimethacrylate (TriEDMA), 1,4-butanediol Dimethacrylate (1,4-BuDMA), 1,3-butanediol dimethacrylate (1,3-BuDMA), 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis -GMA), 2,2-bis (4-methacryloxyphenyl) propane (BPDMA), 2,2-bis (4-methacryloxyethoxyphenyl) propane (Bis-MEPP), 2,2-bis (4-methacryloxy) Li ethoxyphenyl) propane (Bis-MPEPP), di (methacryloxyethyl) trimethylhexamethylene diurethane (UDMA), polyvalent methacrylic compounds such as trimethylolpropane trimethacrylate (TMPT), and the like.
 なかでも、溶解性、相溶性が良好な点から、TAIC、EDMA、EDA、TMPT、TMPAが好ましい。 Of these, TAIC, EDMA, EDA, TMPT, and TMPA are preferable from the viewpoint of good solubility and compatibility.
 本発明の第2の組成物において、非ケイ素系反応性溶剤(D)は、含フッ素重合体(A)の反応性溶剤として単独で使用してもよいし、同じく含フッ素重合体(A)の溶剤として機能する前記シロキサン系反応性溶剤(C)と併用してもよい。 In the second composition of the present invention, the non-silicon-based reactive solvent (D) may be used alone as the reactive solvent for the fluoropolymer (A), or the fluoropolymer (A). You may use together with the said siloxane type reactive solvent (C) which functions as a solvent.
 非ケイ素系反応性溶剤(D)の配合量は、含フッ素重合体の種類、溶剤の種類、前記シロキサン系反応性溶剤(C)の有無、種類などによって異なるが、含フッ素重合体(A)100質量部に対して、5質量部以上、さらには10質量部以上、特に20質量部以上であり、また、100質量部以下、さらには80質量部以下、特に70質量部以下が好ましい。 The compounding amount of the non-silicon-based reactive solvent (D) varies depending on the type of the fluorine-containing polymer, the type of the solvent, the presence / absence of the siloxane-based reactive solvent (C), and the type, but the fluorine-containing polymer (A) The amount is 5 parts by mass or more, further 10 parts by mass or more, particularly 20 parts by mass or more, and 100 parts by mass or less, more preferably 80 parts by mass or less, and particularly preferably 70 parts by mass or less.
(E)ヒドロシリル化架橋剤
 ケイ素原子結合水素原子を2個以上有するシロキサン系化合物であり、本発明の第2の組成物においては、必須の成分である。
(E) Hydrosilylation cross-linking agent A siloxane-based compound having two or more silicon-bonded hydrogen atoms, and an essential component in the second composition of the present invention.
 ヒドロシリル化架橋剤(E)としては、前記シロキサン系反応性溶剤(C)であってもよいし、前記シロキサン系反応性溶剤(C)以外の含フッ素重合体(A)を溶解または分散しない液状または固体状であってケイ素原子結合水素原子を2個以上有するシロキサン系化合物(E1)(以下、「非溶解性ヒドロシリル化架橋剤(E1)」ということもある)であってもよい。 The hydrosilylation crosslinking agent (E) may be the siloxane-based reactive solvent (C), or a liquid that does not dissolve or disperse the fluorinated polymer (A) other than the siloxane-based reactive solvent (C). Alternatively, it may be a siloxane compound (E1) that is solid and has two or more silicon-bonded hydrogen atoms (hereinafter sometimes referred to as “insoluble hydrosilylation crosslinking agent (E1)”).
 第2の発明において前記シロキサン系反応性溶剤(C)を架橋剤(E)として用いる場合は、本発明の第1の組成物の実施の形態と重複する。 In the second invention, when the siloxane-based reactive solvent (C) is used as the crosslinking agent (E), it overlaps with the embodiment of the first composition of the present invention.
 第2の発明において溶剤として非ケイ素系反応性溶剤(D)のみを使用する場合(前記シロキサン系反応性溶剤(C)を併用しない場合)、非溶解性ヒドロシリル化架橋剤(E1)が必須である。 In the second invention, when only the non-silicon-based reactive solvent (D) is used as the solvent (when the siloxane-based reactive solvent (C) is not used in combination), the non-soluble hydrosilylation crosslinking agent (E1) is essential. is there.
 具体的な非溶解性ヒドロシリル化架橋剤(E1)としては、たとえば国際公開第2008/044765号パンフレット記載のB3がそのまま使用できる。 As a specific non-soluble hydrosilylation crosslinking agent (E1), for example, B3 described in International Publication No. 2008/044765 pamphlet can be used as it is.
 具体例としては、平均単位式:
{H(CH32SiO1/2d(SiO4/2f'
で表されるシロキサン系化合物、平均単位式:
{H(CH32SiO1/2d(CH3SiO3/2e'(SiO4/2f'
で表されるシロキサン系化合物、平均単位式:
{H(CH32SiO1/2d(C65SiO3/2e'(SiO4/2f'
で表されるシロキサン系化合物、平均単位式:
{H(CH32SiO1/2d(CH3SiO3/2e'
で表されるシロキサン系化合物、平均単位式:
{H(CH32SiO1/2d(C65SiO3/2e'
で表されるシロキサン系化合物、平均単位式:
{H(CH3)(C65)SiO1/2d(SiO4/2f'
で表されるシロキサン系化合物などがあげられ(なお、上記式中、d、e’、f’はいずれも正の数である。)、前記(A)成分との相溶性が優れることから、平均単位式:
{H(CH32SiO1/2d(SiO4/2f'
(式中、d、f’はいずれも正の数である。)
で表されるシロキサン系化合物であることが好ましい。
Specific examples include the average unit formula:
{H (CH 3 ) 2 SiO 1/2 } d (SiO 4/2 ) f ′
A siloxane compound represented by the formula:
{H (CH 3 ) 2 SiO 1/2 } d (CH 3 SiO 3/2 ) e ′ (SiO 4/2 ) f ′
A siloxane compound represented by the formula:
{H (CH 3 ) 2 SiO 1/2 } d (C 6 H 5 SiO 3/2 ) e ′ (SiO 4/2 ) f ′
A siloxane compound represented by the formula:
{H (CH 3 ) 2 SiO 1/2 } d (CH 3 SiO 3/2 ) e ′
A siloxane compound represented by the formula:
{H (CH 3 ) 2 SiO 1/2 } d (C 6 H 5 SiO 3/2 ) e ′
A siloxane compound represented by the formula:
{H (CH 3 ) (C 6 H 5 ) SiO 1/2 } d (SiO 4/2 ) f ′
(Wherein, d, e ′, and f ′ are all positive numbers), and the compatibility with the component (A) is excellent. Average unit formula:
{H (CH 3 q 2 SiO 1/2 } d (SiO 4/2 ) f ′
(In the formula, d and f ′ are both positive numbers.)
It is preferable that it is a siloxane type compound represented by these.
 また、環状シロキサン系化合物である式:
  (-Si(CH3)HO-)n
(式中、nは3以上8以下の整数)で表わされる環状シロキサン系化合物も使用でき、なかでも耐熱性が良好な点からnが4の式:
Figure JPOXMLDOC01-appb-C000016
が好ましい。
Moreover, the formula which is a cyclic siloxane type compound:
(—Si (CH 3 ) HO—) n
(Wherein n is an integer of 3 or more and 8 or less) can also be used, and among these, n is 4 in terms of good heat resistance:
Figure JPOXMLDOC01-appb-C000016
Is preferred.
 第2の発明におけるヒドロシリル化架橋剤(E)の配合量は、含フッ素重合体の種類、ヒドロシリル化架橋剤の種類、シロキサン系反応性溶剤(C)の有無、種類などによって異なるが、架橋剤としての機能の点から、含フッ素重合体(A)100質量部に対して、1質量部以上、さらには2質量部以上、特に5質量部以上であり、また、50質量部以下、さらには20質量部以下、特に10質量部以下が好ましい。 The blending amount of the hydrosilylation crosslinking agent (E) in the second invention varies depending on the type of the fluoropolymer, the type of the hydrosilylation crosslinking agent, the presence or absence of the siloxane-based reactive solvent (C), the type, etc. From the viewpoint of the function, it is 1 part by mass or more, further 2 parts by mass or more, particularly 5 parts by mass or more, and 50 parts by mass or less, further 100 parts by mass of the fluoropolymer (A). It is preferably 20 parts by mass or less, particularly 10 parts by mass or less.
(F)ヒドロシリル化架橋反応に関与しない溶剤
 本発明の硬化性樹脂組成物においては、第1の発明か第2の発明かを問わず、ヒドロシリル化架橋反応に関与しない溶剤(F)は使用しない。
(F) Solvent that does not participate in hydrosilylation crosslinking reaction The curable resin composition of the present invention does not use a solvent (F) that does not participate in the hydrosilylation crosslinking reaction, regardless of whether it is the first invention or the second invention. .
 含フッ素重合体(A)を溶解または分散するだけに用いヒドロシリル化架橋反応に関与しない溶剤は、最終的に除去する必要があり、そのためのエネルギーも含め、環境やコスト面から望ましくない。 The solvent that is used only to dissolve or disperse the fluoropolymer (A) and does not participate in the hydrosilylation crosslinking reaction needs to be finally removed, which is undesirable from the viewpoint of environment and cost, including energy for that purpose.
 本発明では使用しない溶剤(F)の具体例としては、たとえばヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、ミネラルスピリットなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン、ナフタレン、ソルベントナフサなどの芳香族炭化水素;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸イソプロピル、酢酸セロソルブ、プロピレングリコールメチルエーテルアセテート、酢酸カルビトール、ジエチルオキサレート、ピルビン酸エチル、エチル-2-ヒドロキシブチレート、エチルアセトアセテート、酢酸アミル、乳酸メチル、乳酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチルなどのエステル類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン、2-ヘキサノン、シクロヘキサノン、メチルアミノケトン、2-ヘプタノンなどのケトン類;エチルセルソルブ、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、エチレングリコールモノアルキルエーテルなどのグリコールエーテル類;メタノール、エタノール、iso-プロパノール、n-ブタノール、イソブタノール、tert-ブタノール、sec-ブタノール、3-ペンタノール、オクチルアルコール、3-メチル-3-メトキシブタノール、tert-アミルアルコールなどのアルコール類;テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどの環状エーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;メチルセロソルブ、セロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ジエチレングリコールモノメチルエーテルなどのエーテルアルコール類;1,1,2-トリクロロ-1,2,2-トリフルオロエタン、1,2-ジクロロ-1,1,2,2-テトラフルオロエタン、ジメチルスルホキシドなどがあげられる。あるいはこれらの2種以上の混合溶剤などがあげられる。 Specific examples of the solvent (F) not used in the present invention include aliphatic hydrocarbons such as hexane, cyclohexane, heptane, octane, nonane, decane, undecane, dodecane, and mineral spirits; benzene, toluene, xylene, naphthalene, Aromatic hydrocarbons such as solvent naphtha; methyl acetate, ethyl acetate, propyl acetate, n-butyl acetate, isobutyl acetate, isopropyl acetate, cellosolve acetate, propylene glycol methyl ether acetate, carbitol acetate, diethyl oxalate, ethyl pyruvate , Ethyl-2-hydroxybutyrate, ethyl acetoacetate, amyl acetate, methyl lactate, ethyl lactate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 2-hydroxyisobutyrate, 2- Esters such as ethyl droxyisobutyrate; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, 2-hexanone, cyclohexanone, methylaminoketone, 2-heptanone; ethyl cellosolve, methyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate , Glycol ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether, ethylene glycol monoalkyl ether Kind; Alcohols such as ethanol, isopropanol, n-butanol, isobutanol, tert-butanol, sec-butanol, 3-pentanol, octyl alcohol, 3-methyl-3-methoxybutanol, tert-amyl alcohol; tetrahydrofuran Cyclic ethers such as tetrahydropyran and dioxane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; ether alcohols such as methyl cellosolve, cellosolve, isopropyl cellosolve, butyl cellosolve and diethylene glycol monomethyl ether; 1,2-trichloro-1,2,2-trifluoroethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, dimethyl sulfoxide, etc. It is. Or these 2 or more types of mixed solvents etc. are mention | raise | lifted.
 またさらに、フッ素系の溶剤としては、たとえばCH3CCl2F(HCFC-141b)、CF3CF2CHCl2/CClF2CF2CHClF混合物(HCFC-225)、パーフルオロヘキサン、パーフルオロ(2-ブチルテトラヒドロフラン)、メトキシ-ノナフルオロブタン、1,3-ビストリフルオロメチルベンゼンなどのほか、
H(CF2CF2nCH2OH(n:1~3の整数)、
F(CF2nCH2OH(n:1~5の整数)、
CF3CH(CF3)OHなどのフッ素系アルコール類;
ベンゾトリフルオライド、パーフルオロベンゼン、パーフルオロ(トリブチルアミン)、ClCF2CFClCF2CFCl2などがあげられる。
Further, as the fluorine-based solvent, for example, CH 3 CCl 2 F (HCFC-141b), CF 3 CF 2 CHCl 2 / CClF 2 CF 2 CHClF mixture (HCFC-225), perfluorohexane, perfluoro (2- Butyltetrahydrofuran), methoxy-nonafluorobutane, 1,3-bistrifluoromethylbenzene, etc.
H (CF 2 CF 2 ) n CH 2 OH (n: an integer of 1 to 3),
F (CF 2 ) n CH 2 OH (n: an integer of 1 to 5),
Fluorinated alcohols such as CF 3 CH (CF 3 ) OH;
Examples thereof include benzotrifluoride, perfluorobenzene, perfluoro (tributylamine), ClCF 2 CFClCF 2 CFCl 2 and the like.
 これらフッ素系溶剤は単独でも、またフッ素系溶剤同士、非フッ素系とフッ素系の1種以上との混合溶剤などがあげられる。 These fluorinated solvents may be used alone, or may be fluorinated solvents, or a mixed solvent of one or more of non-fluorinated and fluorinated solvents.
 上記のとおり、本発明の硬化性樹脂組成物は、ヒドロシリル化架橋反応に関与しない溶剤(F)を用いない、いわゆる無溶剤型の硬化性樹脂組成物とすることができる。なお、本発明において無溶剤型とは、反応性溶剤(C)および(D)のみを用いる場合をいい、ヒドロシリル化架橋反応に関与しない溶剤(F)を用いる溶剤型と区別している。このように無溶剤型とすることにより、溶剤(F)の除去が不要となり、成形工程などを簡略化でき、また、溶剤(F)が硬化物内に残存するといった問題が生じない。残存する溶剤(F)の影響として耐熱性、機械的強度の低下、白濁するといった問題がある。さらに成形加工条件の関係から揮発分が許されないケースに対しても無溶剤型の硬化性樹脂組成物は有用である。たとえば、密閉容器内の充填、封止のような用途である。 As described above, the curable resin composition of the present invention can be a so-called solventless curable resin composition that does not use the solvent (F) that does not participate in the hydrosilylation crosslinking reaction. In the present invention, the solventless type refers to the case where only the reactive solvents (C) and (D) are used, and is distinguished from the solvent type using the solvent (F) that does not participate in the hydrosilylation crosslinking reaction. By using the solvent-free type in this way, it is not necessary to remove the solvent (F), the molding process and the like can be simplified, and the problem that the solvent (F) remains in the cured product does not occur. As the influence of the remaining solvent (F), there are problems such as heat resistance, reduction in mechanical strength, and cloudiness. Furthermore, the solventless curable resin composition is useful even in cases where volatile components are not allowed due to molding processing conditions. For example, it is used for filling and sealing in an airtight container.
 本発明の硬化性樹脂組成物は、その用途によって異なるが、たとえば封止などの用途に対しては、30℃における粘度は、粘性が低すぎると液だれが多く、かえって取り扱い性が低下するため、1mPa・s以上が好ましく、薄膜形成性が良好であるという観点から、5mPa・s以上がより好ましく、硬化の際の硬化収縮が小さいという観点から、10mPa・s以上がさらに好ましい。また、取り扱い性が良好であるという観点から、20000mPa・s以下が好ましく、成形加工の際に細部にわたって硬化性組成物がいきわたるという観点から、5000mPa・s以下がより好ましく、薄膜を形成した際にレベリング(表面平滑)性が良好であるという観点から、2000mPa・s以下がさらに好ましい。 Although the curable resin composition of the present invention varies depending on the application, for example, for applications such as sealing, if the viscosity at 30 ° C. is too low, there is a lot of liquid dripping, and on the contrary, the handleability is lowered. It is preferably 1 mPa · s or more, more preferably 5 mPa · s or more from the viewpoint of good thin film formability, and further preferably 10 mPa · s or more from the viewpoint of small curing shrinkage during curing. Further, from the viewpoint of good handleability, 20000 mPa · s or less is preferable, and from the viewpoint that the curable composition spreads over the details during molding, 5000 mPa · s or less is more preferable, and when a thin film is formed. From the viewpoint of good leveling (surface smoothness), 2000 mPa · s or less is more preferable.
 以下、本発明の第1および第2の硬化性樹脂組成物の好ましい形態を具体的な組合せを示して説明するが、本発明はこれらに限定されるものではない。 Hereinafter, preferred embodiments of the first and second curable resin compositions of the present invention will be described with specific combinations, but the present invention is not limited to these.
(1)第1の硬化性樹脂組成物
(A)含フッ素重合体:
 式(1)において、構造単位A1が式(Ia)であり、構造単位Mがヒドロキシエチルビニルエーテルである数平均分子量2000~50000の含フッ素重合体
(B)ヒドロシリル化触媒
 白金触媒
(C)シロキサン系反応性溶剤
 C65Si(OSi(CH32H)3
(調製方法)
 (A)を(C)に均一溶解させた後に(B)を添加し、硬化性組成物とする。
(1) First curable resin composition (A) fluorinated polymer:
In formula (1), the structural unit A1 is the formula (Ia), and the structural unit M is hydroxyethyl vinyl ether. The fluorine-containing polymer having a number average molecular weight of 2000 to 50000 (B) hydrosilylation catalyst Platinum catalyst (C) siloxane system Reactive solvent C 6 H 5 Si (OSi (CH 3 ) 2 H) 3
(Preparation method)
After (A) is uniformly dissolved in (C), (B) is added to obtain a curable composition.
(2)第1の硬化性樹脂組成物
(A)含フッ素重合体:
 式(1)において、構造単位A1が式(Ia)であり、構造単位Mがヒドロキシエチルビニルエーテルである数平均分子量2000~50000の含フッ素重合体
(B)ヒドロシリル化触媒
 白金触媒
(C)シロキサン系反応性溶剤
 C65Si(OSi(CH32H)3
(D)非ケイ素反応性溶剤
 TAIC
(調製方法)
 (C)と(D)を均一に混合した後、(A)を均一溶解させ、(B)を添加し、硬化性組成物とする。
(2) First curable resin composition (A) fluorinated polymer:
In formula (1), the structural unit A1 is the formula (Ia), and the structural unit M is hydroxyethyl vinyl ether. The fluorine-containing polymer having a number average molecular weight of 2000 to 50000 (B) hydrosilylation catalyst Platinum catalyst (C) siloxane system Reactive solvent C 6 H 5 Si (OSi (CH 3 ) 2 H) 3
(D) Non-silicon reactive solvent TAIC
(Preparation method)
(C) and (D) are mixed uniformly, then (A) is uniformly dissolved, and (B) is added to obtain a curable composition.
(3)第1の硬化性樹脂組成物
(A)含フッ素重合体:
 式(1)において、構造単位A1が式(Ia)であり、構造単位Mがヒドロキシエチルビニルエーテルである数平均分子量2000~50000の含フッ素重合体
(B)ヒドロシリル化触媒
 白金触媒
(C)シロキサン系反応性溶剤
 C65Si(OSi(CH32H)3
(E)ヒドロシリル化架橋剤
Figure JPOXMLDOC01-appb-C000017
(調製方法)
 (A)を(C)に均一溶解した後、(E)を加えて、均一にする。最後に(B)を加えて硬化性組成物とする。
(3) First curable resin composition (A) fluorinated polymer:
In formula (1), the structural unit A1 is the formula (Ia), and the structural unit M is hydroxyethyl vinyl ether. The fluorine-containing polymer having a number average molecular weight of 2000 to 50000 (B) hydrosilylation catalyst Platinum catalyst (C) siloxane system Reactive solvent C 6 H 5 Si (OSi (CH 3 ) 2 H) 3
(E) Hydrosilylation crosslinking agent
Figure JPOXMLDOC01-appb-C000017
(Preparation method)
After (A) is uniformly dissolved in (C), (E) is added to make it uniform. Finally, (B) is added to obtain a curable composition.
(4)第2の硬化性樹脂組成物
(A)含フッ素重合体:
 式(1)において、構造単位A1が式(Ia)であり、構造単位Mがヒドロキシエチルビニルエーテルである数平均分子量2000~50000の含フッ素重合体
(B)ヒドロシリル化触媒
 白金触媒
(D)非ケイ素反応性溶剤
 TAIC
(E)ヒドロシリル化架橋剤
Figure JPOXMLDOC01-appb-C000018
(調製方法)
 (A)を(D)に均一溶解させ、(E)を添加し、さらに(B)を加えて硬化性組成物とする。
(4) Second curable resin composition (A) fluorinated polymer:
In the formula (1), the fluorine-containing polymer (B) hydrosilylation catalyst having a number average molecular weight of 2,000 to 50,000, wherein the structural unit A1 is the formula (Ia) and the structural unit M is hydroxyethyl vinyl ether. Platinum catalyst (D) Non-silicon Reactive solvent TAIC
(E) Hydrosilylation crosslinking agent
Figure JPOXMLDOC01-appb-C000018
(Preparation method)
(A) is uniformly dissolved in (D), (E) is added, and (B) is further added to obtain a curable composition.
(5)第1または第2の硬化性樹脂組成物
(A)含フッ素重合体:
 式(1)において、構造単位A1が式(Ia)であり、構造単位Mがヒドロキシエチルビニルエーテルである数平均分子量2000~50000の含フッ素重合体
(B)ヒドロシリル化触媒
 白金触媒
(C)シロキサン系反応性溶剤
65Si(OSi(CH32H)3
(D)非ケイ素反応性溶剤
 TAIC
(E)ヒドロシリル化架橋剤
Figure JPOXMLDOC01-appb-C000019
(調製方法)
 (C)と(D)を均一に混合する。それに(A)を均一溶解させ、(E)を加え、さらに(B)を加えて硬化性組成物とする。
(5) First or second curable resin composition (A) fluorinated polymer:
In formula (1), the structural unit A1 is the formula (Ia), and the structural unit M is hydroxyethyl vinyl ether. The fluorine-containing polymer having a number average molecular weight of 2000 to 50000 (B) hydrosilylation catalyst Platinum catalyst (C) siloxane system Reactive solvent C 6 H 5 Si (OSi (CH 3 ) 2 H) 3
(D) Non-silicon reactive solvent TAIC
(E) Hydrosilylation crosslinking agent
Figure JPOXMLDOC01-appb-C000019
(Preparation method)
(C) and (D) are mixed uniformly. (A) is uniformly dissolved therein, (E) is added, and (B) is further added to obtain a curable composition.
 本発明の硬化性樹脂組成物は、前記にあげたもの以外に、たとえば反応抑制剤、顔料、分散剤、増粘剤、防腐剤、紫外線吸収剤、消泡剤、レベリング剤などを任意に添加してもよい。 In addition to those described above, the curable resin composition of the present invention optionally includes, for example, reaction inhibitors, pigments, dispersants, thickeners, preservatives, ultraviolet absorbers, antifoaming agents, leveling agents, etc. May be.
 反応抑制剤としては、たとえば1-エチニル-1-シクロヘキサノール、2-エチニルイソプロパノール、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オールなどのアセチレン系アルコール;1,3,5,7-テトラビニルテトラメチルシクロテトラシロキサンなどのアルケニルシロキサン;ジアリルフマレート、ジメチルフマレート、ジエチルフマレートなどのマレート化合物;その他、トリアリルシアヌレート、トリアゾールなどがあげられる。反応抑制剤を配合することにより、得られる組成物の一液化や、得られる組成物のポットライフ(可使時間)を十分に長くすることができるという効果が奏される。この反応抑制剤の含有量は特に限定されないが、本発明の組成物中に、10~50,000ppm(質量基準)となるような量であることが好ましい。 Examples of the reaction inhibitor include 1-ethynyl-1-cyclohexanol, 2-ethynylisopropanol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, and 2-phenyl. Acetylenic alcohols such as -3-butyn-2-ol; alkenyl siloxanes such as 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane; malate compounds such as diallyl fumarate, dimethyl fumarate and diethyl fumarate; Other examples include triallyl cyanurate and triazole. By blending the reaction inhibitor, the effect of being able to make the obtained composition one component and the pot life (pot life) of the resulting composition to be sufficiently long is exhibited. The content of the reaction inhibitor is not particularly limited, but is preferably such an amount that it is 10 to 50,000 ppm (mass basis) in the composition of the present invention.
 本発明の硬化性樹脂組成物はヒドロシリル化架橋することで硬化させ、得られる硬化物を種々の形態で各種の用途に利用できる。 The curable resin composition of the present invention is cured by hydrosilylation crosslinking, and the resulting cured product can be used in various forms for various applications.
 たとえば硬化膜を形成して各種用途に利用できる。膜を形成する方法としては用途に応じた適切な公知の方法を採用することができる。例えば膜厚をコントロールする必要がある場合は、ロールコート法、グラビアコート法、マイクログラビアコート法、フローコート法、バーコート法、スプレーコート法、ダイコート法、スピンコート法、ディップコート法などが採用できる。 For example, a cured film can be formed and used for various purposes. As a method of forming the film, a known method suitable for the application can be employed. For example, when it is necessary to control the film thickness, roll coating, gravure coating, micro gravure coating, flow coating, bar coating, spray coating, die coating, spin coating, dip coating, etc. are used. it can.
 本発明の硬化性樹脂組成物は、膜形成に用いてもよいが、各種成形品の成形材料として特に有用である。成形方法としては、押出成形、射出成形、圧縮成形、ブロー成形、トランスファー成形、光造形、ナノインプリント、真空成形などが採用できる。 The curable resin composition of the present invention may be used for film formation, but is particularly useful as a molding material for various molded products. As the molding method, extrusion molding, injection molding, compression molding, blow molding, transfer molding, stereolithography, nanoimprinting, vacuum molding and the like can be adopted.
 本発明の硬化性樹脂組成物の用途としては、例えば、封止部材、光学材料、光電子撮像管、各種センサー、反射防止材などがあげられる。 Examples of the use of the curable resin composition of the present invention include a sealing member, an optical material, an optoelectronic imaging tube, various sensors, and an antireflection material.
 封止部材の使用形態としては、例えば発光ダイオード(LED)、EL素子、非線形光学素子などの発光素子やCCDやCMOS、PDのような受光素子などの光機能素子のパッケージ(封入)、実装などが例示できる。また、深紫外線顕微鏡のレンズなどの光学部材用封止材(または充填材)などもあげられる。封止された光素子は種々の場所に使用されるが、非限定的な例示としては、ハイマウントストップランプやメーターパネル、携帯電話のバックライト、各種電気製品のリモートコントロール装置の光源などの発光素子;カメラのオートフォーカス、CD/DVD用光ピックアップ用受光素子などがあげられる。 Examples of usage of the sealing member include packages (encapsulation) and mounting of light-emitting elements such as light-emitting diodes (LEDs), EL elements, and nonlinear optical elements, and optical functional elements such as light-receiving elements such as CCD, CMOS, and PD. Can be illustrated. Moreover, sealing materials (or fillers) for optical members such as lenses for deep ultraviolet microscopes are also included. Sealed light elements are used in various places, but non-limiting examples include light emission from high-mount stop lamps, meter panels, mobile phone backlights, and light sources for remote control devices for various electrical products. Elements: Camera autofocus, CD / DVD optical pickup light receiving element, and the like.
 光学材料としては特にフッ素を含有しているため、低屈折率の光学材料になる。例えば光伝送用媒体として有用である。特にコア材が石英、もしくは光学ガラスであるプラスチッククラッド光学ファイバーのクラッド材料、コア材がプラスチックである全プラスチック光学ファイバーのクラッド材料、反射防止コーテイング材料、レンズ材料、光導波路材料、プリズム材料、光学窓材料、光記憶ディスク材料、非線形型光素子、ホログラム材料、フォトリソグラティブ材料、発光素子の封止材料などといった光学材料に使用可能である。また、光デバイス用の材料としても使用できる。光デバイスとしては、光導波路、OADM、光スイッチ、光フィルター、光コネクター、合分波器などの機能素子および光配線などの光実装が知られており、これらのデバイスを形成するのに有用な材料である。さらに種々の機能性化合物(非線形光学材料、蛍光発光性の機能性色素、フォトリフラクティブ材料など)を含有させて、モジュレータ、波長変換素子、光増幅器などの光デバイス用の機能素子として用いるのにも適している。 Since the optical material contains fluorine in particular, it becomes an optical material with a low refractive index. For example, it is useful as an optical transmission medium. In particular, cladding material of plastic clad optical fiber whose core material is quartz or optical glass, cladding material of all plastic optical fiber whose core material is plastic, anti-reflection coating material, lens material, optical waveguide material, prism material, optical window It can be used for optical materials such as materials, optical storage disk materials, nonlinear optical elements, hologram materials, photolithographic materials, and light emitting element sealing materials. It can also be used as a material for optical devices. As optical devices, optical devices such as optical waveguides, OADMs, optical switches, optical filters, optical connectors, multiplexers / demultiplexers, and other optical devices are known and useful for forming these devices. Material. Furthermore, various functional compounds (non-linear optical materials, fluorescent light-emitting functional dyes, photorefractive materials, etc.) are contained and used as functional elements for optical devices such as modulators, wavelength conversion elements, and optical amplifiers. Is suitable.
 センサー用途としては、特に光学センサーや圧力センサーなどの感度向上や撥水撥油特性によるセンサーの保護などの効果があり有用である。 As a sensor application, it is particularly useful because it has the effect of improving the sensitivity of optical sensors and pressure sensors, and protecting the sensor with water and oil repellent properties.
 そのほか、電子半導体用の封止部材用材料、耐水耐湿性接着剤、光学部品や素子用の接着剤としても使用できる。 In addition, it can be used as a sealing member material for electronic semiconductors, a water and moisture resistant adhesive, and an adhesive for optical components and elements.
 用途として前記のような例示ができるが、これらに限定されるものではない。 Examples of use can be exemplified as described above, but are not limited thereto.
 つぎに実施例をあげて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Next, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
 本明細書で採用している測定法について、以下にまとめた。 The measurement methods used in this specification are summarized below.
(1)NMR分析
装置:BRUKER社製
1H-NMR測定条件:300MHz(テトラメチルシラン=0ppm)
19F-NMR測定条件:282MHz(トリクロロフルオロメタン=0ppm)
(1) NMR analyzer: manufactured by BRUKER
1 H-NMR measurement conditions: 300 MHz (tetramethylsilane = 0 ppm)
19 F-NMR measurement conditions: 282 MHz (trichlorofluoromethane = 0 ppm)
(2)IR分析
装置:PERKIN ELMER社製フーリエ変換赤外分光光度計1760X
条件:室温にて測定する。
(2) IR analyzer: Fourier transform infrared spectrophotometer 1760X manufactured by PERKIN ELMER
Conditions: Measure at room temperature.
(3)数平均分子量
 ゲルパーミエーションクロマトグラフィー(GPC)により、東ソー(株)製のGPC HLC-8020を用い、Shodex社製のカラム(GPC KF-801を1本、GPC KF-802を1本、GPC KF-806Mを2本直列に接続)を使用し、溶媒としてテトラハイドロフラン(THF)を流速1ml/分で流して測定したデータより、数平均分子量を算出する。
(3) Number average molecular weight Using gel permeation chromatography (GPC), a column made by Shodex (one GPC KF-801 and one GPC KF-802) using GPC HLC-8020 manufactured by Tosoh Corporation. The number average molecular weight is calculated from the data measured by flowing tetrahydrofuran (THF) as a solvent at a flow rate of 1 ml / min using two GPC KF-806M in series.
(4)水酸基価(mgKOH/g)
 無水酢酸を用いたアセチル化法により、常法に従って水酸基価を求める。
(4) Hydroxyl value (mgKOH / g)
The hydroxyl value is determined according to a conventional method by an acetylation method using acetic anhydride.
(5)フッ素含有量(質量%)
 酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法(フッ素イオンメーター、オリオン社製 901型)で測定することにより求める。
(5) Fluorine content (% by mass)
By burning 10 mg of sample by the oxygen flask combustion method, absorbing the decomposition gas in 20 ml of deionized water, and measuring the fluorine ion concentration in the absorption liquid by the fluorine selective electrode method (fluorine ion meter, model 901 manufactured by Orion) Ask.
(6)粘度(mPa・s)
 東海八神(株)製のコーンプレート型粘度計CV-1Eを用いて25℃における粘度をCP-100コーンを使用し、100rpmの条件で測定し、60秒間で安定した値を採用する。
(6) Viscosity (mPa · s)
Using a cone-plate viscometer CV-1E manufactured by Tokai Yagami Co., Ltd., the viscosity at 25 ° C. is measured under the condition of 100 rpm using CP-100 cone, and a stable value is adopted for 60 seconds.
(7)屈折率(nD
 ナトリウムD線(589nm)を光源として25℃において(株)アタゴ光学機器製作所製のアッベ屈折率計を用いて測定する。
(7) Refractive index (n D )
Measurement is performed using an Abbe refractometer manufactured by Atago Optical Instruments Co., Ltd. at 25 ° C. using sodium D line (589 nm) as a light source.
(8)熱分解温度(℃)
 熱重量計((株)島津製作所のTGA-50)を用い、窒素雰囲気の条件で昇温速度10℃/minの条件で測定し、1%質量減の温度で評価する。
(8) Thermal decomposition temperature (℃)
Using a thermogravimeter (TGA-50 manufactured by Shimadzu Corporation), the temperature is measured under a nitrogen atmosphere at a rate of temperature increase of 10 ° C./min and evaluated at a temperature of 1% mass loss.
(9)光透過率(%)
 自記分光光度計((株)日立製作所製のU-3310(商品名))を用いて波長300~800nmにおける約100μm厚のサンプル(硬化フィルム)の分光透過率曲線を測定した値を採用する。
(9) Light transmittance (%)
A value obtained by measuring a spectral transmittance curve of a sample (cured film) having a thickness of about 100 μm at a wavelength of 300 to 800 nm using a self-recording spectrophotometer (U-3310 (trade name) manufactured by Hitachi, Ltd.) is adopted.
(10)耐溶剤性
 10mm×10mm×0.1mmのサンプルを20mLの酢酸ブチルに浸漬して、室温8時間経過後の様子を目視で観察する。
(10) Solvent resistance A sample of 10 mm × 10 mm × 0.1 mm is immersed in 20 mL of butyl acetate, and the state after 8 hours at room temperature is visually observed.
(11)耐熱性
 温度150℃において各サンプルを1時間保持し、外観の変化を目視で観察する。
(11) Heat resistance Each sample is held for 1 hour at a temperature of 150 ° C., and the change in appearance is visually observed.
合成例1(水酸基含有含フッ素ポリマーの製造)
 特開2004-204205号公報に記載の方法に従い、以下に示す水酸基含有含フッ素共重合体(A-1)ポリマー(a)~(d)を合成した。
Synthesis Example 1 (Production of hydroxyl-containing fluorine-containing polymer)
According to the method described in JP-A-2004-204205, the following hydroxyl group-containing fluorine-containing copolymer (A-1) polymers (a) to (d) were synthesized.
ポリマー(a):TFE/VV9/HBVE=45/39/16(モル%)、数平均分子量(Mn)=1.2×103、Tg=35℃、フッ素含有量(質量%)=24、水酸基価(mgKOH/g)=54 Polymer (a): TFE / VV9 / HBVE = 45/39/16 (mol%), number average molecular weight (Mn) = 1.2 × 10 3 , Tg = 35 ° C., fluorine content (mass%) = 24, Hydroxyl value (mgKOH / g) = 54
ポリマー(b):TFE/VV10/HEVE/VtBz=45/35/15/5(モル%)、Mn=1.3×103、Tg=12℃、フッ素含有量(質量%)=24、水酸基価(mgKOH/g)=68 Polymer (b): TFE / VV10 / HEVE / VtBz = 45/35/15/5 (mol%), Mn = 1.3 × 10 3 , Tg = 12 ° C., fluorine content (mass%) = 24, hydroxyl group Value (mgKOH / g) = 68
ポリマー(c):TFE/VV9/HBVE/CA=45/39.3/15/0.7、Mn=1.1×103、Tg=33℃、フッ素含有量(質量%)=24、水酸基価(mgKOH/g)=51 Polymer (c): TFE / VV9 / HBVE / CA = 45 / 39.3 / 15 / 0.7, Mn = 1.1 × 10 3 , Tg = 33 ° C., fluorine content (mass%) = 24, hydroxyl group Value (mgKOH / g) = 51
ポリマー(d):TFE/VV9/HEVE/VBz/CA=45/34.4/14/6/0.6(モル%)、Mn=1.2×103、Tg=30℃、フッ素含有量(質量%)=25、水酸基価(mgKOH/g)=66 Polymer (d): TFE / VV9 / HEVE / VBz / CA = 45 / 34.4 / 14/6 / 0.6 (mol%), Mn = 1.2 × 10 3 , Tg = 30 ° C., fluorine content (Mass%) = 25, hydroxyl value (mgKOH / g) = 66
 なお、上記のポリマーにおける各単量体の略号はつぎの化合物である。
TFE:テトラフルオロエチレン
VV9:バーサティック酸ビニル(ベオバ9(シェル化学(株)製の炭素数9の脂肪族カルボン酸ビニルエステルの商品名))
VV10:バーサティック酸ビニル(ベオバ10(シェル化学(株)製の炭素数10の脂肪族カルボン酸ビニルエステルの商品名))
HBVE:ヒドロキシブチルビニルエーテル
HEVE:ヒドロキシエチルビニルエーテル
VtBz:tert-ブチル安息香酸ビニル
VBz:安息香酸ビニル
CA:クロトン酸
In addition, the symbol of each monomer in said polymer is the following compound.
TFE: tetrafluoroethylene VV9: vinyl versatate (Veoba 9 (trade name of aliphatic carboxylic acid vinyl ester of 9 carbon atoms manufactured by Shell Chemical Co., Ltd.))
VV10: vinyl versatate (Veoba 10 (trade name of aliphatic carboxylic acid vinyl ester having 10 carbon atoms manufactured by Shell Chemical Co., Ltd.))
HBVE: hydroxybutyl vinyl ether HEVE: hydroxyethyl vinyl ether VtBz: tert-butyl vinyl benzoate VBz: vinyl benzoate CA: crotonic acid
合成例2
 ポリマー(a)を20g計量し、あらかじめモレキュラーシーブス4Aで脱水した酢酸n-ブチル20gに溶解させ、攪拌装置、温度計を備えた100mlのガラス製四ツ口フラスコに仕込んだ。滴下ロートより、アリルイソシアネート(CH2=CHCH2NCO)を1.6g、室温で滴下し、十分に攪拌して均一化させた。その後、オイルバスにつけ、内温を70±5℃に保ち5時間攪拌した。反応溶液のIRを測定することで、原料のアリルイソシアネートが系内に無いことを確認した。その後、反応溶液をロータリーエバポレーターで濃縮後、キャスト法により溶媒を除去後、析出した固体を少量のアセトンに再度溶解させた。この溶液を十分に多量のn-ヘキサン中に再沈させることによりポリマーの精製をおこなった。この精製操作を合計3回繰り返し、得られたポリマーの19F-NMR、1H-NMR分析、IR分析により分析したところ、
Figure JPOXMLDOC01-appb-C000020
で示されるユニットを分子内に16モル%含有した含フッ素ポリマーであることがわかった。
Synthesis example 2
20 g of polymer (a) was weighed and dissolved in 20 g of n-butyl acetate previously dehydrated with Molecular Sieves 4A, and charged into a 100 ml glass four-necked flask equipped with a stirrer and a thermometer. From the dropping funnel, 1.6 g of allyl isocyanate (CH 2 ═CHCH 2 NCO) was added dropwise at room temperature, and the mixture was sufficiently stirred and homogenized. Thereafter, it was placed in an oil bath, and the internal temperature was kept at 70 ± 5 ° C. and stirred for 5 hours. By measuring the IR of the reaction solution, it was confirmed that the raw material allyl isocyanate was not present in the system. Thereafter, the reaction solution was concentrated with a rotary evaporator, the solvent was removed by a casting method, and the precipitated solid was dissolved again in a small amount of acetone. The polymer was purified by reprecipitation of this solution in a sufficiently large amount of n-hexane. This purification operation was repeated three times in total, and the obtained polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis.
Figure JPOXMLDOC01-appb-C000020
It was found that the polymer was a fluorine-containing polymer containing 16 mol% in the molecule.
合成例3
 ポリマー(b)を20g計量し、あらかじめモレキュラーシーブス4Aで脱水した酢酸n-ブチル20gに溶解させ、攪拌装置、温度計を備えた100mlのガラス製四ツ口フラスコに仕込んだ。滴下ロートより、アリルイソシアネート(CH2=CHCH2NCO)を2.0g、室温で滴下し、十分に攪拌して均一化させた。その後、オイルバスにつけ、内温を70±5℃に保ち5時間攪拌した。反応溶液のIRを測定することで、原料のアリルイソシアネートが系内に無いことを確認した。その後、反応溶液をロータリーエバポレーターで濃縮後、キャスト法により溶媒を除去後、析出した固体を少量のアセトンに再度溶解させた。この溶液を十分に多量のn-ヘキサン中に再沈させることによりポリマーの精製をおこなった。この精製操作を合計3回繰り返し、得られたポリマーの19F-NMR、1H-NMR分析、IR分析により分析したところ、
Figure JPOXMLDOC01-appb-C000021
で示されるユニットを分子内に15モル%含有した含フッ素ポリマーであることがわかった。
Synthesis example 3
20 g of polymer (b) was weighed and dissolved in 20 g of n-butyl acetate previously dehydrated with Molecular Sieves 4A, and charged into a 100 ml glass four-necked flask equipped with a stirrer and a thermometer. From the dropping funnel, 2.0 g of allyl isocyanate (CH 2 = CHCH 2 NCO) was added dropwise at room temperature, and the mixture was sufficiently stirred to make it uniform. Thereafter, it was placed in an oil bath, and the internal temperature was kept at 70 ± 5 ° C. and stirred for 5 hours. By measuring the IR of the reaction solution, it was confirmed that the raw material allyl isocyanate was not present in the system. Thereafter, the reaction solution was concentrated with a rotary evaporator, the solvent was removed by a casting method, and the precipitated solid was dissolved again in a small amount of acetone. The polymer was purified by reprecipitation of this solution in a sufficiently large amount of n-hexane. This purification operation was repeated three times in total, and the obtained polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis.
Figure JPOXMLDOC01-appb-C000021
It was found to be a fluorine-containing polymer containing 15 mol% of the unit represented by
合成例4
 ポリマー(c)を20g計量し、あらかじめモレキュラーシーブス4Aで脱水した酢酸n-ブチル20gに溶解させ、攪拌装置、温度計を備えた100mlのガラス製四ツ口フラスコに仕込んだ。滴下ロートより、昭和電工(株)製のカレンズAOI(CH2=CHCOOCH2CH2NCO)を2.6g、室温で滴下し、十分に攪拌して均一化させた。その後、オイルバスにつけ、内温を80±5℃に保ち5時間攪拌した。反応溶液のIRを測定することで、原料のアリルイソシアネートが系内に無いことを確認した。その後、反応溶液をロータリーエバポレーターで濃縮後、キャスト法により溶媒を除去後、析出した固体を少量のアセトンに再度溶解させた。この溶液を十分に多量のn-ヘキサン中に再沈させることによりポリマーの精製をおこなった。この精製操作を合計3回繰り返し、得られたポリマーの19F-NMR、1H-NMR分析、IR分析により分析したところ、
Figure JPOXMLDOC01-appb-C000022
で示されるユニットを分子内に15モル%含有した含フッ素ポリマーであることがわかった。
Synthesis example 4
20 g of polymer (c) was weighed and dissolved in 20 g of n-butyl acetate previously dehydrated with Molecular Sieves 4A, and charged into a 100 ml glass four-necked flask equipped with a stirrer and a thermometer. From a dropping funnel, 2.6 g of Karenz AOI (CH 2 = CHCOOCH 2 CH 2 NCO) manufactured by Showa Denko Co., Ltd. was dropped at room temperature, and the mixture was sufficiently stirred and homogenized. Thereafter, it was placed in an oil bath, and the internal temperature was kept at 80 ± 5 ° C. and stirred for 5 hours. By measuring the IR of the reaction solution, it was confirmed that the raw material allyl isocyanate was not present in the system. Thereafter, the reaction solution was concentrated with a rotary evaporator, the solvent was removed by a casting method, and the precipitated solid was dissolved again in a small amount of acetone. The polymer was purified by reprecipitation of this solution in a sufficiently large amount of n-hexane. This purification operation was repeated three times in total, and the obtained polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis.
Figure JPOXMLDOC01-appb-C000022
It was found to be a fluorine-containing polymer containing 15 mol% of the unit represented by
合成例5
 ポリマー(d)を20g計量し、あらかじめモレキュラーシーブス4Aで脱水した酢酸n-ブチル20gに溶解させ、攪拌装置、温度計を備えた100mlのガラス製四ツ口フラスコに仕込んだ。滴下ロートより、昭和電工(株)製のカレンズMOI(CH2=C(CH3)COOCH2CH2NCO)を1.55g、室温で滴下し、十分に攪拌して均一化させた。その後、オイルバスにつけ、内温を80±5℃に保ち5時間攪拌した。反応溶液のIRを測定することで、原料のアリルイソシアネートが系内に無いことを確認した。その後、反応溶液をロータリーエバポレーターで濃縮後、キャスト法により溶媒を除去後、析出した固体を少量のアセトンに再度溶解させた。この溶液を十分に多量のn-ヘキサン中に再沈させることによりポリマーの精製をおこなった。この精製操作を合計3回繰り返し、得られたポリマーの19F-NMR、1H-NMR分析、IR分析により分析したところ、
Figure JPOXMLDOC01-appb-C000023
で示されるユニットを分子内に6モル%含有した含フッ素ポリマーであることがわかった。
Synthesis example 5
20 g of the polymer (d) was weighed and dissolved in 20 g of n-butyl acetate previously dehydrated with Molecular Sieves 4A, and charged into a 100 ml glass four-necked flask equipped with a stirrer and a thermometer. From a dropping funnel, 1.55 g of Karenz MOI (CH 2 ═C (CH 3 ) COOCH 2 CH 2 NCO) manufactured by Showa Denko KK was added dropwise at room temperature, and the mixture was sufficiently stirred and homogenized. Thereafter, it was placed in an oil bath, and the internal temperature was kept at 80 ± 5 ° C. and stirred for 5 hours. By measuring the IR of the reaction solution, it was confirmed that the raw material allyl isocyanate was not present in the system. Thereafter, the reaction solution was concentrated with a rotary evaporator, the solvent was removed by a casting method, and the precipitated solid was dissolved again in a small amount of acetone. The polymer was purified by reprecipitation of this solution in a sufficiently large amount of n-hexane. This purification operation was repeated three times in total, and the obtained polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis.
Figure JPOXMLDOC01-appb-C000023
It was found to be a fluorine-containing polymer containing 6 mol% of the unit represented by
比較合成例1
 100mlの3つ口フラスコに、20質量%NaCl水溶液を50g入れ、-15℃に冷却した。Na22を1.05g加えると-10℃まで温度が上昇した。再び-15℃に冷却し、式:
(CH33C-OCH2CF2COCl
で表わされる化合物を4.91g滴下した。滴下終了後、-15℃に冷却しながら30分間攪拌した。-15℃に冷却した1,1,2-トリクロロ-1,2,2-トリフルオロエタンを5.0ml加えて、さらに30分間攪拌した。静置するとすぐに2層に分離したので、下層のパーオキサイドを含む白色懸濁液を採取した(6.0ml)。ヨウ素滴定法によりこの懸濁液中のパーオキサイドの濃度を求めたところ、134mg/mlの濃度であった。
Comparative Synthesis Example 1
In a 100 ml three-necked flask, 50 g of a 20% by mass aqueous NaCl solution was added and cooled to −15 ° C. When 1.05 g of Na 2 O 2 was added, the temperature rose to −10 ° C. Cool again to −15 ° C., the formula:
(CH 3 ) 3 C—OCH 2 CF 2 COCl
4.91 g of a compound represented by the formula was added dropwise. After completion of the dropwise addition, the mixture was stirred for 30 minutes while cooling to -15 ° C. 5.0 ml of 1,1,2-trichloro-1,2,2-trifluoroethane cooled to −15 ° C. was added, and the mixture was further stirred for 30 minutes. Since it separated into two layers as soon as it was allowed to stand, a white suspension containing the lower layer peroxide was collected (6.0 ml). When the concentration of peroxide in this suspension was determined by an iodometric titration method, the concentration was 134 mg / ml.
 得られたパーオキサイドの1,1,2-トリクロロ-1,2,2-トリフルオロエタン溶液4.6mlを-50℃に冷却した100mlのステンレス製反応容器に加え、窒素ガスで置換した後、ヘキサフルオロプロピレン(HFP)10.9g、フッ化ビニリデン(VdF)6.5gを仕込んだ。反応容器を20℃で2.5時間振とうさせて、重合を行った。反応容器の内圧は、1.28MPa・Gから1.17MPa・Gまで低下した。重合終了後、未反応モノマーと1,1,2-トリクロロ-1,2,2-トリフルオロエタンを蒸発させて、液状のポリマー(1)4.2gを得た。MNR分析の結果、VdF単位76.5モル%とHFP単位23.5モル%の共重合体であった。 After adding 4.6 ml of 1,1,2-trichloro-1,2,2-trifluoroethane solution of the obtained peroxide to a 100 ml stainless steel reaction vessel cooled to −50 ° C., and replacing with nitrogen gas, Hexafluoropropylene (HFP) 10.9 g and vinylidene fluoride (VdF) 6.5 g were charged. Polymerization was carried out by shaking the reaction vessel at 20 ° C. for 2.5 hours. The internal pressure of the reaction vessel decreased from 1.28 MPa · G to 1.17 MPa · G. After the completion of the polymerization, the unreacted monomer and 1,1,2-trichloro-1,2,2-trifluoroethane were evaporated to obtain 4.2 g of a liquid polymer (1). As a result of MNR analysis, it was a copolymer of 76.5 mol% VdF units and 23.5 mol% HFP units.
 得られた液状ポリマー(1)に対して同質量のトリフルオロ酢酸を加えて、70℃で2時間加熱した。反応後水洗し、ついで乾燥を行い、液状ポリマー(2)を得た。このポリマー(2)をNMR分析およびIR分析したところ、液状ポリマー(1)の末端のt-ブトキシ基が水酸基に変換されていることが分かった。 The same amount of trifluoroacetic acid was added to the obtained liquid polymer (1) and heated at 70 ° C. for 2 hours. After the reaction, it was washed with water and then dried to obtain a liquid polymer (2). NMR analysis and IR analysis of this polymer (2) revealed that the terminal t-butoxy group of the liquid polymer (1) was converted to a hydroxyl group.
 得られた液状ポリマー(2)3.5gにアリルイソシアネート(CH2=CHCH2NCO)1.0gを混合し、常温で24時間反応させた後、100℃に加熱し、反応を完結させた。さらに減圧下100℃に加熱し、過剰のアリルイソシアネートを揮発させて除き、含フッ素ポリマー(3)を得た。この含フッ素ポリマー(3)をNMR分析およびIR分析したところ、ポリマー末端にアリル基を有するポリマーであることが分かった。 1.0 g of allyl isocyanate (CH 2 = CHCH 2 NCO) was mixed with 3.5 g of the obtained liquid polymer (2), reacted at room temperature for 24 hours, and then heated to 100 ° C. to complete the reaction. Furthermore, it heated at 100 degreeC under pressure reduction, volatilized and removed excess allyl isocyanate, and obtained the fluorine-containing polymer (3). When this fluoropolymer (3) was subjected to NMR analysis and IR analysis, it was found to be a polymer having an allyl group at the polymer terminal.
 含フッ素ポリマー(3)は、常温で流動性を有し、数平均分子量は5400であった。 The fluoropolymer (3) was fluid at room temperature and had a number average molecular weight of 5400.
比較合成例2
 攪拌装置、温度計を備えた500mlのガラス製四ツ口フラスコに、メチルメタクリレート(MMA)を80gとヒドロキシエチルメタクリレート(HEMA)を20gとアゾビスイソブチロニトリル(AIBN)を1.5g、溶媒として酢酸ブチルを300gいれ、室温でよく攪拌し、窒素気流下で温度を70℃、16時間の条件で重合した。得られたポリマーをn-ヘキサン中に再沈させ、91gのポリマーを得た。その数平均分子量は33000であった。この重合体を19F-NMR、1H-NMR分析、IR分析により分析したところ、MMAとHEMAの共重合体であることが確認された。その組成比はNMRより、MMA:HEMA=83:17(モル比)と求められた。
Comparative Synthesis Example 2
In a 500 ml glass four-necked flask equipped with a stirrer and a thermometer, 80 g of methyl methacrylate (MMA), 20 g of hydroxyethyl methacrylate (HEMA), 1.5 g of azobisisobutyronitrile (AIBN), solvent As a starting material, 300 g of butyl acetate was added, stirred well at room temperature, and polymerized under a nitrogen stream at a temperature of 70 ° C. for 16 hours. The obtained polymer was reprecipitated in n-hexane to obtain 91 g of polymer. Its number average molecular weight was 33,000. When this polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis, it was confirmed to be a copolymer of MMA and HEMA. The composition ratio was determined by NMR as MMA: HEMA = 83: 17 (molar ratio).
 得られたポリマーを10g計量し、あらかじめモレキュラーシーブス4Aで脱水したメチルイソブチルケトン(MIBK)40gに溶解させ、攪拌装置、温度計を備えた100mlのガラス製四ツ口フラスコに仕込んだ。滴下ロートより、アリルイソシアネートを0.74g、室温で滴下し、十分に攪拌して均一化させた。その後、オイルバスにつけ、内温を80±5℃に保ち5時間攪拌した。反応溶液のIRを測定することで、原料のアリルイソシアネートが系内に無いことを確認した。その後、反応溶液をロータリーエバポレーターで濃縮後、キャスト法により溶媒を除去後、析出した固体を少量のアセトンに再度溶解させた。この溶液を十分に多量のn-ヘキサン中に再沈させることによりポリマーの精製を行った。この精製操作を合計3回繰り返し、得られたポリマーを19F-NMR、1H-NMR分析、IR分析により分析したところ、
Figure JPOXMLDOC01-appb-C000024
(m:n:o=10:6:84)のポリマーであった。
10 g of the obtained polymer was weighed and dissolved in 40 g of methyl isobutyl ketone (MIBK) previously dehydrated with molecular sieves 4A, and charged into a 100 ml glass four-necked flask equipped with a stirrer and a thermometer. From the dropping funnel, 0.74 g of allyl isocyanate was added dropwise at room temperature, and the mixture was sufficiently stirred to homogenize. Thereafter, it was placed in an oil bath, and the internal temperature was kept at 80 ± 5 ° C. and stirred for 5 hours. By measuring the IR of the reaction solution, it was confirmed that the raw material allyl isocyanate was not present in the system. Thereafter, the reaction solution was concentrated with a rotary evaporator, the solvent was removed by a casting method, and the precipitated solid was dissolved again in a small amount of acetone. The polymer was purified by reprecipitation of this solution in a sufficiently large amount of n-hexane. This purification operation was repeated a total of three times, and the obtained polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis.
Figure JPOXMLDOC01-appb-C000024
The polymer was (m: n: o = 10: 6: 84).
実施例1
 合成例2で得られたポリマー10gと非ケイ素反応性溶剤としてトリアリルイソシアヌレート(TAIC)10gとシロキサン系反応性溶剤として3-(ジメチルシリルオキシ)-1,1,5,5-テトラメチル-3-フェニルトリシロキサン:
Figure JPOXMLDOC01-appb-C000025
14.5g(ヒドロシリル化反応の理論当量)を加えて、40℃の恒温槽に入れた。12時間後に取り出すと均一で透明な粘稠な組成物となった。この組成物に白金触媒としてAZMAX社製の白金-シクロビニルメチルシロキサン錯体(製品番号SIP6832.2)を5μL加えて無溶剤型の硬化性組成物とした。
Example 1
10 g of the polymer obtained in Synthesis Example 2, 10 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl- as a siloxane reactive solvent 3-phenyltrisiloxane:
Figure JPOXMLDOC01-appb-C000025
14.5 g (theoretical equivalent of hydrosilylation reaction) was added and placed in a constant temperature bath at 40 ° C. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 μL of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
 硬化前の組成物の25℃における液状組成物の外観を目視で評価した。結果を表1に示す。評価基準は以下のとおりである。
  ○:透明でかつ均一であり、550nmの光の透過率が80%以上である。
  △:一部に白濁(ゲル状物)が認められる。
  ×:不透明、白濁。
The appearance of the liquid composition at 25 ° C. of the composition before curing was visually evaluated. The results are shown in Table 1. The evaluation criteria are as follows.
○: Transparent and uniform, and the transmittance of light at 550 nm is 80% or more.
Δ: Partly cloudy (gel-like material) is observed.
X: Opaque and cloudy.
 また、硬化前の組成物の25℃における液状組成物の粘度、液状組成物の外観の評価結果を表1に示す。 Table 1 shows the evaluation results of the viscosity of the liquid composition at 25 ° C. and the appearance of the liquid composition before curing.
 ついで、ガラス板上に離型用のフッ素樹脂フィルムであるダイキン工業(株)製NF-0100(厚さ100μm)を敷き、アプリケーターを用いて膜厚が約100μmとなるように塗布し、さらに、離型用のフッ素樹脂フィルムであるダイキン工業(株)製NF-0100(厚さ100μm)を上部よりかぶせて、さらに厚さ1mmのスライドガラスをのせた後に、100℃で2時間、引き続いて150℃で1時間硬化させた。硬化後、離型用のフッ素樹脂フィルムを剥がして、硬化フィルムとした。 Next, NF-0100 (thickness: 100 μm) made by Daikin Industries, Ltd., which is a fluororesin film for release, is spread on the glass plate, and applied using an applicator so that the film thickness becomes about 100 μm. A NF-0100 (thickness: 100 μm) made by Daikin Industries, Ltd., which is a fluororesin film for mold release, was placed on the top, and a slide glass with a thickness of 1 mm was placed thereon, followed by 150 hours at 100 ° C. for 2 hours. Cured for 1 hour at ° C. After curing, the release fluororesin film was peeled off to obtain a cured film.
 サンプルフィルム(硬化後)のフッ素含有量、屈折率(n)、熱分解温度(Td)、光透過率可視(550nm)(T)を測定した。 The fluorine content, refractive index (n), thermal decomposition temperature (Td), and light transmittance visible (550 nm) (T) of the sample film (after curing) were measured.
 また、外観を目視で評価した。評価基準は以下のとおりである。
  ○:透明でかつ均一である。
  △:一部に白濁(にごり)が認められる。
  ×:不透明、白濁。
Moreover, the external appearance was evaluated visually. The evaluation criteria are as follows.
○: Transparent and uniform.
Δ: Some cloudiness is observed.
X: Opaque and cloudy.
 また、耐溶剤性の評価を行った。評価基準は以下のとおりである。
  ○:目視で膨潤が見られない。
  △:目視で膨潤が見られる。
  ×:溶解する。
Moreover, the solvent resistance was evaluated. The evaluation criteria are as follows.
○: No swelling is visually observed.
Δ: Swelling is visually observed.
X: Dissolve.
 さらに、耐熱性の評価を行った。評価基準は以下のとおりである。
  ○:目視で変化が見られない。
  △:目視でわずかな変色、濁りがみられる。
  ×:目視で明らかな変色、白濁、変形等が見られる。
Furthermore, heat resistance was evaluated. The evaluation criteria are as follows.
○: No change is visually observed.
Δ: Slight discoloration and turbidity are observed visually.
X: Discoloration, white turbidity, deformation, etc. that are clearly visible are observed.
 以上の結果を表1に示す。 The results are shown in Table 1.
実施例2
 合成例3で得られたポリマー10gと非ケイ素反応性溶剤としてトリアリルイソシアヌレート(TAIC)10gとシロキサン系反応性溶剤として3-(ジメチルシリルオキシ)-1,1,5,5-テトラメチル-3-フェニルトリシロキサン: 
Figure JPOXMLDOC01-appb-C000026
13g、さらに、ヒドロシリル化架橋剤として1,3,5,7-テトラメチル-シクロ-テトラシロキサン:
Figure JPOXMLDOC01-appb-C000027
3.1gを50℃の恒温槽に入れた。12時間後に取り出すと均一で透明な粘稠な組成物となった。この組成物に白金触媒としてAZMAX社製の白金-シクロビニルメチルシロキサン錯体(製品番号SIP6832.2)を5μL加えて無溶剤型の硬化性組成物とした。
Example 2
10 g of the polymer obtained in Synthesis Example 3, 10 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl- as a siloxane reactive solvent 3-phenyltrisiloxane:
Figure JPOXMLDOC01-appb-C000026
13 g and 1,3,5,7-tetramethyl-cyclo-tetrasiloxane as hydrosilylation crosslinker:
Figure JPOXMLDOC01-appb-C000027
3.1 g was put into a 50 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 μL of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
 この硬化性組成物を実施例1と同様に硬化させ、各種物性を測定した。結果を表1に示す。 This curable composition was cured in the same manner as in Example 1, and various physical properties were measured. The results are shown in Table 1.
実施例3
 合成例4で得られたポリマー10gと非ケイ素反応性溶剤としてトリアリルイソシアヌレート(TAIC)3gとシロキサン系反応性溶剤として3-(ジメチルシリルオキシ)-1,1,5,5-テトラメチル-3-フェニルトリシロキサン: 
Figure JPOXMLDOC01-appb-C000028
5.2gを40℃の恒温槽に入れた。12時間後に取り出すと均一で透明な粘稠な組成物となった。この組成物に白金触媒としてAZMAX社製の白金-シクロビニルメチルシロキサン錯体(製品番号SIP6832.2)を5μL加えて無溶剤型の硬化性組成物とした。
Example 3
10 g of the polymer obtained in Synthesis Example 4, 3 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl- as a siloxane reactive solvent 3-phenyltrisiloxane:
Figure JPOXMLDOC01-appb-C000028
5.2g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 μL of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
 この硬化性組成物を実施例1と同様に硬化させ、各種物性を測定した。結果を表1に示す。 This curable composition was cured in the same manner as in Example 1, and various physical properties were measured. The results are shown in Table 1.
実施例4
 合成例5で得られたポリマー10gと非ケイ素反応性溶剤としてトリアリルイソシアヌレート(TAIC)3g、シロキサン系反応性溶剤として3-(ジメチルシリルオキシ)-1,1,5,5-テトラメチル-3-フェニルトリシロキサン:
Figure JPOXMLDOC01-appb-C000029
4.5gを40℃の恒温槽に入れた。12時間後に取り出すと均一で透明な粘稠な組成物となった。この組成物に白金触媒としてAZMAX社製の白金-シクロビニルメチルシロキサン錯体(製品番号SIP6832.2)を5μL加えて無溶剤型の硬化性組成物とした。
Example 4
10 g of the polymer obtained in Synthesis Example 5, 3 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl- as a siloxane reactive solvent 3-phenyltrisiloxane:
Figure JPOXMLDOC01-appb-C000029
4.5g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 μL of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
この硬化性組成物を実施例1と同様に硬化させ、各種物性を測定した。結果を表1に示す。 This curable composition was cured in the same manner as in Example 1, and various physical properties were measured. The results are shown in Table 1.
実施例5
 合成例1で得られたポリマー10gとシロキサン系反応性溶剤としてテトラキス(ジメチルシリルオキシ)シラン:
Figure JPOXMLDOC01-appb-C000030
0.5gを40℃の恒温槽に入れた。12時間後に取り出すと均一で透明な粘稠な組成物となった。この組成物に白金触媒としてAZMAX社製の白金-シクロビニルメチルシロキサン錯体(製品番号SIP6832.2)を5μL加えて無溶剤型の硬化性組成物とした。
Example 5
10 g of the polymer obtained in Synthesis Example 1 and tetrakis (dimethylsilyloxy) silane as a siloxane-based reactive solvent:
Figure JPOXMLDOC01-appb-C000030
0.5g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 μL of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
 この硬化性組成物を実施例1と同様に硬化させ、各種物性を測定した。結果を表1に示す。 This curable composition was cured in the same manner as in Example 1, and various physical properties were measured. The results are shown in Table 1.
実施例6
 合成例1で得られたポリマー10gと、シロキサン系反応性溶剤として3-(ジメチルシリルオキシ)-1,1,5,5-テトラメチル-3-フェニルトリシロキサン1.0g、1,1,3,3-テトラメチルジシロキサン0.2g、ヒドロシリル化架橋剤として1,3,5,7-テトラメチル-シクロ-テトラシロキサン:
Figure JPOXMLDOC01-appb-C000031
3.1gを40℃の恒温槽に入れた。12時間後に取り出すと均一で透明な粘稠な組成物となった。この組成物に白金触媒としてAZMAX社製の白金-シクロビニルメチルシロキサン錯体(製品番号SIP6832.2)を5μL加えて無溶剤型の硬化性組成物とした。
Example 6
10 g of the polymer obtained in Synthesis Example 1 and 1.0 g, 1,1,3 of 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl-3-phenyltrisiloxane as a siloxane-based reactive solvent , 3-tetramethyldisiloxane 0.2 g, 1,3,5,7-tetramethyl-cyclo-tetrasiloxane as hydrosilylation crosslinking agent:
Figure JPOXMLDOC01-appb-C000031
3.1 g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 μL of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
 この硬化性組成物を実施例1と同様に硬化させ、各種物性を測定した。結果を表1に示す。 This curable composition was cured in the same manner as in Example 1, and various physical properties were measured. The results are shown in Table 1.
実施例7
 合成例5で得られたポリマー10gと非ケイ素系反応性溶剤としてトリアリルイソシアヌレート(TAIC)3g、ヒドロシリル化架橋剤として1,3,5,7-テトラメチル-シクロ-テトラシロキサン:
Figure JPOXMLDOC01-appb-C000032
4.5gを40℃の恒温槽に入れた。12時間後に取り出すと均一で透明な粘稠な組成物となった。この組成物に白金触媒としてAZMAX社製の白金-シクロビニルメチルシロキサン錯体(製品番号SIP6832.2)を5μL加えて無溶剤型の硬化性組成物とした。
Example 7
10 g of the polymer obtained in Synthesis Example 5, 3 g of triallyl isocyanurate (TAIC) as a non-silicon reactive solvent, and 1,3,5,7-tetramethyl-cyclo-tetrasiloxane as a hydrosilylation crosslinking agent:
Figure JPOXMLDOC01-appb-C000032
4.5g was put into a 40 degreeC thermostat. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 μL of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-free curable composition.
 この硬化性組成物を実施例1と同様に硬化させ、各種物性を測定した。結果を表1に示す。 This curable composition was cured in the same manner as in Example 1, and various physical properties were measured. The results are shown in Table 1.
実施例8
 実施例7においてヒドロシリル化架橋剤として、Gelest社製のHPM-502:
Figure JPOXMLDOC01-appb-C000033
を用いた以外は実施例7と同様に硬化性組成物を作製して各種物性を測定した。結果を表1に示す。
Example 8
As a hydrosilylation crosslinker in Example 7, HPM-502 from Gelest:
Figure JPOXMLDOC01-appb-C000033
A curable composition was prepared and various physical properties were measured in the same manner as in Example 7 except that was used. The results are shown in Table 1.
比較例1
 合成例4で得られたポリマー5g、メチルメタクリレート1gおよび1H,1H,5H-オクタフルオロペンチルアクリレート(CH2=CHCOOCH248H)4gをトリメチロールプロパントリアクリレート(TMPA)1gに溶解させ、均一な組成物を得た。UV開始剤として2-ヒドロキシ-2-メチルプロピオフェノンを0.1g加え、硬化性組成物とした。ついで、ガラス板上に離型用のフッ素樹脂フィルムであるダイキン工業(株)製NF-0100(厚さ100μm)を敷き、アプリケーターを用いて膜厚が約100μmとなるように塗布し、さらに、離型用のフッ素樹脂フィルムであるダイキン工業(株)製NF-0100(厚さ100μm)を上部よりかぶせて、さらに厚み1mmのスライドガラスをのせた後に、高圧水銀灯を用い、上部より、1500mJ/cm2Uの強度で紫外線を照射したのち、離型用のフッ素樹脂フィルムを剥がして、硬化フィルムとした。
Comparative Example 1
5 g of the polymer obtained in Synthesis Example 4, 1 g of methyl methacrylate and 4 g of 1H, 1H, 5H-octafluoropentyl acrylate (CH 2 ═CHCOOCH 2 C 4 F 8 H) are dissolved in 1 g of trimethylolpropane triacrylate (TMPA). A uniform composition was obtained. 0.1 g of 2-hydroxy-2-methylpropiophenone was added as a UV initiator to obtain a curable composition. Next, NF-0100 (thickness: 100 μm) made by Daikin Industries, Ltd., which is a fluororesin film for release, is spread on the glass plate, and applied using an applicator so that the film thickness becomes about 100 μm. Cover with NF-0100 (thickness 100 μm) made by Daikin Industries, Ltd., which is a fluororesin film for mold release, and then place a slide glass with a thickness of 1 mm, and then use a high-pressure mercury lamp from the top to 1500 mJ / After irradiating ultraviolet rays with the intensity of cm 2 U, the fluororesin film for release was peeled off to obtain a cured film.
 実施例1と同様に各種物性を測定した。結果を表1に示す。表1から明らかなように、明確に耐熱性が劣っていた。 Various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1. As is clear from Table 1, the heat resistance was clearly inferior.
比較例2
 比較合成例1で得られたポリマー2.5gにシロキサン系反応性溶媒として3-(ジメチルシリルオキシ)-1,1,5,5-テトラメチル-3-フェニルトリシロキサン:
Figure JPOXMLDOC01-appb-C000034
を0.5g加えて、40℃の恒温槽に入れた。24時間後に取り出しても、不均一で白濁した組成物となった。さらに温度を70℃まであげたが、不均一な状態は変わらなかった。
Comparative Example 2
To 2.5 g of the polymer obtained in Comparative Synthesis Example 1, 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl-3-phenyltrisiloxane as a siloxane-based reactive solvent:
Figure JPOXMLDOC01-appb-C000034
Was added to a constant temperature bath at 40 ° C. Even when taken out after 24 hours, a non-uniform and cloudy composition was obtained. Further, the temperature was raised to 70 ° C., but the non-uniform state did not change.
比較例3
 比較合成例2で得られたポリマー2.0gにシロキサン系反応性溶媒として3-(ジメチルシリルオキシ)-1,1,5,5-テトラメチル-3-フェニルトリシロキサン:
Figure JPOXMLDOC01-appb-C000035
を0.21g、非ケイ素系反応性溶剤としてメチルイソブチルケトン(MIBK)を2.5g加え、40℃の恒温槽に入れた。12時間後に取り出すと均一で透明な粘稠な組成物となった。この組成物に白金触媒としてAZMAX社製の白金-シクロビニルメチルシロキサン錯体(製品番号SIP6832.2)を5μL加えて溶剤型の硬化性組成物とした。
Comparative Example 3
To 2.0 g of the polymer obtained in Comparative Synthesis Example 2, 3- (dimethylsilyloxy) -1,1,5,5-tetramethyl-3-phenyltrisiloxane as a siloxane-based reactive solvent:
Figure JPOXMLDOC01-appb-C000035
0.21 g and 2.5 g of methyl isobutyl ketone (MIBK) as a non-silicon reactive solvent were added and placed in a constant temperature bath at 40 ° C. When taken out after 12 hours, it became a uniform, transparent and viscous composition. To this composition, 5 μL of a platinum-cyclovinylmethylsiloxane complex (product number SIP6832.2) manufactured by AZMAX was added as a platinum catalyst to obtain a solvent-type curable composition.
 溶剤の揮発後に厚さが約100μmになるように塗布後、100℃で20分間乾燥させた以外は実施例1と同様に硬化物を作製し、各種物性を測定した。結果を表1に示す。表1から明らかなように、明確に耐熱性が劣っていた。 A cured product was prepared in the same manner as in Example 1 except that after the solvent was volatilized and coated so that the thickness became about 100 μm and dried at 100 ° C. for 20 minutes, various physical properties were measured. The results are shown in Table 1. As is clear from Table 1, the heat resistance was clearly inferior.
比較例4
 実施例1において、作製した硬化性組成物に酢酸ブチルを同量(重量)添加し、溶剤型の硬化性組成物とした。
Comparative Example 4
In Example 1, the same amount (weight) of butyl acetate was added to the prepared curable composition to obtain a solvent-type curable composition.
 この組成物を、実施例1と同じプロセスで硬化させると、気泡が多く発生し、均一な塗面が得られなかった。各種物性の測定結果を表1に示す。 When this composition was cured by the same process as in Example 1, many bubbles were generated and a uniform coating surface could not be obtained. Table 1 shows the measurement results of various physical properties.
比較例5
 実施例1において、白金触媒のみを添加しなかった。初期の外観等は、まったく実施例1と変わらなかったが、100℃で2時間、引き続いて150℃で1時間の条件では全く硬化しなかった。さらに200℃まで昇温したが、硬化しなかった。
Comparative Example 5
In Example 1, only the platinum catalyst was not added. The initial appearance and the like were not different from those of Example 1 but were not cured at all at 100 ° C. for 2 hours and then at 150 ° C. for 1 hour. The temperature was further raised to 200 ° C., but it was not cured.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表1から、本発明の硬化性組成物は、優れた耐熱性を備えた透明な硬化物を与えることがわかる。また、フッ素含有率をコントロールすることで屈折率の制御が可能であることから、様々な光学デバイスへの応用が可能であるということが分かる。 From Table 1, it can be seen that the curable composition of the present invention gives a transparent cured product having excellent heat resistance. Further, since the refractive index can be controlled by controlling the fluorine content, it can be seen that application to various optical devices is possible.

Claims (6)

  1. (A)式(1):
     -(M)-(A1)-(N)-
    (式中、Mはフルオロオレフィンに由来する構造単位;
    A1は式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1およびX2は、同じかまたは異なり、フッ素原子または水素原子;X3はフッ素原子、水素原子、塩素原子、メチル基、トリフルオロメチル基;R1は末端に炭素-炭素二重結合を少なくとも1個含有する炭素数2~29の鎖状または分岐鎖状のアルキル基、フルオロアルキル基、パーフルオロアルキル基であって、鎖中にエーテル結合、エステル結合、ウレタン結合を含んでいてもよい)で表される構造単位;Nは構造単位MおよびA1を与える単量体と共重合可能な単量体由来の構造単位)で表わされ、かつ、構造単位Mを1~80モル%、構造単位A1を20~80モル%および構造単位Nを0~79モル%含む含フッ素重合体、
    (B)ヒドロシリル化触媒、および
    (C)該含フッ素重合体(A)を溶解または分散可能でかつ水素原子がケイ素原子に直接結合した基を2個以上有する液状のシロキサン系反応性溶剤
    をヒドロシリル化架橋反応に関与しない溶剤(F)の不存在下に含む硬化性樹脂組成物。
    (A) Formula (1):
    -(M)-(A1)-(N)-
    Wherein M is a structural unit derived from a fluoroolefin;
    A1 is the formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X 1 and X 2 are the same or different and are a fluorine atom or a hydrogen atom; X 3 is a fluorine atom, a hydrogen atom, a chlorine atom, a methyl group, a trifluoromethyl group; R 1 is a carbon-carbon at the terminal) C2-C29 chain or branched alkyl group, fluoroalkyl group, perfluoroalkyl group containing at least one double bond, including ether bond, ester bond, urethane bond in the chain N is a structural unit derived from a monomer copolymerizable with the monomer giving structural units M and A1), and the structural unit M is 1 to A fluorine-containing polymer comprising 80 mol%, 20 to 80 mol% of structural unit A1 and 0 to 79 mol% of structural unit N;
    (B) a hydrosilylation catalyst, and (C) a liquid siloxane-based reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and having two or more groups in which hydrogen atoms are directly bonded to silicon atoms. A curable resin composition contained in the absence of a solvent (F) that does not participate in the chemical crosslinking reaction.
  2. (A)式(1):
     -(M)-(A1)-(N)-
    (式中、Mはフルオロオレフィンに由来する構造単位;
    A1は式(I):
    Figure JPOXMLDOC01-appb-C000002
    (式中、X1およびX2は、同じかまたは異なり、フッ素原子または水素原子;X3はフッ素原子、水素原子、塩素原子、メチル基、トリフルオロメチル基;R1は末端に炭素-炭素二重結合を少なくとも1個含有する炭素数2~29の鎖状または分岐鎖状のアルキル基、フルオロアルキル基、パーフルオロアルキル基であって、鎖中にエーテル結合、エステル結合、ウレタン結合を含んでいてもよい)で表される構造単位;Nは構造単位MおよびA1を与える単量体と共重合可能な単量体由来の構造単位)で表わされ、かつ、構造単位Mを1~80モル%、構造単位A1を20~80モル%および構造単位Nを0~79モル%含む含フッ素重合体、
    (B)ヒドロシリル化触媒、
    (D)該含フッ素重合体(A)を溶解または分散可能でかつヒドロシリル化架橋反応に関与する非ケイ素反応性溶剤、および
    (E)ヒドロシリル化架橋剤
    をヒドロシリル化架橋反応に関与しない溶剤(F)の不存在下に含む硬化性樹脂組成物。
    (A) Formula (1):
    -(M)-(A1)-(N)-
    Wherein M is a structural unit derived from a fluoroolefin;
    A1 is the formula (I):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein X 1 and X 2 are the same or different and are a fluorine atom or a hydrogen atom; X 3 is a fluorine atom, a hydrogen atom, a chlorine atom, a methyl group, a trifluoromethyl group; R 1 is a carbon-carbon at the terminal) C2-C29 chain or branched alkyl group, fluoroalkyl group, perfluoroalkyl group containing at least one double bond, including ether bond, ester bond, urethane bond in the chain N is a structural unit derived from a monomer copolymerizable with the monomer giving structural units M and A1), and the structural unit M is 1 to A fluorine-containing polymer comprising 80 mol%, 20 to 80 mol% of structural unit A1 and 0 to 79 mol% of structural unit N;
    (B) a hydrosilylation catalyst,
    (D) a non-silicon reactive solvent capable of dissolving or dispersing the fluoropolymer (A) and participating in the hydrosilylation crosslinking reaction; and (E) a solvent not participating in the hydrosilylation crosslinking reaction (F) ) In the absence of curable resin composition.
  3. 式(I)において、構造単位A1が式(Ia):
    Figure JPOXMLDOC01-appb-C000003
    (式中、X1~X3は式(I)と同じ;Yは炭素数1~27の鎖状または分岐鎖状のアルキレン基、フルオロアルキレン基、パーフルオロアルキレン基であって、鎖中にエーテル結合、エステル結合、ウレタン結合、エチレン性炭素-炭素二重結合を含んでいてもよい;ZはHまたはCH3)で表わされる構造単位である請求項1または2記載の硬化性樹脂組成物。
    In formula (I), structural unit A1 is represented by formula (Ia):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein X 1 to X 3 are the same as those in formula (I); Y is a linear or branched alkylene group, a fluoroalkylene group or a perfluoroalkylene group having 1 to 27 carbon atoms, The curable resin composition according to claim 1 or 2, which may contain an ether bond, an ester bond, a urethane bond, or an ethylenic carbon-carbon double bond; Z is a structural unit represented by H or CH 3 ). .
  4. 硬化性樹脂組成物の30℃における粘度が1~20000mPa・sである請求項1~3のいずれかに記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, wherein the curable resin composition has a viscosity of 1 to 20000 mPa · s at 30 ° C.
  5. LEDの封止剤に用いる請求項1~4のいずれかに記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, which is used as an LED sealant.
  6. 請求項1~5のいずれかに記載の硬化性樹脂組成物を硬化して得られる硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 1 to 5.
PCT/JP2010/068330 2009-11-24 2010-10-19 Curable resin composition WO2011065154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543172A JP5418602B2 (en) 2009-11-24 2010-10-19 Curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009266363 2009-11-24
JP2009-266363 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011065154A1 true WO2011065154A1 (en) 2011-06-03

Family

ID=44066259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068330 WO2011065154A1 (en) 2009-11-24 2010-10-19 Curable resin composition

Country Status (2)

Country Link
JP (1) JP5418602B2 (en)
WO (1) WO2011065154A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084150A (en) * 2002-08-13 2010-04-15 Daikin Ind Ltd Optical material comprising photocurable fluorine-containing polymer, and photocurable fluorine-containing resin composition
WO2012133557A1 (en) * 2011-03-30 2012-10-04 ダイキン工業株式会社 Fluorine-containing resin composition for optical element sealing, and cured product
WO2016104377A1 (en) * 2014-12-25 2016-06-30 旭硝子株式会社 Curable resin composition
CN110494500A (en) * 2017-04-14 2019-11-22 三键有限公司 Hardening resin composition, fuel cell and encapsulating method using the hardening resin composition
WO2021132104A1 (en) * 2019-12-27 2021-07-01 Agc株式会社 Fluorinated polymer, curable composition, and cured article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044765A1 (en) * 2006-10-12 2008-04-17 Daikin Industries, Ltd. Curable fluorine-containing polymer composition
WO2008153002A1 (en) * 2007-06-15 2008-12-18 Dow Corning Toray Co., Ltd. Curable fluorine-containing polymer composition
JP2009203475A (en) * 2008-02-28 2009-09-10 Mitsubishi Chemicals Corp Sealing resin and method of producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044765A1 (en) * 2006-10-12 2008-04-17 Daikin Industries, Ltd. Curable fluorine-containing polymer composition
WO2008153002A1 (en) * 2007-06-15 2008-12-18 Dow Corning Toray Co., Ltd. Curable fluorine-containing polymer composition
JP2009203475A (en) * 2008-02-28 2009-09-10 Mitsubishi Chemicals Corp Sealing resin and method of producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084150A (en) * 2002-08-13 2010-04-15 Daikin Ind Ltd Optical material comprising photocurable fluorine-containing polymer, and photocurable fluorine-containing resin composition
WO2012133557A1 (en) * 2011-03-30 2012-10-04 ダイキン工業株式会社 Fluorine-containing resin composition for optical element sealing, and cured product
JP2012214754A (en) * 2011-03-30 2012-11-08 Daikin Industries Ltd Fluorine-containing resin composition for optical element sealing, and cured product
WO2016104377A1 (en) * 2014-12-25 2016-06-30 旭硝子株式会社 Curable resin composition
JPWO2016104377A1 (en) * 2014-12-25 2017-10-05 旭硝子株式会社 Curable resin composition
US10457815B2 (en) 2014-12-25 2019-10-29 AGC Inc. Curable resin composition
CN110494500A (en) * 2017-04-14 2019-11-22 三键有限公司 Hardening resin composition, fuel cell and encapsulating method using the hardening resin composition
JPWO2018190417A1 (en) * 2017-04-14 2020-05-21 株式会社スリーボンド Curable resin composition, fuel cell using the same, and sealing method
EP3611227A4 (en) * 2017-04-14 2021-01-06 ThreeBond Co., Ltd. Curable resin composition, fuel cell using same, and sealing method
US11114679B2 (en) 2017-04-14 2021-09-07 Threebond Co., Ltd. Curable resin composition, and fuel cell and sealing method using the same
CN110494500B (en) * 2017-04-14 2022-02-08 三键有限公司 Curable resin composition, fuel cell using the same, and sealing method
JP7125651B2 (en) 2017-04-14 2022-08-25 株式会社スリーボンド Curable resin composition, fuel cell using the same, and sealing method
WO2021132104A1 (en) * 2019-12-27 2021-07-01 Agc株式会社 Fluorinated polymer, curable composition, and cured article

Also Published As

Publication number Publication date
JP5418602B2 (en) 2014-02-19
JPWO2011065154A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5556015B2 (en) Curable resin composition and method for producing the same
TWI651550B (en) A transparent optical device element
JP5223978B2 (en) Fluorine-containing resin composition for optical element sealing, and cured product
JP5418602B2 (en) Curable resin composition
JP5772891B2 (en) Fluoropolymer and production method thereof
JP5556016B2 (en) Curable resin composition and method for producing the same
JP5494671B2 (en) Curable resin composition
JP4106723B2 (en) Coating composition for antireflection filter
JP5392426B2 (en) Fluoropolymer and production method thereof
JP5440690B2 (en) Curable resin composition, cured product and fluoropolymer
JP2009109579A (en) Heat-resistant composite lens
JP3940086B2 (en) Fluorine-substituted alicyclic group-containing (meth) acrylic acid ester and cured product thereof
KR102004485B1 (en) Curable coating composition and optical material using the same
JP7091683B2 (en) Organopolysiloxane
KR101698849B1 (en) Polysiloxane oligomers, polysiloxane copolymers and the preparation method thereof
TW202402849A (en) Multifunctional (meth)acrylic acid thioester composition, curable composition, cured product, molded product, optical material, and method for producing multifunctional (meth)acrylic acid thioester composition
KR20200096143A (en) Ultraviolet-curable liquid organopolysiloxane composition for image display device, adhesive for image display device comprising said composition, image display device using said adhesive, and method for adhesion using said adhesive
JP2012214752A (en) Curable resin composition, and cured product
JP2011195626A (en) Solvent-free transparent curable fluororesin composition
KR20160137929A (en) Polysiloxane oligomers, polysiloxane copolymers and the preparation method thereof
KR20100062067A (en) Heat-resistant complex type lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543172

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833001

Country of ref document: EP

Kind code of ref document: A1