WO2011065142A1 - Reception device and gain control method - Google Patents

Reception device and gain control method Download PDF

Info

Publication number
WO2011065142A1
WO2011065142A1 PCT/JP2010/068056 JP2010068056W WO2011065142A1 WO 2011065142 A1 WO2011065142 A1 WO 2011065142A1 JP 2010068056 W JP2010068056 W JP 2010068056W WO 2011065142 A1 WO2011065142 A1 WO 2011065142A1
Authority
WO
WIPO (PCT)
Prior art keywords
received signal
converter
gain
signal
gain amplifier
Prior art date
Application number
PCT/JP2010/068056
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 大島
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011543165A priority Critical patent/JP5360227B2/en
Publication of WO2011065142A1 publication Critical patent/WO2011065142A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages

Definitions

  • the present invention relates to a receiving device including an A / D converter and a gain control method applicable to the receiving device.
  • a mixer that converts a radio signal (high-frequency signal) into a B-band signal (analog signal) and a baseband signal output from the mixer
  • An A / D (Analog to Digital) converter that converts a digital signal into a digital signal and a demodulator that demodulates a baseband signal converted into a digital signal and extracts information transmitted as a radio signal are required.
  • the amplitude range of a signal that can be converted by the A / D converter is set at the time of designing the A / D converter and cannot be changed.
  • variable gain amplifier is provided in front of the A / D converter, and the gain is adjusted so that the maximum amplitude of the baseband signal matches the maximum allowable input of the A / D converter.
  • the resolution of the A / D converter is used efficiently.
  • the maximum amplitude of the input signal of the A / D converter is the A / D converter. If the gain of the variable gain amplifier is adjusted to be equal to the maximum allowable input of the D converter, only a part of the resolution of the A / D converter is used for conversion of most input signals having a small signal amplitude. As a result, the demodulation accuracy of the received signal is reduced.
  • FIG. 1 is a waveform diagram showing a waveform example of an OFDM signal.
  • the maximum amplitude value of the OFDM signal is indicated by Vmax.
  • the maximum amplitude Vmax hardly appears in the OFDM signal, and the amplitude of many signals is Ve or less. Therefore, when an OFDM signal as shown in FIG. 1 is converted into a digital signal by an A / D converter whose Vmax matches the maximum allowable input, the resolution for converting the signals Ve to Vmax is almost wasted.
  • Patent Document 1 describes that the maximum amplitude ratio r of an input signal with respect to the maximum allowable input of the A / D converter is controlled according to the resolution (number of bits) of the A / D converter, and r is 1 or more, That is, it describes that the maximum amplitude of the input signal to the A / D converter is set to a value larger than the maximum allowable input of the A / D converter.
  • Patent Document 2 describes a technique for determining the gain of a variable gain amplifier according to the magnitude of noise included in a received signal.
  • Patent Document 3 discloses that the S / N of the signal output from the variable gain amplifier in order to suppress the deterioration of the BER characteristic during the strong electric field fading.
  • a technique for determining the gain of a variable gain amplifier according to the (signal to noise) ratio is described.
  • Patent Document 1 described above limits the received signal to an OFDM signal, and does not show any processing for other types of signals whose signal amplitude greatly changes, such as a QAM (Quadrature Amplitude Modulation) signal.
  • a QAM Quadrature Amplitude Modulation
  • the gain of the variable gain amplifier should not be determined only by the resolution of the A / D converter. In addition, it should be determined in consideration of the magnitude of noise included in the received signal.
  • Patent Document 1 shows that when the received signal is limited to an OFDM signal, the gain of the variable gain amplifier can be determined using the resolution of the A / D converter, and noise included in the received signal is taken into consideration. Thus, nothing is shown about the method of setting the gain of the variable gain amplifier.
  • Patent Documents 2 and 3 describe techniques for determining the gain of the variable gain amplifier in consideration of the magnitude of noise included in the received signal as described above.
  • the receiving device described in Patent Document 2 is configured to obtain noise included in the received signal by performing Fourier transform on the received signal converted into a digital signal and analyzing the frequency spectrum, and is therefore necessary for noise detection. There is a problem that the circuit scale and processing load are large.
  • Patent Document 3 shows that the S / N ratio of a received signal is obtained from a BER (bit error rate), but the BER transmits a known data sequence determined in advance from a transmission device, for example, and receives the signal. It is necessary to calculate by comparing the data sequence demodulated by the apparatus with a known data sequence. Therefore, the transmission device and the reception device must cooperate with each other, and it is difficult to obtain the S / N ratio in real time during communication. Therefore, a technique for obtaining the noise of the received signal more simply and in real time is desired.
  • BER bit error rate
  • Japanese Patent Laid-Open No. 07-226725 Japanese Patent Laid-Open No. 2002-353813
  • Japanese Patent Laid-Open No. 10-303665 Japanese Patent Laid-Open No. 15
  • an object of the present invention is to provide a receiving apparatus and a gain control method for the same that can easily and in real time obtain noise included in a received signal, which is used for determining the gain of a variable gain amplifier.
  • a receiving apparatus of the present invention includes a variable gain amplifier whose gain can be changed in accordance with an external control signal; An A / D converter that converts a received signal composed of an analog signal output from the variable gain amplifier into a digital signal; A detector that counts the number of amplitude points at which the amplitude of the received signal exceeds a predetermined threshold in a predetermined period; Noise index information indicating the relationship between the number of amplitude points of the received signal exceeding the threshold and the S / N ratio of the received signal, which is obtained in advance corresponding to the type of the received signal, A control unit for obtaining a noise ratio substantially equal to an S / N ratio of the received signal based on a count value output from the detection unit using index information, and setting a gain of the variable gain amplifier from the noise ratio; A demodulator that demodulates the received signal converted into a digital signal by the A / D converter; Have
  • the gain control method of the present invention includes a variable gain amplifier whose gain can be changed in accordance with an external control signal, An A / D converter that converts a received signal composed of an analog signal output from the variable gain amplifier into a digital signal; A demodulator that demodulates the received signal converted into a digital signal by the A / D converter; A gain control method for controlling the gain of the variable gain amplifier in a receiver comprising: Information processing device Noise index information indicating the relationship between the number of amplitude points of the received signal exceeding a predetermined threshold and the S / N ratio of the received signal, which is obtained in advance corresponding to the type of the received signal, is stored in the memory.
  • the number of amplitude points where the amplitude of the received signal exceeds a predetermined threshold is counted in a predetermined period, Based on the count value that is the result of the counting, using the noise index information, a noise ratio that is substantially equal to the S / N ratio of the received signal is obtained, and the gain of the variable gain amplifier is set from the noise ratio. is there.
  • FIG. 1 is a waveform diagram showing a waveform example of an OFDM signal.
  • FIG. 2 is a graph showing the relationship between the number of amplitude points where the amplitude of the received signal exceeds a predetermined threshold and the S / N ratio of the received signal.
  • FIG. 3 is a block diagram illustrating a configuration example of the receiving apparatus according to the first embodiment.
  • FIG. 4 is a graph showing the relationship of the error rate to the S / N ratio of the received signal in the background art receiver.
  • FIG. 5 is a graph showing the relationship of the error rate to the S / N ratio of the received signal in the receiving apparatus according to the first embodiment.
  • FIG. 6 is a flowchart illustrating a processing procedure of the receiving apparatus according to the first embodiment.
  • FIG. 7 is a waveform diagram showing how the signal amplitude changes when the gain of the variable gain amplifier is changed during signal reception.
  • FIG. 8 is a block diagram illustrating a configuration example of the communication apparatus according to the second embodiment.
  • FIG. 9 is a circuit diagram showing an embodiment of the detection unit shown in FIG.
  • FIG. 10 is a block diagram illustrating a configuration example of the communication apparatus according to the third embodiment.
  • FIG. 11 is a block diagram illustrating a configuration example of the receiving apparatus according to the fourth embodiment.
  • FIG. 12 is a circuit diagram illustrating a configuration example of the detection unit illustrated in FIG. 11.
  • the maximum amplitude of the input signal to the A / D converter is set larger than the maximum allowable input of the A / D converter, and the A / D converter
  • the gain of the variable gain amplifier provided in the preceding stage of the D converter is set.
  • setting the maximum amplitude of the input signal to the A / D converter to be larger than the maximum allowable input of the A / D converter is referred to as “over-amplification”.
  • the noise used for determining the gain of the variable gain amplifier is obtained according to the following principle.
  • FIG. 2 is a graph showing the relationship between the number of amplitude points (count value) at which the amplitude of the received signal exceeds a predetermined threshold and the S / N ratio of the received signal.
  • the inventor of the present application has found that there is a certain relationship between the number of amplitude points of a received signal exceeding a predetermined threshold and the S / N ratio of the received signal. Therefore, in the receiving apparatus of this embodiment, the relationship between the number of amplitude points and the S / N ratio is obtained in advance by simulation or the like and stored in a memory or the like, and the S of the received signal is determined from the measured value of the number of amplitude points. / N ratio is obtained, and the gain of the variable gain amplifier is determined according to the S / N ratio. However, when the S / N ratio of the received signal is obtained from the measured value (count value) using the relationship shown in FIG. 2, the measured value includes conditions and errors that are not assumed in the simulation.
  • noise ratio a value obtained from the measured value (count value) is referred to as “noise ratio” and is distinguished from “S / N ratio”.
  • this noise ratio is substantially equal to the S / N ratio of the received signal, and even if the gain of the variable gain amplifier is determined based on the noise ratio, the BER or the like does not deteriorate greatly.
  • the gain of the variable gain amplifier is determined using this noise ratio ( ⁇ S / N ratio).
  • FIG. 2 shows the result of simulating the relationship between the number of amplitude points (count value) exceeding a predetermined threshold and the S / N ratio when the received signal is an OFDM signal.
  • the received signal is another type of signal (for example, a QAM signal)
  • a similar relationship may be obtained and stored for each type of the received signal by simulation or the like.
  • Information stored in the receiving apparatus which indicates the relationship between the number of amplitude points exceeding the predetermined threshold and the S / N ratio, is hereinafter referred to as “noise index information”.
  • FIG. 3 is a block diagram illustrating a configuration example of the receiving apparatus according to the first embodiment.
  • the receiving apparatus of the first embodiment includes a variable gain amplifier 201, a gain adjusting unit 202, a peak detecting unit 203, a control unit 204, an A / D converter 205, a detecting unit 206, and a demodulating unit. 207.
  • the variable gain amplifier 201 amplifies a reception signal (baseband signal) that is an analog signal output from a mixer (not shown) with a gain set by the gain adjustment unit 203.
  • the A / D converter 205 converts the reception signal amplified by the variable gain amplifier 201 into a digital signal.
  • the resolution of the A / D converter 205 may be fixed or variable, but in the present embodiment, the A / D converter 205 having a variable resolution is used.
  • P. Nicolas, V. Isabelle, H. Yann “A Pixel Columun Level, Ultra Low Power, 9M Sample / s Multi bit A / D Converter for Monolithic Active Pixel Sensors in High Energy physics ", MIXDES 2009, 16 th International Conference” Mixed design of Integrated Circuit and Systems ", pp. 597-602, June 25-27, may be implemented utilizing the techniques described in 2009..
  • the peak detector 203 detects the maximum amplitude value of the received signal amplified by the variable gain amplifier 201.
  • the detection unit 206 compares the received signal converted into a digital signal by the A / D converter 205 with a predetermined threshold value, counts the amplitude points of the received signal exceeding the threshold value, and outputs the count value ( Measurement value) is output to the control unit 204.
  • the control unit 204 includes the noise index information, and uses the noise index information to obtain the noise ratio from the count value output from the detection unit 206, and determines the gain of the variable gain amplifier 201 based on the noise ratio. Then, a control signal for causing the gain adjusting unit 203 to set the gain of the variable gain amplifier 201 is output.
  • the gain adjusting unit 203 sets the gain of the variable gain amplifier 202 according to the maximum amplitude value of the received signal detected by the peak detecting unit 204 or the control signal received from the control unit 204.
  • the noise ratio is detected every predetermined period, and the gain of the variable gain amplifier 201 is determined by the control unit 204 based on the noise ratio. Therefore, immediately after starting to receive a radio signal from an arbitrary communication apparatus, the control unit 204 cannot determine the gain of the variable gain amplifier 201 based on the noise ratio because the noise ratio of the received signal cannot be detected. Therefore, the control unit 204 matches the maximum amplitude value detected by the peak detection unit 203 with the maximum allowable input of the A / D converter 205 in the first period immediately after the start of reception of a radio signal from another communication device. Thus, the gain adjustment unit 203 is caused to set the gain of the variable gain amplifier 201.
  • the demodulator 207 demodulates the reception signal converted into a digital signal by the A / D converter 205, and extracts reception information such as user data included in the reception signal.
  • the control unit 204, the detection unit 206, and the demodulation unit 207 of the present embodiment include, for example, a CPU, a DSP, a memory, an A / D converter, a D / A converter, and various logic circuits that execute predetermined signal processing according to a program. It can be realized by an information processing apparatus including the above.
  • the variable gain amplifier 201, the gain adjustment unit 202, and the peak detection unit 203 of the present embodiment may be realized by a known analog circuit.
  • the receiving apparatus generally includes a low-pass filter or the like for removing aliasing before the A / D converter 205.
  • the element for removing aliasing has no relation to the feature of the present invention, and is omitted here.
  • FIG. 4 shows the relationship of the error rate (BER) to the S / N ratio of the received signal when the maximum amplitude value of the received signal is matched with the maximum allowable input of the A / D converter 205, that is, in the background art receiving apparatus.
  • FIG. 5 shows the relationship of the error rate (BER) with respect to the S / N ratio of the received signal in the received signal of the first embodiment. 4 and 5 respectively show the BER when the resolution of the A / D converter is changed to 2, 3, 4, and 8 bits.
  • the BER reduction effect in the receiving apparatus employing the method shown in this embodiment is greatest when the resolution of the A / D converter is 2 bits. That is, the method shown in this embodiment is suitable when a low-resolution A / D converter is used. However, even if the resolution of the A / D converter is high, the BER can be improved by applying the method shown in this embodiment.
  • the resolution of the A / D converter 205 is lowered when the noise ratio of the received signal is small.
  • a low-resolution A / D converter requires less power. Therefore, if the resolution of the A / D converter 205 is lowered when the noise ratio of the received signal is small, the power consumption of the entire receiving apparatus including the A / D converter 205 can be reduced.
  • FIG. 6 is a flowchart illustrating a processing procedure of the receiving apparatus according to the first embodiment. 6 shows only the processing procedure of the control unit 205 shown in FIG.
  • the control unit 204 when reception of a radio signal is started from an arbitrary communication device, the control unit 204 first determines the maximum amplitude value of the received signal detected by the peak detection unit 203 and the maximum allowable value of the A / D converter 205.
  • the gain adjustment unit 202 is caused to set the gain of the variable gain amplifier 201 so as to match the input (step S1). At this time, even if the resolution of the A / D converter 205 is variable, the control unit 204 causes the A / D converter 205 to perform A / D conversion with the maximum resolution (maximum bit).
  • the variable gain amplifier 201 whose gain has been set by the gain adjusting unit 202 amplifies the input received signal (baseband signal) with the gain and outputs it to the A / D converter 205.
  • the A / D converter 205 converts the received signal, which is an analog signal, into a digital signal and outputs the digital signal to the demodulation unit 207 and the detection unit 206.
  • the detection unit 206 counts the number of amplitude points of the received signal exceeding a predetermined threshold for each preset period, and outputs the count value to the control unit 204.
  • the control unit 204 outputs from the detection unit 206 using the noise index information indicating the relationship (see FIG. 2) between the S / N ratio and the number of received signal amplitude points (count value) exceeding a predetermined threshold. Based on the counted value, the noise ratio of the received signal is obtained (step S2).
  • the control unit 204 compares the obtained noise ratio with a preset noise reference value, and determines whether or not the noise ratio is larger than the noise reference value (step S3). When the obtained noise ratio is larger than the noise reference value, the control unit 204 determines only the gain of the variable gain amplifier 201 and sets the gain of the variable gain amplifier 201 via the gain adjustment unit 202 (step S4). If the obtained noise ratio is equal to or less than the noise reference value, the control unit 204 reduces the resolution of the A / D converter 205, determines the gain of the variable gain amplifier 201 based on the noise ratio, and adjusts the gain. The gain of the variable gain amplifier 201 is set via the unit 202 (step S5).
  • the noise reference value is a value used to determine whether the noise ratio of the received signal is at a sufficiently low level that does not cause a problem even if the resolution of the A / D converter 205 is lowered.
  • the control unit 204 of this embodiment basically includes a variable gain amplifier as the maximum amplitude of the input signal of the A / D converter 205 is larger than the maximum allowable input of the A / D converter 205 and the noise ratio is larger.
  • the gain of the variable gain amplifier 201 is set so that the gain of 201 becomes large.
  • the gain of the variable gain amplifier 201 is shown in FIG. 1 by the demodulation accuracy that is improved when the resolution of the A / D converter 205 in the signal of 0 to Ve shown in FIG.
  • the optimum value is obtained when the difference from the demodulation error that occurs when the signals Ve to Vmax are not A / D converted is the largest.
  • Such a relationship can be obtained by simulation, for example.
  • control unit 204 changes the threshold value used for measuring the count value based on the changed resolution of the A / D converter 205 and the gain of the variable gain amplifier 201 (step S6), and step S2 Returning to the process, steps S2 to S6 are repeated.
  • the following can be considered as a method for changing the threshold value.
  • the control unit 204 sets a threshold value used by the detection unit 206 to a small value so that the noise can be detected even if the noise included in the received signal is small. Thereafter, if the obtained noise ratio is large, the threshold value is increased to reduce the count value.
  • the count value output from the detection unit 206 is acquired for every predetermined frame set in advance, for example, one frame defined by the OFDM method, and the noise ratio can be obtained by the control unit 204. That's fine.
  • FIG. 7 shows how the signal amplitude changes when the gain of the variable gain amplifier 201 is changed during signal reception.
  • the control unit 204 may notify the demodulating unit 207 of the changed gain and its setting timing.
  • the demodulator 207 of this embodiment that demodulates the received signal converted into the digital signal, if it is possible to know the change in the gain of the entire receiver, it is easy to switch to the arithmetic processing according to the changed gain, The processing load is hardly changed. Excessive amplification processing cycles may be arbitrarily set in accordance with changes in the noise ratio, except for the first processing cycle at the start of communication.
  • the relationship between the number of amplitude points of the received signal exceeding the predetermined threshold and the S / N ratio is obtained in advance by simulation or the like and stored in a memory or the like.
  • the noise ratio approximately equal to the S / N ratio of the received signal is obtained from the measured value of the number of the signals, and the gain of the variable gain amplifier 201 is set using the noise ratio.
  • the noise included in the received signal that can be used for the determination can be obtained in real time.
  • the 201 gain of the variable gain amplifier can be determined with a simple configuration without increasing the circuit scale and processing load.
  • FIG. 8 is a block diagram illustrating a configuration example of the communication apparatus according to the second embodiment.
  • the communication apparatus has a configuration in which the detection unit 301 detects a noise ratio using a reception signal that is an analog signal output from the variable gain amplifier 201. Therefore, the detection unit 301 of the present embodiment is configured with an analog circuit.
  • the resolution of the A / D converter 302 is variable as in the first embodiment.
  • control unit 302 of the second embodiment may be configured with an analog circuit because the detection unit 301 is an analog circuit.
  • the control unit 302 is realized by an information processing apparatus including a CPU, a DSP, a memory, and the like as in the first embodiment, A / D conversion for capturing the output signal of the detection unit 301 in the control unit 302 is performed. It is necessary to provide a vessel. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • FIG. 9 is a circuit diagram showing an embodiment of the detection unit shown in FIG.
  • the detection unit 301 includes an amplitude reference value generation unit 401, a first comparator 402, an integration circuit 403, a noise reference value generation unit 404, and a second comparator 405.
  • the amplitude reference value generation unit 401 generates a threshold voltage used for counting the amplitude points.
  • the first comparator 402 compares the threshold voltage generated by the amplitude reference value generation unit 401 with the output signal of the variable gain amplifier 201, and outputs an output signal of the variable gain amplifier 201 that is greater than the threshold voltage. Is output.
  • the integration circuit 403 integrates (smooths) the signal output from the first comparator 402 and outputs the result. This corresponds to the number (count value) of amplitude points at which the output value of the integrating circuit 403 is larger than the threshold voltage shown in the first embodiment. An output signal of the integration circuit 403 is output to the second comparator 405 and the control unit 302.
  • the noise reference value generation unit 404 generates a noise reference voltage for determining whether the noise ratio of the received signal is at a sufficiently low level that does not cause a problem even if the resolution of the A / D converter 302 is reduced. To do.
  • the second comparator 405 compares the integration voltage output from the integration circuit 403 with the noise reference voltage generated by the noise reference value generation unit 404, and outputs the comparison result to the control unit 302.
  • the control unit 302 obtains the noise ratio of the received signal using the integrated voltage output from the integrating circuit 403 instead of the count value shown in the first embodiment, and the variable gain amplifier 201 is based on the noise ratio. And a control signal indicating the determined gain is output to the gain adjusting unit 202.
  • the control unit 302 reduces the resolution of the A / D converter 302 when the integrated voltage output from the integrating circuit 403 is smaller than the noise reference voltage.
  • FIG. 10 is a block diagram illustrating a configuration example of the communication apparatus according to the third embodiment.
  • the communication apparatus is an example using an A / D converter 501 with a fixed resolution.
  • the control unit 503 does not need to instruct the A / D converter 501 to change the resolution. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • FIG. 11 is a block diagram illustrating a configuration example of the receiving apparatus according to the fourth embodiment.
  • the detection unit 601 detects the noise ratio using the received signal that is an analog signal output from the variable gain amplifier 201. It is a configuration.
  • the receiving apparatus according to the fourth embodiment uses an A / D converter 501 with a fixed resolution, as in the third embodiment. Therefore, as in the third embodiment, the control unit 603 does not need to instruct the A / D converter 501 to change the resolution.
  • FIG. 12 is a circuit diagram showing a configuration example of the detection unit shown in FIG.
  • the detection unit 601 of the present embodiment has a configuration in which the noise reference value generation unit 404 and the second comparator 405 are excluded from the detection unit 301 of the second embodiment shown in FIG. is there. That is, in this embodiment, since the resolution of the A / D converter 602 is fixed, the detection unit 601 only needs to output the integrated voltage from the integration circuit 403 to the control unit 603.
  • the same effect as that of the communication device of the first embodiment can be obtained, and the control unit 603 does not need to instruct the A / D converter 601 to change the resolution.
  • the processing load on the control unit 603 is reduced.
  • the detection unit 601 only needs to output the integrated voltage from the integration circuit 403 to the control unit 603, and the detection unit 601 can be configured more simply than in the second embodiment.

Abstract

First, noise index information is stored in a memory, said noise index information indicating the relationship between numbers of amplitude points and S/N ratios of received signals exceeding prescribed thresholds that are preset by received signal type. Then, amplitude points of a received signal having an amplitude that exceeds the threshold are counted over a prescribed time period, and the resulting count is used along with the noise index information to obtain a noise proportion roughly equal to the S/N ratio of the received signal. The gain of a variable-gain amplifier is then set on the basis of said noise proportion.

Description

受信装置及び利得制御方法Receiver and gain control method
 本発明はA/D変換器を備えた受信装置及び該受信装置に適用可能な利得制御方法に関する。 The present invention relates to a receiving device including an A / D converter and a gain control method applicable to the receiving device.
 無線信号である受信信号を復調し、該受信信号に含まれる情報を取り出すためには、無線信号(高周波信号)をベーバンド信号(アナログ信号)に変換するミキサと、ミキサから出力されたベースバンド信号をデジタル信号に変換するA/D(Analog to Digital)変換器と、デジタル信号に変換されたベースバンド信号を復調して無線信号で送信された情報を取り出す復調器とが必要である。通常、このA/D変換器で変換できる信号の振幅範囲は、A/D変換器の設計時に設定されて変更できない。よって、一般の受信装置では、A/D変換器の前段に可変利得増幅器を設け、その利得を調整してベースバンド信号の最大振幅をA/D変換器の最大許容入力と一致させることで、A/D変換器の分解能を効率よく利用している。 In order to demodulate a received signal that is a radio signal and extract information contained in the received signal, a mixer that converts a radio signal (high-frequency signal) into a B-band signal (analog signal) and a baseband signal output from the mixer An A / D (Analog to Digital) converter that converts a digital signal into a digital signal and a demodulator that demodulates a baseband signal converted into a digital signal and extracts information transmitted as a radio signal are required. Usually, the amplitude range of a signal that can be converted by the A / D converter is set at the time of designing the A / D converter and cannot be changed. Therefore, in a general receiving device, a variable gain amplifier is provided in front of the A / D converter, and the gain is adjusted so that the maximum amplitude of the baseband signal matches the maximum allowable input of the A / D converter. The resolution of the A / D converter is used efficiently.
 しかしながら、受信信号が、OFDM信号のように最大振幅の信号がたまにしか現れず、信号振幅の平均値が最大値に比べて小さい場合、A/D変換器の入力信号の最大振幅が該A/D変換器の最大許容入力と等しくなるように可変利得増幅器の利得を調整すると、信号振幅が小さいほとんどの入力信号の変換にA/D変換器の分解能の一部しか利用しないことになる。そのため、受信信号の復調精度が低下してしまう。 However, when the received signal has a signal with the maximum amplitude only occasionally appearing like the OFDM signal and the average value of the signal amplitude is smaller than the maximum value, the maximum amplitude of the input signal of the A / D converter is the A / D converter. If the gain of the variable gain amplifier is adjusted to be equal to the maximum allowable input of the D converter, only a part of the resolution of the A / D converter is used for conversion of most input signals having a small signal amplitude. As a result, the demodulation accuracy of the received signal is reduced.
 図1はOFDM信号の波形例を示す波形図である。図1ではOFDM信号の最大振幅値をVmaxで示している。 FIG. 1 is a waveform diagram showing a waveform example of an OFDM signal. In FIG. 1, the maximum amplitude value of the OFDM signal is indicated by Vmax.
 図1から分かるように、OFDM信号では最大振幅Vmaxがほとんど現れず、多くの信号の振幅がVe以下である。そのため、図1に示すようなOFDM信号をVmaxが最大許容入力に一致するA/D変換器でデジタル信号に変換すると、Ve~Vmaxの信号を変換するための分解能がほとんど無駄になってしまう。 As can be seen from FIG. 1, the maximum amplitude Vmax hardly appears in the OFDM signal, and the amplitude of many signals is Ve or less. Therefore, when an OFDM signal as shown in FIG. 1 is converted into a digital signal by an A / D converter whose Vmax matches the maximum allowable input, the resolution for converting the signals Ve to Vmax is almost wasted.
 上記のような問題を解決する技術として、例えば特許文献1や特許文献2には、A/D変換器に対する入力信号の最大振幅VmaxをA/D変換器の最大許容入力よりも大きく設定することで、A/D変換器による信号分解能を実質的に向上させる手法が提案されている。 As a technique for solving the above problems, for example, in Patent Document 1 and Patent Document 2, the maximum amplitude Vmax of the input signal to the A / D converter is set larger than the maximum allowable input of the A / D converter. Thus, a method for substantially improving the signal resolution by the A / D converter has been proposed.
 特許文献1では、A/D変換器の最大許容入力に対する入力信号の最大振幅比rを該A/D変換器の分解能(ビット数)に応じて制御することが記載され、rを1以上、すなわちA/D変換器に対する入力信号の最大振幅を該A/D変換器の最大許容入力よりも大きい値に設定することが記載されている。また、特許文献2では、受信信号に含まれるノイズの大きさに応じて可変利得増幅器の利得を決定する技術が記載されている。 Patent Document 1 describes that the maximum amplitude ratio r of an input signal with respect to the maximum allowable input of the A / D converter is controlled according to the resolution (number of bits) of the A / D converter, and r is 1 or more, That is, it describes that the maximum amplitude of the input signal to the A / D converter is set to a value larger than the maximum allowable input of the A / D converter. Patent Document 2 describes a technique for determining the gain of a variable gain amplifier according to the magnitude of noise included in a received signal.
 なお、A/D変換器による信号分解能を向上させるものではないが、特許文献3には、強電界フェージング時におけるBER特性の劣化を抑制するために可変利得増幅器から出力される信号のS/N(信号対雑音)比に応じて可変利得増幅器の利得を決定する手法が記載されている。 In addition, although it does not improve the signal resolution by the A / D converter, Patent Document 3 discloses that the S / N of the signal output from the variable gain amplifier in order to suppress the deterioration of the BER characteristic during the strong electric field fading. A technique for determining the gain of a variable gain amplifier according to the (signal to noise) ratio is described.
 上述した特許文献1は、受信信号をOFDM信号に限定しており、例えばQAM(Quadrature Amplitude Modulation)信号等のように、信号振幅が大きく変わる他の種類の信号に対する処理を何等示していない。A/D変換器に対する入力信号の最大振幅をA/D変換器の最大許容入力よりも大きく設定する場合、一般に、可変利得増幅器の利得は、A/D変換器の分解能だけで決定すべきものではなく、受信信号に含まれる雑音の大きさも考慮して決定すべきものである。特許文献1は、受信信号をOFDM信号に限定したときに、A/D変換器の分解能を利用して可変利得増幅器の利得を決定できることを示したものであり、受信信号に含まれる雑音を考慮して可変利得増幅器の利得を設定する手法については何も示していない。 Patent Document 1 described above limits the received signal to an OFDM signal, and does not show any processing for other types of signals whose signal amplitude greatly changes, such as a QAM (Quadrature Amplitude Modulation) signal. When the maximum amplitude of the input signal to the A / D converter is set larger than the maximum allowable input of the A / D converter, generally, the gain of the variable gain amplifier should not be determined only by the resolution of the A / D converter. In addition, it should be determined in consideration of the magnitude of noise included in the received signal. Patent Document 1 shows that when the received signal is limited to an OFDM signal, the gain of the variable gain amplifier can be determined using the resolution of the A / D converter, and noise included in the received signal is taken into consideration. Thus, nothing is shown about the method of setting the gain of the variable gain amplifier.
 それに対して、特許文献2や3では、上述したように、受信信号に含まれる雑音の大きさを考慮して可変利得増幅器の利得を決定する手法が示されている。しかしながら、特許文献2に記載の受信装置は、デジタル信号に変換された受信信号をフーリエ変換し、周波数スペクトルを解析することで受信信号に含まれる雑音を求める構成であるため、雑音の検出に必要な回路規模や処理負荷が大きいという問題がある。 On the other hand, Patent Documents 2 and 3 describe techniques for determining the gain of the variable gain amplifier in consideration of the magnitude of noise included in the received signal as described above. However, the receiving device described in Patent Document 2 is configured to obtain noise included in the received signal by performing Fourier transform on the received signal converted into a digital signal and analyzing the frequency spectrum, and is therefore necessary for noise detection. There is a problem that the circuit scale and processing load are large.
 また、特許文献3では、受信信号のS/N比をBER(ビットエラー率)から求めることを示しているが、BERは、例えば送信装置から予め決められた既知のデータ列を送信し、受信装置で復調したデータ列と既知のデータ列とを比較することで算出する必要がある。そのため、送信装置と受信装置とを協働させなければならず、通信途中でリアルタイムにS/N比を求めるのは困難である。したがって、受信信号の雑音をより簡易にリアルタイムに求めるための手法が望まれる。 Patent Document 3 shows that the S / N ratio of a received signal is obtained from a BER (bit error rate), but the BER transmits a known data sequence determined in advance from a transmission device, for example, and receives the signal. It is necessary to calculate by comparing the data sequence demodulated by the apparatus with a known data sequence. Therefore, the transmission device and the reception device must cooperate with each other, and it is difficult to obtain the S / N ratio in real time during communication. Therefore, a technique for obtaining the noise of the received signal more simply and in real time is desired.
特開平07―226725号公報(図13)Japanese Patent Laid-Open No. 07-226725 (FIG. 13) 特開2002-353813号公報(図14)Japanese Patent Laid-Open No. 2002-353813 (FIG. 14) 特開平10-303665号公報(図15)Japanese Patent Laid-Open No. 10-303665 (FIG. 15)
 そこで本発明は、可変利得増幅器の利得決定に用いる、受信信号に含まれる雑音をより簡易にリアルタイムに求めることができる受信装置及びその利得制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a receiving apparatus and a gain control method for the same that can easily and in real time obtain noise included in a received signal, which is used for determining the gain of a variable gain amplifier.
 上記目的を達成するため本発明の受信装置は、外部からの制御信号にしたがって利得が変更可能な可変利得増幅器と、
 前記可変利得増幅器から出力されたアナログ信号から成る受信信号をデジタル信号に変換するA/D変換器と、
 前記受信信号の振幅が所定のしきい値を超える振幅点の数を、所定の期間にてカウントする検出部と、
 前記受信信号の種類に対応して予め求められた、前記しきい値を超える前記受信信号の振幅点の数と該受信信号のS/N比との関係を示す雑音指標情報を備え、該雑音指標情報を用いて前記検出部から出力されるカウント値に基づき前記受信信号のS/N比に略等しい雑音割合を求め、該雑音割合から前記可変利得増幅器の利得を設定する制御部と、
 前記A/D変換器でデジタル信号に変換された受信信号を復調する復調器と、
を有する。
In order to achieve the above object, a receiving apparatus of the present invention includes a variable gain amplifier whose gain can be changed in accordance with an external control signal;
An A / D converter that converts a received signal composed of an analog signal output from the variable gain amplifier into a digital signal;
A detector that counts the number of amplitude points at which the amplitude of the received signal exceeds a predetermined threshold in a predetermined period;
Noise index information indicating the relationship between the number of amplitude points of the received signal exceeding the threshold and the S / N ratio of the received signal, which is obtained in advance corresponding to the type of the received signal, A control unit for obtaining a noise ratio substantially equal to an S / N ratio of the received signal based on a count value output from the detection unit using index information, and setting a gain of the variable gain amplifier from the noise ratio;
A demodulator that demodulates the received signal converted into a digital signal by the A / D converter;
Have
 一方、本発明の利得制御方法は、外部からの制御信号にしたがって利得が変更可能な可変利得増幅器と、
 前記可変利得増幅器から出力されたアナログ信号から成る受信信号をデジタル信号に変換するA/D変換器と、
 前記A/D変換器でデジタル信号に変換された受信信号を復調する復調器と、
を備えた受信装置における前記可変利得増幅器の利得を制御するための利得制御方法であって、
 情報処理装置が、
 前記受信信号の種類に対応して予め求められた、所定のしきい値を超える前記受信信号の振幅点の数と該受信信号のS/N比との関係を示す雑音指標情報をメモリに格納しておき、
 前記受信信号の振幅が所定のしきい値を超える振幅点の数を、所定の期間にてカウントし、
 前記カウントした結果であるカウント値に基づき、前記雑音指標情報を用いて、前記受信信号のS/N比に略等しい雑音割合を求め、該雑音割合から前記可変利得増幅器の利得を設定する方法である。
On the other hand, the gain control method of the present invention includes a variable gain amplifier whose gain can be changed in accordance with an external control signal,
An A / D converter that converts a received signal composed of an analog signal output from the variable gain amplifier into a digital signal;
A demodulator that demodulates the received signal converted into a digital signal by the A / D converter;
A gain control method for controlling the gain of the variable gain amplifier in a receiver comprising:
Information processing device
Noise index information indicating the relationship between the number of amplitude points of the received signal exceeding a predetermined threshold and the S / N ratio of the received signal, which is obtained in advance corresponding to the type of the received signal, is stored in the memory. Aside,
The number of amplitude points where the amplitude of the received signal exceeds a predetermined threshold is counted in a predetermined period,
Based on the count value that is the result of the counting, using the noise index information, a noise ratio that is substantially equal to the S / N ratio of the received signal is obtained, and the gain of the variable gain amplifier is set from the noise ratio. is there.
図1は、OFDM信号の波形例を示す波形図である。FIG. 1 is a waveform diagram showing a waveform example of an OFDM signal. 図2は、受信信号の振幅が所定のしきい値を超える振幅点の数と該受信信号のS/N比との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the number of amplitude points where the amplitude of the received signal exceeds a predetermined threshold and the S / N ratio of the received signal. 図3は、第1の実施の形態の受信装置の一構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of the receiving apparatus according to the first embodiment. 図4は、背景技術の受信装置における受信信号のS/N比に対するエラー率の関係を示すグラフである。FIG. 4 is a graph showing the relationship of the error rate to the S / N ratio of the received signal in the background art receiver. 図5は、第1の実施の形態の受信装置における受信信号のS/N比に対するエラー率の関係を示すグラフである。FIG. 5 is a graph showing the relationship of the error rate to the S / N ratio of the received signal in the receiving apparatus according to the first embodiment. 図6は、第1の実施の形態の受信装置の処理手順を示すフローチャートである。FIG. 6 is a flowchart illustrating a processing procedure of the receiving apparatus according to the first embodiment. 図7は、信号受信途中で可変利得増幅器の利得を変化させたとき、信号振幅が変化する様子を示す波形図である。FIG. 7 is a waveform diagram showing how the signal amplitude changes when the gain of the variable gain amplifier is changed during signal reception. 図8は、第2の実施の形態の通信装置の一構成例を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration example of the communication apparatus according to the second embodiment. 図9は、図8に示した検出部の一実施例を示す回路図である。FIG. 9 is a circuit diagram showing an embodiment of the detection unit shown in FIG. 図10は、第3の実施の形態の通信装置の一構成例を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration example of the communication apparatus according to the third embodiment. 図11は、第4の実施の形態の受信装置の一構成例を示すブロック図である。FIG. 11 is a block diagram illustrating a configuration example of the receiving apparatus according to the fourth embodiment. 図12は、図11に示した検出部の一構成例を示す回路図である。FIG. 12 is a circuit diagram illustrating a configuration example of the detection unit illustrated in FIG. 11.
 次に本発明について図面を用いて説明する。
(第1の実施の形態)
 本実施形態の受信装置では、A/D変換器に対する入力信号の最大振幅を該A/D変換器の最大許容入力よりも大きく設定すると共に、受信信号に含まれる雑緒に応じて、A/D変換器の前段に設けられる可変利得増幅器の利得を設定する。A/D変換器に対する入力信号の最大振幅を該A/D変換器の最大許容入力よりも大きく設定することを、以下では「過剰増幅」と称す。
Next, the present invention will be described with reference to the drawings.
(First embodiment)
In the receiving apparatus of the present embodiment, the maximum amplitude of the input signal to the A / D converter is set larger than the maximum allowable input of the A / D converter, and the A / D converter The gain of the variable gain amplifier provided in the preceding stage of the D converter is set. Hereinafter, setting the maximum amplitude of the input signal to the A / D converter to be larger than the maximum allowable input of the A / D converter is referred to as “over-amplification”.
 また、本実施形態では、以下の原理で可変利得増幅器の利得決定に用いる雑音を求める。 In this embodiment, the noise used for determining the gain of the variable gain amplifier is obtained according to the following principle.
 図2は、受信信号の振幅が所定のしきい値を超える振幅点の数(カウント値)と該受信信号のS/N比との関係を示すグラフである。 FIG. 2 is a graph showing the relationship between the number of amplitude points (count value) at which the amplitude of the received signal exceeds a predetermined threshold and the S / N ratio of the received signal.
 図2に示すように、本出願の発明者は、所定のしきい値を越える受信信号の振幅点の数と該受信信号のS/N比とには一定の関係があることを見出した。そこで、本実施形態の受信装置では、この振幅点の数とS/N比との関係をシミュレーション等により予め求めてメモリ等に保存しておき、振幅点の数の測定値から受信信号のS/N比を求め、該S/N比に応じて可変利得増幅器の利得を決定する。但し、図2に示した関係を用いて測定値(カウント値)から受信信号のS/N比を求める場合、測定値にはシミュレーションで想定していない条件や誤差等も含まれているため、求めた値が正確なS/N比を示しているとは言い難い。そこで、以下では、測定値(カウント値)から求めた値を「雑音割合」と称し、「S/N比」と区別して表記する。しかしながら、この雑音割合は、受信信号のS/N比にほぼ等しい値であり、該雑音割合に基づいて可変利得増幅器の利得を決定してもBER等が大きく劣化することはない。本実施形態の受信装置では、この雑音割合(≒S/N比)を用いて、可変利得増幅器の利得を決定する。 As shown in FIG. 2, the inventor of the present application has found that there is a certain relationship between the number of amplitude points of a received signal exceeding a predetermined threshold and the S / N ratio of the received signal. Therefore, in the receiving apparatus of this embodiment, the relationship between the number of amplitude points and the S / N ratio is obtained in advance by simulation or the like and stored in a memory or the like, and the S of the received signal is determined from the measured value of the number of amplitude points. / N ratio is obtained, and the gain of the variable gain amplifier is determined according to the S / N ratio. However, when the S / N ratio of the received signal is obtained from the measured value (count value) using the relationship shown in FIG. 2, the measured value includes conditions and errors that are not assumed in the simulation. It is difficult to say that the obtained value shows an accurate S / N ratio. Therefore, hereinafter, a value obtained from the measured value (count value) is referred to as “noise ratio” and is distinguished from “S / N ratio”. However, this noise ratio is substantially equal to the S / N ratio of the received signal, and even if the gain of the variable gain amplifier is determined based on the noise ratio, the BER or the like does not deteriorate greatly. In the receiving apparatus of this embodiment, the gain of the variable gain amplifier is determined using this noise ratio (≈S / N ratio).
 なお、図2は、受信信号がOFDM信号であるときの、所定のしきい値を超える振幅点の数(カウント値)とS/N比との関係をシミュレーションした結果を示している。受信信号が他の種類の信号(例えば、QAM信号)である場合は、該受信信号の種類毎に同様の関係をシミュレーション等により求めて保存しておけばよい。上記所定のしきい値を超える振幅点の数とS/N比との関係を示す、受信装置内で保存する情報を、以下では「雑音指標情報」と称す。 FIG. 2 shows the result of simulating the relationship between the number of amplitude points (count value) exceeding a predetermined threshold and the S / N ratio when the received signal is an OFDM signal. When the received signal is another type of signal (for example, a QAM signal), a similar relationship may be obtained and stored for each type of the received signal by simulation or the like. Information stored in the receiving apparatus, which indicates the relationship between the number of amplitude points exceeding the predetermined threshold and the S / N ratio, is hereinafter referred to as “noise index information”.
 図3は、第1の実施の形態の受信装置の一構成例を示すブロック図である。 FIG. 3 is a block diagram illustrating a configuration example of the receiving apparatus according to the first embodiment.
 図3に示すように、第1の実施の形態の受信装置は、可変利得増幅器201、利得調整部202、ピーク検出部203、制御部204、A/D変換器205、検出部206及び復調部207を備えている。 As shown in FIG. 3, the receiving apparatus of the first embodiment includes a variable gain amplifier 201, a gain adjusting unit 202, a peak detecting unit 203, a control unit 204, an A / D converter 205, a detecting unit 206, and a demodulating unit. 207.
 可変利得増幅器201は、不図示のミキサから出力された、アナログ信号である受信信号(ベースバンド信号)を利得調整部203により設定された利得で増幅する。 The variable gain amplifier 201 amplifies a reception signal (baseband signal) that is an analog signal output from a mixer (not shown) with a gain set by the gain adjustment unit 203.
 A/D変換器205は、可変利得増幅器201で増幅された受信信号をデジタル信号に変換する。A/D変換器205は、その分解能が固定でもよく、可変でもよいが、本実施形態では分解能が可変のA/D変換器205を用いる。分解能が可変のA/D変換器は、例えばP. Nicolas, V. Isabelle, H. Yann, “A Pixel Columun Level, Ultra Low Power, 9MSample/s Multi bit A/D Converter for Monolithic Active Pixel Sensors in High Energy physics”, MIXDES 2009, 16th International Conference “Mixed design of Integrated Circuit and Systems”, pp. 597-602, June 25-27, 2009.に記載された技術を利用して実現すればよい。 The A / D converter 205 converts the reception signal amplified by the variable gain amplifier 201 into a digital signal. The resolution of the A / D converter 205 may be fixed or variable, but in the present embodiment, the A / D converter 205 having a variable resolution is used. For example, P. Nicolas, V. Isabelle, H. Yann, “A Pixel Columun Level, Ultra Low Power, 9M Sample / s Multi bit A / D Converter for Monolithic Active Pixel Sensors in High Energy physics ", MIXDES 2009, 16 th International Conference" Mixed design of Integrated Circuit and Systems ", pp. 597-602, June 25-27, may be implemented utilizing the techniques described in 2009..
 ピーク検出部203は、可変利得増幅器201で増幅された受信信号の最大振幅値を検出する。 The peak detector 203 detects the maximum amplitude value of the received signal amplified by the variable gain amplifier 201.
 検出部206は、A/D変換器205でデジタル信号に変換された受信信号と所定のしきい値とを比較し、該しきい値を超える受信信号の振幅点をカウントし、該カウント値(測定値)を制御部204に出力する。 The detection unit 206 compares the received signal converted into a digital signal by the A / D converter 205 with a predetermined threshold value, counts the amplitude points of the received signal exceeding the threshold value, and outputs the count value ( Measurement value) is output to the control unit 204.
 制御部204は、上記雑音指標情報を備え、該雑音指標情報を用いて、検出部206から出力されるカウント値から上記雑音割合を求め、該雑音割合に基づいて可変利得増幅器201の利得を決定し、利得調整部203に可変利得増幅器201の利得を設定させるための制御信号を出力する。 The control unit 204 includes the noise index information, and uses the noise index information to obtain the noise ratio from the count value output from the detection unit 206, and determines the gain of the variable gain amplifier 201 based on the noise ratio. Then, a control signal for causing the gain adjusting unit 203 to set the gain of the variable gain amplifier 201 is output.
 利得調整部203は、ピーク検出部204で検出された受信信号の最大振幅値または制御部204から受信した制御信号にしたがって可変利得増幅器202の利得を設定する。 The gain adjusting unit 203 sets the gain of the variable gain amplifier 202 according to the maximum amplitude value of the received signal detected by the peak detecting unit 204 or the control signal received from the control unit 204.
 本実施形態の受信装置では、例えば所定の周期毎に上記雑音割合を検出し、該雑音割合に基づいて制御部204により可変利得増幅器201の利得を決定する。したがって、任意の通信装置から無線信号を受信開始した直後は、その受信信号の雑音割合を検出できないため、制御部204は雑音割合に基づいて可変利得増幅器201の利得を決定することができない。そのため、制御部204は、他の通信装置から無線信号を受信開始した直後の最初の周期では、ピーク検出部203で検出された最大振幅値とA/D変換器205の最大許容入力とが一致するように、利得調整部203に可変利得増幅器201の利得を設定させる。 In the receiving apparatus of the present embodiment, for example, the noise ratio is detected every predetermined period, and the gain of the variable gain amplifier 201 is determined by the control unit 204 based on the noise ratio. Therefore, immediately after starting to receive a radio signal from an arbitrary communication apparatus, the control unit 204 cannot determine the gain of the variable gain amplifier 201 based on the noise ratio because the noise ratio of the received signal cannot be detected. Therefore, the control unit 204 matches the maximum amplitude value detected by the peak detection unit 203 with the maximum allowable input of the A / D converter 205 in the first period immediately after the start of reception of a radio signal from another communication device. Thus, the gain adjustment unit 203 is caused to set the gain of the variable gain amplifier 201.
 復調部207は、A/D変換器205でデジタル信号に変換された受信信号を復調し、該受信信号に含まれるユーザデータ等の受信情報を抽出する。 The demodulator 207 demodulates the reception signal converted into a digital signal by the A / D converter 205, and extracts reception information such as user data included in the reception signal.
 本実施形態の制御部204、検出部206及び復調部207は、例えばプログラムにしたがって所定の信号処理を実行するCPU、DSP、メモリ、A/D変換器、D/A変換器、各種の論理回路等を含む情報処理装置によって実現できる。本実施形態の可変利得増幅器201、利得調整部202及びピーク検出部203は、周知のアナログ回路で実現すればよい。 The control unit 204, the detection unit 206, and the demodulation unit 207 of the present embodiment include, for example, a CPU, a DSP, a memory, an A / D converter, a D / A converter, and various logic circuits that execute predetermined signal processing according to a program. It can be realized by an information processing apparatus including the above. The variable gain amplifier 201, the gain adjustment unit 202, and the peak detection unit 203 of the present embodiment may be realized by a known analog circuit.
 なお、受信装置では、一般にA/D変換器205の前段にエリアジングを除去するためのローパスフィルタ等を備えている。しかしながら、エリアジング除去のための素子は、本発明の特徴に何等関係しないため、ここでは省略する。 Note that the receiving apparatus generally includes a low-pass filter or the like for removing aliasing before the A / D converter 205. However, the element for removing aliasing has no relation to the feature of the present invention, and is omitted here.
 図4は、受信信号の最大振幅値をA/D変換器205の最大許容入力に一致させたとき、すなわち背景技術の受信装置における受信信号のS/N比に対するエラー率(BER)の関係を示している。図5は、第1の実施の形態の受信信号における受信信号のS/N比に対するエラー率(BER)の関係を示している。なお、図4および図5では、A/D変換器の分解能を2、3、4、8ビットに変化させたときのBERをそれぞれ示している。 FIG. 4 shows the relationship of the error rate (BER) to the S / N ratio of the received signal when the maximum amplitude value of the received signal is matched with the maximum allowable input of the A / D converter 205, that is, in the background art receiving apparatus. Show. FIG. 5 shows the relationship of the error rate (BER) with respect to the S / N ratio of the received signal in the received signal of the first embodiment. 4 and 5 respectively show the BER when the resolution of the A / D converter is changed to 2, 3, 4, and 8 bits.
 図4及び図5を比べれば分かるように、本実施形態で示す手法を採用した受信装置におけるBERの低減効果は、A/D変換器の分解能が2ビットのときに最も大きくなる。すなわち、本実施形態で示す手法は、低分解能のA/D変換器を用いる場合に適している。但し、A/D変換器の分解能が高くても本実施形態が示す手法を適用すればBERを改善できる。 As can be seen from a comparison of FIGS. 4 and 5, the BER reduction effect in the receiving apparatus employing the method shown in this embodiment is greatest when the resolution of the A / D converter is 2 bits. That is, the method shown in this embodiment is suitable when a low-resolution A / D converter is used. However, even if the resolution of the A / D converter is high, the BER can be improved by applying the method shown in this embodiment.
 したがって、本実施形態の受信装置では、受信信号の雑音割合が小さいときにA/D変換器205の分解能を低下させる。一般に、低分解能のA/D変換器は、その消費電力が少なくて済む。したがって、受信信号の雑音割合が小さいときにA/D変換器205の分解能を低下させれば、該A/D変換器205を含む受信装置全体の消費電力を低減できる。 Therefore, in the receiving apparatus of this embodiment, the resolution of the A / D converter 205 is lowered when the noise ratio of the received signal is small. In general, a low-resolution A / D converter requires less power. Therefore, if the resolution of the A / D converter 205 is lowered when the noise ratio of the received signal is small, the power consumption of the entire receiving apparatus including the A / D converter 205 can be reduced.
 図6は、第1の実施の形態の受信装置の処理手順を示すフローチャートである。なお、図6は図3に示した制御部205の処理手順のみ示している。 FIG. 6 is a flowchart illustrating a processing procedure of the receiving apparatus according to the first embodiment. 6 shows only the processing procedure of the control unit 205 shown in FIG.
 図6に示すように、任意の通信装置から無線信号の受信を開始すると、制御部204は、まずピーク検出部203で検出された受信信号の最大振幅値とA/D変換器205の最大許容入力とが一致するように、利得調整部202に可変利得増幅器201の利得を設定させる(ステップS1)。このとき、制御部204は、A/D変換器205の分解能が可変であっても、A/D変換器205には最大分解能(最大ビット)でA/D変換させる。 As shown in FIG. 6, when reception of a radio signal is started from an arbitrary communication device, the control unit 204 first determines the maximum amplitude value of the received signal detected by the peak detection unit 203 and the maximum allowable value of the A / D converter 205. The gain adjustment unit 202 is caused to set the gain of the variable gain amplifier 201 so as to match the input (step S1). At this time, even if the resolution of the A / D converter 205 is variable, the control unit 204 causes the A / D converter 205 to perform A / D conversion with the maximum resolution (maximum bit).
 利得調整部202によって利得が設定された可変利得増幅器201は、入力された受信信号(ベースバンド信号)を該利得で増幅し、A/D変換器205に出力する。A/D変換器205は、アナログ信号である受信信号をデジタル信号に変換し、復調部207及び検出部206に出力する。検出部206は、予め設定された周期毎に、所定のしきい値を超える受信信号の振幅点の数をカウントし、該カウント値を制御部204に出力する。 The variable gain amplifier 201 whose gain has been set by the gain adjusting unit 202 amplifies the input received signal (baseband signal) with the gain and outputs it to the A / D converter 205. The A / D converter 205 converts the received signal, which is an analog signal, into a digital signal and outputs the digital signal to the demodulation unit 207 and the detection unit 206. The detection unit 206 counts the number of amplitude points of the received signal exceeding a predetermined threshold for each preset period, and outputs the count value to the control unit 204.
 制御部204は、S/N比と所定のしきい値を超える受信信号の振幅点の数(カウント値)の関係(図2参照)を示す上記雑音指標情報を用いて、検出部206から出力されたカウント値を基に受信信号の雑音割合を求める(ステップS2)。 The control unit 204 outputs from the detection unit 206 using the noise index information indicating the relationship (see FIG. 2) between the S / N ratio and the number of received signal amplitude points (count value) exceeding a predetermined threshold. Based on the counted value, the noise ratio of the received signal is obtained (step S2).
 次に、制御部204は、求めた雑音割合と予め設定した雑音基準値とを比較し、雑音割合が雑音基準値よりも大きいか否かを判定する(ステップS3)。求めた雑音割合が雑音基準値よりも大きい場合、制御部204は、可変利得増幅器201の利得のみを決定し、利得調整部202を介して可変利得増幅器201の利得を設定する(ステップS4)。また、求めた雑音割合が雑音基準値以下である場合、制御部204は、A/D変換器205の分解能を低下させ、該雑音割合に基づいて可変利得増幅器201の利得を決定し、利得調整部202を介して可変利得増幅器201の利得を設定する(ステップS5)。なお、雑音基準値とは、受信信号の雑音割合が、A/D変換器205の分解能を低下させても問題ない、十分に低いレベルであるか否かの判定に用いる値である。 Next, the control unit 204 compares the obtained noise ratio with a preset noise reference value, and determines whether or not the noise ratio is larger than the noise reference value (step S3). When the obtained noise ratio is larger than the noise reference value, the control unit 204 determines only the gain of the variable gain amplifier 201 and sets the gain of the variable gain amplifier 201 via the gain adjustment unit 202 (step S4). If the obtained noise ratio is equal to or less than the noise reference value, the control unit 204 reduces the resolution of the A / D converter 205, determines the gain of the variable gain amplifier 201 based on the noise ratio, and adjusts the gain. The gain of the variable gain amplifier 201 is set via the unit 202 (step S5). The noise reference value is a value used to determine whether the noise ratio of the received signal is at a sufficiently low level that does not cause a problem even if the resolution of the A / D converter 205 is lowered.
 雑音割合に基づいて可変利得増幅器201の利得を決定する方法としては、以下が考えられる。 As a method of determining the gain of the variable gain amplifier 201 based on the noise ratio, the following can be considered.
 本実施形態の制御部204は、基本的に、A/D変換器205の入力信号の最大振幅が該A/D変換器205の最大許容入力よりも大きく、かつ雑音割合が大きいほど可変利得増幅器201の利得が大きくなるように可変利得増幅器201の利得を設定する。 The control unit 204 of this embodiment basically includes a variable gain amplifier as the maximum amplitude of the input signal of the A / D converter 205 is larger than the maximum allowable input of the A / D converter 205 and the noise ratio is larger. The gain of the variable gain amplifier 201 is set so that the gain of 201 becomes large.
 但し、可変利得増幅器201の利得は、過剰増幅によって図1に示した0~Veの信号におけるA/D変換器205の分解能が増大した場合に向上する復調精度と、過剰増幅によって図1に示したVe~Vmaxの信号をA/D変換しない場合に発生する復調誤差との差が最も大きいとき、最適な値となる。このような関係は、例えばシミュレーションで求めることができる。 However, the gain of the variable gain amplifier 201 is shown in FIG. 1 by the demodulation accuracy that is improved when the resolution of the A / D converter 205 in the signal of 0 to Ve shown in FIG. The optimum value is obtained when the difference from the demodulation error that occurs when the signals Ve to Vmax are not A / D converted is the largest. Such a relationship can be obtained by simulation, for example.
 次に、制御部204は、変更後のA/D変換器205の分解能および可変利得増幅器201の利得に基づいて、上記カウント値の測定に用いるしきい値を変更し(ステップS6)、ステップS2の処理に戻ってステップS2~S6の処理を繰り返す。 Next, the control unit 204 changes the threshold value used for measuring the count value based on the changed resolution of the A / D converter 205 and the gain of the variable gain amplifier 201 (step S6), and step S2 Returning to the process, steps S2 to S6 are repeated.
 ここで、しきい値を変更するための方法としては以下が考えられる。 Here, the following can be considered as a method for changing the threshold value.
 図2に示したように、カウント値はしきい値を変えることで変化するため、しきい値を変化させると雑音割合を求めるための感度も変化する。制御部204は、まず受信信号に含まれる雑音が小さくても該雑音を検出できるように検出部206で用いるしきい値を小さな値に設定する。その後、求めた雑音割合が大きければ、しきい値の値を大きくしてカウント値を低減させる。 As shown in FIG. 2, since the count value changes by changing the threshold value, the sensitivity for obtaining the noise ratio also changes when the threshold value is changed. First, the control unit 204 sets a threshold value used by the detection unit 206 to a small value so that the noise can be detected even if the noise included in the received signal is small. Thereafter, if the obtained noise ratio is large, the threshold value is increased to reduce the count value.
 ところで、本実施形態の受信装置では、予め設定した所定の周期、例えばOFDM方式で規定された1フレーム毎に、検出部206から出力されるカウント値を取得し、制御部204により雑音割合を求めればよい。しかしながら、1フレームの信号受信途中であっても、例えば通信環境が変わることで雑音が増大した場合は、可変利得増幅器201の利得を変更することが好ましい。 By the way, in the receiving apparatus of the present embodiment, the count value output from the detection unit 206 is acquired for every predetermined frame set in advance, for example, one frame defined by the OFDM method, and the noise ratio can be obtained by the control unit 204. That's fine. However, it is preferable to change the gain of the variable gain amplifier 201 even when one frame signal is being received, for example, when noise increases due to a change in the communication environment.
 図7は、信号受信途中で可変利得増幅器201の利得を変化させたときに信号振幅が変化する様子を示している。 FIG. 7 shows how the signal amplitude changes when the gain of the variable gain amplifier 201 is changed during signal reception.
 例えば、1フレームの信号受信途中で可変利得増幅器201の利得を変化させた場合、受信装置全体の利得が変化するため、そのままでは復調部207で受信信号を正常に復調することができない。このような場合は、制御部204は復調部207に変更後の利得及びその設定タイミングを通知すればよい。 For example, when the gain of the variable gain amplifier 201 is changed during the reception of a signal of one frame, the gain of the entire receiving apparatus changes, so that the demodulator 207 cannot normally demodulate the received signal as it is. In such a case, the control unit 204 may notify the demodulating unit 207 of the changed gain and its setting timing.
 デジタル信号に変換された受信信号を復調する本実施形態の復調部207では、受信装置全体の利得の変化を知ることができれば、変更後の利得に応じた演算処理へ切り替えることは容易であり、処理負荷もほとんど変わることがない。過剰増幅の処理周期は、通信開始時の最初の処理周期を除けば、以降は雑音割合の変化に合わせて任意に設定すればよい。 In the demodulator 207 of this embodiment that demodulates the received signal converted into the digital signal, if it is possible to know the change in the gain of the entire receiver, it is easy to switch to the arithmetic processing according to the changed gain, The processing load is hardly changed. Excessive amplification processing cycles may be arbitrarily set in accordance with changes in the noise ratio, except for the first processing cycle at the start of communication.
 本実施形態の受信装置によれば、所定のしきい値を超える受信信号の振幅点の数とS/N比との関係をシミュレーション等により予め求めてメモリ等に保存しておき、該振幅点の数の測定値から受信信号のS/N比にほぼ等しい雑音割合を求め、該雑音割合を用いて可変利得増幅器201の利得を設定するため、通信途中であっても可変利得増幅器201の利得決定に利用できる、受信信号に含まれる雑音をリアルタイムに求めることができる。また、雑音割合を用いて可変利得増幅器201の利得を設定することで、回路規模や処理負荷が増大することなく、簡易な構成で可変利得増幅器の201利得を決定できる。 According to the receiving apparatus of the present embodiment, the relationship between the number of amplitude points of the received signal exceeding the predetermined threshold and the S / N ratio is obtained in advance by simulation or the like and stored in a memory or the like. The noise ratio approximately equal to the S / N ratio of the received signal is obtained from the measured value of the number of the signals, and the gain of the variable gain amplifier 201 is set using the noise ratio. The noise included in the received signal that can be used for the determination can be obtained in real time. Also, by setting the gain of the variable gain amplifier 201 using the noise ratio, the 201 gain of the variable gain amplifier can be determined with a simple configuration without increasing the circuit scale and processing load.
 さらに、本実施形態の受信装置では、受信信号の種類毎に上記雑音指標情報を備えていれば、OFDM信号に限らず、信号振幅が大きく変わる他の種類の受信信号であっても、上記と同様に雑音割合から可変利得増幅器の利得を決定することができる。
(第2の実施の形態)
 図8は、第2の実施の形態の通信装置の一構成例を示すブロック図である。
Furthermore, in the receiving apparatus of this embodiment, as long as the above-described noise index information is provided for each type of received signal, not only the OFDM signal but also other types of received signals whose signal amplitude greatly changes are as described above. Similarly, the gain of the variable gain amplifier can be determined from the noise ratio.
(Second Embodiment)
FIG. 8 is a block diagram illustrating a configuration example of the communication apparatus according to the second embodiment.
 図8に示すように、第2の実施の形態の通信装置は、検出部301が可変利得増幅器201から出力されたアナログ信号である受信信号を用いて雑音割合を検出する構成である。そのため、本実施形態の検出部301はアナログ回路で構成される。A/D変換器302の分解能は、第1の実施の形態と同様に可変とする。 As shown in FIG. 8, the communication apparatus according to the second embodiment has a configuration in which the detection unit 301 detects a noise ratio using a reception signal that is an analog signal output from the variable gain amplifier 201. Therefore, the detection unit 301 of the present embodiment is configured with an analog circuit. The resolution of the A / D converter 302 is variable as in the first embodiment.
 また、第2の実施の形態の制御部302は、検出部301がアナログ回路であるため、アナログ回路で構成してもよい。しかしながら、制御部302を第1の実施の形態と同様にCPU、DSP、メモリ等を含む情報処理装置で実現する場合は、制御部302に検出部301の出力信号を取り込むためのA/D変換器を備える必要がある。その他の構成及び動作は第1の実施の形態と同様であるため、その説明は省略する。 Also, the control unit 302 of the second embodiment may be configured with an analog circuit because the detection unit 301 is an analog circuit. However, when the control unit 302 is realized by an information processing apparatus including a CPU, a DSP, a memory, and the like as in the first embodiment, A / D conversion for capturing the output signal of the detection unit 301 in the control unit 302 is performed. It is necessary to provide a vessel. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
 図9は、図8に示した検出部の一実施例を示す回路図である。 FIG. 9 is a circuit diagram showing an embodiment of the detection unit shown in FIG.
 図9に示すように、検出部301は、振幅基準値生成部401、第1の比較器402、積分回路403、雑音基準値生成部404及び第2の比較器405を備えている。 As shown in FIG. 9, the detection unit 301 includes an amplitude reference value generation unit 401, a first comparator 402, an integration circuit 403, a noise reference value generation unit 404, and a second comparator 405.
 振幅基準値生成部401は、振幅点のカウントに用いるしきい値電圧を生成する。 The amplitude reference value generation unit 401 generates a threshold voltage used for counting the amplitude points.
 第1の比較器402は、振幅基準値生成部401で生成されたしきい値電圧と可変利得増幅器201の出力信号とを比較し、該しきい値電圧よりも大きい可変利得増幅器201の出力信号を出力する。 The first comparator 402 compares the threshold voltage generated by the amplitude reference value generation unit 401 with the output signal of the variable gain amplifier 201, and outputs an output signal of the variable gain amplifier 201 that is greater than the threshold voltage. Is output.
 積分回路403は、第1の比較器402から出力された信号を積分(平滑化)して出力する。積分回路403の出力値が第1の実施の形態で示したしきい値電圧よりも大きい振幅点の数(カウント値)に相当する。積分回路403の出力信号は第2の比較器405及び制御部302に出力される。 The integration circuit 403 integrates (smooths) the signal output from the first comparator 402 and outputs the result. This corresponds to the number (count value) of amplitude points at which the output value of the integrating circuit 403 is larger than the threshold voltage shown in the first embodiment. An output signal of the integration circuit 403 is output to the second comparator 405 and the control unit 302.
 雑音基準値生成部404は、受信信号の雑音割合が、A/D変換器302の分解能を低下させても問題ない、十分に低いレベルであるか否かを判定するための雑音基準電圧を生成する。 The noise reference value generation unit 404 generates a noise reference voltage for determining whether the noise ratio of the received signal is at a sufficiently low level that does not cause a problem even if the resolution of the A / D converter 302 is reduced. To do.
 第2の比較器405は、積分回路403から出力された積分電圧と雑音基準値生成部404で生成された雑音基準電圧とを比較し、その比較結果を制御部302へ出力する。 The second comparator 405 compares the integration voltage output from the integration circuit 403 with the noise reference voltage generated by the noise reference value generation unit 404, and outputs the comparison result to the control unit 302.
 制御部302は、第1の実施の形態で示したカウント値に代わって、積分回路403から出力された積分電圧を用いて受信信号の雑音割合を求め、該雑音割合に基づいて可変利得増幅器201の利得を決定し、該決定した利得を指示する制御信号を利得調整部202へ出力する。また、制御部302は、積分回路403から出力された積分電圧が雑音基準電圧よりも小さいとき、A/D変換器302の分解能を低下させる。 The control unit 302 obtains the noise ratio of the received signal using the integrated voltage output from the integrating circuit 403 instead of the count value shown in the first embodiment, and the variable gain amplifier 201 is based on the noise ratio. And a control signal indicating the determined gain is output to the gain adjusting unit 202. The control unit 302 reduces the resolution of the A / D converter 302 when the integrated voltage output from the integrating circuit 403 is smaller than the noise reference voltage.
 第2の実施の形態の通信装置によれば、検出部301をアナログ回路で構成しても、第1の実施の形態と同様の効果を得ることができる。
(第3の実施の形態)
 図10は、第3の実施の形態の通信装置の一構成例を示すブロック図である。
According to the communication apparatus of the second embodiment, the same effect as that of the first embodiment can be obtained even if the detection unit 301 is configured by an analog circuit.
(Third embodiment)
FIG. 10 is a block diagram illustrating a configuration example of the communication apparatus according to the third embodiment.
 第3の実施の形態の通信装置は、分解能が固定のA/D変換器501を用いる例である。この場合、図10に示すように、制御部503はA/D変換器501にその分解能の変更を指示する必要がない。その他の構成及び動作は第1の実施の形態と同様であるため、その説明は省略する。 The communication apparatus according to the third embodiment is an example using an A / D converter 501 with a fixed resolution. In this case, as shown in FIG. 10, the control unit 503 does not need to instruct the A / D converter 501 to change the resolution. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
 本実施形態の通信装置によれば、第1の実施の形態の通信装置と同様の効果が得られると共に、A/D変換器501の分解能の変更処理が不要であるため、制御部503の処理負荷が軽減する。
(第4の実施の形態)
 図11は、第4の実施の形態の受信装置の一構成例を示すブロック図である。
According to the communication apparatus of the present embodiment, the same effect as that of the communication apparatus of the first embodiment can be obtained, and the process of changing the resolution of the A / D converter 501 is unnecessary. The load is reduced.
(Fourth embodiment)
FIG. 11 is a block diagram illustrating a configuration example of the receiving apparatus according to the fourth embodiment.
 第4の実施の形態の受信装置は、第2の実施の形態の受信装置と同様に、検出部601が可変利得増幅器201から出力されたアナログ信号である受信信号を用いて雑音割合を検出する構成である。また、第4の実施の形態の受信装置は、第3の実施の形態と同様に分解能が固定のA/D変換器501を用いる。そのため、第3の実施の形態と同様に、制御部603はA/D変換器501にその分解能の変更を指示する必要がない。 In the receiving apparatus according to the fourth embodiment, similarly to the receiving apparatus according to the second embodiment, the detection unit 601 detects the noise ratio using the received signal that is an analog signal output from the variable gain amplifier 201. It is a configuration. The receiving apparatus according to the fourth embodiment uses an A / D converter 501 with a fixed resolution, as in the third embodiment. Therefore, as in the third embodiment, the control unit 603 does not need to instruct the A / D converter 501 to change the resolution.
 図12は、図11に示した検出部の一構成例を示す回路図である。 FIG. 12 is a circuit diagram showing a configuration example of the detection unit shown in FIG.
 図12に示すように、本実施形態の検出部601は、図9に示した第2の実施の形態の検出部301から雑音基準値生成部404及び第2の比較器405を除いた構成である。すなわち、本実施形態ではA/D変換器602の分解能が固定であるため、検出部601は積分回路403による積分電圧を制御部603に出力するだけでよい。 As shown in FIG. 12, the detection unit 601 of the present embodiment has a configuration in which the noise reference value generation unit 404 and the second comparator 405 are excluded from the detection unit 301 of the second embodiment shown in FIG. is there. That is, in this embodiment, since the resolution of the A / D converter 602 is fixed, the detection unit 601 only needs to output the integrated voltage from the integration circuit 403 to the control unit 603.
 本実施形態の通信装置によれば、第1の実施の形態の通信装置と同様の効果が得られると共に、制御部603はA/D変換器601にその分解能の変更を指示する必要がないため、制御部603の処理負荷が軽減する。さらに、検出部601は積分回路403による積分電圧を制御部603に出力すればよく、検出部601を第2の実施の形態よりも簡易に構成できる。 According to the communication device of this embodiment, the same effect as that of the communication device of the first embodiment can be obtained, and the control unit 603 does not need to instruct the A / D converter 601 to change the resolution. The processing load on the control unit 603 is reduced. Furthermore, the detection unit 601 only needs to output the integrated voltage from the integration circuit 403 to the control unit 603, and the detection unit 601 can be configured more simply than in the second embodiment.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。 As mentioned above, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2009年11月30日に出願された特願2009-271491号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-271491 filed on November 30, 2009, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  外部からの制御信号にしたがって利得が変更可能な可変利得増幅器と、
     前記可変利得増幅器から出力されたアナログ信号から成る受信信号をデジタル信号に変換するA/D変換器と、
     前記受信信号の振幅が所定のしきい値を超える振幅点の数を、所定の期間にてカウントする検出部と、
     前記受信信号の種類に対応して予め求められた、前記しきい値を超える前記受信信号の振幅点の数と該受信信号のS/N比との関係を示す雑音指標情報を備え、該雑音指標情報を用いて前記検出部から出力されるカウント値に基づき前記受信信号のS/N比に略等しい雑音割合を求め、該雑音割合から前記可変利得増幅器の利得を設定する制御部と、
     前記A/D変換器でデジタル信号に変換された受信信号を復調する復調器と、
    を有する受信装置。
    A variable gain amplifier whose gain can be changed in accordance with an external control signal;
    An A / D converter that converts a received signal composed of an analog signal output from the variable gain amplifier into a digital signal;
    A detector that counts the number of amplitude points at which the amplitude of the received signal exceeds a predetermined threshold in a predetermined period;
    Noise index information indicating the relationship between the number of amplitude points of the received signal exceeding the threshold and the S / N ratio of the received signal, which is obtained in advance corresponding to the type of the received signal, A control unit for obtaining a noise ratio substantially equal to an S / N ratio of the received signal based on a count value output from the detection unit using index information, and setting a gain of the variable gain amplifier from the noise ratio;
    A demodulator that demodulates the received signal converted into a digital signal by the A / D converter;
    A receiving apparatus.
  2.  前記制御部は、
     前記A/D変換器の入力信号の最大振幅が前記A/D変換器の最大許容入力よりも大きく、前記雑音割合が大きいほど前記可変利得増幅器の利得が大きくなるように前記可変利得増幅器の利得を設定する請求項1記載の受信装置。
    The controller is
    The gain of the variable gain amplifier is such that the maximum amplitude of the input signal of the A / D converter is larger than the maximum allowable input of the A / D converter and the gain of the variable gain amplifier increases as the noise ratio increases. The receiving apparatus according to claim 1, wherein:
  3.  前記A/D変換器は、分解能が可変であり、
     前記制御部は、
     前記雑音割合が予め設定した基準値以下である場合、前記A/D変換器の分解能を低下させる請求項1または2記載の受信装置。
    The A / D converter has a variable resolution,
    The controller is
    The receiving apparatus according to claim 1, wherein when the noise ratio is equal to or lower than a preset reference value, the resolution of the A / D converter is reduced.
  4.  前記受信信号の最大振幅を検出するピーク検出部をさらに備え、
     前記制御部は、
     他の通信装置からの信号受信開始時は、前記ピーク検出部で検出された前記受信信号の最大振幅が前記A/D変換器の最大許容入力と等しくなるように前記可変利得増幅器の利得を設定し、前記信号受信開始から所定の期間が経過した後は、前記雑音割合から前記可変利得増幅器の利得を設定する請求項1から3のいずれか1項記載の受信装置。
    A peak detector for detecting a maximum amplitude of the received signal;
    The controller is
    At the start of signal reception from another communication device, the gain of the variable gain amplifier is set so that the maximum amplitude of the received signal detected by the peak detector is equal to the maximum allowable input of the A / D converter 4. The receiving device according to claim 1, wherein a gain of the variable gain amplifier is set from the noise ratio after a predetermined period has elapsed from the start of signal reception.
  5.  前記制御部は、
     前記可変利得増幅器の利得及び該利得の設定タイミングを前記復調器へ通知する請求項1から4のいずれか1項記載の受信装置。
    The controller is
    The receiving apparatus according to claim 1, wherein the demodulator is notified of the gain of the variable gain amplifier and the timing of setting the gain.
  6.  外部からの制御信号にしたがって利得が変更可能な可変利得増幅器と、
     前記可変利得増幅器から出力されたアナログ信号から成る受信信号をデジタル信号に変換するA/D変換器と、
     前記A/D変換器でデジタル信号に変換された受信信号を復調する復調器と、
    を備えた受信装置における前記可変利得増幅器の利得を制御するための利得制御方法であって、
     情報処理装置が、
     前記受信信号の種類に対応して予め求められた、所定のしきい値を超える前記受信信号の振幅点の数と該受信信号のS/N比との関係を示す雑音指標情報をメモリに格納しておき、
     前記受信信号の振幅が所定のしきい値を超える振幅点の数を、所定の期間にてカウントし、
     前記カウントした結果であるカウント値に基づき、前記雑音指標情報を用いて、前記受信信号のS/N比に略等しい雑音割合を求め、該雑音割合から前記可変利得増幅器の利得を設定する利得制御方法。
    A variable gain amplifier whose gain can be changed in accordance with an external control signal;
    An A / D converter for converting a received signal composed of an analog signal output from the variable gain amplifier into a digital signal;
    A demodulator that demodulates the received signal converted into a digital signal by the A / D converter;
    A gain control method for controlling the gain of the variable gain amplifier in a receiver comprising:
    Information processing device
    Noise index information indicating the relationship between the number of amplitude points of the received signal exceeding a predetermined threshold and the S / N ratio of the received signal, which is obtained in advance corresponding to the type of the received signal, is stored in the memory. Aside,
    The number of amplitude points at which the amplitude of the received signal exceeds a predetermined threshold is counted in a predetermined period,
    Based on the count value obtained as a result of the counting, using the noise index information, a noise ratio approximately equal to the S / N ratio of the received signal is obtained, and gain control for setting the gain of the variable gain amplifier from the noise ratio Method.
  7.  前記情報処理装置が、
     前記A/D変換器の入力信号の最大振幅が前記A/D変換器の最大許容入力よりも大きく、前記雑音割合が大きいほど前記可変利得増幅器の利得が大きくなるように前記可変利得増幅器の利得を設定する請求項6記載の利得制御方法。
    The information processing apparatus is
    The gain of the variable gain amplifier is such that the maximum amplitude of the input signal of the A / D converter is larger than the maximum allowable input of the A / D converter and the gain of the variable gain amplifier increases as the noise ratio increases. The gain control method according to claim 6, wherein:
  8.  前記A/D変換器の分解能が可変であるとき、
     前記情報処理装置が、
     前記雑音割合が予め設定した基準値以下である場合、前記A/D変換器の分解能を低下させる請求項6または7記載の利得制御方法。
    When the resolution of the A / D converter is variable,
    The information processing apparatus is
    The gain control method according to claim 6 or 7, wherein the resolution of the A / D converter is lowered when the noise ratio is equal to or less than a preset reference value.
  9.  前記情報処理装置が、
     他の通信装置からの信号受信開始時は、前記受信信号の最大振幅を検出し、該最大振幅が前記A/D変換器の最大許容入力と等しくなるように前記可変利得増幅器の利得を設定し、
     前記信号受信開始から所定の期間が経過した後は、前記雑音割合から前記可変利得増幅器の利得を設定する請求項6から8のいずれか1項記載の利得制御方法。
    The information processing apparatus is
    At the start of signal reception from another communication device, the maximum amplitude of the received signal is detected, and the gain of the variable gain amplifier is set so that the maximum amplitude is equal to the maximum allowable input of the A / D converter. ,
    The gain control method according to any one of claims 6 to 8, wherein a gain of the variable gain amplifier is set from the noise ratio after a predetermined period has elapsed from the start of signal reception.
  10.  前記情報処理装置が、
     前記可変利得増幅器の利得及び該利得の設定タイミングを前記復調器へ通知する請求項6から9のいずれか1項記載の利得制御方法。
    The information processing apparatus is
    The gain control method according to claim 6, wherein the demodulator is notified of the gain of the variable gain amplifier and the setting timing of the gain.
PCT/JP2010/068056 2009-11-30 2010-10-14 Reception device and gain control method WO2011065142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543165A JP5360227B2 (en) 2009-11-30 2010-10-14 Receiver and gain control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009271491 2009-11-30
JP2009-271491 2009-11-30

Publications (1)

Publication Number Publication Date
WO2011065142A1 true WO2011065142A1 (en) 2011-06-03

Family

ID=44066246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068056 WO2011065142A1 (en) 2009-11-30 2010-10-14 Reception device and gain control method

Country Status (2)

Country Link
JP (1) JP5360227B2 (en)
WO (1) WO2011065142A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226725A (en) * 1994-02-16 1995-08-22 Sharp Corp Orthogonal frequency division multiplex signal demodulator
JPH10303665A (en) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd Automatic gain control circuit
JP2002353813A (en) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp Digital communication unit and communication unit for distribution line carrier using it
WO2007080715A1 (en) * 2006-01-16 2007-07-19 Pioneer Corporation Digital reception device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226725A (en) * 1994-02-16 1995-08-22 Sharp Corp Orthogonal frequency division multiplex signal demodulator
JPH10303665A (en) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd Automatic gain control circuit
JP2002353813A (en) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp Digital communication unit and communication unit for distribution line carrier using it
WO2007080715A1 (en) * 2006-01-16 2007-07-19 Pioneer Corporation Digital reception device

Also Published As

Publication number Publication date
JPWO2011065142A1 (en) 2013-04-11
JP5360227B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
US9001941B2 (en) Method and apparatus to independently control front end gain and baseband gain
TWI469588B (en) Fast and robust agc apparatus and method using the same
US9831902B2 (en) Bluetooth smart signal receiving method and device using improved automatic gain control
KR102162491B1 (en) Method and apparatus of detecting interference signal for low power envelope detector
US8909183B2 (en) Automatic gain control device
US8737545B2 (en) Receiver chain gain selection
KR20160146788A (en) Short-range zigbee compatible receiver with near-threshold digital baseband
US20040259510A1 (en) Telecommunications receiver with automatic gain control
EP1179890A2 (en) Method and apparatus for analog-to-digital conversion using attenuated analog signals
CN107919859B (en) Automatic Gain Control (AGC) circuit and method for controlling amplifier gain based on the duration of an overload condition
US20070004349A1 (en) Power estimation of a transmission
JP4574687B2 (en) RF receiver
JP6530986B2 (en) Wireless receiving apparatus, electronic device, and wireless receiving method
US9325359B2 (en) Radiofrequency signal setting reaching a condition of jamming or clipping
JP5360227B2 (en) Receiver and gain control method
WO2011074164A1 (en) Automatic gain control device, receiver, electronic device, and automatic gain control method
US20120142297A1 (en) Receiver
TWI423597B (en) Method for compensating for gain ripple and group delay characteristics of filter and receiving circuit embodying the same
KR100651493B1 (en) Apparatus and method for controllin gain in receiver
KR100592946B1 (en) Method of improving SNR at receiving end of base station and receiver thereof
JP2008244594A (en) Automatic gain control circuit
JP5407596B2 (en) Wireless communication apparatus and signal strength measuring method
WO2014132310A1 (en) Receiving device and demodulation method
KR100765365B1 (en) System and method for automatic gain control and digital communication system using the same
JP2010093400A (en) Radio communication terminal, electric field strength adjustment method for the same, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011543165

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10832989

Country of ref document: EP

Kind code of ref document: A1