JP2002353813A - Digital communication unit and communication unit for distribution line carrier using it - Google Patents

Digital communication unit and communication unit for distribution line carrier using it

Info

Publication number
JP2002353813A
JP2002353813A JP2001153641A JP2001153641A JP2002353813A JP 2002353813 A JP2002353813 A JP 2002353813A JP 2001153641 A JP2001153641 A JP 2001153641A JP 2001153641 A JP2001153641 A JP 2001153641A JP 2002353813 A JP2002353813 A JP 2002353813A
Authority
JP
Japan
Prior art keywords
signal
circuit
amplification factor
converter
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001153641A
Other languages
Japanese (ja)
Inventor
Hideo Hase
Mutsumi Ishii
睦 石井
英生 長谷
Original Assignee
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, 三菱電機株式会社 filed Critical Mitsubishi Electric Corp
Priority to JP2001153641A priority Critical patent/JP2002353813A/en
Publication of JP2002353813A publication Critical patent/JP2002353813A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a digital communication unit that can decide an amplification factor of an amplifier circuit in a short time and can be used for a distribution line carrier use communication unit adopting the multicarrier communication system and have high reception sensitivity, and to provide the distribution line carrier use communication unit using the communication unit. SOLUTION: The digital communication unit is provided with a 1st control circuit 10a that detects saturation of an analog/digital converter 16 to roughly and tentatively decide an amplification factor of an AGC amplifier circuit 17 and with a 2nd control circuit 10b that extracts a signal generating circuit component, compares its level with a predetermined level and finely controls the gain of the AGC amplifier circuit 17 according to the comparison result. Thus, number of levels of the selectable gain of the AGC amplifier circuit 17 can be increased and the optimum reception sensitivity can quickly be obtained.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】この発明は、特に、配電線を伝送路とし、複数の周波数の配電線搬送信号を送受信する通信装置に関する。 TECHNICAL FIELD The present invention is particularly, the distribution line is a transmission line, a communication apparatus for transmitting and receiving distribution line carrier signals of a plurality of frequencies.

【0002】 [0002]

【従来の技術】従来のディジタル通信装置として、広帯域ディジタル受信機(以下ディジタル受信機という)があり、例えば特開2000−236276号公報に示されている。 As a conventional digital communication apparatus, there are wideband digital receiver (hereinafter referred to as a digital receiver) are shown, for example, in JP 2000-236276. 図8は、上記公報に示された従来のディジタル受信機の構成を示す構成概要図である。 Figure 8 is a schematic configuration diagram showing a configuration of a conventional digital receiver illustrated in the above publication. なお、ここで言う広帯域ディジタル受信機とは、受信した広帯域信号を高周波信号のままRF帯あるいはIF帯においてA/ Here, the wideband digital receiver means, the wideband signal at the left RF band or IF band RF signal received A /
D変換し、チャネル分離以降の処理をディジタル回路で行う受信機である。 D conversion, a receiver for processing subsequent channel separation in digital circuits. このようなデイジタル受信機を開示した公報としては特願昭61−504791号公報“ディジタル無線周波受信機”があるが、既によく知られていると考えられるので、同公報の説明は省略する。 As the publication disclosing such digital receivers is Japanese Patent Application Sho 61-504791 discloses "a digital radio frequency receiver", it is considered to have been already well known, the description of the publication will be omitted.

【0003】図8に示すように、ディジタル受信機は、 [0003] As shown in FIG. 8, a digital receiver,
無線電波(RF信号)を受信するアンテナ31と、帯域制限を行うRFバンドパスフィルタ(RFBPF)32 An antenna 31 for receiving radio waves (RF signals), RF bandpass filters (RFBPF) 32 for performing band limitation
と、前記RF信号をIF信号に周波数変換するローカル信号発振器34とミキサ33、このIF信号に帯域制限を施すためのとIFバンドパスフィルタ(IFBPF) When the local signal oscillator 34 and the mixer 33, for applying a band limitation to the IF signal preparative IF bandpass filter for frequency-converting the RF signal into an IF signal (IFBPF)
36と、IF信号増幅用のAGCアンプ(増幅率可制御アンプ)37と、増幅されたIF信号(アナログ受信信号)をディジタルに変換するA/D変換器38と、所望のチャネル帯域を分離するチャネル分離器(CH分離) And 36, separated from the AGC amplifier (amplification factor controllable amplifier) ​​37 for IF signal amplification, and A / D converter 38 for converting the amplified IF signal (analog reception signal) to a digital, a desired channel bandwidth channel separator (CH separated)
39と、該チャネル分離器39の出力信号からデータ信号を復調する復調器41とで構成される。 And 39, and a demodulator 41 for demodulating the data signal from the output signal of the channel separator 39.

【0004】図8において、アンテナ31で受信した受信信号は、RFバンドパスフィルタ32に入力されて必要な帯域制限を受ける。 [0004] In FIG. 8, the received signal received by the antenna 31 is subjected to required band limitation is input to the RF band-pass filter 32. ここで言う必要な帯域とは、本広帯域ディジタル受信機が受信可能なバンド幅であり、 The necessary band here, a band width capable of receiving the wideband digital receiver,
通常使用されるシステムのサービスバンド帯域に一致するよう設定される。 It is set to match the service band bandwidth of the system normally used. 例えば、PDC800MHz方式携帯電話システムでは16MHzの帯域幅となる。 For example, the bandwidth of 16MHz in PDC800MHz method portable telephone system. RFバンドパスフィルタ32のこの通過帯域幅をWとする。 The pass bandwidth of the RF band-pass filter 32 and W.

【0005】次に、RFバンドパスフィルタ32で帯域制限を受けた受信信号は、ミキサ33、ローカル発振器34及びIFバンドパスフィルタ35により周波数変換及び帯域制限を施されてIF信号となる。 [0005] Next, the received signal subjected to band limiting the RF bandpass filter 32, a mixer 33, the IF signal is subjected to frequency conversion and band limitation by a local oscillator 34 and IF bandpass filter 35. IFバンドパスフィルタ35の帯域幅即ちIF信号の帯域幅は、RF Bandwidth Bandwidth i.e. IF signal of the IF bandpass filter 35, RF
バンドパスフィルタ32のそれと同じWである。 Is the same W as that of the band-pass filter 32. 次に、 next,
IF信号はAGCアンプ37で増幅された後、A/D変換器38で広帯域ディジタル信号に変換される。 IF signal is amplified by the AGC amplifier 37, it is converted into a wideband digital signal by the A / D converter 38. AGC AGC
アンプ37の増幅率は、A/D変換器38への入力信号がA/D変換器38の最大許容入力レベルを越えない範囲で最大になるようにフィードバック制御される。 Amplification factor of the amplifier 37, the input signal to the A / D converter 38 is feedback controlled so as to maximize the extent not exceeding the maximum allowable input level of the A / D converter 38.

【0006】第一の課題として、この構成では、例えばA/D変換器38の入力信号にレベルの高いノイズが重畳されていると、AGCアンプの増幅率が低下させられ、A/D変換器38への入力信号レベルが減少し、復調器41において復調されたデータ信号のうち伝送に使用された周波数信号成分のレベルがこれらの信号処理回路のダイナミツクレンジに対して相対的に小さくなり、 [0006] As a first problem, in this configuration, for example, a high level of noise to the input signal of the A / D converter 38 is superimposed, the amplification factor of the AGC amplifier is reduced, the A / D converter input signal level to 38 is reduced, it becomes relatively small with respect to the dynamic range of the level of those of the signal processing circuit of the frequency signal components used for transmission of the demodulated data signal in the demodulator 41,
送信信号の正常な再生が困難になる。 The normal reproduction of the transmitted signal becomes difficult. A/D変換器38 A / D converter 38
から出力された広帯域ディジタル信号はチャネル分離器39に入力され、所望の狭帯域(チャネル帯域)ディジタル信号に分離される。 Wideband digital signal outputted from the input to the channel separator 39 is separated into the desired narrowband (channel bandwidth) digital signal. ここで言う狭帯域(チャネル帯域)とは、例えばPDC800MHz方式携帯電話システムでは25kHzである。 Here, the narrow-band (channel bandwidth) referred, for example, in PDC800MHz method portable telephone system is 25 kHz. チャネル分離された狭帯域(チャネル帯域)ディジタル信号は、復調器41においてシステムの変調方式(PDC800MHz方式携帯電話ではπ/4QPSK)に応じて復調されデータ信号となる。 Narrowband (channel bandwidth) digital signal channel separation becomes the data signal is demodulated according to ([pi / 4 QPSK in PDC800MHz scheme mobile phone) modulation scheme of the system in the demodulator 41.

【0007】また、近年、上記のようなデイジタル通信装置がコスト削減などの理由から既存の電力線(配電線)を利用して通信を行なう電力線モデムなどの技術として利用されはじめている。 Further, in recent years, has begun to be utilized as a technique such as the power line modem digital communication apparatus as described above performs communication by using reason from the existing power lines, such as cost reduction (distribution lines). この技術に関しては例えば特開2001−111518号公報に開示されたものがある。 In this technique is disclosed in, for example, JP-2001-111518. この公報では、様々な家電機器の電源回路等から漏えいするノイズへの耐ノイズ性を高めるという観点から、複数の周波数帯域に同一のデータを載せ、ノイズの影響の大きい周波数帯域を避けノイズの影響の少ない周波数帯域を利用した通信が可能なマルチキャリア通信方式が提案されている。 In this publication, from the viewpoint of enhancing the noise resistance of the noise leaking from the power supply circuit or the like of various home appliances, place the same data to a plurality of frequency bands, the influence of noise to avoid a large frequency band of the influence of noise multicarrier communication method is proposed which can less communication using a frequency band. 第2の課題として、このようなマルチキャリア通信方式の場合には、単一の周波数帯域を利用したシングルキャリア通信方式に比較し、データの処理時間が長いので、前述のAGCのフィードバック制御の安定時間が加われば、ますます長くなり、実用上、 As a second problem, in the case of such a multi-carrier communication method, compared to single-carrier communication system using a single frequency band, since the processing time of the data is long, stable feedback control of the aforementioned AGC if Kuwaware time, become more and more long, practical,
フィードバック制御の応答速度が遅過ぎるという課題があった。 The response speed of the feedback control is a problem that too late.

【0008】 [0008]

【発明が解決しようとする課題】従来の広帯域ディジタル受信機は、A/D変換器への入力信号がその最大許容入力レベルを越えない範囲で最大になるように、AGC THE INVENTION Problems to be Solved by conventional wideband digital receiver, to maximize the extent that the input signal to the A / D converter does not exceed the maximum allowable input level, AGC
アンプの増幅率がフィードバック制御されているので、 Because amplifier gain is feedback-controlled,
例えばA/D変換器の入力信号にレベルの高いノイズが混入すると、相対的にA/D変換器への入力信号レベルが減少し、復調器で復調されたデータ信号のうち伝送に使用された周波数信号成分のレベルが信号処理回路のダイナミツクレンジに対して小さくなってしまうので、送信信号の正常な再生が困難になるという課題があった。 For example, when a high level of noise mixed in the input signal of the A / D converter, the input signal level to a relatively A / D converter is reduced, which is used for transmission of the demodulated data signal by the demodulator since the level of the frequency signal components becomes smaller than the dynamic range of the signal processing circuit has a problem that the normal reproduction is difficult transmission signal.

【0009】また、以上のようなディジタル通信装置を配電線搬送用通信装置として使用するためには、様々な家電機器の電源回路等から漏えいするノイズが不特定かつ時間的に変化するため、AGCアンプ7の増幅率の決定をより短時間でもっと細かく行うことが求められていた。 [0009] or more of such digital communication device for use as a distribution line carrier communication device, the noise leaking from the power supply circuit or the like of a variety of home appliances is changed unspecified temporally, AGC it has been desired to perform more closely to determine the amplification factor of the amplifier 7 in a shorter time. さらに、複数の周波数帯域に同一のデータを載せ、 Furthermore, placing the same data to a plurality of frequency bands,
ノイズの影響の少ない周波数帯域を利用した通信が可能なマルチキャリア通信方式の場合には、単一の周波数帯域を利用したシングルキャリア通信方式に比較し、データの処理時間が長くなるため、AGC処理時間をより短することが望ましい。 In the case of small communication capable multicarrier communication scheme in which a frequency band using the influence of noise, as compared to single-carrier communication system using a single frequency band, the processing time of the data becomes long, AGC processing it is desirable to shorter time.

【0010】この発明は、かかる問題点を解決するためになされたものであり、短時間で増幅回路の増幅率を決定でき、マルチキャリア通信方式の配電線搬送用通信装置にも使用可能で、かつ受信感度の高いディジタル通信装置及びこれを用いた配電線搬送用通信装置を得ることを目的としている。 [0010] The present invention, such a problem has been made to solve the, can determine the amplification factor of the short time the amplifier circuit, can also be used for distribution line carrier communication system of a multicarrier communication scheme, and aims at obtaining a high reception sensitivity digital communication apparatus and distribution line carrier communication apparatus using the same.

【0011】 [0011]

【課題を解決するための手段】この発明のディジタル通信装置は、外部から所定の搬送周波数で入力されたアナログ信号を増幅する増幅回路、前記増幅回路の出力側に接続されたA/Dコンバータ、前記増幅回路から前記A Means for Solving the Problems] digital communication apparatus of the present invention, an amplifier circuit, connected to the output side of the amplifier circuit the A / D converter for amplifying the analog signal input from the outside at a predetermined carrier frequency, wherein from said amplifier circuit A
/Dコンバータに入力される信号の大きさが、前記A/ / D magnitude of the converter to the signal input, the A /
Dコンバータのダイナミックレンジに対してあらかじめ定めた所定の値になるように前記増幅回路の増幅率を制御する第一の制御回路、前記A/Dコンバータの出力信号から、前記搬送周波数の周波数成分の信号を抽出し、 First control circuit for controlling the amplification factor of the amplifier circuit to a predetermined value predetermined for D converter dynamic range, from the output signal of the A / D converter, the frequency components of the carrier frequency to extract the signal,
この抽出した信号のレベルをあらかじめ定めた所定のレベルと比較し、その結果にもとづき前記増幅回路の増幅率を制御する第二の制御回路を備えたものである。 The level of the extracted signal is compared with a predetermined prescribed level, but with a second control circuit for controlling the amplification factor of the amplifier circuit based on the result.

【0012】また、前記増幅回路の増幅率は段階的に変化する不連続な値を持ち、前記第一の制御回路は前記増幅回路が設定可能な全ての増幅率の段階の中から選択した互いに隣接しない複数の増幅率の段階により前記増幅回路を制御し、前記第二の制御回路は前記全ての増幅率の中から選択した増幅率で制御するものである。 Further, the amplification factor of the amplifier circuit has a discrete value which changes stepwise, the first control circuit from each other selected from among the stage of the amplification factor of all the amplifier circuit is configurable wherein to control the amplification circuit by serial multiple amplification factor which is not adjacent, the second control circuit is for controlling an amplification factor selected from among the all of the amplification factor.

【0013】また、前記第一の制御回路は、前記増幅回路の増幅率を制御する際、増幅率の大きい方から開始して前記A/Dコンバータの出力の飽和程度を観測し、その観測結果にもとづいて、制御する増幅率を順次低い方へ移行するものである。 Further, the first control circuit, the time of controlling the amplification factor of the amplifier circuit, starting from the side of the amplification factor greater observes about saturation of the output of the A / D converter, the observation result based on, it is to migrate the amplification factor for controlling the sequential lower.

【0014】また、前記第二の制御回路は、前記A/D Further, the second control circuit, the A / D
コンバータから出力されたディジタル信号をフーリエ変換するFFT回路によりフーリエ変換された信号中から搬送波周波数の成分の信号を抽出し、この信号の大きさを予め定めた所定のレベルと比較した結果にもとづいて、前記増幅回路の増幅率を制御するように構成したものである。 The digital signal output from the converter to extract a signal component of the carrier frequency from among the Fourier transformed signal by FFT circuit that Fourier transform, based on the result of comparing the magnitude of the signal predetermined to a predetermined level , which is constituted so as to control the amplification factor of the amplifier circuit.

【0015】この発明にかかる配電線搬送用通信装置は、配電線に接続する結合回路、前記結合回路から所定の搬送周波数で入力されたアナログ信号を増幅する増幅回路、前記増幅回路の出力側に接続されたA/Dコンバータ、前記増幅回路から前記A/Dコンバータに入力される信号の大きさが、前記A/Dコンバータのダイナミックレンジに対してあらかじめ定めた所定の値になるように前記増幅回路の増幅率を制御する第一の制御回路、 The distribution line carrier communication apparatus according to this invention, coupling circuit connected to the distribution line, an amplifier circuit for amplifying an analog signal inputted at a predetermined carrier frequency from the coupling circuit, to the output side of the amplifier circuit connected a / D converter, the magnitude of the signal input from the amplifier circuit to the a / D converter, said amplifier to a predetermined value predetermined for the dynamic range of the a / D converter first control circuit for controlling the amplification factor of the circuit,
前記A/Dコンバータの出力信号から、前記搬送周波数の周波数成分の信号を抽出し、この抽出した信号のレベルをあらかじめ定めた所定のレベルと比較し、その結果にもとづき前記増幅回路の増幅率を制御する第二の制御回路を備えたディジタル通信装置を用いたものである。 From the output signal of the A / D converter, the extracted signal of the frequency components of the carrier frequency, as compared to the level of the extracted signal predetermined prescribed level, the amplification factor of the amplifier circuit based on the result it is obtained using a digital communication apparatus having a second control circuit for controlling.

【0016】また、配電線に配送される前記アナログ信号の周波数は複数としたものである。 Further, the frequency of the analog signals to be delivered to the distribution line is obtained by a plurality.

【0017】 [0017]

【発明の実施の形態】実施の形態1. DETAILED DESCRIPTION OF THE INVENTION Embodiment 1. 図1はこの発明の実施の形態1に係るデイジタル通信装置の構成図で、例として複数周波数を搬送波として用いて通信を行なう配電線搬送用の通信装置を示している。 Figure 1 is a block diagram of a digital communication apparatus according to Embodiment 1 of the present invention shows a communication device for distribution line carrier which performs communication using a plurality of frequencies as a carrier wave as an example. 図1において、9 1, 9
0は送信すべき送信データであり図示しないデータ処理装置などから入力される。 0 is input from an data processing unit (not shown) is transmission data to be transmitted. 1はフレーミング回路で送信データ90に対して図2に示すようなフレーミング処理を行ない、これを一次変調器2へ出力する。 1 performs a framing process shown in FIG. 2 with respect to the transmission data 90 in the framing circuit, and outputs it to the primary modulator 2. 2は予め定めた方式(例えばDBPSKなど)で変調を行なう一次変調器、3は制御回路10の指令にもとづいて特定(複数も可)のトーンの信号を抽出するトーン選択器、4は逆高速フーリエ変換回路(IFFT:Inverse Fast Fou 2 predetermined method (e.g., DBPSK, etc.) primary modulator for performing modulation, the 3 tone selector for extracting a signal of a tone identified based on a command from the control circuit 10 (s), the inverse fast 4 Fourier transform circuit (IFFT: Inverse Fast Fou
rier Transform)で抽出されたトーン信号の周波数軸データを時間軸データに変換する。 Converting the frequency axis data of the tone signal extracted by RIER Transform) on the time axis data. 5はパラレル/シリアル変換回路(P/S)、6はディジタル/アナログ変換回路(D/A)、7は無線出力回路を配電線に接続するための結合回路、8は伝送路(配電線)、10は制御回路(詳細後述)であり、内部に第一の制御回路10aと第二の制御回路10bとを有している。 5 the parallel / serial conversion circuit (P / S), the digital / analog conversion circuit 6 (D / A), coupling circuit for connecting the radio power circuit to the distribution line 7, 8 transmission lines (distribution lines) , 10 denotes a control circuit (described later in detail), and a first control circuit 10a and the second control circuit 10b inside. フレーミング回路1、一次変調器2、トーン選択器3、IFFT4、P Framing circuit 1, the primary modulator 2, the tone selector 3, IFFT4, P
/S5、D/A6、結合回路7で送信系110を構成している。 / S5, D / A6, constitute a transmission system 110 in the coupling circuit 7.

【0018】120は受信系で、17は結合回路7から受信された高周波信号を制御回路10の制御に基づく増幅率(段階的に変化する不連続な増幅率の値を持つ)で増幅するAGC増幅回路(Auto Gain Control )、16 [0018] 120 in the reception system, 17 AGC amplified with an amplification factor based on the control of the high frequency signal to control circuit 10 which is received from the coupling circuit 7 (with a value of discrete gain that varies stepwise) amplifier circuit (Auto Gain Control), 16
はアナログ/ディジタル変換回路(A/D変換器)、1 Analog / digital converter (A / D converter), 1
5はシリアル/パラレル変換回路(S/P)、14は高速フーリエ変換回路(FFT:Fast Fourier Transfor 5 serial / parallel conversion circuit (S / P), 14 is a fast Fourier transform circuit (FFT: Fast Fourier Transfor
m)、13はトーン選択器、12は一次復調器、11はデフレーミング回路で、図2に示したフレーミングの信号から受信データ91を出力する。 m), 13 is a tone selector, 12 primary demodulator, 11 is a de-framing circuit, outputs the received data 91 from the framing signal shown in FIG. これらは送信系11 These are the transmission system 11
0を構成する対応部分と逆の動作を行なうものであるので、個々についての詳細な説明は省略する。 Because performs a corresponding portion opposite operation constituting a 0, a detailed description of each is omitted. そして、結合回路7、AGC回路17、A/D16、S/P15、 The coupling circuit 7, AGC circuit 17, A / D16, S / P15,
FFT14、トーン選択器13、一次復調器12、デフレーミング回路11で受信系120を構成する。 FFT 14, the tone selector 13, the primary demodulator 12, constituting the receiving system 120 by de-framing circuit 11. 結合回路7は送信系110にも、受信系120にも属している。 Coupling circuit 7 also belongs to the transmission system 110, to the receiving system 120.

【0019】結合回路7は、例えばトランスとハイパスフィルターにより構成され、通信装置の送受信部(図示省略しているが例えばD/A変換器6の出力側に接続された電力増幅回路など)を伝送路8である配電線に接続し、商用周波数の流入を阻止しつつ配電線搬送信号を通過させる役割を持つ。 The coupling circuit 7 is constituted by, for example transformer and the high-pass filter, transmitting transceiver of the communication device (such as connected power amplifier circuit to the output side of it are not shown for example D / A converter 6) connected to the distribution line is a road 8 has a role to pass distribution line carrier signal while preventing the influx of commercial frequency. AGC回路17は、結合回路7を通過した高周波ノイズを含む配電線搬送信号レベルの大小に関わらず、A/D変換器16に許容の範囲でできる限り大きい信号電圧を入力し、信号成分の抽出を容易にするためのものであり、例えば複数のオペアンプにより構成されており、制御回路10の指示により増幅に使用するオペアンプの組を選択するなどしてAGC回路ゲインを設定する。 AGC circuit 17, regardless of the distribution line carrier signal levels including high-frequency noise that has passed through the coupling circuit 7 receives a large signal voltage as possible in the range of allowable to the A / D converter 16, the extraction of the signal component the are intended to facilitate, for example, it is composed of a plurality of operational amplifiers, such as by selecting pairs of the operational amplifier used for amplifying the instruction of the control circuit 10 sets the AGC circuit gain. 理解を助けるため、図3に例えば、4個のオペアンプA,B,C,Dの組み合わせにより増幅回路を構成する場合を示す。 To aid in understanding, for example, in FIG. 3 shows four operational amplifiers A, B, C, a case of constituting the amplifying circuit by a combination of D. 図3(b)図はその回路で、 Figure 3 (b) drawing at the circuit,
スイッチSA,SB,SC,SDをそれぞれアンプ側に切り換えればアンプを使用し、バイパス回路側に切り換えればアンプを使用しないことを示す。 Using the amplifier switches SA, SB, SC, be switched to SD to the amplifier side, respectively, indicating not to use the amplifier be switched to the bypass circuit side. この場合、図3 In this case, as shown in FIG. 3
(a)に示すように、2の4乗通り即ち16通りの増幅率の組合わせが得られる。 (A), the combination of the fourth power as i.e. 16 different amplification factor of 2 is obtained. ここでどのアンプも使用しない組み合わせもゲイン1として1組に数えている。 Combinations which amplifier does not use herein are also counted in a set as the gain 1.

【0020】図4は図1の回路のAGC制御動作を説明する図であり、(a)はAGC回路17の入力信号で、 [0020] FIG. 4 is a diagram illustrating the AGC control operation of the circuit of FIG. 1, (a) is the input signal of the AGC circuit 17,
説明上、異なる振幅レベルの5つの入力信号がある場合を示している。 The description shows a case where there are five input signals of different amplitude levels. AGC回路17通過後の信号は(b)に示したように振幅レベルが、あらかじめ定めたほぼ一定の範囲(上下限とも)に押さえられるように、小さい信号は大きく増幅され、大きい信号は縮小されている。 Signal after passing through the AGC circuit 17 the amplitude level as shown (b), the as can be suppressed to a substantially constant range of predetermined (both upper and lower), a small signal is amplified largely, a large signal is reduced ing. このように、AGC回路17通過後の信号を、大きさが一定の範囲の信号としてA/Dコンバータ16に入力させることにより、A/Dコンバータ16のダイナミックレンジを有効に使用することができる。 Thus, the signal of the AGC circuit 17 after passing through, the size is by input to the A / D converter 16 as a signal of a certain range, it is possible to effectively use the dynamic range of the A / D converter 16.

【0021】トーン選択器13は、制御回路10からの指示により、ある個別周波数成分(複数も可)のトーンデータを選択する。 The tone selector 13, in accordance with an instruction from the control circuit 10 selects the tone data of the individual frequency components in (s). 図2は、上記フレーミング回路1によるフレーミング処理で生成されるフレームの構成と、 2, the configuration of a frame generated by the framing process by the framing circuit 1,
そのフレームにおけるPOCフィールド(Power Line C POC field in the frame (Power Line C
ommunication Overhead Control Field )の構成を示す図である。 It is a diagram showing a configuration of ommunication Overhead Control Field). 図2に示すフレームは、 1)キャリア検出用の信号の領域であるプリアンブル(1)フィールドと、 2)シンボル同期用の信号の領域であるプリアンブル(2)フィールドと、 3)予め定められた固定コードの領域である同期コードフィールドと、 4)データフィールドの長さを示す信号の領域であるF Frame shown in FIG. 2, 1) and the preamble (1) field is the area of ​​the signal for detecting the carrier, 2) a preamble (2) field that is a region of a symbol synchronization signal, 3) a predetermined fixed synchronization code field is an area code, 4) is a region of a signal indicating the length of the data field F
rameType(FT)フィールドと、 5)住宅識別用コードの領域であるHouseCode rameType and (FT) field, 5) is a region of the housing identification code HouseCode
(HC)フィールドと、 6)物理層で使用する制御コマンドの領域であるPOC (HC) and the field, 6) is a region of the control commands used at the physical layer POC
フィールドと、 7)FT,HC,POCに対する誤り訂正符号の領域であるR−S符号フィールドと、 8)データフィールド から構成され、このフレームがフレーミング回路1にて生成され、前述の処理で変調後、伝送路8に出力される。 And fields, 7) FT, HC, and R-S code field is a region of an error correcting code for the POC, 8) and a data field, this frame is generated by the framing circuit 1, after modulation by the process described above It is outputted to the transmission path 8. なお、実施の形態1においては、たとえば、上記プリアンブル(1)を16シンボル区間にわたる同一データの繰り返しパターンとし、上記プリアンブル(2)を16シンボル区間にわたる反転データの繰り返しパターン(シンボル単位にデータを反転させるパターン)とする。 In the first embodiment, for example, a repeating pattern of the same data the preamble (1) over 16 symbol intervals, inverted data to the repetitive pattern (symbol unit of the inverted data the preamble (2) over 16 symbol intervals It is to pattern) to be.

【0022】また、伝送路8(配電線)上のフレームは、伝送路8に接続されたすべての通信装置(図示しない)で受け取られ、制御回路10では、RS(リードソロモン)符号を利用してエラーチェックを行い、HCの識別を行った上で自家のHCと一致した場合、伝送路上に送信されているデータが自分宛てであると判断し、R Further, the frame on the transmission path 8 (distribution lines) are received by all the communication devices connected to the transmission path 8 (not shown), the control circuit 10, using the RS (Reed-Solomon) code error checking Te, If a match with HC autologous after performing the identification of the HC, the data being transmitted on the transmission path is determined to be destined, R
S(リードソロモン)符号を利用してエラーチェック/ S error by using the (Reed-Solomon) code check /
訂正を行い、その内容を理解する。 It performs a correction, to understand its contents. 自家のHCと一致しない場合は、動作を行わない。 If you do not want to match the HC of the house does not perform the operation.

【0023】一方、POCは、通信の速度(たとえば、 [0023] On the other hand, POC, the speed of communication (for example,
低速モード、高速モード等)を設定する2ビットの通信モードフィールドと、選択可能な変調方式(たとえば、 Low-speed mode, the communication mode field 2 bits are used to set the high-speed mode, etc.), a selectable modulation scheme (e.g.,
DQPSK,DBPSK,DBPSK+時間ダイバーシチ等)を示す2ビットの変調方式フィールドと、制御コマンド(通常動作、変更動作)を示す1ビットのコマンドフィールドと、制御コマンドの機能を示す2ビットのサブコマンドと、各機能の設定情報(トーングループ、 DQPSK, DBPSK, a modulation scheme field 2 bits indicating the DBPSK + time diversity, etc.), a control command (normal operation, the command field of 1 bit indicating the change operation), a 2-bit sub-command indicating the functions of the control command, configuration information (tone group of each function,
セットポジション)を示す8ビットのコマンド引数と、 And an 8-bit command argument that indicates the set position),
1ビットの拡張ビットから構成され、たとえば、トーンの移動および一次変調方式の変更等の処理を行うために使用される。 1 consists extension bits of the bit, for example, is used for processing the change of movement and the primary modulation scheme of tones.

【0024】次に、動作について説明する。 [0024] Next, a description will be given of the operation. (送信動作)送信データ90がフレーミング回路1に入力されると制御回路10からの制御で変調されるデータに変換され一次変調器2に入力される。 (Transmission operation) transmission data 90 is input to the primary modulator 2 is converted into the data that is modulated by the control from the control circuit 10 is input to the framing circuit 1. 一次変調器2 The primary modulator 2
は、制御回路10からの制御によりデータを一次変調し、トーン選択器3へ出力する。 The data to primary modulation by control of the control circuit 10, and outputs to the tone selector 3. トーン選択器3は、制御回路10からの制御でトーンごとにデータを生成し、 Tone selector 3 generates data for each tone in the control of the control circuit 10,
IFFT4に出力する。 And outputs it to the IFFT4. IFFT4は、入力されたデータを逆フーリエ変換して複数トーン分の合成されたデータとして生成する。 IFFT4 is to inverse Fourier transform the input data to generate a combined data of the plurality of tones minute. 5はシリアルパラレル変換回路であり、入力されたシリアルデータをパラレルデータに変換し、D/Aコンバータ入力する。 5 is a serial-parallel conversion circuit converts the input serial data into parallel data, and D / A converter input. D/Aコンバータ6は入力されたデータを変換し、結合回路7を経由して伝送路8に出力する。 D / A converter 6 converts the input data, and outputs to the transmission path 8 via a coupling circuit 7.

【0025】(受信動作)配電線搬送信号が到来すると伝送路8に接続された結合回路7の伝送路側に商用周波数電圧に重畳された複数トーンの配電線搬送信号の信号電圧が誘起する。 [0025] (receiving operation) signal voltage distribution line carrier signals of a plurality of tones superimposed on the commercial frequency voltage to the transmission line side of the distribution line carrier signal arrives transmission line 8 is connected to the coupling circuit 7 is induced. 配電線搬送信号は商用周波数より十分に高い周波数であるため、商用周波数を阻止する結合回路7を通過する。 For distribution line carrier signal is sufficiently higher frequency than the commercial frequency, it passes through the coupling circuit 7 for inhibiting the commercial frequency. この時、他の家電機器等の電源回路から伝送路8に漏えいしている高周波ノイズも同時に結合回路7を通過する。 At this time, high-frequency noise to pass through the coupling circuit 7 at the same time that leaked to the transmission path 8 from the power supply circuit, such as other home appliances. 結合回路7を通過した高周波ノイズを含む配電線搬送信号はAGC回路17、A/Dコンバータ16により、入力電圧の時系列ディジタルデータに変換される。 Distribution line carrier signal including a high-frequency noise that has passed through the coupling circuit 7 by the AGC circuit 17, A / D converter 16, is converted into a time series digital data of the input voltage. このディジタルデータを一定時間分記憶した後、FFT信号処理14により周波数分析を行い、トーン選択器13で伝送に使用している周波数データのみを一次復調器12に導いている。 After a certain time period stores the digital data, performs a frequency analysis by FFT signal processing 14, and only the frequency data are used for transmission in the tone selector 13 directs the primary demodulator 12.

【0026】図5はこの発明のAGC制御動作のフローチャートである。 [0026] FIG 5 is a flowchart of the AGC control operation of the present invention. 制御回路10の内部の第一の制御回路10aによる初期制御で、AGC回路17は、最初は、 In the initial control by the first control circuit 10a of the internal control circuit 10, AGC circuit 17, first,
最大増幅度(即ち図3のレベルX16)に設定(ステップS31)し、次に、A/Dコンバータ16のディジタル変換値を第一の制御回路10aが読み取る(ステップS32)。 Maximum amplification degree (i.e. level X16 of FIG. 3) set to (step S31), and then the digital conversion value of the A / D converter 16 is the first control circuit 10a reads (step S32). 第一の制御回路10aはA/Dコンバータ1 The first control circuit 10a is the A / D converter 1
6の出力値により飽和判定(飽和判定の説明は後述)を行い(ステップS33)、非飽和ならばその値で次処理のFFT回路14によるFFT解析を実行する。 Saturation determination by the output value of 6 (Description of saturation determination will be described later) performs (step S33), if the non-saturated at the value to perform the FFT analysis by the FFT circuit 14 in the following process. 飽和ならば、第一の制御回路10aは図3に示すAGCテーブルの第一の制御回路が選択する増幅率の一段下の増幅率(即ち図3のレベルX14)をAGC回路17に設定変更し(ステップS34)、再度A/Dコンバータ16のディジタル変換値を第一の制御回路10aが読み取り(ステップS35)、飽和判定(ステップS37)を行う。 If saturated, the first control circuit 10a is set to change in the first control circuit amplification factor of one step below the gain selecting (i.e. level 3 X14) The AGC circuit 17 of the AGC table shown in FIG. 3 (step S34), the digital conversion value read first control circuit 10a (the step S35) again a / D converter 16 performs saturation determination (step S37).

【0027】ここで、飽和とは、図6に示すように、A [0027] Here, the saturation, as shown in FIG. 6, A
/D変換された全データに占めるA/Dコンバータ16 / D accounted converted all the data has been A / D converter 16
のダイナミックレンジの最大値、或いは最小値のデータの割合が、所定の割合を超えたときを意味する。 Ratio of maximum value data, or the minimum value of the dynamic range of means when exceeding a predetermined rate. 図6において実線はA/Dコンバータ16のダイナミックレンジの最大値(MAX)及び最小値(MIN)、破線はA The solid line is the maximum value of the dynamic range of the A / D converter 16 in FIG. 6 (MAX) and minimum value (MIN), the broken line A
/Dコンバータ16への入力信号、丸印はA/Dコンバータ16からの出力データである。 / Input signal to D converter 16, circles are output data from the A / D converter 16. 第一の制御回路10 The first control circuit 10
aは、出力データをその大きさ毎に集計し、所定の周期(時間)内にMAX或いはMINとなったデータが所定の個数を超えると飽和と判断する。 a totalizes the output data for respective sizes, the data became MAX or MIN to determine the saturation exceeds a predetermined number within a predetermined period (time).

【0028】再び、図5のフローチャートの説明に戻り、第一の制御回路10aによるAGC処理は第一の制御回路が選択するAGCテーブルを最後まで使用するか(ステップS36)、飽和判定の結果が非飽和になる(ステップS37)まで、一連のAGC制御(ステップS34〜37)を行い、AGCの仮決定を行う(ステップS61)。 [0028] Again, back to the flowchart of FIG. 5, or AGC processing performed by the first control circuit 10a uses the AGC table first control circuit selects to end (step S36), the saturation determination result It becomes non-saturation (step S37) to perform a series of AGC control (step S34~37), performing temporary decision of AGC (step S61). ここで、図3の第一の制御回路が選択する増幅率の欄に示すように、例えば、AGC回路17が4 Here, as shown in the column amplification factor first control circuit selects in Figure 3, for example, AGC circuit 17 is 4
個のオペアンプにより構成され、第一の制御回路10a It is composed of pieces of operational amplifier, the first control circuit 10a
が16通りの増幅率の組から8組(8段階X16,X1 There 8 pairs from the amplification factor of sixteen pairs (eight steps X16, X1
4,X12,X10,X8,X6,X4,X2)の増幅率を選択した使用テーブルによって制御する例について説明する。 4, X12, X10, X8, X6, X4, X2) the amplification factor for an example of control by the use table selected will be described. 使用テーブルは、図3に示す例に限らず予めユーザやシステムの開発者によって任意に決めることができる。 Using table can be arbitrarily determined by the developer of the user in advance and the system is not limited to the example shown in FIG. 一例として、AGC使用テーブルが(X16, As an example, AGC use table (X16,
X14,X12,X10,X8,X6,X4,X2ここで数字は単なる識別符号であり増幅率を意味するものではない)の8段階の場合、増幅率の大きい方から順に最大7回のAGC制御が行なわれることとなる。 X14, X12, X10, X8, X6, X4, X2 where the number mere identification code a is the case of 8 stages of meaning not to) the amplification factor, up to 7 times of the AGC control from the direction of amplification factor descending order so that the is carried out. このように第一の制御回路10aにより、大雑把な飛び飛びの増幅率によりAGC制御を行なうので、A/Dコンバータ16のディジタル出力値を飽和に近い大きい値に選定することができる。 By this way the first control circuit 10a, since the AGC control by the amplification factor of the rough discrete, it is possible to select the digital output value of the A / D converter 16 to a large value close to saturation.

【0029】(ステップS61)によるAGCのゲインの仮決定後、A/Dコンバータ16の出力したディジタルデータを一定時間分記憶した後、FFT信号処理14 [0029] (Step S61) in accordance after temporarily determined in the gain of AGC, after a predetermined time period storing digital data outputted from the A / D converter 16, FFT signal processing 14
により周波数分析を行い、トーン選択器13で伝送に使用している周波数データを抽出する。 Perform frequency analysis by, for extracting frequency data are used for transmission in the tone selector 13. そして抽出した複数の周波数成分毎にベクトル長を演算する(ステップS And calculating a vector length for each of a plurality of frequency components extracted (step S
62)。 62). この演算により得られたベクトル長は、信号周波数以外の周波数ノイズが除去された信号成分となる。 Vector length obtained by the calculation is a signal component whose frequency noise other than the signal frequency is removed.
その理由は配電線に重畳されているノイズは広い周波数帯にわたって比較的均等にエネルギーが分布するいわゆるホワイトノイズと称されるノイズが多く、これはFE This is because noise is superimposed on the distribution line many relatively evenly referred noise and so-called white noise energy is distributed over a wide frequency band, which is FE
T信号処理14による周波数分析により消去できるからである。 It is because it eliminated by frequency analysis by the T signal processing 14. (図7(a),(b)に示す信号レベルを参照)。 (See the signal level shown in FIG. 7 (a), (b)).

【0030】第二の制御回路10bは、演算により得られたベクトル長を判定基準値と比較する(ステップS6 The second control circuit 10b compares the determination reference value vector length obtained by the calculation (step S6
3)。 3). 判定基準値は予め設定された値であり、例えばA Determination reference value is a preset value, for example, A
/Dコンバータ16におけるダイナミックレンジの90 90 the dynamic range of / D converter 16
%のレンジ(信号レベル)とする。 % Of the range (the signal level). ステップS63での比較結果により、そのベクトル長が判定基準値より大きければAGC仮決定値をAGC決定値として採用する(ステップS64)。 By comparison result in step S63, the vector length to adopt AGC provisionally determined values ​​greater than the determination reference value as an AGC determination value (step S64). 他方、ベクトル長が判定基準値より小さければ、第二の制御回路10bはAGC使用テーブルの第二の制御回路が選択可能な増幅率の欄の中で、 On the other hand, in smaller than the vector length is the determination reference value, the second control circuit 10b column of the second control circuit is selectable gain of the AGC usage table,
AGC仮決定値より1段階高い値(増幅率)を選択する(ステップS65)。 One step from the AGC provisional decision value selecting a high value (amplification factor) (step S65). 例えば、第一の制御回路10aによるAGC使用テーブルが(X16,X14,X12, For example, AGC usage table by the first control circuit 10a is (X16, X14, X12,
X10,X8,X6,X4,X2)の8段階の場合において、AGC仮決定値がX10であるとき、演算により得られたベクトル長が判定基準値より大きい場合AGC X10, X8, X6, X4, in the case of eight steps X2), when AGC provisionally determined value of X10, when the vector length obtained by calculation is larger than the determination reference value AGC
決定値はX10、他方小さい場合AGC決定値はX11 Determining values ​​X10, the other small if AGC determined value X11
となる。 To become.

【0031】つまり、図7(a)に示すように、A/D [0031] That is, as shown in FIG. 7 (a), A / D
コンバータ16の入力にノイズが多く含まれているために、実信号成分が小さいときには、第一の制御回路10 Because it contains the noisy input of the converter 16, when the real signal component is small, the first control circuit 10
aによるAGC仮決定値からプラス1段階され、他方、 Is plus one step from the AGC temporarily determined value by a, while
図7(b)に示すようにA/Dコンバータ16の入力にノイズが少なく、実信号成分が十分大きいときには、第一の制御回路10aによるAGC仮決定値が最終的に採用され、それぞれの場合において信号レベルに合った増幅がなされることとなる。 Figure 7 (b) in less noise in the input of the A / D converter 16 as shown, when the real signal component is sufficiently large, AGC temporarily determined value by the first control circuit 10a is finally adopted, in each case so that the amplification matching the signal level is performed in.

【0032】以上のように、第一の制御回路10aにより大雑把なAGCを仮決定した後、第二の制御回路10 [0032] As described above, after temporarily determined a rough AGC by the first control circuit 10a, the second control circuit 10
bにより複数の信号周波数について信号のベクトル長を判定基準値と比較し、その判定結果によりAGCの仮決定値を変更するという2段階の制御を行なうようにしたので、AGC使用テーブルの段数が多いにもかかわらず、素早く最適な増幅率に到達することができることとなり、AGC選択ケースを増加させ、伝送に使用している信号成分の抽出を容易に、最高受信感度を向上させる配電線搬送通信装置を得ることができる。 b By comparison with the determination reference value vector length signal for a plurality of signal frequencies, since to carry out the two-step control of that change of a provisional decision value of the AGC by the determination result, many stages of the AGC usage table Nevertheless, it is to be able to reach quickly the optimum amplification factor, to increase the AGC selection case, easily extracted signal components are used in the transmission, distribution line to improve the highest reception sensitivity carrier communication device it is possible to obtain.

【0033】また、制御回路10は、仮決定までは、第一の制御回路10aによりA/ Dコンバータ16の出力データのカウントにより飽和を検出してAGC増幅率を大雑派に仮決定し、その後、第二の制御回路10bによりA/ Dコンバータ16で変換されたデータから伝送に使用している周波数データのみを抽出しFFT変換により信号のベクトル長を演算するようにしたので、AGC Further, the control circuit 10 until the provisional decision, by detecting the saturation by counting the output data of the A / D converter 16 temporarily determines the AGC gain to a large coarse faction by the first control circuit 10a, then, since the so calculates the vector length of the signal by the extracted FFT converts only the frequency data used for transmission from the transformed data by the a / D converter 16 by the second control circuit 10b, AGC
調整が短時間で最適な増幅率に設定が可能となり、アック電文(応答電文)や制御電文等の比較的フレームのヘッダー部分が大きい(ヘッダー部分とデータ部分がほぼ同じ長さの)フレームが頻繁に行き交う配電線搬送通信装置に特に有効である。 Adjustment is possible to set a short time at the optimum amplification factor, ACK message (response message) and relatively frame header portion of a large control message such as (header and data portions are approximately the same length) frames frequently is particularly effective in distribution line carrier communication device traversing the.

【0034】また、第一の制御回路10aによるAGC Further, AGC by the first control circuit 10a
使用テーブルを(図3に示すようなX16,X14,X The usage table (such as shown in FIG. 3 X16, X14, X
12,X10,X8,X6,X4,X2)と、連続した増幅率の中から大雑把に、飛び飛びの増幅率から選択するようにしているので、短時間で目標値の間近までAG 12, X10, X8, X6, X4, and X2), roughly from the continuous amplification factor, since to choose from the amplification factor of the discontinuous, to close the target value in a short time AG
C調整をすることができる。 It can be a C adjustment. また、第一の制御回路によるAGCの仮決定の後、第二の制御回路10bにより信号のベクトル長を判定して仮決定値を変更するようにしたので、最終選択レベルが細かく設定されていても素早く目標値に到達することができる。 Also, after the tentative determination of the AGC according to the first control circuit, since to change the second control circuit temporarily determined value to determine the vector length of the signal by 10b, the final selection levels have been finely set it can also be reached quickly target value. そして伝送に使用している信号成分の抽出を容易に、最高受信感度を向上させる配電線搬送通信装置を得ることができる。 And easily extract the signal components that are used for transmission, it is possible to obtain the highest reception sensitivity is improved to distribution line carrier communication device.

【0035】実施の形態2. [0035] Embodiment 2. 以上の説明では、信号のベクトル長が小さい(大きい)ときAGC増幅率を1段増加させるようにしたが、勿論1段でなければならぬということはない。 In the above description, the vector length of the signal is small (large) when it was set to increase the AGC gain 1 stage, is not that unexpected must of course first stage. 例えば、第一の制御回路10aが選択する増幅率を3段ごとに設定し、AGC使用テーブルの隣接する増幅率の組に2段以上の間隔があるときベクトル長によって、その間の値の大きいほう、または小さいほうを選択仕分けるようにすると受信感度を更に細かくできる。 For example, setting the amplification factor first control circuit 10a selects every three stages, the vector length when there is interval of at least 2 stages to the amplification factor of the set of adjacent of AGC using the table, the larger value therebetween or the reception sensitivity with smaller selection sort way can be further finely.

【0036】また、AGC使用テーブルを10段階(X [0036] In addition, 10 stage the AGC use table (X
16,X15,X14,X13,X12,X10,X 16, X15, X14, X13, X12, X10, X
8,X6,X4,X2)とし、増幅率が一部(あるいは16段階全部)連続するようにしても良い。 8, X6, X4, X2) and then, the amplification factor may be continuous portion (or 16 steps total). この場合には、連続する増幅率(例えばX13)が第一の制御回路10aにより仮決定され、第二の制御回路10bにより増幅率を1段増加させるときには、最終的に選択される増幅率は仮決定された増幅率より1段大きい増幅率(例えばX14)となる。 In this case, the amplification factor of continuous (e.g., X13) are provisionally determined by the first control circuit 10a, when the amplification factor is increased one step by the second control circuit 10b is finally amplification factor to be chosen 1-larger amplification factor than the temporarily determined amplification factor becomes (e.g., X14). このように、増幅率の大きい領域が密となったAGC使用テーブルを用いることで、搬送信号の減衰が大きく受信信号のレベルがホワイトノイズに対して相対的に小さくなる条件、例えば、直下に負荷が接続されている条件とか、搬送距離が長い条件などの場合において、信号を受信できることとなる。 In this manner, by using the AGC use table a large area of ​​the amplification factor becomes dense, relatively small condition level of attenuation is greater reception signal of the carrier signal is relative to white noise, for example, a load just below There Toka conditions that are connected, in the case of a conveying distance is long condition, and thus can receive signals. また、上記説明では、複数の信号周波数について信号レベル判定のための演算は、抽出した複数の信号周波数についてベクトル長を演算しているが、最大値演算結果、重み付けによる演算結果など、配電線搬送用通信装置の各信号周波数の重みによりレベル判定演算を変更できることは言うまでもない。 In the above description, the operation for the signal level determination for a plurality of signal frequencies, but calculates the vector length for extracting a plurality of signal frequencies, the maximum value calculation result, the calculation by weighting results, etc., transport distribution line It can of course be changed level determination operation by the weight of each signal frequency of use communication device.

【0037】また、AGC回路17から入力されるアナログ信号がA/Dコンバータ16のダイナミックレンジ内で飽和せずに最大となるようにAGC回路17の増幅率を仮決定する例について説明したが、A/Dコンバータ16のダイナミックレンジの所定割合以上を占めるように、即ち図4における実線のハッチングで示す領域に飽和せずに入力信号のピークが現れるようにしてもよい。 Further, although the input analog signal from the AGC circuit 17 has been described an example in which temporarily determines the amplification factor of the AGC circuit 17 so as to maximize without saturating in the dynamic range of the A / D converter 16, to occupy a predetermined ratio or more of the dynamic range of the a / D converter 16, i.e., may be the peak of the input signal appears without saturating the area indicated by the solid line hatching in FIG. また、電送路7は商用電源線であると説明したが、 Further, electrical path 7 has been described as a commercial power source line,
専用の通信線であってもよいことは言うまでもない。 It may be a dedicated communication line course.

【0038】 [0038]

【発明の効果】この発明に係る通信装置は、A/Dコンバータからのディジタル信号に基づいて、増幅回路から入力されるアナログ信号が上記A/Dコンバータのダイナミックレンジの所定割合以上を占めるように増幅率を大雑把に仮決定する第一の制御回路と、A/Dコンバータから入力されたディジタル信号より伝送に使用している周波数成分の信号レベルをFFT解析によって抽出し、このレベルを所定のレベルと比較した結果に基づいて、増幅回路の増幅率を細かく変更する第二の制御回路とを備えたので、増幅率の制御が細かいにもかかわらず、短時間で増幅回路の増幅率を目標値に決定でき、かつ受信感度の高いディジタル通信装置を得ることができる。 [Effect of the Invention A communication apparatus according to the present invention, based on the digital signal from the A / D converter, as an analog signal inputted from the amplifier circuit occupies a predetermined ratio or more of the dynamic range of the A / D converter the first control circuit and, a / D signal level of a frequency component converter used in transmission from the digital signal input and the extracted by the FFT analysis, the level of this level given that roughly provisionally determine the amplification factor based on the result of comparison with, since a second control circuit for finely changing the amplification factor of the amplifier circuit, even though the control of the amplification factor is small, the target value the amplification factor of the amplifier circuit in a short time be determined, it is possible to obtain a high reception sensitivity digital communication device.

【0039】また、第一の制御回路は、得られる全ての増幅率の値から、少なくとも増幅率の大きさが連続しない飛び飛びの増幅率を選択し、第二の制御回路は前記全ての増幅率を選択可能なように構成したので、短時間で目標増幅率に近い値に到達し、また、最終的には極めて細かい増幅率の値の制御ができる。 Further, the first control circuit, the values ​​of all of the amplification factor obtained by selecting the amplification factor of the discrete size of at least the amplification factor is not continuous, the second control circuit is the all amplification factor since the is configured as selectable in a short time to reach a value close to the target amplification factor, also, eventually it can control the value of the very fine gain.

【0040】また、第一の制御回路は、増幅回路の増幅率を大きい方から順に小さい増幅率へ移行させる指令を出力する(制御する)ので、短時間で増幅回路の増幅率を決定できる。 Further, the first control circuit outputs a command to transition from the larger the amplification factor of the amplifier circuit to turn a small amplification factor because (control), can be determined amplification factor in a short time the amplifier circuit.

【0041】また、A/Dコンバータから出力されたディジタル信号をフーリエ変換するFFT回路を有し、 第一の制御回路は、上記FFT回路によりフーリエ変換される前のディジタル信号により増幅率を仮決定し、第二の制御回路はFFT回路によりフーリエ変換された信号により増幅率の変更を行なうように構成したので、短時間で増幅回路の増幅率を細かく決定でき、かつ受信感度を高くできる。 Further, having a FFT circuit for Fourier converting the digital signal output from the A / D converter, the first control circuit, temporarily determines the amplification factor by a digital signal before Fourier transformation by the FFT circuit and, the second control circuit is so constructed as to change the amplification factor by the Fourier-transformed signal by the FFT circuit, can fine determine the amplification factor of the amplifier circuit in a short time, and can increase the reception sensitivity.

【0042】この発明の配電線搬送用の通信装置は、以上のディジタル通信装置を用い、商用電源ラインを伝送路として用いているので、家電電機機器の制御などに使用できる。 The communication device for distribution line carrier of the invention, using the above digital communication device, because of the use of commercial power line as a transmission path can be used for such control of home electric appliances.

【0043】また、配電線を拝送される信号の周波数は複数としたので、安定した通信が可能となる。 [0043] Further, since the frequency of the signal octane power distribution lines it was more, thereby enabling stable communication.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 この発明の実施の形態1のディジタル通信装置で配電線搬送用に複数周波数で通信するものの構成を示すブロック図である。 1 is a block diagram showing the configuration of those communicating in a plurality of frequencies for conveyance distribution line in a digital communication device of the first embodiment of the present invention.

【図2】 図1の通信装置のフレームの構成を説明する図である。 2 is a diagram of explaining configuration of a frame of the communication device of FIG.

【図3】 AGC増幅回路の増幅率の選択組み合わせを説明する図である。 3 is a diagram illustrating selection combination of the amplification factor of the AGC amplifier circuit.

【図4】 図1の通信装置のAGC制御動作の例を示す図である。 4 is a diagram showing an example of the AGC control operation of the communication device of FIG.

【図5】 図1の通信装置のAGC制御動作のフローチャートである。 5 is a flowchart of the AGC control operation of the communication device of FIG.

【図6】 図5のAGC制御動作における飽和判定動作を説明するための図である。 6 is a diagram for explaining the saturation determination operation in the AGC control operation of FIG.

【図7】 図1の通信装置のノイズの大小と信号レベルとの関連を示す図である。 7 is a diagram showing the relationship between the noise and small signal level of the communication device of FIG.

【図8】 従来の広帯域ディジタル受信機の構成を示す構成概要図である。 8 is a schematic configuration diagram showing a configuration of a conventional wideband digital receiver.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 フレーミング回路、 2 一次変調回路、 3 トーン選択器、4 IFFT処理、 5 パラレル/シリアル変換回路、6 D/Aコンバータ、 7 結合回路、 1 framing circuit, 2 primary modulation circuit, 3 tone selector, 4 IFFT processing, 5 parallel / serial conversion circuit, 6 D / A converter, 7 coupling circuit,
8 配電線伝送路、10 制御回路、 10a第一の制御回路、 10b 第二の制御回路、11 デフレーミング回路、 12 一次復調回路、13 トーン選択器、 14 FFT処理、15 シリアル/パラレル変換回路、 16 A/ D変換器、17 AGC回路。 8 distribution line transmission path, 10 a control circuit, 10a first control circuit, 10b a second control circuit, 11 a deframing circuit, 12 a primary demodulator, 13 tone selector, 14 FFT processing, 15 serial / parallel conversion circuit, 16 A / D converter, 17 AGC circuit.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J022 AA01 BA02 BA08 BA10 CC01 CC04 CD02 CF02 5K046 AA03 BA06 BB05 CC06 DD13 DD15 DD25 ────────────────────────────────────────────────── ─── front page of continued F-term (reference) 5J022 AA01 BA02 BA08 BA10 CC01 CC04 CD02 CF02 5K046 AA03 BA06 BB05 CC06 DD13 DD15 DD25

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 外部から所定の搬送周波数で入力されたアナログ信号を増幅する増幅回路、 前記増幅回路の出力側に接続されたA/Dコンバータ、 前記増幅回路から前記A/Dコンバータに入力される信号の大きさが、前記A/Dコンバータのダイナミックレンジに対してあらかじめ定めた所定の値になるように前記増幅回路の増幅率を制御する第一の制御回路、 前記A/Dコンバータの出力信号から、前記搬送周波数の周波数成分の信号を抽出し、この抽出した信号のレベルをあらかじめ定めた所定のレベルと比較し、その結果にもとづき前記増幅回路の増幅率を制御する第二の制御回路を備えたことを特徴とするディジタル通信装置。 1. A amplifier circuit for amplifying an analog signal input from the outside at a predetermined carrier frequency, the connected A / D converter on the output side of the amplifier circuit, input from the amplifier circuit to the A / D converter that the magnitude of the signal, a first control circuit for controlling the amplification factor of the amplifier circuit to a predetermined value predetermined for the dynamic range of the a / D converter, the a / D converter output from the signal, the extracted signal of the frequency components of the carrier frequency, as compared with the extracted signal level a predetermined prescribed level, a second control circuit for controlling the amplification factor of the amplifier circuit based on the result digital communication apparatus comprising the.
  2. 【請求項2】 前記増幅回路は段階的に変化する不連続な増幅率を持ち、前記第一の制御回路は前記増幅回路が設定可能な全ての増幅率の段階の中から選択した互いに隣接しない複数の増幅率の値により前記増幅回路を制御し、前記第二の制御回路は前記全ての増幅率の中から選択した増幅率の値で制御することを特徴とする請求項1 Wherein said amplifier circuit has a discrete amplification factor that varies stepwise, the first control circuit are not adjacent to one another selected from the stage of the amplification factor of all the amplifier circuit is configurable controlling the amplifier circuit according to the value of the plurality of amplification factors, claim 1 wherein the second control circuit, characterized in that the control value of the amplification factor selected from among the all amplification factor
    に記載のディジタル通信装置。 Digital communication apparatus according to.
  3. 【請求項3】 前記第一の制御回路は、前記増幅回路の増幅率を制御する際、増幅率の大きい方から開始して前記A/Dコンバータの出力の飽和程度を観測し、その観測結果にもとづいて、制御する増幅率を順次低い方へ移行することを特徴とする請求項1に記載のディジタル通信装置。 Wherein the first control circuit, the time of controlling the amplification factor of the amplifier circuit, starting from the larger amplification factor observing the degree of saturation of the output of the A / D converter, the observation result based on a digital communication apparatus according to claim 1, characterized in that migrate the amplification factor for controlling the sequential lower.
  4. 【請求項4】 前記第二の制御回路は、前記A/Dコンバータから出力されたディジタル信号をフーリエ変換するFFT回路によりフーリエ変換された信号中から搬送波周波数の成分の信号を抽出し、この信号の大きさを予め定めた所定のレベルと比較した結果にもとづいて、前記増幅回路の増幅率を制御するように構成したことを特徴とする請求項1〜3のいずれか一項に記載の通信装置。 Wherein said second control circuit comprises a digital signal output from A / D converter to extract a signal component of the carrier frequency from among the Fourier transformed signal by FFT circuit that Fourier transform, the signal based on the result of the comparison the magnitude with a predetermined prescribed level, communication according to claim 1, characterized by being configured to control the amplification factor of the amplifier circuit apparatus.
  5. 【請求項5】 配電線に接続する結合回路、前記結合回路から所定の搬送周波数で入力されたアナログ信号を増幅する増幅回路、 前記増幅回路の出力側に接続されたA/Dコンバータ、 前記増幅回路から前記A/Dコンバータに入力される信号の大きさが、前記A/Dコンバータのダイナミックレンジに対してあらかじめ定めた所定の値になるように前記増幅回路の増幅率を制御する第一の制御回路、 前記A/Dコンバータの出力信号から、前記搬送周波数の周波数成分の信号を抽出し、この抽出した信号のレベルをあらかじめ定めた所定のレベルと比較し、その結果にもとづき前記増幅回路の増幅率を制御する第二の制御回路を備えたディジタル通信装置を用いた配電線搬送用の通信装置。 5. A coupling circuit connected to the distribution line, the amplifier circuit for amplifying an analog signal inputted by the combining circuit from the predetermined carrier frequency, the connected A / D converter on the output side of the amplifying circuit, the amplification the size of the signal inputted from the circuit to the a / D converter, the a / D converter first controlling the amplification factor of the amplifier circuit to a predetermined value predetermined for the dynamic range of the control circuit, from an output signal of the a / D converter, extract a signal of a frequency component of the carrier frequency, as compared to the level of the extracted signal predetermined prescribed level, the amplifier circuit based on the result distribution line communication system for conveying using the digital communication apparatus having a second control circuit for controlling the amplification factor.
  6. 【請求項6】 配電線に配送される前記アナログ信号の周波数は複数であることを特徴とする請求項5に記載の配電線搬送用の通信装置。 Wherein the frequency of said analog signals to be delivered to the distribution line distribution line communication system for conveying according to claim 5, wherein a plurality.
JP2001153641A 2001-05-23 2001-05-23 Digital communication unit and communication unit for distribution line carrier using it Pending JP2002353813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001153641A JP2002353813A (en) 2001-05-23 2001-05-23 Digital communication unit and communication unit for distribution line carrier using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001153641A JP2002353813A (en) 2001-05-23 2001-05-23 Digital communication unit and communication unit for distribution line carrier using it

Publications (1)

Publication Number Publication Date
JP2002353813A true JP2002353813A (en) 2002-12-06

Family

ID=18998130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001153641A Pending JP2002353813A (en) 2001-05-23 2001-05-23 Digital communication unit and communication unit for distribution line carrier using it

Country Status (1)

Country Link
JP (1) JP2002353813A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073208A (en) * 2003-08-28 2005-03-17 Tdk Corp Power line communication unit and coupler circuit
JP2010500821A (en) * 2006-08-11 2010-01-07 エンテグリース,インコーポレイテッド Automatic ranging system and method for analog signals
WO2011065142A1 (en) * 2009-11-30 2011-06-03 日本電気株式会社 Reception device and gain control method
JP2011530874A (en) * 2008-08-05 2011-12-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Shared time-frequency automatic gain control for wireless communication
US8331503B2 (en) 2008-02-15 2012-12-11 Panasonic Corporation Receiving level control apparatus and receiver
US8532492B2 (en) 2009-02-03 2013-09-10 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8639121B2 (en) 2009-11-13 2014-01-28 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
JP2014526226A (en) * 2011-08-19 2014-10-02 ルメダイン テクノロジーズ インコーポレイテッド Time domain switching analog / digital converter device and method
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8983301B2 (en) 2010-03-31 2015-03-17 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9419712B2 (en) 2010-10-13 2016-08-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US9699723B2 (en) 2010-10-13 2017-07-04 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073208A (en) * 2003-08-28 2005-03-17 Tdk Corp Power line communication unit and coupler circuit
JP2010500821A (en) * 2006-08-11 2010-01-07 エンテグリース,インコーポレイテッド Automatic ranging system and method for analog signals
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8331503B2 (en) 2008-02-15 2012-12-11 Panasonic Corporation Receiving level control apparatus and receiver
US8548105B2 (en) 2008-08-05 2013-10-01 Qualcomm Incorported Joint time-frequency automatic gain control for wireless communication
JP2011530874A (en) * 2008-08-05 2011-12-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Shared time-frequency automatic gain control for wireless communication
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8532492B2 (en) 2009-02-03 2013-09-10 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US10070258B2 (en) 2009-07-24 2018-09-04 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US8639121B2 (en) 2009-11-13 2014-01-28 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
JP5360227B2 (en) * 2009-11-30 2013-12-04 日本電気株式会社 Receiving apparatus and gain control method
WO2011065142A1 (en) * 2009-11-30 2011-06-03 日本電気株式会社 Reception device and gain control method
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8983301B2 (en) 2010-03-31 2015-03-17 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9967032B2 (en) 2010-03-31 2018-05-08 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9913094B2 (en) 2010-08-09 2018-03-06 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9699723B2 (en) 2010-10-13 2017-07-04 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US10104610B2 (en) 2010-10-13 2018-10-16 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US9419712B2 (en) 2010-10-13 2016-08-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US10045288B2 (en) 2010-10-13 2018-08-07 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
JP2014526226A (en) * 2011-08-19 2014-10-02 ルメダイン テクノロジーズ インコーポレイテッド Time domain switching analog / digital converter device and method
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9414192B2 (en) 2012-12-21 2016-08-09 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Similar Documents

Publication Publication Date Title
CN1201485C (en) Zero intermediate frequency radio device and its gain control
AU667923B2 (en) Random access in mobile telephone systems
JP3497672B2 (en) Adaptive antenna and multi-carrier radio communication system
JP4199181B2 (en) Transmission apparatus and a wireless communication device
KR100388733B1 (en) cdma cellular communication system using a multi-carrier signal processing
KR100866002B1 (en) System and method for reducing peak-to-average power ratio for multi-carrier communication systems
JP3180769B2 (en) Received power calculation method, and mobile station
KR100365789B1 (en) Parallel hopping direct sequence/slow frequency hopping composite cdma system
KR101682384B1 (en) Method and apparatus for optimizing radio frequency transmission performance according to network
CA2294140C (en) A transmission apparatus capable of attenuating a peak power level prior to a signal output
JP3241989B2 (en) Method and circuit for removing filters the disturbances in the receiver of the wireless device
JP3744546B2 (en) Variable d of the sampling signal. c. Method and apparatus for compensating for an offset
EP0110368A2 (en) Burst signal transmission system
US5678198A (en) System for controlling signal level at both ends of a transmission link, based upon a detected value
CN1168257C (en) Automatic gain control for improved decoding of multi-carrier signal
US5585805A (en) Travel velocity detecting apparatus in mobile communication system
AU2002315936B2 (en) Apparatus and method for controlling transmission power in a mobile communication system
JP4755764B2 (en) Method and apparatus for diversity antenna for predictive switching when signal dropout
KR100627196B1 (en) Communication device with smart antenna using a quality-indication signal
JP3967472B2 (en) Cdma receiver
EP0704983A2 (en) Method and apparatus for processing multicarrier signals
KR0152374B1 (en) Method and apparatus for controlling a peak envelope power of a power amplifier
KR100398302B1 (en) Efficient linear power amplifier
RU2168860C2 (en) Radio-frequency transceiver system for digital communications
WO1992022157A1 (en) Power control of a direct sequence cdma radio