WO2011065119A1 - System for controlling operation of desulfurization apparatus - Google Patents

System for controlling operation of desulfurization apparatus Download PDF

Info

Publication number
WO2011065119A1
WO2011065119A1 PCT/JP2010/066496 JP2010066496W WO2011065119A1 WO 2011065119 A1 WO2011065119 A1 WO 2011065119A1 JP 2010066496 W JP2010066496 W JP 2010066496W WO 2011065119 A1 WO2011065119 A1 WO 2011065119A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
desulfurization
absorption liquid
desulfurization facility
limestone
Prior art date
Application number
PCT/JP2010/066496
Other languages
French (fr)
Japanese (ja)
Inventor
直行 神山
伊藤 栄基
筒井 誠
立人 長安
紀和 稲葉
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2011065119A1 publication Critical patent/WO2011065119A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an operation control system for a desulfurization facility that removes SO 2 contained in exhaust gas.
  • Patent Document 1 discloses a control device that controls a plurality of environmental devices installed to remove a predetermined substance with respect to one exhaust gas system in which the concentration of the predetermined substance contained in the exhaust gas is managed.
  • An environmental device control system including a measuring device that detects a concentration of a predetermined substance is disclosed.
  • the control device stores an efficiency table including efficiency information of a predetermined element with respect to a predetermined substance removal capability for each of a plurality of environmental devices, and the measurement unit calculates the detected concentration of the predetermined substance.
  • the control device determines the amount of change for changing the concentration of the substance from the concentration of the predetermined substance received from the measurement unit and the target value of the concentration of the predetermined substance.
  • an efficient environmental device is selected with reference to the efficiency table, and control is performed so that the environmental device performs processing.
  • the apparatus can be efficiently operated, and energy saving or low operation cost can be achieved.
  • This invention solves the subject mentioned above, and aims at providing the operation control system of the desulfurization equipment which can perform the economical operation according to the market price of various things.
  • this operation control system for desulfurization equipment when the revenue market price is high, the SO 2 removal amount is increased, and conversely, when the income market price is low, control is performed so as to reduce the operation cost of the desulfurization equipment. In this way, it becomes possible to optimize the operating conditions of the desulfurization equipment according to the revenue market price.
  • the desulfurization equipment always uses exhaust gas conditions and SO 2 sales that change from moment to moment, and various unit prices (for example, unit price of electric power, unit price of absorbent material, unit price of water supply, unit price of fuel) that change relatively slowly. It is possible to perform an economical operation that minimizes the cost caused by the operation of the vehicle.
  • the revenue market price is higher than the expenditure market price, so it is also possible to record profits by operating the desulfurization facility.
  • the management device has a predictive evaluation index obtained by subtracting the revenue market price from the expenditure market price for the predetermined period in the past in the absorption tower.
  • the amount of the absorbing liquid to be sent and the supply amount of the material constituting the absorbing liquid are set in advance.
  • the SO 2 removal amount is increased, and conversely, when the past revenue market price is low, the desulfurization facility operation cost is reduced.
  • the manager of the facility can make a prior arrangement for materials such as utilities by planning in advance.
  • SO 2 concentration in the flue gas and acquires the SO 2 concentration in the desulfurized flue gas, delivery of the absorbing liquid to the absorption tower, and the absorbing solution SO 2 in the exhaust gas by a control device that controls the supply of the material to be formed, the absorption tower, the absorption liquid delivery section that sends the absorption liquid to the absorption tower, and the material supply section that supplies the material that forms the absorption liquid.
  • the desulfurization equipment which removes is comprised,
  • the said management apparatus is connected to the said control apparatus in the said desulfurization equipment via a network so that communication is possible.
  • the operation control of the desulfurization equipment can be performed remotely via the network.
  • the management device is connected to the control devices in a plurality of the desulfurization facilities via a network so as to be communicable.
  • This operation control system for a desulfurization facility makes it possible to control operation of a plurality of desulfurization facilities from a remote location through a network.
  • FIG. 1 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of the operation control system for the desulfurization facility according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing the operation of the operation control system for the desulfurization facility according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram of an operation control system for a desulfurization facility according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart showing the operation of the operation control system for the desulfurization facility according to Embodiment 2 of the present invention.
  • FIG. 1 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 1.
  • a desulfurization facility 1 includes an absorption tower 3 that removes SO 2 (sulfur dioxide) in an exhaust gas 100 a from a boiler (for example, a coal fired boiler) 2 such as a thermal power plant, a control device 5, It has.
  • SO 2 sulfur dioxide
  • the absorption tower 3 of the desulfurization facility 1 applied to such a flue gas treatment system is configured so that an absorption liquid 101 (hereinafter referred to as an absorption liquid) 101 containing limestone is brought into contact with the supplied exhaust gas 100a to thereby adjust the SO in the exhaust gas 100a. 2 (sulfur dioxide) is absorbed by the limestone in the absorbent 101, and the desulfurized exhaust gas 100b from which SO 2 has been removed is discharged.
  • an absorption liquid 101 hereinafter referred to as an absorption liquid
  • 2 sulfur dioxide
  • Absorption liquid 101 is stored in the bottom of absorption tower 3.
  • a limestone feeder 3 a is provided outside the absorption tower 3, and the limestone 102 is measured by the limestone feeder 3 a and supplied to the bottom of the absorption tower 3.
  • water 103 is supplied to the bottom of the absorption tower 3 through a water supply pipe 3b. That is, the absorption liquid 101 is generated by the limestone 102 and the water 103 supplied to the bottom of the absorption tower 3.
  • the absorption liquid 101 stored at the bottom in the absorption tower 3 is pumped by the absorption liquid circulation pump 3 c and supplied to the upper part in the absorption tower 3 through the absorption liquid pipe 3 d outside the absorption tower 3. Then, the absorption liquid 101 comes into contact with the exhaust gas 100a rising in the absorption tower 3 in the process of reaching the lower part in the absorption tower 3 while flowing down from the nozzle 3e provided in the upper part in the absorption tower 3. Thereby, SO 2 contained in the exhaust gas 100a reacts with the limestone 102 of the absorbing liquid 101 (see the following formula 1), and SO 2 is removed from the exhaust gas 100a.
  • the desulfurization exhaust gas 100b from which SO 2 has been removed is discharged from the desulfurization facility 1 through the desulfurization exhaust gas pipe 3f connected to the top of the absorption tower 3. Further, the absorbing liquid 101 used for the removal of SO 2 is stored at the bottom in the absorption tower 3. SO 2 + 1 / 2O 2 + CaCO 3 + 2H 2 O ⁇ CaSO 4 .2H 2 O + CO 2 Formula 1
  • a part of the absorbing liquid 101 stored at the bottom in the absorption tower 3 is depressurized via an extraction pipe 3g branched from the absorption liquid pipe 3d outside the absorption tower 3 while being pumped by the absorption liquid circulation pump 3c.
  • the dehydrator 3h is constituted by, for example, a belt filter, dehydrates the absorbent 101 in the process of being conveyed by the belt filter, and is discharged out of the system as a byproduct gypsum 104.
  • the filtrate which dehydrated the absorption liquid 101 is utilized as the water 103 supplied to the bottom part of the absorption tower 3 in this Embodiment.
  • the bottom of the absorption tower 3 is supplied with the oxidizing air 105 fed by the oxidation blower 3i. For this reason, since the oxidizing liquid 105 is contained in the absorbing liquid 101, the oxidizing of the absorbing liquid 101 is promoted, so that the SO 2 removal efficiency can be improved.
  • the absorption liquid 101 supplied to the upper part of the absorption tower 3 through the absorption liquid pipe 3d is caused to flow down from the nozzle 3e, thereby contacting the exhaust gas 100a rising in the absorption tower 3.
  • the absorbing liquid is supplied to the middle part of the absorption tower via the absorbing liquid pipe, and the absorbing liquid is ejected upward from the nozzle provided in the middle part of the absorption tower.
  • the absorbing liquid becomes fine droplets while being dispersed in the upper part of the absorption tower, descends in the absorption tower, and comes into contact with the exhaust gas rising in the absorption tower.
  • the contact between the absorbing liquid 101 and the exhaust gas 100a is not limited to the above-described countercurrent contact. There is a co-current contact that combines.
  • the exhaust gas blower 2b is provided with an exhaust gas blower power consumption detection unit 4a that detects the power consumption (exhaust gas blower power consumption a).
  • the absorption liquid circulation pump 3c is provided with a circulation pump power consumption detection unit 4b for detecting the power consumption (circulation pump power consumption b).
  • the oxidation blower 3i is provided with an oxidation blower power consumption detection unit 4c that detects its power consumption (oxidation blower power consumption c).
  • the exhaust gas pipe 2a is provided with an inlet side SO 2 concentration detector 4d that detects the SO 2 concentration (inlet side SO 2 concentration d) in the exhaust gas 100a reaching the absorption tower 3.
  • the desulfurization exhaust gas pipe 3f is provided with an outlet side SO 2 concentration detector 4e that detects the SO 2 concentration (exit side SO 2 concentration e) in the desulfurization exhaust gas 100b discharged from the absorption tower 3.
  • the absorption liquid pipe 3d is provided with a limestone concentration detection unit 4f that detects the concentration of limestone 102 in the absorption liquid 101 (limestone concentration f).
  • the exhaust gas pipe 2a has an exhaust gas flow rate detection unit 4g for detecting the flow rate (exhaust gas flow rate g) of the exhaust gas 100a reaching the absorption tower 3 together with the inlet side SO 2 concentration detection unit 4d, and the temperature of the exhaust gas 100a reaching the absorption tower 3
  • An exhaust gas temperature detector 4 h that detects (exhaust gas temperature h) and an exhaust gas moisture concentration detector 4 i that detects the moisture concentration (exhaust gas moisture concentration i) of the exhaust gas 100 a reaching the absorption tower 3 are provided.
  • the boiler 2 is provided with a boiler fuel consumption detection unit 4j that detects the amount of fuel consumed (boiler fuel consumption j).
  • the limestone feeder 3a is provided with a limestone supply amount detection unit 4k that detects the supply amount of limestone 102 (limestone supply amount k).
  • the water supply pipe 3b is provided with a supply water flow rate detection unit 4m that detects the supply amount of the water 103 (supply water flow rate m).
  • the absorbing liquid pipe 3d is provided with an absorbing liquid flow rate detection unit 4n that detects the flow rate of the absorbing liquid 101 (absorbing liquid flow rate n).
  • the control device 5 will be described with reference to the block diagram of the operation control system for the desulfurization facility according to Embodiment 1 in FIG.
  • the control device 5 is constituted by a microcomputer or the like.
  • the control device 5 is provided with a storage unit 5a.
  • the storage unit 5a includes a RAM, a ROM, and the like, and stores programs and data.
  • the controller 5 supplies a voltage to the feeder motor (not shown) to operate the absorbent circulating pump drive unit 5b for applying a voltage when operating the absorbent circulating pump 3c and the limestone feeder 3a.
  • a limestone feeder drive unit 5c is provided for placing.
  • the control device 5 is provided with an input / output unit 5d.
  • the input / output unit 5d includes a keyboard, a mouse, and a monitor.
  • the management apparatus 6 is demonstrated with reference to the block diagram of the operation control system of the desulfurization equipment which concerns on Embodiment 1 of FIG.
  • the management device 6 is composed of a microcomputer or the like. As shown in FIG. 1, the management device 6 is connected to the control device 5 via the network N, and the exhaust gas blower power consumption a, the circulation pump power consumption b, the oxidation blower power consumption c, the inlet side SO 2 concentration d, Control each data of outlet side SO 2 concentration e, limestone concentration f, exhaust gas flow rate g, exhaust gas temperature h, exhaust gas moisture concentration i, boiler fuel consumption j, limestone supply amount k, supply water flow rate m, and absorption liquid flow rate n. Obtained from the device 5.
  • the management device 6 is provided with a storage unit 6a.
  • the storage unit 6a includes a RAM, a ROM, and the like, and stores programs and data.
  • the storage unit 6a has an evaluation index formula database 6aa, an absorption liquid circulation pump supply voltage database 6ab, and a limestone feeder supply voltage database 6ac.
  • the evaluation index formula database 6aa is obtained from the control device 5, the exhaust gas blower power consumption a, the circulation pump power consumption b, the oxidation blower power consumption c, the inlet side SO 2 concentration d, the outlet side SO 2 concentration e, the limestone concentration f, Formula 2 for calculating the evaluation index E based on each data of the exhaust gas flow rate g, the exhaust gas temperature h, the exhaust gas moisture concentration i, the boiler fuel consumption j, the limestone supply amount k, the supply water flow rate m, and the absorption liquid flow rate n ⁇ Expression 5 is stored.
  • E TMG ... Formula 2
  • T (D ⁇ DP) + (L ⁇ LP) + (W ⁇ WP) + (F ⁇ FP) Equation 3
  • M S ⁇ SP Expression 4
  • G H ⁇ HP ... Formula 5
  • the evaluation index E is calculated from the desulfurization facility operating cost T as the expenditure market price of various expenditures generated according to the operation of the desulfurization facility 1, and the SO 2 as the revenue market price of revenues generated according to the operation of the desulfurization facility 1.
  • the sales amount M and the by-product gypsum sales amount (or by-product gypsum processing cost) G are subtracted.
  • D is the power consumption of the desulfurization facility 1 and is obtained by adding the exhaust gas blower power consumption a, the circulation pump power consumption b, and the oxidation blower power consumption c described above.
  • DP is a power unit price.
  • L is a limestone consumption, those obtained by the following equation 6, the obtained SO 2 removal amount S (the amount of SO 2 removed from the flue gas 100a) by the following equation 7, the limestone purity f ', the absorbing liquid It is calculated
  • LP is limestone unit price (absorbing liquid material unit price).
  • W is the amount of water supplied to the desulfurization facility 1 and is determined from the relationship between the exhaust gas flow rate g, the exhaust gas temperature h, and the exhaust gas moisture concentration i described above.
  • WP is the unit price of water supply.
  • F is a fuel consumption amount in the boiler 2 and corresponds to the above-described boiler fuel consumption amount j.
  • FP is the fuel unit price of the boiler 2.
  • S (inlet side SO 2 concentration d ⁇ outlet side SO 2 concentration e) ⁇ exhaust gas flow rate g / 22.4 ⁇ 10 6
  • the limestone concentration f is the concentration of excess limestone in the absorption liquid 101.
  • H is the amount of byproduct gypsum produced, and is determined from the relationship between the SO 2 removal amount S, the limestone purity f ′, and the limestone concentration f in the absorbing liquid 101.
  • HP is the by-product gypsum sales unit price (or by-product gypsum processing unit price (in the case of by-product gypsum processing unit price, it is a negative value)).
  • the absorption liquid circulation pump supply voltage database 6ab is such that the evaluation index E described above is minimized, that is, the desulfurization facility operating cost T, which is the expenditure market price of various expenditures generated according to the operation of the desulfurization facility 1, is minimized.
  • the absorption liquid circulation pump information for applying a voltage to the absorption liquid circulation pump 3c is stored.
  • the relationship between the absorption liquid delivery amount (absorption liquid flow rate n) by the absorption liquid circulation pump 3c and the power consumption D and SO 2 removal amount S of the desulfurization facility 1 is theoretical or experimental. It is the one requested by
  • the limestone feeder supply voltage database 6ac has the absorption index so that the evaluation index E described above is minimized, that is, the desulfurization facility operating cost T, which is the expenditure market price of various expenditures generated according to the operation of the desulfurization facility 1, is minimized.
  • the desulfurization facility operating cost T which is the expenditure market price of various expenditures generated according to the operation of the desulfurization facility 1, is minimized.
  • feeder voltage information for applying a voltage to a feeder motor (not shown) of the limestone feeder 3a is stored.
  • this feeder voltage information the relationship between the limestone supply amount k and the SO 2 removal amount S by the limestone feeder 3a is obtained in advance by a theoretical formula or an experimental formula.
  • the management device 6 is provided with an expenditure market price information input unit 6b.
  • a power unit price DP, a limestone unit price LP, a supply water unit price WP, and a fuel unit price FP for obtaining the desulfurization facility operating cost T as the expenditure market price are input.
  • the electric power unit price DP, the limestone unit price LP, and the supply water unit price WP are obtained by being automatically input from the Internet or manually by an operator.
  • the management device 6 is provided with a processing unit 6d.
  • the processing unit 6d includes a desulfurization facility operating cost calculation unit 6da, an SO 2 sales calculation unit 6db, a by-product gypsum sales calculation unit (or by-product gypsum processing cost calculation unit) 6dc, an evaluation index calculation unit 6dd, and an absorption liquid delivery amount setting unit. 6de and a limestone supply amount setting unit 6df.
  • the desulfurization facility operating cost calculation unit 6da calculates the desulfurization facility operating cost T from the above equation 3 stored in the evaluation index formula database 6aa of the storage unit 6a. That is, exhaust Gasuburoa power a, circulating pump power consumption b, and obtains the power consumption D of desulfurization 1 by adding the oxidizing blower power consumption c, the exhaust gas subtracts the outlet SO 2 concentration e from the inlet side SO 2 concentration d
  • the limestone consumption L is determined from the SO 2 removal amount S multiplied by the flow rate g, the limestone purity f ′, and the limestone concentration f, and the supply water amount W is determined from the relationship between the exhaust gas flow rate g, the exhaust gas temperature h, and the exhaust gas moisture concentration i.
  • the fuel consumption F is obtained from the boiler fuel consumption j, and the desulfurization facility operating cost T is calculated from the power unit price DP, the limestone unit price LP, the supply water unit price WP, and the fuel unit price FP acquired from the expenditure market price information input unit 6b. .
  • the SO 2 sales amount calculation unit 6db calculates the SO 2 sales amount M from the above formula 4 stored in the evaluation index formula database 6aa of the storage unit 6a. That is, by subtracting the outlet side SO 2 concentration e from the inlet side SO 2 concentration d and multiplying by the exhaust gas flow rate g, the SO 2 removal amount S is obtained, and the SO 2 transaction unit price SP acquired from the revenue market price information input unit 6c 2 Calculate sales M.
  • Byproduct gypsum sales amount calculation unit (or byproduct gypsum processing cost calculation unit) 6dc calculates byproduct gypsum sales amount (byproduct gypsum processing cost) G from the above equation 5 stored in the evaluation index formula database 6aa of the storage unit 6a. To do. That is, the amount of byproduct gypsum produced H is obtained from the SO 2 removal amount S obtained by subtracting the outlet side SO 2 concentration e from the inlet side SO 2 concentration d and multiplied by the exhaust gas flow rate g, the limestone purity f ′, and the limestone concentration f, and further the revenue market.
  • By-product gypsum sales (by-product gypsum processing cost) G is calculated from the by-product gypsum sales unit price (or by-product gypsum processing unit price) HP acquired from the price information input unit 6c.
  • the evaluation index calculation unit 6dd calculates the evaluation index E from the above formula 2 stored in the evaluation index formula database 6aa of the storage unit 6a. That is, the desulfurization equipment operation cost T calculated by desulfurization equipment operation cost calculation unit 6da, SO 2 sales calculator SO 2 sales calculated in 6db M, and by-product gypsum sales calculator (or by-product gypsum processing cost calculation unit)
  • the evaluation index E is calculated from the amount of by-product gypsum sales (cost of by-product gypsum treatment) G calculated at 6 dc.
  • the absorption liquid delivery amount setting unit 6de uses the absorption liquid circulation pump information stored in the absorption liquid circulation pump supply voltage database 6ab of the storage unit 6a to minimize the evaluation index E calculated by the evaluation index calculation unit 6dd.
  • the amount of the absorption liquid 101 to be sent to the absorption tower 3, that is, the voltage applied to the absorption liquid circulation pump 3c is set.
  • the limestone supply amount setting unit 6df absorbs the absorbent 101 so that the evaluation index E calculated by the evaluation index calculation unit 6dd is minimized based on the feeder voltage information stored in the limestone feeder supply voltage database 6ac of the storage unit 6a.
  • the supply amount of the limestone 102 which is the material forming the above, that is, the voltage applied to the feeder motor (not shown) of the limestone feeder 3a is set.
  • the management device 6 is provided with an input / output unit 6e.
  • the input / output unit 6e includes a keyboard, a mouse, and a monitor.
  • the management device 6 is provided with an information communication unit 6f.
  • the information communication unit 6 f is for performing information communication with the information communication unit 5 e of the control device 5. Based on the information input from the control device 5, the management device 6 controls the control device 5 in an integrated manner with respect to the absorbent circulating pump 3c and the limestone feeder 3a in accordance with programs and data stored in advance in the storage unit 6a. To output information.
  • the exhaust gas blower power consumption a As shown in FIG. 3, first, in the control device 5, the exhaust gas blower power consumption a, the circulation pump power consumption b, the oxidation blower power consumption c, the inlet side SO 2 concentration d, the outlet side SO 2 concentration e, the limestone concentration f,
  • Each data of the limestone purity f ′, the exhaust gas flow rate g, the exhaust gas temperature h, the exhaust gas moisture concentration i, the boiler fuel consumption j, the limestone supply amount k, the supply water flow rate m, and the absorption liquid flow rate n is output to the management device 6 ( Step ST1).
  • the management device 6 inputs each of the above data from the control device 5 (step ST2), the desulfurization facility operation cost calculation unit 6da calculates the desulfurization facility operation cost T, and the SO 2 sales calculation unit 6db
  • the SO 2 sales amount M is calculated, the by-product gypsum sales calculating unit (or by-product gypsum processing cost calculating unit) 6dc calculates the by-product gypsum sales amount (by-product gypsum processing cost) G, and the evaluation index calculating unit 6dd evaluates it.
  • An index E is calculated (step ST3).
  • the management device 6 sets the amount of the absorption liquid 101 to be sent to the absorption tower 3 (that is, the voltage applied to the absorption liquid circulation pump 3c) so that the evaluation index E is minimized in the absorption liquid delivery amount setting unit 6de.
  • the limestone supply amount setting unit 6df the supply amount of limestone 102 which is a material constituting the absorbing liquid 101 (that is, a feeder motor (not shown) of the limestone feeder 3a) is added so that the evaluation index E is minimized. Voltage) is set (step ST4).
  • control device 5 while the SO 2 removal amount S within a predetermined range, the set voltage of the absorbent circulating pump 3c in the management apparatus 6, and the voltage of the feeder motor limestone feeder 3a (not shown) Accordingly, the absorption liquid circulation pump 3c and the limestone feeder 3a are driven (step ST5).
  • the amount of the absorbing liquid 101 sent to the absorption tower 3 and the amount of the material (limestone 102) constituting the absorbing liquid 101 are set.
  • the operation control system of this desulfurization facility when the revenue market price (SO 2 sales M, by-product gypsum sales G) is high, the SO 2 removal amount S is increased, and conversely, the revenue market price (SO 2 When the sales amount M and the by-product gypsum sales amount G) are low, the desulfurization equipment operating cost T is controlled to be reduced.
  • the operating conditions of the desulfurization facility 1 can be optimized according to the revenue market price (SO 2 sales M, by-product gypsum sales (by-product gypsum processing cost) G).
  • the management device 6 is connected to the control device 5 in the desulfurization facility 1 via the network N so as to be communicable. As a result, operation control of the desulfurization facility 1 can be performed at a remote location.
  • the management device 6 is communicably connected to the control devices 5 in the plurality of desulfurization facilities 1 via the network N.
  • FIG. 2 shows a form in which the control device 5 and the management device 6 in one desulfurization facility 1 are connected in a one-to-one relationship. However, the control device 5 and the management device 6 in the plurality of desulfurization facilities 1 are connected to each other.
  • the management device 6 When connected in a many-to-one relationship, in the management device 6, corresponding to each control device 5, a storage unit 6a, an expenditure market price information input unit 6b, an income market price information input unit 6c, a processing unit 6d, The input / output unit 6e and the information communication unit 6f function. As a result, the operation control of the plurality of desulfurization facilities 1 can be performed in a remote place.
  • the control device 5 and the management device 6 in the desulfurization facility 1 are connected in a one-to-one relationship, the control device 5 and the management device 6 are not connected via the network N, and the management device 6 is desulfurized. It may be included in the control device 5 of the facility 1.
  • the absorption liquid to absorb SO 2 it has been described desulfurization 1 lime gypsum method of applying the absorption liquid 101 containing limestone 102, not limited thereto.
  • the embodiments described above can be applied to other wet desulfurization facilities such as a water mug method and a caustic soda method.
  • the limestone unit price LP is changed to a magnesium hydroxide unit price or a caustic soda unit price.
  • FIG. 4 is a block diagram of an operation control system for a desulfurization facility according to Embodiment 2 of the present invention.
  • the same reference numerals are given to the same components as those in the first embodiment described above, and the description thereof is omitted.
  • the desulfurization facility 1 shown in FIG. 4 further includes a spending market price information database 6ad and an income market price information database 6ae in the storage unit 6a in the management device 6 as compared with the first embodiment described above.
  • the expenditure market price information database 6ad is a unit price of electricity DP, a unit price of limestone LP, a unit price of supply water WP, and a unit price of fuel FP as the expenditure market price input to the expenditure market price information input unit 6b.
  • the revenue market price information database 6ae stores the SO 2 transaction unit price SP for obtaining the SO 2 sales amount M as the revenue market price input to the revenue market price information input unit 6c, and by-product gypsum sales (or by-product gypsum processing costs). ) Store by-product gypsum sales unit price (or by-product gypsum processing unit price) HP for obtaining G.
  • the management device 6 calculates the predicted evaluation index Ea by subtracting the income market price from the acquired expenditure market price in the evaluation index calculation unit 6dd (step ST12).
  • the calculation of the predicted evaluation index Ea is the same as the evaluation index E of the first embodiment described above.
  • the management device 6 sends the absorption liquid 101 sent to the absorption tower 3 (that is, the voltage applied to the absorption liquid circulation pump 3c) so that the predicted evaluation index Ea is minimized in the absorption liquid delivery quantity setting unit 6de.
  • the limestone supply amount setting unit 6df the supply amount of limestone 102 that is the material constituting the absorbent 101 (that is, a feeder motor (not shown) of the limestone feeder 3a) so that the predicted evaluation index Ea is minimized. Is set (step ST13).
  • control device 5 while the SO 2 removal amount S within a predetermined range, the set voltage of the absorbent circulating pump 3c in the management apparatus 6, and the voltage of the feeder motor limestone feeder 3a (not shown) Accordingly, the absorption liquid circulation pump 3c and the limestone feeder 3a are driven (step ST14).
  • the revenue market price (SO 2 sales M, by-product gypsum sales (The amount of absorption liquid 101 sent to the absorption tower 3 and the supply amount of the material (limestone 102) constituting the absorption liquid 101 are set in such a manner that the predicted evaluation index Ea obtained by subtracting the byproduct gypsum processing cost G) is minimized. .
  • the SO 2 removal amount S is increased, and conversely the past revenue market.
  • the desulfurization equipment operating cost T is set to be low.
  • the manager of the facility can make a prior arrangement for materials such as utilities (for example, limestone 102) by planning in advance.
  • the predicted evaluation index Ea can be corrected by the evaluation index E of the first embodiment described above.
  • the management device 6 is connected to the control device 5 in the desulfurization facility 1 via the network N so as to be communicable. As a result, operation control of the desulfurization facility 1 can be performed at a remote location.
  • the operation control of the plurality of desulfurization facilities 1 can be performed in a remote place.
  • the control device 5 and the management device 6 in the desulfurization facility 1 are connected in a one-to-one relationship, the control device 5 and the management device 6 are not connected via the network N, and the management device 6 is desulfurized. It may be included in the control device 5 of the facility 1.
  • the operation control system for a desulfurization facility according to the present invention is suitable for performing economical operation in accordance with various market prices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A system for controlling the operation of a desulfurization apparatus equipped with an absorption column for bringing an exhaust gas into contact with an absorbing liquid so as to allow the absorbing liquid to absorb SO2 in the exhaust gas while discharging the desulfurized exhaust gas from which SO2 has been removed, which is further provided with a management unit for, while regulating the amount of SO2 removed from the exhaust gas within a definite range, setting the feeding rate of the absorbing liquid to the absorption column and the feeding rate of a material constituting the absorbing liquid in such a manner that an evaluation index (E), which is calculated by subtracting the income market price of income items arising from the operation of the desulfurization apparatus from the expenditure market price of expenditure items arising from the operation of the desulfurization apparatus, is minimized.

Description

脱硫設備の運転制御システムOperation control system for desulfurization equipment
 本発明は、排ガスに含まれるSOを除去する脱硫設備の運転制御システムに関する。 The present invention relates to an operation control system for a desulfurization facility that removes SO 2 contained in exhaust gas.
 従来、特許文献1には、排ガスに含まれる所定の物質の濃度が管理されている一の排ガス系統に対し、所定の物質を除去するために設置される複数の環境装置を制御する制御装置と、所定の物質の濃度を検出する測定器とを備えた環境装置制御システムが開示されている。この環境装置制御システムでは、制御装置は、複数の環境装置ごとに所定の物質の除去能力に対する所定の要素の効率情報を含む効率テーブルを記憶し、測定部は、検出した所定の物質の濃度を含む情報を制御装置に送信し、さらに制御装置は、測定部から受信した所定の物質の濃度と、所定の物質の濃度の目標値とから、物質の濃度を変更するための変更量を決定し、効率テーブルを参照して効率のよい環境装置を選択し、当該環境装置で処理するように制御する。この制御システムによれば、装置を効率よく運転し、省エネルギー、または低運転コストを図ることができる。 Conventionally, Patent Document 1 discloses a control device that controls a plurality of environmental devices installed to remove a predetermined substance with respect to one exhaust gas system in which the concentration of the predetermined substance contained in the exhaust gas is managed. An environmental device control system including a measuring device that detects a concentration of a predetermined substance is disclosed. In this environmental device control system, the control device stores an efficiency table including efficiency information of a predetermined element with respect to a predetermined substance removal capability for each of a plurality of environmental devices, and the measurement unit calculates the detected concentration of the predetermined substance. The control device determines the amount of change for changing the concentration of the substance from the concentration of the predetermined substance received from the measurement unit and the target value of the concentration of the predetermined substance. Then, an efficient environmental device is selected with reference to the efficiency table, and control is performed so that the environmental device performs processing. According to this control system, the apparatus can be efficiently operated, and energy saving or low operation cost can be achieved.
特開2004-37056号公報JP 2004-37056 A
 ところで、近年では、SO排出権の取引市場が活発化している。このため、単にSO排出規制値を達成する運転のみではなく、SO排出権の変動に応じた経済的運転が望まれている。例えば、SO排出権の市場価格が下がった場合には排出規制値より余剰にSOを除去することで余剰分を市場で販売し、逆にSO排出権の市場価格が上がった場合には排出規制値を超える運転を行い、不足分を購入することが考えられる。さらに、SO排出権の他、例えば、SOを吸収する吸収液や、ポンプなどを稼動するための電力料も市場価格が経時変化することから、経済的運転の最適条件は常に変動する。 By the way, in recent years, the trading market for SO 2 emission rights has become active. For this reason, not only an operation that achieves the SO 2 emission regulation value but also an economical operation that responds to fluctuations in the SO 2 emission right is desired. For example, when the market price of SO 2 emission rights falls, the excess is sold in the market by removing SO 2 more than the emission regulation value, and conversely when the market price of SO 2 emission rights rises Can operate above the emission limit and purchase the shortage. Furthermore, in addition to the SO 2 emission rights, for example, the absorbing liquid that absorbs SO 2 , and the power charges for operating the pump, etc., change the market price over time, so the optimal conditions for economic operation always fluctuate.
 本発明は上述した課題を解決するものであり、諸事の市場価格に応じた経済的運転を行うことのできる脱硫設備の運転制御システムを提供することを目的とする。 This invention solves the subject mentioned above, and aims at providing the operation control system of the desulfurization equipment which can perform the economical operation according to the market price of various things.
 上述の目的を達成するために、本発明の脱硫設備の運転制御システムでは、排ガスに吸収液を接触させることで前記排ガス中のSOを前記吸収液に吸収させつつSOが除去された脱硫排ガスを排出する吸収塔を備える脱硫設備の運転制御システムにおいて、前記排ガスからSOを除去したSO除去量を所定範囲内としつつ、脱硫設備の運転に応じて生じる支出諸事の支出市場価格から脱硫設備の運転に応じて生じる収入諸事の収入市場価格を差し引いた評価指数が最小となる態様で、前記吸収塔に送る吸収液の送出量、および前記吸収液を成す材料の供給量を設定する管理装置を備えたことを特徴とする。 To achieve the above object, in desulfurization operation control system of the present invention, while absorbing the SO 2 in the flue gas by contacting the absorption liquid to the exhaust gas in the absorption liquid SO 2 has been removed desulfurized In the operation control system of a desulfurization facility provided with an absorption tower for discharging exhaust gas, from the expenditure market price of various expenditures generated in accordance with the operation of the desulfurization facility while the SO 2 removal amount obtained by removing SO 2 from the exhaust gas is within a predetermined range In a mode in which the evaluation index obtained by subtracting the revenue market price of revenues generated in accordance with the operation of the desulfurization facility is minimized, the amount of the absorption liquid sent to the absorption tower and the supply amount of the material constituting the absorption liquid are set. A management device is provided.
 この脱硫設備の運転制御システムによれば、収入市場価格が高い場合は、SO除去量を増加させ、逆に、収入市場価格が低い場合は、脱硫設備運転費を少なくするように制御する。このように、収入市場価格に応じて脱硫設備の運転条件を最適化することが可能になる。この結果、刻々と変化する排ガス条件やSO販売高、および比較的緩やかに変動する各種単価(例えば、電力単価、吸収液材料単価、供給水単価、燃料単価)の各データにより、常に脱硫設備の運転に応じて生じる費用が最小となる経済的運転を行うことが可能になる。しかも、条件によっては、収入市場価格が支出市場価格よりも多くなるので、脱硫設備の運転により利益計上を図ることも可能である。 According to this operation control system for desulfurization equipment, when the revenue market price is high, the SO 2 removal amount is increased, and conversely, when the income market price is low, control is performed so as to reduce the operation cost of the desulfurization equipment. In this way, it becomes possible to optimize the operating conditions of the desulfurization equipment according to the revenue market price. As a result, the desulfurization equipment always uses exhaust gas conditions and SO 2 sales that change from moment to moment, and various unit prices (for example, unit price of electric power, unit price of absorbent material, unit price of water supply, unit price of fuel) that change relatively slowly. It is possible to perform an economical operation that minimizes the cost caused by the operation of the vehicle. In addition, depending on the conditions, the revenue market price is higher than the expenditure market price, so it is also possible to record profits by operating the desulfurization facility.
 また、本発明の脱硫設備の運転制御システムでは、前記管理装置は、過去の所定期間について、前記支出市場価格から前記収入市場価格を差し引いた予測評価指数が最小となる態様で、前記吸収塔に送る吸収液の送出量、および前記吸収液を成す材料の供給量を予め設定することを特徴とする。 Further, in the operation control system for a desulfurization facility of the present invention, the management device has a predictive evaluation index obtained by subtracting the revenue market price from the expenditure market price for the predetermined period in the past in the absorption tower. The amount of the absorbing liquid to be sent and the supply amount of the material constituting the absorbing liquid are set in advance.
 この脱硫設備の運転制御システムによれば、過去の収入市場価格が高い場合は、SO除去量を増加させ、逆に、過去の収入市場価格が低い場合は、脱硫設備運転費を少なくするように設定する。このように、過去の収入市場価格に応じて最適な脱硫設備の運転条件を予測することが可能になる。この結果、設備の管理者は、予め計画してユーティリティーなどの材料の先行手配を行うことが可能になる。 According to the operation control system of the desulfurization facility, when the past revenue market price is high, the SO 2 removal amount is increased, and conversely, when the past revenue market price is low, the desulfurization facility operation cost is reduced. Set to. In this way, it is possible to predict the optimum operating conditions of the desulfurization facility according to the past revenue market price. As a result, the manager of the facility can make a prior arrangement for materials such as utilities by planning in advance.
 また、本発明の脱硫設備の運転制御システムでは、前記排ガス中のSO濃度、および前記脱硫排ガス中のSO濃度を取得すると共に、前記吸収塔への吸収液の送出、および前記吸収液を成す材料の供給を制御する制御装置と、前記吸収塔と、前記吸収塔に吸収液を送る吸収液送出部と、前記吸収液を成す材料を供給する材料供給部とにより、排ガス中のSOを除去する脱硫設備が構成され、前記管理装置は、ネットワーク上を介して前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする。 Further, in desulfurization operation control system of the present invention, SO 2 concentration in the flue gas, and acquires the SO 2 concentration in the desulfurized flue gas, delivery of the absorbing liquid to the absorption tower, and the absorbing solution SO 2 in the exhaust gas by a control device that controls the supply of the material to be formed, the absorption tower, the absorption liquid delivery section that sends the absorption liquid to the absorption tower, and the material supply section that supplies the material that forms the absorption liquid. The desulfurization equipment which removes is comprised, The said management apparatus is connected to the said control apparatus in the said desulfurization equipment via a network so that communication is possible.
 この脱硫設備の運転制御システムによれば、ネットワーク上を介して脱硫設備の運転制御を遠隔地にて行える。 According to this desulfurization equipment operation control system, the operation control of the desulfurization equipment can be performed remotely via the network.
 また、本発明の脱硫設備の運転制御システムでは、前記管理装置は、ネットワーク上を介して複数の前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする。 In the operation control system for a desulfurization facility of the present invention, the management device is connected to the control devices in a plurality of the desulfurization facilities via a network so as to be communicable.
 この脱硫設備の運転制御システムによれば、ネットワーク上を介して複数の脱硫設備の運転制御を遠隔地にて統括して行うことが可能になる。 This operation control system for a desulfurization facility makes it possible to control operation of a plurality of desulfurization facilities from a remote location through a network.
 本発明によれば、諸事の市場価格に応じた経済的運転を行うことができる。 According to the present invention, economical operation according to the market price of various things can be performed.
図1は、本発明の実施の形態1に係る脱硫設備の運転制御システムの概略図である。FIG. 1 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る脱硫設備の運転制御システムのブロック図である。FIG. 2 is a block diagram of the operation control system for the desulfurization facility according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る脱硫設備の運転制御システムの動作を示すフローチャートである。FIG. 3 is a flowchart showing the operation of the operation control system for the desulfurization facility according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態2に係る脱硫設備の運転制御システムのブロック図である。FIG. 4 is a block diagram of an operation control system for a desulfurization facility according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態2に係る脱硫設備の運転制御システムの動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the operation control system for the desulfurization facility according to Embodiment 2 of the present invention.
 以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
[実施の形態1]
 本実施の形態について、図面を参照して説明する。図1は、実施の形態1に係る脱硫設備の運転制御システムの概略図である。図1に示すように、脱硫設備1は、火力発電所などのボイラ(例えば、石炭焚ボイラ)2からの排ガス100a中のSO(二酸化硫黄)を除去する吸収塔3と、制御装置5とを備えている。
[Embodiment 1]
The present embodiment will be described with reference to the drawings. 1 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 1. FIG. As shown in FIG. 1, a desulfurization facility 1 includes an absorption tower 3 that removes SO 2 (sulfur dioxide) in an exhaust gas 100 a from a boiler (for example, a coal fired boiler) 2 such as a thermal power plant, a control device 5, It has.
 ボイラ2から排出される排ガス100aは、排ガス管2aに介装された排ガスブロア2bにより圧送されつつ吸収塔3に供給される。なお、本実施の形態における脱硫設備1を含む排煙処理システムでは、図には明示しないが、ボイラ2から排出される排ガス100aは、吸収塔3に至る前に、脱硝設備によりNOx(窒素酸化物)を除去され、さらに集塵器(例えば電気集塵器)により燃焼灰を除去される。さらに、本実施の形態における脱硫設備1によりSOを除去された脱硫排ガス100bは、CO(二酸化炭素)回収設備によりCOを除去される。 The exhaust gas 100a discharged from the boiler 2 is supplied to the absorption tower 3 while being pumped by the exhaust gas blower 2b interposed in the exhaust gas pipe 2a. In the exhaust gas treatment system including the desulfurization facility 1 according to the present embodiment, the exhaust gas 100a discharged from the boiler 2 is treated with NOx (nitrogen oxidation) by the denitration facility before reaching the absorption tower 3, although not clearly shown in the figure. The combustion ash is removed by a dust collector (for example, an electrostatic dust collector). Further, desulfurized flue gas 100b of the FGD 1 of the present embodiment is removed SO 2 is removed CO 2 by CO 2 (carbon dioxide) recovery equipment.
 このような排煙処理システムに適用される脱硫設備1の吸収塔3は、供給された排ガス100aに、石灰石を含む吸収液(以下、吸収液という)101を接触させることで排ガス100a中のSO(二酸化硫黄)を吸収液101中の石灰石に吸収させ、これによりSOが除去された脱硫排ガス100bを排出する。 The absorption tower 3 of the desulfurization facility 1 applied to such a flue gas treatment system is configured so that an absorption liquid 101 (hereinafter referred to as an absorption liquid) 101 containing limestone is brought into contact with the supplied exhaust gas 100a to thereby adjust the SO in the exhaust gas 100a. 2 (sulfur dioxide) is absorbed by the limestone in the absorbent 101, and the desulfurized exhaust gas 100b from which SO 2 has been removed is discharged.
 吸収塔3は、その底部に吸収液101が貯留されている。吸収塔3の外部には、石灰石フィーダ3aが設けられ、この石灰石フィーダ3aにより石灰石102が計量されつつ吸収塔3内の底部に供給される。また、吸収塔3内の底部には、給水管3bを介して水103が供給される。すなわち、吸収塔3内の底部に供給された石灰石102と水103とで吸収液101が生成される。 Absorption liquid 101 is stored in the bottom of absorption tower 3. A limestone feeder 3 a is provided outside the absorption tower 3, and the limestone 102 is measured by the limestone feeder 3 a and supplied to the bottom of the absorption tower 3. Further, water 103 is supplied to the bottom of the absorption tower 3 through a water supply pipe 3b. That is, the absorption liquid 101 is generated by the limestone 102 and the water 103 supplied to the bottom of the absorption tower 3.
 吸収塔3内の底部に貯留された吸収液101は、吸収液循環ポンプ3cにより圧送され吸収塔3の外部の吸収液管3dを経て吸収塔3内の上部に供給される。そして、吸収液101は、吸収塔3内の上部に設けられたノズル3eから流下されつつ、吸収塔3内の下部に至る過程で、吸収塔3内を上昇する排ガス100aと接触する。これにより、排ガス100aに含まれるSOが吸収液101の石灰石102と反応し(下記式1参照)、排ガス100aからSOが除去されることになる。そして、SOが除去された脱硫排ガス100bは、吸収塔3の頂部に接続された脱硫排ガス管3fを介して脱硫設備1から排出される。また、SOの除去に用いられた吸収液101は、吸収塔3内の底部に貯留される。
 SO+1/2O+CaCO+2HO→CaSO・2HO+CO・・・式1
The absorption liquid 101 stored at the bottom in the absorption tower 3 is pumped by the absorption liquid circulation pump 3 c and supplied to the upper part in the absorption tower 3 through the absorption liquid pipe 3 d outside the absorption tower 3. Then, the absorption liquid 101 comes into contact with the exhaust gas 100a rising in the absorption tower 3 in the process of reaching the lower part in the absorption tower 3 while flowing down from the nozzle 3e provided in the upper part in the absorption tower 3. Thereby, SO 2 contained in the exhaust gas 100a reacts with the limestone 102 of the absorbing liquid 101 (see the following formula 1), and SO 2 is removed from the exhaust gas 100a. Then, the desulfurization exhaust gas 100b from which SO 2 has been removed is discharged from the desulfurization facility 1 through the desulfurization exhaust gas pipe 3f connected to the top of the absorption tower 3. Further, the absorbing liquid 101 used for the removal of SO 2 is stored at the bottom in the absorption tower 3.
SO 2 + 1 / 2O 2 + CaCO 3 + 2H 2 O → CaSO 4 .2H 2 O + CO 2 Formula 1
 また、吸収塔3内の底部に貯留された吸収液101の一部は、吸収液循環ポンプ3cにより圧送されつつ吸収塔3の外部の吸収液管3dから分岐した抜出管3gを経て脱水器3hに送られる。脱水器3hは、例えば、ベルトフィルタで構成され、当該ベルトフィルタで搬送される過程で吸収液101を脱水処理し、副生石膏104として系外に排出される。また、吸収液101を脱水したろ過液は、本実施の形態では吸収塔3の底部に供給される水103として利用される。 Further, a part of the absorbing liquid 101 stored at the bottom in the absorption tower 3 is depressurized via an extraction pipe 3g branched from the absorption liquid pipe 3d outside the absorption tower 3 while being pumped by the absorption liquid circulation pump 3c. Sent to 3h. The dehydrator 3h is constituted by, for example, a belt filter, dehydrates the absorbent 101 in the process of being conveyed by the belt filter, and is discharged out of the system as a byproduct gypsum 104. Moreover, the filtrate which dehydrated the absorption liquid 101 is utilized as the water 103 supplied to the bottom part of the absorption tower 3 in this Embodiment.
 吸収塔3内の底部には、酸化ブロア3iにより圧送された酸化用空気105が供給される。このため、吸収液101に酸化用空気105が含まれることで吸収液101の酸化が促進されるので、SOの除去効率を向上できる。 The bottom of the absorption tower 3 is supplied with the oxidizing air 105 fed by the oxidation blower 3i. For this reason, since the oxidizing liquid 105 is contained in the absorbing liquid 101, the oxidizing of the absorbing liquid 101 is promoted, so that the SO 2 removal efficiency can be improved.
 なお、上述した吸収塔3では、吸収液管3dを経て吸収塔3内の上部に供給された吸収液101を、ノズル3eから流下させることで、吸収塔3内を上昇する排ガス100aと接触させているが、この限りではない。例えば、図には明示しないが、吸収液管を経て吸収塔内の中部に吸収液を供給し、吸収塔内の中部に設けられたノズルから吸収液を吸収塔内の上方に噴出させる。これにより、吸収液は、吸収塔内の上部で分散しつつ微細な液滴となって吸収塔内を降下し、吸収塔内を上昇する排ガスと接触する。この結果、より大きな気液接触面積を確保して気液接触効率を向上するので、SOの除去効率を向上できる。なお、吸収液101と排ガス100aとの接触には、上述した向流接触の他、流下する吸収液101に対して排ガス100aが並行して流される並流接触や、並流接触と向流接触とを組み合わせた並向流接触がある。 In the absorption tower 3 described above, the absorption liquid 101 supplied to the upper part of the absorption tower 3 through the absorption liquid pipe 3d is caused to flow down from the nozzle 3e, thereby contacting the exhaust gas 100a rising in the absorption tower 3. This is not the case. For example, although not shown in the figure, the absorbing liquid is supplied to the middle part of the absorption tower via the absorbing liquid pipe, and the absorbing liquid is ejected upward from the nozzle provided in the middle part of the absorption tower. As a result, the absorbing liquid becomes fine droplets while being dispersed in the upper part of the absorption tower, descends in the absorption tower, and comes into contact with the exhaust gas rising in the absorption tower. As a result, a larger gas-liquid contact area is secured and the gas-liquid contact efficiency is improved, so that the SO 2 removal efficiency can be improved. In addition to the countercurrent contact described above, the contact between the absorbing liquid 101 and the exhaust gas 100a is not limited to the above-described countercurrent contact. There is a co-current contact that combines.
 上述した脱硫設備1において、図1に示すように、排ガスブロア2bには、その消費電力(排ガスブロア消費電力a)を検出する排ガスブロア消費電力検出部4aが設けられている。また、吸収液循環ポンプ3cには、その消費電力(循環ポンプ消費電力b)を検出する循環ポンプ消費電力検出部4bが設けられている。また、酸化ブロア3iには、その消費電力(酸化ブロア消費電力c)を検出する酸化ブロア消費電力検出部4cが設けられている。また、排ガス管2aには、吸収塔3に至る排ガス100a中のSO濃度(入口側SO濃度d)を検出する入口側SO濃度検出部4dが設けられている。また、脱硫排ガス管3fには、吸収塔3から排出される脱硫排ガス100b中のSO濃度(出口側SO濃度e)を検出する出口側SO濃度検出部4eが設けられている。また、吸収液管3dには、吸収液101中の石灰石102の濃度(石灰石濃度f)を検出する石灰石濃度検出部4fが設けられている。また、排ガス管2aには、入口側SO濃度検出部4dと共に、吸収塔3に至る排ガス100aの流量(排ガス流量g)を検出する排ガス流量検出部4g、吸収塔3に至る排ガス100aの温度(排ガス温度h)を検出する排ガス温度検出部4h、および吸収塔3に至る排ガス100aの水分濃度(排ガス水分濃度i)を検出する排ガス水分濃度検出部4iが設けられている。また、ボイラ2には、その消費する燃料の量(ボイラ燃料消費量j)を検出するボイラ燃料消費量検出部4jが設けられている。また、石灰石フィーダ3aには、石灰石102の供給量(石灰石供給量k)を検出する石灰石供給量検出部4kが設けられている。また、給水管3bには、水103の供給量(供給水流量m)を検出する供給水流量検出部4mが設けられている。また、吸収液管3dには、吸収液101の流量(吸収液流量n)を検出する吸収液流量検出部4nが設けられている。 In the desulfurization facility 1 described above, as shown in FIG. 1, the exhaust gas blower 2b is provided with an exhaust gas blower power consumption detection unit 4a that detects the power consumption (exhaust gas blower power consumption a). Further, the absorption liquid circulation pump 3c is provided with a circulation pump power consumption detection unit 4b for detecting the power consumption (circulation pump power consumption b). The oxidation blower 3i is provided with an oxidation blower power consumption detection unit 4c that detects its power consumption (oxidation blower power consumption c). Further, the exhaust gas pipe 2a is provided with an inlet side SO 2 concentration detector 4d that detects the SO 2 concentration (inlet side SO 2 concentration d) in the exhaust gas 100a reaching the absorption tower 3. The desulfurization exhaust gas pipe 3f is provided with an outlet side SO 2 concentration detector 4e that detects the SO 2 concentration (exit side SO 2 concentration e) in the desulfurization exhaust gas 100b discharged from the absorption tower 3. The absorption liquid pipe 3d is provided with a limestone concentration detection unit 4f that detects the concentration of limestone 102 in the absorption liquid 101 (limestone concentration f). In addition, the exhaust gas pipe 2a has an exhaust gas flow rate detection unit 4g for detecting the flow rate (exhaust gas flow rate g) of the exhaust gas 100a reaching the absorption tower 3 together with the inlet side SO 2 concentration detection unit 4d, and the temperature of the exhaust gas 100a reaching the absorption tower 3 An exhaust gas temperature detector 4 h that detects (exhaust gas temperature h) and an exhaust gas moisture concentration detector 4 i that detects the moisture concentration (exhaust gas moisture concentration i) of the exhaust gas 100 a reaching the absorption tower 3 are provided. Further, the boiler 2 is provided with a boiler fuel consumption detection unit 4j that detects the amount of fuel consumed (boiler fuel consumption j). The limestone feeder 3a is provided with a limestone supply amount detection unit 4k that detects the supply amount of limestone 102 (limestone supply amount k). The water supply pipe 3b is provided with a supply water flow rate detection unit 4m that detects the supply amount of the water 103 (supply water flow rate m). Further, the absorbing liquid pipe 3d is provided with an absorbing liquid flow rate detection unit 4n that detects the flow rate of the absorbing liquid 101 (absorbing liquid flow rate n).
 そして、これら排ガスブロア消費電力a、循環ポンプ消費電力b、酸化ブロア消費電力c、入口側SO濃度d、出口側SO濃度e、石灰石濃度f、排ガス流量g、排ガス温度h、排ガス水分濃度i、ボイラ燃料消費量j、石灰石供給量k、供給水流量m、および吸収液流量nの各データは、制御装置5に入力される。 And these exhaust gas blower power consumption a, circulation pump power consumption b, oxidation blower power consumption c, inlet side SO 2 concentration d, outlet side SO 2 concentration e, limestone concentration f, exhaust gas flow rate g, exhaust gas temperature h, exhaust gas moisture concentration Each data of i, boiler fuel consumption j, limestone supply amount k, supply water flow rate m, and absorption liquid flow rate n is input to the control device 5.
 制御装置5について、図2の実施の形態1に係る脱硫設備の運転制御システムのブロック図を参照して説明する。制御装置5は、マイコンなどで構成されている。制御装置5には、記憶部5aが設けられている。記憶部5aは、RAMやROMなどから構成され、プログラムやデータが格納されている。また、制御装置5には、吸収液循環ポンプ3cを稼動するうえで電圧をかけるための吸収液循環ポンプ駆動部5bや、石灰石フィーダ3aを稼動するうえでフィーダモータ(図示せず)に電圧をかけるための石灰石フィーダ駆動部5cが設けられている。また、制御装置5には、入出力部5dが設けられている。入出力部5dは、キーボードやマウスやモニターで構成されている。また、制御装置5には、情報通信部5eが設けられている。情報通信部5eは、管理装置6の情報通信部6fとの間で情報通信を行うためのものである。この制御装置5は、管理装置6から入力された情報に基づき、記憶部5aに予め格納されたプログラムやデータに従って、吸収液循環ポンプ3cおよび石灰石フィーダ3aを統括的に制御する。 The control device 5 will be described with reference to the block diagram of the operation control system for the desulfurization facility according to Embodiment 1 in FIG. The control device 5 is constituted by a microcomputer or the like. The control device 5 is provided with a storage unit 5a. The storage unit 5a includes a RAM, a ROM, and the like, and stores programs and data. In addition, the controller 5 supplies a voltage to the feeder motor (not shown) to operate the absorbent circulating pump drive unit 5b for applying a voltage when operating the absorbent circulating pump 3c and the limestone feeder 3a. A limestone feeder drive unit 5c is provided for placing. The control device 5 is provided with an input / output unit 5d. The input / output unit 5d includes a keyboard, a mouse, and a monitor. The control device 5 is provided with an information communication unit 5e. The information communication unit 5 e is for performing information communication with the information communication unit 6 f of the management device 6. The control device 5 comprehensively controls the absorption liquid circulation pump 3c and the limestone feeder 3a according to programs and data stored in advance in the storage unit 5a based on information input from the management device 6.
 管理装置6について、図2の実施の形態1に係る脱硫設備の運転制御システムのブロック図を参照して説明する。管理装置6は、マイコンなどで構成されている。管理装置6は、図1に示すように、制御装置5とネットワークN上を介して接続され、排ガスブロア消費電力a、循環ポンプ消費電力b、酸化ブロア消費電力c、入口側SO濃度d、出口側SO濃度e、石灰石濃度f、排ガス流量g、排ガス温度h、排ガス水分濃度i、ボイラ燃料消費量j、石灰石供給量k、供給水流量m、および吸収液流量nの各データを制御装置5から取得する。 The management apparatus 6 is demonstrated with reference to the block diagram of the operation control system of the desulfurization equipment which concerns on Embodiment 1 of FIG. The management device 6 is composed of a microcomputer or the like. As shown in FIG. 1, the management device 6 is connected to the control device 5 via the network N, and the exhaust gas blower power consumption a, the circulation pump power consumption b, the oxidation blower power consumption c, the inlet side SO 2 concentration d, Control each data of outlet side SO 2 concentration e, limestone concentration f, exhaust gas flow rate g, exhaust gas temperature h, exhaust gas moisture concentration i, boiler fuel consumption j, limestone supply amount k, supply water flow rate m, and absorption liquid flow rate n. Obtained from the device 5.
 管理装置6には、記憶部6aが設けられている。記憶部6aは、RAMやROMなどから構成され、プログラムやデータが格納されている。記憶部6aは、評価指数式データベース6aa、吸収液循環ポンプ供給電圧データベース6ab、および石灰石フィーダ供給電圧データベース6acを有している。 The management device 6 is provided with a storage unit 6a. The storage unit 6a includes a RAM, a ROM, and the like, and stores programs and data. The storage unit 6a has an evaluation index formula database 6aa, an absorption liquid circulation pump supply voltage database 6ab, and a limestone feeder supply voltage database 6ac.
 評価指数式データベース6aaは、制御装置5から取得した、排ガスブロア消費電力a、循環ポンプ消費電力b、酸化ブロア消費電力c、入口側SO濃度d、出口側SO濃度e、石灰石濃度f、排ガス流量g、排ガス温度h、排ガス水分濃度i、ボイラ燃料消費量j、石灰石供給量k、供給水流量m、および吸収液流量nの各データに基づき評価指数Eを算出するための下記式2~式5が格納されている。
 E=T-M-G・・・式2
 T=(D×DP)+(L×LP)+(W×WP)+(F×FP)・・・式3
 M=S×SP・・・式4
 G=H×HP・・・式5
The evaluation index formula database 6aa is obtained from the control device 5, the exhaust gas blower power consumption a, the circulation pump power consumption b, the oxidation blower power consumption c, the inlet side SO 2 concentration d, the outlet side SO 2 concentration e, the limestone concentration f, Formula 2 for calculating the evaluation index E based on each data of the exhaust gas flow rate g, the exhaust gas temperature h, the exhaust gas moisture concentration i, the boiler fuel consumption j, the limestone supply amount k, the supply water flow rate m, and the absorption liquid flow rate n ~ Expression 5 is stored.
E = TMG ... Formula 2
T = (D × DP) + (L × LP) + (W × WP) + (F × FP) Equation 3
M = S × SP Expression 4
G = H × HP ... Formula 5
 上記式2において、Tは、脱硫設備1の運転に応じて生じる支出諸事の支出市場価格としての脱硫設備運転費であり、上記式3により求められる。また、上記式2において、Mは、脱硫設備1の運転に応じて生じる収入諸事の収入市場価格としてのSO販売高(SO排出権)であり、上記式4により求められる。また、上記式2において、Gは、脱硫設備1の運転に応じて生じる収入諸事の収入市場価格としての副生石膏販売高または副生石膏処理費用(なお、副生石膏処理費用の場合はマイナス数値とする)であり、上記式5により求められる。すなわち、評価指数Eは、脱硫設備1の運転に応じて生じる支出諸事の支出市場価格としての脱硫設備運転費Tから、脱硫設備1の運転に応じて生じる収入諸事の収入市場価格としてのSO販売高M、および副生石膏販売高(または副生石膏処理費用)Gを差し引いたものである。 In the above equation 2, T is a desulfurization facility operating cost as an expenditure market price of various expenditures generated in accordance with the operation of the desulfurization facility 1, and is obtained by the above equation 3. Further, in the above formula 2, M is the SO 2 sales amount (SO 2 emission right) as the revenue market price of revenues generated in accordance with the operation of the desulfurization facility 1, and is obtained by the above formula 4. In the above formula 2, G is a by-product gypsum sales amount or a by-product gypsum processing cost as a revenue market price of revenues generated according to the operation of the desulfurization facility 1 (in the case of a by-product gypsum processing cost, it is a negative value) ) And is obtained by the above equation 5. That is, the evaluation index E is calculated from the desulfurization facility operating cost T as the expenditure market price of various expenditures generated according to the operation of the desulfurization facility 1, and the SO 2 as the revenue market price of revenues generated according to the operation of the desulfurization facility 1. The sales amount M and the by-product gypsum sales amount (or by-product gypsum processing cost) G are subtracted.
 上記式3において、Dは、脱硫設備1の電力消費量であり、上述した排ガスブロア消費電力a、循環ポンプ消費電力b、および酸化ブロア消費電力cを加えることで求められる。DPは、電力単価である。Lは、石灰石消費量であり、下記式6により求められるもので、下記式7により求められるSO除去量S(排ガス100aから除去したSOの量)と、石灰石純度f’と、吸収液101中の石灰石濃度fとの関係から求められる。LPは、石灰石単価(吸収液材料単価)である。Wは、脱硫設備1への供給水量であり、上述した排ガス流量g、排ガス温度h、および排ガス水分濃度iの関係から求められる。WPは、供給水単価である。Fは、ボイラ2における燃料消費量であり、上述したボイラ燃料消費量jに相当する。FPは、ボイラ2の燃料単価である。
 L=S×100/石灰石純度f’ [100=CaCO分子量]・・・式6
 S=(入口側SO濃度d-出口側SO濃度e)×排ガス流量g/22.4×10・・・式7
 なお、石灰石濃度fは、吸収液101中で余剰となった石灰石の濃度であり、これが一定であれば、石灰石消費量LはSO除去量Sに応じてのみ変化することになる。ただし、石灰石濃度fにより脱硫性能が変わるので、脱硫性能の要求が変わった場合は、一時的に石灰石消費量Lに余剰の石灰石を足す必要がある。
In the above formula 3, D is the power consumption of the desulfurization facility 1 and is obtained by adding the exhaust gas blower power consumption a, the circulation pump power consumption b, and the oxidation blower power consumption c described above. DP is a power unit price. L is a limestone consumption, those obtained by the following equation 6, the obtained SO 2 removal amount S (the amount of SO 2 removed from the flue gas 100a) by the following equation 7, the limestone purity f ', the absorbing liquid It is calculated | required from the relationship with the limestone density | concentration f in 101. LP is limestone unit price (absorbing liquid material unit price). W is the amount of water supplied to the desulfurization facility 1 and is determined from the relationship between the exhaust gas flow rate g, the exhaust gas temperature h, and the exhaust gas moisture concentration i described above. WP is the unit price of water supply. F is a fuel consumption amount in the boiler 2 and corresponds to the above-described boiler fuel consumption amount j. FP is the fuel unit price of the boiler 2.
L = S × 100 / limestone purity f ′ [100 = CaCO 3 molecular weight] Formula 6
S = (inlet side SO 2 concentration d−outlet side SO 2 concentration e) × exhaust gas flow rate g / 22.4 × 10 6 Formula 7
The limestone concentration f is the concentration of excess limestone in the absorption liquid 101. If this is constant, the limestone consumption L changes only in accordance with the SO 2 removal amount S. However, since the desulfurization performance changes depending on the limestone concentration f, when the demand for the desulfurization performance changes, it is necessary to temporarily add excess limestone to the limestone consumption L.
 また、上記式4において、Sは、上述したSO除去量である。SPは、SO取引単価である。 In the above formula 4, S is the SO 2 removal amount described above. SP is the SO 2 transaction unit price.
 また、上記式5において、Hは、副生石膏製造量であり、上述したSO除去量Sと、石灰石純度f’と、吸収液101中の石灰石濃度fとの関係から求められる。HPは、副生石膏販売単価(または副生石膏処理単価(副生石膏処理単価の場合はマイナス数値とする)である。 In Formula 5, H is the amount of byproduct gypsum produced, and is determined from the relationship between the SO 2 removal amount S, the limestone purity f ′, and the limestone concentration f in the absorbing liquid 101. HP is the by-product gypsum sales unit price (or by-product gypsum processing unit price (in the case of by-product gypsum processing unit price, it is a negative value)).
 吸収液循環ポンプ供給電圧データベース6abは、上述した評価指数Eが最小となる、すなわち脱硫設備1の運転に応じて生じる支出諸事の支出市場価格である脱硫設備運転費Tが最も少なくなるように、吸収塔3に送る吸収液101の送出量を設定するため、吸収液循環ポンプ3cに電圧を加える吸収液循環ポンプ情報が格納されている。この吸収液循環ポンプ情報は、吸収液循環ポンプ3cによる吸収液送出量(吸収液流量n)と、脱硫設備1の電力消費量DおよびSO除去量Sとの関係が予め理論式や実験式により求められたものである。 The absorption liquid circulation pump supply voltage database 6ab is such that the evaluation index E described above is minimized, that is, the desulfurization facility operating cost T, which is the expenditure market price of various expenditures generated according to the operation of the desulfurization facility 1, is minimized. In order to set the delivery amount of the absorption liquid 101 to be sent to the absorption tower 3, the absorption liquid circulation pump information for applying a voltage to the absorption liquid circulation pump 3c is stored. In this absorption liquid circulation pump information, the relationship between the absorption liquid delivery amount (absorption liquid flow rate n) by the absorption liquid circulation pump 3c and the power consumption D and SO 2 removal amount S of the desulfurization facility 1 is theoretical or experimental. It is the one requested by
 石灰石フィーダ供給電圧データベース6acは、上述した評価指数Eが最小となる、すなわち脱硫設備1の運転に応じて生じる支出諸事の支出市場価格である脱硫設備運転費Tが最も少なくなるように、吸収塔3に供給する吸収液101の供給量を設定するため、石灰石フィーダ3aのフィーダモータ(図示せず)に電圧を加えるフィーダ電圧情報が格納されている。このフィーダ電圧情報は、石灰石フィーダ3aによる石灰石供給量kとSO除去量Sとの関係が予め理論式や実験式により求められたものである。 The limestone feeder supply voltage database 6ac has the absorption index so that the evaluation index E described above is minimized, that is, the desulfurization facility operating cost T, which is the expenditure market price of various expenditures generated according to the operation of the desulfurization facility 1, is minimized. In order to set the supply amount of the absorbent 101 supplied to the feeder 3, feeder voltage information for applying a voltage to a feeder motor (not shown) of the limestone feeder 3a is stored. In this feeder voltage information, the relationship between the limestone supply amount k and the SO 2 removal amount S by the limestone feeder 3a is obtained in advance by a theoretical formula or an experimental formula.
 また、管理装置6には、支出市場価格情報入力部6bが設けられている。この支出市場価格情報入力部6bには、支出市場価格としての脱硫設備運転費Tを求めるための電力単価DP、石灰石単価LP、供給水単価WP、および燃料単価FPが入力される。かかる電力単価DP、石灰石単価LP、および供給水単価WPは、インターネットなどから自動で入力されたり、オペレータにより手動で入力されたりすることで得られる。 Further, the management device 6 is provided with an expenditure market price information input unit 6b. In this expenditure market price information input unit 6b, a power unit price DP, a limestone unit price LP, a supply water unit price WP, and a fuel unit price FP for obtaining the desulfurization facility operating cost T as the expenditure market price are input. The electric power unit price DP, the limestone unit price LP, and the supply water unit price WP are obtained by being automatically input from the Internet or manually by an operator.
 また、管理装置6には、収入市場価格情報入力部6cが設けられている。この収入市場価格情報入力部6cには、収入市場価格としてのSO販売高Mを求めるためのSO取引単価SP、および収入市場価格としての副生石膏販売高(または副生石膏処理費用)Gを求めるための副生石膏販売単価(または副生石膏処理単価)HPが入力される。かかるSO取引単価SP、および副生石膏販売単価(または副生石膏処理単価)HPは、インターネットなどから自動で入力されたり、オペレータにより手動で入力されたりすることで得られる。 The management device 6 is provided with an income market price information input unit 6c. In the revenue market price information input unit 6c, an SO 2 transaction unit price SP for obtaining the SO 2 sales amount M as the revenue market price and a by-product gypsum sales amount (or by-product gypsum processing cost) G as the revenue market price are stored. The by-product gypsum sales unit price (or by-product gypsum processing unit price) HP for obtaining is input. Such SO 2 transaction unit price SP and by-product gypsum sales unit price (or by-product gypsum processing unit price) HP are obtained by being automatically input from the Internet or manually by an operator.
 また、管理装置6には、処理部6dが設けられている。処理部6dは、脱硫設備運転費算出部6da、SO販売高算出部6db、副生石膏販売高算出部(または副生石膏処理費用算出部)6dc、評価指数算出部6dd、吸収液送出量設定部6de、および石灰石供給量設定部6dfを有している。 Further, the management device 6 is provided with a processing unit 6d. The processing unit 6d includes a desulfurization facility operating cost calculation unit 6da, an SO 2 sales calculation unit 6db, a by-product gypsum sales calculation unit (or by-product gypsum processing cost calculation unit) 6dc, an evaluation index calculation unit 6dd, and an absorption liquid delivery amount setting unit. 6de and a limestone supply amount setting unit 6df.
 脱硫設備運転費算出部6daは、上述した記憶部6aの評価指数式データベース6aaに格納された上記式3から脱硫設備運転費Tを算出する。すなわち、排ガスブロア消費電力a、循環ポンプ消費電力b、および酸化ブロア消費電力cを足して脱硫設備1の電力消費量Dを求め、入口側SO濃度dから出口側SO濃度eを差し引き排ガス流量gを乗じたSO除去量S、石灰石純度f’、および石灰石濃度fから石灰石消費量Lを求め、排ガス流量g、排ガス温度h、および排ガス水分濃度iの関係から供給水量Wを求め、さらにボイラ燃料消費量jから燃料消費量Fを求め、支出市場価格情報入力部6bから取得した電力単価DP、石灰石単価LP、供給水単価WP、および燃料単価FPにより脱硫設備運転費Tを算出する。 The desulfurization facility operating cost calculation unit 6da calculates the desulfurization facility operating cost T from the above equation 3 stored in the evaluation index formula database 6aa of the storage unit 6a. That is, exhaust Gasuburoa power a, circulating pump power consumption b, and obtains the power consumption D of desulfurization 1 by adding the oxidizing blower power consumption c, the exhaust gas subtracts the outlet SO 2 concentration e from the inlet side SO 2 concentration d The limestone consumption L is determined from the SO 2 removal amount S multiplied by the flow rate g, the limestone purity f ′, and the limestone concentration f, and the supply water amount W is determined from the relationship between the exhaust gas flow rate g, the exhaust gas temperature h, and the exhaust gas moisture concentration i. Further, the fuel consumption F is obtained from the boiler fuel consumption j, and the desulfurization facility operating cost T is calculated from the power unit price DP, the limestone unit price LP, the supply water unit price WP, and the fuel unit price FP acquired from the expenditure market price information input unit 6b. .
 SO販売高算出部6dbは、上述した記憶部6aの評価指数式データベース6aaに格納された上記式4からSO販売高Mを算出する。すなわち、入口側SO濃度dから出口側SO濃度eを差し引き排ガス流量gを乗じてSO除去量Sを求め、さらに収入市場価格情報入力部6cから取得したSO取引単価SPにより、SO販売高Mを算出する。 The SO 2 sales amount calculation unit 6db calculates the SO 2 sales amount M from the above formula 4 stored in the evaluation index formula database 6aa of the storage unit 6a. That is, by subtracting the outlet side SO 2 concentration e from the inlet side SO 2 concentration d and multiplying by the exhaust gas flow rate g, the SO 2 removal amount S is obtained, and the SO 2 transaction unit price SP acquired from the revenue market price information input unit 6c 2 Calculate sales M.
 副生石膏販売高算出部(または副生石膏処理費用算出部)6dcは、上述した記憶部6aの評価指数式データベース6aaに格納された上記式5から副生石膏販売高(副生石膏処理費用)Gを算出する。すなわち、入口側SO濃度dから出口側SO濃度eを差し引き排ガス流量gを乗じたSO除去量S、石灰石純度f’、および石灰石濃度fから副生石膏製造量Hを求め、さらに収入市場価格情報入力部6cから取得した副生石膏販売単価(または副生石膏処理単価)HPにより、副生石膏販売高(副生石膏処理費用)Gを算出する。 Byproduct gypsum sales amount calculation unit (or byproduct gypsum processing cost calculation unit) 6dc calculates byproduct gypsum sales amount (byproduct gypsum processing cost) G from the above equation 5 stored in the evaluation index formula database 6aa of the storage unit 6a. To do. That is, the amount of byproduct gypsum produced H is obtained from the SO 2 removal amount S obtained by subtracting the outlet side SO 2 concentration e from the inlet side SO 2 concentration d and multiplied by the exhaust gas flow rate g, the limestone purity f ′, and the limestone concentration f, and further the revenue market. By-product gypsum sales (by-product gypsum processing cost) G is calculated from the by-product gypsum sales unit price (or by-product gypsum processing unit price) HP acquired from the price information input unit 6c.
 評価指数算出部6ddは、上述した記憶部6aの評価指数式データベース6aaに格納された上記式2から評価指数Eを算出する。すなわち、脱硫設備運転費算出部6daで算出した脱硫設備運転費T、SO販売高算出部6dbで算出したSO販売高M、および副生石膏販売高算出部(または副生石膏処理費用算出部)6dcで算出した副生石膏販売高(副生石膏処理費用)Gにより、評価指数Eを算出する。 The evaluation index calculation unit 6dd calculates the evaluation index E from the above formula 2 stored in the evaluation index formula database 6aa of the storage unit 6a. That is, the desulfurization equipment operation cost T calculated by desulfurization equipment operation cost calculation unit 6da, SO 2 sales calculator SO 2 sales calculated in 6db M, and by-product gypsum sales calculator (or by-product gypsum processing cost calculation unit) The evaluation index E is calculated from the amount of by-product gypsum sales (cost of by-product gypsum treatment) G calculated at 6 dc.
 吸収液送出量設定部6deは、上述した記憶部6aの吸収液循環ポンプ供給電圧データベース6abに格納された吸収液循環ポンプ情報により、評価指数算出部6ddで算出した評価指数Eが最小となるように、吸収塔3に送る吸収液101の送出量、すなわち吸収液循環ポンプ3cに加える電圧を設定する。 The absorption liquid delivery amount setting unit 6de uses the absorption liquid circulation pump information stored in the absorption liquid circulation pump supply voltage database 6ab of the storage unit 6a to minimize the evaluation index E calculated by the evaluation index calculation unit 6dd. In addition, the amount of the absorption liquid 101 to be sent to the absorption tower 3, that is, the voltage applied to the absorption liquid circulation pump 3c is set.
 石灰石供給量設定部6dfは、上述した記憶部6aの石灰石フィーダ供給電圧データベース6acに格納されたフィーダ電圧情報により、評価指数算出部6ddで算出した評価指数Eが最小となるように、吸収液101を成す材料である石灰石102の供給量、すなわち石灰石フィーダ3aのフィーダモータ(図示せず)に加える電圧を設定する。 The limestone supply amount setting unit 6df absorbs the absorbent 101 so that the evaluation index E calculated by the evaluation index calculation unit 6dd is minimized based on the feeder voltage information stored in the limestone feeder supply voltage database 6ac of the storage unit 6a. The supply amount of the limestone 102 which is the material forming the above, that is, the voltage applied to the feeder motor (not shown) of the limestone feeder 3a is set.
 また、管理装置6には、入出力部6eが設けられている。入出力部6eは、キーボードやマウスやモニターで構成されている。また、管理装置6には、情報通信部6fが設けられている。情報通信部6fは、制御装置5の情報通信部5eとの間で情報通信を行うためのものである。この管理装置6は、制御装置5から入力された情報に基づき、記憶部6aに予め格納されたプログラムやデータに従って、制御装置5に対し、吸収液循環ポンプ3cおよび石灰石フィーダ3aを統括的に制御するための情報を出力する。 Further, the management device 6 is provided with an input / output unit 6e. The input / output unit 6e includes a keyboard, a mouse, and a monitor. In addition, the management device 6 is provided with an information communication unit 6f. The information communication unit 6 f is for performing information communication with the information communication unit 5 e of the control device 5. Based on the information input from the control device 5, the management device 6 controls the control device 5 in an integrated manner with respect to the absorbent circulating pump 3c and the limestone feeder 3a in accordance with programs and data stored in advance in the storage unit 6a. To output information.
 上述した制御装置5および管理装置6による脱硫設備の運転制御について、図3の実施の形態1に係る脱硫設備の運転制御システムの動作を示すフローチャートを参照して説明する。 The operation control of the desulfurization facility by the control device 5 and the management device 6 described above will be described with reference to the flowchart showing the operation of the operation control system of the desulfurization facility according to the first embodiment of FIG.
 図3に示すように、まず、制御装置5では、排ガスブロア消費電力a、循環ポンプ消費電力b、酸化ブロア消費電力c、入口側SO濃度d、出口側SO濃度e、石灰石濃度f、石灰石純度f’、排ガス流量g、排ガス温度h、排ガス水分濃度i、ボイラ燃料消費量j、石灰石供給量k、供給水流量m、および吸収液流量nの各データを管理装置6に出力する(ステップST1)。 As shown in FIG. 3, first, in the control device 5, the exhaust gas blower power consumption a, the circulation pump power consumption b, the oxidation blower power consumption c, the inlet side SO 2 concentration d, the outlet side SO 2 concentration e, the limestone concentration f, Each data of the limestone purity f ′, the exhaust gas flow rate g, the exhaust gas temperature h, the exhaust gas moisture concentration i, the boiler fuel consumption j, the limestone supply amount k, the supply water flow rate m, and the absorption liquid flow rate n is output to the management device 6 ( Step ST1).
 次に、管理装置6は、制御装置5から上記各データを入力し(ステップST2)、脱硫設備運転費算出部6daにおいて、脱硫設備運転費Tを算出し、SO販売高算出部6dbにおいて、SO販売高Mを算出し、副生石膏販売高算出部(または副生石膏処理費用算出部)6dcにおいて、副生石膏販売高(副生石膏処理費用)Gを算出し、評価指数算出部6ddにおいて、評価指数Eを算出する(ステップST3)。 Next, the management device 6 inputs each of the above data from the control device 5 (step ST2), the desulfurization facility operation cost calculation unit 6da calculates the desulfurization facility operation cost T, and the SO 2 sales calculation unit 6db The SO 2 sales amount M is calculated, the by-product gypsum sales calculating unit (or by-product gypsum processing cost calculating unit) 6dc calculates the by-product gypsum sales amount (by-product gypsum processing cost) G, and the evaluation index calculating unit 6dd evaluates it. An index E is calculated (step ST3).
 次に、管理装置6は、吸収液送出量設定部6deにおいて、評価指数Eが最小となるように、吸収塔3に送る吸収液101の送出量(すなわち吸収液循環ポンプ3cに加える電圧)を設定すると共に、石灰石供給量設定部6dfにおいて、評価指数Eが最小となるように、吸収液101を成す材料である石灰石102の供給量(すなわち石灰石フィーダ3aのフィーダモータ(図示せず)に加える電圧)を設定する(ステップST4)。 Next, the management device 6 sets the amount of the absorption liquid 101 to be sent to the absorption tower 3 (that is, the voltage applied to the absorption liquid circulation pump 3c) so that the evaluation index E is minimized in the absorption liquid delivery amount setting unit 6de. At the same time, in the limestone supply amount setting unit 6df, the supply amount of limestone 102 which is a material constituting the absorbing liquid 101 (that is, a feeder motor (not shown) of the limestone feeder 3a) is added so that the evaluation index E is minimized. Voltage) is set (step ST4).
 最後に、制御装置5では、SO除去量Sを所定の範囲内としつつ、管理装置6で設定された吸収液循環ポンプ3cの電圧、および石灰石フィーダ3aのフィーダモータ(図示せず)の電圧に応じ、吸収液循環ポンプ3cおよび石灰石フィーダ3aを駆動する(ステップST5)。 Finally, the control device 5, while the SO 2 removal amount S within a predetermined range, the set voltage of the absorbent circulating pump 3c in the management apparatus 6, and the voltage of the feeder motor limestone feeder 3a (not shown) Accordingly, the absorption liquid circulation pump 3c and the limestone feeder 3a are driven (step ST5).
 このように、実施の形態1に係る脱硫設備の運転制御システムでは、排ガス100aからSOを除去したSO除去量Sを所定範囲内としつつ、脱硫設備1の運転に応じて生じる支出諸事の支出市場価格(脱硫設備運転費T)から、脱硫設備1の運転に応じて生じる収入諸事の収入市場価格(SO販売高M、副生石膏販売高(副生石膏処理費用)G)を差し引いた評価指数Eが最小となる態様で、吸収塔3に送る吸収液101の送出量、および吸収液101を成す材料(石灰石102)の供給量を設定する。 As described above, in the operation control system for the desulfurization facility according to the first embodiment, the expenditures generated in accordance with the operation of the desulfurization facility 1 while keeping the SO 2 removal amount S obtained by removing SO 2 from the exhaust gas 100a within a predetermined range. Evaluation by subtracting the revenue market price (SO 2 sales M, by-product gypsum sales (by-product gypsum treatment cost) G) from the expenditure market price (desulfurization facility operating cost T) and the revenue generated by the operation of the desulfurization facility 1 In a mode in which the index E is minimized, the amount of the absorbing liquid 101 sent to the absorption tower 3 and the amount of the material (limestone 102) constituting the absorbing liquid 101 are set.
 この脱硫設備の運転制御システムによれば、収入市場価格(SO販売高M、副生石膏販売高G)が高い場合は、SO除去量Sを増加させ、逆に、収入市場価格(SO販売高M、副生石膏販売高G)が低い場合は、脱硫設備運転費Tを少なくするように制御する。このように、収入市場価格(SO販売高M、副生石膏販売高(副生石膏処理費用)G)に応じて脱硫設備1の運転条件を最適化することが可能になる。この結果、刻々と変化する排ガス100a条件(入口側SO濃度d、出口側SO濃度e、石灰石濃度f、排ガス流量g、排ガス温度h)やSO販売高M、および比較的緩やかに変動する各種単価(電力単価DP、石灰石単価LP、供給水単価WP、燃料単価FP)の各データにより、常に脱硫設備1の運転に応じて生じる費用が最小となる経済的運転を行うことが可能になる。 According to the operation control system of this desulfurization facility, when the revenue market price (SO 2 sales M, by-product gypsum sales G) is high, the SO 2 removal amount S is increased, and conversely, the revenue market price (SO 2 When the sales amount M and the by-product gypsum sales amount G) are low, the desulfurization equipment operating cost T is controlled to be reduced. Thus, the operating conditions of the desulfurization facility 1 can be optimized according to the revenue market price (SO 2 sales M, by-product gypsum sales (by-product gypsum processing cost) G). As a result, the exhaust gas 100a conditions (inlet side SO 2 concentration d, outlet side SO 2 concentration e, limestone concentration f, exhaust gas flow rate g, exhaust gas temperature h), SO 2 sales M, and relatively slowly fluctuate. Each unit price (power unit price DP, limestone unit price LP, supply water unit price WP, fuel unit price FP) can be used to perform economical operation that always minimizes the cost caused by the operation of the desulfurization facility 1. Become.
 しかも、条件によっては、上記式2(E=T-M-G)において、収入市場価格(M,G)が支出市場価格(T)よりも多くなれば、評価指数Eがマイナスとなり、脱硫設備1の運転により利益計上を図ることも可能である。 Moreover, depending on the conditions, in the above formula 2 (E = TMG), if the revenue market price (M, G) is greater than the expenditure market price (T), the evaluation index E becomes negative, and the desulfurization equipment It is also possible to record profits by driving 1.
 また、実施の形態1に係る脱硫設備の運転制御システムでは、管理装置6は、ネットワークN上を介して脱硫設備1における制御装置5と通信可能に接続されている。この結果、脱硫設備1の運転制御を遠隔地にて行うことが可能になる。 Further, in the operation control system for the desulfurization facility according to the first embodiment, the management device 6 is connected to the control device 5 in the desulfurization facility 1 via the network N so as to be communicable. As a result, operation control of the desulfurization facility 1 can be performed at a remote location.
 なお、実施の形態1に係る脱硫設備の運転制御システムでは、図1に示すように、管理装置6がネットワークN上を介して複数の脱硫設備1における制御装置5と通信可能に接続されている。図2では、1つの脱硫設備1における制御装置5と管理装置6とが一対一の関係で接続されている形態を示しているが、複数の脱硫設備1における制御装置5と管理装置6とが多対一の関係で接続されている場合は、管理装置6において、各制御装置5に対応して記憶部6a、支出市場価格情報入力部6b、収入市場価格情報入力部6c、処理部6d、入出力部6e、および情報通信部6fが機能する。この結果、複数の脱硫設備1の運転制御を遠隔地にて統括して行うことが可能になる。なお、脱硫設備1における制御装置5と管理装置6とが一対一の関係で接続される場合は、制御装置5と管理装置6とがネットワークN上を介して接続されず、管理装置6が脱硫設備1の制御装置5に含まれて構成されていてもよい。 In the operation control system for the desulfurization facility according to the first embodiment, as shown in FIG. 1, the management device 6 is communicably connected to the control devices 5 in the plurality of desulfurization facilities 1 via the network N. . FIG. 2 shows a form in which the control device 5 and the management device 6 in one desulfurization facility 1 are connected in a one-to-one relationship. However, the control device 5 and the management device 6 in the plurality of desulfurization facilities 1 are connected to each other. When connected in a many-to-one relationship, in the management device 6, corresponding to each control device 5, a storage unit 6a, an expenditure market price information input unit 6b, an income market price information input unit 6c, a processing unit 6d, The input / output unit 6e and the information communication unit 6f function. As a result, the operation control of the plurality of desulfurization facilities 1 can be performed in a remote place. When the control device 5 and the management device 6 in the desulfurization facility 1 are connected in a one-to-one relationship, the control device 5 and the management device 6 are not connected via the network N, and the management device 6 is desulfurized. It may be included in the control device 5 of the facility 1.
 なお、SOを吸収する吸収液として、石灰石102を含む吸収液101を適用した石灰石膏法の脱硫設備1について説明したが、この限りではない。例えば、水マグ法や苛性ソーダ法など、他の湿式脱硫設備でも、上述した実施の形態が適用可能である。その場合、石灰石単価LPを水酸化マグネシウム単価や苛性ソーダ単価に変更する。 As the absorption liquid to absorb SO 2, it has been described desulfurization 1 lime gypsum method of applying the absorption liquid 101 containing limestone 102, not limited thereto. For example, the embodiments described above can be applied to other wet desulfurization facilities such as a water mug method and a caustic soda method. In that case, the limestone unit price LP is changed to a magnesium hydroxide unit price or a caustic soda unit price.
[実施の形態2]
 本実施の形態について、図面を参照して説明する。図4は、本発明の実施の形態2に係る脱硫設備の運転制御システムのブロック図である。なお、以下に説明する実施の形態2において、上述した実施の形態1と同等の構成には同一の符号を付してその説明を省略する。
[Embodiment 2]
The present embodiment will be described with reference to the drawings. FIG. 4 is a block diagram of an operation control system for a desulfurization facility according to Embodiment 2 of the present invention. In the second embodiment described below, the same reference numerals are given to the same components as those in the first embodiment described above, and the description thereof is omitted.
 図4に示す脱硫設備1は、上述した実施の形態1に対し、管理装置6において、記憶部6aに支出市場価格情報データベース6ad、および収入市場価格情報データベース6aeをさらに備えている。 The desulfurization facility 1 shown in FIG. 4 further includes a spending market price information database 6ad and an income market price information database 6ae in the storage unit 6a in the management device 6 as compared with the first embodiment described above.
 支出市場価格情報データベース6adは、支出市場価格情報入力部6bに入力された支出市場価格として、脱硫設備運転費Tを求めるための電力単価DP、石灰石単価LP、供給水単価WP、および燃料単価FPを記憶する。 The expenditure market price information database 6ad is a unit price of electricity DP, a unit price of limestone LP, a unit price of supply water WP, and a unit price of fuel FP as the expenditure market price input to the expenditure market price information input unit 6b. Remember.
 収入市場価格情報データベース6aeは、収入市場価格情報入力部6cに入力された収入市場価格として、SO販売高Mを求めるためのSO取引単価SP、および副生石膏販売高(または副生石膏処理費用)Gを求めるための副生石膏販売単価(または副生石膏処理単価)HPを記憶する。 The revenue market price information database 6ae stores the SO 2 transaction unit price SP for obtaining the SO 2 sales amount M as the revenue market price input to the revenue market price information input unit 6c, and by-product gypsum sales (or by-product gypsum processing costs). ) Store by-product gypsum sales unit price (or by-product gypsum processing unit price) HP for obtaining G.
 制御装置5および管理装置6による脱硫設備の運転制御について、図5の実施の形態2に係る脱硫設備の運転制御システムの動作を示すフローチャートを参照して説明する。 The operation control of the desulfurization facility by the control device 5 and the management device 6 will be described with reference to the flowchart showing the operation of the operation control system of the desulfurization facility according to the second embodiment of FIG.
 図5に示すように、まず、管理装置6では、過去の所定期間について、支出市場価格情報データベース6adに記憶された支出市場価格、および収入市場価格情報データベース6aeに記憶された収入市場価格を取得する(ステップST11)。 As shown in FIG. 5, first, the management device 6 acquires the expenditure market price stored in the expenditure market price information database 6ad and the income market price stored in the income market price information database 6ae for a predetermined period in the past. (Step ST11).
 次に、管理装置6は、評価指数算出部6ddにおいて、取得した支出市場価格から収入市場価格を差し引いて、予測評価指数Eaを算出する(ステップST12)。予測評価指数Eaの算出は、上述した実施の形態1の評価指数Eと同じである。 Next, the management device 6 calculates the predicted evaluation index Ea by subtracting the income market price from the acquired expenditure market price in the evaluation index calculation unit 6dd (step ST12). The calculation of the predicted evaluation index Ea is the same as the evaluation index E of the first embodiment described above.
 次に、管理装置6は、吸収液送出量設定部6deにおいて、予測評価指数Eaが最小となるように、吸収塔3に送る吸収液101の送出量(すなわち吸収液循環ポンプ3cに加える電圧)を設定すると共に、石灰石供給量設定部6dfにおいて、予測評価指数Eaが最小となるように、吸収液101を成す材料である石灰石102の供給量(すなわち石灰石フィーダ3aのフィーダモータ(図示せず)に加える電圧)を設定する(ステップST13)。 Next, the management device 6 sends the absorption liquid 101 sent to the absorption tower 3 (that is, the voltage applied to the absorption liquid circulation pump 3c) so that the predicted evaluation index Ea is minimized in the absorption liquid delivery quantity setting unit 6de. In addition, in the limestone supply amount setting unit 6df, the supply amount of limestone 102 that is the material constituting the absorbent 101 (that is, a feeder motor (not shown) of the limestone feeder 3a) so that the predicted evaluation index Ea is minimized. Is set (step ST13).
 最後に、制御装置5では、SO除去量Sを所定の範囲内としつつ、管理装置6で設定された吸収液循環ポンプ3cの電圧、および石灰石フィーダ3aのフィーダモータ(図示せず)の電圧に応じ、吸収液循環ポンプ3cおよび石灰石フィーダ3aを駆動する(ステップST14)。 Finally, the control device 5, while the SO 2 removal amount S within a predetermined range, the set voltage of the absorbent circulating pump 3c in the management apparatus 6, and the voltage of the feeder motor limestone feeder 3a (not shown) Accordingly, the absorption liquid circulation pump 3c and the limestone feeder 3a are driven (step ST14).
 このように、実施の形態2に係る脱硫設備の運転制御システムでは、過去の所定期間について、支出市場価格(脱硫設備運転費T)から収入市場価格(SO販売高M、副生石膏販売高(副生石膏処理費用)G)を差し引いた予測評価指数Eaが最小となる態様で、吸収塔3に送る吸収液101の送出量、および吸収液101を成す材料(石灰石102)の供給量を設定する。 As described above, in the operation control system for the desulfurization facility according to the second embodiment, the revenue market price (SO 2 sales M, by-product gypsum sales ( The amount of absorption liquid 101 sent to the absorption tower 3 and the supply amount of the material (limestone 102) constituting the absorption liquid 101 are set in such a manner that the predicted evaluation index Ea obtained by subtracting the byproduct gypsum processing cost G) is minimized. .
 この脱硫設備の運転制御システムによれば、過去の収入市場価格(SO販売高M、副生石膏販売高G)が高い場合は、SO除去量Sを増加させ、逆に、過去の収入市場価格(SO販売高M、副生石膏販売高G)が低い場合は、脱硫設備運転費Tを少なくするように設定する。このように、過去の収入市場価格(SO販売高M、副生石膏販売高(副生石膏処理費用)G)に応じて最適な脱硫設備1の運転条件を予測することが可能になる。この結果、設備の管理者は、予め計画してユーティリティーなどの材料(例えば、石灰石102)の先行手配を行うことが可能になる。なお、予測評価指数Eaは、上述した実施の形態1の評価指数Eにより補正することが可能である。 According to the operation control system of this desulfurization facility, when the past revenue market price (SO 2 sales M, by-product gypsum sales G) is high, the SO 2 removal amount S is increased, and conversely the past revenue market. When the price (SO 2 sales M, by-product gypsum sales G) is low, the desulfurization equipment operating cost T is set to be low. Thus, it becomes possible to predict the optimal operating conditions of the desulfurization facility 1 according to the past revenue market price (SO 2 sales amount M, by-product gypsum sales amount (by-product gypsum treatment cost) G). As a result, the manager of the facility can make a prior arrangement for materials such as utilities (for example, limestone 102) by planning in advance. The predicted evaluation index Ea can be corrected by the evaluation index E of the first embodiment described above.
 また、実施の形態2に係る脱硫設備の運転制御システムでは、管理装置6は、ネットワークN上を介して脱硫設備1における制御装置5と通信可能に接続されている。この結果、脱硫設備1の運転制御を遠隔地にて行うことが可能になる。 In the operation control system for the desulfurization facility according to the second embodiment, the management device 6 is connected to the control device 5 in the desulfurization facility 1 via the network N so as to be communicable. As a result, operation control of the desulfurization facility 1 can be performed at a remote location.
 なお、実施の形態2に係る脱硫設備の運転制御システムでは、図1に示すように、管理装置6がネットワークN上を介して複数の脱硫設備1における制御装置5と通信可能に接続されている。図4では、1つの脱硫設備1における制御装置5と管理装置6とが一対一の関係で接続されている形態を示しているが、複数の脱硫設備1における制御装置5と管理装置6とが多対一の関係で接続されている場合は、管理装置6において、各制御装置5に対応して記憶部6a、支出市場価格情報入力部6b、収入市場価格情報入力部6c、処理部6d、入出力部6e、および情報通信部6fが機能する。この結果、複数の脱硫設備1の運転制御を遠隔地にて統括して行うことが可能になる。なお、脱硫設備1における制御装置5と管理装置6とが一対一の関係で接続される場合は、制御装置5と管理装置6とがネットワークN上を介して接続されず、管理装置6が脱硫設備1の制御装置5に含まれて構成されていてもよい。 In the operation control system for the desulfurization facility according to the second embodiment, as shown in FIG. 1, the management device 6 is communicably connected to the control devices 5 in the plurality of desulfurization facilities 1 via the network N. . In FIG. 4, the control device 5 and the management device 6 in one desulfurization facility 1 are connected in a one-to-one relationship, but the control device 5 and the management device 6 in the plurality of desulfurization facilities 1 are connected. When connected in a many-to-one relationship, in the management device 6, corresponding to each control device 5, a storage unit 6a, an expenditure market price information input unit 6b, an income market price information input unit 6c, a processing unit 6d, The input / output unit 6e and the information communication unit 6f function. As a result, the operation control of the plurality of desulfurization facilities 1 can be performed in a remote place. When the control device 5 and the management device 6 in the desulfurization facility 1 are connected in a one-to-one relationship, the control device 5 and the management device 6 are not connected via the network N, and the management device 6 is desulfurized. It may be included in the control device 5 of the facility 1.
 以上のように、本発明に係る脱硫設備の運転制御システムは、諸事の市場価格に応じた経済的運転を行うことに適している。 As described above, the operation control system for a desulfurization facility according to the present invention is suitable for performing economical operation in accordance with various market prices.
 1 脱硫設備
 2 ボイラ
 2a 排ガス管
 2b 排ガスブロア
 3 吸収塔
 3a 石灰石フィーダ
 3b 給水管
 3c 吸収液循環ポンプ
 3d 吸収液管
 3e ノズル
 3f 脱硫排ガス管
 3g 抜出管
 3h 脱水器
 3i 酸化ブロア
 4a 排ガスブロア消費電力検出部
 4b 循環ポンプ消費電力検出部
 4c 酸化ブロア消費電力検出部
 4d 入口側SO濃度検出部
 4e 出口側SO濃度検出部
 4f 石灰石濃度検出部
 4g 排ガス流量検出部
 4h 排ガス温度検出部
 4i 排ガス水分濃度検出部
 4j ボイラ燃料消費量検出部
 4k 石灰石供給量検出部
 4m 供給水流量検出部
 4n 吸収液流量検出部
 5 制御装置
 5a 記憶部
 5b 吸収液循環ポンプ駆動部
 5c 石灰石フィーダ駆動部
 5d 入出力部
 5e 情報通信部
 6 管理装置
 6a 記憶部
 6b 支出市場価格情報入力部
 6c 収入市場価格情報入力部
 6d 処理部
 6e 入出力部
 6f 情報通信部
 100a 排ガス
 100b 脱硫排ガス
 101 吸収液
 102 石灰石
 103 水
 104 副生石膏
 105 酸化用空気
 N ネットワーク
 E 評価指数
 Ea 予測評価指数
 T 脱硫設備運転費
 M SO販売高
 G 副生石膏販売高
 S SO除去量
DESCRIPTION OF SYMBOLS 1 Desulfurization equipment 2 Boiler 2a Exhaust pipe 2b Exhaust blower 3 Absorption tower 3a Limestone feeder 3b Water supply pipe 3c Absorption liquid circulation pump 3d Absorption liquid pipe 3e Nozzle 3f Desulfurization exhaust pipe 3g Extraction pipe 3h Dehydrator 3i Oxidation blower 4a Exhaust blower power consumption Detection unit 4b Circulating pump power consumption detection unit 4c Oxidation blower power consumption detection unit 4d Inlet side SO 2 concentration detection unit 4e Outlet side SO 2 concentration detection unit 4f Limestone concentration detection unit 4g Exhaust gas flow rate detection unit 4h Exhaust gas temperature detection unit 4i Exhaust gas moisture Concentration detection unit 4j Boiler fuel consumption detection unit 4k Limestone supply amount detection unit 4m Supply water flow rate detection unit 4n Absorbed liquid flow rate detection unit 5 Controller 5a Storage unit 5b Absorption liquid circulation pump drive unit 5c Limestone feeder drive unit 5d Input / output unit 5e Information communication unit 6 Management device 6a Storage unit 6b Expenditure market price information Information input part 6c Revenue market price information input part 6d Processing part 6e Input / output part 6f Information communication part 100a Exhaust gas 100b Desulfurization exhaust gas 101 Absorbent liquid 102 Limestone 103 Water 104 Byproduct gypsum 105 Air for oxidation N Network E Evaluation index Ea Predictive evaluation index T Operating cost of desulfurization equipment M SO 2 sales G By-product gypsum sales S SO 2 removal

Claims (4)

  1.  排ガスに吸収液を接触させることで前記排ガス中のSOを前記吸収液に吸収させつつSOが除去された脱硫排ガスを排出する吸収塔を備える脱硫設備の運転制御システムにおいて、
     前記排ガスからSOを除去したSO除去量を所定範囲内としつつ、脱硫設備の運転に応じて生じる支出諸事の支出市場価格から脱硫設備の運転に応じて生じる収入諸事の収入市場価格を差し引いた評価指数が最小となる態様で、前記吸収塔に送る吸収液の送出量、および前記吸収液を成す材料の供給量を設定する管理装置を備えたことを特徴とする脱硫設備の運転制御システム。
    In operation control system of desulfurization comprising an absorption tower for discharging the desulfurized flue gas SO 2 is removed SO 2 while absorbed into the absorbing solution in the exhaust gas by contacting the absorption liquid to the exhaust gas,
    The amount of SO 2 removed by removing SO 2 from the exhaust gas is within a predetermined range, and the revenue market price of revenues generated according to the operation of the desulfurization facility is subtracted from the expenditure market price of the expenditures generated according to the operation of the desulfurization facility. An operation control system for a desulfurization facility, comprising a management device for setting a delivery amount of an absorption liquid to be sent to the absorption tower and a supply amount of a material constituting the absorption liquid in such a manner that the evaluation index is minimized. .
  2.  前記管理装置は、過去の所定期間について、前記支出市場価格から前記収入市場価格を差し引いた予測評価指数が最小となる態様で、前記吸収塔に送る吸収液の送出量、および前記吸収液を成す材料の供給量を予め設定することを特徴とする請求項1に記載の脱硫設備の運転制御システム。 The management device is configured such that, for a predetermined period in the past, a predicted evaluation index obtained by subtracting the revenue market price from the expenditure market price is minimized, and the amount of the absorption liquid sent to the absorption tower and the absorption liquid are formed. 2. The operation control system for a desulfurization facility according to claim 1, wherein a supply amount of the material is set in advance.
  3.  前記排ガス中のSO濃度、および前記脱硫排ガス中のSO濃度を取得すると共に、前記吸収塔への吸収液の送出、および前記吸収液を成す材料の供給を制御する制御装置と、前記吸収塔と、前記吸収塔に吸収液を送る吸収液送出部と、前記吸収液を成す材料を供給する材料供給部とにより、排ガス中のSOを除去する脱硫設備が構成され、
     前記管理装置は、ネットワーク上を介して前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする請求項1または2に記載の脱硫設備の運転制御システム。
    SO 2 concentration in the exhaust gas, and acquires the SO 2 concentration in the desulfurized flue gas, and a control device for controlling the supply of material forming delivery, and the absorption liquid in the absorption liquid to the absorption tower, the absorbing A desulfurization facility for removing SO 2 in the exhaust gas is constituted by a tower, an absorption liquid sending section that sends an absorption liquid to the absorption tower, and a material supply section that supplies a material that forms the absorption liquid.
    The operation control system for a desulfurization facility according to claim 1 or 2, wherein the management device is connected to the control device in the desulfurization facility via a network so as to be communicable.
  4.  前記管理装置は、ネットワーク上を介して複数の前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする請求項3に記載の脱硫設備の運転制御システム。 The operation control system for a desulfurization facility according to claim 3, wherein the management device is connected to the control devices in a plurality of the desulfurization facilities via a network.
PCT/JP2010/066496 2009-11-24 2010-09-24 System for controlling operation of desulfurization apparatus WO2011065119A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009266073A JP2011110441A (en) 2009-11-24 2009-11-24 System for controlling operation of desulfurization equipment
JP2009-266073 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011065119A1 true WO2011065119A1 (en) 2011-06-03

Family

ID=44066223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066496 WO2011065119A1 (en) 2009-11-24 2010-09-24 System for controlling operation of desulfurization apparatus

Country Status (2)

Country Link
JP (1) JP2011110441A (en)
WO (1) WO2011065119A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111954567A (en) * 2018-03-06 2020-11-17 三菱动力株式会社 Operation support system and operation support method for desulfurization device
CN112288296A (en) * 2020-11-03 2021-01-29 北京国电龙源环保工程有限公司 Real-time evaluation system and application method for operation performance and economy of desulfurization device
CN113313325A (en) * 2021-06-21 2021-08-27 西安热工研究院有限公司 Desulfurization system operation optimization method, system, equipment and storage medium
CN113041808B (en) * 2021-03-23 2022-08-02 光大环保技术装备(常州)有限公司 Method and system for controlling adding amount of lime slurry and cooling water in deacidification tower

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106834B2 (en) * 2017-10-06 2022-07-27 中国電力株式会社 Desulfurization equipment operating method, desulfurization control equipment
JP7161855B2 (en) * 2018-03-06 2022-10-27 三菱重工業株式会社 Operation monitoring system for desulfurization equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024422A (en) * 1988-06-22 1990-01-09 Babcock Hitachi Kk Control of wet waste gas desulfurization equipment
JPH0929057A (en) * 1995-07-19 1997-02-04 Toshiba Corp Device for controlling model forecast and gas refining plant using this device
JP2003052091A (en) * 2001-08-07 2003-02-21 Hitachi Ltd System for supervising operation of plant
JP2003333023A (en) * 2002-05-09 2003-11-21 Toshiba Corp Data relay program for plant supervisory control and system
JP2008512748A (en) * 2004-08-27 2008-04-24 アルストム テクノロジー リミテッド Stepwise control of process parameter averages to desired values

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024422A (en) * 1988-06-22 1990-01-09 Babcock Hitachi Kk Control of wet waste gas desulfurization equipment
JPH0929057A (en) * 1995-07-19 1997-02-04 Toshiba Corp Device for controlling model forecast and gas refining plant using this device
JP2003052091A (en) * 2001-08-07 2003-02-21 Hitachi Ltd System for supervising operation of plant
JP2003333023A (en) * 2002-05-09 2003-11-21 Toshiba Corp Data relay program for plant supervisory control and system
JP2008512748A (en) * 2004-08-27 2008-04-24 アルストム テクノロジー リミテッド Stepwise control of process parameter averages to desired values

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111954567A (en) * 2018-03-06 2020-11-17 三菱动力株式会社 Operation support system and operation support method for desulfurization device
CN112288296A (en) * 2020-11-03 2021-01-29 北京国电龙源环保工程有限公司 Real-time evaluation system and application method for operation performance and economy of desulfurization device
CN113041808B (en) * 2021-03-23 2022-08-02 光大环保技术装备(常州)有限公司 Method and system for controlling adding amount of lime slurry and cooling water in deacidification tower
CN113313325A (en) * 2021-06-21 2021-08-27 西安热工研究院有限公司 Desulfurization system operation optimization method, system, equipment and storage medium

Also Published As

Publication number Publication date
JP2011110441A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
WO2011065119A1 (en) System for controlling operation of desulfurization apparatus
US10343109B2 (en) Slurry control system
EP2361667B1 (en) A wet scrubber and a method of cleaning a process gas
CN109092045B (en) Limestone-gypsum method flue gas desulfurization slurry oxidation control method
RU2502876C2 (en) Power plant with trapping and compression of co2
EP3238811A1 (en) Apparatus and method for evaporating waste water and reducing acid gas emissions
KR20120092174A (en) Method and system for condensing water vapour from a carbon dioxide rich flue gas
GB2296490A (en) Wet type exhaust gas desulfurization apparatus and method utilizing solid desulfurizing agent
US9084959B2 (en) CO2 recovering apparatus and operation control method of CO2 recovering apparatus
JP2014531315A (en) Waste water treatment control method and system from combustion exhaust gas seawater purifier
JP2013086054A (en) Wet type limestone-gypsum method desulfurization apparatus using seawater
US9724638B2 (en) Apparatus and method for evaporating waste water and reducing acid gas emissions
US8999275B2 (en) Method for monitoring a cleaning of a process gas
JP2016120438A (en) Wet-type desulfurization apparatus and wet-type desulfurization method
JP2012007811A (en) Pulverized coal supply system
JP5081000B2 (en) Method for controlling the amount of air supplied for oxidation in wet flue gas desulfurization equipment
CN102553424B (en) Method for adjusting pH value of absorption column
WO2011065118A1 (en) System for controlling operation of desulfurization apparatus
JP2016087539A (en) Method for exhaust gas desulfurization and removing soot and dust
JPH0724252A (en) Wet flue gas desulfurizer by magnesium oxide and method thereof
JP3997340B2 (en) Method of controlling the number of absorption tower circulation pumps in flue gas desulfurization equipment
KR102064141B1 (en) Desulfurization dust collector and desulfurization control method
EP2957830A1 (en) Gas processing unit and method of operating the same
JPH0355171B2 (en)
WO2011008159A1 (en) Method for adding oxygen to a liquid absorbent in a device for purifying gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832966

Country of ref document: EP

Kind code of ref document: A1