WO2011065118A1 - System for controlling operation of desulfurization apparatus - Google Patents
System for controlling operation of desulfurization apparatus Download PDFInfo
- Publication number
- WO2011065118A1 WO2011065118A1 PCT/JP2010/066495 JP2010066495W WO2011065118A1 WO 2011065118 A1 WO2011065118 A1 WO 2011065118A1 JP 2010066495 W JP2010066495 W JP 2010066495W WO 2011065118 A1 WO2011065118 A1 WO 2011065118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- limestone
- exhaust gas
- concentration
- desulfurization
- liquid
- Prior art date
Links
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 104
- 230000023556 desulfurization Effects 0.000 title claims abstract description 104
- 235000019738 Limestone Nutrition 0.000 claims abstract description 228
- 239000006028 limestone Substances 0.000 claims abstract description 228
- 239000007788 liquid Substances 0.000 claims abstract description 125
- 238000010521 absorption reaction Methods 0.000 claims abstract description 115
- 230000000694 effects Effects 0.000 claims abstract description 103
- 239000000428 dust Substances 0.000 claims abstract description 40
- 239000010883 coal ash Substances 0.000 claims abstract description 15
- 238000007599 discharging Methods 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 97
- 230000009849 deactivation Effects 0.000 claims description 63
- 230000002745 absorbent Effects 0.000 claims description 32
- 239000002250 absorbent Substances 0.000 claims description 32
- 239000012717 electrostatic precipitator Substances 0.000 claims description 28
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 11
- 239000003546 flue gas Substances 0.000 claims description 11
- 239000012670 alkaline solution Substances 0.000 claims description 10
- 230000002779 inactivation Effects 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 3
- 230000004913 activation Effects 0.000 abstract description 47
- 238000001514 detection method Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 15
- 239000010440 gypsum Substances 0.000 description 13
- 229910052602 gypsum Inorganic materials 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229910017077 AlFx Inorganic materials 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- -1 aluminum ions Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- APURLPHDHPNUFL-UHFFFAOYSA-M fluoroaluminum Chemical compound [Al]F APURLPHDHPNUFL-UHFFFAOYSA-M 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/02—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/30—Controlling by gas-analysis apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/501—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/017—Combinations of electrostatic separation with other processes, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/66—Applications of electricity supply techniques
- B03C3/68—Control systems therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/404—Alkaline earth metal or magnesium compounds of calcium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/24—Details of magnetic or electrostatic separation for measuring or calculating of parameters, e.g. efficiency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/32—Checking the quality of the result or the well-functioning of the device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/20—Sulfur; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2217/00—Intercepting solids
- F23J2217/10—Intercepting solids by filters
- F23J2217/102—Intercepting solids by filters electrostatic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2219/00—Treatment devices
- F23J2219/40—Sorption with wet devices, e.g. scrubbers
Definitions
- the present invention relates to an operation control system for a desulfurization facility that removes SO 2 contained in exhaust gas.
- a cooling tower that removes coal ash and hydrogen fluoride gas is installed in advance before desulfurization, and an absorption tower that removes SO 2 is installed after that.
- a so-called dual loop process or a so-called single loop process in which SO 2 is removed only by an absorption tower without using a cooling tower is used.
- the deactivation phenomenon is caused by aluminum ions contained in coal ash being dissolved in the absorbing solution and hydrogen fluoride contained in exhaust gas being dissolved in the absorbing solution. It is considered that the fluoroaluminum complex (AlFx) generated by the reaction with fluorine ions is adsorbed on the surface of limestone (CaCO 3 ) to reduce the dissolution rate.
- AlFx fluoroaluminum complex
- the causative substance into the absorbent, improve the performance of the electrostatic precipitator placed in the front stage of the absorption tower.
- the concentration of limestone, which is an absorption raw material in the absorption liquid is increased to increase the pH of the absorption liquid to reduce the amount of aluminum dissolved from the coal ash and to decompose the produced AlFx.
- AlFx decomposes and becomes aluminum hydroxide (Al (OH 3 )) and calcium fluoride (CaF 2 ) having low solubility and moves to the solid phase, and the deactivation phenomenon is eliminated.
- the performance of the electrostatic precipitator is greatly affected by the type of coal and the combustion conditions, and stable coal ash removal performance may not be obtained. Since the aluminum dissolution rate sometimes changes greatly, it has been difficult to stably suppress the deactivation phenomenon.
- Patent Document 1 discloses an exhaust gas treatment provided with an electrostatic precipitator and a wet desulfurization device that is installed downstream of the electrostatic precipitator in the exhaust gas flow direction and performs desulfurization treatment of exhaust gas and generation of gypsum.
- An apparatus is disclosed.
- This exhaust gas treatment device includes a soot concentration detection means for detecting the soot concentration in the exhaust gas on the outlet side of the electrostatic precipitator, an exhaust gas flow rate detection means for detecting the flow rate of the exhaust gas to be processed, and the inlet SO 2 concentration of the desulfurization device.
- a desulfurization apparatus inlet SO 2 concentration detection means for detecting a desulfurizer outlet SO 2 concentration detection means for detecting the outlet SO 2 concentration in the desulfurization apparatus, absorbents for detecting a supply flow rate of the absorbent slurry to the absorption part of the desulfurizer
- the slurry flow rate detecting means, the dust amount calculating means for calculating the dust amount based on the detection signals from the dust concentration detecting means and the exhaust gas flow rate detecting means, and the detection signal in the absorbent based on the detection signal from the absorbent slurry flow rate detecting means.
- the amount of impurities in the absorbent for calculating the amount of impurities, the amount of soot calculated by the means for calculating the amount of dust, and the amount of impurities in the absorbent calculated by the means for calculating the amount of impurities in the absorbent Gypsum purity prediction calculation means for predicting the purity of the gypsum to be generated based on, and electric dust collector control means for adjusting the operating conditions of the electric dust collector based on the predicted value from the gypsum purity prediction calculation means ing.
- Patent Document 2 discloses a control device that controls a plurality of environmental devices installed to remove a predetermined substance in one exhaust gas system in which the concentration of the predetermined substance contained in the exhaust gas is managed. And an environmental device control system including a measuring device for detecting the concentration of a predetermined substance.
- the control device stores an efficiency table including efficiency information of a predetermined element with respect to a predetermined substance removal capability for each of a plurality of environmental devices, and the measurement unit calculates the detected concentration of the predetermined substance.
- the control device determines the amount of change for changing the concentration of the substance from the concentration of the predetermined substance received from the measurement unit and the target value of the concentration of the predetermined substance. Then, an efficient environmental device is selected with reference to the efficiency table, and control is performed so that the environmental device performs processing.
- the present invention solves the above-mentioned problems, and provides an operation control system for a desulfurization facility that can monitor the activity status of limestone while grasping whether or not the activity of limestone in the absorption liquid is a deactivation sign.
- the purpose is to provide.
- an electrostatic precipitator that collects coal ash in the exhaust gas, and an absorbing liquid is brought into contact with the dedusted exhaust gas that has passed through the electric dust collector.
- the activity status of limestone can be monitored while grasping whether or not the activity of limestone in the absorption liquid is a deactivation sign.
- the management device when the activity status of limestone is a deactivation sign, the relationship between the limestone concentration and the limestone activity constant, and the pH and the limestone activity constant Based on the relationship, the cause of deactivation is determined.
- the management device regenerates the deactivation sign based on the cause leading to deactivation, and the dust collection force of the electric dust collector and / or the absorption.
- the supply amount of limestone to the liquid is set.
- the electrostatic precipitator and / or the limestone feeder is driven according to the deactivation sign, so that the deactivation sign can be rehabilitated to prevent the deactivation phenomenon.
- the electrostatic precipitator and / or limestone feeder is driven according to the deactivation sign, it is possible to prevent excessive consumption of electric power and limestone, and to prevent deterioration of the quality of the gypsum produced as a by-product.
- the SO 2 concentration in the dedusted exhaust gas, the SO 2 concentration in the desulfurized exhaust gas, the exhaust gas flow rate, the limestone concentration, the amount of the absorbent tank held, and the pH And collecting the coal ash in the exhaust gas by the electric dust collector and the control device for controlling the supply of limestone to the absorption liquid, the electric dust collector, and the absorption tower, and desulfurization equipment for removing sO 2 is formed, the management device is characterized in that through the upper network is communicatively connected with the control device in the desulfurization.
- the operation control of the desulfurization facility can be performed at a remote place.
- the operation control system of the desulfurization facility of the present invention further includes a strong alkaline liquid supply unit that supplies a strong alkaline liquid to the absorption liquid of the absorption tower, and the management device has the limestone activation constant threshold value that is the limestone activation constant threshold value. If less, the supply amount of the strong alkali solution by the strong alkali solution supply unit is set.
- This desulfurization equipment operation control system can avoid deactivation.
- the strong alkaline solution is supplied as necessary, it is possible to prevent the excessive consumption of the strong alkaline solution.
- a controller for controlling the electrostatic precipitator, the supply of limestone to the absorbing liquid, and the strong alkaline liquid supply unit, the electrostatic precipitator, the absorption tower, and the strong alkaline liquid constitutes a desulfurization facility that collects coal ash in the exhaust gas and removes SO 2
- the management device is communicably connected to the control device in the desulfurization facility via a network. It is characterized by.
- the operation control of the desulfurization equipment can be performed remotely via the network.
- the management device is connected to the control devices in a plurality of desulfurization facilities via a network so as to be communicable.
- This operation control system for a desulfurization facility makes it possible to control operation of a plurality of desulfurization facilities from a remote location through a network.
- FIG. 1 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram of the operation control system for the desulfurization facility according to Embodiment 1 of the present invention.
- FIG. 3 is a graph of the relationship between the limestone concentration of the absorbent and the limestone activity constant.
- FIG. 4 is a graph of the relationship between the pH of the absorbent and the limestone activity constant.
- FIG. 5 is a flowchart showing the operation of the operation control system for the desulfurization facility according to Embodiment 1 of the present invention.
- FIG. 6 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 2 of the present invention.
- FIG. 1 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram of the operation control system for the desulfurization facility according to Embodiment
- FIG. 7 is a block diagram of an operation control system for a desulfurization facility according to Embodiment 2 of the present invention.
- FIG. 8 is a flowchart showing the operation of the operation control system for the desulfurization facility according to Embodiment 2 of the present invention.
- FIG. 1 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 1.
- a desulfurization facility 1 includes an electric dust collector 2 that collects coal ash in an exhaust gas 100 a from a coal fired boiler (not shown) such as a thermal power plant, and an electric dust collector 2. and SO 2 absorption tower 3 to remove (sulfur dioxide) in the dedusting exhaust gas 100b having passed through, and a control unit 9.
- the electrostatic precipitator 2 charges the dust such as coal ash by corona discharge to the exhaust gas 100a supplied in the casing, and attaches the dust to the positively and negatively charged attachment portions by an electric suction force.
- the electric dust collector 2 is provided with a power supply device 2a and is driven by voltage supply from the power supply device 2a.
- the dust-removed exhaust gas 100b removed by the electric dust collector 2 is supplied into the absorption tower 3 through the dust-removed exhaust gas pipe 2b.
- the absorption tower 3 absorbs SO 2 (sulfur dioxide) in the dedusted exhaust gas 100b by contacting the dedusted exhaust gas 100b passed through the electrostatic precipitator 2 with an absorbent 101 containing limestone (hereinafter referred to as an absorbent).
- SO 2 sulfur dioxide
- the desulfurization exhaust gas 100c from which the limestone in the liquid 101 is absorbed and thereby SO 2 is removed is discharged.
- Absorption liquid 101 is stored in the bottom of absorption tower 3.
- a limestone feeder 3 a is provided outside the absorption tower 3, and the limestone 102 is measured by the limestone feeder 3 a and supplied to the bottom of the absorption tower 3. Further, water 103 is supplied to the bottom of the absorption tower 3. That is, the absorption liquid 101 is generated by the limestone 102 and the water 103 supplied to the bottom of the absorption tower 3.
- Absorption liquid 101 stored in a tank provided at the bottom of absorption tower 3 is pumped by absorption liquid circulation pump 3b and supplied to the upper part of absorption tower 3 via absorption liquid header 3c outside absorption tower 3. . Then, the absorption liquid 101 comes into contact with the dedusted exhaust gas 100b rising in the absorption tower 3 in the process of flowing down from the nozzle 3d provided in the upper part in the absorption tower 3 and reaching the lower part in the absorption tower 3. Thereby, SO 2 contained in the dedusted exhaust gas 100b reacts with the limestone 102 in the absorbing liquid 101 (see the above formula 2), and SO 2 is removed from the dedusted exhaust gas 100b.
- the desulfurization exhaust gas 100c from which SO 2 has been removed is discharged from the desulfurization facility 1 via the desulfurization exhaust gas pipe 3e connected to the top of the absorption tower 3. Further, the absorbing liquid 101 used for the removal of SO 2 is stored at the bottom in the absorption tower 3.
- a part of the absorption liquid 101 stored at the bottom in the absorption tower 3 is dehydrated through an extraction pipe 3f branched from the absorption liquid header 3c outside the absorption tower 3 while being pumped by the absorption liquid circulation pump 3b.
- the dehydrator 3g is constituted by, for example, a belt filter, dehydrates the absorbent 101 in the process of being conveyed by the belt filter, and is discharged out of the system as gypsum 104.
- the filtrate which dehydrated the absorption liquid 101 is utilized as the water 103 supplied to the bottom part of the absorption tower 3 in this Embodiment.
- Oxidizing air 105 is supplied to the bottom of the absorption tower 3. For this reason, since the oxidizing liquid 105 is contained in the absorbing liquid 101, the oxidizing of the absorbing liquid 101 is promoted, so that the SO 2 removal efficiency can be improved.
- the desorbed exhaust gas 100b rising in the absorption tower 3 by flowing the absorption liquid 101 supplied to the upper part of the absorption tower 3 through the absorption liquid header 3c from the nozzle 3d and It is not limited to this.
- the absorption liquid is supplied to the middle part of the absorption tower via the absorption liquid header, and the absorption liquid is ejected upward from the nozzle provided in the middle part of the absorption tower.
- the absorbing liquid becomes fine droplets while being dispersed in the upper part of the absorption tower, descends in the absorption tower, and comes into contact with dedusted exhaust gas rising in the absorption tower.
- the dust removal exhaust pipe 2b is provided with an inlet side SO 2 concentration detection unit 4 that detects the SO 2 concentration S1 in the dust removal exhaust gas 100b that passes through the electrostatic precipitator 2 and reaches the absorption tower 3. It has been.
- the desulfurization exhaust gas pipe 3e is provided with an outlet-side SO 2 concentration detection unit 5 that detects the SO 2 concentration S2 in the desulfurization exhaust gas 100c discharged from the absorption tower 3.
- concentration detection part 6 which detects the limestone density
- a detection unit 7 is provided.
- the absorbent header 3c is provided with a pH detector 8 that detects the pH of the absorbent 101.
- An exhaust gas flow rate detection unit 4a that detects the exhaust gas flow rate S3 of the dedusted exhaust gas 100b (exhaust gas 100a) is also provided at the position where the inlet side SO 2 concentration detection unit 4 is provided.
- the SO 2 concentration S1 in the dedusted exhaust gas 100b detected by the inlet side SO 2 concentration detector 4, the SO 2 concentration S2 in the desulfurized exhaust gas 100c detected by the outlet side SO 2 concentration detector 5, and the exhaust gas flow rate The exhaust gas flow rate S3 detected by the detection unit 4a, the limestone concentration C of the absorption liquid 101 detected by the limestone concentration detection unit 6, the absorption liquid tank holding amount V detected by the absorption liquid tank holding amount detection unit 7, and the pH detection
- Each data of the pH of the absorbent 101 detected by the unit 8 is input to the control device 9.
- the control device 9 will be described with reference to the block diagram of the operation control system for the desulfurization facility according to Embodiment 1 in FIG.
- the control device 9 is configured by a microcomputer or the like.
- the control device 9 is provided with a storage unit 9a.
- the storage unit 9a includes a RAM, a ROM, and the like, and stores programs and data.
- the control device 9 also includes a feeder motor (not shown) for operating the electrostatic precipitator drive unit 9b for applying a voltage to the power supply device 2a when operating the electrostatic precipitator 2 and the limestone feeder 3a. ) Is provided with a limestone feeder driver 9c. Further, the control device 9 is provided with an input / output unit 9d.
- the input / output unit 9d includes a keyboard, a mouse, and a monitor.
- the control device 9 is provided with an information communication unit 9e.
- the information communication unit 9e is for performing information communication with the information communication unit 10d of the management apparatus 10. Based on information input from the management device 10, the control device 9 controls the electrostatic precipitator 2 and the limestone feeder 3a in accordance with programs and data stored in advance in the storage unit 9a.
- the management apparatus 10 is demonstrated with reference to the block diagram of the operation control system of the desulfurization equipment which concerns on Embodiment 1 of FIG.
- the management device 10 is configured by a microcomputer or the like.
- Management device 10 as shown in FIG. 1, the control unit 9 and is connected through the upper network N, SO 2 concentration S1 in dedusting exhaust gas 100b, SO 2 concentration S2 of in desulfurized flue gas 100c, exhaust gas flow rate S3,
- Each data of the limestone concentration C of the absorbing liquid 101, the absorbing tank holding amount V, and the pH of the absorbing liquid 101 is acquired from the control device 9.
- the management device 10 is provided with a storage unit 10a.
- the storage unit 10a includes a RAM, a ROM, and the like, and stores programs and data.
- the storage unit 10a includes an activity constant expression database 10aa, a limestone activation constant threshold database 10ab, a limestone concentration / limestone activation constant database 10ac, a pH / limestone activation constant database 10ad, a power supply supply voltage database 10ae, and a limestone feeder supply voltage database 10af. Have.
- Activity constant expression database 10aa was acquired from the control unit 9, SO 2 concentration S1 in dedusting exhaust gas 100b, SO 2 concentration S2 of in desulfurized flue gas 100c, limestone concentration of the absorbent 101 C, the absorption liquid tank stockpile V, And the following formula 3 for calculating the limestone activity constant K based on each data of the pH of the absorbent 101 is stored.
- K f ( ⁇ S, C, V, pH) Equation 3
- ⁇ S is the SO 2 removal amount obtained by removing SO 2 from the exhaust gas 100a by the limestone 102 in the absorbing liquid 101
- the SO 2 concentration S2 in the desulfurized exhaust gas 100c is changed from the SO 2 concentration S1 in the dedusted exhaust gas 100b.
- the limestone activity constant threshold value database 10ab stores a limestone activity constant threshold value X that is a reference for determining the activity status of the limestone 102.
- the limestone concentration / limestone activity constant database 10ac stores the relationship between the limestone concentration C and the limestone activity constant K.
- the relationship between the limestone concentration C and the limestone activity constant K is such that the higher the limestone concentration C, the lower the activity of the limestone 102 to absorb SO 2 and the lower the limestone activity constant K.
- FIG. It shows in the graph of the relationship between the limestone density
- the pH / limestone activity constant database 10ad stores the relationship between the pH of the absorbent 101 and the limestone activity constant K.
- the relationship between the pH of the absorption liquid 101 and the limestone activity constant K is such that the higher the pH of the absorption liquid 101, the better the limestone 102 absorbs SO 2 and the higher the limestone activation constant K.
- Fig. 4 is a graph showing the relationship between the pH of the absorbing solution and the limestone activity constant in Fig. 4.
- the power supply voltage database 10ae stores power supply voltage information for applying a voltage to the power supply 2a of the electrostatic precipitator 2 corresponding to the limestone activation constant K described above.
- the limestone feeder supply voltage database 10af stores feeder voltage information for applying a voltage to a feeder motor (not shown) of the limestone feeder 3a corresponding to the limestone activation constant K described above.
- the management device 10 is provided with a processing unit 10b.
- the processing unit 10b includes an activity constant calculation unit 10ba, an activity status determination unit 10bb, and a deactivation cause determination unit 10bc.
- the activity constant calculation unit 10ba adds the SO 2 removal amount ⁇ S, the limestone concentration C, the absorption liquid tank holding amount V, and the pH of the absorption liquid 101 to the above equation 3 stored in the activation constant expression database 10aa of the storage unit 10a. To calculate the limestone activity constant K.
- the activity status determination unit 10bb compares the limestone activity constant K calculated by the activity constant calculation unit 10ba with the limestone activity constant threshold value X stored in the limestone activity constant threshold value database 10ab, and determines the activity status of the limestone 102.
- the limestone activity constant threshold value X is the lowest value at which the activity of the limestone 102 is good.
- the limestone activity constant K is more than the limestone activity constant threshold value X, it can be determined that the activity of the limestone 102 is good. That is, if the limestone activity constant K exceeds the limestone activity constant threshold value X, the activity of the limestone 102 is better, and the activity of the limestone 102 becomes worse as the limestone activity constant K approaches the limestone activity constant threshold value X, that is, lost.
- the deactivation cause determination unit 10bc determines the limestone concentration C stored in the limestone concentration / limestone activation constant database 10ac when the activation status determination unit 10bb is in a deactivation sign where the limestone activation constant K approaches the limestone activation constant threshold value X. And the limestone activity constant K, and the relationship between the pH of the absorbent 101 and the limestone activity constant K stored in the pH / limestone activity constant database 10ad, the cause of deactivation is determined.
- the management device 10 is provided with an input / output unit 10c.
- the input / output unit 10c includes a keyboard, a mouse, and a monitor.
- the management device 10 is provided with an information communication unit 10d.
- the information communication unit 10 d is for performing information communication with the information communication unit 9 e of the control device 9.
- This management device 10 controls the electrostatic precipitator 2 and the limestone feeder 3a in an integrated manner with respect to the control device 9 in accordance with programs and data stored in advance in the storage unit 10a based on information input from the control device 9. To output information.
- the control device 9 the desulfurization detected by the SO 2 concentration S 1 in the dedusted exhaust gas 100 b detected by the inlet side SO 2 concentration detection unit 4 and the outlet side SO 2 concentration detection unit 5.
- the SO 2 concentration S2 in the exhaust gas 100c, the exhaust gas flow rate S3 detected by the exhaust gas flow rate detection unit 4a, the limestone concentration C of the absorption liquid 101 detected by the limestone concentration detection unit 6, and the absorption liquid tank holding amount detection unit 7 are detected.
- Each data of the absorption tank holding amount V and the pH of the absorption liquid 101 detected by the pH detector 8 is output to the management device 10 (step ST1). Then, the management device 10 inputs the above data (step ST2).
- the activity constant calculation unit 10ba calculates the limestone activation constant K based on the above equation 3 stored in the activity constant equation database 10aa (step ST3).
- the activity status determination unit 10bb compares the limestone activation constant K calculated by the activation constant calculation unit 10ba with the limestone activation constant threshold X stored in the limestone activation constant threshold database 10ab, and the limestone The active status of 102 is determined (step ST4).
- step ST6 determines the cause leading to deactivation (step ST6).
- step ST5 when the activity of the limestone 102 is not a deactivation sign (step ST5: No), the management device 10 returns to steps ST1 and ST2 and inputs the above data output from the control device 9 To do.
- the dust collection force of the electric dust collector 2 is set and / or limestone so as to regenerate the deactivation sign.
- the supply amount of 102 is set (step ST7).
- the power supply device voltage information for the power supply device 2 a corresponding to the limestone activation constant K is acquired from the power supply device supply voltage database 10 ae.
- the supply amount of the limestone 102 acquires the feeder voltage information to the limestone feeder 3a corresponding to the limestone activation constant K from the limestone feeder supply voltage database 10af.
- the management device 10 outputs both or one of the voltage information to the control device 9.
- the control apparatus 9 drives the electrostatic precipitator 2 and / or the limestone feeder 3a based on the input voltage information (step ST8).
- the exhaust gas of the SO 2 concentration S1 in dedusting exhaust gas 100b, SO 2 concentration S2 of in desulfurized flue gas 100c, dedusting exhaust 100b gas 100a
- the limestone activation constant K is calculated from the flow rate S3, the limestone concentration C of the absorption liquid 101, the absorption liquid tank holding amount V, and the pH of the absorption liquid 101, and the limestone activation constant K is set as a preset limestone activity.
- the activity status of the limestone 102 is determined. As a result, it is possible to monitor the activity status of the limestone 102 while grasping whether the activity of the limestone 102 is a deactivation sign.
- the dust collecting power of the electric dust collector 2 (power supplied to the power supply device 2a) is rehabilitated based on the cause of deactivation. ) And / or the supply amount of limestone 102 to the absorption liquid 101 (power supplied to the limestone feeder 3a) is set.
- the electrostatic precipitator 2 and / or the limestone feeder 3a are driven according to the deactivation sign, it is possible to regenerate the deactivation sign and prevent the deactivation phenomenon.
- the management device 10 is connected to the control device 9 in the desulfurization facility 1 via the network N so as to be communicable. As a result, operation control of the desulfurization facility 1 can be performed at a remote location.
- the management device 10 is communicably connected to the control devices 9 in the plurality of desulfurization facilities 1 via the network N. .
- the control device 9 and the management device 10 in one desulfurization facility 1 are connected in a one-to-one relationship, but the control device 9 and the management device 10 in the plurality of desulfurization facilities 1 are connected.
- the storage unit 10a, the processing unit 10b, the input / output unit 10c, and the information communication unit 10d function corresponding to each control device 9.
- control device 9 and the management device 10 in the desulfurization facility 1 are connected in a one-to-one relationship, the control device 9 and the management device 10 are not connected via the network N, and the management device 10 is desulfurized. It may be configured to be included in the control device 9 of the facility 1.
- FIG. 6 is a schematic diagram of an operation control system for a desulfurization facility according to Embodiment 2 of the present invention.
- the same reference numerals are given to the same components as those in the first embodiment described above, and the description thereof is omitted.
- the desulfurization facility 1 shown in FIG. 6 is further provided with a strong alkaline solution supply unit 11 as compared with the first embodiment described above.
- the strong alkaline liquid supply unit 11 supplies the strong alkaline liquid 106 to the absorbing liquid 101 stored in the absorption tower 3, and absorbs the strong alkaline liquid tank 11a containing the strong alkaline liquid 106 and the strong alkaline liquid tank 11a.
- a strong alkaline liquid pipe 11b connected to the tower 3 and a strong alkaline liquid pump 11c interposed in the strong alkaline liquid pipe 11b are provided. That is, the strong alkaline liquid supply unit 11 pumps the strong alkaline liquid 106 stored in the strong alkaline liquid tank 11a to the absorption tower 3 via the strong alkaline liquid pipe 11b by the strong alkaline liquid pump 11c.
- the controller 9 operates the strong alkaline liquid supply unit 11 in comparison with the first embodiment described above.
- a strong alkaline liquid pump drive unit 9f for applying a voltage to the strong alkaline liquid pump 11c is further provided.
- the storage unit 10a of the management apparatus 10 further includes a strong alkaline liquid pump supply voltage database 10ag as compared with the first embodiment described above.
- the strong alkaline liquid pump supply voltage database 10ag stores pump voltage information for applying a voltage to the strong alkaline liquid pump 11c of the strong alkaline liquid supply unit 11 corresponding to the limestone activation constant K described above.
- the control device 9 the desulfurization detected by the SO 2 concentration S 1 in the dedusted exhaust gas 100 b detected by the inlet side SO 2 concentration detection unit 4 and the outlet side SO 2 concentration detection unit 5.
- the SO 2 concentration S2 in the exhaust gas 100c, the exhaust gas flow rate S3 detected by the exhaust gas flow rate detection unit 4a, the limestone concentration C of the absorption liquid 101 detected by the limestone concentration detection unit 6, and the absorption liquid tank holding amount detection unit 7 are detected.
- Each data of the absorption tank holding amount V and the pH of the absorption liquid 101 detected by the pH detector 8 is output to the management device 10 (step ST1). Then, the management device 10 inputs the above data (step ST2).
- the activity constant calculation unit 10ba calculates the limestone activation constant K based on the above equation 3 stored in the activity constant equation database 10aa (step ST3).
- the activity status determination unit 10bb compares the limestone activation constant K calculated by the activation constant calculation unit 10ba with the limestone activation constant threshold X stored in the limestone activation constant threshold database 10ab, and the limestone The active status of 102 is determined (step ST4).
- step ST6 determines the cause leading to deactivation (step ST6).
- step ST4 when the activity of the limestone 102 is not a deactivation sign (step ST5: No), the management device 10 returns to steps ST1 and ST2 and inputs the above-described data output from the control device 9.
- the dust collection force of the electric dust collector 2 is set and / or limestone so as to regenerate the deactivation sign.
- the supply amount of 102 is set (step ST7).
- the power supply device voltage information for the power supply device 2 a corresponding to the limestone activation constant K is acquired from the power supply device supply voltage database 10 ae.
- the supply amount of the limestone 102 acquires the feeder voltage information to the limestone feeder 3a corresponding to the limestone activation constant K from the limestone feeder supply voltage database 10af.
- the management device 10 outputs both or one of the voltage information to the control device 9.
- the control apparatus 9 drives the electrostatic precipitator 2 and / or the limestone feeder 3a based on the input voltage information (step ST8).
- the activity status determination unit 10bb compares the limestone activation constant K calculated by the activation constant calculation unit 10ba with the limestone activation constant threshold X stored in the limestone activation constant threshold database 10ab, and the limestone activation constant K is calculated as limestone.
- the management apparatus 10 is strong so as to recover the activity of the limestone 102 and avoid the deactivation phenomenon.
- the supply amount of the strong alkaline solution 106 in the alkaline solution supply unit 11 is set (step ST10).
- the pump voltage information to the strong alkaline liquid pump 11c corresponding to the limestone activation constant K is acquired from the strong alkaline liquid pump supply voltage database 10ag.
- the management device 10 outputs this pump voltage information to the control device 9.
- the control apparatus 9 drives the strong alkaline liquid pump 11c based on the input pump voltage information (step ST11).
- step ST9 when the activity of the limestone 102 is not a deactivation phenomenon (step ST9: No), the management device 10 returns to steps ST1 and ST2 and inputs each of the data output from the control device 9.
- the strong alkaline liquid supply unit 11 performs strong.
- the supply amount of the alkaline liquid 106 is set.
- a disturbance factor that causes inactivation for example, a sudden change in the type of combustion coal, may result in complete inactivation (a state in which the dissolution rate of limestone is significantly reduced).
- the strong alkaline liquid 106 is supplied to the absorption tower 3 to decompose AlFx as a deactivation cause substance. As a result, the deactivation phenomenon can be avoided.
- the strong alkaline solution 106 is supplied as necessary, it is possible to prevent a situation in which the strong alkaline solution 106 is excessively consumed.
- the management device 10 is connected to the control device 9 in the desulfurization facility 1 via the network N so as to be communicable. As a result, operation control of the desulfurization facility 1 can be performed at a remote location.
- the management device 10 is communicably connected to the control devices 9 in the plurality of desulfurization facilities 1 via the network N. .
- the control device 9 and the management device 10 in one desulfurization facility 1 are connected in a one-to-one relationship, but the control device 9 and the management device 10 in the plurality of desulfurization facilities 1 are connected.
- the storage unit 10a, the processing unit 10b, the input / output unit 10c, and the information communication unit 10d function corresponding to each control device 9.
- control device 9 and the management device 10 in the desulfurization facility 1 are connected in a one-to-one relationship, the control device 9 and the management device 10 are not connected via the network N, and the management device 10 is desulfurized. It may be configured to be included in the control device 9 of the facility 1.
- the operation control system for a desulfurization facility according to the present invention is suitable for monitoring the activity status of limestone.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Treating Waste Gases (AREA)
- Electrostatic Separation (AREA)
- Chimneys And Flues (AREA)
- Gas Separation By Absorption (AREA)
Abstract
A system for controlling the operation of a desulfurization apparatus, equipped with an electric dust collector for collecting coal ash in an exhaust gas and an absorption column for bringing the dedusted exhaust gas from the electric dust collector into contact with an absorbing liquid so as to allow limestone in the absorbing liquid to absorb SO2 in the dedusted exhaust gas while discharging the desulfurized exhaust gas from which SO2 has been removed, wherein the activity constant (K) of the limestone is calculated based on the SO2 concentration (S1) of the dedusted exhaust gas, the SO2 concentration (S2) of the desulfurized exhaust gas, the flow rate (S3) of the exhaust gas, the limestone concentration (C) of the absorbing liquid, the tank volume (V) of the absorbing liquid having been brought into contact with the dedusted exhaust gas and pooled in the absorption column, and pH of the absorption liquid, and the activation state of the lime stone is determined by comparing the aforesaid limestone activity constant (K) with a preset lime stone activity constant threshold (X).
Description
本発明は、排ガスに含まれるSO2を除去する脱硫設備の運転制御システムに関する。
The present invention relates to an operation control system for a desulfurization facility that removes SO 2 contained in exhaust gas.
排ガス中のSO2を石灰石膏法にて脱硫処理する脱硫設備では、脱硫前に予め石炭灰やフッ化水素ガスを除去する冷却塔を設置し、その後にSO2を除去する吸収塔を設置する、いわゆるデュアルループプロセスや、冷却塔設置を設けず、吸収塔のみでSO2を除去する、いわゆるシングルループプロセスが使用されている。
In a desulfurization facility that desulfurizes SO 2 in exhaust gas by the lime gypsum method, a cooling tower that removes coal ash and hydrogen fluoride gas is installed in advance before desulfurization, and an absorption tower that removes SO 2 is installed after that. A so-called dual loop process or a so-called single loop process in which SO 2 is removed only by an absorption tower without using a cooling tower is used.
しかし、デュアルループプロセスでは、冷却塔の設置コスト、運転コスト、さらに冷却塔から排出される低pHの排水処理設備などが必要になり、敷地が増大することに加え、建設コストおよび運転コストが嵩むことが大きな問題となる。
However, the dual loop process requires cooling tower installation costs, operation costs, and low pH wastewater treatment equipment discharged from the cooling towers. In addition to increasing the site, construction costs and operation costs increase. Is a big problem.
一方、シングルループプロセスでは、冷却塔設備を設けていないことからデュアルループプロセスのような問題はないが、排ガスに含まれる特有の成分である石炭灰およびフッ化水素ガスの影響により、吸収液中で吸収剤である石灰石の溶解速度が低下して失活現象が発生することで脱硫性能や副生される石膏の純度が低下し、これを補うために石灰石の消費量が増大してしまう問題がある。
On the other hand, in the single loop process, there is no problem as in the dual loop process because the cooling tower equipment is not provided, but due to the influence of coal ash and hydrogen fluoride gas, which are unique components contained in the exhaust gas, The problem is that the desulfurization performance and the purity of the gypsum produced as a by-product decrease due to the decrease in the dissolution rate of the limestone, which is the absorbent, and the amount of limestone consumed increases to compensate for this. There is.
失活現象は、下記式1に示すように、石炭灰に含まれるアルミニウムが吸収液中に溶解して存在するアルミニウムイオンと、排ガスに含まれるフッ化水素が吸収液中に溶解して存在するフッ素イオンとの反応により生成されるフルオロアルミニウム錯体(AlFx)が、石灰石(CaCO3)の表面に吸着することで溶解速度を低減するために生じると考えられる。
Al3++XF-→ AlFx(3-x) [x=1~6]・・・式1 As shown in the followingformula 1, the deactivation phenomenon is caused by aluminum ions contained in coal ash being dissolved in the absorbing solution and hydrogen fluoride contained in exhaust gas being dissolved in the absorbing solution. It is considered that the fluoroaluminum complex (AlFx) generated by the reaction with fluorine ions is adsorbed on the surface of limestone (CaCO 3 ) to reduce the dissolution rate.
Al 3+ + XF − → AlFx (3-x) [x = 1 to 6]Equation 1
Al3++XF-→ AlFx(3-x) [x=1~6]・・・式1 As shown in the following
Al 3+ + XF − → AlFx (3-x) [x = 1 to 6]
そして、シングルループプロセスにて失活現象を防止するため、従来、以下の2つの方法がとられていた。
(1)原因物質である石炭灰の吸収液中への流入量を減少させるため、吸収塔の前段に配置された電気集塵器の性能を上げること。
(2)吸収液中の吸収原料である石灰石の濃度を増し吸収液のpHを上げて石炭灰から溶解するアルミニウムの量を減少させると共に、生成されたAlFxを分解する。AlFxは、分解して溶解度の小さな水酸化アルミニウム(Al(OH3))とフッ化カルシウム(CaF2)となって固相に移行し、失活現象は解消される。 In order to prevent the deactivation phenomenon in the single loop process, the following two methods have been conventionally used.
(1) To reduce the inflow of coal ash, the causative substance, into the absorbent, improve the performance of the electrostatic precipitator placed in the front stage of the absorption tower.
(2) The concentration of limestone, which is an absorption raw material in the absorption liquid, is increased to increase the pH of the absorption liquid to reduce the amount of aluminum dissolved from the coal ash and to decompose the produced AlFx. AlFx decomposes and becomes aluminum hydroxide (Al (OH 3 )) and calcium fluoride (CaF 2 ) having low solubility and moves to the solid phase, and the deactivation phenomenon is eliminated.
(1)原因物質である石炭灰の吸収液中への流入量を減少させるため、吸収塔の前段に配置された電気集塵器の性能を上げること。
(2)吸収液中の吸収原料である石灰石の濃度を増し吸収液のpHを上げて石炭灰から溶解するアルミニウムの量を減少させると共に、生成されたAlFxを分解する。AlFxは、分解して溶解度の小さな水酸化アルミニウム(Al(OH3))とフッ化カルシウム(CaF2)となって固相に移行し、失活現象は解消される。 In order to prevent the deactivation phenomenon in the single loop process, the following two methods have been conventionally used.
(1) To reduce the inflow of coal ash, the causative substance, into the absorbent, improve the performance of the electrostatic precipitator placed in the front stage of the absorption tower.
(2) The concentration of limestone, which is an absorption raw material in the absorption liquid, is increased to increase the pH of the absorption liquid to reduce the amount of aluminum dissolved from the coal ash and to decompose the produced AlFx. AlFx decomposes and becomes aluminum hydroxide (Al (OH 3 )) and calcium fluoride (CaF 2 ) having low solubility and moves to the solid phase, and the deactivation phenomenon is eliminated.
ところが、上記(1)の方法については、石炭の種類や燃焼条件により電気集塵器の性能が大きく影響を受け、安定した石炭灰の除去性能が得られない場合があり、また、石炭灰からのアルミニウム溶解速度が大きく変化する場合があることから、失活現象を安定的に抑制することは困難であった。
However, in the method (1), the performance of the electrostatic precipitator is greatly affected by the type of coal and the combustion conditions, and stable coal ash removal performance may not be obtained. Since the aluminum dissolution rate sometimes changes greatly, it has been difficult to stably suppress the deactivation phenomenon.
また、上記(2)の方法については、吸収液中の吸収原料である石灰石の濃度を増すことによりpHを上げて失活現象を抑制することができるものの、吸収液中には高濃度の未反応石灰石が残留することとなり、下記式2に示すように、石灰石とSO2とが反応することで、副生される石膏(CaSO4・2H2O)の純度を著しく低下させ、また石灰石の消費量を増大させてしまう問題があった。従って、常時pHを上昇させることができない。また、pH上昇には限度があるため、AlFxが完全に分解しきれず、失活からの完全回復は望めない。
SO2+1/2O2+CaCO3+2H2O→CaSO4・2H2O+CO2・・・式2 In the above method (2), although the deactivation phenomenon can be suppressed by increasing the concentration of limestone, which is the raw material for absorption in the absorbent, Reactive limestone remains, and as shown in the followingformula 2, the purity of gypsum (CaSO 4 .2H 2 O) produced as a by-product is significantly reduced by the reaction of limestone and SO 2 . There was a problem of increasing consumption. Therefore, the pH cannot be constantly raised. Moreover, since there is a limit to the increase in pH, AlFx cannot be completely decomposed, and complete recovery from deactivation cannot be expected.
SO 2 + 1 / 2O 2 + CaCO 3 + 2H 2 O → CaSO 4 .2H 2 O + CO 2 Formula 2
SO2+1/2O2+CaCO3+2H2O→CaSO4・2H2O+CO2・・・式2 In the above method (2), although the deactivation phenomenon can be suppressed by increasing the concentration of limestone, which is the raw material for absorption in the absorbent, Reactive limestone remains, and as shown in the following
SO 2 + 1 / 2O 2 + CaCO 3 + 2H 2 O → CaSO 4 .2H 2 O + CO 2 Formula 2
このように、電気集塵器の性能を上げたり、石灰石の濃度を増し吸収液のpHを上げたりすることで失活現象の解消に効果はあるものの、上記のごとく、新たな問題を生じさせるおそれがある。従って、失活現象を防ぐには、失活現象に至る事態をいち早く把握し、失活現象に至る前に失活を更生できるように、吸収液中の石灰石の活性状況を監視することが望まれている。
In this way, although improving the performance of the electrostatic precipitator or increasing the concentration of limestone to increase the pH of the absorbing solution is effective in eliminating the deactivation phenomenon, it causes new problems as described above. There is a fear. Therefore, in order to prevent the deactivation phenomenon, it is desirable to quickly grasp the situation leading to the deactivation phenomenon and monitor the activity status of the limestone in the absorbent so that the deactivation can be rehabilitated before reaching the deactivation phenomenon. It is rare.
なお、従来、特許文献1には、電気集塵器と、電気集塵器の排ガス流れ方向下流側に設置されて排ガスの脱硫処理と石膏の生成とを行う湿式脱硫装置とを備えた排ガス処理装置が開示されている。この排ガス処理装置は、電気集塵器の出口側排ガス中の煤塵濃度を検出する煤塵濃度検出手段と、処理すべき排ガスの流量を検出する排ガス流量検出手段と、脱硫装置の入口SO2濃度を検出する脱硫装置入口SO2濃度検出手段と、脱硫装置の出口SO2濃度を検出する脱硫装置出口SO2濃度検出手段と、脱硫装置の吸収部への吸収剤スラリの供給流量を検出する吸収剤スラリ流量検出手段と、煤塵濃度検出手段および排ガス流量検出手段からの検出信号に基づいて煤塵量を算出する煤塵量算出手段と、吸収剤スラリ流量検出手段からの検出信号に基づいて吸収剤中の不純物量を算出する吸収剤中不純物量算出手段と、煤塵量算出手段によって算出された煤塵量と吸収剤中不純物量算出手段によって算出された吸収剤中の不純物量とに基づいて生成されるべき石膏の純度を予測する石膏純度予測演算手段と、石膏純度予測演算手段からの予測値に基づいて電気集塵器の運転条件を調節する電気集塵器制御手段とを備えている。
Conventionally, Patent Document 1 discloses an exhaust gas treatment provided with an electrostatic precipitator and a wet desulfurization device that is installed downstream of the electrostatic precipitator in the exhaust gas flow direction and performs desulfurization treatment of exhaust gas and generation of gypsum. An apparatus is disclosed. This exhaust gas treatment device includes a soot concentration detection means for detecting the soot concentration in the exhaust gas on the outlet side of the electrostatic precipitator, an exhaust gas flow rate detection means for detecting the flow rate of the exhaust gas to be processed, and the inlet SO 2 concentration of the desulfurization device. a desulfurization apparatus inlet SO 2 concentration detection means for detecting a desulfurizer outlet SO 2 concentration detection means for detecting the outlet SO 2 concentration in the desulfurization apparatus, absorbents for detecting a supply flow rate of the absorbent slurry to the absorption part of the desulfurizer The slurry flow rate detecting means, the dust amount calculating means for calculating the dust amount based on the detection signals from the dust concentration detecting means and the exhaust gas flow rate detecting means, and the detection signal in the absorbent based on the detection signal from the absorbent slurry flow rate detecting means. The amount of impurities in the absorbent for calculating the amount of impurities, the amount of soot calculated by the means for calculating the amount of dust, and the amount of impurities in the absorbent calculated by the means for calculating the amount of impurities in the absorbent Gypsum purity prediction calculation means for predicting the purity of the gypsum to be generated based on, and electric dust collector control means for adjusting the operating conditions of the electric dust collector based on the predicted value from the gypsum purity prediction calculation means ing.
また、従来、特許文献2には、排ガスに含まれる所定の物質の濃度が管理されている1つの排ガス系統に、所定の物質を除去するために設置される複数の環境装置を制御する制御装置と、所定の物質の濃度を検出する測定器とを備えた環境装置制御システムが開示されている。この環境装置制御システムでは、制御装置は、複数の環境装置ごとに所定の物質の除去能力に対する所定の要素の効率情報を含む効率テーブルを記憶し、測定部は、検出した所定の物質の濃度を含む情報を制御装置に送信し、さらに制御装置は、測定部から受信した所定の物質の濃度と、所定の物質の濃度の目標値とから、物質の濃度を変更するための変更量を決定し、効率テーブルを参照して効率のよい環境装置を選択し、当該環境装置で処理するように制御する。
Conventionally, Patent Document 2 discloses a control device that controls a plurality of environmental devices installed to remove a predetermined substance in one exhaust gas system in which the concentration of the predetermined substance contained in the exhaust gas is managed. And an environmental device control system including a measuring device for detecting the concentration of a predetermined substance. In this environmental device control system, the control device stores an efficiency table including efficiency information of a predetermined element with respect to a predetermined substance removal capability for each of a plurality of environmental devices, and the measurement unit calculates the detected concentration of the predetermined substance. The control device determines the amount of change for changing the concentration of the substance from the concentration of the predetermined substance received from the measurement unit and the target value of the concentration of the predetermined substance. Then, an efficient environmental device is selected with reference to the efficiency table, and control is performed so that the environmental device performs processing.
本発明は上述した課題を解決するものであり、吸収液中の石灰石の活性が失活兆候にあるか否かを把握しつつ石灰石の活性状況を監視することのできる脱硫設備の運転制御システムを提供することを目的とする。
The present invention solves the above-mentioned problems, and provides an operation control system for a desulfurization facility that can monitor the activity status of limestone while grasping whether or not the activity of limestone in the absorption liquid is a deactivation sign. The purpose is to provide.
上述の目的を達成するために、本発明の脱硫設備の運転制御システムでは、排ガス中の石炭灰を集塵する電気集塵器と、前記電気集塵器を経た脱塵排ガスに吸収液を接触させることで前記脱塵排ガス中のSO2を前記吸収液中の石灰石に吸収させつつSO2が除去された脱硫排ガスを排出する吸収塔とを備える脱硫設備の運転制御システムにおいて、前記脱塵排ガス中のSO2濃度と、前記脱硫排ガス中のSO2濃度と、前記排ガスの排ガス流量と、前記吸収液の石灰石濃度と、前記吸収塔にて脱塵排ガスに接触して貯留された前記吸収液における吸収液タンク保有量と、前記吸収液のpHとに基づき、石灰石活性定数を算出し、当該石灰石活性定数を予め設定された石灰石活性定数閾値と比較して石灰石の活性状況を判定する管理装置を備えたことを特徴とする。
In order to achieve the above-described object, in the operation control system of the desulfurization facility of the present invention, an electrostatic precipitator that collects coal ash in the exhaust gas, and an absorbing liquid is brought into contact with the dedusted exhaust gas that has passed through the electric dust collector. in desulfurization of operation control system comprising an absorption tower for discharging the desulfurized flue gas while the SO 2 is absorbed in the limestone in the absorbing liquid SO 2 has been removed in the dust removal in the exhaust gas by causing the dedusting flue gas and SO 2 concentration in the a SO 2 concentration of the desulfurization in the exhaust gas, and the exhaust gas flow rate of the exhaust gas, and limestone concentration of the absorbent liquid, the absorbent liquid stored in contact with the dedusting flue gas in said absorption tower Management device that calculates the limestone activity constant based on the amount of the absorption liquid tank held in and the pH of the absorption liquid, and compares the limestone activation constant with a preset limestone activation constant threshold to determine the activity status of the limestone The It is characterized by having.
この脱硫設備の運転制御システムによれば、吸収液中の石灰石の活性が失活兆候にあるか否かを把握しつつ石灰石の活性状況を監視できる。
According to the operation control system of this desulfurization facility, the activity status of limestone can be monitored while grasping whether or not the activity of limestone in the absorption liquid is a deactivation sign.
また、本発明の脱硫設備の運転制御システムでは、前記管理装置は、石灰石の活性状況が失活兆候にある場合、前記石灰石濃度と前記石灰石活性定数との関係、および前記pHと前記石灰石活性定数との関係に基づき、失活に至る原因を判定することを特徴とする。
Further, in the operation control system of the desulfurization facility of the present invention, the management device, when the activity status of limestone is a deactivation sign, the relationship between the limestone concentration and the limestone activity constant, and the pH and the limestone activity constant Based on the relationship, the cause of deactivation is determined.
この脱硫設備の運転制御システムによれば、失活に至る原因を把握できる。
運 転 According to the operation control system of this desulfurization facility, the cause of deactivation can be grasped.
また、本発明の脱硫設備の運転制御システムでは、前記管理装置は、失活に至る原因に基づき、失活兆候を更生する態様で、前記電気集塵器の集塵力、および/または前記吸収液への石灰石の供給量を設定することを特徴とする。
Further, in the operation control system for the desulfurization facility of the present invention, the management device regenerates the deactivation sign based on the cause leading to deactivation, and the dust collection force of the electric dust collector and / or the absorption. The supply amount of limestone to the liquid is set.
この脱硫設備の運転制御システムによれば、失活兆候に応じて電気集塵器および/または石灰石フィーダが駆動されるので、失活兆候を更生し、失活現象に至る事態を防止できる。しかも、失活兆候に応じて電気集塵器および/または石灰石フィーダが駆動されるので、電力や石灰石を過剰に消費する事態を防止でき、かつ副生される石膏の品質低下を防止できる。
According to the operation control system of this desulfurization facility, the electrostatic precipitator and / or the limestone feeder is driven according to the deactivation sign, so that the deactivation sign can be rehabilitated to prevent the deactivation phenomenon. In addition, since the electrostatic precipitator and / or limestone feeder is driven according to the deactivation sign, it is possible to prevent excessive consumption of electric power and limestone, and to prevent deterioration of the quality of the gypsum produced as a by-product.
また、本発明の脱硫設備の運転制御システムでは、前記脱塵排ガス中のSO2濃度、前記脱硫排ガス中のSO2濃度、前記排ガス流量、前記石灰石濃度、前記吸収液タンク保有量、および前記pHを取得すると共に、前記電気集塵器、および前記吸収液への石灰石の供給を制御する制御装置と、前記電気集塵器と、前記吸収塔とにより、排ガス中の石炭灰を集塵し、かつSO2を除去する脱硫設備が構成され、前記管理装置は、ネットワーク上を介して前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする。
Further, in the operation control system of the desulfurization facility of the present invention, the SO 2 concentration in the dedusted exhaust gas, the SO 2 concentration in the desulfurized exhaust gas, the exhaust gas flow rate, the limestone concentration, the amount of the absorbent tank held, and the pH And collecting the coal ash in the exhaust gas by the electric dust collector and the control device for controlling the supply of limestone to the absorption liquid, the electric dust collector, and the absorption tower, and desulfurization equipment for removing sO 2 is formed, the management device is characterized in that through the upper network is communicatively connected with the control device in the desulfurization.
この脱硫設備の運転制御システムによれば、脱硫設備の運転制御を遠隔地にて行える。
運 転 According to the operation control system of this desulfurization facility, the operation control of the desulfurization facility can be performed at a remote place.
また、本発明の脱硫設備の運転制御システムでは、前記吸収塔の吸収液に強アルカリ液を供給する強アルカリ液供給部をさらに備え、前記管理装置は、前記石灰石活性定数が前記石灰石活性定数閾値未満の場合、前記強アルカリ液供給部による強アルカリ液の供給量を設定することを特徴とする。
The operation control system of the desulfurization facility of the present invention further includes a strong alkaline liquid supply unit that supplies a strong alkaline liquid to the absorption liquid of the absorption tower, and the management device has the limestone activation constant threshold value that is the limestone activation constant threshold value. If less, the supply amount of the strong alkali solution by the strong alkali solution supply unit is set.
この脱硫設備の運転制御システムによれば、失活現象を回避できる。しかも、必要に応じて強アルカリ液を供給するので、強アルカリ液を過剰に消費する事態を防止できる。
This desulfurization equipment operation control system can avoid deactivation. In addition, since the strong alkaline solution is supplied as necessary, it is possible to prevent the excessive consumption of the strong alkaline solution.
また、本発明の脱硫設備の運転制御システムでは、前記脱塵排ガス中のSO2濃度、前記脱硫排ガス中のSO2濃度、前記排ガス流量、前記石灰石濃度、前記吸収液タンク保有量、および前記pHを取得すると共に、前記電気集塵器、前記吸収液への石灰石の供給、および前記強アルカリ液供給部を制御する制御装置と、前記電気集塵器と、前記吸収塔と、前記強アルカリ液供給部とにより、排ガス中の石炭灰を集塵し、かつSO2を除去する脱硫設備が構成され、前記管理装置は、ネットワーク上を介して前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする。
Further, in the operation control system of the desulfurization facility of the present invention, the SO 2 concentration in the dedusted exhaust gas, the SO 2 concentration in the desulfurized exhaust gas, the exhaust gas flow rate, the limestone concentration, the amount of the absorbent tank held, and the pH A controller for controlling the electrostatic precipitator, the supply of limestone to the absorbing liquid, and the strong alkaline liquid supply unit, the electrostatic precipitator, the absorption tower, and the strong alkaline liquid The supply unit constitutes a desulfurization facility that collects coal ash in the exhaust gas and removes SO 2 , and the management device is communicably connected to the control device in the desulfurization facility via a network. It is characterized by.
この脱硫設備の運転制御システムによれば、ネットワーク上を介して脱硫設備の運転制御を遠隔地にて行える。
According to this desulfurization equipment operation control system, the operation control of the desulfurization equipment can be performed remotely via the network.
また、本発明の脱硫設備の運転制御システムでは、前記管理装置は、ネットワーク上を介して複数の脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする。
In the operation control system for a desulfurization facility according to the present invention, the management device is connected to the control devices in a plurality of desulfurization facilities via a network so as to be communicable.
この脱硫設備の運転制御システムによれば、ネットワーク上を介して複数の脱硫設備の運転制御を遠隔地にて統括して行うことが可能になる。
This operation control system for a desulfurization facility makes it possible to control operation of a plurality of desulfurization facilities from a remote location through a network.
本発明によれば、吸収液中の石灰石の活性が失活兆候にあるか否かを把握しつつ石灰石の活性状況を監視できる。
According to the present invention, it is possible to monitor the activity status of limestone while grasping whether or not the activity of limestone in the absorption liquid is a deactivation sign.
以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
[実施の形態1]
本実施の形態について、図面を参照して説明する。図1は、実施の形態1に係る脱硫設備の運転制御システムの概略図である。図1に示すように、脱硫設備1は、火力発電所などの石炭焚ボイラ(図示せず)からの排ガス100a中の石炭灰を集塵する電気集塵器2と、電気集塵器2を経た脱塵排ガス100b中のSO2(二酸化硫黄)を除去する吸収塔3と、制御装置9とを備えている。 [Embodiment 1]
The present embodiment will be described with reference to the drawings. 1 is a schematic diagram of an operation control system for a desulfurization facility according toEmbodiment 1. FIG. As shown in FIG. 1, a desulfurization facility 1 includes an electric dust collector 2 that collects coal ash in an exhaust gas 100 a from a coal fired boiler (not shown) such as a thermal power plant, and an electric dust collector 2. and SO 2 absorption tower 3 to remove (sulfur dioxide) in the dedusting exhaust gas 100b having passed through, and a control unit 9.
本実施の形態について、図面を参照して説明する。図1は、実施の形態1に係る脱硫設備の運転制御システムの概略図である。図1に示すように、脱硫設備1は、火力発電所などの石炭焚ボイラ(図示せず)からの排ガス100a中の石炭灰を集塵する電気集塵器2と、電気集塵器2を経た脱塵排ガス100b中のSO2(二酸化硫黄)を除去する吸収塔3と、制御装置9とを備えている。 [Embodiment 1]
The present embodiment will be described with reference to the drawings. 1 is a schematic diagram of an operation control system for a desulfurization facility according to
電気集塵器2は、ケーシング内に供給された排ガス100aにコロナ放電することで石炭灰などの煤塵を帯電させ、正負に荷電させた付着部に対して電気的吸引力によって煤塵を付着させる。この電気集塵器2は、電源装置2aが付設され、この電源装置2aからの電圧供給により駆動される。電気集塵器2にて除塵された脱塵排ガス100bは、脱塵排ガス管2bを介して吸収塔3内に供給される。
The electrostatic precipitator 2 charges the dust such as coal ash by corona discharge to the exhaust gas 100a supplied in the casing, and attaches the dust to the positively and negatively charged attachment portions by an electric suction force. The electric dust collector 2 is provided with a power supply device 2a and is driven by voltage supply from the power supply device 2a. The dust-removed exhaust gas 100b removed by the electric dust collector 2 is supplied into the absorption tower 3 through the dust-removed exhaust gas pipe 2b.
吸収塔3は、電気集塵器2を経た脱塵排ガス100bに、石灰石を含む吸収液(以下、吸収液という)101を接触させることで脱塵排ガス100b中のSO2(二酸化硫黄)を吸収液101中の石灰石に吸収させ、これによりSO2が除去された脱硫排ガス100cを排出する。
The absorption tower 3 absorbs SO 2 (sulfur dioxide) in the dedusted exhaust gas 100b by contacting the dedusted exhaust gas 100b passed through the electrostatic precipitator 2 with an absorbent 101 containing limestone (hereinafter referred to as an absorbent). The desulfurization exhaust gas 100c from which the limestone in the liquid 101 is absorbed and thereby SO 2 is removed is discharged.
吸収塔3は、その底部に吸収液101が貯留されている。吸収塔3の外部には、石灰石フィーダ3aが設けられ、この石灰石フィーダ3aにより石灰石102が計量されつつ吸収塔3内の底部に供給される。また、吸収塔3内の底部には、水103が供給される。すなわち、吸収塔3内の底部に供給された石灰石102と水103とで吸収液101が生成される。
Absorption liquid 101 is stored in the bottom of absorption tower 3. A limestone feeder 3 a is provided outside the absorption tower 3, and the limestone 102 is measured by the limestone feeder 3 a and supplied to the bottom of the absorption tower 3. Further, water 103 is supplied to the bottom of the absorption tower 3. That is, the absorption liquid 101 is generated by the limestone 102 and the water 103 supplied to the bottom of the absorption tower 3.
吸収塔3内の底部に設けられたタンクに貯留された吸収液101は、吸収液循環ポンプ3bにより圧送され吸収塔3の外部の吸収液ヘッダ3cを経て吸収塔3内の上部に供給される。そして、吸収液101は、吸収塔3内の上部に設けられたノズル3dから流下されつつ、吸収塔3内の下部に至る過程で、吸収塔3内を上昇する脱塵排ガス100bと接触する。これにより、脱塵排ガス100bに含まれるSO2が吸収液101中の石灰石102と反応し(上記式2参照)、脱塵排ガス100bからSO2が除去されることになる。そして、SO2が除去された脱硫排ガス100cは、吸収塔3の頂部に接続された脱硫排ガス管3eを介して脱硫設備1から排出される。また、SO2の除去に用いられた吸収液101は、吸収塔3内の底部に貯留される。
Absorption liquid 101 stored in a tank provided at the bottom of absorption tower 3 is pumped by absorption liquid circulation pump 3b and supplied to the upper part of absorption tower 3 via absorption liquid header 3c outside absorption tower 3. . Then, the absorption liquid 101 comes into contact with the dedusted exhaust gas 100b rising in the absorption tower 3 in the process of flowing down from the nozzle 3d provided in the upper part in the absorption tower 3 and reaching the lower part in the absorption tower 3. Thereby, SO 2 contained in the dedusted exhaust gas 100b reacts with the limestone 102 in the absorbing liquid 101 (see the above formula 2), and SO 2 is removed from the dedusted exhaust gas 100b. Then, the desulfurization exhaust gas 100c from which SO 2 has been removed is discharged from the desulfurization facility 1 via the desulfurization exhaust gas pipe 3e connected to the top of the absorption tower 3. Further, the absorbing liquid 101 used for the removal of SO 2 is stored at the bottom in the absorption tower 3.
また、吸収塔3内の底部に貯留された吸収液101の一部は、吸収液循環ポンプ3bにより圧送されつつ吸収塔3の外部の吸収液ヘッダ3cから分岐した抜出管3fを経て脱水器3gに送られる。脱水器3gは、例えば、ベルトフィルタで構成され、当該ベルトフィルタで搬送される過程で吸収液101を脱水処理し、石膏104として系外に排出される。また、吸収液101を脱水したろ過液は、本実施の形態では吸収塔3の底部に供給される水103として利用される。
Further, a part of the absorption liquid 101 stored at the bottom in the absorption tower 3 is dehydrated through an extraction pipe 3f branched from the absorption liquid header 3c outside the absorption tower 3 while being pumped by the absorption liquid circulation pump 3b. Sent to 3g. The dehydrator 3g is constituted by, for example, a belt filter, dehydrates the absorbent 101 in the process of being conveyed by the belt filter, and is discharged out of the system as gypsum 104. Moreover, the filtrate which dehydrated the absorption liquid 101 is utilized as the water 103 supplied to the bottom part of the absorption tower 3 in this Embodiment.
吸収塔3内の底部には、酸化用空気105が供給される。このため、吸収液101に酸化用空気105が含まれることで吸収液101の酸化が促進されるので、SO2の除去効率を向上できる。
Oxidizing air 105 is supplied to the bottom of the absorption tower 3. For this reason, since the oxidizing liquid 105 is contained in the absorbing liquid 101, the oxidizing of the absorbing liquid 101 is promoted, so that the SO 2 removal efficiency can be improved.
なお、上述した吸収塔3では、吸収液ヘッダ3cを経て吸収塔3内の上部に供給された吸収液101を、ノズル3dから流下させることで、吸収塔3内を上昇する脱塵排ガス100bと接触させているが、この限りではない。例えば、図には明示しないが、吸収液ヘッダを経て吸収塔内の中部に吸収液を供給し、吸収塔内の中部に設けられたノズルから吸収液を吸収塔内の上方に噴出させる。これにより、吸収液は、吸収塔内の上部で分散しつつ微細な液滴となって吸収塔内を降下し、吸収塔内を上昇する脱塵排ガスと接触する。この結果、より大きな気液接触面積を確保して気液接触効率を向上するので、SO2の除去効率を向上できる。なお、吸収液101と脱塵排ガス100bとの接触には、上述した向流接触の他、流下する吸収液101に対して脱塵排ガス100bが並行して流される並流接触や、並流接触と向流接触とを組み合わせた並向流接触がある。
In the absorption tower 3 described above, the desorbed exhaust gas 100b rising in the absorption tower 3 by flowing the absorption liquid 101 supplied to the upper part of the absorption tower 3 through the absorption liquid header 3c from the nozzle 3d, and It is not limited to this. For example, although not clearly shown in the figure, the absorption liquid is supplied to the middle part of the absorption tower via the absorption liquid header, and the absorption liquid is ejected upward from the nozzle provided in the middle part of the absorption tower. As a result, the absorbing liquid becomes fine droplets while being dispersed in the upper part of the absorption tower, descends in the absorption tower, and comes into contact with dedusted exhaust gas rising in the absorption tower. As a result, a larger gas-liquid contact area is secured and the gas-liquid contact efficiency is improved, so that the SO 2 removal efficiency can be improved. For the contact between the absorbing liquid 101 and the dedusted exhaust gas 100b, in addition to the countercurrent contact described above, a cocurrent contact or a cocurrent contact in which the dedusted exhaust gas 100b flows in parallel with the absorbing liquid 101 that flows down is used. And co-current contact combined with counter-current contact.
上述した脱硫設備1において、脱塵排ガス管2bには、電気集塵器2を経て吸収塔3に至る脱塵排ガス100b中のSO2濃度S1を検出する入口側SO2濃度検出部4が設けられている。また、脱硫排ガス管3eには、吸収塔3から排出される脱硫排ガス100c中のSO2濃度S2を検出する出口側SO2濃度検出部5が設けられている。また、吸収液ヘッダ3cには、吸収液101の石灰石濃度Cを検出する石灰石濃度検出部6が設けられている。また、吸収塔3内には、吸収塔3にて脱塵排ガス100bに接触して貯留された吸収液101の保有量(以下、吸収液タンク保有量という)Vを検出する吸収液タンク保有量検出部7が設けられている。また、吸収液ヘッダ3cには、吸収液101のpHを検出するpH検出部8が設けられている。なお、入口側SO2濃度検出部4を設けた位置には、脱塵排ガス100b(排ガス100a)の排ガス流量S3を検出する排ガス流量検出部4aも設けられている。
In the desulfurization facility 1 described above, the dust removal exhaust pipe 2b is provided with an inlet side SO 2 concentration detection unit 4 that detects the SO 2 concentration S1 in the dust removal exhaust gas 100b that passes through the electrostatic precipitator 2 and reaches the absorption tower 3. It has been. The desulfurization exhaust gas pipe 3e is provided with an outlet-side SO 2 concentration detection unit 5 that detects the SO 2 concentration S2 in the desulfurization exhaust gas 100c discharged from the absorption tower 3. Moreover, the limestone density | concentration detection part 6 which detects the limestone density | concentration C of the absorption liquid 101 is provided in the absorption liquid header 3c. Further, in the absorption tower 3, the absorption tank holding amount for detecting the holding amount (hereinafter referred to as absorption tank holding amount) V of the absorption liquid 101 stored in contact with the dedusted exhaust gas 100 b in the absorption tower 3. A detection unit 7 is provided. Further, the absorbent header 3c is provided with a pH detector 8 that detects the pH of the absorbent 101. An exhaust gas flow rate detection unit 4a that detects the exhaust gas flow rate S3 of the dedusted exhaust gas 100b (exhaust gas 100a) is also provided at the position where the inlet side SO 2 concentration detection unit 4 is provided.
そして、これら入口側SO2濃度検出部4で検出された脱塵排ガス100b中のSO2濃度S1、出口側SO2濃度検出部5で検出された脱硫排ガス100c中のSO2濃度S2、排ガス流量検出部4aで検出された排ガス流量S3、石灰石濃度検出部6で検出された吸収液101の石灰石濃度C、吸収液タンク保有量検出部7で検出された吸収液タンク保有量V、およびpH検出部8で検出された吸収液101のpHの各データは、制御装置9に入力される。
The SO 2 concentration S1 in the dedusted exhaust gas 100b detected by the inlet side SO 2 concentration detector 4, the SO 2 concentration S2 in the desulfurized exhaust gas 100c detected by the outlet side SO 2 concentration detector 5, and the exhaust gas flow rate The exhaust gas flow rate S3 detected by the detection unit 4a, the limestone concentration C of the absorption liquid 101 detected by the limestone concentration detection unit 6, the absorption liquid tank holding amount V detected by the absorption liquid tank holding amount detection unit 7, and the pH detection Each data of the pH of the absorbent 101 detected by the unit 8 is input to the control device 9.
制御装置9について、図2の実施の形態1に係る脱硫設備の運転制御システムのブロック図を参照して説明する。制御装置9は、マイコンなどで構成されている。制御装置9には、記憶部9aが設けられている。記憶部9aは、RAMやROMなどから構成され、プログラムやデータが格納されている。また、制御装置9には、電気集塵器2を稼動するうえで電源装置2aに電圧をかけるための電気集塵器駆動部9bや、石灰石フィーダ3aを稼動するうえでフィーダモータ(図示せず)に電圧をかけるための石灰石フィーダ駆動部9cが設けられている。また、制御装置9には、入出力部9dが設けられている。入出力部9dは、キーボードやマウスやモニターで構成されている。また、制御装置9には、情報通信部9eが設けられている。情報通信部9eは、管理装置10の情報通信部10dとの間で情報通信を行うためのものである。この制御装置9は、管理装置10から入力された情報に基づき、記憶部9aに予め格納されたプログラムやデータに従って、電気集塵器2および石灰石フィーダ3aを統括的に制御する。
The control device 9 will be described with reference to the block diagram of the operation control system for the desulfurization facility according to Embodiment 1 in FIG. The control device 9 is configured by a microcomputer or the like. The control device 9 is provided with a storage unit 9a. The storage unit 9a includes a RAM, a ROM, and the like, and stores programs and data. The control device 9 also includes a feeder motor (not shown) for operating the electrostatic precipitator drive unit 9b for applying a voltage to the power supply device 2a when operating the electrostatic precipitator 2 and the limestone feeder 3a. ) Is provided with a limestone feeder driver 9c. Further, the control device 9 is provided with an input / output unit 9d. The input / output unit 9d includes a keyboard, a mouse, and a monitor. The control device 9 is provided with an information communication unit 9e. The information communication unit 9e is for performing information communication with the information communication unit 10d of the management apparatus 10. Based on information input from the management device 10, the control device 9 controls the electrostatic precipitator 2 and the limestone feeder 3a in accordance with programs and data stored in advance in the storage unit 9a.
管理装置10について、図2の実施の形態1に係る脱硫設備の運転制御システムのブロック図を参照して説明する。管理装置10は、マイコンなどで構成されている。管理装置10は、図1に示すように、制御装置9とネットワークN上を介して接続され、脱塵排ガス100b中のSO2濃度S1、脱硫排ガス100c中のSO2濃度S2、排ガス流量S3、吸収液101の石灰石濃度C、吸収液タンク保有量V、および吸収液101のpHの各データを制御装置9から取得する。
The management apparatus 10 is demonstrated with reference to the block diagram of the operation control system of the desulfurization equipment which concerns on Embodiment 1 of FIG. The management device 10 is configured by a microcomputer or the like. Management device 10, as shown in FIG. 1, the control unit 9 and is connected through the upper network N, SO 2 concentration S1 in dedusting exhaust gas 100b, SO 2 concentration S2 of in desulfurized flue gas 100c, exhaust gas flow rate S3, Each data of the limestone concentration C of the absorbing liquid 101, the absorbing tank holding amount V, and the pH of the absorbing liquid 101 is acquired from the control device 9.
管理装置10には、記憶部10aが設けられている。記憶部10aは、RAMやROMなどから構成され、プログラムやデータが格納されている。記憶部10aは、活性定数式データベース10aa、石灰石活性定数閾値データベース10ab、石灰石濃度・石灰石活性定数データベース10ac、pH・石灰石活性定数データベース10ad、電源装置供給電圧データベース10ae、および石灰石フィーダ供給電圧データベース10afを有している。
The management device 10 is provided with a storage unit 10a. The storage unit 10a includes a RAM, a ROM, and the like, and stores programs and data. The storage unit 10a includes an activity constant expression database 10aa, a limestone activation constant threshold database 10ab, a limestone concentration / limestone activation constant database 10ac, a pH / limestone activation constant database 10ad, a power supply supply voltage database 10ae, and a limestone feeder supply voltage database 10af. Have.
活性定数式データベース10aaは、制御装置9から取得した、脱塵排ガス100b中のSO2濃度S1、脱硫排ガス100c中のSO2濃度S2、吸収液101の石灰石濃度C、吸収液タンク保有量V、および吸収液101のpHの各データに基づき石灰石活性定数Kを算出するための下記式3が格納されている。
K=f(ΔS,C,V,pH)・・・式3
ここで、ΔSは、吸収液101中の石灰石102により排ガス100aからSO2を除去したSO2除去量であり、脱塵排ガス100b中のSO2濃度S1から脱硫排ガス100c中のSO2濃度S2を差し引き、排ガス流量S3を乗じて求められる。
係る式3においては、SO2除去量ΔSが大きい程、石灰石102がSO2を吸収する活性が良く石灰石活性定数Kが高くなる。また、吸収液101のpHが高くなる程、石灰石102がSO2を吸収する活性が良く石灰石活性定数Kが高くなる。一方、石灰石濃度Cが濃い程、石灰石102がSO2を吸収する活性が悪く石灰石活性定数Kが低くなる。また、吸収液タンク保有量Vが多い程、石灰石102がSO2を吸収する活性が悪く石灰石活性定数Kが低くなる。 Activity constant expression database 10aa was acquired from thecontrol unit 9, SO 2 concentration S1 in dedusting exhaust gas 100b, SO 2 concentration S2 of in desulfurized flue gas 100c, limestone concentration of the absorbent 101 C, the absorption liquid tank stockpile V, And the following formula 3 for calculating the limestone activity constant K based on each data of the pH of the absorbent 101 is stored.
K = f (ΔS, C, V, pH) Equation 3
Here, ΔS is the SO 2 removal amount obtained by removing SO 2 from theexhaust gas 100a by the limestone 102 in the absorbing liquid 101, and the SO 2 concentration S2 in the desulfurized exhaust gas 100c is changed from the SO 2 concentration S1 in the dedusted exhaust gas 100b. Subtract and multiply by the exhaust gas flow rate S3.
In Equation 3, the larger the SO 2 removal amount ΔS, the better the activity of thelimestone 102 to absorb SO 2 and the higher the limestone activity constant K. Furthermore, as the pH of the absorption liquid 101 is high in activity may limestone activity constant K limestone 102 absorbs SO 2 is high. On the other hand, the higher the limestone concentration C, the worse the activity of the limestone 102 to absorb SO 2, and the lower the limestone activity constant K. Moreover, the more the absorbent liquid tank holding amount V is, the less active the limestone 102 absorbs SO 2 and the lower the limestone activity constant K.
K=f(ΔS,C,V,pH)・・・式3
ここで、ΔSは、吸収液101中の石灰石102により排ガス100aからSO2を除去したSO2除去量であり、脱塵排ガス100b中のSO2濃度S1から脱硫排ガス100c中のSO2濃度S2を差し引き、排ガス流量S3を乗じて求められる。
係る式3においては、SO2除去量ΔSが大きい程、石灰石102がSO2を吸収する活性が良く石灰石活性定数Kが高くなる。また、吸収液101のpHが高くなる程、石灰石102がSO2を吸収する活性が良く石灰石活性定数Kが高くなる。一方、石灰石濃度Cが濃い程、石灰石102がSO2を吸収する活性が悪く石灰石活性定数Kが低くなる。また、吸収液タンク保有量Vが多い程、石灰石102がSO2を吸収する活性が悪く石灰石活性定数Kが低くなる。 Activity constant expression database 10aa was acquired from the
K = f (ΔS, C, V, pH) Equation 3
Here, ΔS is the SO 2 removal amount obtained by removing SO 2 from the
In Equation 3, the larger the SO 2 removal amount ΔS, the better the activity of the
石灰石活性定数閾値データベース10abは、石灰石102の活性状況を判定するための基準となる石灰石活性定数閾値Xが格納されている。
The limestone activity constant threshold value database 10ab stores a limestone activity constant threshold value X that is a reference for determining the activity status of the limestone 102.
石灰石濃度・石灰石活性定数データベース10acは、石灰石濃度Cと石灰石活性定数Kとの関係が格納されている。上述のごとく、石灰石濃度Cと石灰石活性定数Kとの関係は、石灰石濃度Cが濃い程、石灰石102がSO2を吸収する活性が悪く石灰石活性定数Kが低くなり、具体的には、図3の吸収液の石灰石濃度と石灰石活性定数との関係のグラフに示す。
The limestone concentration / limestone activity constant database 10ac stores the relationship between the limestone concentration C and the limestone activity constant K. As described above, the relationship between the limestone concentration C and the limestone activity constant K is such that the higher the limestone concentration C, the lower the activity of the limestone 102 to absorb SO 2 and the lower the limestone activity constant K. Specifically, FIG. It shows in the graph of the relationship between the limestone density | concentration of an absorption liquid, and a limestone activity constant.
pH・石灰石活性定数データベース10adは、吸収液101のpHと石灰石活性定数Kとの関係が格納されている。上述のごとく、吸収液101のpHと石灰石活性定数Kとの関係は、吸収液101のpHが高くなる程、石灰石102がSO2を吸収する活性が良く石灰石活性定数Kが高くなり、具体的には、図4の吸収液のpHと石灰石活性定数との関係のグラフに示す。
The pH / limestone activity constant database 10ad stores the relationship between the pH of the absorbent 101 and the limestone activity constant K. As described above, the relationship between the pH of the absorption liquid 101 and the limestone activity constant K is such that the higher the pH of the absorption liquid 101, the better the limestone 102 absorbs SO 2 and the higher the limestone activation constant K. Fig. 4 is a graph showing the relationship between the pH of the absorbing solution and the limestone activity constant in Fig. 4.
電源装置供給電圧データベース10aeは、上述した石灰石活性定数Kに対応して、電気集塵器2の電源装置2aに電圧を加えるための電源装置電圧情報が格納されている。
The power supply voltage database 10ae stores power supply voltage information for applying a voltage to the power supply 2a of the electrostatic precipitator 2 corresponding to the limestone activation constant K described above.
石灰石フィーダ供給電圧データベース10afは、上述した石灰石活性定数Kに対応して、石灰石フィーダ3aのフィーダモータ(図示せず)に電圧を加えるためのフィーダ電圧情報が格納されている。
The limestone feeder supply voltage database 10af stores feeder voltage information for applying a voltage to a feeder motor (not shown) of the limestone feeder 3a corresponding to the limestone activation constant K described above.
また、管理装置10には、処理部10bが設けられている。処理部10bは、活性定数算出部10ba、活性状況判定部10bb、および失活原因判定部10bcを有している。
Further, the management device 10 is provided with a processing unit 10b. The processing unit 10b includes an activity constant calculation unit 10ba, an activity status determination unit 10bb, and a deactivation cause determination unit 10bc.
活性定数算出部10baは、上述した記憶部10aの活性定数式データベース10aaに格納された上記式3に、SO2除去量ΔS、石灰石濃度C、吸収液タンク保有量V、および吸収液101のpHを当てはめ、石灰石活性定数Kを算出する。
The activity constant calculation unit 10ba adds the SO 2 removal amount ΔS, the limestone concentration C, the absorption liquid tank holding amount V, and the pH of the absorption liquid 101 to the above equation 3 stored in the activation constant expression database 10aa of the storage unit 10a. To calculate the limestone activity constant K.
活性状況判定部10bbは、活性定数算出部10baで算出された石灰石活性定数Kを、石灰石活性定数閾値データベース10abに格納された石灰石活性定数閾値Xと比較し、石灰石102の活性状況を判定する。具体的に、石灰石活性定数閾値Xは、石灰石102の活性が良好な最低値である。そして、石灰石活性定数Kが石灰石活性定数閾値X以上であれば、石灰石102の活性が良好であると判定できる。すなわち、石灰石活性定数Kが石灰石活性定数閾値Xをより上回っていれば、石灰石102の活性がより良く、石灰石活性定数Kが石灰石活性定数閾値Xに近づくに従って石灰石102の活性が悪い方向、つまり失活兆候にあることが判定できる。一方、石灰石活性定数Kが石灰石活性定数閾値X未満の場合は、石灰石102の活性が悪い、つまり失活現象にあると判定できる。
The activity status determination unit 10bb compares the limestone activity constant K calculated by the activity constant calculation unit 10ba with the limestone activity constant threshold value X stored in the limestone activity constant threshold value database 10ab, and determines the activity status of the limestone 102. Specifically, the limestone activity constant threshold value X is the lowest value at which the activity of the limestone 102 is good. And if the limestone activity constant K is more than the limestone activity constant threshold value X, it can be determined that the activity of the limestone 102 is good. That is, if the limestone activity constant K exceeds the limestone activity constant threshold value X, the activity of the limestone 102 is better, and the activity of the limestone 102 becomes worse as the limestone activity constant K approaches the limestone activity constant threshold value X, that is, lost. It can be determined that there is a vital sign. On the other hand, when the limestone activation constant K is less than the limestone activation constant threshold X, it can be determined that the activity of the limestone 102 is poor, that is, it is in a deactivation phenomenon.
失活原因判定部10bcは、活性状況判定部10bbにおいて、石灰石活性定数Kが石灰石活性定数閾値Xに近づく失活兆候にある場合、石灰石濃度・石灰石活性定数データベース10acに格納された、石灰石濃度Cと石灰石活性定数Kとの関係、およびpH・石灰石活性定数データベース10adに格納された、吸収液101のpHと石灰石活性定数Kとの関係に基づき、失活に至る原因を判定する。
The deactivation cause determination unit 10bc determines the limestone concentration C stored in the limestone concentration / limestone activation constant database 10ac when the activation status determination unit 10bb is in a deactivation sign where the limestone activation constant K approaches the limestone activation constant threshold value X. And the limestone activity constant K, and the relationship between the pH of the absorbent 101 and the limestone activity constant K stored in the pH / limestone activity constant database 10ad, the cause of deactivation is determined.
また、管理装置10には、入出力部10cが設けられている。入出力部10cは、キーボードやマウスやモニターで構成されている。また、管理装置10には、情報通信部10dが設けられている。情報通信部10dは、制御装置9の情報通信部9eとの間で情報通信を行うためのものである。この管理装置10は、制御装置9から入力された情報に基づき、記憶部10aに予め格納されたプログラムやデータに従って、制御装置9に対し、電気集塵器2および石灰石フィーダ3aを統括的に制御するための情報を出力する。
Also, the management device 10 is provided with an input / output unit 10c. The input / output unit 10c includes a keyboard, a mouse, and a monitor. In addition, the management device 10 is provided with an information communication unit 10d. The information communication unit 10 d is for performing information communication with the information communication unit 9 e of the control device 9. This management device 10 controls the electrostatic precipitator 2 and the limestone feeder 3a in an integrated manner with respect to the control device 9 in accordance with programs and data stored in advance in the storage unit 10a based on information input from the control device 9. To output information.
上述した制御装置9および管理装置10による脱硫設備の運転制御について、図5の実施の形態1に係る脱硫設備の運転制御システムの動作を示すフローチャートを参照して説明する。
The operation control of the desulfurization facility by the control device 9 and the management device 10 described above will be described with reference to the flowchart showing the operation of the operation control system of the desulfurization facility according to the first embodiment in FIG.
図5に示すように、まず、制御装置9では、入口側SO2濃度検出部4で検出された脱塵排ガス100b中のSO2濃度S1、出口側SO2濃度検出部5で検出された脱硫排ガス100c中のSO2濃度S2、排ガス流量検出部4aで検出された排ガス流量S3、石灰石濃度検出部6で検出された吸収液101の石灰石濃度C、吸収液タンク保有量検出部7で検出された吸収液タンク保有量V、およびpH検出部8で検出された吸収液101のpHの各データを管理装置10に出力する(ステップST1)。そして、管理装置10では、上記各データを入力する(ステップST2)。
As shown in FIG. 5, first, in the control device 9, the desulfurization detected by the SO 2 concentration S 1 in the dedusted exhaust gas 100 b detected by the inlet side SO 2 concentration detection unit 4 and the outlet side SO 2 concentration detection unit 5. The SO 2 concentration S2 in the exhaust gas 100c, the exhaust gas flow rate S3 detected by the exhaust gas flow rate detection unit 4a, the limestone concentration C of the absorption liquid 101 detected by the limestone concentration detection unit 6, and the absorption liquid tank holding amount detection unit 7 are detected. Each data of the absorption tank holding amount V and the pH of the absorption liquid 101 detected by the pH detector 8 is output to the management device 10 (step ST1). Then, the management device 10 inputs the above data (step ST2).
次に、管理装置10では、活性定数算出部10baにおいて、活性定数式データベース10aaに格納された上記式3に基づいて、石灰石活性定数Kを算出する(ステップST3)。
Next, in the management device 10, the activity constant calculation unit 10ba calculates the limestone activation constant K based on the above equation 3 stored in the activity constant equation database 10aa (step ST3).
次に、管理装置10では、活性状況判定部10bbにおいて、活性定数算出部10baで算出された石灰石活性定数Kを、石灰石活性定数閾値データベース10abに格納された石灰石活性定数閾値Xと比較し、石灰石102の活性状況を判定する(ステップST4)。
Next, in the management apparatus 10, the activity status determination unit 10bb compares the limestone activation constant K calculated by the activation constant calculation unit 10ba with the limestone activation constant threshold X stored in the limestone activation constant threshold database 10ab, and the limestone The active status of 102 is determined (step ST4).
これにより、脱硫設備1における石灰石102の活性状況から、石灰石102の活性が失活兆候にあるか否かを把握できる。
Thereby, it can be grasped from the activity state of the limestone 102 in the desulfurization facility 1 whether or not the activity of the limestone 102 is an inactivation sign.
そして、ステップST4における判定において、石灰石102の活性が失活兆候にある場合(ステップST5:Yes)、管理装置10では、失活原因判定部10bcにおいて、失活に至る原因を判定する(ステップST6)。
And in the determination in step ST4, when the activity of the limestone 102 is in a deactivation sign (step ST5: Yes), in the management apparatus 10, the deactivation cause determination part 10bc determines the cause leading to deactivation (step ST6). ).
これにより、石灰石102の活性が失活兆候にある場合は、失活に至る原因を把握できる。
Thereby, when the activity of the limestone 102 is in the inactivation sign, the cause leading to the inactivation can be grasped.
なお、ステップST4における判定において、石灰石102の活性が失活兆候ではない場合(ステップST5:No)、管理装置10では、ステップST1,ST2に戻り、制御装置9から出力された上記各データを入力する。
In addition, in the determination in step ST4, when the activity of the limestone 102 is not a deactivation sign (step ST5: No), the management device 10 returns to steps ST1 and ST2 and inputs the above data output from the control device 9 To do.
次に、管理装置10では、ステップST6にて判定された失活に至る原因に基づき、失活兆候を更生するように、電気集塵器2の集塵力を設定し、および/または、石灰石102の供給量を設定する(ステップST7)。電気集塵器2の集塵力の設定は、石灰石活性定数Kに対応する電源装置2aへの電源装置電圧情報を電源装置供給電圧データベース10aeから取得する。また、石灰石102の供給量は、石灰石活性定数Kに対応する石灰石フィーダ3aへのフィーダ電圧情報を石灰石フィーダ供給電圧データベース10afから取得する。管理装置10では、双方またはいずれかの電圧情報を制御装置9に出力する。そして、制御装置9では、入力された電圧情報に基づいて、電気集塵器2および/または石灰石フィーダ3aを駆動する(ステップST8)。
Next, in the management apparatus 10, based on the cause leading to the deactivation determined in step ST6, the dust collection force of the electric dust collector 2 is set and / or limestone so as to regenerate the deactivation sign. The supply amount of 102 is set (step ST7). For setting the dust collecting power of the electrostatic precipitator 2, the power supply device voltage information for the power supply device 2 a corresponding to the limestone activation constant K is acquired from the power supply device supply voltage database 10 ae. Moreover, the supply amount of the limestone 102 acquires the feeder voltage information to the limestone feeder 3a corresponding to the limestone activation constant K from the limestone feeder supply voltage database 10af. The management device 10 outputs both or one of the voltage information to the control device 9. And the control apparatus 9 drives the electrostatic precipitator 2 and / or the limestone feeder 3a based on the input voltage information (step ST8).
これにより、失活に至る原因に基づき、電気集塵器2および/または石灰石フィーダ3aが駆動されることで、失活兆候が更生される。
This causes the deactivation sign to be rehabilitated by driving the electrostatic precipitator 2 and / or the limestone feeder 3a based on the cause of deactivation.
上述したように、実施の形態1に係る脱硫設備の運転制御システムでは、脱塵排ガス100b中のSO2濃度S1、脱硫排ガス100c中のSO2濃度S2、脱塵排ガス100b(排ガス100a)の排ガス流量S3、吸収液101の石灰石濃度C、吸収液タンク保有量V、および吸収液101のpHの各データから、石灰石活性定数Kを算出し、当該石灰石活性定数Kを、予め設定された石灰石活性定数閾値Xと比較して、石灰石102の活性状況を判定する。この結果、石灰石102の活性が失活兆候にあるか否かを把握しつつ石灰石102の活性状況を監視することが可能になる。
As described above, in the desulfurization operation control system according to the first embodiment, the exhaust gas of the SO 2 concentration S1 in dedusting exhaust gas 100b, SO 2 concentration S2 of in desulfurized flue gas 100c, dedusting exhaust 100b (gas 100a) The limestone activation constant K is calculated from the flow rate S3, the limestone concentration C of the absorption liquid 101, the absorption liquid tank holding amount V, and the pH of the absorption liquid 101, and the limestone activation constant K is set as a preset limestone activity. Compared with the constant threshold value X, the activity status of the limestone 102 is determined. As a result, it is possible to monitor the activity status of the limestone 102 while grasping whether the activity of the limestone 102 is a deactivation sign.
また、実施の形態1に係る脱硫設備の運転制御システムでは、石灰石102の活性状況が失活兆候にある場合、石灰石濃度Cと石灰石活性定数Kとの関係、およびpHと石灰石活性定数Kとの関係に基づき、失活に至る原因を判定する。この結果、失活に至る原因を把握できる。
Moreover, in the operation control system of the desulfurization facility according to Embodiment 1, when the activity status of the limestone 102 is in the deactivation sign, the relationship between the limestone concentration C and the limestone activation constant K, and the pH and the limestone activation constant K Based on the relationship, determine the cause of deactivation. As a result, the cause leading to inactivation can be grasped.
また、実施の形態1に係る脱硫設備の運転制御システムでは、失活に至る原因に基づき、失活兆候を更生する態様で、電気集塵器2の集塵力(電源装置2aへの供給電力)、および/または吸収液101への石灰石102の供給量(石灰石フィーダ3aへの供給電力)を設定する。この結果、失活兆候に応じて電気集塵器2および/または石灰石フィーダ3aが駆動されるので、失活兆候を更生し、失活現象に至る事態を防止することが可能になる。しかも、失活兆候に応じて電気集塵器2および/または石灰石フィーダ3aが駆動されるので、電力や石灰石102を過剰に消費する事態を防止し、かつ副生される石膏104の品質低下を防止することが可能になる。
Further, in the operation control system for the desulfurization facility according to the first embodiment, the dust collecting power of the electric dust collector 2 (power supplied to the power supply device 2a) is rehabilitated based on the cause of deactivation. ) And / or the supply amount of limestone 102 to the absorption liquid 101 (power supplied to the limestone feeder 3a) is set. As a result, since the electrostatic precipitator 2 and / or the limestone feeder 3a are driven according to the deactivation sign, it is possible to regenerate the deactivation sign and prevent the deactivation phenomenon. In addition, since the electrostatic precipitator 2 and / or the limestone feeder 3a are driven according to the deactivation signs, it is possible to prevent an excessive consumption of power and limestone 102 and to reduce the quality of the gypsum 104 that is by-produced. It becomes possible to prevent.
また、実施の形態1に係る脱硫設備の運転制御システムでは、管理装置10は、ネットワークN上を介して脱硫設備1における制御装置9と通信可能に接続されている。この結果、脱硫設備1の運転制御を遠隔地にて行うことが可能になる。
In the operation control system for the desulfurization facility according to the first embodiment, the management device 10 is connected to the control device 9 in the desulfurization facility 1 via the network N so as to be communicable. As a result, operation control of the desulfurization facility 1 can be performed at a remote location.
なお、実施の形態1に係る脱硫設備の運転制御システムでは、図1に示すように、管理装置10がネットワークN上を介して複数の脱硫設備1における制御装置9と通信可能に接続されている。図2では、1つの脱硫設備1における制御装置9と管理装置10とが一対一の関係で接続されている形態を示しているが、複数の脱硫設備1における制御装置9と管理装置10とが多対一の関係で接続されている場合は、管理装置10において、各制御装置9に対応して記憶部10a、処理部10b、入出力部10c、および情報通信部10dが機能する。この結果、複数の脱硫設備1の運転制御を遠隔地にて統括して行うことが可能になる。なお、脱硫設備1における制御装置9と管理装置10とが一対一の関係で接続される場合は、制御装置9と管理装置10とがネットワークN上を介して接続されず、管理装置10が脱硫設備1の制御装置9に含まれて構成されていてもよい。
In the operation control system for the desulfurization facility according to the first embodiment, as shown in FIG. 1, the management device 10 is communicably connected to the control devices 9 in the plurality of desulfurization facilities 1 via the network N. . In FIG. 2, the control device 9 and the management device 10 in one desulfurization facility 1 are connected in a one-to-one relationship, but the control device 9 and the management device 10 in the plurality of desulfurization facilities 1 are connected. When connected in a many-to-one relationship, in the management device 10, the storage unit 10a, the processing unit 10b, the input / output unit 10c, and the information communication unit 10d function corresponding to each control device 9. As a result, the operation control of the plurality of desulfurization facilities 1 can be performed in a remote place. When the control device 9 and the management device 10 in the desulfurization facility 1 are connected in a one-to-one relationship, the control device 9 and the management device 10 are not connected via the network N, and the management device 10 is desulfurized. It may be configured to be included in the control device 9 of the facility 1.
このように、実施の形態1に係る脱硫設備の運転制御システムでは、火力発電所などからの排ガス100aをシングルループプロセスの石灰石膏法による脱硫設備1で処理する場合に、吸収剤としての石灰石102の失活による性能低下の防止、および運転安定性の向上を図ることが可能である。この結果、副生石膏104の品質を確保すると共に、ランニングコストの増大を防止できる。
Thus, in the operation control system of the desulfurization facility according to Embodiment 1, when the exhaust gas 100a from a thermal power plant or the like is processed by the desulfurization facility 1 by the lime gypsum method of a single loop process, limestone 102 as an absorbent is used. It is possible to prevent performance degradation due to deactivation of the battery and to improve operational stability. As a result, it is possible to ensure the quality of the byproduct gypsum 104 and prevent an increase in running cost.
[実施の形態2]
本実施の形態について、図面を参照して説明する。図6は、本発明の実施の形態2に係る脱硫設備の運転制御システムの概略図である。なお、以下に説明する実施の形態2において、上述した実施の形態1と同等の構成には同一の符号を付してその説明を省略する。 [Embodiment 2]
The present embodiment will be described with reference to the drawings. FIG. 6 is a schematic diagram of an operation control system for a desulfurization facility according toEmbodiment 2 of the present invention. In the second embodiment described below, the same reference numerals are given to the same components as those in the first embodiment described above, and the description thereof is omitted.
本実施の形態について、図面を参照して説明する。図6は、本発明の実施の形態2に係る脱硫設備の運転制御システムの概略図である。なお、以下に説明する実施の形態2において、上述した実施の形態1と同等の構成には同一の符号を付してその説明を省略する。 [Embodiment 2]
The present embodiment will be described with reference to the drawings. FIG. 6 is a schematic diagram of an operation control system for a desulfurization facility according to
図6に示す脱硫設備1は、上述した実施の形態1に対し、強アルカリ液供給部11をさらに備えている。強アルカリ液供給部11は、吸収塔3に貯留された吸収液101に、強アルカリ液106を供給するもので、強アルカリ液106を収容する強アルカリ液タンク11a、強アルカリ液タンク11aから吸収塔3に至り接続された強アルカリ液管11b、および強アルカリ液管11bに介装された強アルカリ液ポンプ11cを有している。すなわち、強アルカリ液供給部11は、強アルカリ液タンク11aに収容された強アルカリ液106を、強アルカリ液ポンプ11cにより強アルカリ液管11bを介して吸収塔3に圧送する。
The desulfurization facility 1 shown in FIG. 6 is further provided with a strong alkaline solution supply unit 11 as compared with the first embodiment described above. The strong alkaline liquid supply unit 11 supplies the strong alkaline liquid 106 to the absorbing liquid 101 stored in the absorption tower 3, and absorbs the strong alkaline liquid tank 11a containing the strong alkaline liquid 106 and the strong alkaline liquid tank 11a. A strong alkaline liquid pipe 11b connected to the tower 3 and a strong alkaline liquid pump 11c interposed in the strong alkaline liquid pipe 11b are provided. That is, the strong alkaline liquid supply unit 11 pumps the strong alkaline liquid 106 stored in the strong alkaline liquid tank 11a to the absorption tower 3 via the strong alkaline liquid pipe 11b by the strong alkaline liquid pump 11c.
また、図7の実施の形態2に係る脱硫設備の運転制御システムのブロック図に示すように、制御装置9には、上述した実施の形態1に対し、強アルカリ液供給部11を稼動するうえで強アルカリ液ポンプ11cに電圧をかけるための強アルカリ液ポンプ駆動部9fがさらに設けられている。
Further, as shown in the block diagram of the operation control system for the desulfurization facility according to the second embodiment of FIG. 7, the controller 9 operates the strong alkaline liquid supply unit 11 in comparison with the first embodiment described above. A strong alkaline liquid pump drive unit 9f for applying a voltage to the strong alkaline liquid pump 11c is further provided.
また、図7に示すように、管理装置10の記憶部10aは、上述した実施の形態1に対し、強アルカリ液ポンプ供給電圧データベース10agをさらに有している。
Further, as shown in FIG. 7, the storage unit 10a of the management apparatus 10 further includes a strong alkaline liquid pump supply voltage database 10ag as compared with the first embodiment described above.
強アルカリ液ポンプ供給電圧データベース10agは、上述した石灰石活性定数Kに対応して、強アルカリ液供給部11の強アルカリ液ポンプ11cに電圧を加えるためのポンプ電圧情報が格納されている。
The strong alkaline liquid pump supply voltage database 10ag stores pump voltage information for applying a voltage to the strong alkaline liquid pump 11c of the strong alkaline liquid supply unit 11 corresponding to the limestone activation constant K described above.
上述した制御装置9および管理装置10による脱硫設備の運転制御について、図8の実施の形態2に係る脱硫設備の運転制御システムの動作を示すフローチャートを参照して説明する。
The operation control of the desulfurization facility by the control device 9 and the management device 10 described above will be described with reference to the flowchart showing the operation of the operation control system of the desulfurization facility according to the second embodiment in FIG.
図8に示すように、まず、制御装置9では、入口側SO2濃度検出部4で検出された脱塵排ガス100b中のSO2濃度S1、出口側SO2濃度検出部5で検出された脱硫排ガス100c中のSO2濃度S2、排ガス流量検出部4aで検出された排ガス流量S3、石灰石濃度検出部6で検出された吸収液101の石灰石濃度C、吸収液タンク保有量検出部7で検出された吸収液タンク保有量V、およびpH検出部8で検出された吸収液101のpHの各データを管理装置10に出力する(ステップST1)。そして、管理装置10では、上記各データを入力する(ステップST2)。
As shown in FIG. 8, first, in the control device 9, the desulfurization detected by the SO 2 concentration S 1 in the dedusted exhaust gas 100 b detected by the inlet side SO 2 concentration detection unit 4 and the outlet side SO 2 concentration detection unit 5. The SO 2 concentration S2 in the exhaust gas 100c, the exhaust gas flow rate S3 detected by the exhaust gas flow rate detection unit 4a, the limestone concentration C of the absorption liquid 101 detected by the limestone concentration detection unit 6, and the absorption liquid tank holding amount detection unit 7 are detected. Each data of the absorption tank holding amount V and the pH of the absorption liquid 101 detected by the pH detector 8 is output to the management device 10 (step ST1). Then, the management device 10 inputs the above data (step ST2).
次に、管理装置10では、活性定数算出部10baにおいて、活性定数式データベース10aaに格納された上記式3に基づいて、石灰石活性定数Kを算出する(ステップST3)。
Next, in the management device 10, the activity constant calculation unit 10ba calculates the limestone activation constant K based on the above equation 3 stored in the activity constant equation database 10aa (step ST3).
次に、管理装置10では、活性状況判定部10bbにおいて、活性定数算出部10baで算出された石灰石活性定数Kを、石灰石活性定数閾値データベース10abに格納された石灰石活性定数閾値Xと比較し、石灰石102の活性状況を判定する(ステップST4)。
Next, in the management apparatus 10, the activity status determination unit 10bb compares the limestone activation constant K calculated by the activation constant calculation unit 10ba with the limestone activation constant threshold X stored in the limestone activation constant threshold database 10ab, and the limestone The active status of 102 is determined (step ST4).
これにより、脱硫設備1における石灰石102の活性状況から、石灰石102の活性が失活兆候にあるか否かを把握できる。
Thereby, it can be grasped from the activity state of the limestone 102 in the desulfurization facility 1 whether or not the activity of the limestone 102 is an inactivation sign.
そして、ステップST4における判定において、石灰石102の活性が失活兆候にある場合(ステップST5:Yes)、管理装置10では、失活原因判定部10bcにおいて、失活に至る原因を判定する(ステップST6)。
And in the determination in step ST4, when the activity of the limestone 102 is in a deactivation sign (step ST5: Yes), in the management apparatus 10, the deactivation cause determination part 10bc determines the cause leading to deactivation (step ST6). ).
これにより、石灰石102の活性が失活兆候にある場合は、失活に至る原因を把握できる。
Thereby, when the activity of the limestone 102 is in the inactivation sign, the cause leading to the inactivation can be grasped.
なお、ステップST4において、石灰石102の活性が失活兆候ではない場合(ステップST5:No)、管理装置10では、ステップST1,ST2に戻り、制御装置9から出力された上記各データを入力する。
In step ST4, when the activity of the limestone 102 is not a deactivation sign (step ST5: No), the management device 10 returns to steps ST1 and ST2 and inputs the above-described data output from the control device 9.
次に、管理装置10では、ステップST6にて判定された失活に至る原因に基づき、失活兆候を更生するように、電気集塵器2の集塵力を設定し、および/または、石灰石102の供給量を設定する(ステップST7)。電気集塵器2の集塵力の設定は、石灰石活性定数Kに対応する電源装置2aへの電源装置電圧情報を電源装置供給電圧データベース10aeから取得する。また、石灰石102の供給量は、石灰石活性定数Kに対応する石灰石フィーダ3aへのフィーダ電圧情報を石灰石フィーダ供給電圧データベース10afから取得する。管理装置10では、双方またはいずれかの電圧情報を制御装置9に出力する。そして、制御装置9では、入力された電圧情報に基づいて、電気集塵器2および/または石灰石フィーダ3aを駆動する(ステップST8)。
Next, in the management apparatus 10, based on the cause leading to the deactivation determined in step ST6, the dust collection force of the electric dust collector 2 is set and / or limestone so as to regenerate the deactivation sign. The supply amount of 102 is set (step ST7). For setting the dust collecting power of the electrostatic precipitator 2, the power supply device voltage information for the power supply device 2 a corresponding to the limestone activation constant K is acquired from the power supply device supply voltage database 10 ae. Moreover, the supply amount of the limestone 102 acquires the feeder voltage information to the limestone feeder 3a corresponding to the limestone activation constant K from the limestone feeder supply voltage database 10af. The management device 10 outputs both or one of the voltage information to the control device 9. And the control apparatus 9 drives the electrostatic precipitator 2 and / or the limestone feeder 3a based on the input voltage information (step ST8).
これにより、失活に至る原因に基づき、電気集塵器2および/または石灰石フィーダ3aが駆動されることで、失活兆候が更生される。
This causes the deactivation sign to be rehabilitated by driving the electrostatic precipitator 2 and / or the limestone feeder 3a based on the cause of deactivation.
次に、活性状況判定部10bbにおいて、活性定数算出部10baで算出された石灰石活性定数Kを、石灰石活性定数閾値データベース10abに格納された石灰石活性定数閾値Xと比較し、石灰石活性定数Kが石灰石活性定数閾値X未満の場合、つまり石灰石102の活性が失活現象にある場合(ステップST9:Yes)、管理装置10では、石灰石102の活性を回復させて失活現象を回避するように、強アルカリ液供給部11での強アルカリ液106の供給量を設定する(ステップST10)。強アルカリ液106の供給量は、石灰石活性定数Kに対応する強アルカリ液ポンプ11cへのポンプ電圧情報を強アルカリ液ポンプ供給電圧データベース10agから取得する。管理装置10では、このポンプ電圧情報を制御装置9に出力する。そして、制御装置9では、入力されたポンプ電圧情報に基づいて、強アルカリ液ポンプ11cを駆動する(ステップST11)。
Next, the activity status determination unit 10bb compares the limestone activation constant K calculated by the activation constant calculation unit 10ba with the limestone activation constant threshold X stored in the limestone activation constant threshold database 10ab, and the limestone activation constant K is calculated as limestone. When the activity constant is less than the threshold value X, that is, when the activity of the limestone 102 is in the deactivation phenomenon (step ST9: Yes), the management apparatus 10 is strong so as to recover the activity of the limestone 102 and avoid the deactivation phenomenon. The supply amount of the strong alkaline solution 106 in the alkaline solution supply unit 11 is set (step ST10). As for the supply amount of the strong alkaline liquid 106, the pump voltage information to the strong alkaline liquid pump 11c corresponding to the limestone activation constant K is acquired from the strong alkaline liquid pump supply voltage database 10ag. The management device 10 outputs this pump voltage information to the control device 9. And the control apparatus 9 drives the strong alkaline liquid pump 11c based on the input pump voltage information (step ST11).
なお、ステップST9において、石灰石102の活性が失活現象ではない場合(ステップST9:No)、管理装置10では、ステップST1,ST2に戻り、制御装置9から出力された上記各データを入力する。
In step ST9, when the activity of the limestone 102 is not a deactivation phenomenon (step ST9: No), the management device 10 returns to steps ST1 and ST2 and inputs each of the data output from the control device 9.
上述したように、実施の形態2に係る脱硫設備の運転制御システムでは、上述した実施の形態1に加え、石灰石活性定数Kが石灰石活性定数閾値X未満の場合、強アルカリ液供給部11による強アルカリ液106の供給量を設定する。失活を起こす外乱因子、例えば、燃焼炭の種類に急激な変化などが生じた場合、完全失活(石灰石の溶解速度が著しく低下する状態)に落ち込む場合もある。この場合の早期回復法として本実施の形態2では強アルカリ液106を吸収塔3に供給し、失活原因物質のAlFxを分解させる。この結果、失活現象を回避することが可能になる。しかも、必要に応じて強アルカリ液106を供給するので、強アルカリ液106を過剰に消費する事態を防止することが可能になる。
As described above, in the operation control system for the desulfurization facility according to the second embodiment, in addition to the first embodiment described above, when the limestone activation constant K is less than the limestone activation constant threshold value X, the strong alkaline liquid supply unit 11 performs strong. The supply amount of the alkaline liquid 106 is set. When a disturbance factor that causes inactivation, for example, a sudden change in the type of combustion coal, may result in complete inactivation (a state in which the dissolution rate of limestone is significantly reduced). As an early recovery method in this case, in the second embodiment, the strong alkaline liquid 106 is supplied to the absorption tower 3 to decompose AlFx as a deactivation cause substance. As a result, the deactivation phenomenon can be avoided. Moreover, since the strong alkaline solution 106 is supplied as necessary, it is possible to prevent a situation in which the strong alkaline solution 106 is excessively consumed.
また、実施の形態2に係る脱硫設備の運転制御システムでは、管理装置10は、ネットワークN上を介して脱硫設備1における制御装置9と通信可能に接続されている。この結果、脱硫設備1の運転制御を遠隔地にて行うことが可能になる。
In the operation control system for the desulfurization facility according to the second embodiment, the management device 10 is connected to the control device 9 in the desulfurization facility 1 via the network N so as to be communicable. As a result, operation control of the desulfurization facility 1 can be performed at a remote location.
なお、実施の形態2に係る脱硫設備の運転制御システムでは、図6に示すように、管理装置10がネットワークN上を介して複数の脱硫設備1における制御装置9と通信可能に接続されている。図7では、1つの脱硫設備1における制御装置9と管理装置10とが一対一の関係で接続されている形態を示しているが、複数の脱硫設備1における制御装置9と管理装置10とが多対一の関係で接続されている場合は、管理装置10において、各制御装置9に対応して記憶部10a、処理部10b、入出力部10c、および情報通信部10dが機能する。この結果、複数の脱硫設備1の運転制御を遠隔地にて統括して行うことが可能になる。なお、脱硫設備1における制御装置9と管理装置10とが一対一の関係で接続される場合は、制御装置9と管理装置10とがネットワークN上を介して接続されず、管理装置10が脱硫設備1の制御装置9に含まれて構成されていてもよい。
In the operation control system for the desulfurization facility according to the second embodiment, as shown in FIG. 6, the management device 10 is communicably connected to the control devices 9 in the plurality of desulfurization facilities 1 via the network N. . In FIG. 7, the control device 9 and the management device 10 in one desulfurization facility 1 are connected in a one-to-one relationship, but the control device 9 and the management device 10 in the plurality of desulfurization facilities 1 are connected. When connected in a many-to-one relationship, in the management device 10, the storage unit 10a, the processing unit 10b, the input / output unit 10c, and the information communication unit 10d function corresponding to each control device 9. As a result, the operation control of the plurality of desulfurization facilities 1 can be performed in a remote place. When the control device 9 and the management device 10 in the desulfurization facility 1 are connected in a one-to-one relationship, the control device 9 and the management device 10 are not connected via the network N, and the management device 10 is desulfurized. It may be configured to be included in the control device 9 of the facility 1.
以上のように、本発明に係る脱硫設備の運転制御システムは、石灰石の活性状況を監視することに適している。
As described above, the operation control system for a desulfurization facility according to the present invention is suitable for monitoring the activity status of limestone.
1 脱硫設備
2 電気集塵器
2a 電源装置
3 吸収塔
3a 石灰石フィーダ
4 入口側SO2濃度検出部
5 出口側SO2濃度検出部
6 石灰石濃度検出部
7 吸収液タンク保有量検出部
8 pH検出部
9 制御装置
9a 記憶部
9b 電気集塵器駆動部
9c 石灰石フィーダ駆動部
9d 入出力部
9e 情報通信部
9f 強アルカリ液ポンプ駆動部
10 管理装置
10a 記憶部
10aa 活性定数式データベース
10ab 石灰石活性定数閾値データベース
10ac 石灰石濃度・石灰石活性定数データベース
10ad pH・石灰石活性定数データベース
10ae 電源装置供給電圧データベース
10af 石灰石フィーダ供給電圧データベース
10ag 強アルカリ液ポンプ供給電圧データベース
10b 処理部
10ba 活性定数算出部
10bb 活性状況判定部
10bc 失活原因判定部
10c 入出力部
10d 情報通信部
11 強アルカリ液供給部
11a 強アルカリ液タンク
11b 強アルカリ液管
11c 強アルカリ液ポンプ
100a 排ガス
100b 脱塵排ガス
100c 脱硫排ガス
101 吸収液
102 石灰石
103 水
104 石膏
105 酸化用空気
106 強アルカリ液
N ネットワーク
S1 脱塵排ガス中のSO2濃度
S2 脱硫排ガス中のSO2濃度
S3 排ガス流量
C 石灰石濃度
V 吸収液タンク保有量
K 石灰石活性定数
X 石灰石活性定数閾値 1 desulfurization 2 dust collector 2a power supply 3 absorption column 3a limestone feeder 4 inlet side SO 2 concentration detection unit 5 outlet SO 2 concentration detector 6 limestone concentration detection unit 7 absorption liquid tank holding amount detecting section 8 pH detector DESCRIPTION OF SYMBOLS 9 Control apparatus 9a Memory | storage part 9b Electric dust collector drive part 9c Limestone feeder drive part 9d Input / output part 9e Information communication part 9f Strong alkaline liquid pump drive part 10 Management apparatus 10a Memory | storage part 10aa Active constant type | formula database 10ab Limestone active constant threshold value database 10ac Limestone concentration / limestone activation constant database 10ad pH / limestone activation constant database 10ae Power supply supply voltage database 10af Limestone feeder supply voltage database 10ag Strong alkaline liquid pump supply voltage database 10b Processing section 10ba Activity constant calculation section 10bb Sexual state determination unit 10bc Deactivation cause determination unit 10c Input / output unit 10d Information communication unit 11 Strong alkaline liquid supply unit 11a Strong alkaline liquid tank 11b Strong alkaline liquid pipe 11c Strong alkaline liquid pump 100a Exhaust gas 100b Dedusted exhaust gas 100c Desulfurized exhaust gas 101 Absorption SO 2 concentration S3 flue gas flow rate C limestone concentration V absorbing liquid tank stockpile K limestone activity constant of the liquid 102 limestone 103 water 104 gypsum 105 SO 2 concentration S2 desulfurized flue gas of oxidizing air 106 strongly alkaline solution N-network system S1 dedusting flue gas X Limestone activity constant threshold
2 電気集塵器
2a 電源装置
3 吸収塔
3a 石灰石フィーダ
4 入口側SO2濃度検出部
5 出口側SO2濃度検出部
6 石灰石濃度検出部
7 吸収液タンク保有量検出部
8 pH検出部
9 制御装置
9a 記憶部
9b 電気集塵器駆動部
9c 石灰石フィーダ駆動部
9d 入出力部
9e 情報通信部
9f 強アルカリ液ポンプ駆動部
10 管理装置
10a 記憶部
10aa 活性定数式データベース
10ab 石灰石活性定数閾値データベース
10ac 石灰石濃度・石灰石活性定数データベース
10ad pH・石灰石活性定数データベース
10ae 電源装置供給電圧データベース
10af 石灰石フィーダ供給電圧データベース
10ag 強アルカリ液ポンプ供給電圧データベース
10b 処理部
10ba 活性定数算出部
10bb 活性状況判定部
10bc 失活原因判定部
10c 入出力部
10d 情報通信部
11 強アルカリ液供給部
11a 強アルカリ液タンク
11b 強アルカリ液管
11c 強アルカリ液ポンプ
100a 排ガス
100b 脱塵排ガス
100c 脱硫排ガス
101 吸収液
102 石灰石
103 水
104 石膏
105 酸化用空気
106 強アルカリ液
N ネットワーク
S1 脱塵排ガス中のSO2濃度
S2 脱硫排ガス中のSO2濃度
S3 排ガス流量
C 石灰石濃度
V 吸収液タンク保有量
K 石灰石活性定数
X 石灰石活性定数閾値 1 desulfurization 2 dust collector 2a power supply 3 absorption column 3a limestone feeder 4 inlet side SO 2 concentration detection unit 5 outlet SO 2 concentration detector 6 limestone concentration detection unit 7 absorption liquid tank holding amount detecting section 8 pH detector DESCRIPTION OF SYMBOLS 9 Control apparatus 9a Memory | storage part 9b Electric dust collector drive part 9c Limestone feeder drive part 9d Input / output part 9e Information communication part 9f Strong alkaline liquid pump drive part 10 Management apparatus 10a Memory | storage part 10aa Active constant type | formula database 10ab Limestone active constant threshold value database 10ac Limestone concentration / limestone activation constant database 10ad pH / limestone activation constant database 10ae Power supply supply voltage database 10af Limestone feeder supply voltage database 10ag Strong alkaline liquid pump supply voltage database 10b Processing section 10ba Activity constant calculation section 10bb Sexual state determination unit 10bc Deactivation cause determination unit 10c Input / output unit 10d Information communication unit 11 Strong alkaline liquid supply unit 11a Strong alkaline liquid tank 11b Strong alkaline liquid pipe 11c Strong alkaline liquid pump 100a Exhaust gas 100b Dedusted exhaust gas 100c Desulfurized exhaust gas 101 Absorption SO 2 concentration S3 flue gas flow rate C limestone concentration V absorbing liquid tank stockpile K limestone activity constant of the liquid 102 limestone 103 water 104 gypsum 105 SO 2 concentration S2 desulfurized flue gas of oxidizing air 106 strongly alkaline solution N-network system S1 dedusting flue gas X Limestone activity constant threshold
Claims (7)
- 排ガス中の石炭灰を集塵する電気集塵器と、前記電気集塵器を経た脱塵排ガスに吸収液を接触させることで前記脱塵排ガス中のSO2を前記吸収液中の石灰石に吸収させつつSO2が除去された脱硫排ガスを排出する吸収塔とを備える脱硫設備の運転制御システムにおいて、
前記脱塵排ガス中のSO2濃度と、前記脱硫排ガス中のSO2濃度と、前記排ガスの排ガス流量と、前記吸収液の石灰石濃度と、前記吸収塔にて脱塵排ガスに接触して貯留された前記吸収液における吸収液タンク保有量と、前記吸収液のpHとに基づき、石灰石活性定数を算出し、当該石灰石活性定数を予め設定された石灰石活性定数閾値と比較して石灰石の活性状況を判定する管理装置を備えたことを特徴とする脱硫設備の運転制御システム。 A dust collector for dust collection of the coal ash in the exhaust gas, absorbing the SO 2 in the dedusted flue gas by contacting the absorption liquid in the dedusting flue gas having passed through the electrostatic precipitator to the limestone in the absorbing liquid In an operation control system of a desulfurization facility comprising an absorption tower for discharging desulfurization exhaust gas from which SO 2 has been removed,
The SO 2 concentration in the dedusted exhaust gas, the SO 2 concentration in the desulfurized exhaust gas, the exhaust gas flow rate of the exhaust gas, the limestone concentration of the absorption liquid, and the desorbed exhaust gas in contact with the desorbed exhaust gas are stored. Based on the amount of the absorbent tank held in the absorbent and the pH of the absorbent, the limestone activity constant is calculated, and the limestone activity constant is compared with a preset limestone activity constant threshold. An operation control system for a desulfurization facility, comprising a management device for judging. - 前記管理装置は、石灰石の活性状況が失活兆候にある場合、前記石灰石濃度と前記石灰石活性定数との関係、および前記pHと前記石灰石活性定数との関係に基づき、失活に至る原因を判定することを特徴とする請求項1に記載の脱硫設備の運転制御システム。 The management device determines the cause of deactivation based on the relationship between the limestone concentration and the limestone activity constant and the relationship between the pH and the limestone activity constant when the activity status of limestone is in the inactivation sign The operation control system for a desulfurization facility according to claim 1.
- 前記管理装置は、失活に至る原因に基づき、失活兆候を更生する態様で、前記電気集塵器の集塵力、および/または前記吸収液への石灰石の供給量を設定することを特徴とする請求項2に記載の脱硫設備の運転制御システム。 The management device sets the dust collection power of the electric dust collector and / or the supply amount of limestone to the absorption liquid in a mode of rehabilitating the deactivation sign based on the cause leading to deactivation. An operation control system for a desulfurization facility according to claim 2.
- 前記脱塵排ガス中のSO2濃度、前記脱硫排ガス中のSO2濃度、前記排ガス流量、前記石灰石濃度、前記吸収液タンク保有量、および前記pHを取得すると共に、前記電気集塵器、および前記吸収液への石灰石の供給を制御する制御装置と、前記電気集塵器と、前記吸収塔とにより、排ガス中の石炭灰を集塵し、かつSO2を除去する脱硫設備が構成され、
前記管理装置は、ネットワーク上を介して前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする請求項1~3のいずれか一つに記載の脱硫設備の運転制御システム。 Obtaining the SO 2 concentration in the dedusted exhaust gas, the SO 2 concentration in the desulfurized exhaust gas, the exhaust gas flow rate, the limestone concentration, the absorption tank holding amount, and the pH, the electric dust collector, and the A desulfurization facility that collects coal ash in the exhaust gas and removes SO 2 is configured by the control device that controls the supply of limestone to the absorption liquid, the electric dust collector, and the absorption tower.
The desulfurization facility operation control system according to any one of claims 1 to 3, wherein the management device is communicably connected to the control device in the desulfurization facility via a network. - 前記吸収塔の吸収液に強アルカリ液を供給する強アルカリ液供給部をさらに備え、
前記管理装置は、前記石灰石活性定数が前記石灰石活性定数閾値未満の場合、前記強アルカリ液供給部による強アルカリ液の供給量を設定することを特徴とする請求項1~3のいずれか一つに記載の脱硫設備の運転制御システム。 A strong alkaline solution supply unit for supplying a strong alkaline solution to the absorbing solution of the absorption tower;
4. The management device according to claim 1, wherein when the limestone activity constant is less than the limestone activity constant threshold, a supply amount of strong alkaline liquid by the strong alkali liquid supply unit is set. Operation control system for the desulfurization facility described in 1. - 前記脱塵排ガス中のSO2濃度、前記脱硫排ガス中のSO2濃度、前記排ガス流量、前記石灰石濃度、前記吸収液タンク保有量、および前記pHを取得すると共に、前記電気集塵器、前記吸収液への石灰石の供給、および前記強アルカリ液供給部を制御する制御装置と、前記電気集塵器と、前記吸収塔と、前記強アルカリ液供給部とにより、排ガス中の石炭灰を集塵し、かつSO2を除去する脱硫設備が構成され、
前記管理装置は、ネットワーク上を介して前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする請求項5に記載の脱硫設備の運転制御システム。 The SO 2 concentration in the dedusted exhaust gas, the SO 2 concentration in the desulfurized exhaust gas, the exhaust gas flow rate, the limestone concentration, the absorption liquid tank holding amount, and the pH are obtained, and the electric dust collector, the absorption Limestone is supplied to the liquid, and the controller for controlling the strong alkaline liquid supply unit, the electric dust collector, the absorption tower, and the strong alkaline liquid supply unit collect coal ash in the exhaust gas. And a desulfurization facility for removing SO 2 is configured,
6. The operation control system for a desulfurization facility according to claim 5, wherein the management device is communicably connected to the control device in the desulfurization facility via a network. - 前記管理装置は、ネットワーク上を介して複数の前記脱硫設備における前記制御装置と通信可能に接続されていることを特徴とする請求項4または6に記載の脱硫設備の運転制御システム。 The operation control system for a desulfurization facility according to claim 4 or 6, wherein the management device is communicably connected to the control device in a plurality of the desulfurization facilities via a network.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-266072 | 2009-11-24 | ||
JP2009266072A JP2011110440A (en) | 2009-11-24 | 2009-11-24 | System for controlling operation of desulfurization equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011065118A1 true WO2011065118A1 (en) | 2011-06-03 |
Family
ID=44066222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066495 WO2011065118A1 (en) | 2009-11-24 | 2010-09-24 | System for controlling operation of desulfurization apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011110440A (en) |
WO (1) | WO2011065118A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2754483A4 (en) * | 2011-08-30 | 2015-06-24 | Chiyoda Corp | Method for preventing inactivation of flue gas desulfurization apparatus |
CN104919151A (en) * | 2013-01-30 | 2015-09-16 | 富士电机株式会社 | System for treating exhaust gas from marine diesel engine |
CN111954567A (en) * | 2018-03-06 | 2020-11-17 | 三菱动力株式会社 | Operation support system and operation support method for desulfurization device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7011486B2 (en) * | 2018-02-16 | 2022-01-26 | 三菱重工パワー環境ソリューション株式会社 | Plant equipment monitoring and control system and plant equipment monitoring and control method |
JP7161855B2 (en) * | 2018-03-06 | 2022-10-27 | 三菱重工業株式会社 | Operation monitoring system for desulfurization equipment |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229126A (en) * | 1987-03-19 | 1988-09-26 | Babcock Hitachi Kk | Control method for wet exhaust gas desulfurizer |
JPH0248128U (en) * | 1988-09-29 | 1990-04-03 | ||
JPH06238126A (en) * | 1993-02-18 | 1994-08-30 | Babcock Hitachi Kk | Abnormality diagnostic device for wet flue gas desulfurizer |
JPH08257348A (en) * | 1995-03-27 | 1996-10-08 | Nippon Steel Corp | Discharge amount-control method for circulating liquid in exhaust gas desulfurizer |
JPH10296047A (en) * | 1997-04-30 | 1998-11-10 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for flue gas desulfurization |
JP2001017825A (en) * | 1999-07-07 | 2001-01-23 | Babcock Hitachi Kk | Flue gas desulfurization method and apparatus |
JP2003333023A (en) * | 2002-05-09 | 2003-11-21 | Toshiba Corp | Data relay program for plant supervisory control and system |
-
2009
- 2009-11-24 JP JP2009266072A patent/JP2011110440A/en not_active Withdrawn
-
2010
- 2010-09-24 WO PCT/JP2010/066495 patent/WO2011065118A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229126A (en) * | 1987-03-19 | 1988-09-26 | Babcock Hitachi Kk | Control method for wet exhaust gas desulfurizer |
JPH0248128U (en) * | 1988-09-29 | 1990-04-03 | ||
JPH06238126A (en) * | 1993-02-18 | 1994-08-30 | Babcock Hitachi Kk | Abnormality diagnostic device for wet flue gas desulfurizer |
JPH08257348A (en) * | 1995-03-27 | 1996-10-08 | Nippon Steel Corp | Discharge amount-control method for circulating liquid in exhaust gas desulfurizer |
JPH10296047A (en) * | 1997-04-30 | 1998-11-10 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for flue gas desulfurization |
JP2001017825A (en) * | 1999-07-07 | 2001-01-23 | Babcock Hitachi Kk | Flue gas desulfurization method and apparatus |
JP2003333023A (en) * | 2002-05-09 | 2003-11-21 | Toshiba Corp | Data relay program for plant supervisory control and system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2754483A4 (en) * | 2011-08-30 | 2015-06-24 | Chiyoda Corp | Method for preventing inactivation of flue gas desulfurization apparatus |
US20150174525A1 (en) * | 2011-08-30 | 2015-06-25 | Chiyoda Corporation | Method for preventing inactivation of flue gas desulfurization apparatus |
US9718024B2 (en) * | 2011-08-30 | 2017-08-01 | Chiyoda Corporation | Method for preventing inactivation of flue gas desulfurization apparatus |
CN104919151A (en) * | 2013-01-30 | 2015-09-16 | 富士电机株式会社 | System for treating exhaust gas from marine diesel engine |
EP2955345A4 (en) * | 2013-01-30 | 2016-10-12 | Fuji Electric Co Ltd | Marine diesel engine exhaust gas treatment system |
CN111954567A (en) * | 2018-03-06 | 2020-11-17 | 三菱动力株式会社 | Operation support system and operation support method for desulfurization device |
Also Published As
Publication number | Publication date |
---|---|
JP2011110440A (en) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6212401B2 (en) | Exhaust gas treatment equipment | |
KR101532489B1 (en) | Exhaust gas processing system and method, spray-drying device and method for dehydrated filtrate from desulfurization wastewater | |
EP2955345B1 (en) | Marine diesel engine exhaust gas treatment system | |
WO2011065118A1 (en) | System for controlling operation of desulfurization apparatus | |
US11325850B2 (en) | Non-waste water flue gas treatment system and non-waste water flue gas treatment method | |
JP6556833B2 (en) | Wet flue gas desulfurization method and apparatus | |
WO2009093576A1 (en) | System for treating discharge gas from coal-fired boiler and method of operating the same | |
JP6230818B2 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
CN104519980A (en) | Desulfurization device, and soot removal system | |
EP3311905A1 (en) | Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method | |
JP2009166011A (en) | Exhaust gas treatment system and its method of coal fired boiler | |
WO2014156984A1 (en) | Seawater flue gas desulfurization apparatus and operating method therefor | |
JP2011177674A (en) | Finishing flue gas desulfurization apparatus and exhaust gas treatment system using the same | |
CN1133750A (en) | Flue gas treating system | |
CA2849714C (en) | Water-saving liquid-gas processing system based on equilibrium moisture operation | |
JP4701825B2 (en) | Exhaust gas treatment agent supply system and supply method | |
JP3675986B2 (en) | Wet exhaust gas desulfurization apparatus and method | |
JP2011110441A (en) | System for controlling operation of desulfurization equipment | |
JP2009136815A (en) | Exhaust gas treatment apparatus | |
JP5468216B2 (en) | Perfluoride treatment apparatus and perfluoride treatment method | |
JP4146042B2 (en) | Flue gas treatment method | |
CN102949923A (en) | Method and device for removing sulfur dioxide in industrially-sintered flue gas and recovering gypsum | |
CN205699958U (en) | Purification dust removal system | |
JP2007105679A (en) | Wet exhaust gas desulfurization apparatus | |
KR102064141B1 (en) | Desulfurization dust collector and desulfurization control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10832965 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10832965 Country of ref document: EP Kind code of ref document: A1 |