WO2011065048A1 - Acoustic wave filter and branching filter - Google Patents

Acoustic wave filter and branching filter Download PDF

Info

Publication number
WO2011065048A1
WO2011065048A1 PCT/JP2010/060723 JP2010060723W WO2011065048A1 WO 2011065048 A1 WO2011065048 A1 WO 2011065048A1 JP 2010060723 W JP2010060723 W JP 2010060723W WO 2011065048 A1 WO2011065048 A1 WO 2011065048A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
comb
signal terminal
idt
wave filter
Prior art date
Application number
PCT/JP2010/060723
Other languages
French (fr)
Japanese (ja)
Inventor
保昭 新
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011065048A1 publication Critical patent/WO2011065048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0033Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only
    • H03H9/0038Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only the balanced terminals being on the same side of the track
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0066Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel
    • H03H9/0071Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel the balanced terminals being on the same side of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6469Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/14529Distributed tap
    • H03H9/14535Position weighting

Definitions

  • the present invention relates to an elastic wave filter and a duplexer. More specifically, the present invention relates to a longitudinally coupled resonator-type elastic wave filter and a duplexer having first and second balanced signal terminals and having a balanced-unbalanced conversion function.
  • FIG. 17 is a schematic plan view of a longitudinally coupled resonator type surface acoustic wave filter described in Patent Document 1 below.
  • the longitudinally coupled resonator type surface acoustic wave filter 100 includes first to third IDT electrodes 101 to 103 formed along the propagation direction of the surface acoustic wave.
  • Each of the first to third IDT electrodes 101 to 103 is composed of a pair of comb-like electrodes.
  • the comb-like electrode on one side of the second IDT electrode 102 is connected to the unbalanced signal terminal 106, and the comb-like electrode on the other side is connected to the ground potential.
  • the comb-like electrodes on one side of the first and third IDT electrodes 101 and 103 are connected to the ground potential, and the comb-like electrodes on the other side are the first or second balanced signal terminals 107 and 108. It is connected to the.
  • Reflectors 104 and 105 are formed on both sides of the region where the first to third IDT electrodes 101 to 103 are formed in the propagation direction of the surface acoustic wave.
  • the longitudinally coupled resonator type surface acoustic wave filter 100 is configured such that the signal output from the first balanced signal terminal 107 and the signal output from the second balanced signal terminal 108 are in opposite phase to each other. Has been. That is, the first IDT electrode 101 has a configuration obtained by inverting the third IDT electrode 103. Therefore, the longitudinally coupled resonator type surface acoustic wave filter 100 has a balance-unbalance conversion function.
  • Patent Document 1 discloses a longitudinally coupled resonator type surface acoustic wave filter different from the longitudinally coupled resonator type surface acoustic wave filter 100 shown in FIG.
  • a schematic plan view of the longitudinally coupled resonator type surface acoustic wave filter is shown in FIG.
  • the longitudinally coupled resonator type surface acoustic wave filter 200 includes four longitudinally coupled resonator type surface acoustic wave filter units 201 to 204.
  • Each of the longitudinally coupled resonator-type surface acoustic wave filter sections 201 to 204 includes three IDT electrodes formed along the propagation direction of the surface acoustic wave.
  • a pair of reflectors is formed on both sides in the propagation direction of the surface acoustic wave in the region where the three IDT electrodes are formed.
  • the IDT electrodes of the longitudinally coupled resonator type surface acoustic wave filter portions 201 to 204 are each composed of a pair of comb-like electrodes.
  • the comb-like electrode on one side of the IDT electrode located in the center in the propagation direction of the surface acoustic waves of each of the longitudinally coupled resonator type surface acoustic wave filter units 201 and 202 is connected in common to the unbalanced signal terminal 205.
  • the comb electrode on the other side is connected to the ground potential.
  • the comb-like electrodes on one side of the IDT electrodes located on both sides in the propagation direction of the surface acoustic waves of the longitudinally coupled resonator type surface acoustic wave filter units 201 and 202 are connected to the ground potential, and the other side
  • the comb-like electrode is connected to the comb-like electrode on one side of the IDT electrode located on both sides of the longitudinally coupled resonator-type surface acoustic wave filter sections 203 and 204 in the propagation direction of the respective surface acoustic waves.
  • the comb-like electrodes on the other side of the IDT electrodes located on both sides in the propagation direction of the surface acoustic waves of the longitudinally coupled resonator type surface acoustic wave filter sections 203 and 204 are connected to the ground potential.
  • the comb-like electrode on one side of the IDT electrode located at the center in the propagation direction of the surface acoustic waves of each of the longitudinally coupled resonator type surface acoustic wave filter sections 203 and 204 is connected to the ground potential, and the other side
  • the comb-like electrode is connected to the first or second balanced signal terminal 206 or 207.
  • the longitudinally coupled resonator type surface acoustic wave filter 200 is configured such that the signal output from the first balanced signal terminal 206 and the signal output from the second balanced signal terminal 207 are in opposite phase to each other.
  • the IDT electrode located at the center in the propagation direction of the surface acoustic wave of the longitudinally coupled resonator type surface acoustic wave filter unit 203 is located at the center in the propagation direction of the surface acoustic wave of the longitudinally coupled resonator type surface acoustic wave filter unit 204
  • the IDT electrode positioned is inverted.
  • the longitudinally coupled resonator type surface acoustic wave filter 200 has a balanced-unbalanced conversion function, like the longitudinally coupled resonator type surface acoustic wave filter 100.
  • the ground is usually connected to the ground potential together with the electrodes constituting the IDT electrode and the reflector on the piezoelectric substrate.
  • An electrode pad is formed.
  • the comb-like electrode on the side connected to the ground potential of the IDT electrode is connected to the ground electrode pad.
  • the number of grounding electrode pads is made smaller than the number of IDT electrodes.
  • a plurality of IDT electrodes are commonly connected to one ground electrode pad.
  • the comb-like electrode on one side of the first IDT electrode 101 and the comb-like electrode on one side of the third IDT electrode 103 are connected to a common ground electrode pad.
  • the present inventor when a plurality of IDT electrodes are commonly connected to one ground electrode pad, It has been found that the balance of signals between balanced signal terminals may deteriorate.
  • the present invention has been made in view of such points, and an object of the present invention is to suppress deterioration of the balance of signals between balanced signal terminals in a longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function. There is to do.
  • a longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function That is, a comb-like electrode on one side of the IDT electrode connected to the first balanced signal terminal and a comb-like electrode on one side of the IDT electrode connected to the second balanced signal terminal are shared. It has been found that the signal balance between the first and second balanced signal terminals deteriorates when connected to the grounding electrode pad. Further, the inventor of the present invention is caused by a comb-like electrode on one side of the IDT electrode connected to the first balanced signal terminal and one side of the IDT electrode connected to the second balanced signal terminal. It has been found that by connecting the comb-like electrode to a common ground electrode pad, two currents in a reverse phase are combined on the piezoelectric substrate. As a result, the inventor has made the present invention.
  • the acoustic wave filter according to the present invention includes an unbalanced signal terminal, first and second balanced signal terminals, a piezoelectric substrate, and the unbalanced signal terminal and the first and second balanced signals on the piezoelectric substrate.
  • An elastic wave filter unit connected between the terminals and a first and a second grounding electrode pad formed on the piezoelectric substrate and connected to the ground potential.
  • the unbalanced signal includes a plurality of IDT electrodes formed on the piezoelectric substrate, and at least one of the plurality of IDT electrodes has at least one comb-like electrode connected to the unbalanced signal terminal.
  • At least one IDT electrode of the plurality of IDT electrodes includes at least one comb-like electrode connected to the first balanced signal terminal and a first ground electrode pad.
  • a first balanced signal terminal-side IDT electrode having at least one comb-like electrode connected to the at least one IDT electrode, wherein at least one IDT electrode of the plurality of IDT electrodes is connected to the second balanced signal terminal.
  • a first balanced signal terminal-side IDT electrode having at least one comb-like electrode and at least one comb-like electrode connected to the second ground electrode pad,
  • the terminal-side IDT electrode and the second balanced signal terminal-side IDT electrode are configured to be reversed with the direction orthogonal to the propagation direction of the acoustic wave as the axis of symmetry.
  • the elastic wave filter further includes a third grounding electrode pad formed on the piezoelectric substrate and connected to the ground potential, and the first of the plurality of IDT electrodes.
  • the IDT electrodes other than the balanced signal terminal side IDT electrode and the second balanced signal terminal side IDT electrode have at least one comb-like electrode connected to the third ground electrode pad.
  • the duplexer according to the present invention includes the elastic wave filter according to the present invention.
  • the comb-like electrode on one side of the first balanced signal terminal side IDT electrode and the comb-like electrode on one side of the second balanced signal terminal side IDT electrode are connected to different ground electrode pads. ing. For this reason, it can suppress that the electric current which flows through the 1st balanced signal terminal side IDT electrode and the electric current which flows through the 2nd balanced signal terminal side IDT electrode which are in a mutually reverse phase relationship match on a piezoelectric substrate. As a result, it is possible to suppress deterioration in the degree of balance of the signal between the first and second balanced signal terminals.
  • FIG. 1 is a schematic diagram of a duplexer according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a reception-side filter according to one embodiment of the present invention.
  • FIG. 3 is a schematic plan view of a receiving filter according to an embodiment of the present invention.
  • FIG. 4 is a schematic plan view of a reception-side filter in the comparative example.
  • FIG. 5 is a graph showing the attenuation characteristic between the antenna terminal and the first reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example.
  • a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example.
  • FIG. 5 is a graph showing the attenuation characteristic between the antenna terminal and the first reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example.
  • a solid line indicates an embodiment in which the present invention is implemented, and a
  • FIG. 6 is a graph showing the attenuation characteristic between the antenna terminal and the second reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example.
  • a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example.
  • FIG. 7 is a graph showing the differential attenuation characteristic between the antenna terminal and the first and second receiving-side signal terminals in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example.
  • a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example.
  • FIG. 8 is a graph showing the isolation characteristics between the transmission-side signal terminal and the first reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example.
  • a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example.
  • FIG. 9 is a graph showing the isolation characteristics between the transmission-side signal terminal and the second reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example.
  • a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example.
  • FIG. 10 is a graph showing the differential isolation characteristics between the transmission-side signal terminal and the first and second reception-side signal terminals in the duplexer according to the embodiment of the present invention and the duplexer according to the comparative example. is there.
  • a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example.
  • FIG. 11 is a schematic configuration diagram of a reception-side filter according to the first modification.
  • FIG. 12 is a schematic configuration diagram of a reception-side filter according to the second modification.
  • FIG. 13 is a schematic configuration diagram of a reception-side filter according to a third modification.
  • FIG. 14 is a schematic configuration diagram of a reception-side filter according to a fourth modification.
  • FIG. 15 is a schematic cross-sectional view in which a part of the reception-side filter according to the fifth modification is enlarged.
  • FIG. 16 is a schematic cross-sectional view in which a part of the reception-side filter according to the sixth modification is enlarged.
  • FIG. 17 is a schematic plan view of a longitudinally coupled resonator type surface acoustic wave filter described in Patent Document 1.
  • FIG. 18 is a schematic plan view of a longitudinally coupled resonator type surface acoustic wave filter described in Patent Document 1, which is different from the longitudinally coupled resonator type surface acoustic wave filter shown in FIG.
  • duplexer 1 shown in FIG. 1 As an example.
  • the duplexer 1 shown in FIG. 1 is merely an example.
  • the present invention is not limited to the duplexer 1.
  • the duplexer 1 shown in FIG. 1 is a duplexer corresponding to UMTS (Universal Mobile Telecommunications System) -BAND5. Note that the pass band of the reception-side filter of UMTS-BAND5 is 869 MHz to 894 MHz. The pass band of the transmission side filter of UMTS-BAND5 is 824 MHz to 849 MHz.
  • UMTS Universal Mobile Telecommunications System
  • the duplexer 1 includes an antenna terminal 10, a transmission-side signal terminal 12, and first and second reception-side signal terminals 21 and 22.
  • the antenna terminal 10 is connected to an antenna (Ant.) Of a communication device on which the duplexer 1 is mounted.
  • a matching inductor 11 is connected between a connection point between the antenna (Ant.) And the antenna terminal 10 and the ground potential.
  • the matching inductor 11 is configured by a chip inductor.
  • the matching inductor 11 may be configured by an inductor other than the chip inductor.
  • a transmission-side filter 13 is connected between the antenna terminal 10 and the transmission-side signal terminal 12.
  • the transmission filter 13 is a ladder-type elastic wave filter using a surface acoustic wave or a boundary acoustic wave.
  • the transmission-side filter is not limited to a ladder-type elastic wave filter.
  • the transmission filter may be, for example, a longitudinally coupled resonator type elastic wave filter.
  • a reception-side filter 20 is connected between the antenna terminal 10 and the first and second reception-side signal terminals 21 and 22.
  • FIG. 2 is a schematic plan view of the reception-side filter 20.
  • FIG. 3 is a schematic plan view of the reception filter 20.
  • the reflector is schematically drawn as a rectangle with “x” inside.
  • both the reflector and the IDT electrode are schematically drawn as quadrilaterals with “x” inside.
  • the number of electrode fingers and the like is drawn less than the actual number.
  • the receiving side filter 20 shown in FIGS. 1 to 3 is an elastic wave filter using a surface acoustic wave or a boundary acoustic wave.
  • the reception-side filter 20 is a surface acoustic wave filter using surface acoustic waves.
  • the reception-side filter 20 includes an unbalanced signal terminal 23 and first and second balanced signal terminals 24 and 25. As shown in FIG. 1, the unbalanced signal terminal 23 is connected to the antenna terminal 10. The first balanced signal terminal 24 is connected to the first receiving signal terminal 21. The second balanced signal terminal 25 is connected to the second receiving signal terminal 22.
  • an elastic wave filter unit 28 formed on the piezoelectric substrate 26 is formed between the unbalanced signal terminal 23 and the first and second balanced signal terminals 24 and 25.
  • the elastic wave filter unit 28 is a longitudinally coupled resonator type elastic wave filter unit having a balanced-unbalanced conversion function.
  • the elastic wave filter unit 28 includes first to fourth longitudinally coupled resonator type elastic wave filter units 30, 40, 50 and 60.
  • the piezoelectric substrate 26 can be formed by a piezoelectric single crystal substrate such as a LiNbO 3 substrate or a LiTaO 3 substrate, for example.
  • the first and second longitudinally coupled resonator type acoustic wave filter units 30 and 40 are connected between the unbalanced signal terminal 23 and the first balanced signal terminal 24. ing.
  • the first longitudinally coupled resonator type acoustic wave filter unit 30 is cascade-connected to the second longitudinally coupled resonator type acoustic wave filter unit 40.
  • the first longitudinally coupled resonator type elastic wave filter unit 30 includes three IDT electrodes 31 to 33 formed on the piezoelectric substrate 26 along the propagation direction of the elastic wave. It has. On the piezoelectric substrate 26, a pair of grating reflectors 34 and 35 are formed on both sides of the propagation direction of the elastic wave in the region where the IDT electrodes 31 to 33 are formed.
  • the IDT electrode 31 is located in the center of the IDT electrodes 31 to 33 in the propagation direction of the elastic wave.
  • the IDT electrode 31 includes first and second comb-like electrodes 31a and 31b.
  • the IDT electrode 32 is formed adjacent to the IDT electrode 31 in the propagation direction of the elastic wave.
  • the IDT electrode 32 includes first and second comb-like electrodes 32a and 32b.
  • the IDT electrode 33 is formed adjacent to the IDT electrode 31 in the propagation direction of the elastic wave.
  • the IDT electrode 33 includes first and second comb-like electrodes 33a and 33b.
  • the second longitudinally coupled resonator type acoustic wave filter unit 40 has three IDT electrodes 41 to 43 formed on the piezoelectric substrate 26 along the propagation direction of the elastic wave. It has. On the piezoelectric substrate 26, a pair of grating reflectors 44 and 45 are formed on both sides in the elastic wave propagation direction in the region where the IDT electrodes 41 to 43 are formed.
  • the IDT electrode 41 is located in the center of the IDT electrodes 41 to 43 in the propagation direction of the elastic wave.
  • the IDT electrode 41 includes first and second comb-like electrodes 41a and 41b.
  • the IDT electrode 42 is formed adjacent to the IDT electrode 41 in the propagation direction of the elastic wave.
  • the IDT electrode 42 includes first and second comb-like electrodes 42a and 42b.
  • the IDT electrode 43 is formed adjacent to the IDT electrode 41 in the propagation direction of the elastic wave.
  • the IDT electrode 43 includes first and second comb-like electrodes 43a and 43b.
  • the first comb-shaped electrode 31 a of the IDT electrode 31 is connected to the unbalanced signal terminal 23.
  • the second comb-like electrode 31b of the IDT electrode 31 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • the first comb-like electrode 32a of the IDT electrode 32 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • the second comb-shaped electrode 32 b of the IDT electrode 32 is connected to the first comb-shaped electrode 42 a of the IDT electrode 42 of the second longitudinally coupled resonator type acoustic wave filter unit 40.
  • the first comb-like electrode 33a of the IDT electrode 33 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • the second comb-like electrode 33 b of the IDT electrode 33 is connected to the first comb-like electrode 43 a of the IDT electrode 43 of the second longitudinally coupled resonator type acoustic wave filter unit 40.
  • the first comb-like electrode 41a of the IDT electrode 41 is connected to a ground electrode pad 29a (see FIG. 3) connected to the ground potential.
  • the second comb-like electrode 41 b of the IDT electrode 41 is connected to the first balanced signal terminal 24.
  • the first comb-shaped electrode 42 a of the IDT electrode 42 is connected to the second comb-shaped electrode 32 b of the IDT electrode 32 of the first longitudinally coupled resonator type acoustic wave filter unit 30.
  • the second comb-like electrode 42b of the IDT electrode 42 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • the first comb-shaped electrode 43 a of the IDT electrode 43 is connected to the second comb-shaped electrode 33 b of the IDT electrode 33 of the first longitudinally coupled resonator type acoustic wave filter unit 30.
  • the second comb-like electrode 43b of the IDT electrode 43 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • an acoustic wave resonator 70 is connected between the first longitudinally coupled resonator type acoustic wave filter unit 30 and the unbalanced signal terminal 23.
  • the acoustic wave resonator 70 includes an IDT electrode 70 a formed on the piezoelectric substrate 26.
  • the IDT electrode 70a includes first and second comb-like electrodes 70a1 and 70a2.
  • the first comb-like electrode 70 a 1 is connected to the unbalanced signal terminal 23.
  • the second comb-like electrode 70 a 2 is connected to the first comb-like electrode 31 a of the IDT electrode 31 of the first longitudinally coupled resonator type acoustic wave filter unit 30.
  • the third and fourth longitudinally coupled resonator type acoustic wave filter units 50 and 60 are connected between the unbalanced signal terminal 23 and the second balanced signal terminal 25. ing.
  • the third longitudinally coupled resonator type acoustic wave filter unit 50 is cascade-connected to the fourth longitudinally coupled resonator type acoustic wave filter unit 60.
  • the third longitudinally coupled resonator type acoustic wave filter unit 50 includes three IDT electrodes 51 to 53 formed on the piezoelectric substrate 26 along the propagation direction of the acoustic wave. It has. On the piezoelectric substrate 26, a pair of grating reflectors 54 and 55 are formed on both sides of the propagation direction of the elastic wave in the region where the IDT electrodes 51 to 53 are formed.
  • the IDT electrode 51 is located in the center of the IDT electrodes 51 to 53 in the propagation direction of the elastic wave.
  • the IDT electrode 51 includes first and second comb-like electrodes 51a and 51b.
  • the IDT electrode 52 is formed adjacent to the IDT electrode 51 in the elastic wave propagation direction.
  • the IDT electrode 52 includes first and second comb-like electrodes 52a and 52b.
  • the IDT electrode 53 is formed adjacent to the IDT electrode 51 in the elastic wave propagation direction.
  • the IDT electrode 53 includes first and second comb-like electrodes 53a and 53b.
  • the fourth longitudinally coupled resonator type elastic wave filter unit 60 includes three IDT electrodes 61 to 63 formed on the piezoelectric substrate 26 along the propagation direction of the elastic wave. It has. On the piezoelectric substrate 26, a pair of grating reflectors 64 and 65 are formed on both sides of the propagation direction of the elastic wave in the region where the IDT electrodes 61 to 63 are formed.
  • the IDT electrode 61 is located at the center of the IDT electrodes 61 to 63 in the elastic wave propagation direction.
  • the IDT electrode 61 includes first and second comb-like electrodes 61a and 61b.
  • the IDT electrode 62 is formed adjacent to the IDT electrode 61 in the propagation direction of the elastic wave.
  • the IDT electrode 62 includes first and second comb-like electrodes 62a and 62b.
  • the IDT electrode 63 is formed adjacent to the IDT electrode 61 in the propagation direction of the elastic wave.
  • the IDT electrode 63 includes first and second comb-like electrodes 63a and 63b.
  • the first comb-like electrode 51 a of the IDT electrode 51 is connected to the unbalanced signal terminal 23.
  • the second comb-like electrode 51b of the IDT electrode 51 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • the first comb-like electrode 52a of the IDT electrode 52 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • the second comb-like electrode 52 b of the IDT electrode 52 is connected to the first comb-like electrode 62 a of the IDT electrode 62 of the fourth longitudinally coupled resonator type acoustic wave filter unit 60.
  • the first comb-like electrode 53a of the IDT electrode 53 is connected to the ground electrode pad 27 (see FIG.
  • the second comb-like electrode 53 b of the IDT electrode 53 is connected to the first comb-like electrode 63 a of the IDT electrode 63 of the fourth longitudinally coupled resonator type acoustic wave filter unit 60.
  • the first comb-like electrode 61a of the IDT electrode 61 is connected to a ground electrode pad 29b (see FIG. 3) connected to the ground potential.
  • the second comb-like electrode 61 b of the IDT electrode 61 is connected to the second balanced signal terminal 25.
  • the first comb-like electrode 62 a of the IDT electrode 62 is connected to the second comb-like electrode 52 b of the IDT electrode 52 of the third longitudinally coupled resonator type acoustic wave filter unit 50.
  • the second comb-like electrode 62b of the IDT electrode 62 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • the first comb-like electrode 63 a of the IDT electrode 63 is connected to the second comb-like electrode 53 b of the IDT electrode 53 of the third longitudinally coupled resonator type acoustic wave filter unit 50.
  • the second comb-like electrode 63b of the IDT electrode 63 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential.
  • an acoustic wave resonator 71 is connected between the third longitudinally coupled resonator type acoustic wave filter unit 50 and the unbalanced signal terminal 23.
  • the acoustic wave resonator 71 includes an IDT electrode 71 a formed on the piezoelectric substrate 26.
  • the IDT electrode 71a includes first and second comb-like electrodes 71a1 and 71a2.
  • the first comb-like electrode 71 a 1 is connected to the unbalanced signal terminal 23.
  • the second comb-like electrode 71a2 is connected to the first comb-like electrode 51a of the IDT electrode 51 of the third longitudinally coupled resonator type acoustic wave filter unit 50.
  • the IDT electrode 41 and the IDT electrode 61 are configured to be reversed with the direction orthogonal to the propagation direction of the elastic wave as the axis of symmetry. Therefore, in the acoustic wave filter unit 28, the signal output from the first balanced signal terminal 24 and the signal output from the second balanced signal terminal 25 are in an opposite phase relationship.
  • an insulating film 15 is formed between the intersecting wirings.
  • the insulating film 15 insulates the intersecting wires from each other.
  • the material of the insulating film 15 is not particularly limited.
  • the insulating film 15 can be formed of, for example, a resin such as polyimide or an inorganic dielectric such as SiO 2 or SiN.
  • the IDT electrode, the reflector, and the like in the present embodiment can be formed of an appropriate conductive material.
  • the IDT electrode, the reflector, and the like can be formed of a metal such as Al, Cu, Ni, Au, Ag, Pt, Au, or Cr, or an alloy containing at least one of these metals.
  • the IDT electrode, the reflector, and the like may be configured by, for example, a conductive film stack in which a plurality of conductive films are stacked.
  • the IDT electrode 41a of the IDT electrode 41 connected to the first balanced signal terminal 24 and the IDT connected to the second balanced signal terminal 25 are used.
  • the first comb-like electrode 61a of the electrode 61 is connected to different grounding electrode pads 29a and 29b on the piezoelectric substrate. For this reason, it is possible to effectively suppress the current flowing through the IDT electrode 41 and the current flowing through the IDT electrode 61, which are in an opposite phase relationship, from being combined on the piezoelectric substrate 26. As a result, it is possible to effectively suppress the deterioration of the balance between the first and second balanced signal terminals 24 and 25, as supported by the following examples. Moreover, since the deterioration of the balance degree between the 1st and 2nd balanced signal terminals 24 and 25 can be suppressed, the deterioration of differential attenuation amount and differential isolation can also be suppressed.
  • the comb electrode of the IDT electrode connected to the first balanced signal terminal and the comb electrode of the IDT electrode connected to the second balanced signal terminal are the same ground electrode.
  • two currents having opposite phases flow through the grounding electrode pad and the wiring connected to the grounding electrode pad.
  • the balance between the first and second balanced signal terminals is deteriorated, and accordingly, the differential attenuation amount and the differential isolation are also deteriorated.
  • duplexer 1 of the present embodiment As a comparative example of the duplexer 1 of the present embodiment, a duplexer having the same configuration as the duplexer 1 of the present embodiment except that the receiver filter 300 shown in FIG. .
  • the attenuation characteristic between the unbalanced signal terminal 23 and each of the first and second balanced signal terminals 24 and 25, etc. was measured.
  • reception-side filter 300 shown in FIG. 4 has the same configuration as the reception-side filter 20 of the above-described embodiment except for the following (1) to (2).
  • the first comb-shaped electrode 41a of the IDT electrode 41 and the first comb-shaped electrode 61a of the IDT electrode 61 are connected to the ground electrode pad 27 in common.
  • the second comb-like electrode 31b of the IDT electrode 31 is connected to the ground electrode pad 29a, and the second comb-like electrode 51b of the IDT electrode 51 is connected to the ground electrode pad 29b.
  • FIG. 5 is a graph showing the attenuation characteristic between the antenna terminal 10 and the first reception-side signal terminal 21 in the duplexer 1 of the present embodiment and the duplexer of the comparative example.
  • FIG. 6 is a graph showing the attenuation characteristic between the antenna terminal 10 and the second reception-side signal terminal 22 in the duplexer 1 of the present embodiment and the duplexer of the comparative example.
  • FIG. 7 is a graph showing the differential attenuation characteristics between the antenna terminal 10 and the first and second receiving signal terminals 21 and 22 in the duplexer 1 of the present embodiment and the duplexer of the comparative example.
  • FIG. 5 is a graph showing the attenuation characteristic between the antenna terminal 10 and the first reception-side signal terminal 21 in the duplexer 1 of the present embodiment and the duplexer of the comparative example.
  • FIG. 6 is a graph showing the attenuation characteristic between the antenna terminal 10 and the second reception-side signal terminal 22 in the duplexer 1 of the present embodiment and the duplexer of the comparativ
  • FIG. 8 is a graph showing isolation characteristics between the transmission-side signal terminal 12 and the first reception-side signal terminal 21 in the duplexer 1 of the present embodiment and the duplexer of the comparative example.
  • FIG. 9 is a graph showing the isolation characteristics between the transmission-side signal terminal 12 and the second reception-side signal terminal 22 in the duplexer 1 of the present embodiment and the duplexer of the comparative example.
  • FIG. 10 is a graph showing differential isolation characteristics between the transmission-side signal terminal 12 and the first and second reception-side signal terminals 21 and 22 in the duplexer 1 of this embodiment and the duplexer of the comparative example. is there.
  • a solid line indicates the present embodiment, and a dashed line indicates a comparative example.
  • Sdd1 (S31-S41) / ⁇ (2) 1/2 ⁇
  • Sdd2 (S32-S42) / ⁇ (2) 1/2 ⁇
  • Sdd1 differential attenuation
  • Sdd2 differential isolation
  • S31 S parameter from the antenna terminal 10 to the first receiving signal terminal 21
  • S41 S parameter from the antenna terminal 10 to the second receiving signal terminal 22
  • S32 S parameter from the transmission side signal terminal 12 to the first reception side signal terminal
  • S42 S parameter from the transmission side signal terminal 12 to the second reception side signal terminal 22, It is.
  • the duplexer of the comparative example in the pass band (824 MHz to 849 MHz) of the transmission side filter 13, the antenna terminal 10 and the first reception side signal terminal 21 are not connected.
  • the attenuation characteristic and the attenuation characteristic between the antenna terminal 10 and the second receiving signal terminal 22 are greatly different.
  • the attenuation characteristic between the antenna terminal 10 and the first reception side signal terminal 21 in the pass band (824 MHz to 849 MHz) of the transmission side filter 13, and the antenna terminal 10 And the second receiving side signal terminal 22 are relatively approximate to each other.
  • the duplexer 1 of the present embodiment has a larger differential attenuation in the pass band (824 MHz to 849 MHz) of the transmission-side filter 13 than the duplexer of the comparative example.
  • the duplexer of the comparative example in the pass band (824 MHz to 849 MHz) of the transmission filter 13, the transmission signal terminal 12 and the first reception signal terminal 21 are used. And the isolation characteristic between the transmission side signal terminal 12 and the second reception side signal terminal 22 are greatly different.
  • the isolation characteristics between the transmission side signal terminal 12 and the first reception side signal terminal 21 in the pass band (824 MHz to 849 MHz) of the transmission side filter 13 and the transmission The isolation characteristic between the side signal terminal 12 and the second reception side signal terminal 22 is relatively approximate.
  • the duplexer 1 of the present embodiment has a larger differential isolation in the pass band (824 MHz to 849 MHz) of the transmission-side filter 13 than the duplexer of the comparative example.
  • the first comb-shaped electrode 41a of the IDT electrode 41 connected to the first balanced signal terminal 24 and the first of the IDT electrode 61 connected to the second balanced signal terminal 25 are shown.
  • the differential attenuation and the differential isolation can be increased, and the balance between the first and second balanced signal terminals 24 and 25 can be increased. It can be seen that the deterioration of the degree can be suppressed.
  • the first comb-shaped electrode 41 a of the IDT electrode 41 and the first of the IDT electrode 61 among all the comb-shaped electrodes connected to the ground potential are used.
  • the comb-like electrodes 31b, 32a, 33a, 42b, 43b, 51b, 52a, 53a, 62b, and 63b, excluding the comb-like electrode 61a, are commonly connected to the ground electrode pad 27 formed on the piezoelectric substrate 26.
  • grounding can be enlarged as a whole filter.
  • deterioration of the out-of-band attenuation can be suppressed.
  • the present invention is not limited to this configuration.
  • the comb-like electrodes 31b, 32a, 33a, 42b, 43b, 51b, 52a, 53a, 62b, and 63b may be connected to a plurality of ground electrode pads.
  • Each of the ground electrode pads 29a and 29b is connected to lands and wirings formed on a mounting substrate on which the piezoelectric substrate 26 is mounted.
  • the land and wiring to which the grounding electrode pad 29a is connected and the land and wiring to which the grounding electrode pad 29b is connected may be connected to each other on the mounting board or may not be connected to each other.
  • Good that is, in the present invention, on the piezoelectric substrate to which the comb-like electrode connected to the ground potential of the two comb-like electrodes constituting the IDT electrode connected to the first balanced signal terminal is connected.
  • On the piezoelectric substrate to which the comb-like electrode connected to the ground potential of the two comb-like electrodes constituting the IDT electrode connected to the second balanced signal terminal is connected.
  • the circuit configuration on the mounting substrate is not particularly limited. This is because the balance between the first and second balanced signal terminals is reduced when currents in opposite phases are combined on the piezoelectric substrate, and the currents in opposite phases are reduced. This is because the balance between the first and second balanced signal terminals is unlikely to decrease unless they are combined together.
  • FIG. 11 is a schematic configuration diagram of a reception-side filter according to the first modification.
  • FIG. 12 is a schematic configuration diagram of a reception-side filter according to the second modification.
  • FIG. 13 is a schematic configuration diagram of a reception-side filter according to a third modification.
  • the elastic wave filter unit 28 includes the first to fourth longitudinally coupled resonator type elastic wave filter units 30, 40, 50, 60
  • the first longitudinally coupled resonator type acoustic wave filter unit 30 and the second longitudinally coupled resonator type acoustic wave filter unit 40 are cascade-connected.
  • the third longitudinally coupled resonator type acoustic wave filter unit 50 and the fourth longitudinally coupled resonator type acoustic wave filter unit 60 are connected in cascade.
  • the present invention is not limited to this configuration.
  • the elastic wave filter unit 28 may be constituted by second and fourth longitudinally coupled resonator type elastic wave filter units 40 and 60.
  • the elastic wave filter unit 28 may be constituted by one longitudinally coupled resonator type elastic wave filter unit.
  • the so-called 5IDT type longitudinally coupled resonator type acoustic wave filter in which the longitudinally coupled resonator type acoustic wave filter unit constituting the acoustic wave filter unit 28 has five IDT electrodes. It consists of parts.
  • the acoustic wave filter unit 28 includes five IDT electrodes 81 to 81 formed on the piezoelectric substrate 26 along the propagation direction of the acoustic wave. 85.
  • a pair of grating reflectors 86 and 87 are formed on both sides of the elastic wave propagation direction in the region where the IDT electrodes 81 to 85 are formed.
  • the IDT electrode 81 is located in the center of the IDT electrodes 81 to 85 in the elastic wave propagation direction.
  • the IDT electrode 81 includes first and second comb-like electrodes 81a and 81b.
  • the IDT electrode 82 is formed adjacent to the IDT electrode 81 in the propagation direction of the elastic wave.
  • the IDT electrode 82 includes first and second comb-like electrodes 82a and 82b.
  • the IDT electrode 83 is formed adjacent to the IDT electrode 81 in the elastic wave propagation direction.
  • the IDT electrode 83 includes first and second comb-like electrodes 83a and 83b.
  • the IDT electrode 84 is formed adjacent to the IDT electrode 82 in the propagation direction of the elastic wave.
  • the IDT electrode 84 includes first and second comb-like electrodes 84a and 84b.
  • the IDT electrode 85 is formed adjacent to the IDT electrode 83 in the elastic wave propagation direction.
  • the IDT electrode 85 includes first and second comb-like electrodes 85a and 85b.
  • the first comb-shaped electrode 81 a of the IDT electrode 81 is connected to the unbalanced signal terminal 23.
  • the second comb-like electrode 81b of the IDT electrode 81 is connected to the ground electrode pad 27 connected to the ground potential.
  • the first comb-like electrode 82a of the IDT electrode 82 is connected to the ground electrode pad 29b connected to the ground potential.
  • the second comb-like electrode 82 b of the IDT electrode 82 is connected to the second balanced signal terminal 25.
  • the first comb-like electrode 83a of the IDT electrode 83 is connected to the ground electrode pad 29a connected to the ground potential.
  • the second comb-like electrode 83 b of the IDT electrode 83 is connected to the first balanced signal terminal 24.
  • the first comb-like electrode 84 a of the IDT electrode 84 is connected to the unbalanced signal terminal 23.
  • the second comb-like electrode 84b of the IDT electrode 84 is connected to the ground electrode pad 27 connected to the ground potential.
  • the first comb-like electrode 85 a of the IDT electrode 85 is connected to the unbalanced signal terminal 23.
  • the second comb-like electrode 85b of the IDT electrode 85 is connected to the ground electrode pad 27 connected to the ground potential.
  • the IDT electrode 82 and the IDT electrode 83 are reversed with the direction orthogonal to the propagation direction of the acoustic wave as the axis of symmetry. Therefore, in the acoustic wave filter unit 28, the signal output from the first balanced signal terminal 24 and the signal output from the second balanced signal terminal 25 are in an opposite phase relationship.
  • the configurations of the IDT electrodes 81 to 85 and the grating reflectors 86 and 87 in this modification are substantially the same as the configurations of the IDT electrodes and the reflectors of the above embodiment.
  • the example which is a filter part was demonstrated.
  • the present invention is not limited to this configuration.
  • the longitudinally coupled resonator type acoustic wave filter portion constituting the acoustic wave filter unit 28 is a so-called 3IDT type longitudinally coupled resonator type acoustic wave filter having three IDT electrodes 81 to 83. Part.
  • FIG. 14 is a schematic configuration diagram of a reception-side filter according to a fourth modification.
  • the second comb-like electrode 41b of the IDT electrode 41 of the second longitudinally coupled resonator type acoustic wave filter unit 40 is connected to the first balanced signal terminal 24, and the IDT electrodes 42, 43 are connected.
  • the first comb-like electrodes 42a and 43a are connected to the unbalanced signal terminal 23 via the first longitudinally coupled resonator type acoustic wave filter unit 30 and the acoustic wave resonator 70, and the fourth
  • the second comb-like electrode 61b of the IDT electrode 61 of the longitudinally coupled resonator type acoustic wave filter unit 60 is connected to the second balanced signal terminal 25, and the first comb-like electrodes of the IDT electrodes 62 and 63 are connected.
  • the first comb-like electrode 41 a of the IDT electrode 41 of the second longitudinally coupled resonator type acoustic wave filter unit 40 is connected to the unbalanced signal terminal 23, and the IDT electrode 42. , 43 are connected to the first balanced signal terminal 24, and the first comb of the IDT electrode 61 of the fourth longitudinally coupled resonator type acoustic wave filter unit 60 is connected to the first balanced signal terminal 24.
  • the tooth-shaped electrode 61 a may be connected to the unbalanced signal terminal 23, and the second comb-shaped electrodes 62 b and 63 b of the IDT electrodes 62 and 63 may be connected to the second balanced signal terminal 25.
  • the first comb-like electrodes 42a and 43a of the IDT electrodes 42 and 43 connected to the first balanced signal terminal 24, and the IDT electrodes 62 and 43 connected to the second balanced signal terminal 25, 63 first comb-like electrodes 62a and 63a are connected to different grounding electrode pads.
  • the first comb-like electrodes 42a and 43a of the IDT electrodes 42 and 43 connected to the first balanced signal terminal 24 are connected to the ground electrode pad 29a.
  • the first comb-like electrodes 62a and 63a of the IDT electrodes 62 and 63 connected to the second balanced signal terminal 25 are connected to the ground electrode pad 29b.
  • first comb-shaped electrodes 42a and 43a of the IDT electrodes 42 and 43 connected to the first balanced signal terminal 24 may be connected to different grounding electrode pads.
  • first comb-like electrodes 62a and 63a of the IDT electrodes 62 and 63 connected to the second balanced signal terminal 25 may be connected to different grounding electrode pads.
  • FIG. 15 is a schematic cross-sectional view in which a part of the reception-side filter according to the fifth modification is enlarged.
  • FIG. 16 is a schematic cross-sectional view in which a part of the reception-side filter according to the sixth modification is enlarged.
  • the duplexer uses surface acoustic waves.
  • the present invention is not limited to this configuration.
  • the duplexer and the elastic wave filter according to the present invention may use boundary acoustic waves.
  • the reception-side filter is configured by a so-called two-medium type boundary acoustic wave filter 90.
  • the boundary acoustic wave filter 90 includes a piezoelectric substrate 26 as a first medium layer and a dielectric layer 91 as a second medium layer stacked on the piezoelectric substrate 26.
  • An electrode 92 is formed at the boundary between the piezoelectric substrate 26 and the dielectric layer 91.
  • Each electrode 92 constitutes each IDT electrode, reflector, and the like.
  • the reception-side filter is constituted by a so-called three-medium boundary acoustic wave filter 93.
  • the boundary acoustic wave filter 93 includes a piezoelectric substrate 26 as a first medium layer, a dielectric layer 94 as a second medium layer formed on the piezoelectric substrate 26, and the piezoelectric substrate 26 and the dielectric layer. 94, and a dielectric layer 95 serving as a third medium layer.
  • An electrode 92 is formed at the boundary between the piezoelectric substrate 26 and the dielectric layer 95.
  • Each electrode 92 constitutes each IDT electrode, reflector, and the like.
  • the dielectric layer 95 is made of a material having a slower transverse sound speed than the piezoelectric substrate 26 and the dielectric layer 94. For this reason, the boundary acoustic wave generated by the IDT electrode constituted by the electrode 92 is effectively confined in the dielectric layer 95.
  • the piezoelectric substrate 26 can be configured by, for example, a LiNbO 3 substrate having Y cut X propagation and Euler angles (0 °, 105 °, 0 °).
  • the dielectric layer 94 can be composed of, for example, a SiN layer.
  • the dielectric layers 91 and 95 can be composed of, for example, a SiO 2 layer.
  • the IDT electrode is preferably formed of at least one of Cu, Ag and Au, which is a metal having a higher density than Al, or an alloy containing one or more of these metals.
  • duplexer which is a type of duplexer
  • the duplexer is not limited to a duplexer.
  • the duplexer may be, for example, a triplexer.
  • the reception filter of the duplexer is configured by a longitudinally coupled resonator type elastic wave filter having a balance-unbalance conversion function
  • the transmission side filter is configured by a ladder type elastic wave filter.
  • the present invention is not limited to this configuration.
  • the duplexer according to the present invention if at least one of the plurality of filters constituting the duplexer is configured by an elastic wave filter having a balanced-unbalanced conversion function according to the present invention.
  • both the transmission side filter and the reception side filter may be constituted by an elastic wave filter having a balanced-unbalanced conversion function according to the present invention.
  • only the reception side filter may be constituted by an elastic wave filter having a balanced-unbalanced conversion function according to the present invention.

Abstract

Disclosed is an acoustic wave filter having a balun conversion function, wherein deterioration of balance of signals between balanced signal terminals is suppressed. A receiving side filter (20) is provided with an unbalanced signal terminal (23); first and second balanced signal terminals (24 and 25); a piezoelectric substrate (26); an acoustic wave filter unit (28) connected between the unbalanced signal terminal (23) and the first and second balanced signal terminals (24 and 25) upon the piezoelectric substrate (26); and first and second grounding electrode pads (29a and 29b) connected to a ground potential and formed upon the piezoelectric substrate (26). The acoustic wave filter unit (28) has an IDT electrode (41) connected to the first balanced signal terminal (24) and an IDT electrode (61) connected to the second balanced signal terminal (25). A first interdigital electrode (41a) of the IDT electrode (41) is connected to the grounding electrode pad (29a), and the first interdigital electrode (61a) of the IDT electrode (61) is connected to the grounding electrode pad (29b).

Description

弾性波フィルタ及び分波器Elastic wave filter and duplexer
 本発明は、弾性波フィルタ及び分波器に関する。より詳細には、本発明は、第1及び第2の平衡信号端子を備え、平衡-不平衡変換機能を有する縦結合共振子型弾性波フィルタ及び分波器に関する。 The present invention relates to an elastic wave filter and a duplexer. More specifically, the present invention relates to a longitudinally coupled resonator-type elastic wave filter and a duplexer having first and second balanced signal terminals and having a balanced-unbalanced conversion function.
 従来、例えば、下記の特許文献1などにおいて、携帯電話機などの通信機におけるRF(Radio Frequency)回路の帯域通過フィルタなどとして、弾性表面波や弾性境界波を利用した弾性波フィルタが種々提案されている。 Conventionally, for example, in Patent Document 1 below, various acoustic wave filters using surface acoustic waves or boundary acoustic waves have been proposed as bandpass filters for RF (Radio Frequency) circuits in communication devices such as mobile phones. Yes.
 図17は、下記の特許文献1に記載の縦結合共振子型弾性表面波フィルタの模式的平面図である。図17に示すように、縦結合共振子型弾性表面波フィルタ100は、弾性表面波の伝搬方向に沿って形成されている第1~第3のIDT電極101~103を備えている。第1~第3のIDT電極101~103は、それぞれ1組のくし歯状電極からなる。第2のIDT電極102の一方側のくし歯状電極は、不平衡信号端子106に接続されており、他方側のくし歯状電極は、グラウンド電位に接続されている。第1及び第3のIDT電極101,103の一方側のくし歯状電極は、グラウンド電位に接続されており、他方側のくし歯状電極は、第1または第2の平衡信号端子107,108に接続されている。弾性表面波の伝搬方向において、第1~第3のIDT電極101~103が形成されている領域の両側には、反射器104,105が形成されている。 FIG. 17 is a schematic plan view of a longitudinally coupled resonator type surface acoustic wave filter described in Patent Document 1 below. As shown in FIG. 17, the longitudinally coupled resonator type surface acoustic wave filter 100 includes first to third IDT electrodes 101 to 103 formed along the propagation direction of the surface acoustic wave. Each of the first to third IDT electrodes 101 to 103 is composed of a pair of comb-like electrodes. The comb-like electrode on one side of the second IDT electrode 102 is connected to the unbalanced signal terminal 106, and the comb-like electrode on the other side is connected to the ground potential. The comb-like electrodes on one side of the first and third IDT electrodes 101 and 103 are connected to the ground potential, and the comb-like electrodes on the other side are the first or second balanced signal terminals 107 and 108. It is connected to the. Reflectors 104 and 105 are formed on both sides of the region where the first to third IDT electrodes 101 to 103 are formed in the propagation direction of the surface acoustic wave.
 縦結合共振子型弾性表面波フィルタ100は、第1の平衡信号端子107から出力される信号と、第2の平衡信号端子108から出力される信号とが互いに逆相の関係となるように構成されている。すなわち、第1のIDT電極101は、第3のIDT電極103を反転した構成となっている。このため、縦結合共振子型弾性表面波フィルタ100は、平衡-不平衡変換機能を有している。 The longitudinally coupled resonator type surface acoustic wave filter 100 is configured such that the signal output from the first balanced signal terminal 107 and the signal output from the second balanced signal terminal 108 are in opposite phase to each other. Has been. That is, the first IDT electrode 101 has a configuration obtained by inverting the third IDT electrode 103. Therefore, the longitudinally coupled resonator type surface acoustic wave filter 100 has a balance-unbalance conversion function.
 また、特許文献1には、上記図17に示す縦結合共振子型弾性表面波フィルタ100とは異なる縦結合共振子型弾性表面波フィルタも開示されている。その縦結合共振子型弾性表面波フィルタの模式的平面図を図18に示す。図18に示すように、縦結合共振子型弾性表面波フィルタ200は、4つの縦結合共振子型弾性表面波フィルタ部201~204を備えている。縦結合共振子型弾性表面波フィルタ部201~204のそれぞれは、弾性表面波の伝搬方向に沿って形成されている3つのIDT電極を備えている。それら3つのIDT電極が形成されている領域の弾性表面波の伝搬方向における両側には、一対の反射器が形成されている。縦結合共振子型弾性表面波フィルタ部201~204のIDT電極は、それぞれ1組のくし歯状電極からなる。縦結合共振子型弾性表面波フィルタ部201,202のそれぞれの弾性表面波の伝搬方向における中央に位置するIDT電極の一方側のくし歯状電極は、不平衡信号端子205に共通に接続されており、他方側のくし歯状電極は、グラウンド電位に接続されている。縦結合共振子型弾性表面波フィルタ部201,202のそれぞれの弾性表面波の伝搬方向における両側に位置するIDT電極の一方側のくし歯状電極は、グラウンド電位に接続されており、他方側のくし歯状電極は、縦結合共振子型弾性表面波フィルタ部203,204のそれぞれの弾性表面波の伝搬方向における両側に位置するIDT電極の一方側のくし歯状電極に接続されている。縦結合共振子型弾性表面波フィルタ部203,204のそれぞれの弾性表面波の伝搬方向における両側に位置するIDT電極の他方側のくし歯状電極は、グラウンド電位に接続されている。縦結合共振子型弾性表面波フィルタ部203,204のそれぞれの弾性表面波の伝搬方向における中央に位置するIDT電極の一方側のくし歯状電極は、グラウンド電位に接続されており、他方側のくし歯状電極は、第1または第2の平衡信号端子206,207に接続されている。縦結合共振子型弾性表面波フィルタ200は、第1の平衡信号端子206から出力される信号と、第2の平衡信号端子207から出力される信号とが互いに逆相の関係となるように構成されている。すなわち、縦結合共振子型弾性表面波フィルタ部203の弾性表面波の伝搬方向における中央に位置するIDT電極は、縦結合共振子型弾性表面波フィルタ部204の弾性表面波の伝搬方向における中央に位置するIDT電極を反転した構成となっている。このため、縦結合共振子型弾性表面波フィルタ200は、上記縦結合共振子型弾性表面波フィルタ100と同様に、平衡-不平衡変換機能を有している。 Also, Patent Document 1 discloses a longitudinally coupled resonator type surface acoustic wave filter different from the longitudinally coupled resonator type surface acoustic wave filter 100 shown in FIG. A schematic plan view of the longitudinally coupled resonator type surface acoustic wave filter is shown in FIG. As shown in FIG. 18, the longitudinally coupled resonator type surface acoustic wave filter 200 includes four longitudinally coupled resonator type surface acoustic wave filter units 201 to 204. Each of the longitudinally coupled resonator-type surface acoustic wave filter sections 201 to 204 includes three IDT electrodes formed along the propagation direction of the surface acoustic wave. A pair of reflectors is formed on both sides in the propagation direction of the surface acoustic wave in the region where the three IDT electrodes are formed. The IDT electrodes of the longitudinally coupled resonator type surface acoustic wave filter portions 201 to 204 are each composed of a pair of comb-like electrodes. The comb-like electrode on one side of the IDT electrode located in the center in the propagation direction of the surface acoustic waves of each of the longitudinally coupled resonator type surface acoustic wave filter units 201 and 202 is connected in common to the unbalanced signal terminal 205. The comb electrode on the other side is connected to the ground potential. The comb-like electrodes on one side of the IDT electrodes located on both sides in the propagation direction of the surface acoustic waves of the longitudinally coupled resonator type surface acoustic wave filter units 201 and 202 are connected to the ground potential, and the other side The comb-like electrode is connected to the comb-like electrode on one side of the IDT electrode located on both sides of the longitudinally coupled resonator-type surface acoustic wave filter sections 203 and 204 in the propagation direction of the respective surface acoustic waves. The comb-like electrodes on the other side of the IDT electrodes located on both sides in the propagation direction of the surface acoustic waves of the longitudinally coupled resonator type surface acoustic wave filter sections 203 and 204 are connected to the ground potential. The comb-like electrode on one side of the IDT electrode located at the center in the propagation direction of the surface acoustic waves of each of the longitudinally coupled resonator type surface acoustic wave filter sections 203 and 204 is connected to the ground potential, and the other side The comb-like electrode is connected to the first or second balanced signal terminal 206 or 207. The longitudinally coupled resonator type surface acoustic wave filter 200 is configured such that the signal output from the first balanced signal terminal 206 and the signal output from the second balanced signal terminal 207 are in opposite phase to each other. Has been. That is, the IDT electrode located at the center in the propagation direction of the surface acoustic wave of the longitudinally coupled resonator type surface acoustic wave filter unit 203 is located at the center in the propagation direction of the surface acoustic wave of the longitudinally coupled resonator type surface acoustic wave filter unit 204 The IDT electrode positioned is inverted. For this reason, the longitudinally coupled resonator type surface acoustic wave filter 200 has a balanced-unbalanced conversion function, like the longitudinally coupled resonator type surface acoustic wave filter 100.
特開2006-136005号公報JP 2006-136005 A
 図17及び図18に示すような縦結合共振子型弾性表面波フィルタ100,200では、通常、圧電基板の上に、上記IDT電極や反射器を構成する電極と共に、グラウンド電位に接続される接地用電極パッドが形成されている。そして、IDT電極のグラウンド電位に接続される側のくし歯状電極が、接地用電極パッドに接続されている。通常、小型化を実現するために、接地用電極パッドの数量は、IDT電極の数量よりも少なくされている。この場合、複数のIDT電極がひとつの接地用電極パッドに共通に接続される。例えば、図17においては、第1のIDT電極101の一方側のくし歯状電極と、第3のIDT電極103の一方側のくし歯状電極とが、共通の接地用電極パッドに接続されることもあった。 In the longitudinally coupled resonator type surface acoustic wave filters 100 and 200 as shown in FIGS. 17 and 18, the ground is usually connected to the ground potential together with the electrodes constituting the IDT electrode and the reflector on the piezoelectric substrate. An electrode pad is formed. The comb-like electrode on the side connected to the ground potential of the IDT electrode is connected to the ground electrode pad. Usually, in order to realize miniaturization, the number of grounding electrode pads is made smaller than the number of IDT electrodes. In this case, a plurality of IDT electrodes are commonly connected to one ground electrode pad. For example, in FIG. 17, the comb-like electrode on one side of the first IDT electrode 101 and the comb-like electrode on one side of the third IDT electrode 103 are connected to a common ground electrode pad. There was also.
 しかしながら、本発明者は、平衡-不平衡変換機能を有する縦結合共振子型弾性波フィルタにおいて、複数のIDT電極を、ひとつの接地用電極パッドに共通に接続した場合、第1及び第2の平衡信号端子間における信号の平衡度が悪化する場合があることを見出した。 However, in the longitudinally coupled resonator type acoustic wave filter having a balanced-unbalanced conversion function, the present inventor, when a plurality of IDT electrodes are commonly connected to one ground electrode pad, It has been found that the balance of signals between balanced signal terminals may deteriorate.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、平衡-不平衡変換機能を有する縦結合共振子型弾性波フィルタにおいて、平衡信号端子間の信号の平衡度の悪化を抑制することにある。 The present invention has been made in view of such points, and an object of the present invention is to suppress deterioration of the balance of signals between balanced signal terminals in a longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function. There is to do.
 本発明者は、鋭意研究の結果、平衡-不平衡変換機能を有する縦結合共振子型弾性波フィルタに関して、以下のことを見出した。すなわち、第1の平衡信号端子に接続されているIDT電極の一方側のくし歯状電極と、第2の平衡信号端子に接続されているIDT電極の一方側のくし歯状電極とを、共通の接地用電極パッドに接続した場合に、第1及び第2の平衡信号端子間の信号の平衡度が悪化することを見出した。また、本発明者は、その原因が、第1の平衡信号端子に接続されているIDT電極の一方側のくし歯状電極と、第2の平衡信号端子に接続されているIDT電極の一方側のくし歯状電極とを、共通の接地用電極パッドに接続したことにより、逆相の関係にある2つの電流が圧電基板上で合わさることにあることを見出した。その結果、本発明者は、本発明をなすに至った。 As a result of diligent research, the present inventor has found the following regarding a longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function. That is, a comb-like electrode on one side of the IDT electrode connected to the first balanced signal terminal and a comb-like electrode on one side of the IDT electrode connected to the second balanced signal terminal are shared. It has been found that the signal balance between the first and second balanced signal terminals deteriorates when connected to the grounding electrode pad. Further, the inventor of the present invention is caused by a comb-like electrode on one side of the IDT electrode connected to the first balanced signal terminal and one side of the IDT electrode connected to the second balanced signal terminal. It has been found that by connecting the comb-like electrode to a common ground electrode pad, two currents in a reverse phase are combined on the piezoelectric substrate. As a result, the inventor has made the present invention.
 すなわち、本発明に係る弾性波フィルタは、不平衡信号端子と、第1及び第2の平衡信号端子と、圧電基板と、圧電基板上において、不平衡信号端子と第1及び第2の平衡信号端子との間に接続されている弾性波フィルタ部と、圧電基板上に形成されており、グラウンド電位に接続されている第1及び第2の接地用電極パッドとを備え、弾性波フィルタ部は、圧電基板上に形成された複数のIDT電極からなり、複数のIDT電極のうち、少なくとも一つのIDT電極は、不平衡信号端子に接続されている少なくとも一つのくし歯状電極を有する不平衡信号端子側IDT電極であり、複数のIDT電極のうちの少なくとも一つのIDT電極は、第1の平衡信号端子に接続されている少なくとも一つのくし歯状電極と、第1の接地用電極パッドに接続されている少なくとも一つのくし歯状電極とを有する第1の平衡信号端子側IDT電極であり、複数のIDT電極のうちの少なくとも一つのIDT電極は、第2の平衡信号端子に接続されている少なくとも一つのくし歯状電極と、第2の接地用電極パッドに接続されている少なくとも一つのくし歯状電極とを有する第2の平衡信号端子側IDT電極であり、第1の平衡信号端子側IDT電極と、第2の平衡信号端子側IDT電極とは、弾性波の伝搬方向に直行する方向を対称軸として、反転した構成とされている。 That is, the acoustic wave filter according to the present invention includes an unbalanced signal terminal, first and second balanced signal terminals, a piezoelectric substrate, and the unbalanced signal terminal and the first and second balanced signals on the piezoelectric substrate. An elastic wave filter unit connected between the terminals and a first and a second grounding electrode pad formed on the piezoelectric substrate and connected to the ground potential. The unbalanced signal includes a plurality of IDT electrodes formed on the piezoelectric substrate, and at least one of the plurality of IDT electrodes has at least one comb-like electrode connected to the unbalanced signal terminal. It is a terminal-side IDT electrode, and at least one IDT electrode of the plurality of IDT electrodes includes at least one comb-like electrode connected to the first balanced signal terminal and a first ground electrode pad. A first balanced signal terminal-side IDT electrode having at least one comb-like electrode connected to the at least one IDT electrode, wherein at least one IDT electrode of the plurality of IDT electrodes is connected to the second balanced signal terminal. A first balanced signal terminal-side IDT electrode having at least one comb-like electrode and at least one comb-like electrode connected to the second ground electrode pad, The terminal-side IDT electrode and the second balanced signal terminal-side IDT electrode are configured to be reversed with the direction orthogonal to the propagation direction of the acoustic wave as the axis of symmetry.
 本発明に係る弾性波フィルタのある特定の局面では、圧電基板上に形成されており、グラウンド電位に接続されている第3の接地用電極パッドをさらに備え、複数のIDT電極のうち、第1の平衡信号端子側IDT電極と第2の平衡信号端子側IDT電極以外のIDT電極は、第3の接地用電極パッドに接続されている少なくとも一つのくし歯状電極とを有する。 In a specific aspect of the acoustic wave filter according to the present invention, the elastic wave filter further includes a third grounding electrode pad formed on the piezoelectric substrate and connected to the ground potential, and the first of the plurality of IDT electrodes. The IDT electrodes other than the balanced signal terminal side IDT electrode and the second balanced signal terminal side IDT electrode have at least one comb-like electrode connected to the third ground electrode pad.
 本発明に係る分波器は、上記本発明に係る弾性波フィルタを備えている。 The duplexer according to the present invention includes the elastic wave filter according to the present invention.
 本発明では、第1の平衡信号端子側IDT電極の一方側のくし歯状電極と、第2の平衡信号端子側IDT電極の一方側のくし歯状電極とが異なる接地用電極パッドに接続されている。このため、互いに逆相の関係にある、第1の平衡信号端子側IDT電極を流れる電流と、第2の平衡信号端子側IDT電極を流れる電流とが圧電基板上で合わさることを抑制できる。その結果、第1及び第2の平衡信号端子間の信号の平衡度の悪化を抑制することができる。 In the present invention, the comb-like electrode on one side of the first balanced signal terminal side IDT electrode and the comb-like electrode on one side of the second balanced signal terminal side IDT electrode are connected to different ground electrode pads. ing. For this reason, it can suppress that the electric current which flows through the 1st balanced signal terminal side IDT electrode and the electric current which flows through the 2nd balanced signal terminal side IDT electrode which are in a mutually reverse phase relationship match on a piezoelectric substrate. As a result, it is possible to suppress deterioration in the degree of balance of the signal between the first and second balanced signal terminals.
図1は、本発明を実施した一実施形態に係るデュプレクサの模式図である。FIG. 1 is a schematic diagram of a duplexer according to an embodiment of the present invention. 図2は、本発明を実施した一実施形態における受信側フィルタの模式的平面図である。FIG. 2 is a schematic plan view of a reception-side filter according to one embodiment of the present invention. 図3は、本発明を実施した一実施形態における受信側フィルタの略図的平面図である。FIG. 3 is a schematic plan view of a receiving filter according to an embodiment of the present invention. 図4は、比較例における受信側フィルタの略図的平面図である。FIG. 4 is a schematic plan view of a reception-side filter in the comparative example. 図5は、本発明を実施した一実施形態のデュプレクサと比較例のデュプレクサとにおける、アンテナ端子と第1の受信側信号端子との間の減衰量特性を表すグラフである。図5において、実線が本発明を実施した一実施形態を示し、一点破線が比較例を示している。FIG. 5 is a graph showing the attenuation characteristic between the antenna terminal and the first reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example. In FIG. 5, a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example. 図6は、本発明を実施した一実施形態のデュプレクサと比較例のデュプレクサとにおける、アンテナ端子と第2の受信側信号端子との間の減衰量特性を表すグラフである。図6において、実線が本発明を実施した一実施形態を示し、一点破線が比較例を示している。FIG. 6 is a graph showing the attenuation characteristic between the antenna terminal and the second reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example. In FIG. 6, a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example. 図7は、本発明を実施した一実施形態のデュプレクサと比較例のデュプレクサとにおける、アンテナ端子と第1及び第2の受信側信号端子との間の差動減衰量特性を表すグラフである。図7において、実線が本発明を実施した一実施形態を示し、一点破線が比較例を示している。FIG. 7 is a graph showing the differential attenuation characteristic between the antenna terminal and the first and second receiving-side signal terminals in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example. In FIG. 7, a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example. 図8は、本発明を実施した一実施形態のデュプレクサと比較例のデュプレクサとにおける、送信側信号端子と第1の受信側信号端子との間のアイソレーション特性を表すグラフである。図8において、実線が本発明を実施した一実施形態を示し、一点破線が比較例を示している。FIG. 8 is a graph showing the isolation characteristics between the transmission-side signal terminal and the first reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example. In FIG. 8, a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example. 図9は、本発明を実施した一実施形態のデュプレクサと比較例のデュプレクサとにおける、送信側信号端子と第2の受信側信号端子との間のアイソレーション特性を表すグラフである。図9において、実線が本発明を実施した一実施形態を示し、一点破線が比較例を示している。FIG. 9 is a graph showing the isolation characteristics between the transmission-side signal terminal and the second reception-side signal terminal in the duplexer of one embodiment implementing the present invention and the duplexer of the comparative example. In FIG. 9, a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example. 図10は、本発明を実施した一実施形態のデュプレクサと比較例のデュプレクサとにおける、送信側信号端子と第1及び第2の受信側信号端子との間の差動アイソレーション特性を表すグラフである。図10において、実線が本発明を実施した一実施形態を示し、一点破線が比較例を示している。FIG. 10 is a graph showing the differential isolation characteristics between the transmission-side signal terminal and the first and second reception-side signal terminals in the duplexer according to the embodiment of the present invention and the duplexer according to the comparative example. is there. In FIG. 10, a solid line indicates an embodiment in which the present invention is implemented, and a dashed line indicates a comparative example. 図11は、第1の変形例に係る受信側フィルタの模式的構成図である。FIG. 11 is a schematic configuration diagram of a reception-side filter according to the first modification. 図12は、第2の変形例に係る受信側フィルタの模式的構成図である。FIG. 12 is a schematic configuration diagram of a reception-side filter according to the second modification. 図13は、第3の変形例に係る受信側フィルタの模式的構成図である。FIG. 13 is a schematic configuration diagram of a reception-side filter according to a third modification. 図14は、第4の変形例に係る受信側フィルタの模式的構成図である。FIG. 14 is a schematic configuration diagram of a reception-side filter according to a fourth modification. 図15は、第5の変形例に係る受信側フィルタの一部分を拡大した略図的断面図である。FIG. 15 is a schematic cross-sectional view in which a part of the reception-side filter according to the fifth modification is enlarged. 図16は、第6の変形例に係る受信側フィルタの一部分を拡大した略図的断面図である。FIG. 16 is a schematic cross-sectional view in which a part of the reception-side filter according to the sixth modification is enlarged. 図17は、特許文献1に記載の縦結合共振子型弾性表面波フィルタの模式的平面図である。FIG. 17 is a schematic plan view of a longitudinally coupled resonator type surface acoustic wave filter described in Patent Document 1. 図18は、特許文献1に記載の、図17に示す縦結合共振子型弾性表面波フィルタとは異なる縦結合共振子型弾性表面波フィルタの模式的平面図である。FIG. 18 is a schematic plan view of a longitudinally coupled resonator type surface acoustic wave filter described in Patent Document 1, which is different from the longitudinally coupled resonator type surface acoustic wave filter shown in FIG.
 以下、本発明を実施した好ましい形態について、図1に示すデュプレクサ1を例に挙げて説明する。但し、図1に示すデュプレクサ1は、単なる例示である。本発明は、デュプレクサ1に何ら限定されない。 Hereinafter, preferred embodiments of the present invention will be described by taking the duplexer 1 shown in FIG. 1 as an example. However, the duplexer 1 shown in FIG. 1 is merely an example. The present invention is not limited to the duplexer 1.
 図1に示すデュプレクサ1は、UMTS(Universal Mobile Telecommunications System)-BAND5に対応するデュプレクサである。なお、UMTS-BAND5の受信側フィルタの通過帯域は、869MHz~894MHzである。UMTS-BAND5の送信側フィルタの通過帯域は、824MHz~849MHzである。 The duplexer 1 shown in FIG. 1 is a duplexer corresponding to UMTS (Universal Mobile Telecommunications System) -BAND5. Note that the pass band of the reception-side filter of UMTS-BAND5 is 869 MHz to 894 MHz. The pass band of the transmission side filter of UMTS-BAND5 is 824 MHz to 849 MHz.
 図1に示すように、デュプレクサ1は、アンテナ端子10と、送信側信号端子12と、第1及び第2の受信側信号端子21,22とを備えている。アンテナ端子10は、デュプレクサ1が搭載される通信機のアンテナ(Ant.)に接続されている。アンテナ(Ant.)とアンテナ端子10との間の接続点と、グラウンド電位との間には、整合用インダクタ11が接続されている。なお、本実施形態では、整合用インダクタ11は、チップインダクタにより構成されているが、整合用インダクタ11は、チップインダクタ以外のインダクタにより構成されていてもよい。 As shown in FIG. 1, the duplexer 1 includes an antenna terminal 10, a transmission-side signal terminal 12, and first and second reception- side signal terminals 21 and 22. The antenna terminal 10 is connected to an antenna (Ant.) Of a communication device on which the duplexer 1 is mounted. A matching inductor 11 is connected between a connection point between the antenna (Ant.) And the antenna terminal 10 and the ground potential. In the present embodiment, the matching inductor 11 is configured by a chip inductor. However, the matching inductor 11 may be configured by an inductor other than the chip inductor.
 アンテナ端子10と、送信側信号端子12との間には、送信側フィルタ13が接続されている。本実施形態では、送信側フィルタ13は、弾性表面波や弾性境界波を利用したラダー型の弾性波フィルタである。但し、本発明において、送信側フィルタは、ラダー型の弾性波フィルタに限定されない。送信側フィルタは、例えば、縦結合共振子型弾性波フィルタであってもよい。 A transmission-side filter 13 is connected between the antenna terminal 10 and the transmission-side signal terminal 12. In the present embodiment, the transmission filter 13 is a ladder-type elastic wave filter using a surface acoustic wave or a boundary acoustic wave. However, in the present invention, the transmission-side filter is not limited to a ladder-type elastic wave filter. The transmission filter may be, for example, a longitudinally coupled resonator type elastic wave filter.
 一方、アンテナ端子10と、第1及び第2の受信側信号端子21,22との間には、受信側フィルタ20が接続されている。 On the other hand, a reception-side filter 20 is connected between the antenna terminal 10 and the first and second reception- side signal terminals 21 and 22.
 図2は、受信側フィルタ20の模式的平面図である。図3は、受信側フィルタ20の略図的平面図である。なお、描画の便宜上、図2及び下記の図11、12では、反射器を、内部に「×」を附した矩形として略図的に描画している。また、図3及び下記の図4では、反射器及びIDT電極を、共に、内部に「×」を附した四辺形として略図的に描画している。また、描画の便宜上、図2等において、電極指等の本数は、実際よりも少なく描画されている。 FIG. 2 is a schematic plan view of the reception-side filter 20. FIG. 3 is a schematic plan view of the reception filter 20. For convenience of drawing, in FIG. 2 and FIGS. 11 and 12 below, the reflector is schematically drawn as a rectangle with “x” inside. Further, in FIG. 3 and FIG. 4 below, both the reflector and the IDT electrode are schematically drawn as quadrilaterals with “x” inside. Further, for convenience of drawing, in FIG. 2 and the like, the number of electrode fingers and the like is drawn less than the actual number.
 図1~図3に示す受信側フィルタ20は、弾性表面波や弾性境界波を利用した弾性波フィルタである。以下、本実施形態では、受信側フィルタ20が弾性表面波を利用した弾性表面波フィルタである例について説明する。 The receiving side filter 20 shown in FIGS. 1 to 3 is an elastic wave filter using a surface acoustic wave or a boundary acoustic wave. Hereinafter, in the present embodiment, an example in which the reception-side filter 20 is a surface acoustic wave filter using surface acoustic waves will be described.
 図1~図3に示すように、受信側フィルタ20は、不平衡信号端子23と、第1及び第2の平衡信号端子24,25とを備えている。図1に示すように、不平衡信号端子23は、アンテナ端子10に接続されている。第1の平衡信号端子24は、第1の受信側信号端子21に接続されている。第2の平衡信号端子25は、第2の受信側信号端子22に接続されている。 As shown in FIGS. 1 to 3, the reception-side filter 20 includes an unbalanced signal terminal 23 and first and second balanced signal terminals 24 and 25. As shown in FIG. 1, the unbalanced signal terminal 23 is connected to the antenna terminal 10. The first balanced signal terminal 24 is connected to the first receiving signal terminal 21. The second balanced signal terminal 25 is connected to the second receiving signal terminal 22.
 図2に示すように、不平衡信号端子23と、第1及び第2の平衡信号端子24,25との間には、圧電基板26上に形成された弾性波フィルタ部28が形成されている。弾性波フィルタ部28は、平衡-不平衡変換機能を有する縦結合共振子型弾性波フィルタ部である。弾性波フィルタ部28は、第1~第4の縦結合共振子型弾性波フィルタ部30,40,50,60により構成されている。 As shown in FIG. 2, an elastic wave filter unit 28 formed on the piezoelectric substrate 26 is formed between the unbalanced signal terminal 23 and the first and second balanced signal terminals 24 and 25. . The elastic wave filter unit 28 is a longitudinally coupled resonator type elastic wave filter unit having a balanced-unbalanced conversion function. The elastic wave filter unit 28 includes first to fourth longitudinally coupled resonator type elastic wave filter units 30, 40, 50 and 60.
 なお、圧電基板26は、例えば、LiNbO基板やLiTaO基板などの圧電単結晶基板などにより形成することができる。 The piezoelectric substrate 26 can be formed by a piezoelectric single crystal substrate such as a LiNbO 3 substrate or a LiTaO 3 substrate, for example.
 図2及び図3に示すように、第1及び第2の縦結合共振子型弾性波フィルタ部30,40は、不平衡信号端子23と、第1の平衡信号端子24との間に接続されている。そして、第1の縦結合共振子型弾性波フィルタ部30は、第2の縦結合共振子型弾性波フィルタ部40と縦続接続されている。 As shown in FIGS. 2 and 3, the first and second longitudinally coupled resonator type acoustic wave filter units 30 and 40 are connected between the unbalanced signal terminal 23 and the first balanced signal terminal 24. ing. The first longitudinally coupled resonator type acoustic wave filter unit 30 is cascade-connected to the second longitudinally coupled resonator type acoustic wave filter unit 40.
 図2及び図3に示すように、第1の縦結合共振子型弾性波フィルタ部30は、圧電基板26上に、弾性波の伝搬方向に沿って形成されている3つのIDT電極31~33を備えている。圧電基板26上において、IDT電極31~33が形成されている領域の弾性波の伝搬方向の両側には、一対のグレーティング反射器34,35が形成されている。 As shown in FIGS. 2 and 3, the first longitudinally coupled resonator type elastic wave filter unit 30 includes three IDT electrodes 31 to 33 formed on the piezoelectric substrate 26 along the propagation direction of the elastic wave. It has. On the piezoelectric substrate 26, a pair of grating reflectors 34 and 35 are formed on both sides of the propagation direction of the elastic wave in the region where the IDT electrodes 31 to 33 are formed.
 IDT電極31は、IDT電極31~33のうち、弾性波の伝搬方向における中央に位置している。IDT電極31は、第1及び第2のくし歯状電極31a,31bを備えている。IDT電極32は、弾性波の伝搬方向において、IDT電極31に隣接して形成されている。IDT電極32は、第1及び第2のくし歯状電極32a,32bを備えている。IDT電極33は、弾性波の伝搬方向において、IDT電極31に隣接して形成されている。IDT電極33は、第1及び第2のくし歯状電極33a,33bを備えている。 The IDT electrode 31 is located in the center of the IDT electrodes 31 to 33 in the propagation direction of the elastic wave. The IDT electrode 31 includes first and second comb- like electrodes 31a and 31b. The IDT electrode 32 is formed adjacent to the IDT electrode 31 in the propagation direction of the elastic wave. The IDT electrode 32 includes first and second comb- like electrodes 32a and 32b. The IDT electrode 33 is formed adjacent to the IDT electrode 31 in the propagation direction of the elastic wave. The IDT electrode 33 includes first and second comb- like electrodes 33a and 33b.
 図2及び図3に示すように、第2の縦結合共振子型弾性波フィルタ部40は、圧電基板26上に、弾性波の伝搬方向に沿って形成されている3つのIDT電極41~43を備えている。圧電基板26上において、IDT電極41~43が形成されている領域の弾性波の伝搬方向の両側には、一対のグレーティング反射器44,45が形成されている。 As shown in FIGS. 2 and 3, the second longitudinally coupled resonator type acoustic wave filter unit 40 has three IDT electrodes 41 to 43 formed on the piezoelectric substrate 26 along the propagation direction of the elastic wave. It has. On the piezoelectric substrate 26, a pair of grating reflectors 44 and 45 are formed on both sides in the elastic wave propagation direction in the region where the IDT electrodes 41 to 43 are formed.
 IDT電極41は、IDT電極41~43のうち、弾性波の伝搬方向における中央に位置している。IDT電極41は、第1及び第2のくし歯状電極41a,41bを備えている。IDT電極42は、弾性波の伝搬方向において、IDT電極41に隣接して形成されている。IDT電極42は、第1及び第2のくし歯状電極42a,42bを備えている。IDT電極43は、弾性波の伝搬方向において、IDT電極41に隣接して形成されている。IDT電極43は、第1及び第2のくし歯状電極43a,43bを備えている。 The IDT electrode 41 is located in the center of the IDT electrodes 41 to 43 in the propagation direction of the elastic wave. The IDT electrode 41 includes first and second comb- like electrodes 41a and 41b. The IDT electrode 42 is formed adjacent to the IDT electrode 41 in the propagation direction of the elastic wave. The IDT electrode 42 includes first and second comb- like electrodes 42a and 42b. The IDT electrode 43 is formed adjacent to the IDT electrode 41 in the propagation direction of the elastic wave. The IDT electrode 43 includes first and second comb- like electrodes 43a and 43b.
 図2及び図3に示すように、IDT電極31の第1のくし歯状電極31aは、不平衡信号端子23に接続されている。IDT電極31の第2のくし歯状電極31bは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。IDT電極32の第1のくし歯状電極32aは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。IDT電極32の第2のくし歯状電極32bは、第2の縦結合共振子型弾性波フィルタ部40のIDT電極42の第1のくし歯状電極42aに接続されている。IDT電極33の第1のくし歯状電極33aは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。IDT電極33の第2のくし歯状電極33bは、第2の縦結合共振子型弾性波フィルタ部40のIDT電極43の第1のくし歯状電極43aに接続されている。 As shown in FIGS. 2 and 3, the first comb-shaped electrode 31 a of the IDT electrode 31 is connected to the unbalanced signal terminal 23. The second comb-like electrode 31b of the IDT electrode 31 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential. The first comb-like electrode 32a of the IDT electrode 32 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential. The second comb-shaped electrode 32 b of the IDT electrode 32 is connected to the first comb-shaped electrode 42 a of the IDT electrode 42 of the second longitudinally coupled resonator type acoustic wave filter unit 40. The first comb-like electrode 33a of the IDT electrode 33 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential. The second comb-like electrode 33 b of the IDT electrode 33 is connected to the first comb-like electrode 43 a of the IDT electrode 43 of the second longitudinally coupled resonator type acoustic wave filter unit 40.
 図2及び図3に示すように、IDT電極41の第1のくし歯状電極41aは、グラウンド電位に接続されている接地用電極パッド29a(図3を参照)に接続されている。IDT電極41の第2のくし歯状電極41bは、第1の平衡信号端子24に接続されている。IDT電極42の第1のくし歯状電極42aは、第1の縦結合共振子型弾性波フィルタ部30のIDT電極32の第2のくし歯状電極32bに接続されている。IDT電極42の第2のくし歯状電極42bは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。IDT電極43の第1のくし歯状電極43aは、第1の縦結合共振子型弾性波フィルタ部30のIDT電極33の第2のくし歯状電極33bに接続されている。IDT電極43の第2のくし歯状電極43bは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。 2 and 3, the first comb-like electrode 41a of the IDT electrode 41 is connected to a ground electrode pad 29a (see FIG. 3) connected to the ground potential. The second comb-like electrode 41 b of the IDT electrode 41 is connected to the first balanced signal terminal 24. The first comb-shaped electrode 42 a of the IDT electrode 42 is connected to the second comb-shaped electrode 32 b of the IDT electrode 32 of the first longitudinally coupled resonator type acoustic wave filter unit 30. The second comb-like electrode 42b of the IDT electrode 42 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential. The first comb-shaped electrode 43 a of the IDT electrode 43 is connected to the second comb-shaped electrode 33 b of the IDT electrode 33 of the first longitudinally coupled resonator type acoustic wave filter unit 30. The second comb-like electrode 43b of the IDT electrode 43 is connected to a ground electrode pad 27 (see FIG. 3) connected to the ground potential.
 なお、本実施形態では、図1~図3に示すように、第1の縦結合共振子型弾性波フィルタ部30と、不平衡信号端子23との間には、弾性波共振子70が接続されている。図2に示すように、弾性波共振子70は、圧電基板26上に形成されているIDT電極70aを備えている。IDT電極70aは、第1及び第2のくし歯状電極70a1,70a2を備えている。第1のくし歯状電極70a1は、不平衡信号端子23に接続されている。一方、第2のくし歯状電極70a2は、第1の縦結合共振子型弾性波フィルタ部30のIDT電極31の第1のくし歯状電極31aに接続されている。 In the present embodiment, as shown in FIGS. 1 to 3, an acoustic wave resonator 70 is connected between the first longitudinally coupled resonator type acoustic wave filter unit 30 and the unbalanced signal terminal 23. Has been. As shown in FIG. 2, the acoustic wave resonator 70 includes an IDT electrode 70 a formed on the piezoelectric substrate 26. The IDT electrode 70a includes first and second comb-like electrodes 70a1 and 70a2. The first comb-like electrode 70 a 1 is connected to the unbalanced signal terminal 23. On the other hand, the second comb-like electrode 70 a 2 is connected to the first comb-like electrode 31 a of the IDT electrode 31 of the first longitudinally coupled resonator type acoustic wave filter unit 30.
 図2及び図3に示すように、第3及び第4の縦結合共振子型弾性波フィルタ部50,60は、不平衡信号端子23と、第2の平衡信号端子25との間に接続されている。そして、第3の縦結合共振子型弾性波フィルタ部50は、第4の縦結合共振子型弾性波フィルタ部60と縦続接続されている。 As shown in FIGS. 2 and 3, the third and fourth longitudinally coupled resonator type acoustic wave filter units 50 and 60 are connected between the unbalanced signal terminal 23 and the second balanced signal terminal 25. ing. The third longitudinally coupled resonator type acoustic wave filter unit 50 is cascade-connected to the fourth longitudinally coupled resonator type acoustic wave filter unit 60.
 図2及び図3に示すように、第3の縦結合共振子型弾性波フィルタ部50は、圧電基板26上に、弾性波の伝搬方向に沿って形成されている3つのIDT電極51~53を備えている。圧電基板26上において、IDT電極51~53が形成されている領域の弾性波の伝搬方向の両側には、一対のグレーティング反射器54,55が形成されている。 As shown in FIGS. 2 and 3, the third longitudinally coupled resonator type acoustic wave filter unit 50 includes three IDT electrodes 51 to 53 formed on the piezoelectric substrate 26 along the propagation direction of the acoustic wave. It has. On the piezoelectric substrate 26, a pair of grating reflectors 54 and 55 are formed on both sides of the propagation direction of the elastic wave in the region where the IDT electrodes 51 to 53 are formed.
 IDT電極51は、IDT電極51~53のうち、弾性波の伝搬方向における中央に位置している。IDT電極51は、第1及び第2のくし歯状電極51a,51bを備えている。IDT電極52は、弾性波の伝搬方向において、IDT電極51に隣接して形成されている。IDT電極52は、第1及び第2のくし歯状電極52a,52bを備えている。IDT電極53は、弾性波の伝搬方向において、IDT電極51に隣接して形成されている。IDT電極53は、第1及び第2のくし歯状電極53a,53bを備えている。 The IDT electrode 51 is located in the center of the IDT electrodes 51 to 53 in the propagation direction of the elastic wave. The IDT electrode 51 includes first and second comb- like electrodes 51a and 51b. The IDT electrode 52 is formed adjacent to the IDT electrode 51 in the elastic wave propagation direction. The IDT electrode 52 includes first and second comb- like electrodes 52a and 52b. The IDT electrode 53 is formed adjacent to the IDT electrode 51 in the elastic wave propagation direction. The IDT electrode 53 includes first and second comb- like electrodes 53a and 53b.
 図2及び図3に示すように、第4の縦結合共振子型弾性波フィルタ部60は、圧電基板26上に、弾性波の伝搬方向に沿って形成されている3つのIDT電極61~63を備えている。圧電基板26上において、IDT電極61~63が形成されている領域の弾性波の伝搬方向の両側には、一対のグレーティング反射器64,65が形成されている。 As shown in FIGS. 2 and 3, the fourth longitudinally coupled resonator type elastic wave filter unit 60 includes three IDT electrodes 61 to 63 formed on the piezoelectric substrate 26 along the propagation direction of the elastic wave. It has. On the piezoelectric substrate 26, a pair of grating reflectors 64 and 65 are formed on both sides of the propagation direction of the elastic wave in the region where the IDT electrodes 61 to 63 are formed.
 IDT電極61は、IDT電極61~63のうち、弾性波の伝搬方向における中央に位置している。IDT電極61は、第1及び第2のくし歯状電極61a,61bを備えている。IDT電極62は、弾性波の伝搬方向において、IDT電極61に隣接して形成されている。IDT電極62は、第1及び第2のくし歯状電極62a,62bを備えている。IDT電極63は、弾性波の伝搬方向において、IDT電極61に隣接して形成されている。IDT電極63は、第1及び第2のくし歯状電極63a,63bを備えている。 The IDT electrode 61 is located at the center of the IDT electrodes 61 to 63 in the elastic wave propagation direction. The IDT electrode 61 includes first and second comb- like electrodes 61a and 61b. The IDT electrode 62 is formed adjacent to the IDT electrode 61 in the propagation direction of the elastic wave. The IDT electrode 62 includes first and second comb- like electrodes 62a and 62b. The IDT electrode 63 is formed adjacent to the IDT electrode 61 in the propagation direction of the elastic wave. The IDT electrode 63 includes first and second comb- like electrodes 63a and 63b.
 図2及び図3に示すように、IDT電極51の第1のくし歯状電極51aは、不平衡信号端子23に接続されている。IDT電極51の第2のくし歯状電極51bは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。IDT電極52の第1のくし歯状電極52aは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。IDT電極52の第2のくし歯状電極52bは、第4の縦結合共振子型弾性波フィルタ部60のIDT電極62の第1のくし歯状電極62aに接続されている。IDT電極53の第1のくし歯状電極53aは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。IDT電極53の第2のくし歯状電極53bは、第4の縦結合共振子型弾性波フィルタ部60のIDT電極63の第1のくし歯状電極63aに接続されている。 2 and 3, the first comb-like electrode 51 a of the IDT electrode 51 is connected to the unbalanced signal terminal 23. The second comb-like electrode 51b of the IDT electrode 51 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential. The first comb-like electrode 52a of the IDT electrode 52 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential. The second comb-like electrode 52 b of the IDT electrode 52 is connected to the first comb-like electrode 62 a of the IDT electrode 62 of the fourth longitudinally coupled resonator type acoustic wave filter unit 60. The first comb-like electrode 53a of the IDT electrode 53 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential. The second comb-like electrode 53 b of the IDT electrode 53 is connected to the first comb-like electrode 63 a of the IDT electrode 63 of the fourth longitudinally coupled resonator type acoustic wave filter unit 60.
 図2及び図3に示すように、IDT電極61の第1のくし歯状電極61aは、グラウンド電位に接続されている接地用電極パッド29b(図3を参照)に接続されている。IDT電極61の第2のくし歯状電極61bは、第2の平衡信号端子25に接続されている。IDT電極62の第1のくし歯状電極62aは、第3の縦結合共振子型弾性波フィルタ部50のIDT電極52の第2のくし歯状電極52bに接続されている。IDT電極62の第2のくし歯状電極62bは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。IDT電極63の第1のくし歯状電極63aは、第3の縦結合共振子型弾性波フィルタ部50のIDT電極53の第2のくし歯状電極53bに接続されている。IDT電極63の第2のくし歯状電極63bは、グラウンド電位に接続されている接地用電極パッド27(図3を参照)に接続されている。 As shown in FIGS. 2 and 3, the first comb-like electrode 61a of the IDT electrode 61 is connected to a ground electrode pad 29b (see FIG. 3) connected to the ground potential. The second comb-like electrode 61 b of the IDT electrode 61 is connected to the second balanced signal terminal 25. The first comb-like electrode 62 a of the IDT electrode 62 is connected to the second comb-like electrode 52 b of the IDT electrode 52 of the third longitudinally coupled resonator type acoustic wave filter unit 50. The second comb-like electrode 62b of the IDT electrode 62 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential. The first comb-like electrode 63 a of the IDT electrode 63 is connected to the second comb-like electrode 53 b of the IDT electrode 53 of the third longitudinally coupled resonator type acoustic wave filter unit 50. The second comb-like electrode 63b of the IDT electrode 63 is connected to the ground electrode pad 27 (see FIG. 3) connected to the ground potential.
 なお、本実施形態では、図1~図3に示すように、第3の縦結合共振子型弾性波フィルタ部50と、不平衡信号端子23との間には、弾性波共振子71が接続されている。図2に示すように、弾性波共振子71は、圧電基板26上に形成されているIDT電極71aを備えている。IDT電極71aは、第1及び第2のくし歯状電極71a1,71a2を備えている。第1のくし歯状電極71a1は、不平衡信号端子23に接続されている。一方、第2のくし歯状電極71a2は、第3の縦結合共振子型弾性波フィルタ部50のIDT電極51の第1のくし歯状電極51aに接続されている。 In the present embodiment, as shown in FIGS. 1 to 3, an acoustic wave resonator 71 is connected between the third longitudinally coupled resonator type acoustic wave filter unit 50 and the unbalanced signal terminal 23. Has been. As shown in FIG. 2, the acoustic wave resonator 71 includes an IDT electrode 71 a formed on the piezoelectric substrate 26. The IDT electrode 71a includes first and second comb-like electrodes 71a1 and 71a2. The first comb-like electrode 71 a 1 is connected to the unbalanced signal terminal 23. On the other hand, the second comb-like electrode 71a2 is connected to the first comb-like electrode 51a of the IDT electrode 51 of the third longitudinally coupled resonator type acoustic wave filter unit 50.
 本実施形態では、IDT電極41と、IDT電極61とは、弾性波の伝搬方向に直行する方向を対称軸として、反転した構成とされている。従って、弾性波フィルタ部28は、第1の平衡信号端子24から出力される信号と、第2の平衡信号端子25から出力される信号とが互いに逆相の関係となっている。 In this embodiment, the IDT electrode 41 and the IDT electrode 61 are configured to be reversed with the direction orthogonal to the propagation direction of the elastic wave as the axis of symmetry. Therefore, in the acoustic wave filter unit 28, the signal output from the first balanced signal terminal 24 and the signal output from the second balanced signal terminal 25 are in an opposite phase relationship.
 なお、図3に示すように、各電極を接続する配線が交差している交差部14a~14hにおいては、交差する配線間に絶縁膜15が形成されている。この絶縁膜15により、交差する配線間が絶縁されている。絶縁膜15の材質は特に限定されない。絶縁膜15は、例えば、ポリイミドなどの樹脂や、SiOやSiNなどの無機誘電体により形成することができる。 As shown in FIG. 3, in the intersections 14a to 14h where the wirings connecting the electrodes intersect, an insulating film 15 is formed between the intersecting wirings. The insulating film 15 insulates the intersecting wires from each other. The material of the insulating film 15 is not particularly limited. The insulating film 15 can be formed of, for example, a resin such as polyimide or an inorganic dielectric such as SiO 2 or SiN.
 また、本実施形態におけるIDT電極や反射器等は、適宜の導電材料により形成することができる。例えば、IDT電極や反射器等は、Al,Cu、Ni,Au,Ag,Pt,Au,Cr等の金属や、それら金属を少なくとも一種以上含む合金などにより形成することができる。また、IDT電極や反射器等は、例えば、複数の導電膜が積層された導電膜積層体により構成されていてもよい。 In addition, the IDT electrode, the reflector, and the like in the present embodiment can be formed of an appropriate conductive material. For example, the IDT electrode, the reflector, and the like can be formed of a metal such as Al, Cu, Ni, Au, Ag, Pt, Au, or Cr, or an alloy containing at least one of these metals. Moreover, the IDT electrode, the reflector, and the like may be configured by, for example, a conductive film stack in which a plurality of conductive films are stacked.
 以上説明したように、本実施形態では、第1の平衡信号端子24に接続されているIDT電極41の第1のくし歯状電極41aと、第2の平衡信号端子25に接続されているIDT電極61の第1のくし歯状電極61aとは、圧電基板上において、互いに異なる接地用電極パッド29a,29bに接続されている。このため、互いに逆相の関係にある、IDT電極41を流れる電流と、IDT電極61を流れる電流とが、圧電基板26上で合わさることを効果的に抑制することができる。その結果、下記の実例においても裏付けられるように、第1及び第2の平衡信号端子24,25間の平衡度の悪化を効果的に抑制することができる。また、第1及び第2の平衡信号端子24,25間の平衡度の悪化を抑制できるため、差動減衰量、差動アイソレーションの悪化も抑制することができる。 As described above, in the present embodiment, the IDT electrode 41a of the IDT electrode 41 connected to the first balanced signal terminal 24 and the IDT connected to the second balanced signal terminal 25 are used. The first comb-like electrode 61a of the electrode 61 is connected to different grounding electrode pads 29a and 29b on the piezoelectric substrate. For this reason, it is possible to effectively suppress the current flowing through the IDT electrode 41 and the current flowing through the IDT electrode 61, which are in an opposite phase relationship, from being combined on the piezoelectric substrate 26. As a result, it is possible to effectively suppress the deterioration of the balance between the first and second balanced signal terminals 24 and 25, as supported by the following examples. Moreover, since the deterioration of the balance degree between the 1st and 2nd balanced signal terminals 24 and 25 can be suppressed, the deterioration of differential attenuation amount and differential isolation can also be suppressed.
 それに対して、例えば、第1の平衡信号端子に接続されているIDT電極のくし歯状電極と、第2の平衡信号端子に接続されているIDT電極のくし歯状電極とが同じ接地用電極パッドに接続されている場合は、その接地用電極パッド及び、接地用電極パッドに接続されている配線に、互いに逆相の関係にある2つの電流が流れることになる。その結果、第1及び第2の平衡信号端子間の平衡度が悪化し、それに伴い、差動減衰量、差動アイソレーションも悪化してしまう。 On the other hand, for example, the comb electrode of the IDT electrode connected to the first balanced signal terminal and the comb electrode of the IDT electrode connected to the second balanced signal terminal are the same ground electrode. When connected to the pad, two currents having opposite phases flow through the grounding electrode pad and the wiring connected to the grounding electrode pad. As a result, the balance between the first and second balanced signal terminals is deteriorated, and accordingly, the differential attenuation amount and the differential isolation are also deteriorated.
 以下、このことについて実例を挙げて説明する。 Hereafter, this will be explained with examples.
 本実施形態のデュプレクサ1の比較例として、受信側フィルタ20に替えて、図4に示す受信側フィルタ300を有すること以外は、上記本実施形態のデュプレクサ1と同様の構成を有するデュプレクサを作製した。そして、上記本実施形態のデュプレクサ1と、比較例に係るデュプレクサとのそれぞれにおいて、不平衡信号端子23と、第1及び第2の平衡信号端子24,25のそれぞれとの間の減衰量特性等を測定した。 As a comparative example of the duplexer 1 of the present embodiment, a duplexer having the same configuration as the duplexer 1 of the present embodiment except that the receiver filter 300 shown in FIG. . In each of the duplexer 1 of the present embodiment and the duplexer according to the comparative example, the attenuation characteristic between the unbalanced signal terminal 23 and each of the first and second balanced signal terminals 24 and 25, etc. Was measured.
 なお、図4に示す受信側フィルタ300は、下記の(1)~(2)を除いては、上記実施形態の受信側フィルタ20と同様の構成を有している。 Note that the reception-side filter 300 shown in FIG. 4 has the same configuration as the reception-side filter 20 of the above-described embodiment except for the following (1) to (2).
 (1)IDT電極41の第1のくし歯状電極41aと、IDT電極61の第1のくし歯状電極61aとが、共通に、接地用電極パッド27に接続されていること (1) The first comb-shaped electrode 41a of the IDT electrode 41 and the first comb-shaped electrode 61a of the IDT electrode 61 are connected to the ground electrode pad 27 in common.
 (2)IDT電極31の第2のくし歯状電極31bが接地用電極パッド29aに接続されており、IDT電極51の第2のくし歯状電極51bが接地用電極パッド29bに接続されていること (2) The second comb-like electrode 31b of the IDT electrode 31 is connected to the ground electrode pad 29a, and the second comb-like electrode 51b of the IDT electrode 51 is connected to the ground electrode pad 29b. thing
 また、図4に示す比較例では、説明の便宜上、上記本実施形態と実質的に同様の機能を有する部材を同じ符号で参照している。 In the comparative example shown in FIG. 4, members having substantially the same functions as those of the above-described embodiment are referred to by the same reference numerals for convenience of explanation.
 図5は、本実施形態のデュプレクサ1と比較例のデュプレクサとにおける、アンテナ端子10と第1の受信側信号端子21との間の減衰量特性を表すグラフである。図6は、本実施形態のデュプレクサ1と比較例のデュプレクサとにおける、アンテナ端子10と第2の受信側信号端子22との間の減衰量特性を表すグラフである。図7は、本実施形態のデュプレクサ1と比較例のデュプレクサとにおける、アンテナ端子10と第1及び第2の受信側信号端子21,22との間の差動減衰量特性を表すグラフである。図8は、本実施形態のデュプレクサ1と比較例のデュプレクサとにおける、送信側信号端子12と第1の受信側信号端子21との間のアイソレーション特性を表すグラフである。図9は、本実施形態のデュプレクサ1と比較例のデュプレクサとにおける、送信側信号端子12と第2の受信側信号端子22との間のアイソレーション特性を表すグラフである。図10は、本実施形態のデュプレクサ1と比較例のデュプレクサとにおける、送信側信号端子12と第1及び第2の受信側信号端子21,22との間の差動アイソレーション特性を表すグラフである。図5~図10のそれぞれにおいて、実線が本実施形態を示し、一点破線が比較例を示している。 FIG. 5 is a graph showing the attenuation characteristic between the antenna terminal 10 and the first reception-side signal terminal 21 in the duplexer 1 of the present embodiment and the duplexer of the comparative example. FIG. 6 is a graph showing the attenuation characteristic between the antenna terminal 10 and the second reception-side signal terminal 22 in the duplexer 1 of the present embodiment and the duplexer of the comparative example. FIG. 7 is a graph showing the differential attenuation characteristics between the antenna terminal 10 and the first and second receiving signal terminals 21 and 22 in the duplexer 1 of the present embodiment and the duplexer of the comparative example. FIG. 8 is a graph showing isolation characteristics between the transmission-side signal terminal 12 and the first reception-side signal terminal 21 in the duplexer 1 of the present embodiment and the duplexer of the comparative example. FIG. 9 is a graph showing the isolation characteristics between the transmission-side signal terminal 12 and the second reception-side signal terminal 22 in the duplexer 1 of the present embodiment and the duplexer of the comparative example. FIG. 10 is a graph showing differential isolation characteristics between the transmission-side signal terminal 12 and the first and second reception- side signal terminals 21 and 22 in the duplexer 1 of this embodiment and the duplexer of the comparative example. is there. In each of FIGS. 5 to 10, a solid line indicates the present embodiment, and a dashed line indicates a comparative example.
 なお、上記した差動減衰量と差動アイソレーションはSパラメータを用いて以下のように定義される。
Sdd1=(S31-S41)/{(2)1/2}
Sdd2=(S32-S42)/{(2)1/2}
 但し、
 Sdd1:差動減衰量、
 Sdd2:差動アイソレーション、
 S31:アンテナ端子10から第1の受信側信号端子21へのSパラメータ、
 S41:アンテナ端子10から第2の受信側信号端子22へのSパラメータ、
 S32:送信側信号端子12から第1の受信側信号端子21へのSパラメータ、
 S42:送信側信号端子12から第2の受信側信号端子22へのSパラメータ、
である。
The above-described differential attenuation and differential isolation are defined as follows using the S parameter.
Sdd1 = (S31-S41) / {(2) 1/2}
Sdd2 = (S32-S42) / {(2) 1/2}
However,
Sdd1: differential attenuation,
Sdd2: differential isolation,
S31: S parameter from the antenna terminal 10 to the first receiving signal terminal 21;
S41: S parameter from the antenna terminal 10 to the second receiving signal terminal 22;
S32: S parameter from the transmission side signal terminal 12 to the first reception side signal terminal 21,
S42: S parameter from the transmission side signal terminal 12 to the second reception side signal terminal 22,
It is.
 図5及び図6に示す結果から明らかなように、比較例のデュプレクサでは、送信側フィルタ13の通過帯域(824MHz~849MHz)において、アンテナ端子10と第1の受信側信号端子21との間の減衰量特性と、アンテナ端子10と第2の受信側信号端子22との間の減衰量特性とが大きく異なっている。それに対して、本実施形態のデュプレクサ1では、送信側フィルタ13の通過帯域(824MHz~849MHz)において、アンテナ端子10と第1の受信側信号端子21との間の減衰量特性と、アンテナ端子10と第2の受信側信号端子22との間の減衰量特性とが比較的近似している。 As is apparent from the results shown in FIGS. 5 and 6, in the duplexer of the comparative example, in the pass band (824 MHz to 849 MHz) of the transmission side filter 13, the antenna terminal 10 and the first reception side signal terminal 21 are not connected. The attenuation characteristic and the attenuation characteristic between the antenna terminal 10 and the second receiving signal terminal 22 are greatly different. On the other hand, in the duplexer 1 of the present embodiment, the attenuation characteristic between the antenna terminal 10 and the first reception side signal terminal 21 in the pass band (824 MHz to 849 MHz) of the transmission side filter 13, and the antenna terminal 10 And the second receiving side signal terminal 22 are relatively approximate to each other.
 また、図7に示す結果から明らかなように、本実施形態のデュプレクサ1では、送信側フィルタ13の通過帯域(824MHz~849MHz)において、比較例のデュプレクサよりも差動減衰量が大きい。 As is apparent from the results shown in FIG. 7, the duplexer 1 of the present embodiment has a larger differential attenuation in the pass band (824 MHz to 849 MHz) of the transmission-side filter 13 than the duplexer of the comparative example.
 さらに、図8及び図9に示す結果から明らかなように、比較例のデュプレクサでは、送信側フィルタ13の通過帯域(824MHz~849MHz)において、送信側信号端子12と第1の受信側信号端子21との間のアイソレーション特性と、送信側信号端子12と第2の受信側信号端子22との間のアイソレーション特性とが大きく異なっている。それに対して、本実施形態のデュプレクサ1では、送信側フィルタ13の通過帯域(824MHz~849MHz)において、送信側信号端子12と第1の受信側信号端子21との間のアイソレーション特性と、送信側信号端子12と第2の受信側信号端子22との間のアイソレーション特性とが比較的近似している。 Further, as is apparent from the results shown in FIGS. 8 and 9, in the duplexer of the comparative example, in the pass band (824 MHz to 849 MHz) of the transmission filter 13, the transmission signal terminal 12 and the first reception signal terminal 21 are used. And the isolation characteristic between the transmission side signal terminal 12 and the second reception side signal terminal 22 are greatly different. On the other hand, in the duplexer 1 of the present embodiment, the isolation characteristics between the transmission side signal terminal 12 and the first reception side signal terminal 21 in the pass band (824 MHz to 849 MHz) of the transmission side filter 13 and the transmission The isolation characteristic between the side signal terminal 12 and the second reception side signal terminal 22 is relatively approximate.
 また、図10に示す結果から明らかなように、本実施形態のデュプレクサ1では、送信側フィルタ13の通過帯域(824MHz~849MHz)において、比較例のデュプレクサよりも差動アイソレーションが大きい。 As is clear from the results shown in FIG. 10, the duplexer 1 of the present embodiment has a larger differential isolation in the pass band (824 MHz to 849 MHz) of the transmission-side filter 13 than the duplexer of the comparative example.
 以上の結果より、第1の平衡信号端子24に接続されているIDT電極41の第1のくし歯状電極41aと、第2の平衡信号端子25に接続されているIDT電極61の第1のくし歯状電極61aとを互いに異なる接地用電極パッド29a,29bに接続することにより、差動減衰量、差動アイソレーションを大きくできること、第1及び第2の平衡信号端子24,25間の平衡度の悪化を抑制できることが分かる。 From the above results, the first comb-shaped electrode 41a of the IDT electrode 41 connected to the first balanced signal terminal 24 and the first of the IDT electrode 61 connected to the second balanced signal terminal 25 are shown. By connecting the comb-like electrode 61a to different grounding electrode pads 29a and 29b, the differential attenuation and the differential isolation can be increased, and the balance between the first and second balanced signal terminals 24 and 25 can be increased. It can be seen that the deterioration of the degree can be suppressed.
 また、本実施形態では、図3に示すように、グラウンド電位に接続されている全てのくし歯状電極のうち、IDT電極41の第1のくし歯状電極41aとIDT電極61の第1のくし歯状電極61aとを除いたくし歯状電極31b,32a,33a,42b,43b,51b,52a,53a,62b,63bは、圧電基板26上に形成された接地用電極パッド27に共通に接続されている。このため、フィルタ全体としてアースを大きくすることができる。このため、帯域外減衰量の劣化を抑制することができる。但し、本発明は、この構成に限定されない。例えば、くし歯状電極31b,32a,33a,42b,43b,51b,52a,53a,62b,63bは、複数の接地用電極パッドに接続されていてもよい。 In the present embodiment, as shown in FIG. 3, the first comb-shaped electrode 41 a of the IDT electrode 41 and the first of the IDT electrode 61 among all the comb-shaped electrodes connected to the ground potential are used. The comb- like electrodes 31b, 32a, 33a, 42b, 43b, 51b, 52a, 53a, 62b, and 63b, excluding the comb-like electrode 61a, are commonly connected to the ground electrode pad 27 formed on the piezoelectric substrate 26. Has been. For this reason, grounding can be enlarged as a whole filter. For this reason, deterioration of the out-of-band attenuation can be suppressed. However, the present invention is not limited to this configuration. For example, the comb- like electrodes 31b, 32a, 33a, 42b, 43b, 51b, 52a, 53a, 62b, and 63b may be connected to a plurality of ground electrode pads.
 なお、接地用電極パッド29a,29bのそれぞれは、圧電基板26が実装される実装基板上に形成されているランド及び配線に接続されることとなる。ここで、接地用電極パッド29aが接続されるランド及び配線と、接地用電極パッド29bが接続されるランド及び配線とは、実装基板で互いに接続されていてもよく、互いに接続されていなくてもよい。すなわち、本発明においては、第1の平衡信号端子に接続されているIDT電極を構成する2つのくし歯状電極のうちのグラウンド電位に接続されるくし歯状電極が接続されている圧電基板上の接地用電極パッドと、第2の平衡信号端子に接続されているIDT電極を構成する2つのくし歯状電極のうちのグラウンド電位に接続されるくし歯状電極が接続されている圧電基板上の接地用電極パッドとが異なっている限りにおいて、実装基板上の回路構成は特に限定されない。これは、互いに逆相の関係にある電流が圧電基板上において合わさることにより第1及び第2の平衡信号端子間の平衡度が低下するのであって、互いに逆相の関係にある電流が圧電基板上において合わさらない限り第1及び第2の平衡信号端子間の平衡度が低下し難いためである。 Each of the ground electrode pads 29a and 29b is connected to lands and wirings formed on a mounting substrate on which the piezoelectric substrate 26 is mounted. Here, the land and wiring to which the grounding electrode pad 29a is connected and the land and wiring to which the grounding electrode pad 29b is connected may be connected to each other on the mounting board or may not be connected to each other. Good. That is, in the present invention, on the piezoelectric substrate to which the comb-like electrode connected to the ground potential of the two comb-like electrodes constituting the IDT electrode connected to the first balanced signal terminal is connected. On the piezoelectric substrate to which the comb-like electrode connected to the ground potential of the two comb-like electrodes constituting the IDT electrode connected to the second balanced signal terminal is connected. As long as the grounding electrode pad is different, the circuit configuration on the mounting substrate is not particularly limited. This is because the balance between the first and second balanced signal terminals is reduced when currents in opposite phases are combined on the piezoelectric substrate, and the currents in opposite phases are reduced. This is because the balance between the first and second balanced signal terminals is unlikely to decrease unless they are combined together.
 以下、上記実施形態の変形例について説明する。下記の変形例の説明において、上記実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, modifications of the above embodiment will be described. In the following description of the modified example, members having substantially the same functions as those of the above-described embodiment are referred to by common reference numerals, and description thereof is omitted.
 (第1~第3の変形例)
 図11は、第1の変形例に係る受信側フィルタの模式的構成図である。図12は、第2の変形例に係る受信側フィルタの模式的構成図である。図13は、第3の変形例に係る受信側フィルタの模式的構成図である。
(First to third modifications)
FIG. 11 is a schematic configuration diagram of a reception-side filter according to the first modification. FIG. 12 is a schematic configuration diagram of a reception-side filter according to the second modification. FIG. 13 is a schematic configuration diagram of a reception-side filter according to a third modification.
 上記第1の実施形態では、弾性波フィルタ部28が第1~第4の縦結合共振子型弾性波フィルタ部30,40,50,60を含んでいる例について説明した。第1の実施形態では、第1の縦結合共振子型弾性波フィルタ部30と第2の縦結合共振子型弾性波フィルタ部40とが縦続接続されている。また、第3の縦結合共振子型弾性波フィルタ部50と第4の縦結合共振子型弾性波フィルタ部60とが縦続接続されている。但し、本発明は、この構成に限定されない。 In the first embodiment, the example in which the elastic wave filter unit 28 includes the first to fourth longitudinally coupled resonator type elastic wave filter units 30, 40, 50, 60 has been described. In the first embodiment, the first longitudinally coupled resonator type acoustic wave filter unit 30 and the second longitudinally coupled resonator type acoustic wave filter unit 40 are cascade-connected. Further, the third longitudinally coupled resonator type acoustic wave filter unit 50 and the fourth longitudinally coupled resonator type acoustic wave filter unit 60 are connected in cascade. However, the present invention is not limited to this configuration.
 例えば、図11に示すように、弾性波フィルタ部28を第2及び第4の縦結合共振子型弾性波フィルタ部40,60により構成してもよい。 For example, as shown in FIG. 11, the elastic wave filter unit 28 may be constituted by second and fourth longitudinally coupled resonator type elastic wave filter units 40 and 60.
 また、例えば図12に示すように、弾性波フィルタ部28を、ひとつの縦結合共振子型弾性波フィルタ部により構成してもよい。この図12に示す第2の変形例では、弾性波フィルタ部28を構成する縦結合共振子型弾性波フィルタ部は、5つのIDT電極を有する、所謂5IDT型の縦結合共振子型弾性波フィルタ部により構成されている。 Further, for example, as shown in FIG. 12, the elastic wave filter unit 28 may be constituted by one longitudinally coupled resonator type elastic wave filter unit. In the second modification shown in FIG. 12, the so-called 5IDT type longitudinally coupled resonator type acoustic wave filter in which the longitudinally coupled resonator type acoustic wave filter unit constituting the acoustic wave filter unit 28 has five IDT electrodes. It consists of parts.
 具体的には、図12に示すように、第2の変形例では、弾性波フィルタ部28は、圧電基板26上に、弾性波の伝搬方向に沿って形成されている5つのIDT電極81~85を備えている。圧電基板26上において、IDT電極81~85が形成されている領域の弾性波の伝搬方向の両側には、一対のグレーティング反射器86,87が形成されている。 Specifically, as shown in FIG. 12, in the second modification example, the acoustic wave filter unit 28 includes five IDT electrodes 81 to 81 formed on the piezoelectric substrate 26 along the propagation direction of the acoustic wave. 85. On the piezoelectric substrate 26, a pair of grating reflectors 86 and 87 are formed on both sides of the elastic wave propagation direction in the region where the IDT electrodes 81 to 85 are formed.
 IDT電極81は、IDT電極81~85のうち、弾性波の伝搬方向における中央に位置している。IDT電極81は、第1及び第2のくし歯状電極81a,81bを備えている。IDT電極82は、弾性波の伝搬方向において、IDT電極81に隣接して形成されている。IDT電極82は、第1及び第2のくし歯状電極82a,82bを備えている。IDT電極83は、弾性波の伝搬方向において、IDT電極81に隣接して形成されている。IDT電極83は、第1及び第2のくし歯状電極83a,83bを備えている。IDT電極84は、弾性波の伝搬方向において、IDT電極82に隣接して形成されている。IDT電極84は、第1及び第2のくし歯状電極84a,84bを備えている。IDT電極85は、弾性波の伝搬方向において、IDT電極83に隣接して形成されている。IDT電極85は、第1及び第2のくし歯状電極85a,85bを備えている。 The IDT electrode 81 is located in the center of the IDT electrodes 81 to 85 in the elastic wave propagation direction. The IDT electrode 81 includes first and second comb- like electrodes 81a and 81b. The IDT electrode 82 is formed adjacent to the IDT electrode 81 in the propagation direction of the elastic wave. The IDT electrode 82 includes first and second comb- like electrodes 82a and 82b. The IDT electrode 83 is formed adjacent to the IDT electrode 81 in the elastic wave propagation direction. The IDT electrode 83 includes first and second comb- like electrodes 83a and 83b. The IDT electrode 84 is formed adjacent to the IDT electrode 82 in the propagation direction of the elastic wave. The IDT electrode 84 includes first and second comb- like electrodes 84a and 84b. The IDT electrode 85 is formed adjacent to the IDT electrode 83 in the elastic wave propagation direction. The IDT electrode 85 includes first and second comb- like electrodes 85a and 85b.
 図12に示すように、IDT電極81の第1のくし歯状電極81aは、不平衡信号端子23に接続されている。IDT電極81の第2のくし歯状電極81bは、グラウンド電位に接続されている接地用電極パッド27に接続されている。IDT電極82の第1のくし歯状電極82aは、グラウンド電位に接続されている接地用電極パッド29bに接続されている。IDT電極82の第2のくし歯状電極82bは、第2の平衡信号端子25に接続されている。IDT電極83の第1のくし歯状電極83aは、グラウンド電位に接続されている接地用電極パッド29aに接続されている。IDT電極83の第2のくし歯状電極83bは、第1の平衡信号端子24に接続されている。IDT電極84の第1のくし歯状電極84aは、不平衡信号端子23に接続されている。IDT電極84の第2のくし歯状電極84bは、グラウンド電位に接続されている接地用電極パッド27に接続されている。IDT電極85の第1のくし歯状電極85aは、不平衡信号端子23に接続されている。IDT電極85の第2のくし歯状電極85bは、グラウンド電位に接続されている接地用電極パッド27に接続されている。 As shown in FIG. 12, the first comb-shaped electrode 81 a of the IDT electrode 81 is connected to the unbalanced signal terminal 23. The second comb-like electrode 81b of the IDT electrode 81 is connected to the ground electrode pad 27 connected to the ground potential. The first comb-like electrode 82a of the IDT electrode 82 is connected to the ground electrode pad 29b connected to the ground potential. The second comb-like electrode 82 b of the IDT electrode 82 is connected to the second balanced signal terminal 25. The first comb-like electrode 83a of the IDT electrode 83 is connected to the ground electrode pad 29a connected to the ground potential. The second comb-like electrode 83 b of the IDT electrode 83 is connected to the first balanced signal terminal 24. The first comb-like electrode 84 a of the IDT electrode 84 is connected to the unbalanced signal terminal 23. The second comb-like electrode 84b of the IDT electrode 84 is connected to the ground electrode pad 27 connected to the ground potential. The first comb-like electrode 85 a of the IDT electrode 85 is connected to the unbalanced signal terminal 23. The second comb-like electrode 85b of the IDT electrode 85 is connected to the ground electrode pad 27 connected to the ground potential.
 第2の変形例では、IDT電極82と、IDT電極83とは、弾性波の伝搬方向に直行する方向を対称軸として、反転した構成とされている。従って、弾性波フィルタ部28は、第1の平衡信号端子24から出力される信号と、第2の平衡信号端子25から出力される信号とが互いに逆相の関係となっている。 In the second modification, the IDT electrode 82 and the IDT electrode 83 are reversed with the direction orthogonal to the propagation direction of the acoustic wave as the axis of symmetry. Therefore, in the acoustic wave filter unit 28, the signal output from the first balanced signal terminal 24 and the signal output from the second balanced signal terminal 25 are in an opposite phase relationship.
 なお、本変形例におけるIDT電極81~85及びグレーティング反射器86,87の構成は、上記実施形態のIDT電極及び反射器の構成と実質的に等しい。 Note that the configurations of the IDT electrodes 81 to 85 and the grating reflectors 86 and 87 in this modification are substantially the same as the configurations of the IDT electrodes and the reflectors of the above embodiment.
 なお、図12に示す第2の変形例では、弾性波フィルタ部28を構成する縦結合共振子型弾性波フィルタ部が、5つのIDT電極を有する、所謂5IDT型の縦結合共振子型弾性波フィルタ部である例について説明した。但し、本発明はこの構成に限定されない。 In the second modification shown in FIG. 12, the so-called 5IDT type longitudinally coupled resonator type acoustic wave in which the longitudinally coupled resonator type acoustic wave filter unit constituting the acoustic wave filter unit 28 has five IDT electrodes. The example which is a filter part was demonstrated. However, the present invention is not limited to this configuration.
 例えば、図13に示すように、弾性波フィルタ部28を構成する縦結合共振子型弾性波フィルタ部は、3つのIDT電極81~83を有する、所謂3IDT型の縦結合共振子型弾性波フィルタ部であってもよい。 For example, as shown in FIG. 13, the longitudinally coupled resonator type acoustic wave filter portion constituting the acoustic wave filter unit 28 is a so-called 3IDT type longitudinally coupled resonator type acoustic wave filter having three IDT electrodes 81 to 83. Part.
 (第4の変形例)
 図14は、第4の変形例に係る受信側フィルタの模式的構成図である。
(Fourth modification)
FIG. 14 is a schematic configuration diagram of a reception-side filter according to a fourth modification.
 上記実施形態では、第2の縦結合共振子型弾性波フィルタ部40のIDT電極41の第2のくし歯状電極41bが第1の平衡信号端子24に接続されており、IDT電極42,43の第1のくし歯状電極42a,43aが第1の縦結合共振子型弾性波フィルタ部30と弾性波共振子70とを介して不平衡信号端子23に接続されていると共に、第4の縦結合共振子型弾性波フィルタ部60のIDT電極61の第2のくし歯状電極61bが第2の平衡信号端子25に接続されており、IDT電極62,63の第1のくし歯状電極62a,63aが第3の縦結合共振子型弾性波フィルタ部50と弾性波共振子71とを介して不平衡信号端子23に接続されている例について説明した。但し、本発明は、この構成に限定されない。 In the above embodiment, the second comb-like electrode 41b of the IDT electrode 41 of the second longitudinally coupled resonator type acoustic wave filter unit 40 is connected to the first balanced signal terminal 24, and the IDT electrodes 42, 43 are connected. The first comb- like electrodes 42a and 43a are connected to the unbalanced signal terminal 23 via the first longitudinally coupled resonator type acoustic wave filter unit 30 and the acoustic wave resonator 70, and the fourth The second comb-like electrode 61b of the IDT electrode 61 of the longitudinally coupled resonator type acoustic wave filter unit 60 is connected to the second balanced signal terminal 25, and the first comb-like electrodes of the IDT electrodes 62 and 63 are connected. The example in which 62a and 63a are connected to the unbalanced signal terminal 23 via the third longitudinally coupled resonator type acoustic wave filter unit 50 and the acoustic wave resonator 71 has been described. However, the present invention is not limited to this configuration.
 例えば、図14に示すように、第2の縦結合共振子型弾性波フィルタ部40のIDT電極41の第1のくし歯状電極41aが不平衡信号端子23に接続されており、IDT電極42,43の第2のくし歯状電極42b,43bが第1の平衡信号端子24に接続されていると共に、第4の縦結合共振子型弾性波フィルタ部60のIDT電極61の第1のくし歯状電極61aが不平衡信号端子23に接続されており、IDT電極62,63の第2のくし歯状電極62b,63bが第2の平衡信号端子25に接続されていてもよい。この場合は、第1の平衡信号端子24に接続されているIDT電極42,43の第1のくし歯状電極42a,43aと、第2の平衡信号端子25に接続されているIDT電極62,63の第1のくし歯状電極62a,63aとが互いに異なる接地用電極パッドに接続される。具体的には、本変形例では、第1の平衡信号端子24に接続されているIDT電極42,43の第1のくし歯状電極42a,43aは、接地用電極パッド29aに接続されている。第2の平衡信号端子25に接続されているIDT電極62,63の第1のくし歯状電極62a,63aは、接地用電極パッド29bに接続されている。 For example, as shown in FIG. 14, the first comb-like electrode 41 a of the IDT electrode 41 of the second longitudinally coupled resonator type acoustic wave filter unit 40 is connected to the unbalanced signal terminal 23, and the IDT electrode 42. , 43 are connected to the first balanced signal terminal 24, and the first comb of the IDT electrode 61 of the fourth longitudinally coupled resonator type acoustic wave filter unit 60 is connected to the first balanced signal terminal 24. The tooth-shaped electrode 61 a may be connected to the unbalanced signal terminal 23, and the second comb-shaped electrodes 62 b and 63 b of the IDT electrodes 62 and 63 may be connected to the second balanced signal terminal 25. In this case, the first comb- like electrodes 42a and 43a of the IDT electrodes 42 and 43 connected to the first balanced signal terminal 24, and the IDT electrodes 62 and 43 connected to the second balanced signal terminal 25, 63 first comb- like electrodes 62a and 63a are connected to different grounding electrode pads. Specifically, in this modification, the first comb- like electrodes 42a and 43a of the IDT electrodes 42 and 43 connected to the first balanced signal terminal 24 are connected to the ground electrode pad 29a. . The first comb- like electrodes 62a and 63a of the IDT electrodes 62 and 63 connected to the second balanced signal terminal 25 are connected to the ground electrode pad 29b.
 なお、第1の平衡信号端子24に接続されているIDT電極42,43の第1のくし歯状電極42a,43aを互いに異なる接地用電極パッドに接続してもよい。同様に、第2の平衡信号端子25に接続されているIDT電極62,63の第1のくし歯状電極62a,63aを互いに異なる接地用電極パッドに接続してもよい。 Note that the first comb-shaped electrodes 42a and 43a of the IDT electrodes 42 and 43 connected to the first balanced signal terminal 24 may be connected to different grounding electrode pads. Similarly, the first comb- like electrodes 62a and 63a of the IDT electrodes 62 and 63 connected to the second balanced signal terminal 25 may be connected to different grounding electrode pads.
 (第5及び第6の変形例)
 図15は、第5の変形例に係る受信側フィルタの一部分を拡大した略図的断面図である。図16は、第6の変形例に係る受信側フィルタの一部分を拡大した略図的断面図である。
(Fifth and sixth modifications)
FIG. 15 is a schematic cross-sectional view in which a part of the reception-side filter according to the fifth modification is enlarged. FIG. 16 is a schematic cross-sectional view in which a part of the reception-side filter according to the sixth modification is enlarged.
 上記実施形態では、デュプレクサが弾性表面波を利用したものである例について説明した。但し、本発明はこの構成に限定されない。本発明に係る分波器や弾性波フィルタは、弾性境界波を利用したものであってもよい。 In the above embodiment, the example in which the duplexer uses surface acoustic waves has been described. However, the present invention is not limited to this configuration. The duplexer and the elastic wave filter according to the present invention may use boundary acoustic waves.
 例えば、図15に示す第5の変形例では、受信側フィルタは、所謂2媒質型の弾性境界波フィルタ90により構成されている。弾性境界波フィルタ90は、第1の媒質層としての圧電基板26と、圧電基板26の上に積層されている、第2の媒質層としての誘電体層91とを有する。圧電基板26と誘電体層91との間の境界には、電極92が形成されている。この電極92により各IDT電極、反射器等が構成されている。 For example, in the fifth modification shown in FIG. 15, the reception-side filter is configured by a so-called two-medium type boundary acoustic wave filter 90. The boundary acoustic wave filter 90 includes a piezoelectric substrate 26 as a first medium layer and a dielectric layer 91 as a second medium layer stacked on the piezoelectric substrate 26. An electrode 92 is formed at the boundary between the piezoelectric substrate 26 and the dielectric layer 91. Each electrode 92 constitutes each IDT electrode, reflector, and the like.
 また、例えば、図16に示す第6の変形例では、受信側フィルタは、所謂3媒質型の弾性境界波フィルタ93により構成されている。弾性境界波フィルタ93は、第1の媒質層としての圧電基板26と、圧電基板26の上に形成されている、第2の媒質層としての誘電体層94と、圧電基板26と誘電体層94との間に形成されている、第3の媒質層としての誘電体層95とを有する。圧電基板26と誘電体層95との間の境界には、電極92が形成されている。この電極92により各IDT電極、反射器等が構成されている。誘電体層95は、圧電基板26及び誘電体層94よりも横波音速が遅い材料により形成されている。このため、電極92により構成されるIDT電極で発生した弾性境界波は、誘電体層95内に効果的に閉じ込められる。 Further, for example, in the sixth modification shown in FIG. 16, the reception-side filter is constituted by a so-called three-medium boundary acoustic wave filter 93. The boundary acoustic wave filter 93 includes a piezoelectric substrate 26 as a first medium layer, a dielectric layer 94 as a second medium layer formed on the piezoelectric substrate 26, and the piezoelectric substrate 26 and the dielectric layer. 94, and a dielectric layer 95 serving as a third medium layer. An electrode 92 is formed at the boundary between the piezoelectric substrate 26 and the dielectric layer 95. Each electrode 92 constitutes each IDT electrode, reflector, and the like. The dielectric layer 95 is made of a material having a slower transverse sound speed than the piezoelectric substrate 26 and the dielectric layer 94. For this reason, the boundary acoustic wave generated by the IDT electrode constituted by the electrode 92 is effectively confined in the dielectric layer 95.
 本変形例においては、圧電基板26は、例えば、YカットX伝搬、オイラー角で(0°,105°,0°)のLiNbO基板により構成することができる。誘電体層94は、例えば、SiN層により構成することができる。誘電体層91,95は、例えば、SiO層により構成することができる。IDT電極は、Alよりも密度が大きい金属であるCu、Ag及びAuのうちの少なくとも一種の金属またはそれらの金属のうちの一種以上を含む合金により形成されていることが好ましい。 In the present modification, the piezoelectric substrate 26 can be configured by, for example, a LiNbO 3 substrate having Y cut X propagation and Euler angles (0 °, 105 °, 0 °). The dielectric layer 94 can be composed of, for example, a SiN layer. The dielectric layers 91 and 95 can be composed of, for example, a SiO 2 layer. The IDT electrode is preferably formed of at least one of Cu, Ag and Au, which is a metal having a higher density than Al, or an alloy containing one or more of these metals.
 なお、上記実施形態では、分波器の一種であるデュプレクサについて説明した。但し、本発明において、分波器は、デュプレクサに限定されない。分波器は、例えば、トリプレクサ等であってもよい。 In the above embodiment, a duplexer, which is a type of duplexer, has been described. However, in the present invention, the duplexer is not limited to a duplexer. The duplexer may be, for example, a triplexer.
 上記実施形態では、デュプレクサの受信側フィルタが平衡-不平衡変換機能を有する縦結合共振子型弾性波フィルタにより構成されており、送信側フィルタがラダー型の弾性波フィルタにより構成されている例について説明した。但し、本発明は、この構成に限定されない。本発明に係る分波器においては、分波器を構成する複数のフィルタのうち少なくともひとつのフィルタが、本発明を実施した、平衡-不平衡変換機能を有する弾性波フィルタにより構成されていればよい。例えば、送信側フィルタと受信側フィルタとの両方を、本発明を実施した、平衡-不平衡変換機能を有する弾性波フィルタにより構成してもよい。また、受信側フィルタのみを、本発明を実施した、平衡-不平衡変換機能を有する弾性波フィルタにより構成してもよい。 In the above embodiment, an example in which the reception filter of the duplexer is configured by a longitudinally coupled resonator type elastic wave filter having a balance-unbalance conversion function, and the transmission side filter is configured by a ladder type elastic wave filter. explained. However, the present invention is not limited to this configuration. In the duplexer according to the present invention, if at least one of the plurality of filters constituting the duplexer is configured by an elastic wave filter having a balanced-unbalanced conversion function according to the present invention. Good. For example, both the transmission side filter and the reception side filter may be constituted by an elastic wave filter having a balanced-unbalanced conversion function according to the present invention. Further, only the reception side filter may be constituted by an elastic wave filter having a balanced-unbalanced conversion function according to the present invention.
1…デュプレクサ
10…アンテナ端子
11…整合用インダクタ
12…送信側信号端子
13…送信側フィルタ
14a~14h…交差部
15…絶縁膜
20…受信側フィルタ
21…第1の受信側信号端子
22…第2の受信側信号端子
23…不平衡信号端子
24…第1の平衡信号端子
25…第2の平衡信号端子
26…圧電基板
27…接地用電極パッド
28…弾性波フィルタ部
29a…接地用電極パッド
29b…接地用電極パッド
30…第1の縦結合共振子型弾性波フィルタ部
31~33…IDT電極
31a,32a,33a…第1のくし歯状電極
31b,32b,33b…第2のくし歯状電極
34,35…グレーティング反射器
40…第2の縦結合共振子型弾性波フィルタ部
41~43…IDT電極
41a,42a,43a…第1のくし歯状電極
41b,42b,43b…第2のくし歯状電極
44,45…グレーティング反射器
50…第3の縦結合共振子型弾性波フィルタ部
51~53…IDT電極
51a,52a,53a…第1のくし歯状電極
51b,52b,53b…第2のくし歯状電極
54,55…グレーティング反射器
60…第4の縦結合共振子型弾性波フィルタ部
61~63…IDT電極
61a,62a,63a…第1のくし歯状電極
61b,62b,63b…第2のくし歯状電極
64,65…グレーティング反射器
70,71…弾性波共振子
70a,71a…IDT電極
70a1,71a1…第1のくし歯状電極
70a2,71a2…第2のくし歯状電極
81~85…IDT電極
81a,82a,83a,84a,85a…第1のくし歯状電極
81b,82b,83b,84b,85b…第2のくし歯状電極
86,87…グレーティング反射器
90…弾性境界波フィルタ
91,94,95…誘電体層
92…電極
93…弾性境界波フィルタ
DESCRIPTION OF SYMBOLS 1 ... Duplexer 10 ... Antenna terminal 11 ... Matching inductor 12 ... Transmission side signal terminal 13 ... Transmission side filter 14a-14h ... Intersection 15 ... Insulating film 20 ... Reception side filter 21 ... 1st reception side signal terminal 22 ... 1st 2 reception side signal terminals 23 ... unbalanced signal terminal 24 ... first balanced signal terminal 25 ... second balanced signal terminal 26 ... piezoelectric substrate 27 ... grounding electrode pad 28 ... elastic wave filter part 29a ... grounding electrode pad 29b... Ground electrode pad 30... First longitudinally coupled resonator type acoustic wave filter sections 31 to 33... IDT electrodes 31a, 32a, 33a... First comb electrodes 31b, 32b, 33b. -Like electrodes 34, 35 ... grating reflector 40 ... second longitudinally coupled resonator type acoustic wave filter sections 41 to 43 ... IDT electrodes 41a, 42a, 43a ... first comb- like electrode 41 , 42b, 43b, second comb-shaped electrodes 44, 45, grating reflector 50, third longitudinally coupled resonator type acoustic wave filter sections 51 to 53, IDT electrodes 51a, 52a, 53a, first comb teeth. -Like electrodes 51b, 52b, 53b ... second comb- like electrodes 54, 55 ... grating reflector 60 ... fourth longitudinally coupled resonator type acoustic wave filter sections 61 to 63 ... IDT electrodes 61a, 62a, 63a ... first Comb- like electrodes 61b, 62b, 63b ... second comb- like electrodes 64,65 ... grating reflectors 70,71 ... elastic wave resonators 70a, 71a ... IDT electrodes 70a1, 71a1 ... first comb-like electrodes 70a2, 71a2 ... second comb-like electrodes 81 to 85 ... IDT electrodes 81a, 82a, 83a, 84a, 85a ... first comb- like electrodes 81b, 82b, 83b, 84b 85b ... second comb-shaped electrodes 86, 87 ... grating reflectors 90 ... boundary acoustic wave filter 91,94,95 ... dielectric layer 92 ... electrode 93 ... boundary acoustic wave filter

Claims (3)

  1.  不平衡信号端子と、
     第1及び第2の平衡信号端子と、
     圧電基板と、
     前記圧電基板上において、前記不平衡信号端子と前記第1及び第2の平衡信号端子との間に接続されている弾性波フィルタ部と、
     前記圧電基板上に形成されており、グラウンド電位に接続されている第1及び第2の接地用電極パッドとを備え、
     前記弾性波フィルタ部は、前記圧電基板上に形成された複数のIDT電極からなり、
     前記複数のIDT電極のうち、少なくとも一つのIDT電極は、前記不平衡信号端子に接続されている少なくとも一つのくし歯状電極を有する不平衡信号端子側IDT電極であり、
     前記複数のIDT電極のうちの少なくとも一つのIDT電極は、前記第1の平衡信号端子に接続されている少なくとも一つのくし歯状電極と、前記第1の接地用電極パッドに接続されている少なくとも一つのくし歯状電極とを有する第1の平衡信号端子側IDT電極であり、
     前記複数のIDT電極のうちの少なくとも一つのIDT電極は、前記第2の平衡信号端子に接続されている少なくとも一つのくし歯状電極と、前記第2の接地用電極パッドに接続されている少なくとも一つのくし歯状電極とを有する第2の平衡信号端子側IDT電極であり、
     前記第1の平衡信号端子側IDT電極と、前記第2の平衡信号端子側IDT電極とは、弾性波の伝搬方向に直行する方向を対称軸として、反転した構成とされている、弾性波フィルタ。
    An unbalanced signal terminal;
    First and second balanced signal terminals;
    A piezoelectric substrate;
    On the piezoelectric substrate, an elastic wave filter unit connected between the unbalanced signal terminal and the first and second balanced signal terminals;
    First and second grounding electrode pads formed on the piezoelectric substrate and connected to a ground potential;
    The acoustic wave filter unit is composed of a plurality of IDT electrodes formed on the piezoelectric substrate,
    Of the plurality of IDT electrodes, at least one IDT electrode is an unbalanced signal terminal side IDT electrode having at least one comb-like electrode connected to the unbalanced signal terminal,
    At least one IDT electrode of the plurality of IDT electrodes includes at least one comb-like electrode connected to the first balanced signal terminal and at least connected to the first ground electrode pad. A first balanced signal terminal side IDT electrode having one comb-like electrode;
    At least one IDT electrode of the plurality of IDT electrodes is at least one comb-like electrode connected to the second balanced signal terminal and at least connected to the second ground electrode pad. A second balanced signal terminal side IDT electrode having one comb-like electrode;
    An elastic wave filter in which the first balanced signal terminal side IDT electrode and the second balanced signal terminal side IDT electrode are inverted with respect to a direction orthogonal to an elastic wave propagation direction. .
  2.  前記圧電基板上に形成されており、グラウンド電位に接続されている第3の接地用電極パッドをさらに備え、
     前記複数のIDT電極のうち、前記第1の平衡信号端子側IDT電極と前記第2の平衡信号端子側IDT電極以外のIDT電極は、前記第3の接地用電極パッドに接続されている少なくとも一つのくし歯状電極とを有する、請求項1に記載の弾性波フィルタ。
    A third grounding electrode pad formed on the piezoelectric substrate and connected to a ground potential;
    Of the plurality of IDT electrodes, at least one IDT electrode other than the first balanced signal terminal side IDT electrode and the second balanced signal terminal side IDT electrode is connected to the third ground electrode pad. The elastic wave filter according to claim 1, comprising two comb-like electrodes.
  3.  請求項1または2に記載の弾性波フィルタを備える、分波器。 A duplexer comprising the elastic wave filter according to claim 1.
PCT/JP2010/060723 2009-11-26 2010-06-24 Acoustic wave filter and branching filter WO2011065048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-268407 2009-11-26
JP2009268407 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065048A1 true WO2011065048A1 (en) 2011-06-03

Family

ID=44066152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060723 WO2011065048A1 (en) 2009-11-26 2010-06-24 Acoustic wave filter and branching filter

Country Status (1)

Country Link
WO (1) WO2011065048A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314371A (en) * 2001-04-18 2002-10-25 Murata Mfg Co Ltd Surface acoustic wave filter device and communication equipment
JP2004088551A (en) * 2002-08-28 2004-03-18 Murata Mfg Co Ltd Surface acoustic wave device and communication equipment
JP2007312201A (en) * 2006-05-19 2007-11-29 Kyocera Corp Board mounting type surface acoustic wave device and manufacturing method therefor, and communication equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314371A (en) * 2001-04-18 2002-10-25 Murata Mfg Co Ltd Surface acoustic wave filter device and communication equipment
JP2004088551A (en) * 2002-08-28 2004-03-18 Murata Mfg Co Ltd Surface acoustic wave device and communication equipment
JP2007312201A (en) * 2006-05-19 2007-11-29 Kyocera Corp Board mounting type surface acoustic wave device and manufacturing method therefor, and communication equipment

Similar Documents

Publication Publication Date Title
JP4868064B2 (en) Elastic wave splitter
US7283016B2 (en) Balanced acoustic wave filter and acoustic wave filter
JP5690877B2 (en) Elastic wave filter
US7902940B2 (en) Duplexer
JP6573668B2 (en) Elastic wave device and communication device
US7459997B2 (en) Elastic wave filter device and duplexer
US7190242B2 (en) Surface acoustic wave filter and communication unit
JP5700121B2 (en) Elastic wave filter device
WO2007049754A1 (en) Surface acoustic wave apparatus and communication apparatus
JP2011146768A (en) Ladder type elastic wave filter and antenna duplexer using the same
JP5135763B2 (en) Surface acoustic wave filter device and duplexer
JP2003069383A (en) Surface acoustic wave filter
JP3743341B2 (en) Surface acoustic wave device
US8305160B2 (en) Elastic wave device and duplexer
JP5010256B2 (en) Surface acoustic wave device and communication device including the same
JP2021016116A (en) Multiplexer
JP5168360B2 (en) Duplexer
JP3757893B2 (en) Surface acoustic wave device and communication device equipped with the same
US7808344B2 (en) Boundary acoustic wave filter
WO2011065048A1 (en) Acoustic wave filter and branching filter
JP4403861B2 (en) Surface acoustic wave device
JP3999977B2 (en) Surface acoustic wave filter device
WO2013008494A1 (en) Elastic wave filter device
WO2018123545A1 (en) Multiplexer
US20230198502A1 (en) Acoustic wave filter and multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP