WO2011064813A1 - Accumulator and refrigeration cycle device - Google Patents

Accumulator and refrigeration cycle device Download PDF

Info

Publication number
WO2011064813A1
WO2011064813A1 PCT/JP2009/006331 JP2009006331W WO2011064813A1 WO 2011064813 A1 WO2011064813 A1 WO 2011064813A1 JP 2009006331 W JP2009006331 W JP 2009006331W WO 2011064813 A1 WO2011064813 A1 WO 2011064813A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
container
pipe
liquid
accumulator
Prior art date
Application number
PCT/JP2009/006331
Other languages
French (fr)
Japanese (ja)
Inventor
鳩村傑
山下浩司
森本裕之
若本慎一
下地美保子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011542984A priority Critical patent/JP5425221B2/en
Priority to PCT/JP2009/006331 priority patent/WO2011064813A1/en
Publication of WO2011064813A1 publication Critical patent/WO2011064813A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2113Temperatures of a suction accumulator

Definitions

  • the present invention relates to an accumulator used in a refrigeration cycle apparatus.
  • the present invention relates to an accumulator capable of returning oil even when a refrigerating machine oil incompatible with a refrigerant is used.
  • CO refrigerating machine oil used in the refrigeration cycle apparatus using two refrigerant the CO 2 refrigerant is a refrigerating machine oil incompatible.
  • refrigeration oil that is compatible with the CO 2 refrigerant in the entire operating temperature range used in the refrigeration cycle apparatus, such as chlorofluorocarbon refrigerant.
  • incompatible means that the refrigerant and the refrigerating machine oil do not completely dissolve, and that the incompatible is completely incompatible, and the amount that is slightly soluble but the amount that is soluble is difficult. Contains both soluble ones.
  • the hot gas is bypassed from the compressor discharge side, the hot gas is allowed to flow into the lower part of the accumulator, and the refrigerant and refrigeration oil staying in a separated state in the lower part of the accumulator are agitated and mixed to return oil from the accumulator.
  • Patent Document 1 proposes a method that enables this.
  • An accumulator performs gas-liquid separation in order to supply a gas-phase refrigerant to a compressor of a refrigeration cycle apparatus, and stores a liquid in the accumulator, and a refrigerator oil that circulates in a refrigerant circuit and a refrigerant circuit
  • a branch pipe for stirring the liquid and an outflow pipe having an oil return hole for allowing the refrigeration oil in the liquid staying in the container to flow out together with the refrigerant are provided.
  • the distribution joint and the branch pipe are connected to the inflow pipe, and the refrigerant is guided to the lower part of the container so as to stir the staying liquid.
  • the refrigeration oil can be conveyed to the compressor along with the refrigerant from the outflow pipe.
  • FIG. 2 is a diagram illustrating a configuration of an accumulator 6 according to Embodiment 1.
  • FIG. It is a figure showing the structure of the accumulator 6 which concerns on Embodiment 2.
  • FIG. It is a figure showing the structure of the accumulator 6 which concerns on Embodiment 3.
  • FIG. It is a figure showing the structure of the accumulator 6 which concerns on Embodiment 4.
  • FIG. 1 is a diagram illustrating a configuration of an air-conditioning apparatus serving as a refrigeration cycle apparatus according to Embodiment 1.
  • an air conditioner will be described as a representative refrigeration cycle apparatus.
  • the air conditioner according to the present embodiment connects an outdoor unit 100 and indoor units 200a and 200b with a gas pipe 51 and a liquid pipe 52, and constitutes a refrigerant circuit in which refrigerant circulates. Then, inside this refrigerant circuit, for example, carbon dioxide that becomes a supercritical state at a critical temperature (about 31 ° C.) or higher as refrigerant and PAG (polyalkylene glycol) oil that is incompatible with carbon dioxide as refrigerating machine oil are enclosed. is doing.
  • a critical temperature about 31 ° C.
  • PAG polyalkylene glycol
  • the outdoor unit 100 is basically installed outdoors and houses the compressor 1, the flow path switching valve 2, the heat source side heat exchanger 3, the accumulator 6, the blower 7, and the control device 8.
  • the compressor 1 compresses the gas refrigerant.
  • the flow path switching valve 2 such as a four-way valve is a refrigerant flow path switching unit that switches the direction in which the refrigerant flows in accordance with the operation mode of the indoor units 200a and 200b.
  • the heat source side heat exchanger 3 functions as a radiator or an evaporator depending on the operation mode, and performs heat exchange between outdoor air (hereinafter referred to as outside air) and the refrigerant.
  • the accumulator 6 can store surplus refrigerant or the like to adjust the amount of refrigerant circulating in the refrigerant circuit according to the operation mode.
  • the blower 7 forcibly sends outside air to the outer surface of the heat source side heat exchanger 3 to promote heat exchange between the outside air and the refrigerant.
  • the control device 8 controls the refrigerant circuit in cooperation with a control device (not shown) that controls the operation of the indoor units 200a and 200b, such as driving the compressor 1 and the blower 7, switching the flow path switching valve 2, and the like. I do. Although it is housed in the outdoor unit 100 here, it may be provided outside.
  • the indoor units 200a and 200b accommodate electronic expansion valves 4a and 4b, load-side heat exchangers 5a and 5b, and blowers 9a and 9b, respectively.
  • the electronic expansion valves 4a and 4b serve as decompression means, and adjust the amount of refrigerant flowing through the load-side heat exchangers 5a and 5b by changing the opening, respectively, and adjust the refrigerant pressure and temperature in the load-side heat exchangers 5a and 5b.
  • the load side heat exchangers 5a and 5b have one end connected to the gas pipe 51 and the other end connected to the liquid pipe 52 via the electronic expansion valves 4a and 4b.
  • the load-side heat exchangers 5a and 5b also function as radiators or evaporators depending on the operation mode, and exchange heat between the air in the air-conditioning target space and the refrigerant. If the heat source side heat exchanger 3 functions as a radiator, the load side heat exchangers 5a, 5b function as an evaporator, and if the heat source side heat exchanger 3 functions as an evaporator, the load side heat exchanger 5a, 5b functions as a radiator.
  • the blowers 9a and 9b promote heat exchange between the air in the air-conditioning target space and the refrigerant in the load-side heat exchangers 5a and 5b, and send air related to heat exchange with the refrigerant into the air-conditioning target space.
  • two indoor units 200a and 200b are provided, but one or three or more indoor units 200 may be connected by piping.
  • FIG. 2 is a diagram showing a two-layer separation curve of carbon dioxide and PAG oil. From FIG. 2, it can be seen that when the oil content is about 40% or less, carbon dioxide and PAG oil are separated into two layers in all temperature ranges. Since the oil content in the refrigerant circuit as in the present embodiment is about 10% to 20%, the carbon dioxide and the PAG oil are separated into two layers in the entire temperature region where the temperature of the refrigerant in the refrigerant circuit is reached.
  • FIG. 3 is a graph showing the relationship between the temperature, the density of the carbon dioxide liquid, and the density of the PAG oil. From FIG. 3, when the temperature of the liquid carbon dioxide (hereinafter referred to as carbon dioxide liquid) and the PAG oil is about ⁇ 15 ° C. or less, the density of the carbon dioxide liquid becomes higher than the density of the PAG oil. For this reason, the carbon dioxide liquid becomes heavier than the PAG oil, and the PAG oil stays on top of the carbon dioxide liquid. Conversely, at a temperature higher than about ⁇ 15 ° C., the PAG oil stays below the carbon dioxide solution.
  • FIG. 4 is a diagram for illustrating the structure of a normal accumulator 60.
  • a normal accumulator 60 will be described for comparison with the accumulator 6 of the present embodiment.
  • the arrows represent the flow of refrigerant and refrigerating machine oil (hereinafter the same).
  • the accumulator 60 the container A to be sealed, an inflow pipe B for allowing a mixture of refrigerant (liquid refrigerant and gas refrigerant) and refrigerating machine oil to flow into the container A, and a mixture of refrigerant and refrigerating machine oil to flow out of the container A. It is composed of a U-shaped outflow pipe C.
  • the outflow pipe C has an oil return hole (oil return hole) D for returning the refrigeration oil at the lower part.
  • the discharge port E is an opening portion of a pipe for discharging the inflowing refrigerant, and is here an opening portion of one end of the inflow tube B.
  • the intake port F is an opening part of the one end of the outflow pipe C for taking in the refrigerant to flow out.
  • the vertical relationship of the positions is defined as, for example, an upper side and a lower side with respect to the vertical direction.
  • the discharge port E opened at one end of the inflow pipe B is more than the intake port F opened at one end of the outflow pipe C. Is also located on the lower side. Further, in order to carry the liquid refrigerant and the refrigerating machine oil while swirling to the lower part of the container A, the discharge port E in the inflow pipe B faces the inner wall of the container A in the vertical direction or faces downward. ing.
  • the gap between the outlet E in the inlet pipe B and the inner wall of the container A is equal to or larger than a certain value (for example, 2 of the inner diameter of the inlet pipe B). (Distance more than double).
  • the distance between the oil return hole D and the bottom of the container A is made as short as possible in order to reduce the amount of refrigerating machine oil staying at the bottom of the container A (for example, a distance that can be managed in production).
  • the gas refrigerant staying in the upper part of the container A flows out of the container A from the outflow pipe C.
  • the liquid refrigerant and the refrigerating machine oil staying in the lower part of the container A are generated by the dynamic pressure of the gas refrigerant generated between the intake port F of the outflow pipe C and the oil return hole D and the height of the liquid level in the container A. Due to the difference, the oil is sucked from the oil return hole D and flows out of the container A together with the gas refrigerant.
  • the amount of liquid in the accumulator 60 will be described.
  • the refrigerant whose amount is optimized is compressed to high temperature and high pressure by the compressor 1, passes through the flow path switching valve 2, is radiated by the heat source side heat exchanger 3, and exits the liquid pipe 52.
  • the gas refrigerant that has been decompressed by the electronic expansion valves 4a and 4b and obtained the set superheat degree (for example, 1 to 5 ° C.) at the outlets of the load side heat exchangers 5a and 5b passes through the gas pipe 51 to the accumulator 60. It flows in and is sucked into the compressor 1 again.
  • the liquid refrigerant and the high-concentration refrigerating machine oil each form a layer in the accumulator 60 and stay in the lower part in the container A.
  • the refrigerating machine oil is heavier than the refrigerant.
  • the refrigerating machine oil is located below the refrigerant, and as shown in FIG. 4 (a), the refrigerating machine oil is sucked from the oil return hole D installed in the lower part of the accumulator 60, Oil is returned to the compressor 1.
  • the gas refrigerant in the heating operation, is compressed to high temperature and high pressure by the compressor 1, passes through the flow path switching valve 2, exits the gas pipe 51, and then radiates heat in the load side heat exchangers 5 a and 5 b. Then, after the pressure is reduced by the electronic expansion valves 4 a and 4 b, the gas or the two-phase refrigerant evaporated at the outlet of the heat source side heat exchanger flows into the accumulator 60 through the liquid pipe 52. At this time, the surplus refrigerant (liquid refrigerant) and the refrigerating machine oil each form a layer and stay in the container A separated.
  • the refrigerating machine oil becomes heavier than the refrigerant.
  • the oil is returned to the compressor 1 through the oil return hole D provided in.
  • the refrigerating machine oil becomes lighter than the liquid refrigerant, so that the refrigerating machine oil stays on top of the liquid refrigerant.
  • the refrigerating machine oil if liquid refrigerant is present at the position of the oil return hole D provided in the lower part of the accumulator 60 (outflow pipe C), the refrigeration oil is returned to the compressor 1 from the oil return hole D. It becomes difficult to oil.
  • FIG. 5 is a diagram illustrating the structure of the accumulator 6 according to the first embodiment.
  • the liquid refrigerant staying in the lower part in the container A and the refrigerating machine oil that is incompatible with the refrigerant are prevented from forming a layer, and the density of the refrigerant is higher than the density of the refrigerating machine oil. Even in large environments, it is possible to return oil.
  • the container A, the inflow pipe B, the outflow pipe C, the oil return hole D, the discharge port E, and the intake port F are the same as the accumulator of FIG.
  • the discharge port E is located at the opening of one end of the inflow branch pipe H.
  • the distribution joint G such as a Y-shaped joint or a T-shaped joint is a joint for distributing the mixture of the refrigerant and the refrigerating machine oil flowing in from the inflow pipe B to the inflow branch pipe H and the branch pipe I.
  • the inflow branch pipe H performs gas-liquid separation into a mixture of gas refrigerant, liquid refrigerant, and refrigerating machine oil (will play the same role as the inflow pipe B in FIG. 4).
  • the branch pipe I is a pipe for directly feeding the mixture of the refrigerant and the refrigerating machine oil distributed by the distribution joint G in order to stir the liquid refrigerant and the refrigerating machine oil staying in the lower part in the container A into the lower part of the container A. is there.
  • the agitation discharge port J is an opening portion of a pipe for discharging a mixture of the refrigerant and the refrigerating machine oil for stirring the liquid refrigerant and the refrigerating machine oil, and is here an opening part of one end of the branch pipe I. .
  • the stirring outlet J is directed to face the inner wall of the bottom of the container A.
  • the inner sectional area of the inflow branch pipe H is made larger than the inner sectional area of the branch pipe I.
  • Use a suitable pipe diameter For this reason, the mixture of the refrigerant and the refrigerating machine oil can be prevented from flowing excessively to the branch pipe I side, and can be prevented from flowing to the inflow branch pipe H side to reduce the gas-liquid separation efficiency.
  • by maintaining an inner cross-sectional area equal to or greater than that of the inlet side of the inflow pipe B it is possible to suppress an increase in pressure loss.
  • the outlet E of the inflow branch pipe H is located at the upper part of the accumulator 6 (upper half part in the vertical direction), because the time required for turning becomes longer, so that the gas-liquid separation efficiency becomes higher.
  • the discharge port E may be provided below the accumulator 6.
  • the branch pipe I is a thin pipe, and there is a risk of breaking due to vibration or the like. Therefore, for example, the branch pipe I is installed close to a portion of the outflow pipe C facing the vertical direction, and is fixed to the outflow pipe C with a fixture. And the intensity
  • the distribution joint G, the inflow branch pipe H, and the branch pipe I are connected to the inflow pipe B in the accumulator 6, and the refrigerant flowing from the inflow pipe B and the refrigeration Since the liquid refrigerant staying in the lower part in the container A and the refrigerating machine oil incompatible with the refrigerant are stirred by feeding the mixture with the machine oil so that the refrigerating machine oil is not retained in the upper part in the container A, the refrigerant, etc. Regardless of the temperature, the refrigeration oil can be transported to the oil return hole D and returned to the compressor 1.
  • the refrigerant ejected from the agitation outlet J is mixed with liquid refrigerant and gas refrigerant.
  • the liquid refrigerant in the container A and the gas refrigerant sent in are mixed.
  • Mixing and lowering the density of the refrigerant, which is a mixture of liquid and gas makes it easier for the refrigerating machine oil to stay in the lower part of the container A, and has the effect of making it easier to return the refrigerating machine oil from the oil return hole D. Regardless of the temperature of the refrigerant or the like, the refrigeration oil can be transported to the oil return hole D and returned to the compressor 1.
  • FIG. FIG. 6 is a diagram illustrating the structure of the accumulator 6 according to the second embodiment.
  • the same reference numerals as those in FIG. 5 perform the same functions as those described in the first embodiment.
  • a distribution joint K, a branch pipe L, and a branch branch pipe M are further connected to the branch pipe I by piping.
  • the distribution joint K is a joint for distributing the mixture of the refrigerant and the refrigerating machine oil flowing in from the branch pipe I to the branch pipe L and the branch branch pipe M, similarly to the distribution joint G.
  • the branch pipe L has a discharge port N at one end. When the amount of liquid refrigerant and refrigerating machine oil staying is large and the discharge port N is located below the liquid level, a mixture of refrigerant and refrigerating machine oil that stirs the liquid refrigerant and refrigerating machine oil is fed and stirred. It becomes the piping of. Further, when the discharge port N is located below the liquid level, similarly to the inflow branch pipe H, gas-liquid separation is performed into a mixture of gas refrigerant, liquid refrigerant, and refrigeration oil.
  • the branch branch pipe M is a pipe that feeds a mixture of refrigerant and refrigerating machine oil and stirs the liquid refrigerant and refrigerating machine oil staying in the container A.
  • a stirring outlet J is provided at one end of the branch branch pipe M.
  • the sum of the inner sectional areas of the lowermost branch pipe L and branch branch pipe M and the inner sectional area of the branch pipe I are made equal.
  • the sum of the inner cross-sectional areas of the inflow branch pipe H and the branch pipe I is made equal to the inner cross-sectional area of the inflow pipe B.
  • the inner sectional area of the branch pipe L is larger than the inner sectional area of the branch branch pipe J
  • the inner sectional area of the inflow branch pipe H is larger than the inner sectional area of the branch pipe I.
  • the inner cross-sectional area of the inflow branch pipe H > A in / 2
  • the inner cross-sectional area of the branch pipe I ⁇ A in / 2.
  • the inner sectional area of the branch pipe L > A in / 4
  • the inner sectional area of the branch pipe J ⁇ A in / 4.
  • the refrigerant that has been distributed by the distribution joint G and passed through the branch pipe I is further distributed to the branch pipe L and the branch branch pipe M by the distribution joint K.
  • the mixture is stirred by the mixture of the refrigerant and the refrigerating machine oil that has passed through the branch branch pipe M.
  • FIG. 7 is a diagram showing the structure of the accumulator 6 according to the third embodiment.
  • the liquid suction hole O is a hole having a certain interval (for example, an interval of 20 mm) between one end J and the other end of the branch pipe I. In the present embodiment, three holes are formed, but a smaller or larger number of liquid suction holes O may be provided.
  • the inner cross-sectional area of the branch pipe I is made smaller than the inner cross-sectional area of the inflow pipe B, so that the pipe is contracted (for example, the inner cross-sectional area A in of the inflow pipe B Cross-sectional area ⁇ A in / 4).
  • the pipe is contracted (for example, the inner cross-sectional area A in of the inflow pipe B Cross-sectional area ⁇ A in / 4).
  • the inner sectional area of the inflow branch pipe H is made larger than the inner sectional area of the branch pipe I.
  • the inner cross-sectional area ⁇ A in the inlet branch pipe H the pipe such that the inner cross-sectional area ⁇ A in / 4 of the branch pipe I make the diameter.
  • the liquid suction hole O is inserted into the branch pipe I for feeding the mixture of the refrigerant and the refrigerating machine oil into the liquid refrigerant and the refrigerating machine oil staying in the container A. Since, for example, even when the refrigeration oil is located above the liquid refrigerant, the refrigeration oil can be sucked from the liquid suction hole O and sent to the lower part in the container A, so that the oil return hole D The oil return from can be promoted.
  • FIG. FIG. 8 is a diagram illustrating the structure of the accumulator 6 according to the fourth embodiment.
  • the same reference numerals as those in FIG. 5 perform the same functions as those described in the first embodiment.
  • the distribution joint G of the present embodiment is different from the above-described embodiment in that it is connected to the inflow pipe B, the inflow branch pipe H, and the branch pipe I outside the container A.
  • the solenoid valve P performs an opening / closing operation for allowing or not allowing refrigerant or the like to pass through the branch pipe I.
  • the temperature detector Q detects the temperature of the refrigerant or the like flowing out from the outflow pipe C.
  • the control device 8 described above causes the solenoid valve P to perform an operation based on the temperature related to the detection of the temperature detector Q.
  • the temperature detector Q may be installed at a position where the temperature of the refrigerant flowing into the accumulator can be detected, for example, the inflow pipe B.
  • the magnitude relationship between the density of the refrigerant and the density of the refrigerating machine oil changes at about ⁇ 15 ° C., which is a low temperature environment. Therefore, for example, when the control device 8 determines that the temperature related to detection by the temperature detector Q is lower than a temperature (for example, ⁇ 14 ° C.) just before reaching ⁇ 15 ° C., the control device 8 opens the solenoid valve P, and the refrigerant In addition, the mixture of the refrigerating machine oil is allowed to pass through the branch pipe I, and the liquid refrigerant and the refrigerating machine oil that are staying are agitated.
  • a temperature for example, ⁇ 14 ° C.
  • the control device 8 closes the solenoid valve P so that the mixture of refrigerant and refrigerating machine oil does not pass through the branch pipe I. To do.
  • the mixture of the refrigerant and the refrigerating machine oil all flows to the inflow branch pipe H side, the gas-liquid separation efficiency can be made equal to that of a normal accumulator.
  • the inner cross-sectional area of the inflow branch pipe H is made equal to the inner cross-sectional area of the inlet pipe B. Further, the inner sectional area of the branch pipe I is made smaller than that of the inflow branch pipe H.
  • the tube diameter such that the inner cross-sectional area ⁇ A in the branch pipe I To do.
  • the temperature detector Q for detecting the temperature of the refrigerant and the like, and the refrigerant to the branch pipe I based on the temperature related to the detection of the temperature detector Q.
  • the refrigerating machine oil is located below the liquid refrigerant and the oil return hole is not required to stir.
  • the solenoid valve P can be closed. For this reason, the oil return which does not contain a liquid refrigerant can be performed, and the efficiency of oil return can be improved.
  • the circuit configuration is not complicated by installing the solenoid valve P in the accumulator 6 body.
  • Embodiment 5 FIG.
  • the refrigerant in the refrigerant circuit is carbon dioxide and the refrigerating machine oil is PAG oil has been described as an example, but a combination of other refrigerants and refrigerating machine oil may be used.
  • the refrigerant may be a refrigerant such as a mixed refrigerant composed of carbon dioxide and an ether such as dimethyl ether or hydrofluoroether.
  • the refrigerant is not limited to a supercritical state, but is a refrigerant that does not contain chlorine, such as an alternative refrigerant such as HFC410A and HFC407C, which is a refrigerant that performs heat exchange in a normal two-phase state, and a conventional Freon-based refrigerant such as R22 and R134a.
  • Natural refrigerants such as refrigerants and hydrocarbons may be used.
  • the refrigerating machine oil may be a refrigerating machine oil that is incompatible with each of these refrigerants.

Abstract

Disclosed are an accumulator and the like that can return oil without complicating circuit architecture or consuming energy. The disclosed accumulator (6) performs vapor-liquid separation and accumulates the liquid in order to supply a refrigerant in a vapor phase to a compressor (1) in a refrigeration cycle device. The accumulator is provided with: a vessel (A) for accumulating the liquid; an inflow pipe (B) via which a refrigerant, which circulates through a refrigeration circuit, flows into the vessel (A); a distribution coupling (G) for distributing, in a plurality of directions, the refrigerant which has flowed into the inflow pipe (B); a branching pipe (I) that leads the distributed refrigerant to the bottom of the vessel (A) such that the refrigerant agitates the liquid accumulated in the vessel (A); and an outflow pipe (C) that has an oil-return hole (D) out which the refrigerant flows along with refrigerant oil in the liquid accumulated in the vessel (A).

Description

アキュムレータ及び冷凍サイクル装置Accumulator and refrigeration cycle apparatus
 本発明は、冷凍サイクル装置に用いるアキュムレータ等に関するものである。特に冷媒と非相溶性を有する冷凍機油を使用した場合でも返油可能なアキュムレータに関するものである。 The present invention relates to an accumulator used in a refrigeration cycle apparatus. In particular, the present invention relates to an accumulator capable of returning oil even when a refrigerating machine oil incompatible with a refrigerant is used.
 従来、ビル用マルチエアコンとして、フロン系冷媒を使用する空気調和装置が広く使用されているが、近年においては、例えば二酸化炭素(CO)冷媒のような超臨界流体を用いる超臨界冷凍サイクル装置をビル用マルチエアコンへ搭載することが考えられている。 Conventionally, air conditioners that use chlorofluorocarbon refrigerants have been widely used as multi-air conditioners for buildings. In recent years, however, supercritical refrigeration cycle apparatuses that use supercritical fluids such as carbon dioxide (CO 2 ) refrigerants have been used in recent years. Is considered to be installed in multi air conditioners for buildings.
 ここで、現在、CO冷媒を用いる冷凍サイクル装置で使用されている冷凍機油は、CO冷媒とは非相溶性の冷凍機油である。そして、フロン系冷媒のように、冷凍サイクル装置で使用されている全ての運転温度範囲でCO冷媒と相溶性を有する冷凍機油は現存しない。なお、ここでいう非相溶性とは、冷媒と冷凍機油が完全には溶け合わないものを意味しており、全く溶け合わない完全非相溶性もの、および、少しは溶け合うが溶け合う量が少ない難溶性のものの両方を含んでいる。例えばビル用マルチエアコンのように冷房または暖房運転時に冷媒量を調整するためのアキュムレータを要し、システムの配管長が長くなる冷凍サイクル装置において、非相溶性の冷凍機油を使用すると、配管、熱交換器、アキュムレータ等に多くの冷凍機油が滞留する可能性がある。特に冷媒温度が低温領域(例えば冷媒温度-15℃以下)において、冷凍機油の密度が冷媒の密度よりも小さくなると、アキュムレータに滞留している冷凍機油の返油が困難となる。その結果、返油不足となり圧縮機内の冷凍機油が枯渇し、圧縮機が破損する可能性が高くなっていた。 Here, now, CO refrigerating machine oil used in the refrigeration cycle apparatus using two refrigerant, the CO 2 refrigerant is a refrigerating machine oil incompatible. In addition, there is no refrigeration oil that is compatible with the CO 2 refrigerant in the entire operating temperature range used in the refrigeration cycle apparatus, such as chlorofluorocarbon refrigerant. The term “incompatible” as used herein means that the refrigerant and the refrigerating machine oil do not completely dissolve, and that the incompatible is completely incompatible, and the amount that is slightly soluble but the amount that is soluble is difficult. Contains both soluble ones. For example, in a refrigeration cycle apparatus that requires an accumulator to adjust the refrigerant amount during cooling or heating operations, such as a building multi-air conditioner, and the piping length of the system becomes long, if incompatible refrigerating machine oil is used, piping, heat There is a possibility that a lot of refrigerating machine oil stays in exchangers, accumulators, etc. In particular, when the refrigerant temperature is low (for example, the refrigerant temperature is −15 ° C. or lower) and the density of the refrigerating machine oil becomes lower than the density of the refrigerant, it is difficult to return the refrigerating machine oil staying in the accumulator. As a result, there was a shortage of oil return and the refrigerating machine oil in the compressor was exhausted, and the possibility that the compressor was damaged was high.
 ここで、圧縮機吐出側よりホットガスをバイパスし、アキュムレータ下部にホットガスを流入させ、アキュムレータ下部に分離した状態で滞留した冷媒と冷凍機油を撹拌させ、混合させることにより、アキュムレータからの返油を可能とする方式も提案されている(例えば、特許文献1参照)。 Here, the hot gas is bypassed from the compressor discharge side, the hot gas is allowed to flow into the lower part of the accumulator, and the refrigerant and refrigeration oil staying in a separated state in the lower part of the accumulator are agitated and mixed to return oil from the accumulator. There is also proposed a method that enables this (see, for example, Patent Document 1).
特開2004-263995号公報(請求項1、図1等)Japanese Patent Application Laid-Open No. 2004-26395 (Claim 1, FIG. 1, etc.)
 特許文献1に記載されているようなシステムでは、アキュムレータへのバイパス配管とバイパス用開閉弁の設置が必要となり、システムの回路構成が複雑化し、製造コストが増加する等の問題があった。また、圧縮機の吐出冷媒を圧縮機の吸入側に設置されているアキュムレータ内に導入ことになるため、エネルギーを無駄に消費することとなり、省エネルギー化を図ることができないという問題点があった。 In the system as described in Patent Document 1, it is necessary to install a bypass pipe and a bypass on-off valve in the accumulator, which causes problems such as a complicated circuit configuration of the system and an increase in manufacturing cost. In addition, since the refrigerant discharged from the compressor is introduced into an accumulator installed on the suction side of the compressor, energy is wasted and there is a problem that energy saving cannot be achieved.
 そこで、回路構成を複雑化することなく、また、エネルギーを消費することなく返油を行うことができるアキュムレータ等を得ることを目的とする。 Therefore, it is an object of the present invention to obtain an accumulator that can perform oil return without complicating the circuit configuration and without consuming energy.
 この発明に係わるアキュムレータは、冷凍サイクル装置の圧縮機に気相の冷媒を供給するために気液分離を行い、液体を溜めるアキュムレータにおいて、液体を溜めるための容器と、冷媒回路を循環する冷凍機油を含む冷媒を容器内に流入させるための流入管と、流入管に流入した冷媒を複数に分配するための分配継手と、分配された冷媒を容器の下部に導き、冷媒により容器内に滞留する液体を攪拌させるための分岐配管と、容器内に滞留する液体中の冷凍機油を、冷媒と共に流出させるための油戻し穴を有する流出管とを備えるものである。 An accumulator according to the present invention performs gas-liquid separation in order to supply a gas-phase refrigerant to a compressor of a refrigeration cycle apparatus, and stores a liquid in the accumulator, and a refrigerator oil that circulates in a refrigerant circuit and a refrigerant circuit An inflow pipe for allowing the refrigerant containing the liquid to flow into the container, a distribution joint for distributing the refrigerant flowing into the inflow pipe into a plurality of parts, and guiding the distributed refrigerant to the lower part of the container and staying in the container by the refrigerant A branch pipe for stirring the liquid and an outflow pipe having an oil return hole for allowing the refrigeration oil in the liquid staying in the container to flow out together with the refrigerant are provided.
 本発明によれば、流入管に分配継手、分岐配管を配管接続し、冷媒を容器の下部に導いて、滞留する液体を攪拌させるようにしたので、冷媒等の温度に関係なく、油戻し穴に冷凍機油を運んで流出管から冷媒と共に圧縮機へ返油することができる。このとき、複雑な回路を要することなく、弁類等を追加することなく確実な返油を行うことができるので、エネルギーを無駄に消費することなく、低コストのアキュムレータを得ることができる。 According to the present invention, the distribution joint and the branch pipe are connected to the inflow pipe, and the refrigerant is guided to the lower part of the container so as to stir the staying liquid. The refrigeration oil can be conveyed to the compressor along with the refrigerant from the outflow pipe. At this time, since a reliable oil return can be performed without requiring a complicated circuit and without adding valves or the like, a low-cost accumulator can be obtained without wasting energy.
本発明の実施の形態に係る空気調和装置の構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus which concerns on embodiment of this invention. CO冷媒とPAG油の二層分離曲線を示す図である。It is a diagram showing a two-layer separation curves of CO 2 refrigerant and PAG oil. CO冷媒とPAG油の温度変化による密度比較を示す図である。It is a diagram showing a density comparison by the temperature change of the CO 2 refrigerant and PAG oil. 通常のアキュムレータ60の構成を表す図である。It is a figure showing the structure of the normal accumulator 60. FIG. 実施の形態1に係るアキュムレータ6の構成を表す図である。2 is a diagram illustrating a configuration of an accumulator 6 according to Embodiment 1. FIG. 実施の形態2に係るアキュムレータ6の構成を表す図である。It is a figure showing the structure of the accumulator 6 which concerns on Embodiment 2. FIG. 実施の形態3に係るアキュムレータ6の構成を表す図である。It is a figure showing the structure of the accumulator 6 which concerns on Embodiment 3. FIG. 実施の形態4に係るアキュムレータ6の構成を表す図である。It is a figure showing the structure of the accumulator 6 which concerns on Embodiment 4. FIG.
 以下、本発明の実施の形態による冷凍サイクル装置について説明する。 Hereinafter, a refrigeration cycle apparatus according to an embodiment of the present invention will be described.
実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置となる空気調和装置の構成を表す図である。本実施の形態では、冷凍サイクル装置の代表として空気調和装置について説明する。図1において、本実施の形態に係る空気調和装置は、室外ユニット100と室内ユニット200a、200bとをガス配管51および液配管52で接続し、冷媒が循環する冷媒回路を構成する。そして、この冷媒回路の内部に、冷媒として例えば臨界温度(約31℃)以上で超臨界状態となる二酸化炭素と、冷凍機油として二酸化炭素と非相溶性を有するPAG(ポリアルキレングリコール)油を封入している。
Embodiment 1 FIG.
1 is a diagram illustrating a configuration of an air-conditioning apparatus serving as a refrigeration cycle apparatus according to Embodiment 1. FIG. In the present embodiment, an air conditioner will be described as a representative refrigeration cycle apparatus. In FIG. 1, the air conditioner according to the present embodiment connects an outdoor unit 100 and indoor units 200a and 200b with a gas pipe 51 and a liquid pipe 52, and constitutes a refrigerant circuit in which refrigerant circulates. Then, inside this refrigerant circuit, for example, carbon dioxide that becomes a supercritical state at a critical temperature (about 31 ° C.) or higher as refrigerant and PAG (polyalkylene glycol) oil that is incompatible with carbon dioxide as refrigerating machine oil are enclosed. is doing.
 室外ユニット100は基本的に室外に設置され、圧縮機1、流路切替弁2、熱源側熱交換器3、アキュムレータ6、送風機7および制御装置8を収容している。圧縮機1はガス冷媒を圧縮する。例えば四方弁等の流路切替弁2は、室内ユニット200a、200bの運転モードに応じて冷媒が流れる方向を切換える冷媒流路切替手段である。熱源側熱交換器3は、運転モードに応じて放熱器または蒸発器として機能し、室外の空気(以下、外気という)と冷媒との熱交換を行う。アキュムレータ6は、運転モードに応じて冷媒回路内を循環する冷媒量を調整するために余剰冷媒等を溜めておくことができる。送風機7は、外気を強制的に熱源側熱交換器3の外表面に送風して外気と冷媒との熱交換を促進させる。制御装置8は、圧縮機1、送風機7の駆動、流路切替弁2の切り替え等、例えば室内ユニット200a、200bの動作を制御する制御装置(図示せず)と連携して冷媒回路の制御等を行う。ここでは室外ユニット100に収容しているが、外部に設けるようにしてもよい。 The outdoor unit 100 is basically installed outdoors and houses the compressor 1, the flow path switching valve 2, the heat source side heat exchanger 3, the accumulator 6, the blower 7, and the control device 8. The compressor 1 compresses the gas refrigerant. For example, the flow path switching valve 2 such as a four-way valve is a refrigerant flow path switching unit that switches the direction in which the refrigerant flows in accordance with the operation mode of the indoor units 200a and 200b. The heat source side heat exchanger 3 functions as a radiator or an evaporator depending on the operation mode, and performs heat exchange between outdoor air (hereinafter referred to as outside air) and the refrigerant. The accumulator 6 can store surplus refrigerant or the like to adjust the amount of refrigerant circulating in the refrigerant circuit according to the operation mode. The blower 7 forcibly sends outside air to the outer surface of the heat source side heat exchanger 3 to promote heat exchange between the outside air and the refrigerant. The control device 8 controls the refrigerant circuit in cooperation with a control device (not shown) that controls the operation of the indoor units 200a and 200b, such as driving the compressor 1 and the blower 7, switching the flow path switching valve 2, and the like. I do. Although it is housed in the outdoor unit 100 here, it may be provided outside.
 室内ユニット200a、200bは、それぞれ電子膨張弁4a、4b、負荷側熱交換器5a、5bおよび送風機9a、9bを収容している。電子膨張弁4a、4bは減圧手段となり、それぞれ負荷側熱交換器5a、5bを流れる冷媒の量を開度変更により調節し、負荷側熱交換器5a、5bにおける冷媒の圧力、温度等を調整する。負荷側熱交換器5a、5bは、一端がガス配管51に接続され、他端は電子膨張弁4a、4bを介して液配管52に接続されている。負荷側熱交換器5a、5bについても、運転モードに応じて放熱器または蒸発器として機能し、空調対象空間の空気と冷媒との熱交換を行う。熱源側熱交換器3が放熱器として機能すれば、負荷側熱交換器5a、5bは蒸発器として機能し、熱源側熱交換器3が蒸発器として機能すれば、負荷側熱交換器5a、5bは放熱器として機能する。送風機9a、9bは、負荷側熱交換器5a、5bにおける空調対象空間の空気と冷媒との熱交換を促進し、また、冷媒との熱交換に係る空気を空調対象空間に送り込む。ここで、本実施の形態では、室内ユニット200a、200bを2台としているが、1台または3台以上の室内ユニット200を配管接続してもよい。 The indoor units 200a and 200b accommodate electronic expansion valves 4a and 4b, load-side heat exchangers 5a and 5b, and blowers 9a and 9b, respectively. The electronic expansion valves 4a and 4b serve as decompression means, and adjust the amount of refrigerant flowing through the load-side heat exchangers 5a and 5b by changing the opening, respectively, and adjust the refrigerant pressure and temperature in the load-side heat exchangers 5a and 5b. To do. The load side heat exchangers 5a and 5b have one end connected to the gas pipe 51 and the other end connected to the liquid pipe 52 via the electronic expansion valves 4a and 4b. The load-side heat exchangers 5a and 5b also function as radiators or evaporators depending on the operation mode, and exchange heat between the air in the air-conditioning target space and the refrigerant. If the heat source side heat exchanger 3 functions as a radiator, the load side heat exchangers 5a, 5b function as an evaporator, and if the heat source side heat exchanger 3 functions as an evaporator, the load side heat exchanger 5a, 5b functions as a radiator. The blowers 9a and 9b promote heat exchange between the air in the air-conditioning target space and the refrigerant in the load-side heat exchangers 5a and 5b, and send air related to heat exchange with the refrigerant into the air-conditioning target space. Here, in this embodiment, two indoor units 200a and 200b are provided, but one or three or more indoor units 200 may be connected by piping.
 図2は二酸化炭素とPAG油の二層分離曲線を示す図である。図2から、油分率が約40%以下の場合には、全ての温度域において、二酸化炭素とPAG油とが二層分離することが分かる。本実施の形態のような冷媒回路における油分率は約10%~20%程度であるため、冷媒回路における冷媒の温度となる全温度領域で二酸化炭素とPAG油は二層分離することとなる。 FIG. 2 is a diagram showing a two-layer separation curve of carbon dioxide and PAG oil. From FIG. 2, it can be seen that when the oil content is about 40% or less, carbon dioxide and PAG oil are separated into two layers in all temperature ranges. Since the oil content in the refrigerant circuit as in the present embodiment is about 10% to 20%, the carbon dioxide and the PAG oil are separated into two layers in the entire temperature region where the temperature of the refrigerant in the refrigerant circuit is reached.
 図3は温度と二酸化炭素液の密度、PAG油の密度との関係を表す図である。図3より、液状の二酸化炭素(以下、二酸化炭素液という)とPAG油の温度が約-15℃以下になると、二酸化炭素液の密度がPAG油の密度よりも大きくなる。このため、二酸化炭素液の方がPAG油よりも重くなり、PAG油が二酸化炭素液の上部に滞留することになる。逆に約-15℃より高い温度では、二酸化炭素液よりも下部にPAG油が滞留することになる。 FIG. 3 is a graph showing the relationship between the temperature, the density of the carbon dioxide liquid, and the density of the PAG oil. From FIG. 3, when the temperature of the liquid carbon dioxide (hereinafter referred to as carbon dioxide liquid) and the PAG oil is about −15 ° C. or less, the density of the carbon dioxide liquid becomes higher than the density of the PAG oil. For this reason, the carbon dioxide liquid becomes heavier than the PAG oil, and the PAG oil stays on top of the carbon dioxide liquid. Conversely, at a temperature higher than about −15 ° C., the PAG oil stays below the carbon dioxide solution.
 図4は通常のアキュムレータ60の構造を表すための図である。ここでは、本実施の形態のアキュムレータ6との比較のために、通常のアキュムレータ60について説明する。矢印は冷媒と冷凍機油の流れを表している(以下、同様)。アキュムレータ60は、密閉される容器Aと、容器Aに冷媒(液冷媒およびガス冷媒)と冷凍機油との混合物を流入させる流入管Bと、容器A内から冷媒と冷凍機油の混合物を流出させる、U字状の流出管Cとで構成する。流出管Cは、冷凍機油を返油させるための油戻し穴(返油穴)Dを下部に有している。排出口Eは、流入した冷媒を排出するための配管の開口部分であり、ここでは流入管Bの一端の開口部分であるものとする。また、取込口Fは流出させる冷媒を取り込むための流出管Cの一端の開口部分である。ここで、位置の上下関係については、例えば鉛直方向に対して上側、下側として定めるものとする。 FIG. 4 is a diagram for illustrating the structure of a normal accumulator 60. Here, a normal accumulator 60 will be described for comparison with the accumulator 6 of the present embodiment. The arrows represent the flow of refrigerant and refrigerating machine oil (hereinafter the same). The accumulator 60, the container A to be sealed, an inflow pipe B for allowing a mixture of refrigerant (liquid refrigerant and gas refrigerant) and refrigerating machine oil to flow into the container A, and a mixture of refrigerant and refrigerating machine oil to flow out of the container A. It is composed of a U-shaped outflow pipe C. The outflow pipe C has an oil return hole (oil return hole) D for returning the refrigeration oil at the lower part. The discharge port E is an opening portion of a pipe for discharging the inflowing refrigerant, and is here an opening portion of one end of the inflow tube B. Moreover, the intake port F is an opening part of the one end of the outflow pipe C for taking in the refrigerant to flow out. Here, the vertical relationship of the positions is defined as, for example, an upper side and a lower side with respect to the vertical direction.
 そして、容器Aに衝突して飛散する液冷媒が流出管Cを流れないようにするため、流入管Bの一端で開口する排出口Eは、流出管Cの一端で開口する取込口Fよりも下側に位置している。また、容器A下部まで液冷媒および冷凍機油を旋回させながら運ぶようにするため、流入管Bにある排出口Eは容器A内壁に対して垂直方向を向いて対向しているか、または下向きになっている。そして、衝突によるガス冷媒と液冷媒および冷凍機油の混合物との分離を促進させるため、流入管Bにある排出口Eと容器A内壁との間は、一定以上(例えば流入管Bの内径の2倍以上)の距離を有するようにする。油戻し穴Dと容器A底部との距離は、容器A底部に滞留する冷凍機油の量を少なくするために可能な限り短くなるようにする(例えば製造上管理可能な距離となるようにする)。 And in order to prevent the liquid refrigerant which collides and scatters to the container A from flowing through the outflow pipe C, the discharge port E opened at one end of the inflow pipe B is more than the intake port F opened at one end of the outflow pipe C. Is also located on the lower side. Further, in order to carry the liquid refrigerant and the refrigerating machine oil while swirling to the lower part of the container A, the discharge port E in the inflow pipe B faces the inner wall of the container A in the vertical direction or faces downward. ing. In order to promote the separation of the gas refrigerant from the mixture of the liquid refrigerant and the refrigerating machine oil due to the collision, the gap between the outlet E in the inlet pipe B and the inner wall of the container A is equal to or larger than a certain value (for example, 2 of the inner diameter of the inlet pipe B). (Distance more than double). The distance between the oil return hole D and the bottom of the container A is made as short as possible in order to reduce the amount of refrigerating machine oil staying at the bottom of the container A (for example, a distance that can be managed in production). .
 流入管Bより容器A内に流入した冷媒と冷凍機油の混合物は、容器A内壁に衝突することで大半は、ガス冷媒と液冷媒および冷凍機油の混合物とに分離(気液分離)される。分離出来なかったガス冷媒と液冷媒および冷凍機油の混合物についても容器Aの内壁を沿って旋回しながら容器A下部まで流れること(旋回流)によりほぼ気液分離される。そして、容器A下部には液冷媒と冷凍機油とがそれぞれ層を形成して分離して滞留し、それより上部にはガス冷媒が滞留する。容器A上部に滞留したガス冷媒は流出管Cより容器A外に流出する。容器A下部に滞留した液冷媒と冷凍機油とは、流出管Cの取込口Fと油戻し穴Dとの間で生じるガス冷媒の動圧と容器A内の液面の高さにより生じるヘッド差により、油戻し穴Dより吸込まれてガス冷媒と共に容器A外に流出する。 Most of the mixture of the refrigerant and the refrigerating machine oil that has flowed into the container A from the inflow pipe B collides with the inner wall of the container A, and is separated into a mixture of gas refrigerant, liquid refrigerant, and refrigerating machine oil (gas-liquid separation). The mixture of the gas refrigerant, the liquid refrigerant, and the refrigerating machine oil that could not be separated is almost separated into gas and liquid by flowing along the inner wall of the container A to the lower part of the container A (swirl flow). In the lower part of the container A, the liquid refrigerant and the refrigerating machine oil separate from each other and stay, and the gas refrigerant stays in the upper part. The gas refrigerant staying in the upper part of the container A flows out of the container A from the outflow pipe C. The liquid refrigerant and the refrigerating machine oil staying in the lower part of the container A are generated by the dynamic pressure of the gas refrigerant generated between the intake port F of the outflow pipe C and the oil return hole D and the height of the liquid level in the container A. Due to the difference, the oil is sucked from the oil return hole D and flows out of the container A together with the gas refrigerant.
 つぎにアキュムレータ60内の液量について説明する。例えば冷房運転において、量が適正化された冷媒が、圧縮機1により高温高圧に圧縮され流路切替弁2を通り、熱源側熱交換器3にて放熱され、液配管52を出る。そして、電子膨張弁4a、4bにて減圧され、負荷側熱交換器5a、5b出口にて設定過熱度(例えば1~5℃)を得たガス冷媒が、ガス配管51を通り、アキュムレータ60に流入し、再び圧縮機1に吸い込まれる。 Next, the amount of liquid in the accumulator 60 will be described. For example, in the cooling operation, the refrigerant whose amount is optimized is compressed to high temperature and high pressure by the compressor 1, passes through the flow path switching valve 2, is radiated by the heat source side heat exchanger 3, and exits the liquid pipe 52. Then, the gas refrigerant that has been decompressed by the electronic expansion valves 4a and 4b and obtained the set superheat degree (for example, 1 to 5 ° C.) at the outlets of the load side heat exchangers 5a and 5b passes through the gas pipe 51 to the accumulator 60. It flows in and is sucked into the compressor 1 again.
 このとき、前述したように、アキュムレータ60内には液冷媒と濃度が高い冷凍機油とがそれぞれ層を形成して容器A内の下部に滞留する。温度が-15℃よりも高い場合は、冷凍機油の方が冷媒よりも重くなる。このため、容器A内において、冷凍機油は冷媒よりも下側に位置し、図4(a)に示すように、冷凍機油が、アキュムレータ60下部に設置された油戻し穴Dから吸い込まれて、圧縮機1に返油される。 At this time, as described above, the liquid refrigerant and the high-concentration refrigerating machine oil each form a layer in the accumulator 60 and stay in the lower part in the container A. When the temperature is higher than −15 ° C., the refrigerating machine oil is heavier than the refrigerant. For this reason, in the container A, the refrigerating machine oil is located below the refrigerant, and as shown in FIG. 4 (a), the refrigerating machine oil is sucked from the oil return hole D installed in the lower part of the accumulator 60, Oil is returned to the compressor 1.
 一方、暖房運転においては、ガス冷媒が圧縮機1により高温高圧に圧縮され流路切替弁2を通り、ガス配管51を出た後、負荷側熱交換器5a、5bにて放熱される。そして、電子膨張弁4a、4bにて減圧された後、液配管52を通り、熱源側熱交換器出口にて蒸発したガスもしくは二相冷媒が、アキュムレータ60に流入する。このとき、容器A内には余剰冷媒(液冷媒)と冷凍機油とがそれぞれ層を形成して分離して滞留する。余剰冷媒の密度が冷凍機油よりも小さい場合(例えば冷媒温度-15℃以上)には、冷凍機油が冷媒よりも重くなるため、冷房運転と同様に、冷凍機油がアキュムレータ60(流出管C)下部に設けた油戻し穴Dから圧縮機1へ返油される。 On the other hand, in the heating operation, the gas refrigerant is compressed to high temperature and high pressure by the compressor 1, passes through the flow path switching valve 2, exits the gas pipe 51, and then radiates heat in the load side heat exchangers 5 a and 5 b. Then, after the pressure is reduced by the electronic expansion valves 4 a and 4 b, the gas or the two-phase refrigerant evaporated at the outlet of the heat source side heat exchanger flows into the accumulator 60 through the liquid pipe 52. At this time, the surplus refrigerant (liquid refrigerant) and the refrigerating machine oil each form a layer and stay in the container A separated. When the density of the surplus refrigerant is smaller than that of the refrigerating machine oil (for example, the refrigerant temperature is −15 ° C. or higher), the refrigerating machine oil becomes heavier than the refrigerant. The oil is returned to the compressor 1 through the oil return hole D provided in.
 しかし、余剰冷媒の密度が冷凍機油よりも大きい場合(例えば冷媒温度が-15℃以下)には、冷凍機油が液冷媒よりも軽くなるため、冷凍機油が液冷媒の上部に滞留する。このとき、図4(b)に示すように、アキュムレータ60(流出管C)下部に設けた油戻し穴Dの位置に液冷媒が存在すると、油戻し穴Dから圧縮機1へ冷凍機油を返油することは困難となる。 However, when the density of the surplus refrigerant is larger than that of the refrigerating machine oil (for example, the refrigerant temperature is −15 ° C. or lower), the refrigerating machine oil becomes lighter than the liquid refrigerant, so that the refrigerating machine oil stays on top of the liquid refrigerant. At this time, as shown in FIG. 4B, if liquid refrigerant is present at the position of the oil return hole D provided in the lower part of the accumulator 60 (outflow pipe C), the refrigeration oil is returned to the compressor 1 from the oil return hole D. It becomes difficult to oil.
 図5は実施の形態1のアキュムレータ6の構造を表す図である。本実施の形態のアキュムレータ6では、容器A内下部に滞留する液冷媒と、冷媒と非相溶性を有する冷凍機油とを攪拌して層が形成されないようにし、冷媒の密度が冷凍機油の密度よりも大きな環境下でも返油を可能とする。 FIG. 5 is a diagram illustrating the structure of the accumulator 6 according to the first embodiment. In the accumulator 6 of the present embodiment, the liquid refrigerant staying in the lower part in the container A and the refrigerating machine oil that is incompatible with the refrigerant are prevented from forming a layer, and the density of the refrigerant is higher than the density of the refrigerating machine oil. Even in large environments, it is possible to return oil.
 容器A、流入管B、流出管C、油戻し穴D並びに排出口Eおよび取込口Fについては、前述した図4のアキュムレータと同様である。ただし、排出口Eは流入分岐管Hの一端の開口部分に位置する。例えばY字継手、T字継手等の分配継手Gは、流入管Bから流入した冷媒と冷凍機油の混合物を、流入分岐管Hと分岐配管Iとに分配するための継手である。流入分岐管Hは、ガス冷媒と液冷媒および冷凍機油の混合物とに気液分離する(図4における流入管Bと同様の役割を果たすことになる)。 The container A, the inflow pipe B, the outflow pipe C, the oil return hole D, the discharge port E, and the intake port F are the same as the accumulator of FIG. However, the discharge port E is located at the opening of one end of the inflow branch pipe H. For example, the distribution joint G such as a Y-shaped joint or a T-shaped joint is a joint for distributing the mixture of the refrigerant and the refrigerating machine oil flowing in from the inflow pipe B to the inflow branch pipe H and the branch pipe I. The inflow branch pipe H performs gas-liquid separation into a mixture of gas refrigerant, liquid refrigerant, and refrigerating machine oil (will play the same role as the inflow pipe B in FIG. 4).
 また、分岐配管Iは、容器A内下部に滞留する液冷媒と冷凍機油とを撹拌させるために分配継手Gにより分配された冷媒と冷凍機油の混合物を、容器A下部に直接送り込むための配管である。攪拌用排出口Jは液冷媒と冷凍機油とを撹拌させるための冷媒と冷凍機油の混合物を排出するための配管の開口部分であり、ここでは分岐配管Iの一端の開口部分であるものとする。そして攪拌用排出口Jを容器A底部の内壁に対向するように向けている。 The branch pipe I is a pipe for directly feeding the mixture of the refrigerant and the refrigerating machine oil distributed by the distribution joint G in order to stir the liquid refrigerant and the refrigerating machine oil staying in the lower part in the container A into the lower part of the container A. is there. The agitation discharge port J is an opening portion of a pipe for discharging a mixture of the refrigerant and the refrigerating machine oil for stirring the liquid refrigerant and the refrigerating machine oil, and is here an opening part of one end of the branch pipe I. . The stirring outlet J is directed to face the inner wall of the bottom of the container A.
 ここで、流入分岐管Hの内断面積を分岐配管Iの内断面積よりも大きくするようにする。例えば、本実施の形態では、流入管Bの入口内断面積Ainに対し、流入分岐管Hの内断面積>Ain/2、分岐配管Iの内断面積<Ain/2となるような管径にする。このため、冷媒と冷凍機油との混合物を、分岐配管I側に過剰に流さないようにし、流入分岐管H側に流れるようにして気液分離効率が低下してしまうことを抑制することができる。また、流入管Bの入口側と同等以上の内断面積を保持することにより、圧力損失の増加を抑制することが可能になる。 Here, the inner sectional area of the inflow branch pipe H is made larger than the inner sectional area of the branch pipe I. For example, in the present embodiment, the inner cross-sectional area of the inflow branch pipe H> A in / 2 and the inner cross-sectional area of the branch pipe I <A in / 2 with respect to the inlet inner cross-sectional area A in of the inflow pipe B. Use a suitable pipe diameter. For this reason, the mixture of the refrigerant and the refrigerating machine oil can be prevented from flowing excessively to the branch pipe I side, and can be prevented from flowing to the inflow branch pipe H side to reduce the gas-liquid separation efficiency. . In addition, by maintaining an inner cross-sectional area equal to or greater than that of the inlet side of the inflow pipe B, it is possible to suppress an increase in pressure loss.
 また、流入分岐管Hの排出口Eについては、アキュムレータ6の上部(垂直方向において上半分部分)に位置する方が、旋回に係る時間が長くなるため、気液分離効率が高くなる。ただし、気液分離効率が多少低くなるが、排出口Eがアキュムレータ6の下部にあってもよい。さらに、分岐配管Iは細い配管であり、振動等で折れてしまう危険がある。そこで、例えば、分岐配管Iを流出管Cの鉛直方向に向いている部分に近接させて設置し、固定具で流出管Cに固定させる。そして、分岐配管Iと流出管Cとが振動に対して一体になって揺れるようにすることで、分岐配管Iの強度を保つことができる。 Also, the outlet E of the inflow branch pipe H is located at the upper part of the accumulator 6 (upper half part in the vertical direction), because the time required for turning becomes longer, so that the gas-liquid separation efficiency becomes higher. However, although the gas-liquid separation efficiency is somewhat lowered, the discharge port E may be provided below the accumulator 6. Furthermore, the branch pipe I is a thin pipe, and there is a risk of breaking due to vibration or the like. Therefore, for example, the branch pipe I is installed close to a portion of the outflow pipe C facing the vertical direction, and is fixed to the outflow pipe C with a fixture. And the intensity | strength of the branch piping I can be maintained by making the branch piping I and the outflow pipe C shake integrally with respect to a vibration.
 以上のように、実施の形態1の空気調和装置におけるアキュムレータでは、アキュムレータ6内の流入管Bに分配継手G、流入分岐管Hおよび分岐配管Iを配管し、流入管Bから流入する冷媒と冷凍機油との混合物を送り込んで、容器A内下部に滞留する液冷媒と、冷媒と非相溶性を有する冷凍機油とを攪拌し、冷凍機油を容器A内上部に滞留させないようにしたので、冷媒等の温度に関係なく、油戻し穴Dに冷凍機油を運ぶことができ、圧縮機1へ返油することができる。さらに、攪拌用排出口Jから噴出する冷媒には、液冷媒にガス冷媒も混合しており、このガス冷媒を容器A内に送り込むことにより、容器A内の液冷媒と送り込んだガス冷媒とが混合し、液とガスの混合物である冷媒の密度を低下させるため、冷凍機油が容器A内下部に滞留し易くなり、冷凍機油を油戻し穴Dから戻し易くなる効果もある。冷媒等の温度に関係なく、油戻し穴Dに冷凍機油を運ぶことができ、圧縮機1へ返油することができる。このとき、流入管Bに分配継手G、流入分岐管Hおよび分岐配管Iを配管して圧縮機1への返油を実現しているので、例えば圧縮機1の吐出側との間の配管接続、外部と接続する配管を少なくすることができる。このため、回路構成を複雑化することなく、また弁類の追加等もなく、さらにエネルギーを無駄に消費することがない、低コストのアキュムレータ6を製造することができる。また、温度に関係なく確実に返油することができるので、圧縮機1における油枯渇を防ぎ、安全性、信頼性を向上させることができる冷凍サイクル装置を得ることができる。 As described above, in the accumulator in the air conditioner of Embodiment 1, the distribution joint G, the inflow branch pipe H, and the branch pipe I are connected to the inflow pipe B in the accumulator 6, and the refrigerant flowing from the inflow pipe B and the refrigeration Since the liquid refrigerant staying in the lower part in the container A and the refrigerating machine oil incompatible with the refrigerant are stirred by feeding the mixture with the machine oil so that the refrigerating machine oil is not retained in the upper part in the container A, the refrigerant, etc. Regardless of the temperature, the refrigeration oil can be transported to the oil return hole D and returned to the compressor 1. Further, the refrigerant ejected from the agitation outlet J is mixed with liquid refrigerant and gas refrigerant. By sending this gas refrigerant into the container A, the liquid refrigerant in the container A and the gas refrigerant sent in are mixed. Mixing and lowering the density of the refrigerant, which is a mixture of liquid and gas, makes it easier for the refrigerating machine oil to stay in the lower part of the container A, and has the effect of making it easier to return the refrigerating machine oil from the oil return hole D. Regardless of the temperature of the refrigerant or the like, the refrigeration oil can be transported to the oil return hole D and returned to the compressor 1. At this time, since the distribution joint G, the inflow branch pipe H, and the branch pipe I are connected to the inflow pipe B to realize oil return to the compressor 1, for example, a pipe connection with the discharge side of the compressor 1 The number of pipes connected to the outside can be reduced. For this reason, it is possible to manufacture the low-cost accumulator 6 without complicating the circuit configuration, adding valves, etc., and not consuming energy wastefully. In addition, since oil can be reliably returned regardless of temperature, it is possible to obtain a refrigeration cycle apparatus that can prevent oil depletion in the compressor 1 and improve safety and reliability.
 実施の形態2.
 図6は実施の形態2のアキュムレータ6の構造を表す図である。図6において、図5と同じ番号を付したものは、実施の形態1において説明したことと同様の機能を果たすものである。本実施の形態は、分岐配管Iに、さらに分配継手K、分岐管Lおよび分岐枝管Mを配管接続したものである。
Embodiment 2. FIG.
FIG. 6 is a diagram illustrating the structure of the accumulator 6 according to the second embodiment. In FIG. 6, the same reference numerals as those in FIG. 5 perform the same functions as those described in the first embodiment. In this embodiment, a distribution joint K, a branch pipe L, and a branch branch pipe M are further connected to the branch pipe I by piping.
 分配継手Kは、分配継手Gと同様に、分岐配管Iから流入した冷媒と冷凍機油の混合物を、分岐管Lと分岐枝管Mとに分配するための継手である。分岐管Lは一端に排出口Nを有している。滞留する液冷媒と冷凍機油の量が多く、排出口Nが液面よりも下側に位置する場合には、液冷媒と冷凍機油とを撹拌させる冷媒と冷凍機油の混合物を送り込んで攪拌させるための配管となる。また、排出口Nが液面よりも下側に位置する場合には、流入分岐管Hと同様に、ガス冷媒と液冷媒および冷凍機油の混合物とに気液分離する。このため、排出口Nも排出口Eと同様に、容器A内壁に対して垂直方向を向いて対向しているか、または下向きになっている。分岐枝管Mは、冷媒と冷凍機油の混合物を送り込んで容器Aに滞留する液冷媒と冷凍機油とを撹拌させる配管である。本実施の形態では、分岐枝管M一端に攪拌用排出口Jを有しているものとする。 The distribution joint K is a joint for distributing the mixture of the refrigerant and the refrigerating machine oil flowing in from the branch pipe I to the branch pipe L and the branch branch pipe M, similarly to the distribution joint G. The branch pipe L has a discharge port N at one end. When the amount of liquid refrigerant and refrigerating machine oil staying is large and the discharge port N is located below the liquid level, a mixture of refrigerant and refrigerating machine oil that stirs the liquid refrigerant and refrigerating machine oil is fed and stirred. It becomes the piping of. Further, when the discharge port N is located below the liquid level, similarly to the inflow branch pipe H, gas-liquid separation is performed into a mixture of gas refrigerant, liquid refrigerant, and refrigeration oil. For this reason, similarly to the discharge port E, the discharge port N faces the inner wall of the container A in the vertical direction or faces downward. The branch branch pipe M is a pipe that feeds a mixture of refrigerant and refrigerating machine oil and stirs the liquid refrigerant and refrigerating machine oil staying in the container A. In the present embodiment, it is assumed that a stirring outlet J is provided at one end of the branch branch pipe M.
 ここで、圧力損失の増加と気液分離効率低下を抑制するために、最下部の分岐管Lと分岐枝管Mの内断面積の合計と、分岐配管Iの内断面積とを同等にする。かつ、流入分岐管Hと分岐配管Iの内断面積の合計と、流入管Bの内断面積とは同等にする。さらに、分岐管Lの内断面積は分岐枝管Jの内断面積よりも大きく、流入分岐管Hの内断面積は分岐配管Iの内断面積よりも大きくする。具体例として、流入管Bの内断面積Ainに対し、流入分岐管Hの内断面積>Ain/2、分岐配管Iの内断面積<Ain/2とする。また、分岐管Lの内断面積>Ain/4、分岐配管Jの内断面積<Ain/4とする。 Here, in order to suppress an increase in pressure loss and a decrease in gas-liquid separation efficiency, the sum of the inner sectional areas of the lowermost branch pipe L and branch branch pipe M and the inner sectional area of the branch pipe I are made equal. . In addition, the sum of the inner cross-sectional areas of the inflow branch pipe H and the branch pipe I is made equal to the inner cross-sectional area of the inflow pipe B. Furthermore, the inner sectional area of the branch pipe L is larger than the inner sectional area of the branch branch pipe J, and the inner sectional area of the inflow branch pipe H is larger than the inner sectional area of the branch pipe I. As a specific example, with respect to the inner cross-sectional area A in of the inflow pipe B, the inner cross-sectional area of the inflow branch pipe H> A in / 2, and the inner cross-sectional area of the branch pipe I <A in / 2. Further, the inner sectional area of the branch pipe L> A in / 4, and the inner sectional area of the branch pipe J <A in / 4.
 以上のように、実施の形態2の空気調和装置におけるアキュムレータ6では、分配継手Gにより分配して分岐配管Iを通過した冷媒を、さらに分配継手Kにより分岐管Lと分岐枝管Mとに分配して多段の分岐をさせるようにしたので、例えば、アキュムレータ6(容器A)内に滞留する液冷媒等の量が少ない場合には、分岐枝管Mを通過した冷媒と冷凍機油の混合物により撹拌させるようにし、液冷媒等の量が多い場合には、分岐管Lを通過した冷媒と冷凍機油の混合物により撹拌させるようにすることができ、冷凍機油の滞留位置が変化した場合もアキュムレータ下部に設置された油戻し穴Dに冷凍機油を運ぶことが可能となる。また、流入分岐管Hの排出口Eと分岐管Lの排出口Nとから冷媒と冷凍機油の混合物を排出し、衝突による気液分離と旋回流を発生させることによる気液分離ができるため、気液分離効率をほとんど低下させることなく、液冷媒および冷凍機油とをガス冷媒と分離することができる。ここで、本実施の形態では、分岐配管Iに分岐管Lと分岐枝管Mのみを接続した2段の分岐について説明したが、3段以上の分岐を行うようにしてもよい。 As described above, in the accumulator 6 in the air conditioner of Embodiment 2, the refrigerant that has been distributed by the distribution joint G and passed through the branch pipe I is further distributed to the branch pipe L and the branch branch pipe M by the distribution joint K. Thus, for example, when the amount of liquid refrigerant or the like staying in the accumulator 6 (container A) is small, the mixture is stirred by the mixture of the refrigerant and the refrigerating machine oil that has passed through the branch branch pipe M. When the amount of liquid refrigerant or the like is large, it can be agitated by a mixture of refrigerant and refrigerating machine oil that has passed through the branch pipe L, and even when the refrigerating machine oil retention position changes, the lower part of the accumulator Refrigerating machine oil can be transported to the installed oil return hole D. In addition, since the mixture of refrigerant and refrigerating machine oil is discharged from the outlet E of the inflow branch pipe H and the outlet N of the branch pipe L, gas-liquid separation by collision and gas-liquid separation by generating a swirl flow can be performed. Liquid refrigerant and refrigerating machine oil can be separated from gas refrigerant with almost no reduction in gas-liquid separation efficiency. Here, in the present embodiment, the two-stage branch in which only the branch pipe L and the branch branch pipe M are connected to the branch pipe I has been described, but three or more stages of branches may be performed.
 実施の形態3.
 図7は実施の形態3のアキュムレータ6の構造を表す図である。図7において、図5と同じ番号を付したものは、実施の形態1において説明したことと同様の機能を果たすものである。液吸入穴Oは分岐配管Iの一端Jと他端の間に一定の間隔(例えば20mm間隔)を有して空けてある穴である。本実施の形態では3穴空けているが、さらに少数もしくは多数の液吸入穴Oを設置してもよい。
Embodiment 3 FIG.
FIG. 7 is a diagram showing the structure of the accumulator 6 according to the third embodiment. In FIG. 7, the same reference numerals as those in FIG. 5 perform the same functions as those described in the first embodiment. The liquid suction hole O is a hole having a certain interval (for example, an interval of 20 mm) between one end J and the other end of the branch pipe I. In the present embodiment, three holes are formed, but a smaller or larger number of liquid suction holes O may be provided.
 また、分岐配管Iの内断面積は流入管Bの内断面積よりも小さくなるようにし、縮管するようにしている(例えば流入管Bの内断面積Ainに対し、分岐配管Iの内断面積<Ain/4とする)。分岐配管Iを縮管することで、冷媒と冷凍機油との混合物が流入管Bから分岐配管Iに流入した時に減圧され、流速が上昇する。液吸入穴Oにおいて生じる動圧と縮管による減圧とにより、液吸入穴Oの外部(容器A内)と内部(分岐配管I内)との間で差圧(容器A内の圧力―分岐配管I内の圧力)が生じる。 In addition, the inner cross-sectional area of the branch pipe I is made smaller than the inner cross-sectional area of the inflow pipe B, so that the pipe is contracted (for example, the inner cross-sectional area A in of the inflow pipe B Cross-sectional area <A in / 4). By contracting the branch pipe I, when the mixture of the refrigerant and the refrigerating machine oil flows into the branch pipe I from the inflow pipe B, the pressure is reduced and the flow velocity is increased. Due to the dynamic pressure generated in the liquid suction hole O and the pressure reduction by the contraction pipe, the pressure difference between the outside (inside the container A) and the inside (in the branch pipe I) of the liquid suction hole O (pressure in the container A—branch pipe) Pressure in I) occurs.
 このとき、容器Aに滞留した冷凍機油が液吸入穴O部を覆っていれば、液吸入穴Oより分岐配管I内に吸込まれ、分岐配管Iの攪拌排出口Jから排出される。このため、容器A下部に冷凍機油を運び、油戻し穴Dから圧縮機1へ冷凍機油を返油することができる。 At this time, if the refrigerating machine oil staying in the container A covers the liquid suction hole O, it is sucked into the branch pipe I from the liquid suction hole O and discharged from the stirring outlet J of the branch pipe I. For this reason, refrigeration oil can be carried to the container A lower part, and refrigeration oil can be returned to the compressor 1 from the oil return hole D.
 ここで、流入分岐管Hの内断面積を分岐配管Iの内断面積よりも大きくする。例えば、本実施の形態では、流入管Bの入口内断面積Ainに対し、流入分岐管Hの内断面積≧Ain、分岐配管Iの内断面積<Ain/4となるような管径にする。このような管径とすることで、冷媒と冷凍機油との混合物を、分岐配管I側に過剰に流さないように、流入分岐管H側に流れるようにして気液分離効率が低下してしまうことを抑制する。また、流入管Bの入口と同等以上の断面積を保持可能となり、圧力損失の増加を抑制することが可能になる。 Here, the inner sectional area of the inflow branch pipe H is made larger than the inner sectional area of the branch pipe I. For example, in this embodiment, with respect to the inlet in the cross-sectional area A in the inlet pipe B, the inner cross-sectional area ≧ A in the inlet branch pipe H, the pipe such that the inner cross-sectional area <A in / 4 of the branch pipe I Make the diameter. By adopting such a pipe diameter, the gas-liquid separation efficiency is lowered by flowing the mixture of the refrigerant and the refrigerating machine oil to the inflow branch pipe H side so as not to flow excessively to the branch pipe I side. To suppress that. Further, a cross-sectional area equal to or larger than that of the inlet of the inflow pipe B can be maintained, and an increase in pressure loss can be suppressed.
 以上のように、実施の形態3の空気調和装置のアキュムレータ6では、容器A内に滞留する液冷媒と冷凍機油に、冷媒と冷凍機油との混合物を送り込むための分岐配管Iに液吸入穴Oを空けるようにしたので、例えば、冷凍機油が液冷媒より上側に多く位置するような場合でも、液吸入穴Oから冷凍機油を吸い込んで容器A内下部に送り込むことができるので、油戻し穴Dからの返油を促進することができる。 As described above, in the accumulator 6 of the air conditioner according to the third embodiment, the liquid suction hole O is inserted into the branch pipe I for feeding the mixture of the refrigerant and the refrigerating machine oil into the liquid refrigerant and the refrigerating machine oil staying in the container A. Since, for example, even when the refrigeration oil is located above the liquid refrigerant, the refrigeration oil can be sucked from the liquid suction hole O and sent to the lower part in the container A, so that the oil return hole D The oil return from can be promoted.
 実施の形態4.
 図8は実施の形態4のアキュムレータ6の構造を表す図である。図8において、図5と同じ番号を付したものは、実施の形態1において説明したことと同様の機能を果たすものである。ここで、構造的には、本実施の形態の分配継手Gは、容器A外で流入管B、流入分岐管Hおよび分岐配管Iと接続している点では上述の実施の形態とは異なる。
Embodiment 4 FIG.
FIG. 8 is a diagram illustrating the structure of the accumulator 6 according to the fourth embodiment. In FIG. 8, the same reference numerals as those in FIG. 5 perform the same functions as those described in the first embodiment. Here, structurally, the distribution joint G of the present embodiment is different from the above-described embodiment in that it is connected to the inflow pipe B, the inflow branch pipe H, and the branch pipe I outside the container A.
 電磁弁Pは、分岐配管Iへ冷媒等の通過させるまたはさせないようにするための開閉動作を行う。温度検出器Qは流出管Cから流出する冷媒等の温度を検出する。そして、例えば上述した制御装置8が、温度検出器Qの検出に係る温度に基づいて、電磁弁Pに動作を行わせるようにする。なお、温度検出器Qは、アキュムレータに流入する冷媒の温度を検出できる位置、例えば流入管B、に設置されていてもよい。 The solenoid valve P performs an opening / closing operation for allowing or not allowing refrigerant or the like to pass through the branch pipe I. The temperature detector Q detects the temperature of the refrigerant or the like flowing out from the outflow pipe C. For example, the control device 8 described above causes the solenoid valve P to perform an operation based on the temperature related to the detection of the temperature detector Q. The temperature detector Q may be installed at a position where the temperature of the refrigerant flowing into the accumulator can be detected, for example, the inflow pipe B.
 上述したように、低温環境下である約-15℃を境に冷媒の密度と冷凍機油の密度との大小関係が変わる。そこで、制御装置8は、例えば温度検出器Qの検出に係る温度が約-15℃に到達する少し前の温度(例えば-14℃)より低いと判断すると、電磁弁Pを開放させて、冷媒および冷凍機油の混合物が分岐配管Iを通過させるようにし、滞留する液冷媒と冷凍機油とを攪拌させるようにする。 As described above, the magnitude relationship between the density of the refrigerant and the density of the refrigerating machine oil changes at about −15 ° C., which is a low temperature environment. Therefore, for example, when the control device 8 determines that the temperature related to detection by the temperature detector Q is lower than a temperature (for example, −14 ° C.) just before reaching −15 ° C., the control device 8 opens the solenoid valve P, and the refrigerant In addition, the mixture of the refrigerating machine oil is allowed to pass through the branch pipe I, and the liquid refrigerant and the refrigerating machine oil that are staying are agitated.
 一方、温度検出器Qの検出に係る温度が-14℃以上であると判断すると、制御装置8は、電磁弁Pを閉止させて、冷媒および冷凍機油の混合物が分岐配管Iを通過させないようにする。これにより、冷媒および冷凍機油の混合物はすべて流入分岐管H側に流れるため、通常のアキュムレータと気液分離効率を同等にすることができる。 On the other hand, when determining that the temperature related to detection by the temperature detector Q is -14 ° C. or higher, the control device 8 closes the solenoid valve P so that the mixture of refrigerant and refrigerating machine oil does not pass through the branch pipe I. To do. As a result, since the mixture of the refrigerant and the refrigerating machine oil all flows to the inflow branch pipe H side, the gas-liquid separation efficiency can be made equal to that of a normal accumulator.
 ここで、流入分岐管Hの内断面積を流入管Bの入口内断面積と同等とする。また、分岐配管Iの内断面積を流入分岐管Hよりも小さくする。例えば、本実施の形態では、流入管Bの入口内断面積Ainに対し、流入分岐管Hの内断面積をAin、分岐配管Iの内断面積<Ainとなるような管径にする。このような管径とすることで、冷媒と冷凍機油との混合物を、分岐配管I側に過剰に流さないようにし、圧力損失の増加を抑制することが可能になる。 Here, the inner cross-sectional area of the inflow branch pipe H is made equal to the inner cross-sectional area of the inlet pipe B. Further, the inner sectional area of the branch pipe I is made smaller than that of the inflow branch pipe H. For example, in this embodiment, with respect to the inlet in the cross-sectional area A in the inlet pipe B, and the inner cross-sectional area of the inlet branch pipe H A in, the tube diameter such that the inner cross-sectional area <A in the branch pipe I To do. By setting it as such a pipe diameter, it becomes possible not to flow the mixture of a refrigerant | coolant and refrigerator oil to the branch piping I side excessively, and to suppress the increase in pressure loss.
 以上のように、実施の形態4の空気調和装置によれば、冷媒等の温度を検出するための温度検出器Qと、温度検出器Qの検出に係る温度に基づいて、分岐配管Iへ冷媒等の通過させるまたはさせないようにするための電磁弁Pを設けるようにしたので、例えば、容器A内下部において、冷凍機油が液冷媒よりも下側に位置し、攪拌しなくても油戻し穴Dから圧縮機1へ冷凍機油を返油することができる場合には、電磁弁Pを閉じるようにすることができる。このため、液冷媒を含まない返油を行うことができ、返油の効率を高めることができる。また、電磁弁Pをアキュムレータ6本体に設置することで、回路構成を複雑にすることがない。 As described above, according to the air conditioner of the fourth embodiment, the temperature detector Q for detecting the temperature of the refrigerant and the like, and the refrigerant to the branch pipe I based on the temperature related to the detection of the temperature detector Q. For example, in the lower part in the container A, the refrigerating machine oil is located below the liquid refrigerant and the oil return hole is not required to stir. When refrigerating machine oil can be returned from D to the compressor 1, the solenoid valve P can be closed. For this reason, the oil return which does not contain a liquid refrigerant can be performed, and the efficiency of oil return can be improved. Further, the circuit configuration is not complicated by installing the solenoid valve P in the accumulator 6 body.
 実施の形態5.
 上述した実施の形態では、冷媒回路内の冷媒が二酸化炭素、冷凍機油がPAG油である場合を例に説明したが、その他の冷媒と冷凍機油との組合せにするようにしてもよい。例えば、冷媒については、二酸化炭素とジメチルエーテル、ハイドロフルオロエーテル等のエーテルから構成される混合冷媒等の冷媒としてもよい。また、超臨界状態になる冷媒に限らず、通常の二相状態で熱交換を行う冷媒であるHFC410A、HFC407C等の代替冷媒等の塩素を含まない冷媒、R22、R134a等の従来のフロン系の冷媒、炭化水素等の自然冷媒系の冷媒としてもよい。冷凍機油については、これらの各冷媒と非相溶性を有する冷凍機油とすればよい。
Embodiment 5 FIG.
In the above-described embodiment, the case where the refrigerant in the refrigerant circuit is carbon dioxide and the refrigerating machine oil is PAG oil has been described as an example, but a combination of other refrigerants and refrigerating machine oil may be used. For example, the refrigerant may be a refrigerant such as a mixed refrigerant composed of carbon dioxide and an ether such as dimethyl ether or hydrofluoroether. In addition, the refrigerant is not limited to a supercritical state, but is a refrigerant that does not contain chlorine, such as an alternative refrigerant such as HFC410A and HFC407C, which is a refrigerant that performs heat exchange in a normal two-phase state, and a conventional Freon-based refrigerant such as R22 and R134a. Natural refrigerants such as refrigerants and hydrocarbons may be used. The refrigerating machine oil may be a refrigerating machine oil that is incompatible with each of these refrigerants.
 上述した実施の形態では、空気調和装置への適用について説明した。本発明は、これらの装置に限定することなく、他にアキュムレータを有して冷媒回路を構成している他の冷凍サイクル装置にも適用することができる。 In the embodiment described above, application to an air conditioner has been described. The present invention is not limited to these devices, and can also be applied to other refrigeration cycle devices that have an accumulator and constitute a refrigerant circuit.
 1 圧縮機、2 流路切替弁、3 熱源側熱交換器、4a,4b 電子膨張弁、5a,5b 負荷側熱交換器、6,60 アキュムレータ、7 送風機、8 制御装置、9a,9b 送風機、51 ガス配管、52 液配管、100 室外ユニット、200a,200b 室内ユニット、A 容器、B 流入管、C 流出管、D 油戻し穴、E 排出口、F 取込口、G 分配継手、H 流入分岐管、I 分岐配管、J 攪拌用排出口、K 分配継手、L 分岐管、M 分岐枝管、N 排出口、O 液吸入穴、P 電磁弁、Q 温度検出器。 1 compressor, 2 flow path switching valve, 3 heat source side heat exchanger, 4a, 4b electronic expansion valve, 5a, 5b load side heat exchanger, 6,60 accumulator, 7 blower, 8 control device, 9a, 9b blower, 51 gas pipe, 52 liquid pipe, 100 outdoor unit, 200a, 200b indoor unit, A container, B inlet pipe, C outlet pipe, D oil return hole, E outlet, F inlet, G distribution joint, H inlet branch Pipe, I branch pipe, J stirring outlet, K distribution joint, L branch pipe, M branch branch pipe, N outlet, O liquid suction hole, P solenoid valve, Q temperature detector.

Claims (10)

  1.  冷凍サイクル装置の圧縮機に気相の冷媒を供給するために気液分離を行い、液体を溜めるアキュムレータにおいて、
     前記液体を溜めるための容器と、
     冷媒回路を循環する冷凍機油を含む冷媒を前記容器内に流入させるための流入管と、
     該流入管に流入した冷媒を複数に分配するための分配継手と、
     分配された冷媒を前記容器の下部に導き、前記冷媒により前記容器内に滞留する液体を攪拌させるための分岐配管と、
     前記容器内に滞留する液体中の冷凍機油を、冷媒と共に流出させるための油戻し穴を有する流出管と
    を備えることを特徴とするアキュムレータ。
    In the accumulator that performs gas-liquid separation to supply the gas-phase refrigerant to the compressor of the refrigeration cycle apparatus and stores the liquid,
    A container for storing the liquid;
    An inflow pipe for allowing a refrigerant containing refrigerating machine oil circulating in the refrigerant circuit to flow into the container;
    A distribution joint for distributing the refrigerant flowing into the inflow pipe into a plurality of parts;
    A branch pipe for guiding the distributed refrigerant to the lower part of the container, and stirring the liquid retained in the container by the refrigerant;
    An accumulator comprising an outflow pipe having an oil return hole for allowing the refrigeration oil in the liquid staying in the container to flow out together with the refrigerant.
  2.  前記分岐配管を流れる冷媒とは別の分配された冷媒を前記容器内に排出するための配管を有し、該配管の一端にある冷媒の排出口を、前記容器内の空間の上半分側に位置させることを特徴とする請求項1に記載のアキュムレータ。 There is a pipe for discharging a distributed refrigerant different from the refrigerant flowing through the branch pipe into the container, and the refrigerant outlet at one end of the pipe is on the upper half side of the space in the container The accumulator according to claim 1, wherein the accumulator is positioned.
  3.  前記分岐配管を流れる冷媒をさらに分配するための1又は複数の分配継手と配管とを多段に接続していることを特徴とする請求項1または請求項2に記載のアキュムレータ。 The accumulator according to claim 1 or 2, wherein one or a plurality of distribution joints and pipes for further distributing the refrigerant flowing through the branch pipe are connected in multiple stages.
  4.  前記冷媒の流れに対して前記分岐配管より下流側にある配管に、管壁を貫通させた複数の貫通穴を設けたことを特徴とする請求項1~請求項3のいずれかに記載のアキュムレータ。 The accumulator according to any one of claims 1 to 3, wherein a plurality of through holes penetrating a pipe wall are provided in a pipe downstream of the branch pipe with respect to the refrigerant flow. .
  5.  前記分配継手と前記分岐配管とを前記容器内で接続していることを特徴とする請求項1~請求項4のいずれかに記載のアキュムレータ。 The accumulator according to any one of claims 1 to 4, wherein the distribution joint and the branch pipe are connected in the container.
  6.  前記分岐配管の冷媒通過を制御するための開閉装置をさらに備え、
     前記容器外部で接続した前記分配継手と前記分岐配管との間に前記開閉装置を設置することを特徴とする請求項1~請求項4のいずれかに記載のアキュムレータ。
    An opening / closing device for controlling passage of refrigerant in the branch pipe;
    The accumulator according to any one of claims 1 to 4, wherein the opening / closing device is installed between the distribution joint connected outside the container and the branch pipe.
  7.  前記容器内に滞留する液体の温度、前記容器に流入する液体の温度または前記容器から流出する液体の温度の少なくとも1の温度を検出するための温度検出器をさらに備え、
     前記温度検出器の検出に係る温度に基づいて、前記容器下部の液冷媒の密度が前記冷凍機油の密度よりも小さくなる温度では前記開閉装置を閉じ、前記容器下部の液冷媒の密度が前記冷凍機油の密度よりも大きくなる温度では前記開閉装置を開くように制御することを特徴とする請求項6に記載のアキュムレータ。
    A temperature detector for detecting at least one of a temperature of the liquid staying in the container, a temperature of the liquid flowing into the container, or a temperature of the liquid flowing out of the container;
    The switchgear is closed at a temperature at which the density of the liquid refrigerant in the lower part of the container is lower than the density of the refrigerating machine oil based on the temperature detected by the temperature detector, and the density of the liquid refrigerant in the lower part of the container is The accumulator according to claim 6, wherein the accumulator is controlled to open at a temperature higher than a density of machine oil.
  8.  前記分岐配管を、前記流出管に固定することを特徴とする請求項1~請求項7のいずれかに記載のアキュムレータ。 The accumulator according to any one of claims 1 to 7, wherein the branch pipe is fixed to the outflow pipe.
  9.  吸入した冷媒を圧縮する圧縮機と、熱交換により前記冷媒を凝縮させる凝縮器と、凝縮された冷媒を減圧させるための膨張手段と、減圧された前記冷媒を熱交換により蒸発させる蒸発器と、
     該蒸発器と前記圧縮機の冷媒吸入側との間に設置される請求項1~請求項8のいずれかに記載のアキュムレータと
    を配管接続して前記冷媒を循環させる冷媒回路を構成する冷凍サイクル装置。
    A compressor that compresses the sucked refrigerant; a condenser that condenses the refrigerant by heat exchange; expansion means for depressurizing the condensed refrigerant; an evaporator that evaporates the decompressed refrigerant by heat exchange;
    The refrigeration cycle constituting the refrigerant circuit for circulating the refrigerant by connecting the accumulator according to any one of claims 1 to 8 connected between the evaporator and the refrigerant suction side of the compressor. apparatus.
  10.  前記冷媒は二酸化炭素であり、前記冷凍機油は前記冷媒と非相溶性または難溶性を有する油であることを特徴とする請求項9に記載の冷凍サイクル装置。 10. The refrigeration cycle apparatus according to claim 9, wherein the refrigerant is carbon dioxide, and the refrigerating machine oil is oil that is incompatible or hardly soluble with the refrigerant.
PCT/JP2009/006331 2009-11-25 2009-11-25 Accumulator and refrigeration cycle device WO2011064813A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011542984A JP5425221B2 (en) 2009-11-25 2009-11-25 Accumulator and refrigeration cycle apparatus
PCT/JP2009/006331 WO2011064813A1 (en) 2009-11-25 2009-11-25 Accumulator and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006331 WO2011064813A1 (en) 2009-11-25 2009-11-25 Accumulator and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2011064813A1 true WO2011064813A1 (en) 2011-06-03

Family

ID=44065938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006331 WO2011064813A1 (en) 2009-11-25 2009-11-25 Accumulator and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP5425221B2 (en)
WO (1) WO2011064813A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245837A (en) * 2012-05-23 2013-12-09 Daikin Industries Ltd Refrigerating system
JP2013245836A (en) * 2012-05-23 2013-12-09 Daikin Industries Ltd Refrigerating system
JP2014228177A (en) * 2013-05-21 2014-12-08 日立アプライアンス株式会社 Air conditioner
JP2017015366A (en) * 2015-07-06 2017-01-19 株式会社不二工機 accumulator
CN107062715A (en) * 2017-04-12 2017-08-18 青岛海信日立空调系统有限公司 A kind of gas-liquid separator, air-conditioning system and the method for washing away filtration members
WO2018088127A1 (en) * 2016-11-10 2018-05-17 サンデン・オートモーティブクライメイトシステム株式会社 Accumulator
JP2018128202A (en) * 2017-02-09 2018-08-16 株式会社デンソー Liquid storage unit
WO2019073564A1 (en) * 2017-10-12 2019-04-18 三菱電機株式会社 Gas-liquid separator and refrigerant circuit
CN113167507A (en) * 2019-02-25 2021-07-23 Ats日本株式会社 Refrigeration control system and cooling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503162U (en) * 1973-05-07 1975-01-14
JPH07189908A (en) * 1993-12-28 1995-07-28 Mitsubishi Electric Corp Accumulator and refrigeration cycle device
JPH10141813A (en) * 1996-11-06 1998-05-29 Mitsubishi Electric Corp Accumulator
JP2003262418A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Refrigerating air conditioner
JP2007139250A (en) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620056Y2 (en) * 1987-12-29 1994-05-25 ダイキン工業株式会社 accumulator
JPH01112375U (en) * 1988-01-21 1989-07-28
JPH0569570U (en) * 1992-02-25 1993-09-21 カルソニック株式会社 Liquid tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503162U (en) * 1973-05-07 1975-01-14
JPH07189908A (en) * 1993-12-28 1995-07-28 Mitsubishi Electric Corp Accumulator and refrigeration cycle device
JPH10141813A (en) * 1996-11-06 1998-05-29 Mitsubishi Electric Corp Accumulator
JP2003262418A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Refrigerating air conditioner
JP2007139250A (en) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9791176B2 (en) 2012-05-23 2017-10-17 Daikin Industries, Ltd. Refrigeration apparatus
JP2013245836A (en) * 2012-05-23 2013-12-09 Daikin Industries Ltd Refrigerating system
EP2865970A4 (en) * 2012-05-23 2016-04-06 Daikin Ind Ltd Freezer
JP2013245837A (en) * 2012-05-23 2013-12-09 Daikin Industries Ltd Refrigerating system
JP2014228177A (en) * 2013-05-21 2014-12-08 日立アプライアンス株式会社 Air conditioner
JP2017015366A (en) * 2015-07-06 2017-01-19 株式会社不二工機 accumulator
WO2018088127A1 (en) * 2016-11-10 2018-05-17 サンデン・オートモーティブクライメイトシステム株式会社 Accumulator
JP2018128202A (en) * 2017-02-09 2018-08-16 株式会社デンソー Liquid storage unit
CN107062715A (en) * 2017-04-12 2017-08-18 青岛海信日立空调系统有限公司 A kind of gas-liquid separator, air-conditioning system and the method for washing away filtration members
JPWO2019073564A1 (en) * 2017-10-12 2020-10-01 三菱電機株式会社 Gas-liquid separator and refrigerant circuit
WO2019073564A1 (en) * 2017-10-12 2019-04-18 三菱電機株式会社 Gas-liquid separator and refrigerant circuit
CN113167507A (en) * 2019-02-25 2021-07-23 Ats日本株式会社 Refrigeration control system and cooling system
CN113167507B (en) * 2019-02-25 2023-03-31 Ats日本株式会社 Refrigeration control system and cooling system
US11841177B2 (en) 2019-02-25 2023-12-12 Ats Japan Co., Ltd. Refrigerant control system and cooling system

Also Published As

Publication number Publication date
JPWO2011064813A1 (en) 2013-04-11
JP5425221B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5425221B2 (en) Accumulator and refrigeration cycle apparatus
US9797610B2 (en) Air-conditioning apparatus with regulation of injection flow rate
US9683768B2 (en) Air-conditioning apparatus
JP5730335B2 (en) Air conditioner
JP5855312B2 (en) Air conditioner
JP5871959B2 (en) Air conditioner
JP5992089B2 (en) Air conditioner
WO2012104893A1 (en) Air-conditioning device
WO2014141374A1 (en) Air conditioner
JP5992088B2 (en) Air conditioner
EP2672202B1 (en) Air-conditioning device
JP2006153349A (en) Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same
WO2006003925A1 (en) Freezer and air conditioner
WO2013069043A1 (en) Air-conditioning apparatus
WO2014141373A1 (en) Air conditioner
JP2008196762A (en) Flow divider, heat exchanger unit and refrigerating device
JP2006250479A (en) Air conditioner
JP2006017380A (en) Air conditioner
WO2016207993A1 (en) Air conditioner
JP2023051379A (en) Refrigerant container and refrigeration cycle device
KR20070022383A (en) Freezer and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011542984

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851605

Country of ref document: EP

Kind code of ref document: A1