WO2011064658A1 - Procede de depolymerisation de polysaccharides par broyage mecanique - Google Patents

Procede de depolymerisation de polysaccharides par broyage mecanique Download PDF

Info

Publication number
WO2011064658A1
WO2011064658A1 PCT/IB2010/003053 IB2010003053W WO2011064658A1 WO 2011064658 A1 WO2011064658 A1 WO 2011064658A1 IB 2010003053 W IB2010003053 W IB 2010003053W WO 2011064658 A1 WO2011064658 A1 WO 2011064658A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysaccharide
molar mass
depolymerization
weight average
average molar
Prior art date
Application number
PCT/IB2010/003053
Other languages
English (en)
Inventor
Claire Boisset
Tinaïg LE COSTAOUEC
Joëlle COZIEN
Corinne Sinquin
Jacqueline Ratiskol
William Helbert
Gaëlle CORREC
Véronique LARRETA GARDE
Original Assignee
Institut Francais De Recherche Pour L'exploitation De La Mer - Ifremer
Centre National De Recherche Scientifique - Cnrs
Universite Pierre Et Marie Curie (Paris 6 )
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais De Recherche Pour L'exploitation De La Mer - Ifremer, Centre National De Recherche Scientifique - Cnrs, Universite Pierre Et Marie Curie (Paris 6 ) filed Critical Institut Francais De Recherche Pour L'exploitation De La Mer - Ifremer
Priority to EP10803627A priority Critical patent/EP2504382A1/fr
Priority to US13/509,029 priority patent/US20130032650A1/en
Publication of WO2011064658A1 publication Critical patent/WO2011064658A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B35/00Preparation of derivatives of amylopectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0042Carragenan or carragen, i.e. D-galactose and 3,6-anhydro-D-galactose, both partially sulfated, e.g. from red algae Chondrus crispus or Gigantia stellata; kappa-Carragenan; iota-Carragenan; lambda-Carragenan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0045Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0051Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Fructofuranans, e.g. beta-2,6-D-fructofuranan, i.e. levan; Derivatives thereof
    • C08B37/0054Inulin, i.e. beta-2,1-D-fructofuranan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0087Glucomannans or galactomannans; Tara or tara gum, i.e. D-mannose and D-galactose units, e.g. from Cesalpinia spinosa; Tamarind gum, i.e. D-galactose, D-glucose and D-xylose units, e.g. from Tamarindus indica; Gum Arabic, i.e. L-arabinose, L-rhamnose, D-galactose and D-glucuronic acid units, e.g. from Acacia Senegal or Acacia Seyal; Derivatives thereof
    • C08B37/0096Guar, guar gum, guar flour, guaran, i.e. (beta-1,4) linked D-mannose units in the main chain branched with D-galactose units in (alpha-1,6), e.g. from Cyamopsis Tetragonolobus; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials

Definitions

  • the present invention relates to the field of depolymerization of polysaccharides and, more specifically, to a process for the depolymerization of polysaccharides by mechanical grinding.
  • Polysaccharides are polymers made up of dares. These polymers may have very diverse structures including, in particular, branches or not, or the presence of organic and / or inorganic substituents. In addition, these polysaccharides, which have high molecular weights, are most often in the form of a mixture of osidic chains of different sizes.
  • depolymerization processes have therefore been developed based on chemical, physical and / or enzymatic depolymerization of polysaccharides. It is thus possible to cite, by way of example, depolymerization techniques by irradiation (US Pat. No. 7,259,192), by ultrasound (FR 2,891,831), by radical depolymerization using or not using a metal catalyst (WO 2006/003289 or WO 2006/003290 respectively) or by enzymatic depolymerization (WO 99/004027).
  • the present invention relates to a method of controlled reduction of the weight average molar mass of a polysaccharide to a determined and lower weight average molecular weight, which method comprises a step of mechanical grinding with the aid of a ball mill of said polysaccharide to obtain the polysaccharide having the desired weight average molecular weight.
  • the present invention also relates to the use of a ball mill for reducing the weight average molar mass of a polysaccharide to a lower and determined weight average molecular weight.
  • the depolymerization process developed by the inventors uses a small amount of energy, makes it possible to increase the yield of the final product (close to 1007 ⁇ ), does not require purification steps (saving time, less material and therefore lower cost), and does not require freeze-drying step (expensive step) because the process can use a dry product.
  • the present invention relates to a process for the controlled reduction of the weight average molar mass of a polysaccharide down to a determined and lower weight average molecular weight, which method comprises a step of mechanical grinding with the aid of a ball mill of said polysaccharide to obtain the polysaccharide having the desired weight average molecular weight.
  • polysaccharide is meant a polymer consisting of oste and may include substituents of the organic type (acetates, pyruvates, succinates, lactates, glycerates, propionates, hydroxybutanoates, etc.) and / or inorganic (sulfates, phosphates, etc.).
  • starch polydextrose, lignocellulose, mannan, chitin, chitosan, cellulose, xylans, amylopectin, pectins and galactomannans, such as gum inulin, glucomannans, xanthans, gellanes, alginates, chondroitins, hyaluronans, curdlanes, pullulans, succinoglycans, laminarans, alternateans, scleroglucans, dextrans, levans, fucanes, carrageenans, agars and ulvans and their derivatives.
  • starch polydextrose, lignocellulose, mannan, chitin, chitosan, cellulose, xylans, amylopectin, pectins and galactomannans, such as gum inulin, glucomannans, xanthans, gellanes, alginates, chondroitins,
  • cellulose derivatives By way of example of such derivatives, mention may in particular be made of polysaccharides among those mentioned above but also incorporating substituents of organic type and / or of inorganic type. The person skilled in the art is thus able to determine, in the light of his general knowledge, the nature of the possible derivatives for a given polysaccharide.
  • cellulose derivatives mention may be made of methylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, acetylcellulose, nitrocellulose, carboxymethylnitrocellulose, ethylcellulose and acetate. of cellulose, cellulose acetate butyrate or cellulose acetate propionate.
  • the process according to the invention makes it possible to control the reduction of the weight average molar mass of the polysaccharide by choosing the grinding time and / or the number and the diameter of the balls and by controlling the temperature , and this while preserving their chemical structure.
  • the average molecular weight by weight Mw is equal to:
  • the number average molar mass Mn represents the total mass of all the chains of exchange in a sample divided by the total number of chains in the sample. Let M be the molar mass and Ni the number of mass chains Mi, the number-average molar mass Mn is equal to:
  • Mw corresponding to the weight average molar mass and Mn corresponding to the number average molar mass as described above.
  • the polydispersity index Ip of a polysaccharide can be determined simply after determination of the number average molecular weight (Mn) and weight (Mw) values by HPSEC coupled with triple detection. light scattering, value of the intrinsic viscosity of the polysaccharide and by refactometry.
  • the different grinding parameters to be used in the process according to the invention are a function of the polysaccharide to be depolymerized and of the degree of depolymerization desired and may be determined simply by those skilled in the art with regard to the examples below. More specifically, the method according to the invention uses the following parameters:
  • Vibration frequency of the ball mill between 3 and 60 Hz (180 to 3600 rpm), preferably between 20 Hz and 30 Hz (1200 and 1800 rpm).
  • Number and diameter of the balls used for grinding between 1 and 4 balls preferably between 2 and 3 balls with a diameter of between 0.1 mm and 25 mm, preferably between 5 mm and 15 mm.
  • the method according to the invention also has the advantage of being applied to a solid phase polysaccharide, thereby eliminating the need to prepare a solution of polymers as in the majority of prior art depolymerization processes, which This step is often difficult because of the low solubility of many polysaccharides.
  • solid phase as used in this patent application includes powders, granules, flakes, and particles.
  • the method according to the invention does not comprise a complementary purification step. Indeed, the process according to the invention does not require the addition of any solvent, salt, or metal in order to initiate the depolymerization.
  • the method according to the invention does not comprise a complementary freeze-drying step. Indeed, the process is carried out dry and the product is collected in the form of a very fine powder.
  • the process according to the invention does not comprise a complementary stabilization step of the polysaccharide obtained, for example the reduction of the reducing end of a polysaccharide chain in the case of radical chemical depolymerization using a catalyst. in order to avoid any uncontrolled initiation of the formation of radicals capable of continuing the depolymerization action.
  • the weight average molar mass of the polysaccharide before depolymerization is typically between 3,000,000 and 50,000 g.mol -1 .
  • the weight average molar mass of the polysaccharide is between 1,000,000 g.mol -1 and 1,000 g mol -1, and preferably between 500,000 g.mol _1 e ⁇ 8000 g.mol "1 .
  • the polysaccharide used has a degree of hydration of between 0% and 100%, preferably between 10% and 50% and particularly preferably between 2% and 15%.
  • the grinding temperature is of course adapted so that the polysaccharide is always in the solid phase.
  • the polysaccharide obtained after depolymerization has a polydispersity index Ip of between 1.1 and 5.
  • X A 0 / k 'with k' between 1 and 200, preferably between 10 and 100, provides, after depolymerization, a polysaccharide having the desired weight average molecular weight.
  • the present invention also relates to the use of a ball mill for reducing the weight average molar mass of a polysaccharide to a lower and determined weight average molecular weight.
  • This use makes it possible, as mentioned above, to control the decrease in the weight average molar mass of a polysaccharide by choosing the grinding time and / or the number and the diameter of the balls and by controlling the temperature, and this all by preserving its chemical structure.
  • the polysaccharide used before and after reduction of its molar mass, it is as described above.
  • the polysaccharide used is thus in the solid phase.
  • the use according to the invention makes it possible to reduce the average molecular weight by weight of a polysaccharide without requiring a step complementary to: - purification,
  • the polysaccharides used to illustrate the process according to the invention are exopolysaccharides produced by mesophilic marine bacteria originating from the deep hydrothermal medium.
  • exopolysaccharides a polysaccharide produced by a microorganism and secreted in the medium or present on the surface of the microorganism. More specifically, the two polysaccharides used were derived from Alteromonas tnac / eod / isubsp species. fijiensisbiovar deepsane (HYD 657) and Vibrio diabolicus (HE 800), had polydispersity indices of 1.5 and an average molecular weight greater than 1,000,000 g / mol, in particular 1,100,000 and 175,000 g / mol respectively. 1-2 depolymerization process
  • the grinding was carried out at ambient temperature with a fixed vibration frequency of 30 Hz. For each polysaccharide, two tests were carried out.
  • the total grinding time was 42 hours in 90-minute cycles to allow homogenization of the mixture and cooling of the polysaccharides.
  • the osidic compositions of the native polysaccharides and depolymerized by grinding were then determined by Gas Chromatography (CP).
  • the molar ratio of the monosaccharides present in the native and depolymerized exopolysaccharides is determined after methanolysis of the polysaccharide and silylation to make them volatile. They are thus identified and assayed by gas chromatography in the form of trimethylsilyl methyl glycosides.
  • the molar ratio osidic composition obtained by CP6 of the HYD 657 and HE 800 polysaccharides is presented in Tables 1 and 2 respectively.
  • Fuc fucose
  • Rha rhamnose
  • Sic glucose
  • mannose
  • Gay galactose
  • & lcA glucuronic acid
  • G ⁇ A * galacturonic acid.
  • GIcNAc N-acetyl glucosamine
  • GaINAc N-acetylgalactosamine
  • 6 ⁇ cA glucuronic acid.
  • the average molar mass and the polydispersity index of the polysaccharides were determined over time.
  • the weight average molar mass of each of the two HE 800 and HYD 657 polysaccharides was determined by high performance steric exclusion chromatography.
  • Ip Mw / Mn
  • Mw and Mn values for each polysaccharide were determined by steric exclusion chromatography after elution of the exopolysaccharide on a PL-Aquagel-OH type column. and detected by a coupled 3-angle light scattering detector the refractometric detector, the refractive index (RI) and the value of the intrinsic viscosity of each polysaccharide.
  • Tables 3, 4, 5 and 6 describe the average molecular weight and polydispersity index values for the HYD 657 and HE 800 polysaccharides in tests 1 and 2.
  • results show that the process according to the invention makes it possible to obtain a depolymerization of the various polysaccharides tested resulting, in this particular case, in average molecular weights of 20,000 and 17,000 g / mol, starting from native polysaccharides of mass. average molecular weight of 1,100,000 g / mol and 1,750,000 g / mol respectively.
  • results also show that this depolymerization is obtained with a good value of the polydispersity index in polysaccharides of low molecular weight.
  • Tables 7, 8, 9, 10 and 11 describe the average molecular weight and polydispersity index values for the HYD657 and HE 800 polysaccharides during the tests using either 2 9 mm balls or 2 12 mm beads. diameter, one ball 15 mm in diameter.
  • the starting polysaccharide is the exopolysaccharide of Vibrio diabolicus (HE 800) described above.
  • Table 12 describes the mean molar mass and polydispersity during this test.
  • a first analysis shows that this depolymerization reaction does not obey a simple first order relationship.
  • the starting polysaccharide is always the exopolysaccharide of Vibrio diabolicus (HE 800) previously described.
  • the milling parameters are the same with, however, 60 minutes grinding cycles instead of 90 minutes in the 1st test.
  • Table 13 describes the mean molar mass and polydispersity index values during this 2 nd test.
  • the starting polysaccharide is exopolysaccharide Vibrio diabolicus (ET 800) described above but with an average molecular weight two times lower.
  • Table 14 describes the average molecular weight and polydispersity index values in this test.
  • the starting polysaccharide is exopolysaccharide Vibrio diabolicus (ET 800) described in the 3rd test.
  • the grinding parameters are changed once more and use a single 15 mm diameter ball and a grinding time of 6 hours.
  • Table 15 describes the values of average molar mass and polydispersity index during this 4 th test.
  • A A 0 e "+ 1,8t 5000 (t mox - t) - 500 + t X
  • a and A 0 correspond respectively to the molecular weight (g / mol) at time t (in minutes) and initial polysaccharide
  • t is the grinding time in minutes
  • X is A 0/40.
  • the starting polysaccharide is the exopolysaccharide of Alteromonas macleodii (HYD 657).
  • Table 16 describes the average molecular weight and polydispersity index values in this test.
  • t is the grinding time in minutes
  • k is a constant between 0.5 and 3 depending on the conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

La présente invention concerne un procédé de réduction contrôlée de la masse molaire moyenne en poids d'un polysaccharide jusqu'à une masse molaire moyenne en poids inférieure et déterminée, lequel procédé comprend une étape de broyage mécanique à l'aide d'un broyeur à billes dudit polysaccharide jusqu'à obtenir le polysaccharide présentant la masse molaire moyenne en poids souhaitée.

Description

Procédé de dépolymérisation de polysaccharides par broyage mécanique
Cette demande de brevet revendique la priorité de la demande de brevet français FR 09/05705 déposée le 27 novembre 2009, laquelle est incorporée au texte de la présente demande de brevet par référence.
Domaine de l'invention
La présente invention concerne le domaine de la dépolymérisation des polysaccharides et, plus spécifiquement, un procédé de dépolymérisation de polysaccharides par broyage mécanique.
Art Antérieur
Les polysaccharides sont des polymères constitués d'osés. Ces polymères peuvent présenter des structures très diverses comportant, notamment, des ramifications ou non, ou encore la présence de substituants organiques et/ou inorganiques. En outre, ces polysaccharides qui présentent des poids moléculaires élevés, se trouvent le plus souvent sous la forme de mélange de chaînes osidiques de différentes tailles.
Si ces polysaccharides bénéficient de très larges utilisations possibles dans les domaines alimentaires, cosmétiques ou pharmaceutiques, la taille importante de ces composés (laquelle taille importante est souvent associée à des problèmes de solubilité et/ou viscosité) constitue une limitation pour une plus large utilisation de leurs propriétés.
C'est pour élargir le spectre d'utilisation de ces polysaccharides que des procédés de dépolymérisations ont donc été développés basés sur une dépolymérisation chimique, physique et/ou enzymatique des polysaccharides. On peut ainsi citer, à titre d'exemple, les techniques de dépolymérisation par irradiation (US 7,259,192), par ultrasons (FR 2,891,831), par dépolymérisation radicalaire utilisant ou non un catalyseur métallique (WO 2006/003289 ou WO 2006/003290 respectivement) ou encore par dépolymérisation enzymatique (WO 99/004027).
Toutefois, ces différentes techniques présentent de nombreux inconvénients avec, pour les techniques les plus efficaces (chimiques et enzymatiques), la nécessité de recourir à des étapes de purification et/ou de lyophilisation. Ces techniques sont en effet réalisées sur des phases liquides et sont en outre susceptibles de générer des coproduits.
Sommaire de l'invention
Les inventeurs ont maintenant développé un nouveau procédé de dépolymérisation par broyage mécanique, lequel procédé possède les avantages suivants par rapport aux autres procédés:
a) Mise en oeuvre à sec, en l'absence de solvants (eau, solvants aqueux, solvants organiques),
b) Rendement élevé (supérieur à 95 %),
c) Aucune étape de purification après la dépolymérisation,
d) Aucune étape de lyophilisation,
e) Préservation de la composition en oses, c'est-à-dire de la structure osidique du polysaccharide,
f) Préservation de la composition en substituants de type organique et inorganique, substituants présents initialement sur la structure osidique du polysaccharide,
g) Obtention de polysaccharides de tailles homogènes,
h) Obtention de polysaccharides de bas poids moléculaires, et
i) Aucune étape de stabilisation des produits finaux.
En conséquence, la présente invention concerne un procédé de réduction contrôlée de la masse molaire moyenne en poids d'un polysaccharide jusqu'à une masse molaire moyenne en poids inférieure et déterminée, lequel procédé comprend une étape de broyage mécanique à l'aide d'un broyeur à billes dudit polysaccharide jusqu'à obtenir le polysaccharide présentant la masse molaire moyenne en poids souhaitée.
La présente invention concerne également l'utilisation d'un broyeur à bille pour réduire la masse molaire moyenne en poids d'un polysaccharide jusqu'à une masse molaire moyenne en poids inférieure et déterminée.
Description détaillée de l'invention
Le procédé de dépolymérisation développé par les inventeurs utilise une faible quantité d'énergie, permet d'augmenter le rendement du produit final (proche de 1007ο), ne nécessite pas d'étapes de purification (gain de temps, moins de matériel et donc coût plus faible), et ne nécessite pas d'étape de lyophilisation (étape chère) car le procédé peut utiliser un produit sec.
Plus spécifiquement, la présente invention porte sur un procédé de réduction contrôlée de la masse molaire moyenne en poids d'un polysaccharide jusqu'à une masse molaire moyenne en poids inférieure et déterminée, lequel procédé comprend une étape de broyage mécanique à l'aide d'un broyeur à billes dudit polysaccharide jusqu'à obtenir le polysaccharide présentant la masse molaire moyenne en poids souhaitée.
Par polysaccharide, on entend un polymère constitué d'osés et pouvant comporter des substituants de type organique (acétates, pyruvates, succinates, lactates, glycerates, propionates, hydroxybutanoates, etc.) et/ou inorganique (sulfates, phosphates, etc.).
A titre d'exemple de tels polysaccharides, on peut citer l'amidon, le polydextrose, la lignocellulose, le mannane, la chitine, le chitosane, la cellulose, les xylanes, l'amylopectine, les pectines, les galactomannanes comme la gomme de guar, l'inuline, les glucomannanes, les xanthanes, les gellanes, les alginates, les chondroïtines, les hyaluronanes, les curdlanes, les pullulanes, les succinoglycanes, les laminaranes, les alte nanes, les scleroglucanes, les dextranes, les levanes, les f ucanes, les carraghénanes, les agars et les ulvanes et leurs dérivés.
A titre d'exemple de tels dérivés, on peut citer notamment des polysaccharides parmi ceux cités précédemment mais intégrant en outre des substituants de type organique et/ou de type inorganique. L'homme du métier est ainsi à même de déterminer, au regard de ses connaissances générales, la nature des dérivés possibles pour un polysaccharide donné. Pour des dérivés de la cellulose, on pourra ainsi citer la méthylcellulose, l'hydroxyéthylcellulose, l'hydroxypropyl méthylcellulose, l'hydroxypropyl cellulose, la carboxyméthylcellulose, l'acétyl cellulose, la nitrocellulose, la carboxyméthyl nitrocellulose, l'éthylcellulose, l'acétate de cellulose, le butyrate d'acétate de cellulose ou encore le propionate d'acétate de cellulose.
Du fait des conditions douces de la dépolymérisation, le procédé selon l'invention permet de contrôler la diminution de la masse molaire moyenne en poids du polysaccharide en choisissant la durée de broyage et/ou le nombre et le diamètre des billes et en contrôlant la température, et ceci tout en préservant leur structure chimique.
La biosynthèse des polymères en général aboutit le plus souvent à une distribution de chaînes de longueur différentes. Aussi, il n'est généralement pas possible de parler de masse molaire d'un polymère ou d'un polysaccharide du fait de cette hétérogénéité. On parle donc de masse molaire moyenne, Mw, laquelle s'exprime en g.mol"1.
Pour la masse molaire moyenne en poids Mw, soit M, la masse molaire de l'espèce i et Ni représente le nombre de molécules de l'espèce i, la masse molaire moyenne en poids Mw est égale à :
Mw = TNi x Mi2
∑Ni x Mi
La masse molaire moyenne en nombre Mn représente la masse totale de toutes les chaînes osidiques dans un échantillon divisé par le nombre total des chaînes dans l'échantillon. Soit M, la masse molaire et Ni le nombre de chaînes de masse Mi, la masse molaire moyenne en nombre Mn est égale à :
Mn =∑ Ni x Mi
∑Ni
L'indice de polydispersité Ip permet de caractériser globalement la dispersité des masses molaires d'un polysaccharide et est égal à :
Ip = Mw
Mn
Avec Mw correspondant à la masse molaire moyenne en poids et Mn correspondant à la masse molaire moyenne en nombre telles que décrites précédemment.
L'indice de polydispersité Ip d'un polysaccharide peut être déterminé simplement après détermination des valeurs de la masse molaire moyenne en nombre (Mn) et en poids (Mw) par HPSEC couplée à une triple détection '. diffusion de la lumière, valeur de la viscosité intrinsèque du polysaccharide et par réf ractométrie.
Il existe de nombreuses méthodes bien connues de l'homme du métier pour déterminer la masse molaire moyenne en poids d'un polysaccharide. A titre d'exemple de telles méthodes, on peut citer la spectroscopie de masse, l'osmométrie, l'ultra centrifugation analytique, la chromatographie d'exclusion stérique haute performance ou encore la diffusion de neutrons aux petits angles (DNPA). De préférence, la méthode utilisée est la Chromatographie d'Exclusion Stérique Haute Performance.
Les différents paramètres de broyage à utiliser dans le procédé selon l'invention sont fonction du polysaccharide à dépolymériser et du degré de dépolymérisation souhaité et pourront être déterminés simplement par l'homme du métier au regard des exemples ci-après. Plus spécifiquement, le procédé selon l'invention utilise les paramètres suivants :
a) Durée de broyage comprise entre une minute et 50 heures, de préférence entre 30 minutes et 24 heures,
b) Température de broyage comprise entre -196°C et +80°C, de préférence entre -130°C et +20°C.
c) Fréquence de vibration du broyeur à billes comprise entre 3 et 60 Hz (180 à 3600 tr/min), de préférence entre 20 Hz et 30 Hz (1200 et 1800 tr/min).
Nombre et diamètre des billes utilisées pour le broyage entre 1 et 4 billes, de préférence entre 2 et 3 billes de diamètre compris entre 0,1 mm et 25 mm, de préférence entre 5 mm et 15 mm.
Le procédé selon l'invention présente en outre l'avantage d'être appliqué à un polysaccharide en phase solide, éliminant par la même la nécessité de préparer une solution de polymères comme dans la majorité des procédés de dépolymérisation de l'art antérieur, laquelle étape est souvent difficile du fait de la faible solubilité de nombre de polysaccharides.
Le terme « phase solide » tel qu'utilisé dans la présente demande de brevet inclut les poudres, les granules, les flocons, et les particules.
Le procédé selon l'invention ne comprend pas d'étape complémentaire de purification. En effet, le procédé selon l'invention ne nécessite l'ajout d'aucun solvant, sel, ou métal en vue d'initier la dépolymérisation.
Avantageusement, le procédé selon l'invention ne comprend pas d'étape complémentaire de lyophilisation. En effet, le procédé est réalisé à sec et le produit est recueilli sous forme d'une poudre très fine.
Avantageusement toujours, le procédé selon l'invention ne comprend pas d'étape complémentaire de stabilisation du polysaccharide obtenu, par exemple la réduction de l'extrémité réductrice d'une chaîne de polysaccharide dans le cas de la dépolymérisation chimique par voie radicalaire utilisant un catalyseur métallique, afin d'éviter toute initiation non contrôlée de la formation de radicaux susceptibles de continuer l'action de dépolymérisation.
La masse molaire moyenne en poids du polysaccharide avant dépolymérisation est comprise typiquement entre 3 000 000 et 50 000 g.mol"1.
Après dépolymérisation, la masse molaire moyenne en poids du polysaccharide est comprise entre 1000000 g.mol"1 et 1000 g.mol"1 et, de préférence entre 500 000 g.mol_1 e† 8 000 g.mol"1.
Le polysaccharide utilisé présente un degré d'hydratation compris entre 0% et 100%, de préférence entre 10% et 50% et de manière particulièrement préférée entre 2% et 15%. En fonction du degré d'hydratation du polysaccharide, la température de broyage est bien entendue adaptée de sorte que le polysaccharide soit toujours en phase solide.
Selon un mode de réalisation préféré du procédé selon l'invention, le polysaccharide obtenu après dépolymérisation présente un indice de polydispersité Ip compris entre 1,1 et 5.
Selon un mode de réalisation préféré, le procédé selon l'invention est caractérisé en ce que la masse molaire moyenne en poids du polysaccharide (g/mol) avant dépolymérisation (A0), la masse molaire moyenne en poids du polysaccharide après dépolymérisation (At) et le temps (minutes) de broyage (t) sont choisis de telle manière que la résolution de l'équation suivante : A = A0 e ~kt -200†+ X où k k est une constante comprise entre 0, 1 et 5, de préférence 0,5 et 3, et
X = A0 /k' avec k' compris entre 1 et 200, de préférence entre 10 et 100, permet d'obtenir, après dépolymérisation, un polysaccharide présentant la masse molaire moyenne en poids souhaitée.
La présente invention porte également sur l'utilisation d'un broyeur à bille pour réduire la masse molaire moyenne en poids d'un polysaccharide jusqu'à une masse molaire moyenne en poids inférieure et déterminée.
Cette utilisation permet, comme cela est mentionné précédemment, de contrôler la diminution de la masse molaire moyenne en poids d'un polysaccharide en choisissant la durée de broyage et/ou le nombre et le diamètre des billes et en contrôlant la température, et ceci tout en préservant sa structure chimique. Concernant le polysaccharide utilisé, avant et après réduction de sa masse molaire, celui-ci est tel que décrit précédemment. De préférence, le polysaccharide utilisé est ainsi en phase solide.
Comme cela apparaît précédemment, l'utilisation selon l'invention permet de réduire la masse molaire moyenne en poids d'un polysaccharide sans nécessiter d'étape complémentaire de: - purification,
- lyophilisation, et/ou
- stabilisation du polysaccharide obtenu.
D'autres caractéristiques de l'invention apparaîtront dans les exemples qui suivent, sans pour autant que ceux-ci ne constituent une quelconque limitation de I ' invention.
Exemples
1) ùépo/ymérisation avec préservation de la composition en oses
1-1 Polysaccharides utilisés
Les polysaccharides utilisés pour illustrer le procédé selon l'invention sont des exopolysaccharides produits par des bactéries marines mésophiles issues du milieu hydrothermal profond.
Par exopolysaccharides (EPS), on entend un polysaccharide produit par un microorganisme et sécrété dans le milieu ou présent à la surface du microorganisme. Plus spécifiquement, les deux polysaccharides utilisés étaient issus des espèces Alteromonas tnac/eod/isubsp. fijiensisbiovar deepsane (HYD 657) et Vibrio diabolicus (HE 800), présentaient des indices de polydispersité de 1,5 et une masse moléculaire moyenne supérieure à 1000000 g/mol en particulier de 1 100000 et 1750000 g/mole respectivement. 1-2 Procédé de dépolymérisation
Deux grammes de polysaccharide lyophilisé sous forme de poudre ont été placés dans un bol en acier inoxydable d'un volume de 20 ml en présence de deux billes de 9 millimètres de diamètre, également en acier inoxydable.
Le broyage a été effectué à température ambiante avec une fréquence de vibration fixe de 30 Hz. Pour chaque polysaccharide, deux essais ont été réalisés.
Lors du premier essai, la durée totale du broyage a été de 42 heures par cycles de 90 minutes, pour permettre l'homogénéisation du mélange et le refroidissement des polysaccharides.
Lors du second essai, la durée totale du broyage a été de 42 heures par cycles de 60 minutes, pour permettre l'homogénéisation du mélange en comprenant de 5 à 10 minutes de refroidissement des polysaccharides. 1-3 Suivi de la composition en oses
Au cours des deux essais décrits précédemment, des prélèvements réguliers (12h, 24h, 36h et 42h pour l'essai 1 et lOh, 25h, 35h et 42h pour l'essai 2) ont été effectués pour permettre l'analyse des polysaccharides en terme de composition osidique.
Les compositions osidiques des polysaccharides natifs et dépolymérisés par broyage ont ensuite été déterminées par Chromatographie en Phase Gazeuse (CP&).
Le ratio molaire des monosaccharides présents dans les exopolysaccharides natifs et dépolymérisés est déterminé après méthanolyse du polysaccharide et silylation afin de les rendre volatils. Ils sont ainsi identifiés et dosés par chromatographie en phase gazeuse sous forme de méthylglycosides C riméthylsilylés.
La composition osidique en rapports molaires obtenue par CP6 des polysaccharides HYD 657 et HE 800 est présentée dans les tableaux 1 et 2 respectivement.
Tableau 1
Figure imgf000009_0001
Fuc, fucose; Rha, rhamnose; Sic, glucose; ΑΛαη, mannose; Gai, galactose; &\cA, acide glucuronique; G \A *. acide galacturonique.
Tableau 2 Composition osidique (ratios molaires) de l'EPS HE 800 natif et de ses dérivés obtenus iors des deux essais de broyage mécanique
Composition du polysaccharide HE 800 (en ratios molaires)
Nature du polysaccharide HE 800
GIcNAc GaINac GIcA natif 1 1.8 3.1
12h - essai 1 1 2.1 3.3
24h - essai 1 1 2 3.1
36h - essai 1 1 2.1 3
42h - essai 1 1 2 3.1
10h - essai 2 1 1.6 2.9
25h - essai 2 1 1.9 3.1
35h - essai 2 1 2 3
42 h - essai 2 1 1.8 3.8
GIcNAc : N-acétyl glucosamine; GaINAc : N-acétyl galactosamine; 6\cA : acide glucuronique.
Les résultats montrent que, malgré leur différence de structure et de compositions, le procédé de dépolymérisation ne modifie pas la composition osidique et la structure chimique des deux polysaccharides testés au cours du temps.
1-4 Suivi de la Masse molaire moyenne et de l'indice de polydispersité
Parallèlement au suivi de la composition en oses, la masse molaire moyenne et l'indice de polydispersité des polysaccharides ont été déterminés au cours du temps.
Plus spécifiquement, la masse molaire moyenne en poids de chacun des deux polysaccharides HE 800 et HYD 657 a été déterminée par chromatographie d'exclusion stérique Haute Performance.
Concernant l'indice de polydispersité, Ip = Mw/Mn, la détermination des valeurs de Mw et Mn pour chaque polysaccharide s'est faite par chromatographie d'exclusion stérique après élution de l'exopolysaccharide sur une colonne de type PL-Aquagel-OH et détecté par un détecteur de diffusion de la lumière 3 angles couplé au détecteur réfractométrique, de l'indice de réfraction (RI) et à la valeur de la viscosité intrinsèque de chaque polysaccharide.
Les tableaux 3, 4, 5 et 6 décrivent les valeurs de masse molaires moyenne et d'indice de polydispersité pour les polysaccharides HYD 657 et HE 800 lors des essais 1 et 2.
Tableau 3
Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HYÙ 657 ainsi que de l'indice de polydispersité au cours du temps lors du premier essai.
Figure imgf000011_0001
Tableau 4 Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HYD 657 ainsi que de l'indice de polydispersité au cours du temps lors du deuxième essai.
Mw Indice de
Temps (heures) (g/mol) polydispersité (Ip) 0 1 100 000 1,5
0,25 1 116 000 3,050
0,5 1 825 000 1,365
0,75 1 178 000 2,675
1 325 800 6,404
1,25 761 800 5,689
1 ,5 624 000 4,842
3 198 200 4,136
6 57 790 1,975
10 64 600 2,224
15 25 460 1,256
20 28 300 1,379
25 25 740 1,343
30 22 700 1 ,260
35 32 200 1,382
42 24 360 1,240
Tableau 5
Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HE 800 ainsi que de l'indice de polydispersite au cours du temps lors du premier essai.
Indice de
Temps (heures) Mw (g/mol) polydispersité (Ip)
0 1 750 000 1 ,22
1,5 213 100 2,253
3 150 800 2,344
4,5 107 700 2,790
6 125 700 2,511
7,5 114 900 2,393
9 93 100 2,353
10,5 107 500 2,270
12 112 900 2,473 13,5 110 800 2,473
15 97 000 2,511
16,5 88 630 2,548
18 75 310 2,349
19,5 88 730 2,687
21 71 480 2,674
22,5 81 240 3,046
24 85 110 3,061
25,5 34 360 1,612
27 27 450 1 ,373
28,5 23 800 1,375
31,5 26 050 1,395
33 31 030 1,376
34,5 25 380 1,287
36 25 830 1,283
37,5 24 120 1,302
39 17 570 1 ,200
40,5 21 570 1,314
42 17 550 1 ,260
Tableau 6
Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HE 800 ainsi que de l'indice de polydispersite au cours du temps lors du deuxième essai.
Temps Mw
(heures) (g/mo!) Indice de
polydispersité (Ip)
0 1 750 000 1 ,22
0,25 933 800 1,435
0,5 924 700 1 ,489
0,75 858 100 1,542 1 558 300 1,980
1 ,25 529 800 1,903
1 ,5 500 700 1 ,914
3 324400 2,610
6 283 600 2,824
10 157 200 3,742
30 57 000 2,110
35 17 860 1,100
42 21 000 1 ,330
Les résultats montrent que le procédé selon l'invention permet d'obtenir une dépolymérisation des différents polysaccharides testés aboutissant, dans le cas d'espèce, à des masses moléculaires moyennes de 20 000 et 17 000 g/mol en partant de polysaccharides natifs de masse moléculaire moyenne de 1 100 000 g/mol et de 1 750 000 g/mol respectivement. Parallèlement, les résultats montrent également que cette dépolymérisation est obtenue avec une bonne valeur de l'indice de polydispersité dans les polysaccharides de bas poids moléculaires.
Finalement, les polysaccharides dépolymérisés sont récupérés en fin de réaction sans étape complémentaire et avec un rendement de l'ordre de 95%. 2) Données complémentaires obtenues par broyage à froid en utilisant des billes de diamètres différents
Deux grammes de polysaccharide lyophilisé sous forme de poudre ont été placés dans un bol en acier inoxydable d'un volume de 20 ml en présence d'une ou plusieurs billes de diamètres différents, également en acier inoxydable. Le broyage a été effectué en refroidissant le bol de broyage contenant le polysaccharide et les billes à l'azote liquide. Lors de chaque essai, les durées totales du broyage ont été de 7 et 9 heures par cycles de 15 minutes, pour permettre le refroidissement du mélange à l'azote liquide. La fréquence de vibration a été fixée à 30 Hz.
Les tableaux 7, 8, 9 , 10 et 11 décrivent les valeurs de masse molaires moyenne et d'indice de polydispersité pour les polysaccharides HYD657 et HE 800 lors des essais en utilisant soit 2 billes de 9 mm, soit 2 billes de 12 mm de diamètre, soit une bille de 15 mm de diamètre.
Tableau 7
Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HE800 ainsi que de l'indice de polydispersité au cours du temps lors de l'essai en refroidissement du polysaccharide et de l'utilisation de 2 billes de 12 mm
Figure imgf000015_0002
Tableau 8
Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HYÙ 657 ainsi que de l'indice de polydispersité au cours du temps lors de l'essai en refroidissement du olysaccharide et de l'utilisation de 2 billes de 12 mm
Figure imgf000015_0001
Figure imgf000016_0001
Tableau 9
Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HYÙ 657 ainsi que de l'indice de polydispersite au cours du temps lors de l'essai en refroidissement du polysaccharide et de l'utilisation d'une bille de 15 mm
Figure imgf000016_0002
Tableau 10
Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HE800 ainsi que de l'indice de polydispersite au cours du temps lors de l'essai en refroidissement du polysaccharide et de l'utilisation d'une bille de 15 mm
Figure imgf000017_0001
Tableau 11
Evolution de masse molaire moyenne en poids des chaînes polysaccharidiques du HYÙ 657 ainsi que de l'indice de polydispersité au cours du temps lors de l'essai en refroidissement du polysaccharide et de l'utilisation de deux billes de 9 mm
Mw Indice de
Temps (heures) (g/mol) polydispersité (lp)
0 1 600 000 1,25
0,5 1 560 000 2,77
0,75 1 180 000 3,04
1 830 000 3,89
1 ,25 591 000 3,63
1 ,5 485 000 3,59
1 ,75 389 200 3 ,34
2 339 000 3,04
2,25 281 000 2,59
2,5 219 000 2,66 2,75 192 000 2,19
3 196 000 2,11
4 179 000 2,03
5 79 000 2,33
5,5 179 000 2,11
Les résultats montrent que le procédé selon l'invention permet d'obtenir une dépolymérisation des différents polysaccharides testés aboutissant, dans le cas d'espèce, à :
(i) des masses moléculaires moyennes de 15 800 et 8 300 g/mol en partant de polysaccharides natifs de masse moléculaire moyenne de 805 000 g/mol et de 1 600
000 g/mol, respectivement, en utilisant une bille de 15 mm de diamètre pour effectuer le broyage, sur une durée totale de 9 heures (Tableaux 9 et 10).
(ii) des masses moléculaires moyennes de 15 800 et 8 300 g/mol en partant de polysaccharides natifs de masse moléculaire moyenne de 805 000 g/mol et de 1 600 000 g/mol, respectivement, en utilisant une bille de 15 mm de diamètre pour effectuer le broyage, sur une durée totale de 9 heures (Tableaux 9 et 10).
(iii) une masse moléculaire moyenne de 179 000 g/mol en partant de polysaccharide natif de masse moléculaire moyenne de 1 600 000 g/mol, en utilisant deux billes de 9 mm de diamètre pour effectuer le broyage, sur une durée totale de 5 heures 30 (Tableau 11).
Finalement, les polysaccharides dépolymérisés sont récupérés en fin de réaction sans étape complémentaire et avec un rendement de l'ordre de 95¾>.
3) Détermination d'un modèle mathématique rendant compte de la dépolymérisation d'un polysaccharide dans différentes conditions 1er essai : Le polysaccharide de départ est l'exopolysaccharide de Vibrio diabolicus (HE 800) décrit précédemment. Les paramètres de broyage sont les suivants : Volume du bol =20 ml; 2 billes de 9 mm de diamètre, température ambiante; fréquence de vibration fixe de 30 s"1. T= 42 heures par cycles de 90 minutes.
Le tableau 12 décrit les valeurs de masse molaires moyenne et d'indice de polydispersité lors de cet essai.
Tableau 12
Figure imgf000019_0001
Une première analyse met en évidence que cette réacfion de dépolymérisation n'obéit pas à une relation de premier ordre simple. La cinétique de dépolymérisation peut toutefois être approchée par une fonction Ln où l'équation est la suivante : A = A0e"1 8† - 105Ln t + 4.105 avec A est la masse molaire (g/mol) du polysaccharide à l'instant t (en minutes) et A0 est la masse molaire initiale (g/mol) du polysaccharide.
L'équation permet de correctement rendre compte de la dépolymérisation et sa généralisation est vérifiée dans un 2nd essai.
2nd essai : Le polysaccharide de départ est toujours l'exopolysaccharide de Vibrio diabolicus (HE 800) décrit précédemment. Les paramètres de broyage sont les mêmes avec toutefois des cycles de broyage de 60 minutes au lieu de 90 minutes dans le 1er essai. Le tableau 13 décrit les valeurs de masse molaires moyenne et d'indice de polydispersité lors de ce 2nd essai.
Tableau 13
Figure imgf000020_0001
42 17 550 1 ,260
L'évolution est différente de celle observée pour le 1er essai, mais toujours monotone. En appliquant l'équation développée précédemment, on obtient un résultat globalement satisfaisant aux temps longs. Pour tester plus avant le modèle, un nouvel essai est réalisé en faisant varier plus profondémment les paramètres de broyage.
3eme essai : Le polysaccharide de départ est l'exopolysaccharide de Vibrio diabolicus (HE 800) décrit précédemment mais avec une masse molaire moyenne deux fois plus faible. Les paramètres de broyage sont les suivants : Volume du bol =20 ml; 2 billes de 12 mm de diamètre, température ambiante; fréquence de vibration fixe de 30 s-1. T= 7 heures.
Le tableau 14 décrit les valeurs de masse molaires moyenne et d'indice de polydispersité lors de cet essai.
Tableau 14
Figure imgf000021_0001
17300 1 ,231
Cette fois, le modèle développé ne rend pas compte de la vitesse de dépolymérisation. Un calcul de la vitesse initiale met en évidence une constante de vitesse k = 3,6. En tenant compte des changements observés, l'équation du modèle est changée pour A = A0 e"3,6† - 105 Lnt + 200000. L'adéquation est alors bien meilleure et est testé dans un essai complémentaire.
4ème essai : Le polysaccharide de départ est l'exopolysaccharide de Vibrio diabolicus (HE 800) décrit dans le 3ème essai. Les paramètres de broyage sont changés une fois de plus et utilise une unique bille de diamètre 15 mm et une durée de broyage de 6 heures. Le tableau 15 décrit les valeurs de masse molaires moyenne et d'indice de polydispersité lors de ce 4ème essai.
Tableau 15
Temps (heures) Mw (g/mol) lp
0 805000 1 ,258
0,25 343000 2,132
0,5 202000 2,650
0,75 153400 2,74
1 ,25 113900 2,94
1 ,5 119400 3,45
1 ,75 120700 3,6
2 101200 3,3
2,25 80500 3,30
2,5 70650 2,364
3 61290 4,33
4 24430 1 ,46
5 20870 1 ,46
6 17800 1 ,33
7 19250 1 ,36 8 16310 1,231
9 15860 1 ,308
Les résultats obtenus cadrent bien avec le modèle développé entre lh30 et 6h30 de broyage. AU-DELA de ce temps de broyage, les valeurs obtenues avec le modèle divergenet de celles observées avec le broyeur.
Aussi, et sur la base de ces résultats, un nouveau modèle a été développé, lequel est le suivant '. A = A0 e"1,8t + 5 000 (tmox - t) - 500 t + X où A et A0 correspondent respectivement à la masse molaire (g/mol) à l'instant t (en minutes) et initiale du polysaccharide, t est le temps de broyage en minutes et X correspond à A0 /40.
Ce dernier modèle est testé sur les expréiences de dépolymérisation effectuées précédemment et montrent un très bon caractère prédictif malgré les différences de masses à l'origine (là 2) et malgré les différences de vitesses initiales (1 à 2). Pour tester le caractère généralisable du modèle, celui-ci est testé sur l'exopolysaccharide de Alteromonas macleodii (HYD 657).
4) Optimisation du modèle mathématique
1er essai : Le polysaccharide de départ est l'exopolysaccharide de Alteromonas macleodii (HYD 657). Les paramètres de broyage sont les suivants : Volume du bol =20 ml; 2 billes de 9 mm de diamètre, température ambiante; fréquence de vibration fixe de 30 s"1. T= 42 heures par cycles de 90 minutes.
Le tableau 16 décrit les valeurs de masse molaires moyenne et d'indice de polydispersité lors de cet essai.
Tableau 16
Mw estimée
Mw mesurée
Temps (heures) (g/mol) (g/mol)
0 1 100 000 1 100 000
1 325 800 416329
3 198 200 228468 6 57 790 207022
10 64 600 185000
15 25 460 157500
20 28 300 130000
25 25 740 102500
30 22 700 75000
35 32 200 47500
42 24 360 9000
II ressort de cette expérience que l'adéquation n'est pas très bonne entre l'évolution mesurée et estimée de la masse molaire moyenne du polysaccharide pour les temps courts et les valeurs calculées sont trop faibles pour les temps longs. Pour les expériences suivantes reprenant les paramètres des essais 2, 3 et 4 mais avec l'exopolysaccharide de Alfero onas macleodii (HYD 657), il ressort qu'une modification de l'équation en faisant varier la constante k et en utilisant une variable x égale à A0 /80 est plus adéquate.
Finalement, l'équation modifiée permet de mieux rendre compte de la dépolymérisation des deux polysaccharides testés en fonction du temps, laquelle équation est la suivante :
A = A0 e "k† -200†+ X où :
- A0 est la masse molaire (g/mol) initiale du polysaccharide,
- A est la masse molaire (g/mol) du polysaccharide au temps t,
- t est le temps de broyage en minutes, - k est une constante comprise entre 0,5 et 3 selon les conditions et
- X correspond à A0 /k' avec k' compris entre 10 et 100.

Claims

REVENDICATIONS
1. Un procédé de réduction contrôlée de la masse molaire moyenne en poids d'un polysaccharide jusqu'à une masse molaire moyenne en poids inférieure et déterminée comprenant une étape de broyage mécanique à l'aide d'un broyeur à billes dudit polysaccharide et caractérisé en ce que la masse molaire moyenne en poids du polysaccharide avant dépolymérisation (A0), la masse molaire moyenne en poids du polysaccharide après dépolymérisation (A) et le temps de broyage (t) sont choisis de telle manière que la résolution de l'équation suivante :
A = A0 e "k† -200†+ X où - k est une constante comprise entre 0, 1 et 5, de préférence 0,5 et 3, et
X = A0 /k' avec k' compris entre 1 et 200, de préférence entre 10 et 100, permet d'obtenir, après dépolymérisation, un polysaccharide présentant la masse molaire moyenne en poids souhaitée.
2. Le procédé selon la revendication 1, caractérisé en ce que le polysaccharide est un polymère constitué d'osés choisi dans le groupe comprenant l'amidon, le polydextrose, la lignocellulose, le mam ne, la chitine, le chitosane, la cellulose, les xylanes, l'amylopectine, les pectines, les galactomannanes comme la gomme de guar, l'inuline, les glucomannanes, les xanthanes, les gellanes, les alginates, les chondroïtines, les hyaluronanes, les curdlanes, les pullulanes, les succinoglycanes, les laminaranes, les alternanes, les scleroglucanes, les dextranes, les levanes, les f ucanes, les carraghénanes, les agars et les ulvanes et leurs dérivés.
3. Le procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que ledit procédé est appliqué à un polysaccharide en phase solide.
4. Le procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la masse molaire moyenne en poids du polysaccharide avant dépolymérisation est comprise typiquement entre 3 000 000 et 30 000 g.mol"1.
5. Le procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la masse molaire moyenne en poids du polysaccharide après dépolymérisation est comprise entre 500 000 g.mol'1 et 8 000 g.mol"1, de préférence entre 1 000 000 g.mol"1 et 1 000 g.mol"1.
6. Le procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit procédé ne comprend pas d'étape complémentaire de purification.
7. Le procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit procédé ne comprend pas d'étape complémentaire de lyophilisation.
8. Le procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit procédé ne comprend pas d'étape complémentaire de stabilisation du polysaccharide obtenu.
9. Le procédé selon l'une quelconque des revendications 1 à 8, caraciérisé en ce que ledit polysaccharide présente un degré d'hydratation compris entre 0% et 1007o, de préférence enïre 10% et 50% et de manière particulièrement préférée entre 2% et 15%.
10. Le procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le polysaccharide obtenu après dépolymérisation présente un indice de polydispersité compris entre 1,1 et 5.
PCT/IB2010/003053 2009-11-27 2010-11-29 Procede de depolymerisation de polysaccharides par broyage mecanique WO2011064658A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10803627A EP2504382A1 (fr) 2009-11-27 2010-11-29 Procede de depolymerisation de polysaccharides par broyage mecanique
US13/509,029 US20130032650A1 (en) 2009-11-27 2010-11-29 Method for depolymerising polysaccharides by means of mechanical milling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0905705A FR2953217B1 (fr) 2009-11-27 2009-11-27 Procede de depolymerisation de polysaccharides par broyage mecanique
FR0905705 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011064658A1 true WO2011064658A1 (fr) 2011-06-03

Family

ID=42200837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/003053 WO2011064658A1 (fr) 2009-11-27 2010-11-29 Procede de depolymerisation de polysaccharides par broyage mecanique

Country Status (4)

Country Link
US (1) US20130032650A1 (fr)
EP (1) EP2504382A1 (fr)
FR (1) FR2953217B1 (fr)
WO (1) WO2011064658A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524638B (zh) * 2013-10-16 2015-09-09 江南大学 一种制备可溶性酵母葡聚糖的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1842689A (en) * 1927-06-02 1932-01-26 Brown Co Process of treating cellulose fiber and product of same
FR905705A (fr) 1943-07-07 1945-12-12 Licentia Gmbh Appareil à contacts à mouvement de roulement actionné périodiquement et destiné aux convertisseurs mécaniques de courant électrique
FR2035769A1 (en) * 1969-03-11 1970-12-24 Balassa Leslie Chitin and egg-shell prepns for cicatrising wounds
US3901874A (en) * 1973-03-19 1975-08-26 Peter Strong Research And Dev Modification of carbohydrates
US4357467A (en) * 1978-10-24 1982-11-02 Battelle Memorial Institute Depolymerized cellulosic material with low crystallinity obtained from cellulosic fibers and process for its manufacture
EP0167984A1 (fr) * 1984-07-09 1986-01-15 COMPAGNIE GENERALE D'ELECTRICITE Société anonyme dite: Procédé pour obtenir du méthane par fermentation d'algues
WO1997034932A2 (fr) * 1996-03-20 1997-09-25 British Technology Group Limited Compositions contenant des excipients a base d'amidon
WO1999004027A1 (fr) 1997-07-16 1999-01-28 Rhodia Inc. Preparation de produits de galactomannane par reaction enzymatique effectuee sur des graines cassees de guar
WO2000063254A1 (fr) * 1999-04-21 2000-10-26 The Dow Chemical Company Capsules d'ether de cellulose non troubles et leur procede de preparation
FR2871476A1 (fr) * 2004-06-14 2005-12-16 Ifremer Derives depolymerises sulfates d'exopolysaccharides (eps) provenant de bacteries marines mesophiles, leur procede de preparation et leurs utilisations en regeneration tissulaire
WO2006003289A2 (fr) 2004-06-14 2006-01-12 Institut Francais De Recherche Pour L'exploitation De La Mer (Ifremer) Derives de polysaccharide sulfates pour moduler l’angiogenese
FR2891831A1 (fr) 2005-10-11 2007-04-13 Ifremer Procede de depolymerisation de polysaccharides par ultasons
US7259192B2 (en) 2002-06-25 2007-08-21 Rhodia, Inc. Molecular weight reduction of polysaccharides by electron beams

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6840961B2 (en) * 2001-12-21 2005-01-11 Etex Corporation Machinable preformed calcium phosphate bone substitute material implants
US8808751B2 (en) * 2006-06-30 2014-08-19 Iceutica Pty Ltd. Methods for the preparation of biologically active compounds in nanoparticulate form
US8651403B2 (en) * 2010-07-21 2014-02-18 E I Du Pont De Nemours And Company Anhydrous ammonia treatment for improved milling of biomass

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1842689A (en) * 1927-06-02 1932-01-26 Brown Co Process of treating cellulose fiber and product of same
FR905705A (fr) 1943-07-07 1945-12-12 Licentia Gmbh Appareil à contacts à mouvement de roulement actionné périodiquement et destiné aux convertisseurs mécaniques de courant électrique
FR2035769A1 (en) * 1969-03-11 1970-12-24 Balassa Leslie Chitin and egg-shell prepns for cicatrising wounds
US3901874A (en) * 1973-03-19 1975-08-26 Peter Strong Research And Dev Modification of carbohydrates
US4357467A (en) * 1978-10-24 1982-11-02 Battelle Memorial Institute Depolymerized cellulosic material with low crystallinity obtained from cellulosic fibers and process for its manufacture
EP0167984A1 (fr) * 1984-07-09 1986-01-15 COMPAGNIE GENERALE D'ELECTRICITE Société anonyme dite: Procédé pour obtenir du méthane par fermentation d'algues
WO1997034932A2 (fr) * 1996-03-20 1997-09-25 British Technology Group Limited Compositions contenant des excipients a base d'amidon
WO1999004027A1 (fr) 1997-07-16 1999-01-28 Rhodia Inc. Preparation de produits de galactomannane par reaction enzymatique effectuee sur des graines cassees de guar
WO2000063254A1 (fr) * 1999-04-21 2000-10-26 The Dow Chemical Company Capsules d'ether de cellulose non troubles et leur procede de preparation
US7259192B2 (en) 2002-06-25 2007-08-21 Rhodia, Inc. Molecular weight reduction of polysaccharides by electron beams
FR2871476A1 (fr) * 2004-06-14 2005-12-16 Ifremer Derives depolymerises sulfates d'exopolysaccharides (eps) provenant de bacteries marines mesophiles, leur procede de preparation et leurs utilisations en regeneration tissulaire
WO2006003289A2 (fr) 2004-06-14 2006-01-12 Institut Francais De Recherche Pour L'exploitation De La Mer (Ifremer) Derives de polysaccharide sulfates pour moduler l’angiogenese
WO2006003290A2 (fr) 2004-06-14 2006-01-12 Institut Francais De Recherche Pour L'exploitationde La Mer (Ifremer) Derives depolymerises sulfates d'exopolysaccharides (eps) preparation et utilisations
FR2891831A1 (fr) 2005-10-11 2007-04-13 Ifremer Procede de depolymerisation de polysaccharides par ultasons

Also Published As

Publication number Publication date
EP2504382A1 (fr) 2012-10-03
US20130032650A1 (en) 2013-02-07
FR2953217B1 (fr) 2012-10-05
FR2953217A1 (fr) 2011-06-03

Similar Documents

Publication Publication Date Title
Chen et al. Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin
Belalia et al. Rheological properties of sodium alginate solutions
US10106626B2 (en) Production of poly alpha-1,3-glucan formate films
JP2017512219A (ja) ポリα−1,3−グルカンホルメートのゲル化網目構造およびそれからのフィルムの製造
EP2909260B1 (fr) Composition comprenant une phase interne dispersée dans une phase continue hydrophile
Kokubun et al. Synthesis, characterization and self-assembly of biosurfactants based on hydrophobically modified inulins
Nwokocha et al. Rheological properties of a polysaccharide isolated from Adansonia digitata leaves
CN107074984A (zh) 聚α‑1,3‑葡聚糖酯膜的制备
US20170204203A1 (en) Poly alpha-1,3-glucan solution compositions
FR2963351A1 (fr) Particules formees d'un complexe polyelectrolyte de chitosane et d'un polysaccharide anionique, presentant une stabilite amelioree
Coseri et al. Oxidation vs. degradation in polysaccharides: Pullulan–A case study
Merlini et al. Enzymatic and chemical oxidation of polygalactomannans from the seeds of a few species of leguminous plants and characterization of the oxidized products
Dumitriu et al. Alginate/lignosulfonate blends with photoprotective and antioxidant properties for active packaging applications
EP2504382A1 (fr) Procede de depolymerisation de polysaccharides par broyage mecanique
FR2919602A1 (fr) "melange d'adjuvants modificateurs de rheologie pour beton autoplacant et beton autoplacant renfermant un tel melange"
Terbojevich et al. Solution studies of cellulose tricarbanilates obtained in homogeneous phase
WO2006097656A1 (fr) Synthese d'evoh-greffe-polylactone
EP2486064B1 (fr) Procede de preparation de derives acetyles de matiere amylacee
EP1651677B1 (fr) Melanges d'oligosaccharides derives d'heparine, leur preparation et les compositions pharmaceutiques les contenant
Rinaudo New amphiphilic grafted copolymers based on polysaccharides
Yu et al. Preparation and characterization of biosurfactant based on hydrophobically modified alginate
Souguir et al. Novel cationic and amphiphilic pullulan derivatives I: Synthesis and characterization
CA2340727A1 (fr) Procede de preparation de petites particules spheriques contenant au moins un polysaccharide lineaire soluble dans l'eau
FR3059330A1 (fr) Nouveau procede de depolymerisation du chitosan
Ptaszek et al. Environmental friendly polysaccharide modification–rheological properties of oxidized starches water systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010803627

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13509029

Country of ref document: US