WO2011063668A1 - 永磁力发动机 - Google Patents

永磁力发动机 Download PDF

Info

Publication number
WO2011063668A1
WO2011063668A1 PCT/CN2010/076405 CN2010076405W WO2011063668A1 WO 2011063668 A1 WO2011063668 A1 WO 2011063668A1 CN 2010076405 W CN2010076405 W CN 2010076405W WO 2011063668 A1 WO2011063668 A1 WO 2011063668A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
unit
stator
stator unit
force
Prior art date
Application number
PCT/CN2010/076405
Other languages
English (en)
French (fr)
Inventor
祝培钫
Original Assignee
陆毓敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010102248412A external-priority patent/CN102082529A/zh
Application filed by 陆毓敏 filed Critical 陆毓敏
Publication of WO2011063668A1 publication Critical patent/WO2011063668A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia

Definitions

  • the permanent magnet force engine of the invention belongs to a kind of power machine, and the international patent classification: the so-called magnetic perpetual motion machine H02N 11/00.
  • a permanent magnet force engine comprising a rotor, a stator and a frame, the rotor and the stator each comprising at least one permanent magnet unit; the units of the plurality of permanent magnets are overlapped, lapped, butted or/and spaced The method is connected; the magnetic field of the permanent magnet in a small range near the periphery of the rotor unit is divided into seven zones according to the direction of magnetic field lines and magnetic properties, namely, A, B, C, D, E, F, G; Zone A acts as a thrust zone; the stator unit is fixed or movable; the power of the movable stator unit is provided by the rotor itself or/and external energy source; in motion, its permanent magnet static field will become a dynamic field, permanent magnetic force For non-conservative forces, after
  • the object of the present invention is to provide a structure for increasing the thrust of the movable stator unit to push the rotor unit, that is, to make the dynamic moment M of the large rotor, so that the dynamic moment M of the permanent magnet rotor works as a total resistance torque and can Pushing the rotor to rotate continuously, the output has a practical high profit energy.
  • the specific technical solutions are as follows:
  • a permanent magnet engine comprising a rotor, a stator and a frame.
  • the frame supports the rotor shaft and the stator.
  • the rotor contains at least one permanent magnet rotor unit. It is characterized in that the stator contains at least one permanent magnet cut-in movable stator unit, referred to as a movable stator unit or a stator unit.
  • Section 1A is next to Zone B, and there is a dividing line 29 between them.
  • the A 1 section of the rotor unit is also a thrust section.
  • the A 1 section of the stator unit is a resistance section that prevents itself from advancing, but acts to push the rotor unit 3 forward.
  • the 2A 2 section is next to the G zone and is the resistance section.
  • the 3A 0 segment is a resistance segment in the head. However, the A 0 segment of the stator unit also acts to push the rotor unit 3 forward.
  • the rotor unit uses the B region or/and the A 1 region of the same magnetic field as the thrust region (Fig. 1a to Fig. 1g, Fig. 4 to Fig. 6, Fig. 8a to Fig. 11c).
  • the cut-in movable stator unit that is, the manner in which the stator unit cuts into the range of the rotor motion to push the rotor unit: when the head resistance section A 0 of the rotor unit 3 just exceeds the head of the stator unit, the stator unit is subjected to the thrust P, Quickly break through the outer edge of the rotor 2, cut into the range of the movement of the rotor 2, and approach the rotor unit 3; the isotropic magnetic fields of the two units are in close contact and repelled, generating a force and a reaction force F to push the rotor unit 3 forward; Then, the stator unit continues to be subjected to the force P, leaving the range of motion of the rotor back to the original position; thus repeating the cycle, intermittently pushing the rotor 2 forward. Force F>>force P.
  • the power P of the movable stator unit is provided by external energy or/and the rotation of the rotor itself.
  • the movable stator unit employs an advance and retreat stator unit 22 (see Figs. 9a to 9c), a rotating stator unit 23 (Figs. 11a and 11b) and/or a semi-rotating stator unit 24 (Figs. 10a to 10c).
  • the rotating stator unit 23 rotates in the same direction as the rotor 2 (either clockwise or the same counterclockwise) or reverse rotation (one clockwise and the other counterclockwise).
  • the rotor unit 3 is of a fixed type (Fig. 9a to Fig. 9c, Fig. 10a to Fig. 10c) or a movable type (Fig. 11a and Figs. 11b, 12).
  • the dynamic moment M of the rotor shaft output is equal to the sum of the F push moments of the respective rotor units mutated by the same magnetic field of each stator unit, and the resistive moments ⁇ Ma, ⁇ Md, ⁇ formed by various energy consumptions.
  • M ⁇ Mf- ⁇ Ma - ⁇ Md - ⁇ M 0 - ⁇ M 1 ,
  • ⁇ Ma is the sum of the resistance moments of the respective rotor units obtained by repelling the same-sex magnetic field of the stator unit
  • ⁇ Md is the sum of the resistance moments of the respective rotor units obtained by attracting the stator element and the rotor unit opposite magnetic field
  • ⁇ M 0 is the sum of the resistance torques that overcome the loss of mechanical friction resistance and air resistance, etc.
  • ⁇ M 1 is the sum of the energy dissipation of the movable stator unit movement.
  • the shape, mutual position and speed of the rotor unit and the stator unit will determine the length of the contact time of the two units and the proximity distance, and finally determine the difference between the magnitude of the thrust and the resistance torque.
  • the key is that the two units are in "close range” contact because the magnetic field strength, ie the repulsion force F, decays with the distance index.
  • the permanent magnet force engine of the present invention will become a new green energy source for use as a power machine or toy. Its structure is simple, easy to manufacture and low in cost.
  • 1a to 1g are schematic views of external magnetic fields of seven types of permanent magnet units.
  • Fig. 2a to Fig. 2d are schematic diagrams showing the action of the two-unit isotropic magnetic field and the direction of the reaction force.
  • FIG. 3 is a schematic view of the force applied to the rotating stator unit 23.
  • Figure 4 is a magnetic line diagram of a larger rotor unit model.
  • Figures 5a and 5b are magnetic line diagrams of the heads of the two unit models.
  • Figure 6 is a magnetic line diagram of a smaller rotor unit model.
  • Figure 7 is a magnetic line diagram of a closed cell model.
  • Figures 8a and 8b are measurement plots of forces F and P for a model.
  • 9a to 9c are schematic views of the movement of the cut-in type forward and reverse stator unit 22.
  • 10a to 10c are schematic views of the movement of the plunge-type semi-rotating stator unit 24.
  • 11a and 11b are schematic views of the movement of the plunge-type rotary stator unit 23.
  • Figure 12 is a plan view of a permanent magnet permanent motion model.
  • Figures 1a to 1g show the direction of the magnetic field lines 30 of a small range of magnetic fields near the periphery of the seven permanent magnet elements. Shown in FIG NS field boundary 28, the magnetic field of the same sex region division line A 1 and the area B 29.
  • Figure 1a shows that the cell has seven zones A to G. Among them, Area A is divided into three sections A 0 , A 1 and A 2 .
  • Figure 1b and Figure 1c have only four zones A to D.
  • Figure 1d shows that the unit has only one isotropic region A 0 , A 1 , A 2 .
  • One side is the A 1 (ie B) thrust section.
  • the other side is the A 2 resistance section.
  • Figure 1e shows a schematic diagram of the magnetic lines of force of a movable rotor unit (see Figure 3, Figures 11a to 11b).
  • the direction of the magnetic lines of the short section in the middle is opposite to the direction of B. It has no effect on the thrust F 1n forming the rotor unit and can therefore still be considered as a thrust zone belonging to the rotor unit, referred to as a pseudo thrust section. It often appears in flat blocks with large seams between blocks (see Figure 1g).
  • Fig. 1f shows a schematic diagram of magnetic lines of force for rotating the stator unit 23 (Fig. 3, Figs. 11a to 11b). It has a pseudo thrust section that increases the tangential magnetic sliding frictional resistance, which will increase the force P. Design should be avoided as much as possible.
  • the above six are just basic types.
  • the actual structure should be determined according to the relationship between the rotor unit and the stator unit and the relationship between the stator unit itself, and the goal is to maximize the thrust of each unit.
  • Fig. 1g shows that the three flat magnetic blocks are fixed by a seam with iron members 41, and can also be fixed seamlessly by gluing.
  • Fig. 2a to Fig. 2d show a typical example of the close contact of the same magnetic field of the upper and lower units, and the interaction relationship.
  • the two units are repulsive to produce a repulsive force F, that is, a force and a reaction force F 1 and F 2 . They can be decomposed into normal component forces F 1n and F 2n , and tangential component forces (ie, magnetic sliding friction forces) F 1t and F 2t .
  • the direction of the unit magnetic lines 30 is different, and the direction and magnitude of the tangential force and the reaction force are greatly different. If the upper unit is regarded as the rotor unit 3 and the lower unit is regarded as the movable stator unit, it can be seen that the direction of the magnetic field line of the stator unit has a great influence on the direction and size of the tangential resultant force F 2t , that is, the magnitude of the required power P is affected.
  • Figure 2a shows that the magnetic lines of the two units are opposite in direction (upper right to right, lower to left), and the various forces and reaction forces are equal in magnitude and opposite in direction, ie
  • F 1 -F 2
  • F 1n -F 2n
  • F 1t -F 2t .
  • F 2t F 2ta - F 2tb .
  • the tangential force of the upper unit is the sum of the absolute values of the two tangential forces of the lower unit, ie .
  • the tangential force of the upper and lower units and the reaction forces F 1t and F 2t are not equal in magnitude and direction is different, that is, F 1t ⁇ F 2t .
  • FIG. 3 shows that the rotating stator unit 23 (maximum radius r) is acted upon by the thrust P, cut into the range of motion of the rotor 2, and when the rotor unit 3 is approached and pushed, the isotropic magnetic fields of the two units repel each other, producing a reaction and reaction repulsion.
  • the force F 1n that pushes the rotor unit 3 forward is shown in FIG.
  • the forces acting on the stator unit are: normal force F 2n (which is perpendicular to the force arm u of the shaft 31), tangential force (ie magnetic sliding friction) F 2t , and resistance F 2a of the head A1 and A0 regions; They form the torques M 2n , M 2t , M 2a , respectively :
  • M 2n F 2n *u
  • M 2t F 2t * r
  • M 2a F 2a * r.
  • the torque of the stator unit itself is M2
  • M 2 M 2n + M 2t - M 2a - M 0 ;
  • the conditions for judging whether the stator unit needs the applied power P are:
  • the applied power P that is, the torque Mp
  • the applied power P is required; it is provided by the rotor itself or/and an external energy source.
  • one is to reduce the resistance F 2a of the head of the stator unit; the other is to make the magnetic line of the front part of the front side backward, so as to avoid the pseudo-thrust section whose magnetic field line is opposite to the direction B.
  • Figure 4 shows that the magnetic field lines of the B section of the rotor unit model are turned to the right and are longer.
  • Section A 1 is the thrust zone.
  • Section A 0 is the resistance zone.
  • Figures 5a and 5b show that the two unit model heads are all made up of N-S terminal blocks.
  • the N pole is in front and the S pole is in the back.
  • Figure 6 shows the structure of the rotor unit model is relatively simple. Section A 1 is the thrust section.
  • Figure 7 shows that the magnetic field lines of the unit thrust zone B have reached the head. If such a unit is used to create a movable stator unit, the illustrated area A 1 may act as a thrust or drag, depending on its position. (See Figure 3, Figure 11b)
  • the dividing line 29 on the right side of the head has no previously defined meaning as a boundary between the B area and the A 1 boundary.
  • the magnet block is fixed to the iron bar 42.
  • the N pole of the face block faces outward.
  • the N pole of the terminal block is in front and the S pole is in the back.
  • Figures 8a and 8b are force measurement diagrams of a movable stator unit cut into the rotor to push the rotor unit 3.
  • the height of the unit is 50mm for one magnetic block.
  • Figure 8a shows the spring weighing force F ⁇ 2.5 kg.
  • Figure 8b shows the force P ⁇ 0.4 kg.
  • Both the A 0 and A 1 segments of the stator unit shown in Figures 8a and 8b are resistance segments, and the resulting resistance is overcome by the force P.
  • the tangential magnetic sliding friction generated by segment B helps to reduce the required driving force P.
  • stator unit 22 is fixed to the front of the pulley frame 38.
  • the latter advances and retreats along the outer slide rails 37 fixed to the stator.
  • the rotor unit 3 is fixed to the outside of the rotor 2, the rotor radius R, and the air gap 25.
  • Fig. 9a shows the critical state, that is, the rotor unit 3 head resistance section A 0 just exceeds the stator unit head and reaches the S 0 position; the stator unit is about to quickly advance to the T 0 position when it is cut into the rotor 2 range.
  • Figure 9b shows that the stator unit is acted upon by the thrust P and has been cut into the rotor from position T 0 to reach T 1 ; the two units are repulsive to generate a force F that pushes the rotor unit 3 forward, from S 0 to S 1 .
  • the stator unit can be repeatedly cycled into and out of the range of the rotor 2, intermittently pushing the rotor around the axis 1 The hour hand rotates forward and constantly accelerates it.
  • the reaction force F acting on the stator unit 22 is transmitted by the pulley frame 38 to the slide rail 37.
  • the pulley frame 38 and the slide rails 37 can be coupled in a magnetically suspended manner to reduce the friction of the wheel-rail.
  • the stator unit 22 is placed in an oblique direction, or in a vertical direction shown by a broken line.
  • the thrust F generated by the oblique arrangement is large.
  • Figure 9c shows that the two axis units 22 that are axisymmetric are interdependent by the linkage mechanism 39, one entering and the other exiting.
  • Figure 10a shows the rotor unit 3 reaches the position S 0, T stator unit reaches the critical state 0. As shown in FIG 10a: B region of A 1 and rotor unit area for the thrust zone.
  • Figure 10b shows, the stator unit by thrust P action, about the shaft 31 rotates from the position T 0 to T 1.
  • the repelling of the two elements produces a force F that pushes unit 3 from S 0 to S 1 .
  • the tension spring 43 is contracted and restored, helping the stator unit to cut into the range of the rotor 2.
  • the spring 43 is elongated.
  • the stator unit intermittently pushes the rotor forward.
  • the reaction force F acting on the stator unit is supported by the fixed shaft 31.
  • 11a and 11b show that the rotating stator unit 23 (the maximum radius of rotation r of the head) and the non-magnetic weight W are coupled to the fixed shaft 31 via the link 27 (the right end connecting tension spring 43), and are rotatable around the shaft. .
  • Figure 11a shows the rotor unit 3 reaches the position S 0, T stator unit reaches the critical state 0. As shown in the figure: the B zone and the A 1 zone of the rotor unit are thrust zones.
  • 11b shows, the role of the stator unit by thrust P, the rotation about the shaft 31, from the position T 0 to T 1.
  • the repelling of the two elements produces a force F that pushes the rotor unit 3 forward.
  • the unit 3 While the unit 3 is advancing, its tail section will be subjected to the repulsive force of the head of the stator unit, thereby rotating counterclockwise around the rotating shaft 36, the tail end is from S 2 to S 3 ; and the head is counterclockwise back from the S 0 to S 1 to approach and repel the tail of the stator unit. This will shorten the distance between the two units and increase the force F at this moment.
  • the spring 43 is also elongated, from S 2 to S 3 .
  • stator unit continues receiving the force P acting, continuous clockwise rotation exit 2 from T 1 the outer edge of the rotor position, back to the original T 0 place.
  • the tension spring 43 is shortened to the original S 2 (Fig. 11a).
  • the stator unit intermittently pushes the rotor forward.
  • the reaction force F acting on the stator unit is received by the fixed shaft 31.
  • the depth of the stator unit cut into the rotor depends mainly on: 1 the radius of the stator unit r; the distance between the 2 shaft 31 and the edge of the rotor 2; 3 the distance between the stator unit itself and the magnetic field relationship.
  • Fig. 12 shows that the rotational speed of the rotor 2 and the rotary stator unit 23 is 1:8.
  • the eight rotor units 3 are movable and numbered 81 to 88. They are each connected to a shaft 36 fixed to the rotor plate 2 and are rotatable about it (see Figs. 11a and 11b).
  • the support plates 71 to 77 of the seven rotary stator units 23 are fixed to the respective shafts 31.
  • Timing pulleys 61 to 67 are also fixed to the respective shafts 31, respectively.
  • a reversing gear 70 is also fixed to the shaft 31 of the stator units 73 and 76.
  • each stator unit is split so that the time to enter the rotor 2 and the time to push the rotor unit are different.
  • Fig. 12 only one stator unit 23 is shown on the holder 72.
  • Two aluminum alloy timing pulleys 60 are fixed on the rotor shaft 1 (model HTD) 5M-120P). They connect the gears 61 and 65 through the timing belts 51 and 55. The gear 61 is in turn coupled to the gear 62 via a belt 52.
  • a timing pulley 68 (8M-400P-circumference 3200 mm) having a diameter of 1 m is made of a timing belt. It is glued to the outer edge of the rotor plate 2. Gear 68 meshes with reversing gear 69 (8M-50P). The latter rotates counterclockwise and meshes with the gear 70.
  • the rotor 2 and the seven rotating stator units 71 to 77 are connected to form a moving complex, which rotates clockwise in synchronization.
  • the rotor shaft 1 outputs a dynamic moment M.

Description

永磁力发动机 技术领域
本发明的永磁力发动机属于一种动力机械,国际专利分类:所谓磁永动机H02N 11/00。
背景技术
能量守恒与转换定律是依据热能转换实验建立的。永磁能不直接与热能转换。认为新的永磁能作功也一定遵守能量守恒定律,只是一种推想。
1983年,日本住友特种金属株式会社佐川发明钕铁硼(Nd-Fe-B)---第三代稀土永磁。它的高剩磁、高娇顽力、高磁能积特性,让其磁场能量被动态利用可长达十年以上,几乎无耗损,且无需再充磁。现在,实验室已达到N60标号。各国还在研究更高性能的永磁材料。因此,这类永磁体完全可以被认为是具有取之不尽、用之不竭的永动能源。它已被广泛应用于永磁电机和CT等设备中。但可惜,却一直未能找到利用它来制成磁永动机(转子和定子均由永磁体构成的旋转机械)的方法与结构。
十几年前德国多位科学家预测:2018年,宇宙飞船安装磁力推动装置,能飞向更远的星球。(文汇报,1996.1.17,第4版,中国,上海,夏洽沔)
公开号为CN101286716A、申请日为2007年4月24日、标题为“永磁力发动机”的中国专利申请(其国际专利申请公布号为WO/2007/131434,国际申请日为2007年4月29日)中提出:一种含有转子、定子和机架的永磁力发动机,其转子和定子均含有至少一个永磁体单元;多块永磁体构成的单元用搭接、叠接、对接或/和间隔的方式连成;转子单元周边附近的小范围内的永磁体磁场,按磁力线方向及磁性,分为七个区,即A、B、C、D、E、F、G;利用其中的B区或A区作为推力区;定子单元采用固定式或活动式;活动定子单元的动力,由转子自身旋转或/和外部能源提供;在运动中,其永磁静态场将变成动态场,永磁场力为非保守力,一次作用上后、无需再不断添加能源而能长期连续运动作功输出能量,或需要输入少量外界能源才能连续运动作功输出多余能量;转子做功的动力矩M>>总阻力矩,从而实现永磁体能量的利用突破能量守恒定律,属于一种永动机。
技术问题
然而,上述专利申请还有很大缺陷:
1、采用传统方式,即,定子单元在转子外边缘推动转子单元前进的推力小,使转子的动力矩M难于做大,因而实用性差;
2、“分为七个区”,“B区或A区作为推力区”和“B段>A或C段,最佳比值大于3”等的限定均太狭窄;
3、用转子的“动力矩M>>总阻力矩”做有无真正实用性的评判标准还不充分。
因此,提出本发明以克服这些缺陷。
技术解决方案
本发明的目的是提出一种增大活动定子单元推动转子单元的推力,即做大转子的动力矩M的结构,使永磁体转子的动力矩M作功>>总阻力矩耗能,并能推动转子连续旋转作功,输出有实用性的高赢利能量。具体技术方案如下:
1、一种永磁力发动机,含有转子、定子和机架。机架支承转子轴和定子。转子含有至少一个永磁体转子单元。其特征是,定子含有至少一个永磁体切入式活动定子单元,简称活动定子单元或定子单元。
2、一个单元周边附近的小范围内的永磁体磁场,其B区为推力段;A区分为A0、A1、A2三段:
①A1段挨着B区,它们之间存在分界线29。转子单元的A1段也是推力段。定子单元的A1段是阻止自己前进的阻力段,但却起推动转子单元3前进的作用。
②A2段挨着G区,是阻力段。
③A0段在头部是阻力段。但定子单元的A0段也起推动转子单元3前进的作用。
转子单元采用同性磁场的B区或/和A1区作为推力区(图1a~图1g、图4~图6、图8a~图11c)。
3、切入式活动定子单元,即定子单元切入到转子运动的范围内去推动转子单元的方式:当转子单元3头部阻力段A0刚超过定子单元头部后,定子单元受推力P作用,迅速突破转子2的外边缘,切入到转子2运动的范围内,去接近转子单元3;两种单元的同性磁场近距离接触、相斥,产生作用力与反作用力F,推动转子单元3前进;然后,定子单元继续受力P作用,离开转子运动的范围回到原位;如此反复循环,间断地推动转子2前进。力F>>力P。
4、活动定子单元的动力P,由外部能源或/和转子自身旋转提供。
5、活动定子单元采用进退定子单元22(参见图9a至图9c)、旋转定子单元23(图11a和图11b)和/或半旋转定子单元24(图10a至图10c)。
旋转定子单元23与转子2同向旋转(同为顺时针或同为反时针)或反向旋转(一个顺时针,另一个反时针)。
6、转子单元3采用固定式(图9a至图9c、图10a至图10c)或活动式(图11a和图11b、12)。
7、转子轴输出的动力矩M等于,受各个定子单元同性磁场相斥而得的各个转子单元的F推力矩之和∑Mf,与各种耗能形成的阻力矩∑Ma、∑Md、∑M0及∑M1之和的差值,即
M = ∑Mf-∑Ma -∑Md -∑M0 -∑M1
其中,∑Ma为受定子单元同性磁场相斥而得的各个转子单元阻力矩之和,
∑Md为定子单元与转子单元异性磁场相吸而得的各个转子单元阻力矩之和,
∑M0为克服机械摩擦阻力和空气阻力等损耗功折合成的阻力矩之和,
∑M1为活动定子单元运动的耗能折合成的阻力矩之和。
转子的动力矩M>>总阻力矩,并且动力矩M作功>>总阻力矩耗能,从而能够推动转子连续旋转作功,输出有实用性的高赢利能量。
8、转子半径R越大,转子单元和定子单元的数量越多,单元的尺寸越大和磁块的磁能积越高,则转子轴的动力矩M越大。定子单元的速度越快和惯性越大,所需P力越小。
转子单元和定子单元的形状、相互位置及速度,将决定两种单元接触时间的长短与接近距离的大小,最终决定推力矩的大小及与阻力矩的差值。
关键是两种单元要“近距离”接触,因为磁场强度即斥力F随距离指数衰减。两种单元之间的气隙25越小,力F、P均越大;B段越长,力F越大。
9、当转子和/或定子单元的惯性太大时,启动阶段可加外力助动。
有益效果
本发明的永磁力发动机将成为一种新的绿色能源,用作动力机或玩具。它的结构简单,制造容易,成本低。
附图说明
图1a至图1g是7种永磁体单元的外磁场的示意图。
图2a至图2d是两个单元同性磁场相斥的作用与反作用力方向的示意图。
图3是一种旋转定子单元23的受力示意图。
图4是一个较大转子单元模型的磁力线图。
图5a和图5b是两种单元模型头部的磁力线图。
图6是一个较小转子单元模型的磁力线图。
图7是一个闭合单元模型的磁力线图。
图8a和图8b是一个模型的力F与P的测量图。
图9a至图9c是切入式进退定子单元22的运动示意图。
图10a至图10c是切入式半旋转定子单元24的运动示意图。
图11a和图11b是切入式旋转定子单元23的运动示意图。
图12是一个永磁永动机模型的平面布置图。
本发明的实施方式
图1a至图1g示出7种永磁体单元周边附近的小范围内磁场的磁力线30的方向。图中示出N-S场的分界线28,A1区与B区同性磁场的分区线29。
图1a示出单元有7个区A~G。其中,A区又分为A0、A1、A2三段。
图1b和图1c只有4个区A~D。
图1d示出单元仅有一种同性区A0、A1、A2。一侧是A1(即B)推力段。另一侧是A2阻力段。
图1e示出一种活动转子单元的磁力线示意图(参见图3、图11a至图11b)。在该示图中,中部有短段的磁力线方向与B的方向相反。它对形成转子单元的推力F1n并无影响,因而仍然可以被认为是属于转子单元的推力区,称做伪推力段。它经常出现在块间有大缝的平拼磁块处(参见图1g)。
图1f示出一种旋转定子单元23的磁力线示意图(图3、图11a至图11b)。它有伪推力段,增大了切向磁滑动摩擦阻力,它将使力P增大。设计中应尽量避免。
以上6种只是基本型式。实际结构,应根据转子单元与定子单元的关系,和定子单元本身之间的关系确定,目标是追求使各个单元的推力最大。
图1g示出3个平拼磁块用铁件41带缝固定,也可用胶粘无缝固定。平拼缝越宽,伪推力段越长。横竖多块永磁体构成的大尺寸单元,应采用拼接结合。
图2a至图2d示出上下两个单元的同性磁场近距离接触,相互作用关系的典型范例。
两个单元同性相斥产生斥力F,即作用力与反作用力F1与F2。它们可被分解成法向分力F1n与F2n,和切向分力(即磁滑动摩擦力)F1t与F2t
单元磁力线30的方向不同,其切向作用力与反作用力的方向及大小,差异很大。若把上部单元视为转子单元3,下部单元视为活动定子单元,则可见:定子单元的磁力线方向,对其切向合力F2t的方向及大小影响巨大,即影响所需动力P的大小。
图2a示出两个单元的磁力线方向相反(图示上部向右、下部向左),各种作用力与反作用力,均大小相等、方向相反,即
F1=-F2,F1n=-F2n,F1t=-F2t
图2b示出两个单元的磁力线方向相同(均向右),不在一条直线上的切向作用力与反作用力大小相等、方向相同,即F1t=F2t
图2c和图2d的特点是:
①下部单元磁力线方向分成两段,各向左右。两段切向力F2ta与F2tb的方向相反,大小部份相互抵消。切向合力F2t
F2t =F2ta- F2tb
②上部单元的切向力为下部单元的两段切向力的绝对值之和,即
Figure PCTCN2010076405-appb-M000001
上下两个单元的切向作用力与反作用力F1t与F2t大小不相等、方向不相同,即F1t≠F2t
图2d示出下部单元的两段切向力大小相等、方向相反,即F2ta=-F2tb,其切向合力为
F2t = F2ta -F2tb =0。
图3示出旋转定子单元23(最大半径r)受推力P作用,切入到转子2的运动范围内,去接近和推动转子单元3时,两种单元的同性磁场相斥,产生作用与反作用斥力。图3中示出推动转子单元3前进的力F1n。作用于定子单元上的力有:法向力F2n(它垂直于轴31的力臂u)、切向力(即磁滑动摩擦力)F2t,头部A1和A0区的阻力F2a;它们分别形成转矩M2n、M2t、M2a
M2n=F2n*u,M2t=F2t*r,M2a=F2a*r。
定子单元自身的转矩M2为
M2 =M2n + M2t - M2a - M0
判断定子单元是否需要外加动力P的条件是:
①当M2 >0时,表明定子单元的推力矩M2n和/或M2t较大,头部阻力矩M2a小;它靠自身的动力即可旋转;
②当M2 ≤0时,需要外加动力P即转矩Mp;它由转子自身旋转或/和外部能源提供。
因此,一是要减小定子单元头部的阻力F2a;二是要使它前部的磁力线向后一边倒,避免出现图中所示的磁力线朝向与B方向相反的伪推力段。
图4示转子单元模型B区的磁力线一边倒向右、且较长。A1段为推力区。A0段是阻力区。
图5a和图5b示两种单元模型头部全用大小N-S端极块构成。N极在前,S极在后。
图6示转子单元模型的结构较简单。A1段为推力段。
图7示单元推力区B的磁力线已达到头部。若把此种单元用来作成活动定子单元,则图示A1区可能起推力或阻力作用,这将取决于它的位置。(参见图3、图11b)
显然,头部右侧的分界线29已没有了原先定义的作为B区与A1区分界的标记意义。
磁块固定在铁条42上。面极块的N极朝外。端极块的N极在前,S极在后。下部右侧无磁块,但该处内边的铁条42已被磁化。
图8a和图8b是一个活动定子单元切入转子内,去推动转子单元3时的力测量图。单元高度为一个磁块50mm。图8a示出弹簧称力F≈2.5kg。图8b示出力P≈0.4kg。
图8a和图8b所示定子单元的A0和A1段均是阻力段,产生的阻力由力P克服。B段产生的切向磁滑动摩擦力,帮助减小所需推动力P。
图9a至图9c示出进退定子单元22被固定在滑轮架38的前部。后者沿固定在定子上的外滑轨37进退。转子单元3被固定在转子2的外部,转子半径R,气隙25。
图9a示出临界状态,即:转子单元3头部阻力段A0刚超过定子单元头部,到达S0位置;定子单元即将迅速前进切入转子2范围时的T0位置。
从图9a可见:无论是定子单元的A0区或B区,均使转子单元的B区和A1区成为推力区。
图9b示出,定子单元受推力P作用,已从位置T0切入转子内,达到T1处;两种单元同性相斥产生力F,推动转子单元3前进,从S0到S1
然后,定子单元受反向力P作用,从T1退出转子2外边缘,回到原T0处,等右边的另一个转子单元3到来。
由于正向力F远大于切向耗力P,F的力矩M作功>>阻力矩耗能,所以,定子单元可以如此反复循环进入与退出转子2的范围,间断地推动转子绕轴1顺时针旋转前进,并不断地将它加速。
作用于定子单元22的反力F,由滑轮架38传给滑轨37承受。
滑轮架38和滑轨37可用磁悬浮方式联结,以便减少轮-轨的摩擦力。
定子单元22被安置为斜向,或虚线示的竖向。斜向安置产生的推力F大。
图9c示出轴对称的两个定子单元22通过连杆机构39相互依存,一个进入时,另一个退出。
图10a至图10c示出,半旋转定子单元24(头部的最大旋转半径r)固定在长连杆27的左部。右部固结非磁性平衡重物W,以保证结构的动平衡。右端连结拉力弹簧43。连杆27的中部支承在固定轴31上,并可绕其旋转。
图10a示出转子单元3到达S0位置,定子单元到达T0的临界状态。如图10a所示:转子单元的B区和A1区为推力区。
图10b示出,定子单元受推力P作用,绕轴31旋转,已从位置T0到T1处。两种单元相斥产生力F,推动单元3从S0到S1。同时,拉簧43收缩复原,帮助定子单元切入转子2的范围。
然后,定子单元受反向力P作用,从T1位置,逆时针旋转退出转子2外边缘,回到原T0处,等右边的另一个转子单元3从S2处到来(如图10c所示)。与此同时,弹簧43被拉长。
由于F>>P,定子单元间断地推动转子前进。
作用于定子单元的反力F由固定轴31支承。
图11a和图11b示出,旋转定子单元23(头部的最大旋转半径r)和非磁性配重W,通过连杆27(右端连结拉力弹簧43)与固定轴31连结,并可绕轴旋转。
图11a示出转子单元3到达S0位置,定子单元到达T0的临界状态。如图所示:转子单元的B区和A1区为推力区。
图11b示出,定子单元受推力P作用,绕轴31旋转,已从位置T0到T1处。两种单元相斥产生力F,推动转子单元3前进。
在单元3前进的同时,其尾段将受到定子单元头部的斥力作用,从而绕旋转轴36作逆时针旋转,尾端从S2到S3;而头部则逆时针返旋回来从S0到S1处,去接近并相斥定子单元的尾部。这样可以缩短两种单元的距离,增大此刻的力F。与此同时,弹簧43也被拉长,从S2到S3
然后,定子单元继续受力P作用,从T1位置连续顺时针旋转退出转子2外边缘,回到原T0处。当两种单元相离开后,拉簧43缩短复位到原S2处(图11a)。
由于F>>P,定子单元间断地推动转子前进。作用于定子单元的反力F由固定轴31承受。
定子单元切入转子的深度,主要取决于:①定子单元半径r的大小;②轴31与转子2边缘的距离;③定子单元自身之间的距离及磁场关系。
图12示转子2与旋转定子单元23的转速为 1:8。
8个转子单元3为活动式,编号为81~88。它们各自与固定在转子板2上的轴36相连,并可绕它来回旋转(参见图11a和图11b)。
7个旋转定子单元23的支座板71~77,固定在各自的轴31上。各个轴31上还分别固定有同步带轮61~67。定子单元73和76的轴31上还固定有换向齿轮70。
各个定子单元的相位岔开,以便进入转子2范围和推动转子单元的时间不同。图12中,仅在支座72上显示了一个定子单元23。
转子轴1上固定两个铝合金同步带轮60(型号HTD 5M-120P)。它们通过同步带51和55连接齿轮61和65。齿轮61又通过带52连接齿轮62。
直径1m的同步带轮68(8M-400P-周长3200mm)用同步带制成。它被粘钉在转子板2外边缘上。齿轮68与换向齿轮69(8M-50P)啮合。后者逆时针旋转,并与齿轮70啮合。
由此,转子2与7个旋转定子单元71~77(即23)连接成一个运动联合体,同步顺时针旋转。转子轴1输出动力矩M。
附图标记
A~G -- 单元外周附近磁场的分区或分段号,
A0 -- 单元头部处构成相斥阻力作用的区段号,即阻力段,
A1 -- 靠近B区的A段,它可能成为推力段或阻力段,
A2 -- 易于避开的阻力段,
F、F1、F2 -- 转子单元与定子单元同性磁场相斥产生的正向作用与反作用力,
F1n、F2n -- 法向分力,简称法向力,
F1t、F2t、F2ta、F2tb -- 切向力,即磁滑动摩擦力,
M -- 转子轴输出剩余能量折合成的动力矩,
Ma -- 转子单元A区的阻力矩,
Md -- 转子单元D区的阻力矩,
Mf -- 转子单元的推力矩,
Mp -- P力构成的动力矩或所耗的能,
M0 -- 机械摩擦阻力矩,
M1 -- 其它耗能折合成的阻力矩,
M2 、M2n、M2t、M2a -- 活动定子单元23的转矩,
N -- 极性,
P -- 推动定子单元切入或退出转子2范围所需要的力或所耗的能,
W -- 非磁性配重,
R -- 转子半径,
r -- 定子单元的最大旋转半径,
S -- 极性,
S0 ~ S3 -- 转子单元端部的运动点,
T0 ~ T1 -- 活动定子单元端部的运动点,
u -- 力F2n的力臂,
1 -- 转子轴,
2 -- 转子、转子上固定的园板或转子外边缘的运动轨迹,
3 -- 永磁体转子单元,
22 -- 切入式进退定子单元,
23 -- 切入式旋转定子单元,
24 -- 切入式半旋转定子单元,
25 -- 气隙,
27 -- 长连杆,
28 -- N-S场的分界线,
29 -- A1区与B区同性磁场的分区线,
30 -- 磁力线,
31 -- 活动定子单元的转动轴,
32 -- 半旋转转子单元,
36 -- 活动转子单元的转动轴,
37 -- 固定在定子上的外滑轨,
38 -- 滑轮架,
39 -- 连杆机构,
41 -- 铁件,
42 -- 铁条,
43 -- 弹簧,
51~55 -- 同步带,
60 — 转子轴上固定的同步带轮,
61 ~ 67 -- 同步带轮,
68 -- 转子2外边缘用同步带制成的同步带轮,
69、70 -- 换向齿轮,
71~77 -- 7个旋转定子单元23或其支座板号,
81~88 -- 8个活动转子单元号。

Claims (3)

  1. 一种永磁力发动机,含有转子、定子和机架,机架支承转子轴和定子,转子含有至少一个永磁体转子单元,其特征在于:
    (1)定子含有至少一个永磁体切入式活动定子单元;
    (2)定子单元受动力P作用,突破转子的外边缘,切入到转子运动的范围内,去接近转子单元; 定子单元和转子单元的同性磁场近距离接触、相互作用,产生作用力与反作用力F,推动转子单元前进;定子单元受动力P作用,离开转子运动的范围回到原位,如此反复循环,间断地推动转子单元前进;
    (3)力F>>力P;
    (4)活动定子单元的动力P,由外部能源和/或转子自身旋转提供;
    (5)转子轴输出的动力矩M等于,受各个定子单元同性磁场相斥而得的各个转子单元的推力矩之和∑Mf,与各种耗能形成的阻力矩∑Ma、∑Md、∑M0及∑M1之和的差值,即,
    M = ∑Mf-∑Ma -∑Md -∑M0 -∑M1
    其中,∑Ma为受定子单元同性磁场相斥而得的各个转子单元阻力矩之和,
    ∑Md为定子单元与转子单元异性磁场相吸而得的各个转子单元阻力矩之和,
    ∑M0为克服机械摩擦阻力和空气阻力等损耗功折合成的阻力矩之和,
    ∑M1为活动定子单元运动的耗能折合成的阻力矩之和;
    转子的动力矩M>>总阻力矩,并且动力矩M作功>>总阻力矩耗能,从而能够推动转子连续旋转作功,输出能量。
  2. 根据权利要求1所述的永磁力发动机,其特征在于,活动定子单元采用进退定子单元、旋转定子单元和/或半旋转定子单元。
  3. 根据权利要求1所述的永磁力发动机,其特征在于,转子单元采用固定式或活动式。
PCT/CN2010/076405 2009-11-27 2010-08-27 永磁力发动机 WO2011063668A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200920270298.2 2009-11-27
CN200920270298 2009-11-27
CN2010102248412A CN102082529A (zh) 2009-11-27 2010-07-13 永磁力发动机
CN201020256542.2 2010-07-13
CN201010224841.2 2010-07-13
CN201020256542 2010-07-13

Publications (1)

Publication Number Publication Date
WO2011063668A1 true WO2011063668A1 (zh) 2011-06-03

Family

ID=44065847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076405 WO2011063668A1 (zh) 2009-11-27 2010-08-27 永磁力发动机

Country Status (1)

Country Link
WO (1) WO2011063668A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177859A (ja) * 1988-01-03 1989-07-14 Tadahiro Yuki 磁石を利用した軸の回転方法、及び台車の走行方法
CN1066752A (zh) * 1991-05-11 1992-12-02 祝子高 磁力发动机
CN1229306A (zh) * 1999-02-05 1999-09-22 孙中灏 永磁推动机及其工作原理和用途
WO2003088457A1 (en) * 2002-04-12 2003-10-23 Ottoni Fernando Carvalho Bened Magnetic motor
WO2007131434A1 (en) * 2006-05-11 2007-11-22 Lu, Yumin Permanent magnetic force motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177859A (ja) * 1988-01-03 1989-07-14 Tadahiro Yuki 磁石を利用した軸の回転方法、及び台車の走行方法
CN1066752A (zh) * 1991-05-11 1992-12-02 祝子高 磁力发动机
CN1229306A (zh) * 1999-02-05 1999-09-22 孙中灏 永磁推动机及其工作原理和用途
WO2003088457A1 (en) * 2002-04-12 2003-10-23 Ottoni Fernando Carvalho Bened Magnetic motor
WO2007131434A1 (en) * 2006-05-11 2007-11-22 Lu, Yumin Permanent magnetic force motor

Similar Documents

Publication Publication Date Title
WO2017052075A1 (ko) 영구자석 응용 전동기
WO2005020409A3 (en) Selective alignment of stators in axial airgap electric devices comprising low-loss materials
WO2011063668A1 (zh) 永磁力发动机
WO2020226263A1 (ko) 전력 케이블 풀러 및 전력 케이블 풀러 시스템
CN102437705B (zh) 一种直线电机
TWM527179U (zh) 磁能轉換裝置
CN109500807B (zh) 一种智能六爪抓手机构
TWI629852B (zh) Magnetic energy conversion device
WO2015172552A1 (zh) 一种产品批次制造用的动力时序变换方法与装置
JP5290510B2 (ja) 型締装置
WO2007131434A1 (en) Permanent magnetic force motor
Maeda et al. Single-Phase Linear Actuator with Semi-Closed Magnetic Circuit
Takahara et al. Proposal of a magnetic screw motor utilizing a modulated magnetic flux
IT227539Y1 (it) Dispositivo di comando per una porta scorrevole.
ITMI932199A1 (it) Metodo e dispositivo per il pilotaggio di un motore elettrico monofase a magneti permanenti connesso ad un carico e definente con esso un
CN214109485U (zh) 一种基于永磁涡流的螺纹副自动拧紧装置
CN211018144U (zh) 一种伺服电机线束保护装置
TW312870B (en) Inertia rotating device
ES2056730A2 (es) Motor de repulsion para aprovechar la fuerza de repulsion de los campos magneticos iguales o del mismo signo y generar movimiento.
Kojima et al. Development of Linear DC Motor surrounded by Four Faces for Hopping Robot and Experiments of Continuous Hopping
Sugiyama et al. Anomalous High-Field Metamagnetism Based on the Quadrupole Interaction in TmCu2
JPH01190257A (ja) 超電導モータ
JPH0491665A (ja) 直進変換機構
TW201914168A (zh) 同心共電磁電裝置
Sinica Qing-hua Du Prof. Dr., Editor-in-chief Acta Mechanica Solida Sinica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832575

Country of ref document: EP

Kind code of ref document: A1