WO2011062248A1 - Epoxy-containing ethylene copolymer and resin composition - Google Patents

Epoxy-containing ethylene copolymer and resin composition Download PDF

Info

Publication number
WO2011062248A1
WO2011062248A1 PCT/JP2010/070638 JP2010070638W WO2011062248A1 WO 2011062248 A1 WO2011062248 A1 WO 2011062248A1 JP 2010070638 W JP2010070638 W JP 2010070638W WO 2011062248 A1 WO2011062248 A1 WO 2011062248A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
ethylene
group
monomer unit
unit derived
Prior art date
Application number
PCT/JP2010/070638
Other languages
French (fr)
Japanese (ja)
Inventor
晃子 関野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011062248A1 publication Critical patent/WO2011062248A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters

Definitions

  • the present invention relates to an epoxy group-containing ethylene copolymer and a resin composition containing the same.
  • An epoxy group-containing ethylene copolymer comprising an ethylene-derived monomer unit and an epoxy group-containing olefin-derived monomer unit is, for example, a polyolefin as described in JP-A-52-32045. It is added to resins and polyester resins and used to improve mechanical properties such as impact resistance and tensile properties of these resins.
  • the epoxy group-containing ethylene-based copolymer is used for bonding between dissimilar materials that are difficult to bond, such as polyester resins, metals, and fluororesins, as described in, for example, JP-A-55-40707. It is also used.
  • the epoxy group-containing ethylene copolymers described in JP-A-52-32045 and JP-A-55-40707 have monomer units derived from an epoxy group-containing olefin per molecule. Since the content is small, the physical properties of the resin composition obtained by adding the copolymer to other resins are not sufficiently improved in the properties compared to the properties of the original resin.
  • an object of the present invention is to provide an epoxy group-containing ethylene copolymer having a high resin modification effect and a resin composition containing the same.
  • the present invention is an epoxy group-containing ethylene copolymer containing a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate, and the mass of the copolymer is 100% by mass.
  • a copolymer containing 15 to 25% by mass of the monomer unit derived from glycidyl methacrylate and having a melt flow rate at 190 ° C. of 10 to 50 g / 10 min, and a resin composition containing the copolymer provide.
  • the epoxy group-containing ethylene copolymer according to the present invention is a copolymer containing a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate. From the viewpoint of the resin modification effect, this epoxy group-containing ethylene-based copolymer has a monomer unit derived from glycidyl methacrylate in an amount of 15 to 25% by mass when the mass of the copolymer is 100% by mass. Contained, preferably 15 to 20% by mass. In addition, content of the monomer unit derived from glycidyl methacrylate is measured by infrared spectroscopy.
  • the epoxy group-containing ethylene copolymer in the present invention may be an epoxy group-containing ethylene copolymer consisting only of a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate, or ethylene. Derived from a monomer unit derived from, a monomer unit derived from glycidyl methacrylate, a compound represented by the following formula (1) and a compound represented by formula (2) An epoxy group-containing ethylene copolymer further containing a monomer unit may be used.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 2 represents a halogen atom or a group represented by —COOR 5
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a group represented by —COOR 6
  • R 4 represents an alkyl nitrile having 1 to 8 carbon atoms, an alkyl ether group, an alkylamide, a halogen atom, a phenyl group, or a group represented by —COOR 7 (R 7 represents an alkyl group having 1 to 8 carbon atoms).
  • R 4 represents a group represented by —OCOR 8 (R 8 represents an alkyl group having 1 to 8 carbon atoms).
  • R 8 represents an alkyl group having 1 to 8 carbon atoms.
  • Examples of the compound represented by the formula (1) include propylene, 1-butene, vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, vinyl chloride, vinylidene chloride, and styrene. , Acrylonitrile, isobutyl vinyl ether, and acrylamide.
  • Examples of the compound represented by the formula (2) include dimethyl maleate, diethyl maleate, dimethyl fumarate, and diethyl fumarate.
  • the one or more compounds are preferably selected from the group consisting of vinyl acetate, methyl acrylate and methyl methacrylate.
  • the epoxy group-containing ethylene copolymer is a monomer unit derived from ethylene, a monomer unit derived from glycidyl methacrylate, and a monomer unit derived from the compound represented by formula (1) or formula (2)
  • the content of the monomer unit derived from the compound represented by formula (1) or formula (2) is 40% by mass or less.
  • 30 mass% or less is more preferable.
  • the content of the monomer unit derived from glycidyl methacrylate is 15 to 25% by mass.
  • epoxy group-containing ethylene copolymer examples include an ethylene-glycidyl methacrylate copolymer, an ethylene-propylene-glycidyl methacrylate copolymer, and an ethylene-butene-1-glycidyl methacrylate copolymer.
  • Ethylene-vinyl acetate-glycidyl methacrylate copolymer ethylene-acrylic acid-glycidyl methacrylate copolymer, ethylene-methacrylic acid-glycidyl methacrylate copolymer, ethylene-methyl acrylate-glycidyl methacrylate copolymer, Ethylene-ethyl acrylate-glycidyl methacrylate copolymer, ethylene-methyl methacrylate-glycidyl methacrylate copolymer, ethylene-ethyl methacrylate-glycidyl methacrylate copolymer, ethylene-methyl maleate-glycidyl methacrylate Copolymer, ethylene-ethyl maleate-glycidyl methacrylate copolymer, ethylene-methyl fumarate-glycidyl methacrylate copolymer, ethylene-ethyl fumarate-glycidyl methacrylate
  • the epoxy group-containing ethylene copolymer according to the present invention can be synthesized by various methods. For example, it can be produced by bulk polymerization, emulsion polymerization, solution polymerization or the like using a free radical initiator. Representative polymerization methods include those described in JP-A-48-11388 and JP-A-61-127709, and in the presence of a polymerization initiator that generates free radicals, at a pressure of 500 kg / cm 2. As mentioned above, a method of copolymerizing under the condition of a temperature of 40 to 300 ° C. can be mentioned.
  • an unsaturated epoxy compound and a radical generator are mixed with a polymer containing a monomer unit derived from ethylene and a monomer unit derived from the compound represented by the formula (1) or (2).
  • a method of melt graft copolymerization in an extruder, or ethylene and an unsaturated epoxy compound, and an optional component represented by the formula (1) or (2) in an inert medium such as water or an organic solvent And a method of copolymerizing in the presence of a radical generator.
  • the epoxy group-containing ethylene copolymer according to the present invention has a melt flow rate at 190 ° C. of 10 to 50 g / 10 minutes, preferably 10 to 30 g / 10 minutes, from the viewpoint of the effect of modifying the resin.
  • the epoxy group-containing ethylene copolymer according to the present invention can be added to a resin such as a polyolefin resin or a polyester resin as described later and used as a modifier.
  • a resin such as a polyolefin resin or a polyester resin as described later and used as a modifier.
  • Various additives such as a colorant may be added to the resin together with the epoxy group-containing ethylene copolymer of the present invention.
  • the resin composition according to the present invention comprises the above epoxy group-containing ethylene copolymer (hereinafter referred to as component (A)) and an ester bond, carbonate bond, ether bond, sulfide bond and amide bond in the main chain. And a polymer having at least one bond selected from the group (hereinafter referred to as component (B)).
  • component (A) epoxy group-containing ethylene copolymer
  • component (B) a polymer having at least one bond selected from the group
  • the epoxy group-containing ethylene-based copolymer functions as a modifier. Therefore, the content of the component (A) in the resin composition is preferably 0.1 to 30% by mass when the total of the component (A) and the component (B) is 100% by mass, and preferably 1 to 25%. More preferably, it is more preferably 3 to 20% by mass.
  • the content of the component (B) is preferably 70 to 99.9% by mass, and 75 to 99% by mass. Is more preferable and 80 to 97% by mass is even more preferable.
  • the component (B) include polyester, polyamide, polycarbonate, polyacetal, polyphenylene ether, polyphenylene sulfide and the like. You may use these individually or in combination of 2 or more types.
  • the component (B) is preferably polyester. Polyester is classified into unsaturated polyester and saturated polyester. Examples of the saturated polyester include aliphatic polyester and aromatic polyester.
  • the unsaturated polyester refers to a polyester polymer obtained by copolymerizing an unsaturated polybasic acid, a saturated polybasic acid and a glycol.
  • unsaturated polyesters include polyethylene maleate / isophthalate, polypropylene maleate / isophthalate, polyethylene methacrylate / phthalate, polybisphenol A isophthalate.
  • the saturated polyester refers to a polyester polymer obtained by polymerizing a saturated polybasic acid and glycol.
  • the aliphatic polyester refers to a polyester polymer obtained by polymerizing an aliphatic hydroxycarboxylic acid, and a polyester polymer obtained by polymerizing an aliphatic diol and an aliphatic dicarboxylic acid.
  • polyester polymers obtained by polymerizing aliphatic hydroxycarboxylic acids include polylactic acid, polyglycolic acid, poly (3-hydroxybutyric acid), poly (4-hydroxybutyric acid), poly (4-hydroxyvaleric acid) ), Polycaprolactone and the like.
  • Polyester polymers obtained by polymerizing aliphatic diols and aliphatic dicarboxylic acids include polyester carbonate, polyethylene succinate, polybutylene succinate, polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene Examples include adipate, polybutylene succinate adipate, polyethylene oxalate, polybutylene oxalate, polyhexamethylene oxalate, polyethylene sebacate, polybutylene sebacate and the like.
  • poly ( ⁇ -hydroxy acid) such as polylactic acid and polyglycolic acid is preferably used, and polylactic acid is particularly preferably used.
  • the aliphatic polyester may be a homopolymer or a copolymer.
  • the copolymer include a copolymer of lactic acid and a hydroxy acid other than lactic acid.
  • the aliphatic polyester one kind of polymer may be used, or two or more kinds of aliphatic polyester polymers may be blended and used.
  • a blend of the aliphatic polyester for example, a blend of a polylactic acid-based resin based on polylactic acid and another aliphatic polyester is preferable.
  • the content of the polylactic acid resin in the blended product of such a polylactic acid resin and another aliphatic polyester is preferably 60% by mass or more, and more preferably 70% by mass or more.
  • polylactic acid When polylactic acid is used as the aliphatic polyester, the synthesis method of polylactic acid may be direct polymerization of D-lactic acid or L-lactic acid, and D-lactide, L-lactide or meso which are cyclic dimers of lactic acid. -Ring-opening polymerization of lactide may be used.
  • the polylactic acid may be composed of either one of a monomer unit derived from L-lactic acid and a monomer unit derived from D-lactic acid, or a co-polymer containing both monomer units. It may be a coalescence.
  • the melt flow rate of the aliphatic polyester is preferably 0.5 to 50 g / 10 minutes, more preferably 1 to 30 g / 10 minutes, and most preferably 10 to 20 g / 10 minutes.
  • the melt flow rate of the aliphatic polyester is measured at a test temperature of 190 ° C. and a test load of 21.18 N by the method defined in JIS K 7210 (1995).
  • Aromatic polyesters are polyesters obtained by polymerizing aromatic hydroxycarboxylic acids, polyesters obtained by polymerizing aromatic dicarboxylic acids and aromatic diols, and polymers obtained by polymerizing aromatic dicarboxylic acids and aliphatic diols. Polyester obtained by polymerizing an aliphatic carboxylic acid and an aromatic diol.
  • Aromatic polyesters include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly1,4-cyclohexylenedimethylene terephthalate, polyethylene-1,2-bis (phenoxy) ethane.
  • the component (B) is preferably polylactic acid, aromatic polyester, or a mixture thereof.
  • polyamides include ring-opening polymers of cyclic lactams, polycondensates of aminocarboxylic acids, and polycondensates of dicarboxylic acids and diamines.
  • Nylon 6, Nylon 4,6, Nylon 6,6, Nylon 6,10, Nylon 6,12, Nylon 11, Nylon 12, and other aliphatic polyamides poly (metaxylene adipamide), poly (hexa Aliphatic-aromatic polyamides such as methylene terephthalamide), poly (hexamethylene isophthalamide), polynonanemethylene terephthalamide, poly (tetramethylene isophthalamide), poly (methylpentamethylene terephthalamide), and copolymers thereof
  • the copolymer include nylon 6 / poly (hexamethylene terephthalamide), nylon 6/6 / poly (hexamethylene terephthalamide), nylon 6 / nylon 6/6 / poly (hexamethylene isophthalamide), poly (Hexamethylene isophthala Do) / poly (hexamethylene terephthalamide), nylon 6 / poly (hexamethylene isophthalamide) / poly (hexamethylene terephthalamide), nylon 12 / poly (hexa /
  • the resin composition according to the present invention may contain a polymer other than the component (A) and the component (B) (hereinafter referred to as the component (C)).
  • a polymer other than the component (A) and the component (B) hereinafter referred to as the component (C)
  • polyolefin resin, an elastomer, etc. are mentioned.
  • the polyolefin-based resin is a polymer selected from an olefin homopolymer and a copolymer obtained by copolymerizing two or more olefins, and a polymer having a crystallinity of 25% or more. Means.
  • the crystallinity of the polyolefin resin is preferably 35% or more, and more preferably 40% or more.
  • polyolefin resins examples include polyethylene resins, polypropylene resins, polybutene resins, and the like, with polypropylene resins being preferred.
  • polyolefin resin one kind of resin may be used or two or more kinds of resins may be used in combination.
  • the degree of crystallinity is measured by using a differential scanning calorimeter (DSC) by scanning twice at a heating / cooling rate of 10 ° C./min.
  • DSC differential scanning calorimeter
  • the crystallinity is a value calculated as a ratio of the heat of fusion measured in the second scan to the heat of fusion in the 100% crystal state.
  • the polyethylene resin used in the present invention is an ethylene homopolymer or an ethylene- ⁇ -olefin copolymer having an ethylene unit content of 50% by mass or more, but the ethylene-propylene copolymer is a polypropylene resin. Shall be included.
  • ⁇ -olefin constituting the ethylene- ⁇ -olefin copolymer examples include 1-butene, 2-methyl-1-propene, 2-methyl-1-butene, 3-methyl-1-butene, 1-butene, Hexene, 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl- 1-butene, 1-heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, methylethyl-1-butene, methyl-1-pentene, ethyl-1-hexene , Dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl-1-pentene, propyl-1-pentene, diethyl-1
  • the ⁇ -olefin constituting the ethylene- ⁇ -olefin copolymer preferably has 4 to 12 carbon atoms, and more preferably 4 to 6 carbon atoms.
  • the melt flow rate is preferably 0.1 g / 10 min to 10 g / 10 min from the viewpoint of the mechanical strength of the molded product obtained from the resin composition of the present invention. More preferably, it is 0.3 g / 10 min to 8 g / 10 min, and particularly preferably 1.0 g / 10 min to 3 g / 10 min.
  • the melt flow rate of the polyethylene resin is measured under the conditions of a test load of 21.18 N and a test temperature of 190 ° C. by the method defined in JIS K 7210 (1995).
  • the polypropylene resin used in the present invention is a propylene homopolymer or a copolymer having a propylene unit content of 50% by mass or more, a propylene-ethylene random copolymer, a propylene- ⁇ -olefin random copolymer, A copolymer of propylene-ethylene- ⁇ -olefin copolymer, “propylene homopolymer component” and “one or more comonomers selected from the group consisting of propylene and ethylene and / or ⁇ -olefin having 4 or more carbon atoms”; Examples thereof include a copolymer composed of a “polymer component”.
  • polypropylene resins may be used alone or in combination of two or more.
  • the melt flow rate is preferably 0.1 g / 10 min to 400 g / 10 min from the viewpoint of the mechanical strength of the molded product obtained from the resin composition of the present invention. More preferably, it is 1 g / 10 min to 400 g / 10 min, and particularly preferably 5 g / 10 min to 200 g / 10 min.
  • the melt flow rate of the polypropylene resin is measured under the conditions of a test load of 21.18 N and a test temperature of 230 ° C. by the method defined in JIS K 7210 (1995).
  • the resin composition of this invention may contain the elastomer.
  • elastomer a copolymer other than the polyolefin-based resin can be used.
  • the elastomer include natural rubber, polybutadiene rubber, polyisoprene rubber, butyl rubber, amorphous or low-crystalline ethylene elastomer, butadiene-styrene elastomer, butadiene-acrylonitrile elastomer, hydrogenated or non-hydrogenated styrene-conjugated.
  • diene block elastomers polyester rubbers, acrylic rubbers, and silicon rubbers.
  • One type of elastomer may be used alone, or two or more types of elastomers may be used in combination.
  • the ethylene-based elastomer is an elastomer containing a monomer unit derived from ethylene as a main component, and examples thereof include an ethylene- ⁇ -olefin copolymer and an ethylene-ethylenically unsaturated ester copolymer.
  • the ethylene-based elastomer is preferably an ethylene- ⁇ -olefin copolymer which is a copolymer of ethylene and one or more ⁇ -olefins.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 12 carbon atoms.
  • the “amorphous elastomer” refers to an elastomer in which a crystal melting peak having a heat of fusion of 1 J / g or more is not observed within a range of ⁇ 100 ° C. to 200 ° C.
  • the “low crystalline elastomer” refers to an elastomer in which a crystal melting peak having a heat of fusion of 1 to 30 J / g is observed in the range of ⁇ 100 ° C. to 200 ° C. by differential scanning calorimetry (DSC).
  • Examples of hydrogenated or non-hydrogenated styrene-conjugated diene block elastomers include styrene-isoprene copolymers, styrene-isoprene-styrene copolymers, styrene-ethylenebutene-styrene copolymers, styrene-butadiene copolymers, Examples thereof include styrene-butadiene-styrene copolymers.
  • the melt flow rate of the elastomer is preferably 0.1 g / 10 min to 100 g / 10 min from the viewpoint of the mechanical strength of the molded product obtained from the resin composition of the present invention.
  • the melt flow rate of the ethylene- ⁇ -olefin copolymer is preferably 0.1 g / 10 min or more, and is 100 g / 10 min or less from the viewpoint of increasing the mechanical strength of the obtained molded product. More preferably, it is 0.3 g / 10 min to 50 g / 10 min, and further preferably 0.5 g / 10 min to 40 g / 10 min.
  • the melt flow rate of the elastomer is measured under the conditions of a test load of 21.18 N and a test temperature of 190 ° C.
  • each component in the resin composition according to the present invention is the component (A) when the total content of the components (A), (B), and (C) is 100% by mass. 1 to 40% by mass, component (B) 1 to 30% by mass, component (C) 40 to 98% by mass, component (A) 5 to 35% by mass, component (B) 5 More preferably, it contains ⁇ 25% by mass, 45-90% by mass of component (C), 10-30% by mass of component (A), 10-20% by mass of component (B), and 50 of component (C). It is more preferable to contain ⁇ 80% by mass.
  • the method for producing the resin composition of the present invention is not particularly limited, and a method used in the production of a conventional resin composition, for example, melt-heat kneading using a kneader, an extruder or the like.
  • the method of manufacturing is mentioned.
  • the kneader include a kneader, a Banbury mixer, and a roll.
  • the extruder include a single screw extruder and a twin screw extruder.
  • the method for obtaining a molded product using the resin composition of the present invention is not particularly limited, and a molding method generally used for thermoplastic resin compositions, for example, injection molding, injection blow molding, injection compression molding.
  • any of blow molding, extrusion molding, thermoforming, rotational molding, vacuum molding, vacuum pressure forming and the like can be applied.
  • the molded product obtained using the resin composition of the present invention include films, sheets, foamed sheets, hollow containers, fibers such as nonwoven fabrics, and automobile parts such as interior materials.
  • the film or sheet obtained by molding the resin composition according to the present invention can also be used for applications requiring adhesiveness.
  • surface of a base material can also be used for the use for which adhesiveness is calculated
  • a method for producing a single layer or laminated film or sheet including a layer comprising a resin composition containing an epoxy group-containing ethylene copolymer according to the present invention for example, a commonly used extrusion molding method, T-die method, Examples thereof include an inflation method, a calendar method, lamination molding, and press molding.
  • a commonly used extrusion molding method, T-die method examples thereof include an inflation method, a calendar method, lamination molding, and press molding.
  • goods can also be adhere
  • the article can be regarded as the substrate.
  • an article on one side of the laminate can be bonded to another article on the other side.
  • the materials constituting the two articles to be bonded may be the same or different.
  • the material constituting the article include metals such as gold, silver, copper, iron, tin, lead, aluminum, and silicon, inorganic materials such as glass and ceramics, cellulosic polymers such as paper and cloth, Synthesis of melamine resin, acrylic / urethane resin, urethane resin, (meth) acrylic resin, styrene / acrylonitrile copolymer, polycarbonate resin, phenol resin, alkyd resin, epoxy resin, silicone resin, fluorine resin, etc.
  • Each article may be composed of two or more types of materials.
  • the shape of the article is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, and a fiber shape.
  • the article has a surface such as a release agent, a coating such as plating, a coating film made of a resin composition other than the present invention, surface modification by plasma or laser, surface oxidation, etching, etc. Processing etc. may be given.
  • Tensile impact strength (unit: kJ / m 2 ) The tensile impact strength of a 2 mm thick sheet compression molded under conditions of a molding temperature of 190 ° C., a preheating time of 10 minutes, a compression time of 5 minutes, and a compression pressure of 5 MPa was measured according to ASTM D1822-68. 7). Tensile properties Tensile properties of the molded bodies were measured according to the method defined in ASTM D638. As the test piece, a molded body having a thickness of 3.2 mm formed by injection molding was used. The test piece was previously marked with two marked lines and an interval of 50 mm. The test piece is pulled at a pulling speed of 50 mm / min.
  • B-1 Polybutylene terephthalate (Torcon 1401-X06 manufactured by Toray Industries, Inc.)
  • B-2 Polylactic acid (Teramac TP-4000 manufactured by Unitika Ltd.) [Component (C)] As the component (C), the following resins were used.
  • C-1 ethylene- ⁇ -olefin copolymer (density 920 kg / cm 3 , MFR 1.9 g / 10 min at 190 ° C.)
  • C-2 Ethylene- ⁇ -olefin copolymer (Excellen FX CX4002 manufactured by Sumitomo Chemical Co., Ltd.)
  • Example 1 It carried out similarly to the Example except having used A-2 instead of A-1.
  • Comparative Example 2 The same procedure as in Example was performed except that A-3 was used instead of A-1.
  • Comparative Example 3 The same procedure as in Example was performed except that A-4 was used instead of A-1.
  • Comparative Example 4 It carried out like Example 2 except having used A-2 instead of A-1.
  • Comparative Example 5 The same procedure as in Example 2 was performed except that A-3 was used instead of A-1.
  • Comparative Example 6 The same procedure as in Example 2 was performed except that A-4 was used instead of A-1.

Abstract

Provided is an epoxy-containing ethylene copolymer that contains a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate. The monomer unit derived from glycidyl methacrylate constitutes between 15% and 25% of the mass of the copolymer, and the melt flow rate of the copolymer is 10-50 g/10 min at 190°C.

Description

エポキシ基含有エチレン系共重合体及び樹脂組成物Epoxy group-containing ethylene copolymer and resin composition
 本発明は、エポキシ基含有エチレン系共重合体及びこれを含有する樹脂組成物に関する。 The present invention relates to an epoxy group-containing ethylene copolymer and a resin composition containing the same.
 エチレン由来の単量体単位と、エポキシ基含有オレフィン由来の単量体単位とからなるエポキシ基含有エチレン系共重合体は、例えば特開昭52−32045号公報に記載されているように、ポリオレフィン樹脂やポリエステル樹脂等に添加し、これらの樹脂の耐衝撃性、引張特性などの機械特性を向上させるために用いられている。また、前記エポキシ基含有エチレン系共重合体は、例えば特開昭55−40707号公報に記載されているように、ポリエステル樹脂、金属類、フッ素樹脂などの接着が困難な異材料間の接着用途にも用いられている。
 しかしながら、特開昭52−32045号公報や特開昭55−40707号公報に記載されているエポキシ基含有エチレン系共重合体は、一分子あたりのエポキシ基含有オレフィンに由来する単量体単位の含有量が少ないため、該共重合体を他の樹脂に添加して得られる樹脂組成物の物性は、もとの樹脂の特性に比べて改質効果が十分でなかった。
An epoxy group-containing ethylene copolymer comprising an ethylene-derived monomer unit and an epoxy group-containing olefin-derived monomer unit is, for example, a polyolefin as described in JP-A-52-32045. It is added to resins and polyester resins and used to improve mechanical properties such as impact resistance and tensile properties of these resins. In addition, the epoxy group-containing ethylene-based copolymer is used for bonding between dissimilar materials that are difficult to bond, such as polyester resins, metals, and fluororesins, as described in, for example, JP-A-55-40707. It is also used.
However, the epoxy group-containing ethylene copolymers described in JP-A-52-32045 and JP-A-55-40707 have monomer units derived from an epoxy group-containing olefin per molecule. Since the content is small, the physical properties of the resin composition obtained by adding the copolymer to other resins are not sufficiently improved in the properties compared to the properties of the original resin.
 以上の課題に鑑み、本発明は樹脂の改質効果が高いエポキシ基含有エチレン系共重合体、及びこれを含有する樹脂組成物を提供することを目的とする。
 本発明は、エチレン由来の単量体単位と、メタクリル酸グリシジル由来の単量体単位とを含むエポキシ基含有エチレン系共重合体であって、該共重合体の質量を100質量%とするとき、前記メタクリル酸グリシジル由来の単量体単位を15~25質量%含有し、かつ、190℃におけるメルトフローレートが10~50g/10分である共重合体、及びこれを含有する樹脂組成物を提供する。
In view of the above problems, an object of the present invention is to provide an epoxy group-containing ethylene copolymer having a high resin modification effect and a resin composition containing the same.
The present invention is an epoxy group-containing ethylene copolymer containing a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate, and the mass of the copolymer is 100% by mass. A copolymer containing 15 to 25% by mass of the monomer unit derived from glycidyl methacrylate and having a melt flow rate at 190 ° C. of 10 to 50 g / 10 min, and a resin composition containing the copolymer provide.
〔エポキシ基含有エチレン系共重合体〕
 本発明に係るエポキシ基含有エチレン系共重合体は、エチレン由来の単量体単位と、メタクリル酸グリシジル由来の単量体単位とを含む共重合体である。
 樹脂の改質効果の観点から、このエポキシ基含有エチレン系共重合体は、該共重合体の質量を100質量%とするとき、メタクリル酸グリシジルに由来する単量体単位を15~25質量%含有し、好ましくは15~20質量%含有する。
 なお、メタクリル酸グリシジル由来の単量体単位の含有量は、赤外分光法により測定される。
 本発明におけるエポキシ基含有エチレン系共重合体は、エチレン由来の単量体単位と、メタクリル酸グリシジル由来の単量体単位のみからなるエポキシ基含有エチレン系共重合体であってもよいし、エチレン由来の単量体単位と、メタクリル酸グリシジル由来の単量体単位と、以下の式(1)で表される化合物および式(2)で表される化合物から選ばれる1種以上の化合物由来の単量体単位を更に含むエポキシ基含有エチレン系共重合であってもよい。
CH=CR  (1)
CHR=CHR  (2)
 式中、
は水素原子、または炭素数1~8のアルキル基を表し、
はハロゲン原子、または−COORで表される基(Rは炭素数1~8のアルキル基を表す)を表し、
は水素原子、炭素数1~8のアルキル基、または−COORで表される基(Rは炭素数1~8のアルキル基を表す)を表し、
は炭素数1~8のアルキルニトリル、アルキルエーテル基、アルキルアミド、ハロゲン原子、フェニル基、もしくは−COORで表される基(Rは炭素数1~8のアルキル基を表す)を表すか、またはRは−OCORで表される基(Rは炭素数1~8のアルキル基を表す)を表す。
 式(1)で表される化合物としては、プロピレン、1−ブテン、酢酸ビニル、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、塩化ビニル、塩化ビニリデン、スチレン、アクリロニトリル、イソブチルビニルエーテル、アクリルアミドが挙げられる。
 式(2)で表される化合物としては、マレイン酸ジメチル、マレイン酸ジエチル、フマル酸ジメチル、フマル酸ジエチルが挙げられる。
 前記1種以上の化合物が、酢酸ビニル、アクリル酸メチル及びメタクリル酸メチルからなる群から選ばれることが好ましい。
 エポキシ基含有エチレン系共重合体が、エチレン由来の単量体単位と、メタクリル酸グリシジル由来の単量体単位と、式(1)または式(2)で表される化合物由来の単量体単位とからなる場合、該共重合体の質量を100質量%とするとき、式(1)または式(2)で表される化合物に由来する単量体単位の含有量は、40質量%以下が好ましく、30質量%以下がより好ましい。また、メタクリル酸グリシジル由来の単量体単位の含有量は、15~25質量%である。
 本発明に係るエポキシ基含有エチレン系共重合体として具体的には、エチレン−メタクリル酸グリシジル共重合体、エチレン−プロピレン−メタクリル酸グリシジル共重合体、エチレン−ブテン−1−メタクリル酸グリシジル共重合体、エチレン−酢酸ビニル−メタクリル酸グリシジル共重合体、エチレン−アクリル酸−メタクリル酸グリシジル共重合体、エチレン−メタクリル酸−メタクリル酸グリシジル共重合体、エチレン−アクリル酸メチル−メタクリル酸グリシジル共重合体、エチレン−アクリル酸エチル−メタクリル酸グリシジル共重合体、エチレン−メタクリル酸メチル−メタクリル酸グリシジル共重合体、エチレン−メタクリル酸エチル−メタクリル酸グリシジル共重合体、エチレン−マレイン酸メチル−メタクリル酸グリシジル共重合体、エチレン−マレイン酸エチル−メタクリル酸グリシジル共重合体、エチレン−フマル酸メチル−メタクリル酸グリシジル共重合体、エチレン−フマル酸エチル−メタクリル酸グリシジル共重合体、エチレン−塩化ビニル−メタクリル酸グリシジル共重合体、エチレン−塩化ビニリデン−メタクリル酸グリシジル共重合体、エチレン−スチレン−メタクリル酸グリシジル共重合体、エチレン−アクリロニトリル−メタクリル酸グリシジル共重合体、エチレン−イソブチルビニルエーテル−メタクリル酸グリシジル共重合体、エチレン−アクリルアミド−メタクリル酸グリシジル共重合体が挙げられる。
 本発明に係るエポキシ基含有エチレン系共重合体は、種々の方法で合成することができる。例えば、フリーラジカル開始剤による塊状重合、乳化重合、溶液重合などによって製造することができる。なお、代表的な重合方法は、特開昭48−11388号公報、特開昭61−127709号公報などに記載された方法、フリーラジカルを生成する重合開始剤の存在下、圧力500kg/cm以上、温度40~300℃の条件で共重合する方法が挙げられる。
 また、エチレン由来の単量体単位と、任意に式(1)または式(2)で表される化合物由来の単量体単位を含む重合体に、不飽和エポキシ化合物及びラジカル発生剤を混合し、押出機の中で溶融グラフト共重合させる方法、あるいはエチレン及び不飽和エポキシ化合物、さらに任意成分として式(1)または式(2)で表される化合物を水又は有機溶剤等の不活性媒体中、ラジカル発生剤の存在下共重合させる方法が挙げられる。
 本発明に係るエポキシ基含有エチレン系共重合体は、樹脂の改質効果の観点から、190℃におけるメルトフローレートが10~50g/10分であり、好ましくは10~30g/10分である。
 また、本発明に係るエポキシ基含有エチレン系共重合体は、後述のようにポリオレフィン樹脂やポリエステル樹脂等の樹脂に添加し、改質剤として使用することが可能である。
 その際、必要に応じて、例えば、造核剤、アンチブロッキング剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、オゾン劣化防止剤、耐候性安定剤、発泡剤、無機充填剤、帯電防止剤、着色剤等の各種添加剤を、本発明のエポキシ基含有エチレン系共重合体とともに樹脂に加えてもよい。
〔樹脂組成物〕
 本発明に係る樹脂組成物は、上記エポキシ基含有エチレン系共重合体(以下、(A)成分とする)と、主鎖にエステル結合、炭酸エステル結合、エーテル結合、スルフィド結合およびアミド結合からなる群から選ばれる少なくとも1種の結合を有する重合体(以下、(B)成分とする)とを含有する。
 この樹脂組成物中では、エポキシ基含有エチレン系共重合体は改質剤として働く。そのため樹脂組成物中の(A)成分の含有量は、(A)成分と(B)成分の合計を100質量%とするとき、0.1~30質量%であることが好ましく、1~25質量%であることがより好ましく、3~20質量%であることがさらに好ましい。
 そして(A)成分と(B)成分の合計を100質量%とするとき、(B)成分の含有量は、70~99.9質量%であることが好ましく、75~99質量%であることがより好ましく、80~97質量%であることがさらに好ましい。
 (B)成分としては、ポリエステル、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンサルファイド等が挙げられる。これらは単独又は2種以上組み合わせて用いてもよい。(B)成分は、ポリエステルであることが好ましい。
 ポリエステルは、不飽和ポリエステルと、飽和ポリエステルとに分けられる。飽和ポリエステルとしては脂肪族ポリエステル、芳香族ポリエステルが挙げられる。
 不飽和ポリエステルとは、不飽和多塩基酸、飽和多塩基酸およびグリコールを共重合して得られるポリエステル系重合体をいう。不飽和ポリエステルの例としては、ポリエチレンマレエート/イソフタレート、ポリプロピレンマレエート/イソフタレート、ポリエチレンメタクリレート/フタレート、ポリビスフェノールAイソフタレートが挙げられる。
 飽和ポリエステルとは、飽和多塩基酸とグリコールとを重合して得られるポリエステル系重合体をいう。
 脂肪族ポリエステルとは、脂肪族ヒドロキシカルボン酸を重合して得られるポリエステル系重合体、及び脂肪族ジオールと脂肪族ジカルボン酸とを重合して得られるポリエステル系重合体をいう。
 脂肪族ヒドロキシカルボン酸を重合して得られるポリエステル系重合体の例としては、ポリ乳酸、ポリグリコール酸、ポリ(3−ヒドロキシ酪酸)、ポリ(4−ヒドロキシ酪酸)、ポリ(4−ヒドロキシ吉草酸)、ポリカプロラクトン等が挙げられる。脂肪族ジオールと脂肪族ジカルボン酸とを重合して得られるポリエステル系重合体としては、ポリエステルカーボネート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリヘキサメチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリブチレンサクシネートアジペート、ポリエチレンオキサレート、ポリブチレンオキサレート、ポリヘキサメチレンオキサレート、ポリエチレンセバケート、ポリブチレンセバケート等が挙げられる。
 脂肪族ポリエステルとしてポリ乳酸、ポリグリコール酸等のポリ(α−ヒドロキシ酸)を用いることが好ましく、ポリ乳酸を用いることが特に好ましい。
 上記脂肪族ポリエステルは、単独重合体であってもよく、共重合体であってもよい。共重合体としては、乳酸と乳酸以外のヒドロキシ酸とのコポリマーが挙げられる。
 また、脂肪族ポリエステルとしては、一種類の重合体を用いてもよく、二種以上の脂肪族ポリエステル系重合体をブレンドして用いてもよい。脂肪族ポリエステルのブレンド物としては、例えばポリ乳酸をベースとするポリ乳酸系樹脂と他の脂肪族ポリエステルとのブレンド物が好ましい。このようなポリ乳酸系樹脂と他の脂肪族ポリエステルとのブレンド物におけるポリ乳酸系樹脂の含有量は、60質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 また、脂肪族ポリエステルとしてポリ乳酸を使用する場合、ポリ乳酸の合成方法は、D−乳酸やL−乳酸の直接重合でもよく、乳酸の環状2量体であるD−ラクチドやL−ラクチドやmeso−ラクチドの開環重合であってもよい。またポリ乳酸は、L−乳酸由来の単量体単位と、D−乳酸由来の単量体単位のいずれか一方のみで構成されていてもよいし、また両方の単量体単位を含む共重合体であってもよい。また、L−乳酸由来の単量体単位と、D−乳酸由来の単量体単位の比率が異なる複数のポリ乳酸が任意の割合でブレンドされたものを脂肪族ポリエステルとして用いてもよい。
 脂肪族ポリエステルのメルトフローレートは、0.5~50g/10分であることが好ましく、1~30g/10分であることがより好ましく、10~20g/10分であることが最も好ましい。なお、脂肪族ポリエステルのメルトフローレートは、JIS K 7210(1995)に規定された方法によって、試験温度190℃、試験荷重21.18Nで測定される。
 芳香族ポリエステルとは、芳香族ヒドロキシカルボン酸を重合して得られるポリエステル、芳香族ジカルボン酸と芳香族ジオールとを重合して得られるポリエステル、芳香族ジカルボン酸と脂肪族ジオールとを重合して得られるポリエステル、または脂肪族カルボン酸と芳香族ジオールとを重合して得られるポリエステルをいう。芳香族ポリエステルとしてはポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンナフタレート、ポリ1,4−シクロヘキシレンジメチレンテレフタレート、ポリエチレン−1,2−ビス(フェノキシ)エタン−4,4‘−ジカルボキシレート、エチレンテレフタレート−パラヒドロキシ安息香酸重縮合体、フェノールフタレート−パラヒドロキシ安息香酸重縮合体、2,6−ヒドロキシナフトエート−パラヒドロキシ安息香酸重縮合体が挙げられる。
 (B)成分は、ポリ乳酸、芳香族ポリエステル、またはこれらの混合物であることが好ましい。
 ポリアミドとしては環状ラクタムの開環重合物、アミノカルボン酸の重縮合物、ジカルボン酸とジアミンとの重縮合物が挙げられる。具体的にはナイロン6、ナイロン4・6、ナイロン6・6、ナイロン6・10、ナイロン6・12、ナイロン11、ナイロン12などの脂肪族ポリアミド、ポリ(メタキシレンアジパミド)、ポリ(ヘキサメチレンテレフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)、ポリノナンメチレンテレフタルアミド、ポリ(テトラメチレンイソフタルアミド)、ポリ(メチルペンタメチレンテレフタルアミド)などの脂肪族−芳香族ポリアミド、およびこれらの共重合体が挙げられ、共重合体として例えばナイロン6/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6・6/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ナイロン6・6/ポリ(ヘキサメチレンイソフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン12/ポリ(ヘキサメチレンテレフタルアミド)、ポリ(メチルペンタメチレンテレフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)などを挙げることができる。
<その他の樹脂>
 本発明に係る樹脂組成物は、(A)成分および(B)成分以外の重合体(以下、(C)成分とする)を含有していてもよい。例えば、ポリオレフィン系樹脂や、エラストマー等が挙げられる。
 ここで、ポリオレフィン系樹脂とは、オレフィンの単独重合体及び二種以上のオレフィンを共重合して得られる共重合体から選択される重合体であって、結晶化度が25%以上の重合体を意味する。ポリオレフィン系樹脂の結晶化度は、好ましくは35%以上であり、より好ましくは40%以上である。ポリオレフィン系樹脂の例としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブテン樹脂などが挙げられ、ポリプロピレン樹脂が好ましい。ポリオレフィン系樹脂としては、1種類の樹脂を用いても、二種以上の樹脂を併用してもよい。
 ここで、結晶化度は、示差走査熱量計(DSC)を用い、10℃/分の昇降温速度での走査を2回行って測定する。具体的には、結晶化度は、2回目の走査において測定した融解熱量の、100%結晶状態の融解熱量に対する割合として算出される値である。
 本発明で用いられるポリエチレン樹脂は、エチレン単独重合体、又は、エチレン単位含有量が50質量%以上であるエチレン−α−オレフィン共重合体であるが、エチレン−プロピレン共重合体は、ポリプロピレン樹脂に包含されるものとする。エチレン−α−オレフィン共重合体を構成するα−オレフィンの具体例としては、1−ブテン、2−メチル−1−プロペン、2−メチル−1−ブテン、3−メチル−1−ブテン、1−ヘキセン、2−エチル−1−ブテン、2,3−ジメチル−1−ブテン、2−メチル−1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、3,3−ジメチル−1−ブテン、1−ヘプテン、メチル−1−ヘキセン、ジメチル−1−ペンテン、エチル−1−ペンテン、トリメチル−1−ブテン、メチルエチル−1−ブテン、メチル−1−ペンテン、エチル−1−ヘキセン、ジメチル−1−ヘキセン、プロピル−1−ヘプテン、メチルエチル−1−ヘプテン、トリメチル−1−ペンテン、プロピル−1−ペンテン、ジエチル−1−ブテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセンが挙げられる。中でも、1−ブテン、1−ペンテン、及び1−ヘキセンが好ましい。エチレン−α−オレフィン共重合体を構成するα−オレフィンの炭素数は、好ましくは4~12個であり、より好ましくは4~6個である。
 ポリオレフィン系樹脂がポリエチレン樹脂である場合のメルトフローレートは、本発明の樹脂組成物から得られる成形体の機械的強度の観点から、好ましくは0.1g/10分~10g/10分である。より好ましくは0.3g/10分~8g/10分であり、特に好ましくは1.0g/10分~3g/10分である。
 なお、ポリエチレン樹脂のメルトフローレートは、JIS K 7210(1995)に規定された方法によって、試験荷重21.18N、試験温度190℃の条件で測定される。
 本発明で用いられるポリプロピレン樹脂は、プロピレン単独重合体、又はプロピレン単位含有量が50質量%以上である共重合体であり、プロピレン−エチレンランダム共重合体、プロピレン−α−オレフィンランダム共重合体、プロピレン−エチレン−α−オレフィン共重合体、「プロピレン単独重合体成分」と、「プロピレンとエチレン及び/又は炭素数4以上のα−オレフィンからなる群から選択される1種以上のコモノマーとの共重合体成分」からなる共重合体等が挙げられる。これらのポリプロピレン樹脂は、単独で用いても二種以上を併用してもよい。
 ポリオレフィン系樹脂がポリプロピレン樹脂である場合のメルトフローレートは、本発明の樹脂組成物から得られる成形体の機械的強度の観点から、好ましくは0.1g/10分~400g/10分である。より好ましくは1g/10分~400g/10分であり、特に好ましくは5g/10分~200g/10分である。
 なお、ポリプロピレン樹脂のメルトフローレートは、JIS K 7210(1995)に規定された方法によって、試験荷重21.18N、試験温度230℃の条件で測定される。
 また、本発明の樹脂組成物は、エラストマーを含有していてもよい。エラストマーとしては、上記のポリオレフィン系樹脂以外の共重合体を用いることができる。エラストマーとしては、例えば、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、ブチルゴム、非晶質又は低結晶性のエチレン系エラストマー、ブタジエン−スチレンエラストマー、ブタジエン−アクリロニトリルエラストマー、水添又は非水添のスチレン−共役ジエンブロックエラストマー、ポリエステルゴム、アクリルゴム、シリコンゴム等が挙げられる。1種類のエラストマーを単独で使用してもよく、2種以上のエラストマーを組み合わせて使用してもよい。
 上記エチレン系エラストマーは、エチレンに由来する単量体単位を主成分として含有するエラストマーであり、例えば、エチレン−α−オレフィン共重合体、エチレン−エチレン系不飽和エステル共重合体が挙げられる。
 エチレン系エラストマーとして好ましくは、エチレンと1種類以上のα−オレフィンとの共重合体であるエチレン−α−オレフィン共重合体である。このα−オレフィンとして好ましくは、炭素数3~12のα−オレフィンである。具体的には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、ビニルシクロヘキサン、ビニルシクロヘキセン、スチレン、ノルボルネン、ブタジエン、イソプレン等が挙げられる。
 本発明において、「非晶質のエラストマー」とは、示差走査熱量測定(DSC)により、−100℃から200℃の範囲内に融解熱量が1J/g以上の結晶融解ピークが観察されないエラストマーを指す。また、「低結晶性のエラストマー」とは示差走査熱量測定(DSC)により、−100℃から200℃の範囲内に融解熱量が1~30J/gの結晶融解ピークが観察されるエラストマーを指す。
 水添又は非水添のスチレン−共役ジエン系ブロックエラストマーとしては、スチレン−イソプレン共重合体、スチレン−イソプレン−スチレン共重合体、スチレン−エチレンブテン−スチレン共重合体、スチレン−ブタジエン共重合体、スチレン−ブタジエン−スチレン共重合体等が挙げられる。
 エラストマーのメルトフローレートは、本発明の樹脂組成物から得られる成形体の機械的強度の観点から、好ましくは0.1g/10分~100g/10分である。より好ましくは0.3g/10分~50g/10分であり、特に好ましくは0.5g/10分~40g/10分である。例えば、エチレン−α−オレフィン共重合体のメルトフローレートは、好ましくは0.1g/10分以上であり、得られる成形体の機械的強度を高める観点から100g/10分以下である。より好ましくは0.3g/10分~50g/10分であり、さらに好ましくは0.5g/10分~40g/10分である。
 なお、エラストマーのメルトフローレートは、JIS K 7210(1995)に規定された方法によって、試験荷重21.18N、試験温度190℃の条件で測定される。
 本発明に係る樹脂組成物中の各成分の含有量は、上記(A)成分、(B)成分、及び(C)成分の含有量の合計を100質量%としたときに、成分(A)を1~40質量%、成分(B)を1~30質量%、成分(C)を40~98質量%含むことが好ましく、成分(A)を5~35質量%、成分(B)を5~25質量%、成分(C)を45~90質量%を含むことがより好ましく、成分(A)を10~30質量%、成分(B)を10~20質量%、成分(C)を50~80質量%含むことがさらに好ましい。
〔樹脂組成物の製造方法〕
 本発明の樹脂組成物の製造方法としては、特に制限されるものではなく、従来の樹脂組成物の製造において用いられている方法、例えば、混練機や押出機等を用いて溶融加熱混練して製造する方法が挙げられる。混練機としては、例えば、ニーダー、バンバリーミキサー、ロール等が挙げられ、押出機としては、例えば、一軸押出機や二軸押出機が挙げられる。
 本発明の樹脂組成物を用いて成形品を得る方法は、特に限定されるものでなく、熱可塑性樹脂組成物について一般に用いられている成形法、例えば、射出成形、射出ブロー成形、射出圧縮成形、ブロー成形、押出成形、熱成形、回転成形、真空成形、真空圧空成形等の何れをも適用出来る。
 本発明の樹脂組成物を用いて得られる成形品としては、フィルム、シート、発泡シート、中空容器、不織布などの繊維、内装材などの自動車部品等が挙げられる。
 本発明に係る樹脂組成物を成形して得られるフィルム又はシートは、接着性が求められる用途に使用することもできる。また、基材の少なくとも片面に本発明に係るエポキシ基含有エチレン系共重合体を含む樹脂組成物からなる層が積層された積層体も、接着性が求められる用途に使用することができる。本発明に係るエポキシ基含有エチレン系共重合体を含む樹脂組成物からなる層を含む、単層又は積層のフィルム又はシートの製造方法としては、例えば、通常用いられる押出成形法、Tダイ法、インフレーション法、カレンダー法、ラミネ−ション成形、プレス成形等を挙げることができる。
 また、2つの異なる物品を、本発明に係るエポキシ基含有エチレン系共重合体、又はこの共重合体を含む樹脂組成物によって接着して、積層体とすることもできる。この場合、物品を前記基材とみなすことができる。基材の両面に該樹脂組成物からなる層が積層された積層体を用いて、該積層体の一方の面にある物品を、他方の面に他の物品を接着することもできる。
 接着する2つの物品を構成する材料は、同じであってもよく、異なっていてもよい。物品を構成する材料としては、例えば、金、銀、銅、鉄、錫、鉛、アルミニウム、シリコン等の金属類、ガラス、セラミックス等の無機材料類、紙、布等のセルロース系高分子類、メラミン系樹脂、アクリル・ウレタン系樹脂、ウレタン系樹脂、(メタ)アクリル系樹脂、スチレン・アクリロニトリル系共重合体、ポリカーボネート系樹脂、フェノール樹脂、アルキッド樹脂、エポキシ樹脂、シリコン樹脂、フッ素樹脂等の合成高分子類等が挙げられる。各物品は、2種類以上の材料から構成されていてもよい。物品の形状は特に限定されず、フィルム状、シート状、板状、繊維状等が挙げられる。また、物品には、必要に応じて、離型剤、メッキ等の被膜、本発明以外の樹脂組成物からなる塗料による塗膜、プラズマやレーザー等による表面改質、表面酸化、エッチング等の表面処理等が施されていてもよい。
[Epoxy group-containing ethylene copolymer]
The epoxy group-containing ethylene copolymer according to the present invention is a copolymer containing a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate.
From the viewpoint of the resin modification effect, this epoxy group-containing ethylene-based copolymer has a monomer unit derived from glycidyl methacrylate in an amount of 15 to 25% by mass when the mass of the copolymer is 100% by mass. Contained, preferably 15 to 20% by mass.
In addition, content of the monomer unit derived from glycidyl methacrylate is measured by infrared spectroscopy.
The epoxy group-containing ethylene copolymer in the present invention may be an epoxy group-containing ethylene copolymer consisting only of a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate, or ethylene. Derived from a monomer unit derived from, a monomer unit derived from glycidyl methacrylate, a compound represented by the following formula (1) and a compound represented by formula (2) An epoxy group-containing ethylene copolymer further containing a monomer unit may be used.
CH 2 = CR 1 R 2 (1)
CHR 3 = CHR 4 (2)
Where
R 1 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms,
R 2 represents a halogen atom or a group represented by —COOR 5 (R 5 represents an alkyl group having 1 to 8 carbon atoms);
R 3 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a group represented by —COOR 6 (R 6 represents an alkyl group having 1 to 8 carbon atoms);
R 4 represents an alkyl nitrile having 1 to 8 carbon atoms, an alkyl ether group, an alkylamide, a halogen atom, a phenyl group, or a group represented by —COOR 7 (R 7 represents an alkyl group having 1 to 8 carbon atoms). Or R 4 represents a group represented by —OCOR 8 (R 8 represents an alkyl group having 1 to 8 carbon atoms).
Examples of the compound represented by the formula (1) include propylene, 1-butene, vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, vinyl chloride, vinylidene chloride, and styrene. , Acrylonitrile, isobutyl vinyl ether, and acrylamide.
Examples of the compound represented by the formula (2) include dimethyl maleate, diethyl maleate, dimethyl fumarate, and diethyl fumarate.
The one or more compounds are preferably selected from the group consisting of vinyl acetate, methyl acrylate and methyl methacrylate.
The epoxy group-containing ethylene copolymer is a monomer unit derived from ethylene, a monomer unit derived from glycidyl methacrylate, and a monomer unit derived from the compound represented by formula (1) or formula (2) When the weight of the copolymer is 100% by mass, the content of the monomer unit derived from the compound represented by formula (1) or formula (2) is 40% by mass or less. Preferably, 30 mass% or less is more preferable. The content of the monomer unit derived from glycidyl methacrylate is 15 to 25% by mass.
Specific examples of the epoxy group-containing ethylene copolymer according to the present invention include an ethylene-glycidyl methacrylate copolymer, an ethylene-propylene-glycidyl methacrylate copolymer, and an ethylene-butene-1-glycidyl methacrylate copolymer. , Ethylene-vinyl acetate-glycidyl methacrylate copolymer, ethylene-acrylic acid-glycidyl methacrylate copolymer, ethylene-methacrylic acid-glycidyl methacrylate copolymer, ethylene-methyl acrylate-glycidyl methacrylate copolymer, Ethylene-ethyl acrylate-glycidyl methacrylate copolymer, ethylene-methyl methacrylate-glycidyl methacrylate copolymer, ethylene-ethyl methacrylate-glycidyl methacrylate copolymer, ethylene-methyl maleate-glycidyl methacrylate Copolymer, ethylene-ethyl maleate-glycidyl methacrylate copolymer, ethylene-methyl fumarate-glycidyl methacrylate copolymer, ethylene-ethyl fumarate-glycidyl methacrylate copolymer, ethylene-vinyl chloride-methacrylic acid Glycidyl acid copolymer, ethylene-vinylidene chloride-glycidyl methacrylate copolymer, ethylene-styrene-glycidyl methacrylate copolymer, ethylene-acrylonitrile-glycidyl methacrylate copolymer, ethylene-isobutyl vinyl ether-glycidyl methacrylate copolymer Examples thereof include ethylene and acrylamide-glycidyl methacrylate copolymers.
The epoxy group-containing ethylene copolymer according to the present invention can be synthesized by various methods. For example, it can be produced by bulk polymerization, emulsion polymerization, solution polymerization or the like using a free radical initiator. Representative polymerization methods include those described in JP-A-48-11388 and JP-A-61-127709, and in the presence of a polymerization initiator that generates free radicals, at a pressure of 500 kg / cm 2. As mentioned above, a method of copolymerizing under the condition of a temperature of 40 to 300 ° C. can be mentioned.
In addition, an unsaturated epoxy compound and a radical generator are mixed with a polymer containing a monomer unit derived from ethylene and a monomer unit derived from the compound represented by the formula (1) or (2). , A method of melt graft copolymerization in an extruder, or ethylene and an unsaturated epoxy compound, and an optional component represented by the formula (1) or (2) in an inert medium such as water or an organic solvent And a method of copolymerizing in the presence of a radical generator.
The epoxy group-containing ethylene copolymer according to the present invention has a melt flow rate at 190 ° C. of 10 to 50 g / 10 minutes, preferably 10 to 30 g / 10 minutes, from the viewpoint of the effect of modifying the resin.
Further, the epoxy group-containing ethylene copolymer according to the present invention can be added to a resin such as a polyolefin resin or a polyester resin as described later and used as a modifier.
At that time, if necessary, for example, a nucleating agent, an anti-blocking agent, a heat stabilizer, an ultraviolet stabilizer, an ultraviolet absorber, an ozone degradation inhibitor, a weather resistance stabilizer, a foaming agent, an inorganic filler, an antistatic agent. Various additives such as a colorant may be added to the resin together with the epoxy group-containing ethylene copolymer of the present invention.
(Resin composition)
The resin composition according to the present invention comprises the above epoxy group-containing ethylene copolymer (hereinafter referred to as component (A)) and an ester bond, carbonate bond, ether bond, sulfide bond and amide bond in the main chain. And a polymer having at least one bond selected from the group (hereinafter referred to as component (B)).
In this resin composition, the epoxy group-containing ethylene-based copolymer functions as a modifier. Therefore, the content of the component (A) in the resin composition is preferably 0.1 to 30% by mass when the total of the component (A) and the component (B) is 100% by mass, and preferably 1 to 25%. More preferably, it is more preferably 3 to 20% by mass.
When the total of the component (A) and the component (B) is 100% by mass, the content of the component (B) is preferably 70 to 99.9% by mass, and 75 to 99% by mass. Is more preferable and 80 to 97% by mass is even more preferable.
Examples of the component (B) include polyester, polyamide, polycarbonate, polyacetal, polyphenylene ether, polyphenylene sulfide and the like. You may use these individually or in combination of 2 or more types. The component (B) is preferably polyester.
Polyester is classified into unsaturated polyester and saturated polyester. Examples of the saturated polyester include aliphatic polyester and aromatic polyester.
The unsaturated polyester refers to a polyester polymer obtained by copolymerizing an unsaturated polybasic acid, a saturated polybasic acid and a glycol. Examples of unsaturated polyesters include polyethylene maleate / isophthalate, polypropylene maleate / isophthalate, polyethylene methacrylate / phthalate, polybisphenol A isophthalate.
The saturated polyester refers to a polyester polymer obtained by polymerizing a saturated polybasic acid and glycol.
The aliphatic polyester refers to a polyester polymer obtained by polymerizing an aliphatic hydroxycarboxylic acid, and a polyester polymer obtained by polymerizing an aliphatic diol and an aliphatic dicarboxylic acid.
Examples of polyester polymers obtained by polymerizing aliphatic hydroxycarboxylic acids include polylactic acid, polyglycolic acid, poly (3-hydroxybutyric acid), poly (4-hydroxybutyric acid), poly (4-hydroxyvaleric acid) ), Polycaprolactone and the like. Polyester polymers obtained by polymerizing aliphatic diols and aliphatic dicarboxylic acids include polyester carbonate, polyethylene succinate, polybutylene succinate, polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene Examples include adipate, polybutylene succinate adipate, polyethylene oxalate, polybutylene oxalate, polyhexamethylene oxalate, polyethylene sebacate, polybutylene sebacate and the like.
As the aliphatic polyester, poly (α-hydroxy acid) such as polylactic acid and polyglycolic acid is preferably used, and polylactic acid is particularly preferably used.
The aliphatic polyester may be a homopolymer or a copolymer. Examples of the copolymer include a copolymer of lactic acid and a hydroxy acid other than lactic acid.
As the aliphatic polyester, one kind of polymer may be used, or two or more kinds of aliphatic polyester polymers may be blended and used. As a blend of the aliphatic polyester, for example, a blend of a polylactic acid-based resin based on polylactic acid and another aliphatic polyester is preferable. The content of the polylactic acid resin in the blended product of such a polylactic acid resin and another aliphatic polyester is preferably 60% by mass or more, and more preferably 70% by mass or more.
When polylactic acid is used as the aliphatic polyester, the synthesis method of polylactic acid may be direct polymerization of D-lactic acid or L-lactic acid, and D-lactide, L-lactide or meso which are cyclic dimers of lactic acid. -Ring-opening polymerization of lactide may be used. The polylactic acid may be composed of either one of a monomer unit derived from L-lactic acid and a monomer unit derived from D-lactic acid, or a co-polymer containing both monomer units. It may be a coalescence. Moreover, you may use what blended the polylactic acid from which the ratio of the monomer unit derived from L-lactic acid and the monomer unit derived from D-lactic acid differs by arbitrary ratios as aliphatic polyester.
The melt flow rate of the aliphatic polyester is preferably 0.5 to 50 g / 10 minutes, more preferably 1 to 30 g / 10 minutes, and most preferably 10 to 20 g / 10 minutes. The melt flow rate of the aliphatic polyester is measured at a test temperature of 190 ° C. and a test load of 21.18 N by the method defined in JIS K 7210 (1995).
Aromatic polyesters are polyesters obtained by polymerizing aromatic hydroxycarboxylic acids, polyesters obtained by polymerizing aromatic dicarboxylic acids and aromatic diols, and polymers obtained by polymerizing aromatic dicarboxylic acids and aliphatic diols. Polyester obtained by polymerizing an aliphatic carboxylic acid and an aromatic diol. Aromatic polyesters include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly1,4-cyclohexylenedimethylene terephthalate, polyethylene-1,2-bis (phenoxy) ethane. -4,4'-dicarboxylate, ethylene terephthalate-parahydroxybenzoic acid polycondensate, phenolphthalate-parahydroxybenzoic acid polycondensate, 2,6-hydroxynaphthoate-parahydroxybenzoic acid polycondensate. .
The component (B) is preferably polylactic acid, aromatic polyester, or a mixture thereof.
Examples of polyamides include ring-opening polymers of cyclic lactams, polycondensates of aminocarboxylic acids, and polycondensates of dicarboxylic acids and diamines. Specifically, Nylon 6, Nylon 4,6, Nylon 6,6, Nylon 6,10, Nylon 6,12, Nylon 11, Nylon 12, and other aliphatic polyamides, poly (metaxylene adipamide), poly (hexa Aliphatic-aromatic polyamides such as methylene terephthalamide), poly (hexamethylene isophthalamide), polynonanemethylene terephthalamide, poly (tetramethylene isophthalamide), poly (methylpentamethylene terephthalamide), and copolymers thereof Examples of the copolymer include nylon 6 / poly (hexamethylene terephthalamide), nylon 6/6 / poly (hexamethylene terephthalamide), nylon 6 / nylon 6/6 / poly (hexamethylene isophthalamide), poly (Hexamethylene isophthala Do) / poly (hexamethylene terephthalamide), nylon 6 / poly (hexamethylene isophthalamide) / poly (hexamethylene terephthalamide), nylon 12 / poly (hexamethylene terephthalamide), poly (methylpentamethylene terephthalamide) / And poly (hexamethylene terephthalamide).
<Other resins>
The resin composition according to the present invention may contain a polymer other than the component (A) and the component (B) (hereinafter referred to as the component (C)). For example, polyolefin resin, an elastomer, etc. are mentioned.
Here, the polyolefin-based resin is a polymer selected from an olefin homopolymer and a copolymer obtained by copolymerizing two or more olefins, and a polymer having a crystallinity of 25% or more. Means. The crystallinity of the polyolefin resin is preferably 35% or more, and more preferably 40% or more. Examples of polyolefin resins include polyethylene resins, polypropylene resins, polybutene resins, and the like, with polypropylene resins being preferred. As the polyolefin resin, one kind of resin may be used or two or more kinds of resins may be used in combination.
Here, the degree of crystallinity is measured by using a differential scanning calorimeter (DSC) by scanning twice at a heating / cooling rate of 10 ° C./min. Specifically, the crystallinity is a value calculated as a ratio of the heat of fusion measured in the second scan to the heat of fusion in the 100% crystal state.
The polyethylene resin used in the present invention is an ethylene homopolymer or an ethylene-α-olefin copolymer having an ethylene unit content of 50% by mass or more, but the ethylene-propylene copolymer is a polypropylene resin. Shall be included. Specific examples of the α-olefin constituting the ethylene-α-olefin copolymer include 1-butene, 2-methyl-1-propene, 2-methyl-1-butene, 3-methyl-1-butene, 1-butene, Hexene, 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl- 1-butene, 1-heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, methylethyl-1-butene, methyl-1-pentene, ethyl-1-hexene , Dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl-1-pentene, propyl-1-pentene, diethyl-1-butene, 1-none 1-decene, 1-undecene, and 1-dodecene. Of these, 1-butene, 1-pentene, and 1-hexene are preferable. The α-olefin constituting the ethylene-α-olefin copolymer preferably has 4 to 12 carbon atoms, and more preferably 4 to 6 carbon atoms.
When the polyolefin resin is a polyethylene resin, the melt flow rate is preferably 0.1 g / 10 min to 10 g / 10 min from the viewpoint of the mechanical strength of the molded product obtained from the resin composition of the present invention. More preferably, it is 0.3 g / 10 min to 8 g / 10 min, and particularly preferably 1.0 g / 10 min to 3 g / 10 min.
The melt flow rate of the polyethylene resin is measured under the conditions of a test load of 21.18 N and a test temperature of 190 ° C. by the method defined in JIS K 7210 (1995).
The polypropylene resin used in the present invention is a propylene homopolymer or a copolymer having a propylene unit content of 50% by mass or more, a propylene-ethylene random copolymer, a propylene-α-olefin random copolymer, A copolymer of propylene-ethylene-α-olefin copolymer, “propylene homopolymer component” and “one or more comonomers selected from the group consisting of propylene and ethylene and / or α-olefin having 4 or more carbon atoms”; Examples thereof include a copolymer composed of a “polymer component”. These polypropylene resins may be used alone or in combination of two or more.
When the polyolefin resin is a polypropylene resin, the melt flow rate is preferably 0.1 g / 10 min to 400 g / 10 min from the viewpoint of the mechanical strength of the molded product obtained from the resin composition of the present invention. More preferably, it is 1 g / 10 min to 400 g / 10 min, and particularly preferably 5 g / 10 min to 200 g / 10 min.
The melt flow rate of the polypropylene resin is measured under the conditions of a test load of 21.18 N and a test temperature of 230 ° C. by the method defined in JIS K 7210 (1995).
Moreover, the resin composition of this invention may contain the elastomer. As the elastomer, a copolymer other than the polyolefin-based resin can be used. Examples of the elastomer include natural rubber, polybutadiene rubber, polyisoprene rubber, butyl rubber, amorphous or low-crystalline ethylene elastomer, butadiene-styrene elastomer, butadiene-acrylonitrile elastomer, hydrogenated or non-hydrogenated styrene-conjugated. Examples include diene block elastomers, polyester rubbers, acrylic rubbers, and silicon rubbers. One type of elastomer may be used alone, or two or more types of elastomers may be used in combination.
The ethylene-based elastomer is an elastomer containing a monomer unit derived from ethylene as a main component, and examples thereof include an ethylene-α-olefin copolymer and an ethylene-ethylenically unsaturated ester copolymer.
The ethylene-based elastomer is preferably an ethylene-α-olefin copolymer which is a copolymer of ethylene and one or more α-olefins. The α-olefin is preferably an α-olefin having 3 to 12 carbon atoms. Specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, 4-methyl Examples include -1-hexene, vinylcyclohexane, vinylcyclohexene, styrene, norbornene, butadiene, and isoprene.
In the present invention, the “amorphous elastomer” refers to an elastomer in which a crystal melting peak having a heat of fusion of 1 J / g or more is not observed within a range of −100 ° C. to 200 ° C. by differential scanning calorimetry (DSC). . The “low crystalline elastomer” refers to an elastomer in which a crystal melting peak having a heat of fusion of 1 to 30 J / g is observed in the range of −100 ° C. to 200 ° C. by differential scanning calorimetry (DSC).
Examples of hydrogenated or non-hydrogenated styrene-conjugated diene block elastomers include styrene-isoprene copolymers, styrene-isoprene-styrene copolymers, styrene-ethylenebutene-styrene copolymers, styrene-butadiene copolymers, Examples thereof include styrene-butadiene-styrene copolymers.
The melt flow rate of the elastomer is preferably 0.1 g / 10 min to 100 g / 10 min from the viewpoint of the mechanical strength of the molded product obtained from the resin composition of the present invention. More preferably, it is 0.3 g / 10 min to 50 g / 10 min, and particularly preferably 0.5 g / 10 min to 40 g / 10 min. For example, the melt flow rate of the ethylene-α-olefin copolymer is preferably 0.1 g / 10 min or more, and is 100 g / 10 min or less from the viewpoint of increasing the mechanical strength of the obtained molded product. More preferably, it is 0.3 g / 10 min to 50 g / 10 min, and further preferably 0.5 g / 10 min to 40 g / 10 min.
The melt flow rate of the elastomer is measured under the conditions of a test load of 21.18 N and a test temperature of 190 ° C. by the method defined in JIS K 7210 (1995).
The content of each component in the resin composition according to the present invention is the component (A) when the total content of the components (A), (B), and (C) is 100% by mass. 1 to 40% by mass, component (B) 1 to 30% by mass, component (C) 40 to 98% by mass, component (A) 5 to 35% by mass, component (B) 5 More preferably, it contains ~ 25% by mass, 45-90% by mass of component (C), 10-30% by mass of component (A), 10-20% by mass of component (B), and 50 of component (C). It is more preferable to contain ~ 80% by mass.
[Method for producing resin composition]
The method for producing the resin composition of the present invention is not particularly limited, and a method used in the production of a conventional resin composition, for example, melt-heat kneading using a kneader, an extruder or the like. The method of manufacturing is mentioned. Examples of the kneader include a kneader, a Banbury mixer, and a roll. Examples of the extruder include a single screw extruder and a twin screw extruder.
The method for obtaining a molded product using the resin composition of the present invention is not particularly limited, and a molding method generally used for thermoplastic resin compositions, for example, injection molding, injection blow molding, injection compression molding. Any of blow molding, extrusion molding, thermoforming, rotational molding, vacuum molding, vacuum pressure forming and the like can be applied.
Examples of the molded product obtained using the resin composition of the present invention include films, sheets, foamed sheets, hollow containers, fibers such as nonwoven fabrics, and automobile parts such as interior materials.
The film or sheet obtained by molding the resin composition according to the present invention can also be used for applications requiring adhesiveness. Moreover, the laminated body by which the layer which consists of a resin composition containing the epoxy-group-containing ethylene-type copolymer based on this invention was laminated | stacked on the at least single side | surface of a base material can also be used for the use for which adhesiveness is calculated | required. As a method for producing a single layer or laminated film or sheet including a layer comprising a resin composition containing an epoxy group-containing ethylene copolymer according to the present invention, for example, a commonly used extrusion molding method, T-die method, Examples thereof include an inflation method, a calendar method, lamination molding, and press molding.
Moreover, two different articles | goods can also be adhere | attached with the epoxy group containing ethylene-type copolymer which concerns on this invention, or the resin composition containing this copolymer, and it can also be set as a laminated body. In this case, the article can be regarded as the substrate. Using a laminate in which layers of the resin composition are laminated on both surfaces of a base material, an article on one side of the laminate can be bonded to another article on the other side.
The materials constituting the two articles to be bonded may be the same or different. Examples of the material constituting the article include metals such as gold, silver, copper, iron, tin, lead, aluminum, and silicon, inorganic materials such as glass and ceramics, cellulosic polymers such as paper and cloth, Synthesis of melamine resin, acrylic / urethane resin, urethane resin, (meth) acrylic resin, styrene / acrylonitrile copolymer, polycarbonate resin, phenol resin, alkyd resin, epoxy resin, silicone resin, fluorine resin, etc. Examples thereof include polymers. Each article may be composed of two or more types of materials. The shape of the article is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, and a fiber shape. In addition, if necessary, the article has a surface such as a release agent, a coating such as plating, a coating film made of a resin composition other than the present invention, surface modification by plasma or laser, surface oxidation, etching, etc. Processing etc. may be given.
 以下、実施例等により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
1.メルトフローレート(MFR)
 メルトフローレートは、JIS K 7210(温度190℃)に準拠して実施した。
2.メタクリル酸グリシジル含量
 エポキシ基含有エチレン系共重合体に含まれるメタクリル酸グリシジル由来の単量体単位の含有量は、赤外線分光法により測定した。
3.成形性
 樹脂組成物を一軸混練機を用いて造粒した際、ダイス出口におけるスウェルが小さい場合を○、スウェルが大きく造粒が困難な場合を×とした。
4.ストランドの外観
 樹脂組成物を、一軸混練機を用いて造粒して得られるストランド表面が滑らかな場合を○、明らかな凹凸がある場合を×とした。
5.アイゾット衝撃強度(単位:kJ/m
 JIS K 7110(1984)に規定された方法に従って成形体のアイゾット衝撃強度を測定した。この測定には、射出成形により成形された、厚さ6.4mmで、成形の後にノッチ加工された試験片を用いた。測定は23℃で行った。
6.引張衝撃強度(単位:kJ/m
 成形温度190℃、予熱時間10分、圧縮時間5分、圧縮圧力5MPaの条件で圧縮成形した厚み2mmのシートの引張衝撃強度を、ASTM D1822−68に従って測定した。
7.引張特性
 ASTM D638に規定された方法に従って成形体の引張特性を測定した。試験片には、射出成形によって成形された厚み3.2mmの成形体を用いた。試験片には、予め標線を二本、間隔が50mmとなるように記した。試験片を引張速度50mm/分で引っ張り、試験片が破断した時の応力(MPa)を破断強度とし、試験片が破断した時の標線間距離と初期値(=50mm)との差を伸びとして評価した。測定は23℃で行った。
 実施例、比較例に用いた重合体について、物性などを下記に示す。
〔(A)成分〕
 (A)成分として、以下の樹脂をそれぞれ用いた。
A−1:エチレン−メタクリル酸グリシジル共重合体(メタクリル酸グリシジル=19質量%)、190℃におけるMFR=13g/10min
A−2:エチレン−メタクリル酸グリシジル共重合体(メタクリル酸グリシジル=6質量%)、190℃におけるMFR=3g/10min
A−3:エチレン−メタクリル酸グリシジル共重合体(メタクリル酸グリシジル=12質量%)、190℃におけるMFR=3g/10min
A−4:エチレン−メタクリル酸グリシジル共重合体(メタクリル酸グリシジル=19質量%)、190℃におけるMFR=380g/10min
〔(B)成分〕
 (B)成分として、以下の樹脂をそれぞれ用いた。
B−1:ポリブチレンテレフタレート(東レ(株)社製トレコン 1401−X06)
B−2:ポリ乳酸(ユニチカ(株)社製テラマック TP−4000)
〔(C)成分〕
 (C)成分として、以下の樹脂をそれぞれ用いた。
C−1:エチレン−α−オレフィン共重合体(密度920kg/cm、190℃におけるMFR1.9g/10min)
C−2:エチレン−α−オレフィン共重合体(住友化学(株)社製エクセレンFX CX4002)
(実施例1)
 A−1:B−1:C−2=10:80:10の質量比で混合した混合物を、一軸押出機を用いて溶融混練し、樹脂組成物を得た。得られた樹脂組成物を用いて射出成形を行った。射出成形体のアイゾット衝撃強度、引張特性を測定した。表1に結果を示す。
(比較例1)
 A−1の代わりにA−2を用いた以外は実施例と同様に行った。
(比較例2)
 A−1の代わりにA−3を用いた以外は実施例と同様に行った。
(比較例3)
 A−1の代わりにA−4を用いた以外は実施例と同様に行った。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 A−1:B−2:C−1=5:30:65の質量比で混合した混合物を、一軸押出機を用いて溶融混練し、樹脂組成物を得た。得られた樹脂組成物を用いてプレス成形を行った。プレス成形品の引張特性、テンサイルインパクトの測定を行った。表1に結果を示す。
(比較例4)
 A−1の代わりにA−2を用いた以外は実施例2と同様に行った。
(比較例5)
 A−1の代わりにA−3を用いた以外は実施例2と同様に行った。
(比較例6)
 A−1の代わりにA−4を用いた以外は実施例2と同様に行った。
Figure JPOXMLDOC01-appb-T000002
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further in detail, this invention is not limited by these.
1. Melt flow rate (MFR)
Melt flow rate was implemented based on JISK7210 (temperature 190 degreeC).
2. Glycidyl methacrylate content The content of monomer units derived from glycidyl methacrylate contained in the epoxy group-containing ethylene copolymer was measured by infrared spectroscopy.
3. Moldability When the resin composition was granulated using a uniaxial kneader, the case where the swell at the die outlet was small was marked as ◯, and the case where the swell was large and granulation was difficult was marked as x.
4). Appearance of strands The case where the strand surface obtained by granulating the resin composition using a uniaxial kneader was smooth was marked with ◯, and the case where there were obvious irregularities was marked with x.
5. Izod impact strength (unit: kJ / m 2 )
The Izod impact strength of the molded product was measured according to the method defined in JIS K 7110 (1984). For this measurement, a test piece molded by injection molding and having a thickness of 6.4 mm and notched after molding was used. The measurement was performed at 23 ° C.
6). Tensile impact strength (unit: kJ / m 2 )
The tensile impact strength of a 2 mm thick sheet compression molded under conditions of a molding temperature of 190 ° C., a preheating time of 10 minutes, a compression time of 5 minutes, and a compression pressure of 5 MPa was measured according to ASTM D1822-68.
7). Tensile properties Tensile properties of the molded bodies were measured according to the method defined in ASTM D638. As the test piece, a molded body having a thickness of 3.2 mm formed by injection molding was used. The test piece was previously marked with two marked lines and an interval of 50 mm. The test piece is pulled at a pulling speed of 50 mm / min. The stress (MPa) when the test piece breaks is taken as the breaking strength, and the difference between the distance between the marked lines and the initial value (= 50 mm) when the test piece breaks is extended. As evaluated. The measurement was performed at 23 ° C.
About the polymer used for the Example and the comparative example, a physical property etc. are shown below.
[Component (A)]
As the component (A), the following resins were used.
A-1: Ethylene-glycidyl methacrylate copolymer (glycidyl methacrylate = 19% by mass), MFR at 190 ° C. = 13 g / 10 min
A-2: Ethylene-glycidyl methacrylate copolymer (glycidyl methacrylate = 6 mass%), MFR at 190 ° C. = 3 g / 10 min
A-3: Ethylene-glycidyl methacrylate copolymer (glycidyl methacrylate = 12% by mass), MFR at 190 ° C. = 3 g / 10 min
A-4: Ethylene-glycidyl methacrylate copolymer (glycidyl methacrylate = 19 mass%), MFR at 190 ° C. = 380 g / 10 min
[(B) component]
As the component (B), the following resins were used.
B-1: Polybutylene terephthalate (Torcon 1401-X06 manufactured by Toray Industries, Inc.)
B-2: Polylactic acid (Teramac TP-4000 manufactured by Unitika Ltd.)
[Component (C)]
As the component (C), the following resins were used.
C-1: ethylene-α-olefin copolymer (density 920 kg / cm 3 , MFR 1.9 g / 10 min at 190 ° C.)
C-2: Ethylene-α-olefin copolymer (Excellen FX CX4002 manufactured by Sumitomo Chemical Co., Ltd.)
Example 1
A mixture mixed at a mass ratio of A-1: B-1: C-2 = 10: 80: 10 was melt-kneaded using a single screw extruder to obtain a resin composition. Injection molding was performed using the obtained resin composition. The Izod impact strength and tensile properties of the injection molded product were measured. Table 1 shows the results.
(Comparative Example 1)
It carried out similarly to the Example except having used A-2 instead of A-1.
(Comparative Example 2)
The same procedure as in Example was performed except that A-3 was used instead of A-1.
(Comparative Example 3)
The same procedure as in Example was performed except that A-4 was used instead of A-1.
Figure JPOXMLDOC01-appb-T000001
(Example 2)
A mixture mixed at a mass ratio of A-1: B-2: C-1 = 5: 30: 65 was melt-kneaded using a single screw extruder to obtain a resin composition. Press molding was performed using the obtained resin composition. The tensile properties and tensile impact of the press-formed product were measured. Table 1 shows the results.
(Comparative Example 4)
It carried out like Example 2 except having used A-2 instead of A-1.
(Comparative Example 5)
The same procedure as in Example 2 was performed except that A-3 was used instead of A-1.
(Comparative Example 6)
The same procedure as in Example 2 was performed except that A-4 was used instead of A-1.
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、樹脂の改質効果が高いエポキシ基含有エチレン系共重合体、及びこれを含有する樹脂組成物を提供することが可能となる。 According to the present invention, it is possible to provide an epoxy group-containing ethylene copolymer having a high resin modification effect and a resin composition containing the same.

Claims (6)

  1.  エチレン由来の単量体単位と、メタクリル酸グリシジル由来の単量体単位とを含むエポキシ基含有エチレン系共重合体であって、
     該共重合体の質量を100質量%とするとき、前記メタクリル酸グリシジル由来の単量体単位を15~25質量%含有し、かつ、
     190℃におけるメルトフローレートが10~50g/10分である共重合体。
    An epoxy group-containing ethylene copolymer comprising a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate,
    When the mass of the copolymer is 100% by mass, it contains 15 to 25% by mass of the monomer unit derived from the glycidyl methacrylate, and
    A copolymer having a melt flow rate at 190 ° C. of 10 to 50 g / 10 min.
  2.  エチレン由来の単量体単位と、メタクリル酸グリシジル由来の単量体単位のみからなる請求項1に記載の共重合体。 The copolymer according to claim 1, comprising only a monomer unit derived from ethylene and a monomer unit derived from glycidyl methacrylate.
  3.  以下の式(1)で表される化合物および式(2)で表される化合物から選ばれる1種以上の化合物由来の単量体単位を更に含む請求項1に記載の共重合体。
    CH=CR  (1)
    CHR=CHR  (2)
     式中、
    は水素原子、または炭素数1~8のアルキル基を表し、
    はハロゲン原子、または−COORで表される基(Rは炭素数1~8のアルキル基を表す)を表し、
    は水素原子、炭素数1~8のアルキル基、または−COORで表される基(Rは炭素数1~8のアルキル基を表す)を表し、
    は炭素数1~8のアルキルニトリル、アルキルエーテル基、アルキルアミド、ハロゲン原子、フェニル基、もしくは−COORで表される基(Rは炭素数1~8のアルキル基を表す)を表すか、またはRは−OCORで表される基(Rは炭素数1~8のアルキル基を表す)を表す。
    The copolymer of Claim 1 which further contains the monomer unit derived from 1 or more types of compounds chosen from the compound represented by the following formula (1), and the compound represented by Formula (2).
    CH 2 = CR 1 R 2 (1)
    CHR 3 = CHR 4 (2)
    Where
    R 1 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms,
    R 2 represents a halogen atom or a group represented by —COOR 5 (R 5 represents an alkyl group having 1 to 8 carbon atoms);
    R 3 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a group represented by —COOR 6 (R 6 represents an alkyl group having 1 to 8 carbon atoms);
    R 4 represents an alkyl nitrile having 1 to 8 carbon atoms, an alkyl ether group, an alkylamide, a halogen atom, a phenyl group, or a group represented by —COOR 7 (R 7 represents an alkyl group having 1 to 8 carbon atoms). Or R 4 represents a group represented by —OCOR 8 (R 8 represents an alkyl group having 1 to 8 carbon atoms).
  4.  前記1種以上の化合物が、酢酸ビニル、アクリル酸メチル及びメタクリル酸メチルからなる群から選ばれる請求項3に記載の共重合体。 The copolymer according to claim 3, wherein the one or more compounds are selected from the group consisting of vinyl acetate, methyl acrylate and methyl methacrylate.
  5.  請求項1~4のいずれかに記載のエポキシ基含有エチレン系共重合体と、
     主鎖にエステル結合、炭酸エステル結合、エーテル結合、スルフィド結合およびアミド結合からなる群から選ばれる少なくとも1種の結合を有する重合体とを含む樹脂組成物。
    An epoxy group-containing ethylene copolymer according to any one of claims 1 to 4,
    A resin composition comprising a main chain and a polymer having at least one bond selected from the group consisting of an ester bond, a carbonic acid ester bond, an ether bond, a sulfide bond and an amide bond.
  6.  前記重合体が、ポリ乳酸、芳香族ポリエステルまたはそれらの混合物である請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the polymer is polylactic acid, aromatic polyester, or a mixture thereof.
PCT/JP2010/070638 2009-11-17 2010-11-12 Epoxy-containing ethylene copolymer and resin composition WO2011062248A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009261629 2009-11-17
JP2009-261628 2009-11-17
JP2009261628 2009-11-17
JP2009-261629 2009-11-17

Publications (1)

Publication Number Publication Date
WO2011062248A1 true WO2011062248A1 (en) 2011-05-26

Family

ID=44059720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070638 WO2011062248A1 (en) 2009-11-17 2010-11-12 Epoxy-containing ethylene copolymer and resin composition

Country Status (2)

Country Link
JP (1) JP2011127101A (en)
WO (1) WO2011062248A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160046842A1 (en) * 2013-03-27 2016-02-18 Japan Polyethylene Corporation Polar-group-containing olefin copolymer, polar-group-containing multinary olefin copolymer, olefin-based resin composition, and adhesive and layered product each using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232045A (en) * 1975-09-08 1977-03-10 Toray Ind Inc Resin composition
JPS55137154A (en) * 1979-03-30 1980-10-25 Toray Ind Inc Polyester composition
JPS56149356A (en) * 1980-04-22 1981-11-19 Sumitomo Chem Co Ltd Laminated safety glass
JPS5986677A (en) * 1982-11-09 1984-05-18 Sumitomo Chem Co Ltd Adhesive resin composition
JPS62141019A (en) * 1985-12-17 1987-06-24 Showa Denko Kk Crosslinkable composition
JPS63186710A (en) * 1987-01-29 1988-08-02 日本石油化学株式会社 Production of ethylene copolymer
JPS63284216A (en) * 1987-05-18 1988-11-21 Toray Ind Inc Polyester resin composition
JPH09104786A (en) * 1995-10-11 1997-04-22 Sumitomo Chem Co Ltd Adhesive resin composition and manufacture thereof
JP2004051689A (en) * 2002-07-17 2004-02-19 Sumitomo Chem Co Ltd Prepreg and substrate material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232045A (en) * 1975-09-08 1977-03-10 Toray Ind Inc Resin composition
JPS55137154A (en) * 1979-03-30 1980-10-25 Toray Ind Inc Polyester composition
JPS56149356A (en) * 1980-04-22 1981-11-19 Sumitomo Chem Co Ltd Laminated safety glass
JPS5986677A (en) * 1982-11-09 1984-05-18 Sumitomo Chem Co Ltd Adhesive resin composition
JPS62141019A (en) * 1985-12-17 1987-06-24 Showa Denko Kk Crosslinkable composition
JPS63186710A (en) * 1987-01-29 1988-08-02 日本石油化学株式会社 Production of ethylene copolymer
JPS63284216A (en) * 1987-05-18 1988-11-21 Toray Ind Inc Polyester resin composition
JPH09104786A (en) * 1995-10-11 1997-04-22 Sumitomo Chem Co Ltd Adhesive resin composition and manufacture thereof
JP2004051689A (en) * 2002-07-17 2004-02-19 Sumitomo Chem Co Ltd Prepreg and substrate material

Also Published As

Publication number Publication date
JP2011127101A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP4987312B2 (en) Thermoplastic resin composition and molded article thereof
JP5543750B2 (en) Polylactic acid film or sheet
KR100789876B1 (en) Novel resin modifier and polar group-containing polymer composition including same
JP2009013405A (en) Film, molded article using the film, stretched film, heat shrinkable film, heat shrinkable label, and container with the label attached
WO2007063973A1 (en) Thermally shrinkable polyolefin film, molded article using the film, thermally shrinkable label, and container
JP2006328117A (en) Impact-resistant environmental material, method for producing the same, and molded article
WO2009104372A1 (en) Resin composition, laminate using the same, and molded body using the laminate
KR20170110078A (en) Composition of polycarbonate and polypropylene blends
JP2010270309A (en) Method for producing resin composition, and molding
WO2006129854A1 (en) Resin composition, and film, sheet or laminate formed from the same
JP5609220B2 (en) Polylactic acid-containing polypropylene resin composition, production method thereof and molded product thereof
JP2007070379A (en) Environmental material and method for producing the same
JP7415573B2 (en) Adhesive resin composition and laminate
JP5346502B2 (en) Resin composition, and film and laminate using the same
JP5623479B2 (en) Resin composition, and film and laminate using the same
WO2011030922A1 (en) Polyolefin resin composition and molded body
JP2011116929A (en) Oriented film and application thereof
WO2011062248A1 (en) Epoxy-containing ethylene copolymer and resin composition
JP2015189885A (en) adhesive resin composition and laminate
JPWO2020196673A1 (en) Sealant resin compositions, laminates, packaging materials and packaging containers
JP5004068B2 (en) Polylactic acid resin composition and method for producing polylactic acid resin composition
TW201630715A (en) Laminate and packaging body comprising same
JP2008023801A (en) Heat-shrinkable laminate film, molding and label using the film and container equipped with the molding and label
JP5460308B2 (en) Fiber-reinforced polylactic acid-containing resin composition and molded article thereof
JP5519253B2 (en) Polylactic acid-containing masterbatch, production method thereof, polylactic acid-containing propylene resin composition and molded article thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831641

Country of ref document: EP

Kind code of ref document: A1