WO2011061866A1 - Induction motor control apparatus - Google Patents

Induction motor control apparatus Download PDF

Info

Publication number
WO2011061866A1
WO2011061866A1 PCT/JP2009/070680 JP2009070680W WO2011061866A1 WO 2011061866 A1 WO2011061866 A1 WO 2011061866A1 JP 2009070680 W JP2009070680 W JP 2009070680W WO 2011061866 A1 WO2011061866 A1 WO 2011061866A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
turned
coil
induction motor
switches
Prior art date
Application number
PCT/JP2009/070680
Other languages
French (fr)
Japanese (ja)
Inventor
和郎 河辺
Original Assignee
電光株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電光株式会社 filed Critical 電光株式会社
Publication of WO2011061866A1 publication Critical patent/WO2011061866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor

Definitions

  • the present invention relates to an induction motor control device.
  • a starter that starts the induction motor with a condor system first applies a power supply voltage to the induction motor after applying a voltage lower than the power supply voltage of the induction motor. In this way, by changing the voltage applied to the induction motor, for example, the starting current can be suppressed as compared with the case where the induction motor is started by directly applying the power supply voltage to the induction motor.
  • the level of the initial voltage first applied to the induction motor when the induction motor is started with a condorfa is generally preset in the starter.
  • the starting current can be reduced.
  • the difference between the initial voltage and the power supply voltage becomes large, when the power supply voltage is applied, the rotation speed of the induction motor changes abruptly.
  • the initial voltage level is set high, the difference between the initial voltage and the power supply voltage becomes small, so that the change in the rotation speed of the induction motor when the power supply voltage is applied becomes moderate.
  • the starting current increases because the level of the initial voltage is high.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an induction motor control device that can gently change the number of revolutions of the induction motor while suppressing the starting current.
  • an induction motor control apparatus includes a first coil having a tap connected to a three-phase coil of an induction motor, a power source for driving the induction motor, and the A first switch connected between the first coil and a second switch connected to a side of the first coil to which the first switch is not connected, wherein the first and second switches are The step-down circuit that generates a voltage obtained by stepping down the power source voltage of the power source by being controlled, the third switch connected between the power source and the three-phase coil, and the first switch turned on A first control circuit that turns on the first and second switches later, and then controls the first to third switches so that the power supply voltage is applied to the three-phase coil, and the tap includes: Voltage of the tap when the serial first switch and the second switch is turned on, the first switch is provided so as to be higher than the voltage of the tap when it is turned on.
  • FIG. 3 is a diagram illustrating an example of a coil 70.
  • FIG. 3 is a flowchart for explaining the operation of the starter 10; It is a figure which shows the structure of the starter 11 which is one Embodiment of this invention. It is a figure which shows the structure of the starter 12 which is one Embodiment of this invention. It is a figure which shows the structure of 46 A of magnetic circuits. It is a figure for demonstrating the detail of the switch 90 and the coil 95.
  • FIG. It is a figure which shows the structure of the magnetic circuit 46B.
  • 3 is a diagram for explaining details of a switch 100 and a coil 110.
  • FIG. 3 is a flowchart for explaining the operation of the starter 12; It is a figure which shows the structure of the starter 13 which is one Embodiment of this invention.
  • FIG. 1 is a diagram illustrating a configuration of a starter 10 that is the first embodiment of the starter.
  • the starter 10 induction motor control device
  • the starter 10 is a device for receiving a voltage of a three-phase power supply and starting a squirrel-cage induction motor (hereinafter simply referred to as a motor) 15, and includes a step-down circuit 20-22, a switch 30 to 32, a timer 40, and a control circuit 41.
  • the motor 15 is a three-phase motor in which three-phase coils L1 to L3 are delta-connected.
  • the node to which the three-phase coil L1 and the three-phase coil L3 are connected is the node A
  • the node to which the three-phase coil L2 and the three-phase coil L1 are connected is the node B
  • the three-phase coil L3 is A node to which the three-phase coil L2 is connected is referred to as a node C.
  • the step-down circuit 20 is a circuit that generates a voltage obtained by stepping down the U-phase voltage Vu of the three-phase power source at the tap t0, and includes a switch 60, a coil 70, and a switch 80.
  • the switch 60 is a relay switch that is turned on / off based on the control of the control circuit 41, and a voltage Vu is applied to one end.
  • the coil 70 has a tap t0 connected to the node A, and is connected between the switch 60 and the switch 80.
  • the coil 70 is wound around an iron core 200 of a single-winding transformer as shown in FIG.
  • the switch 80 is a relay switch that is turned on and off based on the control of the control circuit 41, similarly to the switch 60.
  • One end of the switch 80 is connected to the coil 70, and the other end is connected to the switches 81 and 82. Therefore, although the details will be described later, when the switches 80 to 82 are turned on, the coils 70 to 72 are star-connected, and the node to which each of the switches 80 to 82 is connected becomes a so-called neutral point.
  • the step-down circuit 21 is a circuit that generates a voltage obtained by stepping down the V-phase voltage Vv of the three-phase power source at the tap t1, and includes a switch 61, a coil 71, and a switch 81.
  • the step-down circuit 22 is a circuit that generates a voltage obtained by stepping down the W-phase voltage Vw of the three-phase power supply at the tap t2, and includes a switch 62, a coil 72, and a switch 82.
  • the step-down circuit 21 has the same configuration as the step-down circuit 20 except that the tap t1 is connected to the node B.
  • the step-down circuit 22 has the same configuration as the step-down circuit 20 except that the tap t2 is connected to the node C. Therefore, a detailed description of the step-down circuits 21 and 22 is omitted.
  • the switch 30 is a relay switch for applying the voltage Vu to the node A, and is controlled to be turned on and off by the control circuit 41.
  • the switch 31 is a relay switch for applying the voltage Vv to the node B, and is turned on and off by the control circuit 41.
  • the switch 32 is a relay switch for applying the voltage Vw to the node C, and is turned on and off by the control circuit 41.
  • the timer 40 measures the time from when the switches 60 to 62 are turned on.
  • the control circuit 41 (first control circuit) is a sequencer that controls the switches 30 to 32, 60 to 62, and 80 to 82 at a predetermined timing when a start signal for starting the motor 15 is input. Specifically, the control circuit 41 turns on the switches 60 to 62 (first switch) when a start signal is input. Thereafter, when the time counted by the timer 40 reaches a predetermined time T1, the control circuit 41 turns on the switches 80 to 82 (second switch) together with the switches 60 to 62. When the time measured by the timer 40 reaches a predetermined time T2 (> T1), the control circuit 41 turns off the switches 80 to 82 and then turns on the switches 30 to 32 (third switch), and then switches 60 -62 is turned off.
  • the start signal is provided, for example, in an operation unit (not shown) of the starter 10 and is generated when a user turns on a start switch (not shown) for starting the motor 15.
  • the coils 70 to 72 correspond to the first coil.
  • the timer 40 starts measuring time.
  • T1 time measured by the timer 40
  • the control circuit 41 turns on the switches 80 to 82 together with the switches 60 to 62 (S103).
  • the switches 60 to 62 and 80 to 82 are turned on, the coils 70 to 72 are star-connected. Therefore, when the switches 60 to 62 and 80 to 82 are on, each of the step-down circuits 20 to 22 operates as a circuit for starting the motor 15 with a condor.
  • the voltage at the taps t0 to t2 is, for example, 50% of the power supply voltage
  • the motor 15 is starting the condorfa (processing) :
  • the positions of the taps t0 to t2 are determined so that the voltage of the taps t0 to t2 in S103) is, for example, 70% of the power supply voltage.
  • the condor is started after the reactor 15 is started, the voltages of the three-phase coils L1 to L3 of the motor 15 are increased, and the rotational speed of the motor 15 is increased.
  • the control circuit 41 sequentially turns off the switches 80 to 82, turns on the switches 30 to 32, and turns off the switches 60 to 62 ( S105).
  • the voltages Vu, Vv, and Vw are applied to the nodes A, B, and C, respectively, and the motor 15 is driven with the power supply voltage.
  • the motor 15 is started by the reactor start and accelerated by the condorfa start. Furthermore, the motor 15 is normally operated by applying a power supply voltage. Further, since the voltages of the three-phase coils L1 to L3 sequentially change to 50%, 70%, and 100% of the power supply voltage, the starter 10 smoothly executes acceleration of the motor 15 while suppressing the starting current. It becomes possible.
  • FIG. 4 is a diagram illustrating a configuration of a starter 11 that is the second embodiment of the starter.
  • the starter 11 (induction motor controller) includes step-down circuits 20 to 22, switches 30 to 32, a timer 40, a voltage detector 42, a current detector 43, a rotation speed detector 44, and a control circuit 45.
  • the voltage detector 42 detects the levels of the voltages Vu, Vv, and Vw and outputs voltage signals indicating the respective levels to the control circuit 45.
  • the current detector 43 detects the currents Ia, Ib, and Ic supplied to the nodes A, B, and C, and outputs current signals indicating the respective current values to the control circuit 45.
  • the rotation speed detector 44 detects the rotation speed of the motor 15 and outputs a rotation speed signal indicating the rotation speed to the control circuit 45.
  • the control circuit 45 (first control circuit) is a sequencer that controls the switches 30 to 32, 60 to 62, and 80 to 82 under a predetermined condition when a start signal for starting the motor 15 is input.
  • the control circuit 45 turns on the switches 60 to 62 when a start signal is input. Thereafter, the control circuit 45 determines whether the time measured by the timer 40 reaches a predetermined time T1, the levels of the voltages Vu, Vv, Vw become the predetermined voltage V1, or the current values of the currents Ia, Ib, Ic are predetermined. When the current value I1 or the rotational speed of the motor 15 reaches a predetermined rotational speed N1, the switches 80 to 82 are turned on together with the switches 60 to 62.
  • Condition 1 is a condition that must be satisfied when the control circuit 45 turns on the switches 80 to 82 together with the switches 60 to 62.
  • the control circuit 45 determines whether the time measured by the timer 40 is a predetermined time T2 (> T1), the levels of the voltages Vu, Vv, Vw are the predetermined voltage V2, or the currents Ia, Ib, Ic.
  • T2 a predetermined time
  • the switches 30 to 32 are turned on after the switches 80 to 82 are turned off, and then the switch 60 is turned on. -62 is turned off.
  • Condition 2 is a condition that should be satisfied when the control circuit 45 turns off the switches 80 to 82. Further, a series of control for the switch of the control circuit 45 when the condition 2 is satisfied is executed in a sufficiently short time.
  • Such a starter 11 operates in the same manner as the starter 10 shown in FIG. Specifically, when a start signal is input, the motor 15 is reactor-started. When the condition 1 is satisfied, the motor 15 is started by a condor. Thereafter, when the condition 2 is satisfied, the motor 15 is driven with the power supply voltage.
  • FIG. 5 is a diagram showing a configuration of a starter 12 which is the third embodiment of the starter.
  • the starter 12 (induction motor controller) includes step-down circuits 25 to 27, switches 30 to 32, a timer 40, a magnetic circuit 46, and a control circuit 47.
  • the same reference numerals as those of the starter 10 shown in FIG. Therefore, here, the step-down circuits 25 to 27, the magnetic circuit 46A, and the control circuit 47 will be described.
  • the step-down circuit 25 is a circuit that generates a voltage obtained by stepping down the voltage Vu at the tap t0, and includes a switch 60, coils 70 and 75, and a switch 80.
  • a coil 75 is connected between the switch 60 and the coil 70 described above.
  • the coil 75 is an element for increasing inductive reactance from the switch 60 to the tap t0.
  • the step-down circuit 26 is a circuit that generates a voltage obtained by stepping down the voltage Vv at the tap t1, and includes a switch 61, coils 71 and 76, and a switch 81.
  • the step-down circuit 27 is a circuit that generates a voltage obtained by stepping down the voltage Vw at the tap t2, and includes a switch 62, coils 72 and 77, and a switch 82. Since the step-down circuits 26 and 27 have the same configuration as that of the step-down circuit 25, a detailed description is omitted here.
  • the coils 75 to 77 correspond to the second coil.
  • the magnetic circuit 46 is a circuit that reduces the magnetic fields of the coils 75 to 77 based on the control from the control circuit 47.
  • a magnetic circuit 46A which is a first embodiment of the magnetic circuit 46, includes switches 90 to 92 (fourth switch) and coils 95 to 97 (third coil) as shown in FIG.
  • switches 90 to 92 fourth switch
  • coils 95 to 97 third coil
  • FIG. 1 A magnetic circuit 46A, which is a first embodiment of the magnetic circuit 46, includes switches 90 to 92 (fourth switch) and coils 95 to 97 (third coil) as shown in FIG.
  • the coils 75 and 95 are wound around the iron core 210
  • the coil 70 is wound around the iron core 220.
  • the coil 75 is wound around the iron core 210 so as to generate a magnetic field in a downward direction on the paper surface when the switch 60 is turned on and a current is supplied.
  • the switch 90 is a relay switch that is turned on / off based on the control of the control circuit 47, and is connected between the coil 75 and the coil 95.
  • the coil 95 has one end connected to one end of the switch 60 and the coil 75, and the other end connected to the other end of the coil 70 and the coil 75 via the switch 90.
  • the coil 95 is wound around the iron core 210 so as to generate a magnetic field in the upward direction on the paper surface when the switch 60 and the switch 90 are turned on and a current is supplied. That is, when the switch 60 is turned on, the coil 75 generates a magnetic field in the downward direction on the paper surface. However, when the switch 90 is further turned on, the coil 95 generates a magnetic field in the upward direction on the paper surface, and thus the magnetic field generated by the coil 75 decreases. It will be.
  • the number of turns of the coil 95 is determined so that the magnetic field of the iron core 210 becomes zero when the switches 60 and 90 are turned on. For this reason, when the switches 60 and 90 are turned on, the inductive reactance of the coil 75 becomes negligibly small.
  • the switch 91 and the coil 96 have the same configuration as the switch 90 and the coil 95, and the coil 96 is wound around the same iron core (not shown) so as to cancel the magnetic field of the coil 76. For this reason, when the switches 61 and 91 are turned on, the inductive reactance of the coil 76 can be ignored.
  • the switch 92 and the coil 97 have the same configuration as the switch 90 and the coil 95, and the coil 97 is wound around the same iron core (not shown) so as to cancel the magnetic field of the coil 77. For this reason, when the switches 62 and 92 are turned on, the inductive reactance of the coil 77 can be ignored.
  • a magnetic circuit 46B which is a second embodiment of the magnetic circuit 46, includes switches 100 to 102 (fourth switch) and coils 110 to 112 (third coil) as shown in FIG.
  • switches 100 to 102 fourth switch
  • coils 110 to 112 third coil
  • the coils 75 and 110 are wound around the iron core 250, and the coil 70 is wound around the iron core 260.
  • the switch 100 is a relay switch that is turned on / off based on the control of the control circuit 47, and is connected between both ends of the coil 110.
  • the coil 110 is wound around the same iron core 250 as the coil 75. Therefore, when a magnetic field is generated in the iron core 250 while the switch 100 is on, a current that decreases the magnetic field of the iron core 250 flows through the coil 110. On the other hand, when the switch 100 is off, no current flows through the coil 110, so the magnetic field of the iron core 250 is not affected by the coil 110. In the present embodiment, it is assumed that the number of turns of the coil 110 is determined so that the magnetic field of the iron core 250 becomes zero when the switches 60 and 100 are turned on. For this reason, when the switches 60 and 110 are turned on, the inductive reactance of the coil 75 becomes negligibly small.
  • the switch 101 and the coil 111 have the same configuration as the switch 100 and the coil 110, and the coil 111 is wound around the same iron core (not shown) so as to cancel the magnetic field of the coil 76. For this reason, when the switches 61 and 101 are turned on, the inductive reactance of the coil 76 can be ignored.
  • the switch 102 and the coil 112 have the same configuration as the switch 100 and the coil 110, and the coil 112 is wound around the same iron core (not shown) so as to cancel the magnetic field of the coil 77. For this reason, when the switches 62 and 102 are turned on, the inductive reactance of the coil 77 can be ignored.
  • the control circuit 47 When the time counted by the timer 40 reaches a predetermined time T2 (> T1), the control circuit 47 turns off the switches 80 to 82 and 90 to 92 (or 100 to 102) and then turns on the switches 30 to 32. Thereafter, the switches 60 to 62 are turned off. Note that a series of control for the switch of the control circuit 47 at time T2 is executed in a sufficiently short time.
  • the timer 40 starts measuring time.
  • T1 time T1
  • the control circuit 47 turns on the switches 80 to 82 and 90 to 92 together with the switches 60 to 62 (S203).
  • the switches 60 to 62 and 80 to 82 are turned on, the coils 70 to 72 and 75 to 77 are star-connected.
  • the switches 90 to 92 are turned on, the inductive reactance of the coils 75 to 77 is sufficiently small as described above, so that the influence of the coils 75 to 77 can be ignored.
  • step-down circuit 25 depending on the ratio of a part of the winding of the coil 70 existing from the node where the coil 75 and the coil 70 are connected to the tap t0 to the winding of the remaining coil 70. Voltage is generated at tap t0.
  • the step-down circuits 26 and 27 operate in the same manner as the step-down circuit 25, and the motor 15 is started by a condor.
  • the positions of the taps t0 to t2 are determined so that the voltage at the taps t0 to t2 when the motor 15 is started with the condorfa (process: S203) is, for example, 70% of the power supply voltage. ing. Furthermore, the inductances of the coils 75 to 77 are determined so that the voltage at the taps t0 to t2 when the motor 15 is being reactor-started (process: S201) is, for example, 50% of the power supply voltage. For this reason, in the present embodiment, when the condor is started after the reactor 15 is started, the voltages of the three-phase coils L1 to L3 of the motor 15 are increased, and the rotational speed of the motor 15 is increased.
  • the control circuit 47 sequentially turns off the switches 80 to 82 and 90 to 92, turns on the switches 30 to 32, and switches 60 to 62. Is turned off (S105). As a result, the voltages Vu, Vv, and Vw are applied to the nodes A, B, and C, respectively, and the motor 15 is driven with the power supply voltage.
  • the motor 15 is started by the reactor start and accelerated by the condorfa start. Furthermore, the motor 15 is normally operated by applying a power supply voltage. Further, since the voltages of the three-phase coils L1 to L3 sequentially change to 50%, 70%, and 100% of the power supply voltage, the starter 12 smoothly accelerates the motor 15 while suppressing the starting current. It becomes possible.
  • the starter 12 operates in the same manner even when the magnetic circuit 46B is used.
  • FIG. 11 is a diagram illustrating a configuration of a starter 13 that is the fourth embodiment of the starter.
  • the starter 13 (induction motor controller) includes step-down circuits 25 to 27, switches 30 to 32, a timer 40, a voltage detector 42, a current detector 43, a rotation speed detector 44, a magnetic circuit 46A, and a control circuit 48. Consists of including.
  • the same reference numerals as those of the starters 11 and 12 are the same. Therefore, here, the control circuit 48 will be described.
  • control circuit 48 switches 30 to 32, 60 to 62, 80 to 82, 90 to 92 under predetermined conditions. It is a sequencer that controls.
  • the control circuit 48 turns on the switches 60 to 62 when a start signal is input. Thereafter, the control circuit 48 determines whether the time measured by the timer 40 reaches the predetermined time T1, the levels of the voltages Vu, Vv, Vw become the predetermined voltage V1, or the current values of the currents Ia, Ib, Ic are predetermined. When the current value I1 or the rotational speed of the motor 15 reaches a predetermined rotational speed N1, the switches 80 to 82 and 90 to 92 are turned on together with the switches 60 to 62.
  • a condition to be satisfied when the control circuit 45 turns on the switches 80 to 82 and 90 to 92 together with the switches 60 to 62 is defined as a condition A.
  • the control circuit 48 determines whether the time measured by the timer 40 is a predetermined time T2 (> T1), the levels of the voltages Vu, Vv, Vw are the predetermined voltage V2, or the currents Ia, Ib, Ic.
  • T2 a predetermined time
  • the switches 80 to 82 and 90 to 92 are turned off, and then the switches 30 to 32 are turned on. Thereafter, the switches 60 to 62 are turned off.
  • a condition to be satisfied when the control circuit 45 turns off the switches 80 to 82 and the like is defined as a condition B. Further, a series of control for the switch of the control circuit 45 when the condition B is satisfied is executed in a sufficiently short time.
  • Such a starter 13 operates in the same manner as the starter 12 shown in FIG. Specifically, when a start signal is input, the motor 15 is reactor-started. When the condition A is satisfied, the motor 15 is started with a condor. Thereafter, when the condition B is satisfied, the motor 15 is driven with the power supply voltage.
  • the starters 10 to 13 that are one embodiment of the present invention have been described above.
  • the starters 10 to 13 start the condorfa after starting the reactor of the motor 15. After that, the starters 10 to 13 drive the motor 15 with the power supply voltage.
  • the voltages at the taps t0 to t2 when the motor 15 is started by the reactor are, for example, 50% of the power supply voltage
  • the taps t0 to t2 when the motor 15 is started by the condorfa Is set to 70% of the power supply voltage, for example.
  • the voltages of the three-phase coils L1 to L3 of the motor 15 increase in three stages, 50%, 70%, and 100% of the power supply voltage.
  • the motor current is suppressed while suppressing the starting current of the three-phase coils L1 to L3 as compared with the case of the general condorfa starting in which the voltages of the three-phase coils L1 to L3 are changed in two stages.
  • the number of revolutions of 15 can be increased gently.
  • the power supply voltages Vu, Vv, and Vw of the three-phase power supply can be suppressed from being lowered, it is not necessary to use a generator with a large capacity even when power is supplied from a generator or the like.
  • the step-down circuits 20 to 22 are the same as circuits generally used when starting a condorfa.
  • the reactor 15 of the motor 15 can be started by providing a period during which the switches 60 to 62 are turned on first. For this reason, in this embodiment, an additional component is not needed with respect to the circuit at the time of a general condor start, and the increase in cost can also be suppressed.
  • the switches 80 to 82 are turned off before the switches 30 to 32 are turned on. Therefore, when the switches 30 to 32 are turned on, the current returning from the three-phase power source to the three-phase power source through the switches 30 to 32, the taps t0 to t2, the switches 80 to 82, and the neutral point is surely cut off. can do.
  • coils 75 to 77 are connected between the switches 60 to 62 and the coils 70 to 72.
  • the magnetic circuits 46A and 46B reduce the magnetic field of the coils 75 to 77 so that the inductive reactance of the coils 75 to 77 can be ignored when the motor 15 is started by the condor. For this reason, the voltages at the taps t0 to t2 when the motor 15 is started by the condorfa are freely determined based on the positions of the taps t0 to t2. Further, the voltage at the taps t0 to t2 when the motor 15 is being reactor started can be freely determined by changing the inductance of the coils 75 to 77.
  • the starters 12 and 13 are tapped more freely than the starters 10 and 11 that adjust the voltage at the start of the reactor and the condorfa by changing only the position of the taps t0 to t2, for example.
  • the voltage from t0 to t2 can be adjusted.
  • the coil 95 is connected in parallel to the coil 75 so that the magnetic field of the coil 75 is reduced when the switch 90 is turned on.
  • the magnetic circuit having such a configuration the magnetic field of the coil 75 can be reliably reduced.
  • a relay switch (not shown) that can short-circuit both ends of the coil 75 may be provided.
  • a load is applied to the contact point of the relay switch. Since the coil 90 is connected in series to the switch 90 of this embodiment, the above-described problem does not occur.
  • the magnetic circuit 46B is provided with a coil 110 that is magnetically coupled to the coil 75 and reduces the magnetic field of the coil 75 when the switch 100 is turned on.
  • the magnetic circuit having such a configuration the magnetic field of the coil 75 can be reliably reduced.
  • the switch 100 does not flow a large current generated when both ends of the coil 75 as described above are short-circuited. For this reason, it becomes possible to prevent the contact of the switch 100 from deteriorating.
  • the switch 100 is electrically insulated from the step-down circuit 25. For this reason, for example, even if the voltage Vu or the like is a high voltage, the switch 100 can be turned on / off at a voltage sufficiently lower than the voltage Vu.
  • the starters 10 and 11 are provided with a timer 40 that measures the time from when the switches 60 to 62 are turned on.
  • the timer 40 measures the time T1
  • the control circuits 41 and 45 turn on the switches 60 to 62 and 80 to 82 to start the motor 15 with a condor. Therefore, the starters 10 and 11 can reliably accelerate the motor 15 when a predetermined time elapses after the switches 60 to 62 are turned on.
  • the starter 11 is provided with a rotation speed detector 44 for detecting the rotation speed of the motor 15. Then, when the rotational speed detected by the rotational speed detector 44 becomes N1, for example, the control circuit 45 turns on the switches 60 to 62 and 80 to 82 to start the motor 15 with a condor. For this reason, the starter 11 can reliably accelerate the motor 15 when the motor 15 reaches a desired rotational speed.
  • the starter 11 is provided with a current detector 43 that detects the value of the current flowing through the three-phase coils L1 to L3. Then, when the current detected by the current detector 43 becomes, for example, I1, the control circuit 45 turns on the switches 60 to 62 and 80 to 82 to start the motor 15 with a condor. Therefore, the starter 11 can reliably accelerate the motor 15 when the current value flowing through the three-phase coils L1 to L3 reaches a desired value.
  • the starter 11 is provided with a voltage detector 42 for detecting the voltage levels of the voltages Vu, Vv, and Vw.
  • the control circuit 45 turns on the switches 60 to 62 and 80 to 82 to start the motor 15 with a condor. Therefore, the starter 11 can reliably accelerate the motor 15 when the voltage levels of the voltages Vu, Vv, and Vw reach desired values.
  • the starters 12 and 13 are provided with a timer 40 that measures the time from when the switches 60 to 62 are turned on.
  • the control circuits 47 and 48 turn on the switches 60 to 62 and 80 to 82, and further control the magnetic circuits 46A and 46B so that the magnetic fields of the coils 75 to 77 are reduced. Therefore, the starters 10 and 11 can reliably accelerate the motor 15 at a desired voltage when a predetermined time has elapsed after the switches 60 to 62 are turned on.
  • the starter 13 is provided with a rotation speed detector 44 for detecting the rotation speed of the motor 15. Then, the control circuit 48 turns on the switches 60 to 62 and 80 to 82 when the rotation speed detected by the rotation speed detector 44 becomes N1, for example, and further magnetically reduces the magnetic fields of the coils 75 to 77.
  • the circuit 46A is controlled. For this reason, the starter 11 can reliably accelerate the motor 15 at a desired voltage when the motor 15 reaches a desired rotational speed.
  • the starter 13 is provided with a current detector 43 for detecting the current value flowing through the three-phase coils L1 to L3. Then, when the current detected by the current detector 43 becomes I1, for example, the control circuit 48 turns on the switches 60 to 62 and 80 to 82, and further sets the magnetic circuit 46A so that the magnetic fields of the coils 75 to 77 are reduced. Control. Therefore, the starter 13 can reliably accelerate the motor 15 with a desired voltage when the current value flowing through the three-phase coils L1 to L3 reaches a desired value.
  • the starter 13 is provided with a voltage detector 42 for detecting the voltage levels of the voltages Vu, Vv, and Vw. Then, when the voltage detected by the voltage detector 42 becomes, for example, the voltage V1, the control circuit 48 turns on the switches 60 to 62 and 80 to 82, and further reduces the magnetic field of the coils 75 to 77. 46A is controlled. For this reason, the starter 11 can reliably accelerate the motor 15 at the desired voltage when the voltage levels of the voltages Vu, Vv, and Vw reach desired values.
  • Example 2 is for making an understanding of this invention easy, and is not for limiting and interpreting this invention.
  • the present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
  • the control circuit 41 is a sequencer, but may be configured by, for example, a microcomputer and a memory.
  • the microcomputer executes the program stored in the memory and executes the flowchart shown in FIG. As a result, even when the control circuit 41 is realized by a microcomputer or the like, the same effect as the starter 10 can be obtained.

Abstract

Disclosed is an induction motor control apparatus provided with: a step-down circuit comprising first coils having taps that are connected to three phase coils of an induction motor, first switches connected between a power supply for driving the induction motor and the first coils, and second switches connected to the first coils at the side that does not have the first switches connected; third switches connected between the power supply and the three phase coils; and a first control circuit that controls the first to third switches so as to have the first and second switches switched on after switching on the first switches, and have the power supply voltage applied to the three phase coils thereafter. The taps are installed so that the voltage at the taps when the first and second switches are switched on is higher than the tap voltage when the first switch is switched on.

Description

誘導電動機制御装置Induction motor controller
 本発明は、誘導電動機制御装置に関する。 The present invention relates to an induction motor control device.
 誘導電動機を始動する方法としては、例えば、コンドルファ始動がある(例えば、特開2001-218486号公報参照)。誘導電動機をコンドルファ始動する始動器は、まず誘導電動機に対し、誘導電動機の電源電圧より低い電圧を印加した後に電源電圧を印加する。このように、誘導電動機に印加する電圧を変化させることで、誘導電動機に直接電源電圧を印加して誘導電動機を始動する場合と比較すると、例えば始動電流を抑制することが可能となる。 As a method of starting the induction motor, for example, there is a condorfa start (see, for example, JP-A-2001-218486). A starter that starts the induction motor with a condor system first applies a power supply voltage to the induction motor after applying a voltage lower than the power supply voltage of the induction motor. In this way, by changing the voltage applied to the induction motor, for example, the starting current can be suppressed as compared with the case where the induction motor is started by directly applying the power supply voltage to the induction motor.
<関連出願の相互参照>
 この出願は、2009年11月19日に出願した日本特許出願2009-264172号に基づいて優先権を主張し、その内容を本願に援用する。
<Cross-reference of related applications>
This application claims priority based on Japanese Patent Application No. 2009-264172 filed on November 19, 2009, the contents of which are incorporated herein by reference.
 ところで、誘導電動機をコンドルファ始動する際に最初に誘導電動機に印加される初期電圧のレベルは、一般的に始動器の内部で予め設定される。例えば、初期電圧のレベルを低く設定した場合、始動電流は小さくできる。しかしながら、この場合、初期電圧と電源電圧との差が大きくなるため、電源電圧が印加された際に誘導電動機の回転数は急激に変化する。 
 一方、初期電圧のレベルを高く設定した場合、初期電圧と電源電圧との差は小さくなるため、電源電圧が印加された際の誘導電動機の回転数の変化は緩やかになる。しかしながら、この場合、初期電圧のレベルが高いため始動電流は大きくなる。
Incidentally, the level of the initial voltage first applied to the induction motor when the induction motor is started with a condorfa is generally preset in the starter. For example, when the initial voltage level is set low, the starting current can be reduced. However, in this case, since the difference between the initial voltage and the power supply voltage becomes large, when the power supply voltage is applied, the rotation speed of the induction motor changes abruptly.
On the other hand, when the initial voltage level is set high, the difference between the initial voltage and the power supply voltage becomes small, so that the change in the rotation speed of the induction motor when the power supply voltage is applied becomes moderate. However, in this case, the starting current increases because the level of the initial voltage is high.
 本発明は上記課題を鑑みてなされたものであり、始動電流を抑制しつつ、誘導電動機の回転数を緩やかに変化させることができる誘導電動機制御装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an induction motor control device that can gently change the number of revolutions of the induction motor while suppressing the starting current.
 上記目的を達成するため、本発明の一つの側面に係る誘導電動機制御装置は、誘導電動機の三相コイルに接続されるタップを有する第1コイルと、前記誘導電動機を駆動するための電源と前記第1コイルとの間に接続される第1スイッチと、前記第1コイルの前記第1スイッチが接続されていない側に接続される第2スイッチと、を含み、前記第1及び第2スイッチが制御されることにより前記電源の電源電圧を降圧した電圧を前記タップに発生させる降圧回路と、前記電源と前記三相コイルとの間に接続される第3スイッチと、前記第1スイッチをオンした後に前記第1及び第2スイッチをオンとし、その後、前記三相コイルに前記電源電圧が印加されるよう、前記第1~3スイッチを制御する第1制御回路と、を備え、前記タップは、前記第1スイッチ及び第2スイッチがオンされる際の前記タップの電圧が、前記第1スイッチがオンされる際の前記タップの電圧より高くなるように設けられている。 In order to achieve the above object, an induction motor control apparatus according to one aspect of the present invention includes a first coil having a tap connected to a three-phase coil of an induction motor, a power source for driving the induction motor, and the A first switch connected between the first coil and a second switch connected to a side of the first coil to which the first switch is not connected, wherein the first and second switches are The step-down circuit that generates a voltage obtained by stepping down the power source voltage of the power source by being controlled, the third switch connected between the power source and the three-phase coil, and the first switch turned on A first control circuit that turns on the first and second switches later, and then controls the first to third switches so that the power supply voltage is applied to the three-phase coil, and the tap includes: Voltage of the tap when the serial first switch and the second switch is turned on, the first switch is provided so as to be higher than the voltage of the tap when it is turned on.
本発明の一実施形態ある始動器10の構成を示す図である。It is a figure which shows the structure of the starter 10 which is one Embodiment of this invention. コイル70の一例を示す図である。3 is a diagram illustrating an example of a coil 70. FIG. 始動器10の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the starter 10; 本発明の一実施形態である始動器11の構成を示す図である。It is a figure which shows the structure of the starter 11 which is one Embodiment of this invention. 本発明の一実施形態である始動器12の構成を示す図である。It is a figure which shows the structure of the starter 12 which is one Embodiment of this invention. 磁気回路46Aの構成を示す図である。It is a figure which shows the structure of 46 A of magnetic circuits. スイッチ90及びコイル95の詳細を説明するための図である。It is a figure for demonstrating the detail of the switch 90 and the coil 95. FIG. 磁気回路46Bの構成を示す図である。It is a figure which shows the structure of the magnetic circuit 46B. スイッチ100及びコイル110の詳細を説明するための図である。3 is a diagram for explaining details of a switch 100 and a coil 110. FIG. 始動器12の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the starter 12; 本発明の一実施形態である始動器13の構成を示す図である。It is a figure which shows the structure of the starter 13 which is one Embodiment of this invention.
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。 At least the following matters will become clear from the description of this specification and the accompanying drawings.
==始動器の第1の実施形態==
 まず、本発明の一実施形態である始動器の構成について説明する。図1は、始動器の第1の実施形態である始動器10の構成を示す図である。始動器10(誘導電動機制御装置)は、三相電源の電圧が入力され、かご形の誘導電動機(以下、単にモータとする)15を始動するための機器であり、降圧回路20~22、スイッチ30~32、タイマー40、及び制御回路41を含んで構成される。
== First embodiment of the starter ==
First, the structure of the starter which is one Embodiment of this invention is demonstrated. FIG. 1 is a diagram illustrating a configuration of a starter 10 that is the first embodiment of the starter. The starter 10 (induction motor control device) is a device for receiving a voltage of a three-phase power supply and starting a squirrel-cage induction motor (hereinafter simply referred to as a motor) 15, and includes a step-down circuit 20-22, a switch 30 to 32, a timer 40, and a control circuit 41.
 モータ15は、三相コイルL1~L3がデルタ結線された三相モータである。なお、本実施形態では、三相コイルL1と三相コイルL3とが接続されるノードをノードA、三相コイルL2と三相コイルL1とが接続されるノードをノードB、三相コイルL3と三相コイルL2とが接続されるノードをノードCとする。 The motor 15 is a three-phase motor in which three-phase coils L1 to L3 are delta-connected. In this embodiment, the node to which the three-phase coil L1 and the three-phase coil L3 are connected is the node A, the node to which the three-phase coil L2 and the three-phase coil L1 are connected is the node B, and the three-phase coil L3 is A node to which the three-phase coil L2 is connected is referred to as a node C.
 降圧回路20は、三相電源のU相の電圧Vuを降圧した電圧をタップt0に生成する回路であり、スイッチ60、コイル70、及びスイッチ80を含んで構成される。 The step-down circuit 20 is a circuit that generates a voltage obtained by stepping down the U-phase voltage Vu of the three-phase power source at the tap t0, and includes a switch 60, a coil 70, and a switch 80.
 スイッチ60は、制御回路41の制御に基づいてオン、オフするリレースイッチであり、電圧Vuが一端に印加される。 The switch 60 is a relay switch that is turned on / off based on the control of the control circuit 41, and a voltage Vu is applied to one end.
 コイル70は、ノードAに接続されるタップt0を有し、スイッチ60とスイッチ80との間に接続される。なお、コイル70は、例えば図2に示すような単巻変圧器の鉄心200に巻かれている。 The coil 70 has a tap t0 connected to the node A, and is connected between the switch 60 and the switch 80. The coil 70 is wound around an iron core 200 of a single-winding transformer as shown in FIG.
 スイッチ80は、スイッチ60と同様に、制御回路41の制御に基づいてオン、オフするリレースイッチである。スイッチ80の一端はコイル70に接続され、他端はスイッチ81,82に接続される。このため、詳細は後述するが、スイッチ80~82がオンとなると、コイル70~72はスター結線され、スイッチ80~82の夫々が接続されるノードは、いわゆる中性点となる。 The switch 80 is a relay switch that is turned on and off based on the control of the control circuit 41, similarly to the switch 60. One end of the switch 80 is connected to the coil 70, and the other end is connected to the switches 81 and 82. Therefore, although the details will be described later, when the switches 80 to 82 are turned on, the coils 70 to 72 are star-connected, and the node to which each of the switches 80 to 82 is connected becomes a so-called neutral point.
 降圧回路21は、三相電源のV相の電圧Vvを降圧した電圧をタップt1に生成する回路であり、スイッチ61、コイル71、及びスイッチ81を含んで構成される。降圧回路22は、三相電源のW相の電圧Vwを降圧した電圧をタップt2に生成する回路であり、スイッチ62、コイル72、及びスイッチ82を含んで構成される。降圧回路21では、タップt1がノードBに接続される以外、降圧回路20と同様の構成である。また、降圧回路22では、タップt2がノードCに接続される以外、降圧回路20と同様の構成である。このため、降圧回路21,22の詳細な説明は割愛する。 The step-down circuit 21 is a circuit that generates a voltage obtained by stepping down the V-phase voltage Vv of the three-phase power source at the tap t1, and includes a switch 61, a coil 71, and a switch 81. The step-down circuit 22 is a circuit that generates a voltage obtained by stepping down the W-phase voltage Vw of the three-phase power supply at the tap t2, and includes a switch 62, a coil 72, and a switch 82. The step-down circuit 21 has the same configuration as the step-down circuit 20 except that the tap t1 is connected to the node B. The step-down circuit 22 has the same configuration as the step-down circuit 20 except that the tap t2 is connected to the node C. Therefore, a detailed description of the step-down circuits 21 and 22 is omitted.
 スイッチ30は、電圧VuをノードAに印加するためのリレースイッチであり、制御回路41によりオン、オフが制御される。スイッチ31は、電圧VvをノードBに印加するためのリレースイッチであり、制御回路41によりオン、オフが制御される。スイッチ32は、電圧VwをノードCに印加するためのリレースイッチであり、制御回路41によりオン、オフが制御される。 The switch 30 is a relay switch for applying the voltage Vu to the node A, and is controlled to be turned on and off by the control circuit 41. The switch 31 is a relay switch for applying the voltage Vv to the node B, and is turned on and off by the control circuit 41. The switch 32 is a relay switch for applying the voltage Vw to the node C, and is turned on and off by the control circuit 41.
 タイマー40は、スイッチ60~62がオンされてからの時間を計時する。 The timer 40 measures the time from when the switches 60 to 62 are turned on.
 制御回路41(第1制御回路)は、モータ15を始動させるための始動信号が入力されると、所定のタイミングで、スイッチ30~32,60~62,80~82を制御するシーケンサである。具体的には、制御回路41は、始動信号が入力されるとスイッチ60~62(第1スイッチ)をオンする。その後、制御回路41は、タイマー40の計時する時間が所定の時間T1となると、スイッチ60~62とともにスイッチ80~82(第2スイッチ)をオンする。そして、制御回路41は、タイマー40の計時する時間が所定の時間T2(>T1)となると、スイッチ80~82をオフした後スイッチ30~32(第3スイッチ)をオンし、さらにその後スイッチ60~62をオフする。なお、時間T2となった際の制御回路41のスイッチに対する一連の制御は、十分短い時間で実行される。また始動信号は、例えば、始動器10の操作部(不図示)に設けられ、モータ15を始動するための始動スイッチ(不図示)を利用者がオンすることにより発生する。なお、コイル70~72は第1コイルに相当する。 The control circuit 41 (first control circuit) is a sequencer that controls the switches 30 to 32, 60 to 62, and 80 to 82 at a predetermined timing when a start signal for starting the motor 15 is input. Specifically, the control circuit 41 turns on the switches 60 to 62 (first switch) when a start signal is input. Thereafter, when the time counted by the timer 40 reaches a predetermined time T1, the control circuit 41 turns on the switches 80 to 82 (second switch) together with the switches 60 to 62. When the time measured by the timer 40 reaches a predetermined time T2 (> T1), the control circuit 41 turns off the switches 80 to 82 and then turns on the switches 30 to 32 (third switch), and then switches 60 -62 is turned off. Note that a series of control for the switch of the control circuit 41 at time T2 is executed in a sufficiently short time. The start signal is provided, for example, in an operation unit (not shown) of the starter 10 and is generated when a user turns on a start switch (not shown) for starting the motor 15. The coils 70 to 72 correspond to the first coil.
==始動器10の動作==
 ここで、始動器10の動作について、図3に示すフローチャートを参照しつつ説明する。なお、図3のフローチャートにおける各処理の主体は制御回路41である。また、始動スイッチ(不図示)がオンされる前の初期状態では、始動器10の全てのスイッチはオフしていることとする。
== Operation of Starter 10 ==
Here, operation | movement of the starter 10 is demonstrated, referring the flowchart shown in FIG. The main body of each process in the flowchart of FIG. In the initial state before the start switch (not shown) is turned on, all the switches of the starter 10 are turned off.
 まず、利用者が始動スイッチ(不図示)をオンすると、始動信号は制御回路41に入力される(S100)。この結果、制御回路41は、スイッチ60~62をオンする(S101)。ところで、スイッチ60とコイル70とが接続されるノードから、タップt0までにはコイル70の巻線の一部が存在する。したがって、スイッチ60がオンとなると、電圧Vuに応じた電流は、前述のコイル70の巻線の一部を介してノードAに供給されることとなる。なお、スイッチ61,62がオンとなる際にノードB,Cに供給される電流も同様である。このため、処理101でスイッチ60~62がオンされると、いわゆる、モータ15のリアクトル始動が実行される。 First, when a user turns on a start switch (not shown), a start signal is input to the control circuit 41 (S100). As a result, the control circuit 41 turns on the switches 60 to 62 (S101). By the way, a part of the winding of the coil 70 exists from the node where the switch 60 and the coil 70 are connected to the tap t0. Therefore, when the switch 60 is turned on, a current corresponding to the voltage Vu is supplied to the node A through a part of the winding of the coil 70 described above. The same applies to the current supplied to the nodes B and C when the switches 61 and 62 are turned on. For this reason, when the switches 60 to 62 are turned on in the process 101, so-called reactor start of the motor 15 is executed.
 また、前述のように、スイッチ60~62がオンとなると、タイマー40は時間の計時を開始する。そして、タイマー40が計時する時間が時間T1となると(S102:YES)、制御回路41は、スイッチ60~62とともにスイッチ80~82をオンする(S103)。スイッチ60~62,80~82がオンとなると、コイル70~72はスター結線される。このため、スイッチ60~62,80~82がオンの状態では、降圧回路20~22の夫々は、モータ15をコンドルファ始動する回路として動作する。 As described above, when the switches 60 to 62 are turned on, the timer 40 starts measuring time. When the time measured by the timer 40 reaches time T1 (S102: YES), the control circuit 41 turns on the switches 80 to 82 together with the switches 60 to 62 (S103). When the switches 60 to 62 and 80 to 82 are turned on, the coils 70 to 72 are star-connected. Therefore, when the switches 60 to 62 and 80 to 82 are on, each of the step-down circuits 20 to 22 operates as a circuit for starting the motor 15 with a condor.
 ここで、本実施形態では、モータ15がリアクトル始動されている際(処理:S101)のタップt0~t2の電圧が電源電圧の例えば50%となり、モータ15がコンドルファ始動されている際(処理:S103)のタップt0~t2の電圧が電源電圧の例えば70%となるよう、タップt0~t2の位置が定められている。このため、本実施形態では、モータ15がリアクトル始動された後にコンドルファ始動されると、モータ15の三相コイルL1~L3の電圧が増加し、モータ15の回転速度は上昇する。 Here, in the present embodiment, when the motor 15 is reactor-started (processing: S101), the voltage at the taps t0 to t2 is, for example, 50% of the power supply voltage, and when the motor 15 is starting the condorfa (processing) : The positions of the taps t0 to t2 are determined so that the voltage of the taps t0 to t2 in S103) is, for example, 70% of the power supply voltage. For this reason, in the present embodiment, when the condor is started after the reactor 15 is started, the voltages of the three-phase coils L1 to L3 of the motor 15 are increased, and the rotational speed of the motor 15 is increased.
 そして、タイマー40が計時する時間が時間T2となると(S104:YES)、制御回路41は、順次、スイッチ80~82をオフし、スイッチ30~32をオンし、スイッチ60~62をオフする(S105)。この結果、ノードA,B,Cの夫々には、電圧Vu,Vv,Vwが印加され、モータ15は電源電圧で駆動される。 When the time counted by the timer 40 reaches time T2 (S104: YES), the control circuit 41 sequentially turns off the switches 80 to 82, turns on the switches 30 to 32, and turns off the switches 60 to 62 ( S105). As a result, the voltages Vu, Vv, and Vw are applied to the nodes A, B, and C, respectively, and the motor 15 is driven with the power supply voltage.
 このように、始動器10を用いることにより、モータ15はリアクトル始動で始動され、コンドルファ始動で加速される。さらにモータ15は、電源電圧が印加されることで通常運転される。また、三相コイルL1~L3の電圧は、電源電圧の50%、70%、100%と順次変化するため、始動器10は、始動電流を抑制しつつ、モータ15の加速をスムーズに実行することが可能となる。 Thus, by using the starter 10, the motor 15 is started by the reactor start and accelerated by the condorfa start. Furthermore, the motor 15 is normally operated by applying a power supply voltage. Further, since the voltages of the three-phase coils L1 to L3 sequentially change to 50%, 70%, and 100% of the power supply voltage, the starter 10 smoothly executes acceleration of the motor 15 while suppressing the starting current. It becomes possible.
==始動器の第2の実施形態==
 図4は、始動器の第2の実施形態である始動器11の構成を示す図である。始動器11(誘導電動機制御装置)は、降圧回路20~22、スイッチ30~32、タイマー40、電圧検出器42、電流検出器43、回転数検出器44、及び制御回路45を含んで構成される。なお、始動器11において、図1に示した始動器10と同じ符号の付されているブロックは同じである。このため、ここでは、始動器10に対して追加されたブロックである電圧検出器42、電流検出器43、回転数検出器44と、始動器10の制御回路41から変更された制御回路45とについて説明する。
== Second embodiment of the starter ==
FIG. 4 is a diagram illustrating a configuration of a starter 11 that is the second embodiment of the starter. The starter 11 (induction motor controller) includes step-down circuits 20 to 22, switches 30 to 32, a timer 40, a voltage detector 42, a current detector 43, a rotation speed detector 44, and a control circuit 45. The In the starter 11, the same reference numerals as those of the starter 10 shown in FIG. 1 are the same. Therefore, here, the voltage detector 42, the current detector 43, and the rotation speed detector 44, which are blocks added to the starter 10, and the control circuit 45 changed from the control circuit 41 of the starter 10, Will be described.
 電圧検出器42は、電圧Vu,Vv,Vwのレベルを検出し、夫々のレベルを示す電圧信号を制御回路45に出力する。 The voltage detector 42 detects the levels of the voltages Vu, Vv, and Vw and outputs voltage signals indicating the respective levels to the control circuit 45.
 電流検出器43は、ノードA,B,Cの夫々に供給される電流Ia,Ib,Icを検出し、夫々の電流値を示す電流信号を制御回路45に出力する。 The current detector 43 detects the currents Ia, Ib, and Ic supplied to the nodes A, B, and C, and outputs current signals indicating the respective current values to the control circuit 45.
 回転数検出器44は、モータ15の回転数を検出し、回転数を示す回転数信号を制御回路45に出力する。 The rotation speed detector 44 detects the rotation speed of the motor 15 and outputs a rotation speed signal indicating the rotation speed to the control circuit 45.
 制御回路45(第1制御回路)は、モータ15を始動させるための始動信号が入力されると、所定の条件で、スイッチ30~32,60~62,80~82を制御するシーケンサである。 The control circuit 45 (first control circuit) is a sequencer that controls the switches 30 to 32, 60 to 62, and 80 to 82 under a predetermined condition when a start signal for starting the motor 15 is input.
 具体的には、制御回路45は、始動信号が入力されるとスイッチ60~62をオンする。その後、制御回路45は、タイマー40の計時する時間が所定の時間T1となるか、電圧Vu,Vv,Vwのレベルが所定の電圧V1となるか、電流Ia,Ib,Icの電流値が所定の電流値I1となるか、モータ15の回転数が所定の回転数N1となると、スイッチ60~62とともにスイッチ80~82をオンする。なお、ここでは、制御回路45が、スイッチ60~62とともにスイッチ80~82をオンする際に満たすべき条件を条件1とする。 Specifically, the control circuit 45 turns on the switches 60 to 62 when a start signal is input. Thereafter, the control circuit 45 determines whether the time measured by the timer 40 reaches a predetermined time T1, the levels of the voltages Vu, Vv, Vw become the predetermined voltage V1, or the current values of the currents Ia, Ib, Ic are predetermined. When the current value I1 or the rotational speed of the motor 15 reaches a predetermined rotational speed N1, the switches 80 to 82 are turned on together with the switches 60 to 62. Here, Condition 1 is a condition that must be satisfied when the control circuit 45 turns on the switches 80 to 82 together with the switches 60 to 62.
 そして、制御回路45は、タイマー40の計時する時間が所定の時間T2(>T1)となるか、電圧Vu,Vv,Vwのレベルが所定の電圧V2となるか、電流Ia,Ib,Icの電流値が所定の電流値I2となるか、モータ15の回転数が所定の回転数N2(>N1)となると、スイッチ80~82をオフした後スイッチ30~32をオンし、さらにその後スイッチ60~62をオフする。なお、ここでは、制御回路45が、スイッチ80~82をオフする際に満たすべき条件を条件2とする。また、条件2が満たされた際の制御回路45のスイッチに対する一連の制御は、十分短い時間で実行される。 Then, the control circuit 45 determines whether the time measured by the timer 40 is a predetermined time T2 (> T1), the levels of the voltages Vu, Vv, Vw are the predetermined voltage V2, or the currents Ia, Ib, Ic. When the current value reaches the predetermined current value I2 or the rotational speed of the motor 15 reaches the predetermined rotational speed N2 (> N1), the switches 30 to 32 are turned on after the switches 80 to 82 are turned off, and then the switch 60 is turned on. -62 is turned off. Here, Condition 2 is a condition that should be satisfied when the control circuit 45 turns off the switches 80 to 82. Further, a series of control for the switch of the control circuit 45 when the condition 2 is satisfied is executed in a sufficiently short time.
 このような始動器11は、図1に示した始動器10と同様に動作する。具体的には、始動信号が入力されると、モータ15はリアクトル始動される。そして、条件1が満たされると、モータ15はコンドルファ始動される。その後、条件2が満たされると、モータ15は電源電圧で駆動される。 Such a starter 11 operates in the same manner as the starter 10 shown in FIG. Specifically, when a start signal is input, the motor 15 is reactor-started. When the condition 1 is satisfied, the motor 15 is started by a condor. Thereafter, when the condition 2 is satisfied, the motor 15 is driven with the power supply voltage.
==始動器の第3の実施形態==
 図5は、始動器の第3の実施形態である始動器12の構成を示す図である。始動器12(誘導電動機制御装置)は、降圧回路25~27、スイッチ30~32、タイマー40、磁気回路46、及び制御回路47を含んで構成される。なお、始動器12において、図1に示した始動器10と同じ符号の付されているブロックは同じである。このため、ここでは、降圧回路25~27、磁気回路46A、及び制御回路47について説明する。
== Third embodiment of starter ==
FIG. 5 is a diagram showing a configuration of a starter 12 which is the third embodiment of the starter. The starter 12 (induction motor controller) includes step-down circuits 25 to 27, switches 30 to 32, a timer 40, a magnetic circuit 46, and a control circuit 47. In the starter 12, the same reference numerals as those of the starter 10 shown in FIG. Therefore, here, the step-down circuits 25 to 27, the magnetic circuit 46A, and the control circuit 47 will be described.
 降圧回路25は、電圧Vuを降圧した電圧をタップt0に生成する回路であり、スイッチ60、コイル70,75、及びスイッチ80を含んで構成される。降圧回路25では、前述したスイッチ60とコイル70との間にコイル75が接続されている。コイル75は、スイッチ60からタップt0までの誘導性リアクタンスを増加させるための素子である。 The step-down circuit 25 is a circuit that generates a voltage obtained by stepping down the voltage Vu at the tap t0, and includes a switch 60, coils 70 and 75, and a switch 80. In the step-down circuit 25, a coil 75 is connected between the switch 60 and the coil 70 described above. The coil 75 is an element for increasing inductive reactance from the switch 60 to the tap t0.
 降圧回路26は、電圧Vvを降圧した電圧をタップt1に生成する回路であり、スイッチ61、コイル71,76、及びスイッチ81を含んで構成される。また、降圧回路27は、電圧Vwを降圧した電圧をタップt2に生成する回路であり、スイッチ62、コイル72,77、及びスイッチ82を含んで構成される。降圧回路26,27は降圧回路25と同様の構成であるため、ここでは詳細な説明は割愛する。なお、コイル75~77は、第2コイルに相当する。 The step-down circuit 26 is a circuit that generates a voltage obtained by stepping down the voltage Vv at the tap t1, and includes a switch 61, coils 71 and 76, and a switch 81. The step-down circuit 27 is a circuit that generates a voltage obtained by stepping down the voltage Vw at the tap t2, and includes a switch 62, coils 72 and 77, and a switch 82. Since the step-down circuits 26 and 27 have the same configuration as that of the step-down circuit 25, a detailed description is omitted here. The coils 75 to 77 correspond to the second coil.
 磁気回路46は、制御回路47からの制御に基づいて、コイル75~77の磁場を減少させる回路である。 The magnetic circuit 46 is a circuit that reduces the magnetic fields of the coils 75 to 77 based on the control from the control circuit 47.
==磁気回路の第1の実施形態==
 磁気回路46の第1の実施形態である磁気回路46Aは、図6に示すようにスイッチ90~92(第4スイッチ)、コイル95~97(第3コイル)を含んで構成される。ここで、例えば、スイッチ90、コイル95の詳細について、図7を参照しつつ説明する。本実施形態では、コイル75,95は鉄心210に巻かれ、コイル70は鉄心220に巻かれている。また、コイル75は、スイッチ60がオンして電流が供給されると、紙面下方向に磁場を発生するよう鉄心210に巻かれていることとする。
== First Embodiment of Magnetic Circuit ==
A magnetic circuit 46A, which is a first embodiment of the magnetic circuit 46, includes switches 90 to 92 (fourth switch) and coils 95 to 97 (third coil) as shown in FIG. Here, for example, details of the switch 90 and the coil 95 will be described with reference to FIG. In the present embodiment, the coils 75 and 95 are wound around the iron core 210, and the coil 70 is wound around the iron core 220. Further, it is assumed that the coil 75 is wound around the iron core 210 so as to generate a magnetic field in a downward direction on the paper surface when the switch 60 is turned on and a current is supplied.
 スイッチ90は、制御回路47の制御に基づいてオン、オフするリレースイッチであり、コイル75とコイル95との間に接続される。 The switch 90 is a relay switch that is turned on / off based on the control of the control circuit 47, and is connected between the coil 75 and the coil 95.
 コイル95は、一端がスイッチ60及びコイル75の一端に接続され、他端がスイッチ90を介してコイル70及びコイル75の他端に接続される。そして、コイル95は、スイッチ60及びスイッチ90がオンして電流が供給されると、紙面上方向に磁場を発生するよう鉄心210に巻かれていることとする。つまり、スイッチ60がオンすると、コイル75は紙面下方向に磁場を発生するが、さらにスイッチ90がオンすると、コイル95は紙面上方向に磁場を発生するため、コイル75が発生する磁場は減少することとなる。なお、本実施形態では、スイッチ60,90がオンした際に、鉄心210の磁場がゼロとなるようコイル95の巻数は定められていることとする。このため、スイッチ60,90がオンすると、コイル75の誘導性リアクタンスは無視できる程小さくなる。 The coil 95 has one end connected to one end of the switch 60 and the coil 75, and the other end connected to the other end of the coil 70 and the coil 75 via the switch 90. The coil 95 is wound around the iron core 210 so as to generate a magnetic field in the upward direction on the paper surface when the switch 60 and the switch 90 are turned on and a current is supplied. That is, when the switch 60 is turned on, the coil 75 generates a magnetic field in the downward direction on the paper surface. However, when the switch 90 is further turned on, the coil 95 generates a magnetic field in the upward direction on the paper surface, and thus the magnetic field generated by the coil 75 decreases. It will be. In the present embodiment, the number of turns of the coil 95 is determined so that the magnetic field of the iron core 210 becomes zero when the switches 60 and 90 are turned on. For this reason, when the switches 60 and 90 are turned on, the inductive reactance of the coil 75 becomes negligibly small.
 スイッチ91及びコイル96は、スイッチ90及びコイル95と同様の構成であり、コイル96は、コイル76の磁場を打ち消すよう同じ鉄心(不図示)に巻かれている。このため、スイッチ61,91がオンすると、コイル76の誘導性リアクタンスは無視できるようになる。 The switch 91 and the coil 96 have the same configuration as the switch 90 and the coil 95, and the coil 96 is wound around the same iron core (not shown) so as to cancel the magnetic field of the coil 76. For this reason, when the switches 61 and 91 are turned on, the inductive reactance of the coil 76 can be ignored.
 スイッチ92及びコイル97は、スイッチ90及びコイル95と同様の構成であり、コイル97は、コイル77の磁場を打ち消すよう同じ鉄心(不図示)に巻かれている。このため、スイッチ62,92がオンすると、コイル77の誘導性リアクタンスは無視できるようになる。 The switch 92 and the coil 97 have the same configuration as the switch 90 and the coil 95, and the coil 97 is wound around the same iron core (not shown) so as to cancel the magnetic field of the coil 77. For this reason, when the switches 62 and 92 are turned on, the inductive reactance of the coil 77 can be ignored.
==磁気回路の第2の実施形態==
 磁気回路46の第2の実施形態である磁気回路46Bは、図8に示すようにスイッチ100~102(第4スイッチ)、コイル110~112(第3コイル)を含んで構成される。ここで、例えば、スイッチ100、コイル110の詳細について、図9を参照しつつ説明する。
== Second Embodiment of Magnetic Circuit ==
A magnetic circuit 46B, which is a second embodiment of the magnetic circuit 46, includes switches 100 to 102 (fourth switch) and coils 110 to 112 (third coil) as shown in FIG. Here, for example, details of the switch 100 and the coil 110 will be described with reference to FIG.
 なお、本実施形態では、コイル75,110は鉄心250に巻かれ、コイル70は鉄心260に巻かれている。 In this embodiment, the coils 75 and 110 are wound around the iron core 250, and the coil 70 is wound around the iron core 260.
 スイッチ100は、制御回路47の制御に基づいてオン、オフするリレースイッチであり、コイル110の両端間に接続される。 The switch 100 is a relay switch that is turned on / off based on the control of the control circuit 47, and is connected between both ends of the coil 110.
 コイル110は、コイル75と同一の鉄心250に巻かれている。このため、スイッチ100がオンしている際に、鉄心250に磁場が発生すると、コイル110には、鉄心250の磁場を減少させるような電流が流れる。一方、スイッチ100がオフしている際には、コイル110には電流は流れないため、鉄心250の磁場はコイル110から影響を受けることは無い。本実施形態では、スイッチ60,100がオンした際に、鉄心250の磁場がゼロとなるようコイル110の巻数は定められていることとする。このため、スイッチ60,110がオンすると、コイル75の誘導性リアクタンスは無視できる程小さくなる。 The coil 110 is wound around the same iron core 250 as the coil 75. Therefore, when a magnetic field is generated in the iron core 250 while the switch 100 is on, a current that decreases the magnetic field of the iron core 250 flows through the coil 110. On the other hand, when the switch 100 is off, no current flows through the coil 110, so the magnetic field of the iron core 250 is not affected by the coil 110. In the present embodiment, it is assumed that the number of turns of the coil 110 is determined so that the magnetic field of the iron core 250 becomes zero when the switches 60 and 100 are turned on. For this reason, when the switches 60 and 110 are turned on, the inductive reactance of the coil 75 becomes negligibly small.
 スイッチ101及びコイル111は、スイッチ100及びコイル110と同様の構成であり、コイル111は、コイル76の磁場を打ち消すよう同じ鉄心(不図示)に巻かれている。このため、スイッチ61,101がオンすると、コイル76の誘導性リアクタンスは無視できるようになる。 The switch 101 and the coil 111 have the same configuration as the switch 100 and the coil 110, and the coil 111 is wound around the same iron core (not shown) so as to cancel the magnetic field of the coil 76. For this reason, when the switches 61 and 101 are turned on, the inductive reactance of the coil 76 can be ignored.
 スイッチ102及びコイル112は、スイッチ100及びコイル110と同様の構成であり、コイル112は、コイル77の磁場を打ち消すよう同じ鉄心(不図示)に巻かれている。このため、スイッチ62,102がオンすると、コイル77の誘導性リアクタンスは無視できるようになる。 The switch 102 and the coil 112 have the same configuration as the switch 100 and the coil 110, and the coil 112 is wound around the same iron core (not shown) so as to cancel the magnetic field of the coil 77. For this reason, when the switches 62 and 102 are turned on, the inductive reactance of the coil 77 can be ignored.
==制御回路47の詳細==
 図5の制御回路47(第1及び第2制御回路)は、モータ15を始動させるための始動信号が入力されると、所定のタイミングで、スイッチ30~32,60~62,80~82,90~92(または100~102)を制御するシーケンサである。具体的には、制御回路47は、始動信号が入力されるとスイッチ60~62をオンする。その後、制御回路41は、タイマー40の計時する時間が所定の時間T1となると、スイッチ60~62とともにスイッチ80~82,90~92(または100~102)をオンする。そして、制御回路47は、タイマー40の計時する時間が所定の時間T2(>T1)となると、スイッチ80~82,90~92(または100~102)をオフした後スイッチ30~32をオンし、さらにその後スイッチ60~62をオフする。なお、時間T2となった際の制御回路47のスイッチに対する一連の制御は、十分短い時間で実行される。
== Details of Control Circuit 47 ==
When the start signal for starting the motor 15 is input, the control circuit 47 (first and second control circuits) in FIG. 5 switches the switches 30 to 32, 60 to 62, 80 to 82, at a predetermined timing. This is a sequencer for controlling 90 to 92 (or 100 to 102). Specifically, the control circuit 47 turns on the switches 60 to 62 when a start signal is input. Thereafter, when the time measured by the timer 40 reaches a predetermined time T1, the control circuit 41 turns on the switches 80 to 82 and 90 to 92 (or 100 to 102) together with the switches 60 to 62. When the time counted by the timer 40 reaches a predetermined time T2 (> T1), the control circuit 47 turns off the switches 80 to 82 and 90 to 92 (or 100 to 102) and then turns on the switches 30 to 32. Thereafter, the switches 60 to 62 are turned off. Note that a series of control for the switch of the control circuit 47 at time T2 is executed in a sufficiently short time.
==始動器12の動作==
 ここで、始動器12の動作について、図10に示すフローチャートを参照しつつ説明する。なお、図10のフローチャートにおける各処理の主体は制御回路47である。また、始動スイッチ(不図示)がオンされる前の初期状態では、始動器12の全てのスイッチはオフしていることとする。さらに、ここでは、磁気回路として、磁気回路46Aが用いられていることとする。
== Operation of Starter 12 ==
Here, the operation of the starter 12 will be described with reference to the flowchart shown in FIG. The main body of each process in the flowchart of FIG. In the initial state before the start switch (not shown) is turned on, all the switches of the starter 12 are turned off. Furthermore, it is assumed here that a magnetic circuit 46A is used as the magnetic circuit.
 まず、利用者が始動スイッチ(不図示)をオンすると、始動信号は制御回路47に入力される(S200)。この結果、制御回路47は、スイッチ60~62をオンする(S201)。スイッチ60がオンとなると、電圧Vuに応じた電流は、コイル75とコイル70の巻線の一部とを介してノードAに供給されることとなる。なお、スイッチ61,62がオンとなる際にノードB,Cに供給される電流も同様である。このため、処理201でスイッチ60~62がオンされると、いわゆる、モータ15のリアクトル始動が実行される。 First, when a user turns on a start switch (not shown), a start signal is input to the control circuit 47 (S200). As a result, the control circuit 47 turns on the switches 60 to 62 (S201). When the switch 60 is turned on, a current corresponding to the voltage Vu is supplied to the node A via the coil 75 and a part of the winding of the coil 70. The same applies to the current supplied to the nodes B and C when the switches 61 and 62 are turned on. Therefore, when the switches 60 to 62 are turned on in the process 201, so-called reactor start of the motor 15 is executed.
 また、スイッチ60~62がオンとなると、タイマー40は時間の計時を開始する。そして、タイマー40が計時する時間が時間T1となると(S202:YES)、制御回路47は、スイッチ60~62とともにスイッチ80~82,90~92をオンする(S203)。スイッチ60~62,80~82がオンとなると、コイル70~72,75~77はスター結線される。しかしながら、スイッチ90~92がオンの状態では、前述のようにコイル75~77の誘導性リアクタンスは十分小さくなるため、コイル75~77の影響は無視できる。このため、例えば降圧回路25では、コイル75とコイル70とが接続されたノードから、タップt0までに存在するコイル70の巻線の一部と、残りのコイル70の巻線との比に応じた電圧がタップt0で生成される。また、降圧回路26,27も降圧回路25と同様に動作し、モータ15はコンドルファ始動される。 In addition, when the switches 60 to 62 are turned on, the timer 40 starts measuring time. When the time measured by the timer 40 reaches time T1 (S202: YES), the control circuit 47 turns on the switches 80 to 82 and 90 to 92 together with the switches 60 to 62 (S203). When the switches 60 to 62 and 80 to 82 are turned on, the coils 70 to 72 and 75 to 77 are star-connected. However, when the switches 90 to 92 are turned on, the inductive reactance of the coils 75 to 77 is sufficiently small as described above, so that the influence of the coils 75 to 77 can be ignored. Therefore, for example, in the step-down circuit 25, depending on the ratio of a part of the winding of the coil 70 existing from the node where the coil 75 and the coil 70 are connected to the tap t0 to the winding of the remaining coil 70. Voltage is generated at tap t0. The step-down circuits 26 and 27 operate in the same manner as the step-down circuit 25, and the motor 15 is started by a condor.
 ここで、本実施形態では、モータ15がコンドルファ始動されている際(処理:S203)のタップt0~t2の電圧が電源電圧の例えば70%となるよう、タップt0~t2の位置が定められている。さらに、モータ15がリアクトル始動されている際(処理:S201)のタップt0~t2の電圧が電源電圧の例えば50%となるよう、コイル75~77のインダクタンスが定められている。このため、本実施形態では、モータ15がリアクトル始動された後にコンドルファ始動されると、モータ15の三相コイルL1~L3の電圧が増加し、モータ15の回転速度は上昇する。 Here, in the present embodiment, the positions of the taps t0 to t2 are determined so that the voltage at the taps t0 to t2 when the motor 15 is started with the condorfa (process: S203) is, for example, 70% of the power supply voltage. ing. Furthermore, the inductances of the coils 75 to 77 are determined so that the voltage at the taps t0 to t2 when the motor 15 is being reactor-started (process: S201) is, for example, 50% of the power supply voltage. For this reason, in the present embodiment, when the condor is started after the reactor 15 is started, the voltages of the three-phase coils L1 to L3 of the motor 15 are increased, and the rotational speed of the motor 15 is increased.
 そして、タイマー40が計時する時間が時間T2となると(S204:YES)、制御回路47は、順次、スイッチ80~82,90~92をオフし、スイッチ30~32をオンし、スイッチ60~62をオフする(S105)。この結果、ノードA,B,Cの夫々には、電圧Vu,Vv,Vwが印加され、モータ15は電源電圧で駆動される。 When the time counted by the timer 40 reaches time T2 (S204: YES), the control circuit 47 sequentially turns off the switches 80 to 82 and 90 to 92, turns on the switches 30 to 32, and switches 60 to 62. Is turned off (S105). As a result, the voltages Vu, Vv, and Vw are applied to the nodes A, B, and C, respectively, and the motor 15 is driven with the power supply voltage.
 このように、始動器12を用いることにより、モータ15はリアクトル始動で始動され、コンドルファ始動で加速される。さらにモータ15は、電源電圧が印加されることで通常運転される。また、三相コイルL1~L3の電圧は、電源電圧の50%、70%、100%と順次変化するため、始動器12は、始動電流を抑制しつつ、モータ15の加速をスムーズに実行することが可能となる。 Thus, by using the starter 12, the motor 15 is started by the reactor start and accelerated by the condorfa start. Furthermore, the motor 15 is normally operated by applying a power supply voltage. Further, since the voltages of the three-phase coils L1 to L3 sequentially change to 50%, 70%, and 100% of the power supply voltage, the starter 12 smoothly accelerates the motor 15 while suppressing the starting current. It becomes possible.
 なお、ここでは、磁気回路46Aが用いられていることとしたが、磁気回路46Bを用いた場合であっても始動器12は同様に動作する。 Note that although the magnetic circuit 46A is used here, the starter 12 operates in the same manner even when the magnetic circuit 46B is used.
==始動器の第4の実施形態==
 図11は、始動器の第4の実施形態である始動器13の構成を示す図である。始動器13(誘導電動機制御装置)は、降圧回路25~27、スイッチ30~32、タイマー40、電圧検出器42、電流検出器43、回転数検出器44、磁気回路46A、及び制御回路48を含んで構成される。始動器13において、始動器11,12と同じ符号の付されているブロックは同じである。このため、ここでは、制御回路48について説明する。
== Fourth embodiment of the starter ==
FIG. 11 is a diagram illustrating a configuration of a starter 13 that is the fourth embodiment of the starter. The starter 13 (induction motor controller) includes step-down circuits 25 to 27, switches 30 to 32, a timer 40, a voltage detector 42, a current detector 43, a rotation speed detector 44, a magnetic circuit 46A, and a control circuit 48. Consists of including. In the starter 13, the same reference numerals as those of the starters 11 and 12 are the same. Therefore, here, the control circuit 48 will be described.
 制御回路48(第1及び第2制御回路)は、モータ15を始動させるための始動信号が入力されると、所定の条件で、スイッチ30~32,60~62,80~82,90~92を制御するシーケンサである。 When a start signal for starting the motor 15 is input, the control circuit 48 (first and second control circuits) switches 30 to 32, 60 to 62, 80 to 82, 90 to 92 under predetermined conditions. It is a sequencer that controls.
 具体的には、制御回路48は、始動信号が入力されるとスイッチ60~62をオンする。その後、制御回路48は、タイマー40の計時する時間が所定の時間T1となるか、電圧Vu,Vv,Vwのレベルが所定の電圧V1となるか、電流Ia,Ib,Icの電流値が所定の電流値I1となるか、モータ15の回転数が所定の回転数N1となると、スイッチ60~62とともにスイッチ80~82,90~92をオンする。なお、ここでは、制御回路45が、スイッチ60~62とともにスイッチ80~82,90~92をオンする際に満たすべき条件を条件Aとする。 Specifically, the control circuit 48 turns on the switches 60 to 62 when a start signal is input. Thereafter, the control circuit 48 determines whether the time measured by the timer 40 reaches the predetermined time T1, the levels of the voltages Vu, Vv, Vw become the predetermined voltage V1, or the current values of the currents Ia, Ib, Ic are predetermined. When the current value I1 or the rotational speed of the motor 15 reaches a predetermined rotational speed N1, the switches 80 to 82 and 90 to 92 are turned on together with the switches 60 to 62. Here, a condition to be satisfied when the control circuit 45 turns on the switches 80 to 82 and 90 to 92 together with the switches 60 to 62 is defined as a condition A.
 そして、制御回路48は、タイマー40の計時する時間が所定の時間T2(>T1)となるか、電圧Vu,Vv,Vwのレベルが所定の電圧V2となるか、電流Ia,Ib,Icの電流値が所定の電流値I2となるか、モータ15の回転数が所定の回転数N2(>N1)となると、スイッチ80~82,90~92をオフした後スイッチ30~32をオンし、さらにその後スイッチ60~62をオフする。なお、ここでは、制御回路45が、スイッチ80~82等をオフする際に満たすべき条件を条件Bとする。また、条件Bが満たされた際の制御回路45のスイッチに対する一連の制御は、十分短い時間で実行される。 Then, the control circuit 48 determines whether the time measured by the timer 40 is a predetermined time T2 (> T1), the levels of the voltages Vu, Vv, Vw are the predetermined voltage V2, or the currents Ia, Ib, Ic. When the current value reaches a predetermined current value I2 or the rotational speed of the motor 15 reaches a predetermined rotational speed N2 (> N1), the switches 80 to 82 and 90 to 92 are turned off, and then the switches 30 to 32 are turned on. Thereafter, the switches 60 to 62 are turned off. Here, a condition to be satisfied when the control circuit 45 turns off the switches 80 to 82 and the like is defined as a condition B. Further, a series of control for the switch of the control circuit 45 when the condition B is satisfied is executed in a sufficiently short time.
 このような始動器13は、図5に示した始動器12と同様に動作する。具体的には、始動信号が入力されると、モータ15はリアクトル始動される。そして、条件Aが満たされると、モータ15はコンドルファ始動される。その後、条件Bが満たされると、モータ15は電源電圧で駆動される。 Such a starter 13 operates in the same manner as the starter 12 shown in FIG. Specifically, when a start signal is input, the motor 15 is reactor-started. When the condition A is satisfied, the motor 15 is started with a condor. Thereafter, when the condition B is satisfied, the motor 15 is driven with the power supply voltage.
 以上、本発明の一実施形態である始動器10~13について説明した。始動器10~13は、モータ15をリアクトル始動した後にコンドルファ始動する。そして、その後、始動器10~13は、モータ15を電源電圧で駆動する。本実施形態のタップt0~t2は、モータ15がリアクトル始動されている際のタップt0~t2の電圧が電源電圧の例えば50%となり、モータ15がコンドルファ始動されている際のタップt0~t2の電圧が電源電圧の例えば70%となるように設けられている。このため、本実施形態では、モータ15の三相コイルL1~L3の電圧は、電源電圧の50%、70%、100%と三段階に増加する。したがって、例えば、三相コイルL1~L3の電圧を二段階に変化させる一般的なコンドルファ始動の場合と比較すると、本実施形態では、三相コイルL1~L3の始動電流を抑制しつつ、モータ15の回転数を緩やかに上昇させることができる。この結果、三相電源の電源電圧Vu,Vv,Vwの低下も抑制可能であるため、例えば発電機等からの電源が供給される場合でも、容量の大きい発電機を用いる必要が無い。また、降圧回路20~22は、コンドルファ始動する場合に一般的に用いられる回路と同様である。しかしながら、本実施形態では、スイッチ60~62がオンされる期間を最初に設けることにより、モータ15のリアクトル始動を可能としている。このため、本実施形態では、一般的なコンドル始動する際の回路に対して追加の部品を必要せず、コストの増加を抑制することもできる。 The starters 10 to 13 that are one embodiment of the present invention have been described above. The starters 10 to 13 start the condorfa after starting the reactor of the motor 15. After that, the starters 10 to 13 drive the motor 15 with the power supply voltage. In the taps t0 to t2 of the present embodiment, the voltages at the taps t0 to t2 when the motor 15 is started by the reactor are, for example, 50% of the power supply voltage, and the taps t0 to t2 when the motor 15 is started by the condorfa Is set to 70% of the power supply voltage, for example. For this reason, in this embodiment, the voltages of the three-phase coils L1 to L3 of the motor 15 increase in three stages, 50%, 70%, and 100% of the power supply voltage. Therefore, for example, in this embodiment, the motor current is suppressed while suppressing the starting current of the three-phase coils L1 to L3 as compared with the case of the general condorfa starting in which the voltages of the three-phase coils L1 to L3 are changed in two stages. The number of revolutions of 15 can be increased gently. As a result, since the power supply voltages Vu, Vv, and Vw of the three-phase power supply can be suppressed from being lowered, it is not necessary to use a generator with a large capacity even when power is supplied from a generator or the like. The step-down circuits 20 to 22 are the same as circuits generally used when starting a condorfa. However, in this embodiment, the reactor 15 of the motor 15 can be started by providing a period during which the switches 60 to 62 are turned on first. For this reason, in this embodiment, an additional component is not needed with respect to the circuit at the time of a general condor start, and the increase in cost can also be suppressed.
 また、本実施形態では、スイッチ30~32がオンされる前に、スイッチ80~82がオフされている。このため、スイッチ30~32がオンした際に、三相電源から、スイッチ30~32、タップt0~t2、スイッチ80~82、中性点を介して三相電源に帰還する電流を確実に遮断することができる。 In this embodiment, the switches 80 to 82 are turned off before the switches 30 to 32 are turned on. Therefore, when the switches 30 to 32 are turned on, the current returning from the three-phase power source to the three-phase power source through the switches 30 to 32, the taps t0 to t2, the switches 80 to 82, and the neutral point is surely cut off. can do.
 また、本実施形態の始動器12,13では、スイッチ60~62とコイル70~72との間にコイル75~77が接続されている。また、磁気回路46A,46Bは、モータ15がコンドルファ始動されている際には、コイル75~77の誘導性リアクタンスが無視できるよう、コイル75~77の磁場を減少させている。このため、モータ15がコンドルファ始動されている際のタップt0~t2の電圧は、タップt0~t2の位置に基づいて自由に定められる。さらに、モータ15がリアクトル始動されている際のタップt0~t2の電圧は、コイル75~77のインダクタンスを変化させることにより自由に定められる。したがって、始動器12,13を、例えばタップt0~t2の位置のみを変化させることにより、リアクトル始動とコンドルファ始動の際の電圧を調整する始動器10,11等と比較すると、より自由にタップt0~t2の電圧を調整することができる。 In the starters 12 and 13 of the present embodiment, coils 75 to 77 are connected between the switches 60 to 62 and the coils 70 to 72. The magnetic circuits 46A and 46B reduce the magnetic field of the coils 75 to 77 so that the inductive reactance of the coils 75 to 77 can be ignored when the motor 15 is started by the condor. For this reason, the voltages at the taps t0 to t2 when the motor 15 is started by the condorfa are freely determined based on the positions of the taps t0 to t2. Further, the voltage at the taps t0 to t2 when the motor 15 is being reactor started can be freely determined by changing the inductance of the coils 75 to 77. Therefore, the starters 12 and 13 are tapped more freely than the starters 10 and 11 that adjust the voltage at the start of the reactor and the condorfa by changing only the position of the taps t0 to t2, for example. The voltage from t0 to t2 can be adjusted.
 また、磁気回路46Aでは、スイッチ90がオンした際に、コイル75の磁場を減少させるようにコイル75に並列にコイル95が接続されている。このような構成の磁気回路を用いることで、確実にコイル75の磁場を減少させることが可能となる。また、コイル75の誘導性リアクタンスを無視できるようにするためには、例えば、コイル75の両端をショート可能なリレースイッチ(不図示)を設けても良い。しかしながら、コイル75の両端をショートするようなリレースイッチには大電流が流れるため、リレースイッチの接点には負荷かかる。本実施形態のスイッチ90にはコイル95が直列接続されているため、上述したような問題が生じることは無い。 In the magnetic circuit 46A, the coil 95 is connected in parallel to the coil 75 so that the magnetic field of the coil 75 is reduced when the switch 90 is turned on. By using the magnetic circuit having such a configuration, the magnetic field of the coil 75 can be reliably reduced. In order to make the inductive reactance of the coil 75 negligible, for example, a relay switch (not shown) that can short-circuit both ends of the coil 75 may be provided. However, since a large current flows through a relay switch that shorts both ends of the coil 75, a load is applied to the contact point of the relay switch. Since the coil 90 is connected in series to the switch 90 of this embodiment, the above-described problem does not occur.
 また、磁気回路46Bでは、コイル75と磁気結合され、スイッチ100がオンするとコイル75の磁場を減少させるコイル110が設けられている。このような構成の磁気回路を用いることで、確実にコイル75の磁場を減少させることが可能となる。また、スイッチ100にも、前述のようなコイル75の両端をショートした際に発生する大電流は流れない。このため、スイッチ100の接点の劣化を防ぐことが可能となる。さらに、スイッチ100は、電気的に降圧回路25と絶縁されている。このため、例えば、電圧Vu等が高い電圧であっても、スイッチ100は電圧Vuより十分低い電圧でオン、オフをすることができる。 The magnetic circuit 46B is provided with a coil 110 that is magnetically coupled to the coil 75 and reduces the magnetic field of the coil 75 when the switch 100 is turned on. By using the magnetic circuit having such a configuration, the magnetic field of the coil 75 can be reliably reduced. In addition, the switch 100 does not flow a large current generated when both ends of the coil 75 as described above are short-circuited. For this reason, it becomes possible to prevent the contact of the switch 100 from deteriorating. Further, the switch 100 is electrically insulated from the step-down circuit 25. For this reason, for example, even if the voltage Vu or the like is a high voltage, the switch 100 can be turned on / off at a voltage sufficiently lower than the voltage Vu.
 また、始動器10,11には、スイッチ60~62がオンされてからの時間を計時するタイマー40が設けられている。制御回路41,45は、タイマー40が時間T1を計時すると、スイッチ60~62,80~82をオンし、モータ15をコンドルファ始動させる。このため、始動器10,11は、スイッチ60~62がオンされてから所定時間が経過すると、確実にモータ15を加速することができる。 In addition, the starters 10 and 11 are provided with a timer 40 that measures the time from when the switches 60 to 62 are turned on. When the timer 40 measures the time T1, the control circuits 41 and 45 turn on the switches 60 to 62 and 80 to 82 to start the motor 15 with a condor. Therefore, the starters 10 and 11 can reliably accelerate the motor 15 when a predetermined time elapses after the switches 60 to 62 are turned on.
 また、始動器11には、モータ15の回転数を検出する回転数検出器44が設けられている。そして、制御回路45は、回転数検出器44で検出される回転数が、例えばN1となると、スイッチ60~62,80~82をオンし、モータ15をコンドルファ始動させる。このため、始動器11は、モータ15が所望の回転数となると確実にモータ15を加速することができる。 Further, the starter 11 is provided with a rotation speed detector 44 for detecting the rotation speed of the motor 15. Then, when the rotational speed detected by the rotational speed detector 44 becomes N1, for example, the control circuit 45 turns on the switches 60 to 62 and 80 to 82 to start the motor 15 with a condor. For this reason, the starter 11 can reliably accelerate the motor 15 when the motor 15 reaches a desired rotational speed.
 また、始動器11には、三相コイルL1~L3に流れる電流値を検出する電流検出器43が設けられている。そして、制御回路45は、電流検出器43で検出される電流が例えばI1となると、スイッチ60~62,80~82をオンし、モータ15をコンドルファ始動させる。このため、始動器11は、三相コイルL1~L3に流れる電流値が所望の値となると確実にモータ15を加速することができる。 Further, the starter 11 is provided with a current detector 43 that detects the value of the current flowing through the three-phase coils L1 to L3. Then, when the current detected by the current detector 43 becomes, for example, I1, the control circuit 45 turns on the switches 60 to 62 and 80 to 82 to start the motor 15 with a condor. Therefore, the starter 11 can reliably accelerate the motor 15 when the current value flowing through the three-phase coils L1 to L3 reaches a desired value.
 また、始動器11には、電圧Vu,Vv,Vwの電圧のレベルを検出する電圧検出器42が設けられている。そして、制御回路45は、電圧検出器42で検出される電圧が、例えば電圧V1となると、スイッチ60~62,80~82をオンし、モータ15をコンドルファ始動させる。このため、始動器11は、電圧Vu,Vv,Vwの電圧のレベルが所望の値となると確実にモータ15を加速することができる。 Further, the starter 11 is provided with a voltage detector 42 for detecting the voltage levels of the voltages Vu, Vv, and Vw. When the voltage detected by the voltage detector 42 becomes, for example, the voltage V1, the control circuit 45 turns on the switches 60 to 62 and 80 to 82 to start the motor 15 with a condor. Therefore, the starter 11 can reliably accelerate the motor 15 when the voltage levels of the voltages Vu, Vv, and Vw reach desired values.
 また、始動器12,13には、スイッチ60~62がオンされてからの時間を計時するタイマー40が設けられている。制御回路47,48は、タイマー40が時間T1を計時すると、スイッチ60~62,80~82をオンし、さらに、コイル75~77の磁場が減少するよう磁気回路46A,46Bを制御する。このため、始動器10,11は、スイッチ60~62がオンされてから所定時間が経過すると、所望の電圧で確実にモータ15を加速することができる。 In addition, the starters 12 and 13 are provided with a timer 40 that measures the time from when the switches 60 to 62 are turned on. When the timer 40 measures the time T1, the control circuits 47 and 48 turn on the switches 60 to 62 and 80 to 82, and further control the magnetic circuits 46A and 46B so that the magnetic fields of the coils 75 to 77 are reduced. Therefore, the starters 10 and 11 can reliably accelerate the motor 15 at a desired voltage when a predetermined time has elapsed after the switches 60 to 62 are turned on.
 また、始動器13には、モータ15の回転数を検出する回転数検出器44が設けられている。そして、制御回路48は、回転数検出器44で検出される回転数が、例えばN1となると、スイッチ60~62,80~82をオンし、さらに、コイル75~77の磁場が減少するよう磁気回路46Aを制御する。このため、始動器11は、モータ15が所望の回転数となると、所望の電圧で確実にモータ15を加速することができる。 Further, the starter 13 is provided with a rotation speed detector 44 for detecting the rotation speed of the motor 15. Then, the control circuit 48 turns on the switches 60 to 62 and 80 to 82 when the rotation speed detected by the rotation speed detector 44 becomes N1, for example, and further magnetically reduces the magnetic fields of the coils 75 to 77. The circuit 46A is controlled. For this reason, the starter 11 can reliably accelerate the motor 15 at a desired voltage when the motor 15 reaches a desired rotational speed.
 また、始動器13には、三相コイルL1~L3に流れる電流値を検出する電流検出器43が設けられている。そして、制御回路48は、電流検出器43で検出される電流が例えばI1となると、スイッチ60~62,80~82をオンし、さらに、コイル75~77の磁場が減少するよう磁気回路46Aを制御する。このため、始動器13は、三相コイルL1~L3に流れる電流値が所望の値となると、所望の電圧で確実にモータ15を加速することができる。 Further, the starter 13 is provided with a current detector 43 for detecting the current value flowing through the three-phase coils L1 to L3. Then, when the current detected by the current detector 43 becomes I1, for example, the control circuit 48 turns on the switches 60 to 62 and 80 to 82, and further sets the magnetic circuit 46A so that the magnetic fields of the coils 75 to 77 are reduced. Control. Therefore, the starter 13 can reliably accelerate the motor 15 with a desired voltage when the current value flowing through the three-phase coils L1 to L3 reaches a desired value.
 また、始動器13には、電圧Vu,Vv,Vwの電圧のレベルを検出する電圧検出器42が設けられている。そして、制御回路48は、電圧検出器42で検出される電圧が、例えば電圧V1となると、スイッチ60~62,80~82をオンし、さらに、コイル75~77の磁場が減少するよう磁気回路46Aを制御する。このため、始動器11は、電圧Vu,Vv,Vwの電圧のレベルが所望の値となると、所望の電圧で確実にモータ15を加速することができる。 Further, the starter 13 is provided with a voltage detector 42 for detecting the voltage levels of the voltages Vu, Vv, and Vw. Then, when the voltage detected by the voltage detector 42 becomes, for example, the voltage V1, the control circuit 48 turns on the switches 60 to 62 and 80 to 82, and further reduces the magnetic field of the coils 75 to 77. 46A is controlled. For this reason, the starter 11 can reliably accelerate the motor 15 at the desired voltage when the voltage levels of the voltages Vu, Vv, and Vw reach desired values.
 なお、上記実施例は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 In addition, the said Example is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
 制御回路41はシーケンサであることとしたが、例えばマイコン及びメモリ等で構成されることとしても良い。この場合には、マイコンがメモリに記憶されるプログラムを実行して図3に示されるフローチャートを実行する。この結果、制御回路41をマイコン等で実現する場合であっても、始動器10と同様の効果を得ることができる。 The control circuit 41 is a sequencer, but may be configured by, for example, a microcomputer and a memory. In this case, the microcomputer executes the program stored in the memory and executes the flowchart shown in FIG. As a result, even when the control circuit 41 is realized by a microcomputer or the like, the same effect as the starter 10 can be obtained.
 10~13 始動器
 15 誘導伝導機(モータ)
 20~22 降圧回路
 25~27 降圧回路
 30~32 スイッチ
 60~62 スイッチ
 80~82 スイッチ
 90~92 スイッチ
 100~102 スイッチ
 40 タイマー
 41,45,47,48 制御回路
 42 電圧検出器
 43 電流検出器
 44 回転数検出器
 46A,46B 磁気回路
 70~72 コイル
 75~772 コイル
 95~97 コイル
 110~112 コイル
10-13 Starter 15 Induction conductor (motor)
20 to 22 Step-down circuit 25 to 27 Step-down circuit 30 to 32 Switch 60 to 62 Switch 80 to 82 Switch 90 to 92 Switch 100 to 102 Switch 40 Timer 41, 45, 47, 48 Control circuit 42 Voltage detector 43 Current detector 44 Rotational speed detector 46A, 46B Magnetic circuit 70 to 72 Coil 75 to 772 Coil 95 to 97 Coil 110 to 112 Coil

Claims (13)

  1.  誘導電動機の三相コイルに接続されるタップを有する第1コイルと、前記誘導電動機を駆動するための電源と前記第1コイルとの間に接続される第1スイッチと、前記第1コイルの前記第1スイッチが接続されていない側に接続される第2スイッチと、を含み、前記第1及び第2スイッチが制御されることにより前記電源の電源電圧を降圧した電圧を前記タップに発生させる降圧回路と、
     前記電源と前記三相コイルとの間に接続される第3スイッチと、
     前記第1スイッチをオンした後に前記第1及び第2スイッチをオンとし、その後、前記三相コイルに前記電源電圧が印加されるよう、前記第1~3スイッチを制御する第1制御回路と、
     を備え、
     前記タップは、
     前記第1スイッチ及び第2スイッチがオンされる際の前記タップの電圧が、前記第1スイッチがオンされる際の前記タップの電圧より高くなるように設けられていること、
     を特徴とする誘導電動機制御装置。
    A first coil having a tap connected to a three-phase coil of the induction motor; a first switch connected between a power source for driving the induction motor and the first coil; and the first coil A second switch connected to a side to which the first switch is not connected, and a voltage that causes the tap to generate a voltage obtained by stepping down the power supply voltage of the power supply by controlling the first and second switches. Circuit,
    A third switch connected between the power source and the three-phase coil;
    A first control circuit that controls the first to third switches so as to turn on the first and second switches after turning on the first switch and then apply the power supply voltage to the three-phase coil;
    With
    The tap is
    The tap voltage when the first switch and the second switch are turned on is provided to be higher than the tap voltage when the first switch is turned on,
    An induction motor control device characterized by the above.
  2.  請求項1に記載の誘導電動機制御装置であって、
     前記第1制御回路は、
     前記三相コイルに前記電源電圧が印加されるよう、ともにオンしている前記第1及び第2スイッチのうち少なくとも前記第2スイッチをオフした後に、前記第3スイッチをオンすること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 1,
    The first control circuit includes:
    Turning off the third switch after turning off at least the second switch of the first and second switches that are both turned on so that the power supply voltage is applied to the three-phase coil;
    An induction motor control device characterized by the above.
  3.  請求項1または請求項2に記載の誘導電動機制御装置であって、
     前記第1スイッチと前記第1コイルとの間に接続される第2コイルと、
     前記第2コイルの磁場を減少させる磁気回路と、
     前記第1及び第2スイッチがオンされている際に前記第2コイルの磁場が減少するよう前記磁気回路を制御する第2制御回路と、
     を更に備えること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 1 or 2, wherein
    A second coil connected between the first switch and the first coil;
    A magnetic circuit for reducing the magnetic field of the second coil;
    A second control circuit for controlling the magnetic circuit so that the magnetic field of the second coil decreases when the first and second switches are turned on;
    Further comprising,
    An induction motor control device characterized by the above.
  4.  請求項3に記載の誘導電動機制御装置であって、
     前記磁気回路は、
     第4スイッチと、
     直列接続される前記第4スイッチがオンとなると、前記第2コイルの磁場を減少させるように前記第2コイルに並列接続される第3コイルと、
     を含み、
     前記第2制御回路は、
     前記第1及び第2スイッチがオンされている際に前記第4スイッチをオンすること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 3,
    The magnetic circuit is:
    A fourth switch;
    A third coil connected in parallel to the second coil to reduce the magnetic field of the second coil when the fourth switch connected in series is turned on;
    Including
    The second control circuit includes:
    Turning on the fourth switch when the first and second switches are turned on;
    An induction motor control device characterized by the above.
  5.  請求項3に記載の誘導電動機制御装置であって、
     前記磁気回路は、
     第4スイッチと、
     前記第2コイルと磁気結合され、前記第4スイッチがオンとなると前記第2コイルの磁場を減少させる第3コイルと、
     を含み、
     前記第2制御回路は、
     前記第1及び第2スイッチがオンされている際に前記第4スイッチをオンすること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 3,
    The magnetic circuit is:
    A fourth switch;
    A third coil that is magnetically coupled to the second coil and reduces the magnetic field of the second coil when the fourth switch is turned on;
    Including
    The second control circuit includes:
    Turning on the fourth switch when the first and second switches are turned on;
    An induction motor control device characterized by the above.
  6.  請求項1または請求項2に記載の誘導電動機制御装置であって、
     前記第1スイッチがオンされてからの時間を計時するタイマーを更に備え、
     前記第1制御回路は、
     前記タイマーが所定時間を計時すると、前記第1及び第2スイッチをともにオンすること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 1 or 2, wherein
    A timer for measuring the time from when the first switch is turned on;
    The first control circuit includes:
    When the timer times a predetermined time, turning on both the first and second switches;
    An induction motor control device characterized by the above.
  7.  請求項1または請求項2に記載の誘導電動機制御装置であって、
     前記誘導電動機の回転数を検出する回転数検出器を更に備え、
     前記第1制御回路は、
     前記第1スイッチがオンされてから前記回転数検出器で検出される回転数が所定の回転数となると、前記第1及び第2スイッチをともにオンすること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 1 or 2, wherein
    A rotation speed detector for detecting the rotation speed of the induction motor;
    The first control circuit includes:
    When the rotational speed detected by the rotational speed detector after the first switch is turned on reaches a predetermined rotational speed, both the first and second switches are turned on;
    An induction motor control device characterized by the above.
  8.  請求項1または請求項2に記載の誘導電動機制御装置であって、
     前記三相コイルに流れる電流値を検出する電流検出器を更に備え、
     前記第1制御回路は、
     前記第1スイッチがオンされてから前記電流検出器で検出される電流値が所定値となると、前記第1及び第2スイッチをともにオンすること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 1 or 2, wherein
    A current detector for detecting a current value flowing through the three-phase coil;
    The first control circuit includes:
    When the current value detected by the current detector becomes a predetermined value after the first switch is turned on, both the first and second switches are turned on;
    An induction motor control device characterized by the above.
  9.  請求項1または請求項2に記載の誘導電動機制御装置であって、
     前記電源電圧のレベルを検出する電圧検出器を更に備え、
     前記第1制御回路は、
     前記第1スイッチがオンされてから前記電圧検出器で検出される電圧レベルが所定レベルとなると、前記第1及び第2スイッチをともにオンすること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 1 or 2, wherein
    A voltage detector for detecting a level of the power supply voltage;
    The first control circuit includes:
    When the voltage level detected by the voltage detector reaches a predetermined level after the first switch is turned on, both the first and second switches are turned on.
    An induction motor control device characterized by the above.
  10.  請求項3に記載の誘導電動機制御装置であって、
     前記第1スイッチがオンされてからの時間を計時するタイマーを更に備え、
     前記第1制御回路は、
     前記タイマーが所定時間を計時すると、前記第1及び第2スイッチをともにオンし、
     前記第2制御回路は、
     前記タイマーが所定時間を計時すると、前記第2コイルの磁場が減少するよう前記磁気回路を制御すること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 3,
    A timer for measuring the time from when the first switch is turned on;
    The first control circuit includes:
    When the timer counts a predetermined time, both the first and second switches are turned on,
    The second control circuit includes:
    Controlling the magnetic circuit so that the magnetic field of the second coil decreases when the timer times a predetermined time;
    An induction motor control device characterized by the above.
  11.  請求項3に記載の誘導電動機制御装置であって、
     前記誘導電動機の回転数を検出する回転数検出器を更に備え、
     前記第1制御回路は、
     前記第1スイッチがオンされてから前記回転数検出器で検出される回転数が所定の回転数となると、前記第1及び第2スイッチをともにオンし、
     前記第2制御回路は、
     前記第1スイッチがオンされてから前記回転数検出器で検出される回転数が所定の回転数となると、前記第2コイルの磁場が減少するよう前記磁気回路を制御すること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 3,
    A rotation speed detector for detecting the rotation speed of the induction motor;
    The first control circuit includes:
    When the rotational speed detected by the rotational speed detector after the first switch is turned on reaches a predetermined rotational speed, both the first and second switches are turned on,
    The second control circuit includes:
    Controlling the magnetic circuit so that the magnetic field of the second coil decreases when the number of rotations detected by the rotation number detector after the first switch is turned on reaches a predetermined number of rotations;
    An induction motor control device characterized by the above.
  12.  請求項3に記載の誘導電動機制御装置であって、
     前記三相コイルに流れる電流値を検出する電流検出器を更に備え、
     前記第1制御回路は、
     前記第1スイッチがオンされてから前記電流検出器で検出される電流値が所定値となると、前記第1及び第2スイッチをともにオンし、
     前記第2制御回路は、
     前記第1スイッチがオンされてから前記電流検出器で検出される電流値が所定値となると、前記第2コイルの磁場が減少するよう前記磁気回路を制御すること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 3,
    A current detector for detecting a current value flowing through the three-phase coil;
    The first control circuit includes:
    When the current value detected by the current detector reaches a predetermined value after the first switch is turned on, both the first and second switches are turned on,
    The second control circuit includes:
    Controlling the magnetic circuit so that the magnetic field of the second coil decreases when the current value detected by the current detector reaches a predetermined value after the first switch is turned on;
    An induction motor control device characterized by the above.
  13.  請求項3に記載の誘導電動機制御装置であって、
     前記電源電圧のレベルを検出する電圧検出器を更に備え、
     前記第1制御回路は、
     前記第1スイッチがオンされてから前記電圧検出器で検出される電圧レベルが所定レベルとなると、前記第1及び第2スイッチをともにオンし、
     前記第2制御回路は、
     前記第1スイッチがオンされてから前記電圧検出器で検出される電圧レベルが所定レベルとなると、前記第2コイルの磁場が減少するよう前記磁気回路を制御すること、
     を特徴とする誘導電動機制御装置。
    The induction motor control device according to claim 3,
    A voltage detector for detecting a level of the power supply voltage;
    The first control circuit includes:
    When the voltage level detected by the voltage detector after the first switch is turned on reaches a predetermined level, both the first and second switches are turned on,
    The second control circuit includes:
    Controlling the magnetic circuit such that the magnetic field of the second coil decreases when the voltage level detected by the voltage detector reaches a predetermined level after the first switch is turned on;
    An induction motor control device characterized by the above.
PCT/JP2009/070680 2009-11-19 2009-12-10 Induction motor control apparatus WO2011061866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009264172A JP2011109858A (en) 2009-11-19 2009-11-19 Induction motor controller
JP2009-264172 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011061866A1 true WO2011061866A1 (en) 2011-05-26

Family

ID=44059356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070680 WO2011061866A1 (en) 2009-11-19 2009-12-10 Induction motor control apparatus

Country Status (2)

Country Link
JP (1) JP2011109858A (en)
WO (1) WO2011061866A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439816A (en) * 1977-09-05 1979-03-27 Kitashiba Electric Starting system for ac motor
JPS6231380A (en) * 1985-07-30 1987-02-10 Hitachi Ltd Starting method for ac motor
JPS62166797A (en) * 1986-01-20 1987-07-23 Mitsubishi Electric Corp Operation device for pole change motor
JPH077978A (en) * 1993-06-17 1995-01-10 Meidensha Corp Korndorfer method for starting motor
JP2003309989A (en) * 2002-04-16 2003-10-31 Nishishiba Electric Co Ltd Starter for motor and starting method therefor
JP2008043017A (en) * 2006-08-03 2008-02-21 Denki Keiki Kk Kondorfer starting device for electric motor
JP2008131825A (en) * 2006-11-24 2008-06-05 Univ Nihon Reduced voltage starting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439816A (en) * 1977-09-05 1979-03-27 Kitashiba Electric Starting system for ac motor
JPS6231380A (en) * 1985-07-30 1987-02-10 Hitachi Ltd Starting method for ac motor
JPS62166797A (en) * 1986-01-20 1987-07-23 Mitsubishi Electric Corp Operation device for pole change motor
JPH077978A (en) * 1993-06-17 1995-01-10 Meidensha Corp Korndorfer method for starting motor
JP2003309989A (en) * 2002-04-16 2003-10-31 Nishishiba Electric Co Ltd Starter for motor and starting method therefor
JP2008043017A (en) * 2006-08-03 2008-02-21 Denki Keiki Kk Kondorfer starting device for electric motor
JP2008131825A (en) * 2006-11-24 2008-06-05 Univ Nihon Reduced voltage starting device

Also Published As

Publication number Publication date
JP2011109858A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP2010193702A (en) Apparatus and method for controlling induction motor
CN107306103B (en) Method for switching between full winding mode and half winding mode in a three-phase electric machine
WO2017159078A1 (en) Switching power supply device
JP6119475B2 (en) In-vehicle motor controller
US10243503B2 (en) Drive controller and drive control method for electric motor
JP6503636B2 (en) Motor controller
WO2015004948A1 (en) Discharge control device
JP6253850B2 (en) AC rotating electrical machine control device
JP2015159684A (en) rotary electric machine control device
JP2010172124A (en) Motor control device
JP2010220287A (en) Motor control device and vehicle system
JP2011087399A (en) Winding switching unit for electric motor
JPH10187256A (en) Ac power controller
JP4999154B2 (en) Reduced voltage starting device
KR20160032354A (en) Apparatus for applying an electric current control of motor
JPH10337063A (en) Method and device for starting ac electric motor
TW201006088A (en) Transforming apparatus for automatically adjusting three-phase power supply voltage
WO2011061866A1 (en) Induction motor control apparatus
JP2008099468A (en) Method for detecting turn-off of thyristor
WO2014125737A1 (en) Battery control apparatus and power supply control method
JP2008043017A (en) Kondorfer starting device for electric motor
JP7256637B2 (en) Redundant actuator system
JP2012239358A (en) Control device
JP2010220286A (en) Motor control device and vehicle system
JP2010226921A (en) Control device for electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851487

Country of ref document: EP

Kind code of ref document: A1