WO2011061229A1 - Complexes de coordination polymerisables et materiaux polymeriques obtenus a partir desdits monomeres - Google Patents

Complexes de coordination polymerisables et materiaux polymeriques obtenus a partir desdits monomeres Download PDF

Info

Publication number
WO2011061229A1
WO2011061229A1 PCT/EP2010/067689 EP2010067689W WO2011061229A1 WO 2011061229 A1 WO2011061229 A1 WO 2011061229A1 EP 2010067689 W EP2010067689 W EP 2010067689W WO 2011061229 A1 WO2011061229 A1 WO 2011061229A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
complex
metal element
monomer
comonomer
Prior art date
Application number
PCT/EP2010/067689
Other languages
English (en)
Inventor
Alexia Balland Longeau
Stéphane CADRA
Jérôme THIBONNET
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to US13/509,546 priority Critical patent/US8822713B2/en
Priority to JP2012539321A priority patent/JP2013511488A/ja
Priority to ES10776391.4T priority patent/ES2661965T3/es
Priority to EP10776391.4A priority patent/EP2501675B1/fr
Publication of WO2011061229A1 publication Critical patent/WO2011061229A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/34Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C251/48Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/70Metal complexes of oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • C08F12/24Phenols or alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals

Definitions

  • the present invention relates to novel polymerizable coordination complexes comprising metal elements, such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, and to polymeric materials resulting from the polymerization of said complexes.
  • the general field of the invention is thus that of polymeric materials doped with one or more metallic elements.
  • Rinde et al. in US 4,261,937 discloses a method for preparing metal-doped polymeric foams comprising pouring a polymeric gel into an aqueous solution comprising a salt of said metal element. The gel is then brought into contact with a series of solvents of decreasing polarity, in order to eliminate the introduced water. Each solvent used must be capable of solubilizing the above solvent and is saturated with the metal salt chosen.
  • Mishra et al., In Plasma Phys. Control. Fusion 43 (2001) 1723-1732 describes the preparation of polystyrene microballoons doped with ultrafine metal particles comprising the following steps: a step of forming an emulsion comprising an aqueous phase and an organic phase comprising polystyrene, in which ultrafine metal particles are dispersed;
  • a second strategy consisted, no longer in doping the materials after polymerization of the latter, but in acting upstream of the polymerization step by bringing the metal element into contact with the polymerization medium, in particular by the use of monomers carriers of the desired dopant metal, depending on whether the metal is an integral part of the monomer molecule (to which metal monomers are referred to) or is bonded thereto by a complexing reaction.
  • the titanium complex is unstable in an aqueous medium, and in particular in the polymerization medium, this instability being able to result in a cleavage of the metal-ligand bond;
  • the titanium complex is thus degraded, during the polymerization thereof with styrene and divinylbenzene, thus generating a low incorporation of titanium in the final polymeric material, the mass percentage of titanium of polymeric materials not exceeding 1, 5%.
  • coordination complexes which are stable in an aqueous medium, and in particular when they are placed in the presence of a polymerization medium and thus making it possible to obtain polymeric materials doped with metal elements, whose doping rate is controlled and is, because of the stability of the complexes used, directly related to their rate of introduction into the polymerization medium.
  • the invention relates, according to a first object, to a coordination complex of at least a metal element with at least one aromatic monomer comprising at least one aromatic ring, which ring comprises at least one ethylenic group, at least one hydroxyl group -OH, at least one oxime group and salts thereof, said metal element being in the form of a metal alkoxide.
  • coordination complex is conventionally meant a polyatomic building comprising the metallic element around which groups belonging to at least one monomer (in this case, the -OH and oxime groups) are linked by coordination bonds. , the coordination bond being created by providing a pair of electrons belonging to said groups in an empty orbital of the metal element.
  • this doping level can be very high, because of their stability in the polymerization media;
  • Ri is an ethylenic group
  • R 2 , R 3, R 4 , R 5 and R 6 represent, independently of one another, a hydrogen atom, an -OH group, an amino group, a -CHO group, an oxime group, a hydrazone group, a carboxyl group -COOH, a halogen atom, a trialkylsilane group, and any salts thereof, provided that at least one of R 2 to R 6 is -OH and at least one of groups R 2 to R 6 represents an oxime group.
  • Amino group is understood to mean, typically, a primary amine group -NH 2 , a secondary amine group (ie, an amino group in which one of the hydrogen atoms initially borne by the nitrogen atom is substituted by a another group, such as alkyl group) or a tertiary amine group (ie, an amino group whose two hydrogen atoms initially carried on the nitrogen atom are substituted by another group, such as an alkyl group).
  • halogen atom is meant, according to the invention, an atom chosen from fluorine, chlorine, bromine and iodine.
  • alkyl group conventionally means, according to the invention, in the foregoing and the following, a linear or branched alkyl group comprising from 1 to 20 carbon atoms, a cyclic group comprising from 3 to 20 carbon atoms.
  • These groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, n-dodecanyl, i-butyl, t-butyl, cyclopropyl, cyclohexyl.
  • These groups may comprise in their chain one or more atoms selected from O, S, Se and / or N.
  • aryl group is meant conventionally according to the invention in the foregoing and the following, a group of 6 to 20 carbon atoms.
  • these groups mention may be made of benzyl, naphthyl, tolyl and biphenyl.
  • alkylaryl group is meant, conventionally, according to the invention, in what precedes and what follows, an aryl group of the same definition as that given above, said group being substituted by at least one alkyl chain, which may comprise one or more O, N, Se and / or S atoms
  • Per perfluoroalkyl, perfluoroaryl, perfluoroalkylaryl group means groups in which the hydrogen atoms are totally substituted by fluorine atoms (the alkyls and aryls corresponding to the same definition as that given above). For example, there may be mentioned trifluoromethyl -CF 3 , perfluoroethyl, perfluorobutyl, perfluoropropyl, perfluoropentyl, perfluorophenyl CeF 5 -, perfluorobiphenyl, perfluorobenzyl.
  • the monomers comprise at least one aromatic ring at least one -OH group and at least one oxime group located on said aromatic ring.
  • the -OH group and the oxime group are located in the ortho position of each other on the same aromatic ring, for example, on a phenyl ring.
  • the monomers according to the invention can be prepared simply from inexpensive starting compounds, especially natural compounds such as salicylaldehyde.
  • step of halogenation by electrophilic substitution of a hydrogen atom borne by the phenyl group of salicylaldehyde this step possibly consisting of an iodination step by action on salicylaldehyde of an iodine salt (such as chlorine iodide) in an acetic medium, whereby 5-iodosalicylaldehyde is obtained;
  • a platinum-based catalyst such as Pd (PPh3) 4 with Ph indicating a phenyl group.
  • the monomers can be manufactured, under mild conditions, especially when it is a question of introducing an ethylenic group on a halogenated phenyl group, this introduction being able to be carried out at atmospheric pressure with a slight heating (for example, at most 50 ° VS) .
  • the aforementioned metal element may be an alkali metal, an alkaline earth metal, a transition metal, such as Ti, Zr, Hf, V, Nb, Ta, a lanthanide, an actinide and the elements Al, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi or Po, this metal element may be a metal alkoxide.
  • titanium alkoxides such as titanium isopropoxide, titanium ethoxide, zirconium alkoxides, such as zirconium n-butoxide or niobium alkoxides, such as niobium ethoxide.
  • the aforementioned coordination complexes can be obtained by contacting the monomers as defined above, optionally in the form of salts, with a metal alkoxide.
  • the formation reaction of the complexes can be carried out in a hydrated or anhydrous organic medium, in the presence of an ambient atmosphere or saturated with nitrogen or argon.
  • Specific coordination complexes according to the invention may be in the form of clusters comprising one or more molecules of monomers surrounding one or more metal elements in the form of metal alkoxides.
  • M representing a metallic element
  • Zr, Nb and R representing an alkyl group, such as an n-butyl group, an ethyl group.
  • the complexes of the invention are intended to be used for the production of polymeric materials doped with at least one metallic element.
  • the invention relates, according to a third object, to a process for the preparation of a polymeric material doped with at least one metallic element comprising a polymerization step of from less a coordination complex as defined above.
  • the polymerization step of the process of the invention takes place, in addition to the presence of the coordination complex, optionally in the presence of a polymerization initiator and optionally a pore-forming solvent and one or more comonomers.
  • the mode of polymerization can be of any type, such as thermal polymerization (for example, by heating from 50 to 150 ° C), such as photochemical polymerization in the presence of ultraviolet.
  • the polymerization initiator may be a radical initiator conventionally chosen from peroxide compounds, azonitriles (such as 2,2'-azobisisobutyronitrile), azoesters, azoamides.
  • the initiator may be introduced into the polymerization medium in variable amounts, for example, in amounts which may be from 0 to 50% by weight, relative to the total mass of monomers involved.
  • the pore-forming solvent may be a polar organic solvent, apolar and may be selected from ether solvents (such as tetrahydrofuran), dimethylsulfoxide, phthalate solvents (such as dimethylphthalate, dibutylphthalate), alcoholic solvents (such as methanol). , ethanol), aromatic solvents (such as toluene, fluorobenzene), ketone solvents.
  • ether solvents such as tetrahydrofuran
  • dimethylsulfoxide such as phthalate solvents (such as dimethylphthalate, dibutylphthalate)
  • alcoholic solvents such as methanol
  • aromatic solvents such as toluene, fluorobenzene
  • ketone solvents such as toluene, fluorobenzene
  • the polymerization step can be carried out in the presence of one or more comonomers, said comonomers being, generally different from the monomers involved in the constitution of the coordination complexes.
  • These comonomers may be chosen from styrene monomers or acrylate monomers.
  • the comonomers comprise at least two ethylenic groups, thus ensuring a role of crosslinking agent.
  • the materials thus obtained have good mechanical strength.
  • Comonomers that may be used may be styrenic monomers of the following formula (V):
  • the (6-n) R which may be identical or different, represent a hydrogen atom, an alkyl group, an aryl group, a -O-aryl group, a -O-alkyl group, an acyl group or an alkylaryl group a halogen atom, said alkyl, aryl, alkylaryl, -O-aryl, -O-alkyl groups being optionally perfluorinated and n is an integer of 1 to 3, preferably n being 2.
  • a suitable comonomer may be divinylbenzene, especially 1,4-divinylbenzene.
  • Comonomers that may be used may also be acrylate compounds of formula (VI below:
  • R represents an alkyl group
  • R represents H or an alkyl group
  • n represents an integer ranging from 1 to 3.
  • an appropriate comonomer of this type may be trimethylolpropanetriacrylate (known by the abbreviation TMPTA) of the following formula:
  • the polymerization step is carried out at a temperature ranging from 40 to 100 ° C.
  • the polymerization step consists of the copolymerization of a coordination complex of the following formula:
  • iPr is isopropyl or with trimethylolpropanetriacrylate (known by the abbreviation TMPTA).
  • a gel is obtained, corresponding to a three-dimensional network, the structure of which is impregnated with the solvent.
  • the gel once synthesized, must be dried in order to obtain the dry doped polymeric material.
  • the process advantageously comprises a step of drying the gel obtained, this step advantageously being a supercritical drying step with CO 2 .
  • this supercritical CO 2 drying step may be preceded by a solvent exchange step of replacing the solvent present in the pores of the gel with a solvent miscible with CO 2 .
  • This supercritical drying stage with CO 2 makes it possible in particular to respect the physical integrity of the foam.
  • the invention relates to polymeric materials doped with at least one metallic element that can be obtained by a process as defined above, the materials conventionally being in the form of foams.
  • These materials can be characterized by a density ranging from 3 to 250 ⁇ 10 -3 g. cm -3 and a specific surface area of up to 880 m 2 / g.
  • They can also be used as a catalyst, as luminescent materials or as magnetic materials.
  • they can be used as a laser target element.
  • the doped materials obtained by the process of the invention can be subjected to an acid treatment, intended to eliminate a part of the complexed metal elements. in said material.
  • the vacant sites thus constitute specific imprints of the specific element of the metal initially introduced.
  • the result is a so-called "ion-imprinted” material, capable of selectively trapping the "printed" metal element when placed in contact with a fluid comprising said metal element.
  • This type of material can thus be used for the selective extraction of metals, especially during the reprocessing of nuclear fuel effluents, such as the separation of lanthanides, or the decontamination of biological fluids.
  • the first step is to make 5-iodosalicylaldehyde from salicylaldehyde.
  • the second step is to make 5-iodosalicylaldoxime from the previously prepared 5-iodosalicyl aldehyde.
  • the third step is finally to produce 5-vinylsalicylaldoxime from 5-iodosalicylaldoxime previously prepared.
  • the solution is filtered on celite (with the solvent Et 2 0), the precipitate which forms is removed by filtration, the solvents are evaporated and the residue is purified by flash column (eluent: 400 ml of heptane, 500 mL of heptane / Et 2 0 95: 5 heptane / Et 2 0 90: 10).
  • This example relates to the preparation of a complex formed by two molecules of the monomer prepared according to Example 1 with titanium in the form of alkoxide (1 'isopropoxide of titanium): the 5-vinylsalicyl-aldoximatotitane of isopropoxide of formula next :
  • iPr is isopropyl.
  • This example relates to the preparation of a complex formed by two molecules of the monomer prepared according to Example 1 with titanium in the form of alkoxide (titanium ethoxide): 5-vinylsalicyl-aldoximatotitanium ethoxide of the following formula:
  • This example relates to the preparation of a complex formed by two molecules of the monomer prepared according to Example 1 with zirconium in the form of alkoxide (zirconium n-butoxide): 5-vinylsalicylaldoximatozirconium n-butoxide of the following formula :
  • nBu meaning n-butyl
  • the yellow precipitate obtained is isolated by filtration and rinsed with 2 * 10 ml of n-butanol.
  • This example relates to the preparation of a complex formed by two molecules of the monomer according to Example 1 with niobium in the form of alkoxide (niobium ethoxide): 5-vinylsalicyl-aldoximatoniobium V) ethoxide of following formula :
  • This example illustrates the preparation of a polymeric material obtained by copolymerization of a complex prepared according to Example 2 with divinylbenzene in the presence of a pore-forming solvent: dibutylphthalate (DBP).
  • DBP dibutylphthalate
  • the monomer mixture is prepared according to the following two methods.
  • the first is composed of 1 g of divinylbenzene, 10 mL of dibutyl phthalate, 100 mg of azoisobutyronitrile and 100 mg of SPAN 80 surfactant;
  • the second is composed of 1 g of the complex prepared according to Example 2, 10 ml of dibutyl phthalate, 100 mg of azoisobutyronitrile and 100 mg of SPAN 80 surfactant.
  • the monomer solution prepared according to method B is introduced into a series of polypropylene (or silicone) molds previously purged with argon. The whole is placed overnight in an oven at 80 ° C. The polymer gels thus obtained are then demolded and placed in 25 ml pillboxes containing 15 ml of ethanol. The pillbox ethanol is renewed every 48 hours for one week.
  • This method is hereinafter referred to as "mass polymerization method”.
  • the monomer solution previously prepared according to method A is introduced drop by drop via a syringe into a container of IL containing 300 ml of a 50% polyvinyl alcohol solution at 50 g / l and preheated to 45 °. C, of so as to form a multitude of organic phase beads within the aqueous phase.
  • the vessel is then placed horizontally, in a slight rotation in a water bath (rotary evaporator) at 85 ° C for three hours.
  • the polymer beads thus obtained are recovered, placed in a 25 mL pillbox containing 15 mL of distilled water, then rinsed with 2 * 15 mL of distilled water and 1 * 15 mL of ethanol.
  • the beads are stored in ethanol, the solvent being renewed every 48 hours for one week.
  • This method is hereinafter referred to as "emulsion polymer method”.
  • the gels thus obtained by these two methods of polymerization are then dried with supercritical carbon dioxide, so as to obtain copolymer foams.
  • Foams obtained for the various ratios mentioned above were the subject of the following measures: - measurement of the mass percentage of titanium in the foams (this measurement being carried out by microanalysis);
  • This example illustrates the preparation of a polymeric material obtained by copolymerization of a complex prepared according to Example 2 with trimethylolpropanetriacrylate in the presence of a pore-forming solvent: dibutylphthalate (DBP).
  • DBP dibutylphthalate
  • the monomer mixture is prepared according to the following method.
  • the monomer mixture prepared above is polymerized according to a suspension polymerization method in an aqueous continuous phase as explained below.
  • Polymerization 400 ml of continuous phase are taken and introduced into a cylindrical glass container (bottle) of 2 L with a lapping. The solution is preheated to 45 ° C. 1 mL of polymerization mixture (prepared according to Method A) is then introduced into a syringe equipped with a needle of size 0.6x25 cm. The monomer phase is introduced dropwise, the needle immersed inside the continuous phase, so as to form organic phase beads dispersed in the aqueous phase. The container is then fixed horizontally on a motorized axis (for example a rotary evaporator cannula). This is placed in slow rotation in a water bath at 85 ° C for 3 h.
  • a motorized axis for example a rotary evaporator cannula
  • the water bath is removed and the rotation is maintained until the medium cools to a temperature of -45 ° C.
  • the gel beads are removed and washed 3 times with 20 ml of distilled water. They are then stored for one week in 25 mL pillboxes containing 20 mL of absolute ethanol, this ethanol solution being renewed 3 times during this period. The gels are then recovered and dried with supercritical CO 2 in order to obtain organic aerogel beads.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention a trait à des complexes de coordination d' au moins un élément métallique avec au moins un monomère aromatique comprenant au moins un cycle aromatique, lequel cycle comprenant au moins un groupe éthylénique, au moins un groupe hydroxyde -OH, au moins un groupe oxime et les sels de celui-ci, ledit élément métallique étant sous forme d'un alcoxyde métallique.

Description

COMPLEXES DE COORDINATION POLYMERISABLES ET MATERIAUX POLYMERIQUES OBTENUS A PARTIR DESDITS MONOMERES
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention a trait à de nouveaux complexes de coordination polymérisables comprenant des éléments métalliques, tels que le titane, le zirconium, l'hafnium, le vanadium, le niobium, le tantale, et à des matériaux polymériques résultant de la polymérisation desdits complexes.
Ces complexes de coordination et les matériaux obtenus par polymérisation de ceux-ci trouvent leur application dans le champ global des applications propres aux matériaux polymériques dopés avec des éléments métalliques, telles que la catalyse supportée, les matériaux luminescents, les matériaux magnétiques, les matériaux à empreinte ionique. En particulier, ils trouvent leur application dans l'élaboration de cibles laser utilisées lors d'expériences de fusion par confinement inertiel.
Le domaine général de l'invention est ainsi celui des matériaux polymériques dopés par un ou plusieurs éléments métalliques.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Eu égard au champ d'application extrêmement vaste de ce type de matériaux, de nombreuses équipes ont axé leur recherche sur des procédés d'élaboration de tels matériaux. Une première stratégie a consisté à imprégner des matériaux polymériques par des solutions de sel métallique.
Ainsi, Rinde et al. dans US 4,261,937 décrit une méthode de préparation de mousses polymériques dopées par un élément métallique consistant à verser un gel polymérique dans une solution aqueuse comprenant un sel dudit élément métallique. Le gel est ensuite mis en présence d'une série de solvants de polarité décroissante, afin d'éliminer l'eau introduite. Chaque solvant utilisé doit être capable de solubiliser le solvant précédent et est saturé par le sel métallique choisi.
Cette méthode présente toutefois l'inconvénient majeur que la répartition de l'élément métallique ne peut pas être parfaitement homogène au niveau atomique, car il se produit des phénomènes de cristallisation de sels métalliques au séchage, qui s'ensuit par la formation de nano- ou microcristaux dans le matériau. D'autre part, du fait que l'imprégnation est réalisée sur un gel polymérique, la diffusion des éléments métalliques ne se produit pas dans la totalité du gel.
D'autres auteurs ont utilisé des variantes de ce type de stratégie.
Ainsi, Mishra et al., dans Plasma Phys . Control. Fusion 43 (2001) 1723-1732, décrit la préparation de microballons en polystyrène dopés par des particules métalliques ultrafines comprenant les étapes suivantes : une étape de formation d'une émulsion comprenant une phase aqueuse et une phase organique comprenant du polystyrène, dans laquelle sont dispersées des particules métalliques ultrafines ;
- une étape de dispersion de l' émulsion susmentionnée dans une seconde phase aqueuse, moyennant quoi l'on obtient une émulsion triphasique ;
une étape d'élimination de la phase organique, laissant ainsi subsister des ballons de polystyrène dopés par des particules métalliques contenant de l'eau ;
- une étape de séchage desdits ballons de polystyrène .
Une deuxième stratégie a consisté, non plus à doper les matériaux après polymérisation de ces derniers, mais à agir en amont de l'étape de polymérisation en mettant l'élément métallique en contact avec le milieu de polymérisation, notamment par l'utilisation de monomères porteurs du métal dopant souhaité, selon que le métal fait partie intégrante de la molécule de monomère (auquel on parle de monomères métalliques) ou est lié à celle-ci par une réaction de complexation .
Ainsi, certains auteurs ont axé leurs travaux de recherche sur la synthèse de monomères vinyliques comprenant des éléments métalliques ou aptes à être dopés par des éléments métalliques, tels que le titane .
C'est le cas de Miele-Pajot et al., dans J. Mater. Chem., 1999, 9, 3027-3033, qui décrit la formation d'un complexe de titane obtenu par réaction d'un alcoxyde de titane, le tétraisopropoxyde de titane, avec le cis-but-2-ène-l, 4-diol HO-CH2-CH=CH-CH2- OH, lequel complexe est ensuite mis en contact avec un milieu de polymérisation comprenant du styrène et du divinylbenzène, pour donner des mousses en polystyrène dopées au titane. Toutefois, le mode de réalisation décrit dans ce document présente les inconvénients suivants :
le complexe de titane est instable en milieu aqueux, et notamment dans le milieu de polymérisation, cette instabilité pouvant se traduire par un clivage de la liaison métal-ligand ;
- le complexe de titane se dégrade ainsi, lors de la polymérisation de celui-ci avec le styrène et le divinylbenzène, générant ainsi une faible incorporation de titane dans le matériau polymérique final, le pourcentage massique en titane des matériaux polymériques ne dépassant pas 1,5%. II existe donc un véritable besoin pour des complexes de coordination, qui soient stables en milieu aqueux, et notamment lorsqu' ils sont mis en présence d'un milieu de polymérisation et permettant, de ce fait, l'obtention de matériaux polymériques dopés par des éléments métalliques, dont le taux de dopage est contrôlé et est, du fait de la stabilité des complexes mis en œuvre, directement lié à leur taux d'introduction dans le milieu de polymérisation.
EXPOSÉ DE L' INVENTION
Ainsi, l'invention a trait, selon un premier objet, à un complexe de coordination d'au moins un élément métallique avec au moins un monomère aromatique comprenant au moins un cycle aromatique, lequel cycle comprenant au moins un groupe éthylénique, au moins un groupe hydroxyde -OH, au moins un groupe oxime et les sels de celui-ci, ledit élément métallique étant sous forme d'un alcoxyde métallique.
On précise que, par complexe de coordination, on entend classiquement un édifice polyatomique comprenant l'élément métallique autour duquel des groupes appartenant à au moins un monomère (en l'occurrence, les groupes -OH et oxime) sont liés par des liaisons de coordination, la liaison de coordination étant créée par apport d'un doublet d'électrons appartenant auxdits groupes dans une orbitale vide de l'élément métallique.
Les complexes de coordination de l'invention présentent les avantages suivants :
ils sont stables en milieu aqueux, et notamment sous forme complexé avec des éléments métalliques, cette stabilité résidant dans la stabilité de la liaison métal-ligand des monomères sous forme complexé ;
ils peuvent être polymérisés en vue de donner des matériaux polymériques à taux de dopage contrôlé (ce taux de dopage pouvant être très élevé) , du fait de leur stabilité dans les milieux de polymérisation ;
ils sont polymérisables , éventuellement en présence d'autres comonomères, tant en milieu organique qu'en émulsion (par exemple, un mélange d'eau et d'un ou plusieurs solvants organiques) . Des monomères particuliers entrant dans la constitution des complexes de l'invention répondent à la formule (I) suivante :
Figure imgf000007_0001
(I) dans laquelle :
- Ri est un groupe éthylénique ;
R2, R3, R4, R5 et R6 représentent, indépendamment l'un de l'autre, un atome d'hydrogène, un groupe -OH, un groupe aminé, un groupe -CHO, un groupe oxime, un groupe hydrazone, un groupe carboxyle -COOH, un atome d'halogène, un groupe trialkylsilane, et les éventuels sels de ceux-ci à condition que l'un au moins des groupes R2 à R6 représente un groupe -OH et l'un au moins des groupes R2 à R6 représente un groupe oxime .
Avant d'entrer plus en détail dans la défintion des monomères de l'invention, nous précisons les définitions suivantes.
Par groupe aminé, on entend, classiquement, un groupe aminé primaire -NH2, un groupe aminé secondaire (à savoir, un groupe aminé dont l'un des atomes d'hydrogène initialement porté par l'atome d'azote est substitué par un autre groupe, tel qu'un groupe alkyle) ou un groupe aminé tertiaire (à savoir, un groupe aminé dont les deux atomes d'hydrogène initialement portés par l'atome d'azote sont substitués par un autre groupe, tel qu'un groupe alkyle) .
Par groupe oxime, on entend classiquement un groupe comprenant la fonction -C=N-OH, par exemple un groupe répondant à la formule -CR'=NOH, où R' représente un atome d'hydrogène, un groupe alkyle, un groupe aryle, un groupe alkylaryle, un groupe perfluoroalkyle, un groupe perfluoroaryle, un groupe perfluoroalkylaryle, un groupe acyle, un groupe carbonyle, un groupe trialkylsilane.
Par groupe hydrazone, on entend classiquement un groupe comprenant la fonction -C=N-N-, par exemple, un groupe répondant à la formule -CR'=N-NR"R"', dans laquelle R', R" et R'" représentent, indépendamment, un atome d'hydrogène, un groupe alkyle, un groupe aryle, un groupe alkylaryle, un groupe perfluoroalkyle, un groupe perfluoroaryle , un groupe perfluoroalkylaryle, un groupe acyle, un groupe carbonyle, un groupe trialkylsilane.
Par atome d'halogène, on entend, selon l'invention un atome choisi parmi le fluor, le chlore, le brome et l'iode.
Par groupe alkyle, on entend, classiquement, selon l'invention, dans ce qui précède et ce qui suit, un groupe alkyle linéaire ou ramifié comprenant de 1 à 20 atomes de carbone, un groupe cyclique comprenant de 3 à 20 atomes de carbones. On peut citer parmi ces groupes le groupe méthyle, éthyle, n-propyle, i-propyle, n-butyle, n-dodécanyle, i-butyle, t-butyle, cyclopropyle, cyclohexyle. Ces groupes peuvent comprendre dans leur chaîne un ou plusieurs atomes choisis parmi 0, S, Se et/ou N.
Par groupe aryle, on entend, classiquement, selon l'invention dans ce qui précède et ce qui suit, un groupe de 6 à 20 atomes de carbone. On peut citer, parmi ces groupes, le groupe benzyle, naphtyle, tolyle, biphényle .
Par groupe alkylaryle, on entend, classiquement, selon l'invention, dans ce qui précède et ce qui suit, un groupe aryle de même définition que celle donnée précédemment, ledit groupe étant substitué par au moins une chaîne alkyle, pouvant comporter un ou plusieurs atomes d'O, de N, Se et/ou S.
Par groupe perfluoroalkyle, perfluoraryle, perfluoroalkylaryle, on entend des groupes dont les atomes d'hydrogène sont totalement substitués par des atomes de fluor (les alkyles, aryles répondant à la même définition que celle donnée précédemment) . Par exemple, on peut citer le trifluorométhyle -CF3, le perfluoroéthyle, le perfluorobutyle, le perfluoropropyle, le perfluoropentyle, le perfluorophényle CeF5-, le perfluorobiphényle, le perfluorobenzyle .
Comme mentionné ci-dessus, les monomères comportent au moins sur un cycle aromatique au moins un groupe -OH et au moins un groupe oxime situé sur ledit cycle aromatique.
De préférence, le groupe -OH et le groupe oxime sont situés en position ortho l'un de l'autre sur un même cycle aromatique, par exemple, sur un cycle phényle .
Ainsi, un monomère particulier répond à la formule (II) suivant
Figure imgf000010_0001
(II)
Les monomères conformes à l'invention peuvent être élaborés simplement à partir de composés de départ peu onéreux, notamment des composés naturels tels que la salicylaldéhyde .
Ainsi, en partant de la salicylaldéhyde, on peut réaliser le monomère particulier mentionné ci- dessus par les simples étapes suivantes :
- une étape d' halogénation par substitution électrophile d'un atome d'hydrogène porté par le groupe phényle de la salicylaldéhyde, cette étape pouvant consister en une étape d' iodation par action sur la salicylaldéhyde d'un sel d'iode (tel que l'iodure de chlore) en milieu acétique, moyennant quoi l'on obtient la 5-iodosalicylaldéhyde ;
une étape de formation de la fonction oxime par réaction de 1 ' hydroxylamine sur la 5- iodosalicylaldéhyde, moyennant quoi l'on obtient la 5- iodosalicylaldoxime ; une étape d' introduction du groupe éthylénique par réaction de la 5-iodosalicylaldoxime avec un composé vinylétain en présence d'un catalyseur à base de platine (tel que Pd(PPh3)4 avec Ph indiquant un groupe phényle) .
Un tel procédé peut être résumé par le schéma réactionnel suivant :
Figure imgf000011_0001
De façon générale, en partant d'un composé comprenant un cycle aromatique (par exemple, des dérivés du styrène, la salicylaldéhyde, la salicylaldoxime, le phénol) , il est tout à fait à la portée de l'homme du métier, par des techniques de synthèse simples, d'introduire les groupes primordiaux des monomères de l'invention, à savoir, si ces groupes ne sont pas déjà présents dans les composés de départ, les groupes éthylénique, hydroxyle et/ou oxime.
Les monomères peuvent être fabriqués, dans des conditions douces, notamment lorsqu'il s'agit d' introduire un groupe éthylénique sur un groupe phényle halogéné, cette introduction pouvant être réalisée à pression atmosphérique avec un léger chauffage (par exemple, au maximum 50 °C) .
L'élément métallique susmentionné peut être un métal alcalin, un métal alcalino-terreux, un métal de transition, tel que Ti, Zr, Hf, V, Nb, Ta, un lanthanide, un actinide ainsi que les éléments Al, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi ou Po, cet élément métallique pouvant se présenter d'un alcoxyde métallique .
A titre d'exemples, on peut citer les alcoxydes de titane, tels que 1 ' isopropoxyde de titane, l'éthoxyde de titane, les alcoxydes de zirconium, tels que le n-butoxyde de zirconium, les alcoxydes de niobium, tels que l'éthoxyde de niobium.
Les complexes de coordination susmentionnés peuvent être obtenus par mise en contact des monomères tels que définis ci-dessus, éventuellement sous forme de sels, avec un alcoxyde métallique.
La réaction de formation des complexes peut être effectuée en milieu organique hydraté ou anhydre, en présence d'une atmosphère ambiante ou saturée en azote ou argon.
Des complexes de coordination spécifiques conformes à l'invention peuvent se présenter sous forme de clusters comprenant une ou plusieurs molécules de monomères entourant un ou plusieurs éléments métalliques sous forme d' alcoxydes métalliques.
A titre d'exemples, on peut citer des clusters répondant aux formules (III) et (IV) suivantes :
Figure imgf000013_0001
(III) avec M représentant un élément métallique, tel que Ti, et R représentant un groupe alkyle, tel qu'un groupe isopropyle, un groupe éthyle ;
Figure imgf000013_0002
avec M représentant un élément métallique, tel que Zr, Nb et R représentant un groupe alkyle, tel qu'un groupe n-butyle, un groupe éthyle.
Les complexes de l'invention sont destinés à être utilisés pour la réalisation de matériaux polymériques dopés par au moins un élément métallique.
Ainsi, l'invention a trait, selon un troisième objet, à un procédé de préparation d'un matériau polymérique dopé par au moins un élément métallique comprenant une étape de polymérisation d'au moins un complexe de coordination tel que défini ci- dessus .
Le procédé de l'invention présente ainsi les avantages suivants :
- il permet l'incorporation, dans des matériaux polymériques , d'une large diversité d'éléments métalliques, du fait que la liaison entre les éléments métalliques et le ou les monomères s'effectue par liaison de coordination ;
- il permet une répartition de l'élément métallique à l'échelle atomique ;
il permet une incorporation de taux élevés d'élément métallique, ledit taux étant fonction de la quantité de complexe de coordination mis en jeu lors de l'étape de polymérisation.
Classiquement, l'étape de polymérisation du procédé de l'invention se déroule, outre la présence du complexe de coordination, en présence éventuellement d'un initiateur de polymérisation et éventuellement d'un solvant porogène et d'un ou plusieurs comonomères.
Le mode de polymérisation peut être de tout type, tel que la polymérisation thermique (par exemple, en chauffant de 50 à 150°C), tel que la polymérisation photochimique en présence d'ultra-violet.
L'initiateur de polymérisation peut être un amorceur radicalaire classiquement choisi parmi les composés peroxydes, azonitriles (tel que le 2,2'- azobisisobutyronitrile) , azoesters, azoamides.
L'initiateur peut être introduit, dans le milieu de polymérisation, selon des quantités variables, par exemple, selon des quantités pouvant aller de 0 à 50% massique, par rapport à la masse totale de monomères mis en jeu.
Le solvant porogène peut être un solvant organique polaire, apolaire et peut être choisi parmi les solvants éthers (tels que le tétrahydrofurane) , le diméthylsulfoxyde, des solvants phthalates (tels que le diméthylphthalate, le dibutylphthalate) , des solvants alcooliques (tels que le méthanol, l'éthanol), des solvants aromatiques (tels que le toluène, le fluorobenzène) , des solvants cétones.
L'étape de polymérisation peut être réalisée en présence d'un ou plusieurs comonomères, lesdits comonomères étant, généralement différent des monomères entrant dans la constitution des complexes de coordination.
Ces comonomères peuvent être choisis parmi les monomères styréniques ou les monomères acrylates.
Avantageusement, les comonomères comprennent au moins deux groupes éthyléniques , assurant ainsi un rôle d'agent de réticulation . Les matériaux ainsi obtenus présentent une bonne tenue mécanique .
Des comonomères susceptibles d'être utilisés peuvent être des monomères styréniques de formule (V) suivante :
Figure imgf000015_0001
dans laquelle les (6-n) R , identiques ou différents, représentent un atome d'hydrogène, un groupe alkyle, un groupe aryle, un groupe -O-aryle, un groupe -O-alkyle, un groupe acyle, un groupe alkylaryle, un atome d'halogène, lesdits groupes alkyle, aryle, alkylaryle, -O-aryle, -O-alkyle étant éventuellement perfluorés et n est un entier allant de 1 à 3, de préférence, n étant égal à 2.
En particulier, un comonomère approprié peut être le divinylbenzène, en particulier le 1,4- divinylbenzène .
Des comonomères susceptibles d'être utilisés peuvent être également des composés acrylates de formule (VI suivante :
Figure imgf000016_0001
dans laquelle R représente un groupe alkyle, R représente H ou un groupe alkyle et n étant un entier allant de 1 à 3.
En particulier, un comonomère approprié de ce type peut être le triméthylolpropanetriacrylate (connu sous l'abréviation TMPTA) de formule suivante :
Figure imgf000016_0002
Classiquement, l'étape de polymérisation est réalisée à une température allant de 40 à 100°C. Selon un mode particulier de l'invention, l'étape de polymérisation consiste en la copolymérisation d'un complexe de coordination de formule suivante :
Figure imgf000017_0001
avec du divinylbenzène, iPr signifiant isopropyle ou encore avec du triméthylolpropanetriacrylate (connu sous l'abréviation TMPTA) .
Après l'étape de polymérisation, un gel est obtenu, correspondant à un réseau tridimensionnel, dont la structure est imprégnée par le solvant. Le gel, une fois synthétisé, doit être séché, afin d'obtenir le matériau polymérique dopé sec.
Ainsi, le procédé comprend avantageusement une étape de séchage du gel obtenu, cette étape étant avantageusement une étape de séchage supercritique au CO2. Pour ce faire, cette étape de séchage supercritique au CO2 peut être précédée d'une étape d'échange de solvant consistant à remplacer le solvant présent dans les pores du gel par un solvant miscible au CO2. Cette étape de séchage supercritique au CO2 permet notamment de respecter l'intégrité physique de la mousse. L'on obtient, grâce au procédé de l'invention, des matériaux polymériques dopés par un élément métallique, présentant un pourcentage élevé d'élément métallique (pouvant être supérieur à 20% massique) et avec une répartition à l'échelle moléculaire de l'élément métallique au sein du matériau .
Ainsi, l'invention a trait à des matériaux polymériques dopés par au moins un élément métallique susceptibles d'être obtenus par un procédé tel que défini ci-dessus, les matériaux se présentant classiquement sous forme de mousses.
Ces matériaux peuvent être caractérisés par une masse volumique allant de 3 à 250.10~3 g. cm-3 et une surface spécifique pouvant aller jusqu'à 880 m2/g.
Ces matériaux peuvent être utilisés dans de nombreux domaines nécessitant la mise en œuvre de matériaux dopés par des éléments métalliques et notamment dans l'élaboration d'éléments de cibles laser utilisés, en particulier, dans des expériences de fusion par confinement inertiel.
Ils peuvent être aussi utilisés en tant que catalyseur, en tant que matériaux luminescents ou en tant que matériaux magnétiques.
En particulier, ils peuvent être utilisés en tant qu'élément de cible laser.
Enfin, ils peuvent être utilisés en tant que matériaux à empreinte ionique. Pour ce faire, les matériaux dopés obtenus par le procédé de l'invention peuvent être soumis à un traitement acide, destiné à éliminer une partie des éléments métalliques complexés dans ledit matériau. Les sites vacants constituent ainsi des empreintes spécifiques de l'élément spécifique du métal initialement introduit. De ce traitement, il en résulte un matériau dit « à empreinte ionique », capable de piéger sélectivement l'élément métallique « imprimé » lors d'une mise en contact avec un fluide comprenant ledit élément métallique. Ce type de matériaux peut ainsi être utilisé pour l'extraction sélective de métaux, notamment, lors du retraitement d'effluents de combustibles nucléaires, tel que la séparation des lanthanides, ou encore la décontamination de fluides biologiques.
L'invention va, à présent, être décrite en référence aux exemples suivants donnés à titre illustratif et non limitatif.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
EXEMPLE 1
Le présent exemple illustre la préparation d'un monomère de formule (II) suivante :
Figure imgf000019_0001
(II) monomère est réalisé selon le schéma s nthèse suivant :
Figure imgf000020_0001
AcOH signifiant acide acétique, MeCN signifiant acétonitrile, Ph signifiant phényle, et Bu signifiant n-butyle .
Ainsi la première étape consiste à réaliser de la 5-iodosalicylaldéhyde à partir de la salicylaldéhyde .
Dans un bicol de 500 mL muni d'un réfrigérant sont placés sous agitation 160 mL d'acide acétique glacial et 10,4 mL (100 mmol) de salicylaldéhyde. Une solution de 10 g (1,1 éq., 110 mmol) de monochlorure d'iode dissous dans un minimum d'acide acétique est ensuite ajoutée au mélange. La réaction est maintenue sous agitation à T=40°C pendant 72 heures. Le solvant est ensuite évaporé. Le résidu est repris dans 100 mL de dichlorométhane, lavé avec 100 mL d'une solution aqueuse saturée en thiosulfate de sodium, 100 mL d'une solution saturée de chlorure de sodium NaCl et 150 mL d'eau distillée. La phase organique est séchée sur MgSC , évaporée et le résidu est recristallisé pendant 24 heures dans un minimum de dichlorométhane. Les caractéristiques du produit obtenu sont les suivantes :
Aspect : poudre jaune
Rendement : 50%
Point de fusion: 104 °C.
RMN XH (solvant CDC13) δ : 6,80 (1H, d, j=10Hz); 7,72 (1H, dd, j=2, 5Hz/10Hz) ; 7,84 (1H, d, j=2,5Hz); 9,82 (1H, s); 10,70 (1H, s)
RMN13C (solvant CDC13) δ : 80,81; 120, 60; 122, 96; 142,26; 145,69; 161,60; 195,82.
La deuxième étape consiste à réaliser de la 5-iodosalicylaldoxime à partir de la 5-iodosalicyl- aldéhyde préparée préalablement.
Pour ce faire, 35 mmol (3,5 éq., 2,40 g) de chlorhydrate d' hydroxylamine sont ajoutés à une solution de 4 g de K2CO3 (35 mmol, 3,5 éq.) et de 5- iodosalicylaldéhyde (10 mmol, 2,50 g) dans 50 mL d' acétonitrile . Le mélange est chauffé à 70°C sous agitation pendant une nuit.
En fin de réaction, l'excès de K2CO3 est retiré par filtration, le filtrat est évaporé, le résidu est repris dans 250 mL d'eau, puis de l'acide chlorhydrique est introduit délicatement jusqu'à atteindre un pH de 4. La solution est ensuite extraite au dichlorométhane . La phase organique est séchée sur MgSC , filtrée puis le solvant est évaporé. Le solide est ensuite purifié par filtration sur silice (éluant : Heptane/Et2<0 75/25) puis le filtrat est évaporé.
Les caractéristiques du produit obtenu sont les suivantes :
Aspect : poudre blanche Rendement : 95%
Point de fusion: 134 °C
RM 1H (solvant CDC13) δ : 6,80 (1H, d,j=8Hz); 7,48 (1H, d,j=2Hz); 7,55 (1H, dd, j=2Hz/8Hz); 7,60 (H, s); 8,16 (1H, s) ; 9, 85 (1H, s) .
RMN13C (solvant CDC13) δ : 80,1; 117,8; 118,2; 138,2; 139,1; 151,2; 156,2.
La troisième étape consiste enfin à réaliser de la 5-vinylsalicylaldoxime à partir de la 5- iodosalicylaldoxime préparée préalablement.
Pour ce faire, dans un ballon de 100 mL, séché dans les conditions de Grignard et purgé à l'argon sont introduits, successivement, sous agitation et dans l'ordre 3,94 g (15 mmol) de 5- iodosalicylaldoxime, 30 mL de toluène anhydre, 879 mg (5% mol) de Pd(PPh3)4 et 6,60 mL de vinylétain CH2=CH- SnBu3 (Bu signifiant n-butyle) . Le mélange est dégazé, purgé à l'argon et chauffé à 70°C sous forte agitation pendant 72 heures.
En fin de réaction, la solution est filtrée sur célite (avec le solvant Et20) , le précipité se formant est éliminé par filtration, les solvants sont évaporés et le résidu est purifié par colonne flash (éluants : 400 mL d'heptane, 500 mL d'un mélange heptane/Et20 95 :5 et heptane/Et20 90 :10).
Les caractéristiques du produit obtenu sont les suivantes :
Aspect : cristaux blancs
Rendement : 51%
Point de fusion: 107 °C RM 1H (solvant CDC13) δ : 5,16 (1H, d, j=14Hz); 5,60 (1H, d, j=22,5Hz); 6,64 (1H, dd, j =13Hz / 22 , 5Hz ) ; 6,96 (1H, d, j=8Hz); 7,21 (1H, d, j=2Hz); 7,39 (1H, dd, j=8Hz/2Hz); 7,59 (1H, s); 8,24 (1H, s); 9,95 (1H, s) RMN13C (solvant CDC13) δ : 111,78; 115,77; 116,51; 128,29; 128,55; 129,30; 135,04; 152,53; 156,42.
EXEMPLE 2
Cet exemple a trait à la préparation d'un complexe formé par deux molécules du monomère préparé selon l'exemple 1 avec du titane sous forme d' alcoxyde ( 1 ' isopropoxyde de titane) : la 5-vinylsalicyl- aldoximatotitane d' isopropoxyde de formule suivante :
Figure imgf000023_0001
iPr signifiant isopropyle.
Dans un monocol de 15 mL est introduit 1,25 g (7,5 mmol) de 5-vinylsalicylaldoxime, 8 mL de toluène anhydre et 3,25 g (1,5 éq ; 11,25 mmol) d' isopropoxyde de titane. Le mélange est purgé à l'argon et chauffé à 50°C sous forte agitation pendant 3 heures. En fin de réaction, le solvant est évaporé. Afin d'éliminer toute trace de toluène résiduel, le résidu rouge est dilué dans 5 mL d' éther diéthylique et est à nouveau évaporé.
Les caractéristiques du produit obtenu sont les suivantes :
Aspect : solide orangé
Rendement : 93%
Point de fusion: 128,8 °C
RM 1H (solvant toluène D8) : δ 0,99 (12H, m); 1,52 (36H, m); 4,60 (2H, sept); 4,95 (2H, sept.); 5,04 (2H, sept.); 5,18 (2H, sept.); 5,40 (2H, d, j=22Hz); 6,50 (2H, dd, j=12, 5Hz/22Hz) ; 6,80 (2H, d, j=12,5Hz); 6,98 (2H, d, j=8Hz); 7,01 (2H, d, j=2Hz); 7,20 (2H, dd, j=8Hz/2Hz); 8,15 (20H, s)
RMN13C (solvant toluène D8) : δ 24, 60; 78,15; 109, 98; 117,86; 119,86; 127,93; 129,34; 135,62; 136,64; 152,93; 170, 12
Analyse élémentaire: %massique Ti: 15,8 ±0.7% (15,3% théorique)
Spectrométrie de Masse Haute Résolution (HRMS) : 939,3462 (939,3456 théorique); erreur +0.6 ppm
EXEMPLE 3
Cet exemple a trait à la préparation d'un complexe formé par deux molécules du monomère préparé selon l'exemple 1 avec du titane sous forme d' alcoxyde (l'éthoxyde de titane) : la 5-vinylsalicyl- aldoximatotitane éthoxide de formule suivante :
Figure imgf000025_0001
Dans un monocol de 5 mL est introduit 328 mg (2 mmol) de 5-vinylsalicylaldoxime, 2 mL de toluène anhydre et 0,629 mL (1,5 éq ; 3 mmol) d' éthoxyde de titane. Le mélange est purgé à l'argon et agité pendant 3 heures à température ambiante. En fin de réaction, le solvant est évaporé. Afin d'éliminer toute trace de toluène résiduel, le résidu rouge est dilué dans 5 mL d' éther diéthylique et est à nouveau évaporé .
Les caractéristiques du produit obtenu sont les suivantes :
Aspect : solide orangé
Rendement : 75%
RM 1H (solvant toluène D8) : δ 0,84 (6H, m); 1,26 (6H, m); 1,57 (12H, m); 4,15 (4H, quad.); 4,55 (8H, m); 4,85 (4H, quad.); 4,95 (4H, d) ; 5,40 (2H, d, j=22Hz); 6,50 (2H, dd, j=12, 5Hz/22Hz) ; 6,80 (2H, d, j=12,5Hz); 6,98 (2H, d, j=8Hz); 7,01 (2H, d, j=2Hz); 7,20 (2H, dd, j=8Hz/2Hz); 8,15 (20H, s)
RMN13C (solvant toluène D8) : δ 18,45; 71,56; 104,91; 115,80; 119,71; 126,39; 128,03; 135,48; 136,64; 157,57; 162, 06 EXEMPLE 4
Cet exemple a trait à la préparation d'un complexe formé par deux molécules du monomère préparé selon l'exemple 1 avec du zirconium sous forme d' alcoxyde (le n-butoxyde de zirconium) : la 5- vinylsalicylaldoximatozirconium n-butoxide de formule suivante :
Figure imgf000026_0001
nBu signifiant n-butyle.
Dans un monocol de 5 mL purgé à l'argon est introduit 164 mg (1 mmol) de 5-vinylsalicylaldoxime solubilisé dans 2 mL de n-butanol anhydre et 0,5 mL d'une solution de n-butoxyde de zirconium à 80% massique dans le n-butanol. Le mélange est purgé à l'argon et est agité vigoureusement 2 heures à température ambiante.
En fin de réaction, le précipité jaune obtenu est isolé par filtration et rincé avec 2*10 mL de n-butanol.
Les caractéristiques du produit obtenu sont les suivantes :
Aspect : solide jaune
Rendement: 41% RM 1H (solvant DMSO D6) : δ 0,86 (12H, t) ; 1,35 (16H, m) ; 3,37 (4H, t) ; 5,11 (2H, d) ; 5,62 (2H, d) ; 6,63 (2H, dd) ; 6,85 (2H, d) ; 7,34 (2H, dd) ; 7,58 (2H, d) ; 8,32 (2H, s); 10,22 (1H, s); 11,38 (1H, s)
RMN13C (solvent DMSO D6) : δ 19,47; 24, 26; 40, 30; 66, 00; 117,42; 121,89; 123,90; 131,29; 133,77; 134,33; 141,54; 152,87; 161,47
EXEMPLE 5
Cet exemple a trait à la préparation d'un complexe formé par deux molécules du monomère selon l'exemple 1 avec du niobium sous forme d' alcoxyde (l'éthoxyde de niobium): la 5-vinylsalicyl- aldoximatoniobium V) éthoxide de formule suivante :
Figure imgf000027_0001
Et signifiant éthyle.
Dans un monocol de 5 mL purgé à l'argon sont introduits 164 mg (1 mmol) de 5-vinylsalicyl- aldoxime solubilisés dans 1,5 mL d'éthanol absolu.
Le mélange est dégazé, puis 160 mg de Nb(OEt) 5 sont introduits. Le mélange est purgé à l'argon et est agité vigoureusement une nuit à température ambiante. En fin de réaction, le solvant est évaporé. Le solide rouge résiduel est ensuite conservé sous atmosphère inerte (N2) .
Aspect : solide rouge
Rendement : 43%
RM 1H (solvant DMSO D6) : δ 1,05 (6H, t) ; 3,43 (4H, m) ; 5,09 (2H, d) ; 5,64 (2H, d) ; 6,65 (2H, dd) ; 6,86 (2H, d) ; 7,37 (2H, dd) ; 7,57 (2H, d) ; 8,31 (2H, s); 10,20 (1H, s); 11,35 (1H, s)
RMN13C (solvant DMSO D6) : δ 19,16; 56, 74; 112,37; 117,02; 119,07; 126,32; 128,74; 129,60; 136,55; 147,72; 156, 27
EXEMPLE 6
Cet exemple illustre la préparation d'un matériau polymérique obtenu par copolymérisation d'un complexe préparé selon l'exemple 2 avec du divinylbenzène en présence d'un solvant porogène : le dibutylphtalate (DBP) .
Le mélange de monomères est préparé selon les deux méthodes suivantes.
Méthode A
Dans un pilulier de 25 mL muni d'un agitateur et purgé à l'argon est introduit 1 g d'un mélange comprenant le complexe préparé selon l'exemple 2 et du divinylbenzène, 10 mL de dibutylphtalate, 100 mg d' azoisobutyronitrile et 100 mg de tensioactif SPAN 80. Le mélange est placé sous agitation et subit un dégazage à l'argon pendant 10 minutes. Méthode B
Deux solutions mères sont préparées dans deux piluliers de 25 mL :
la première est composée de 1 g de divinylbenzène, 10 mL de dibutylphtalate, 100 mg d' azoisobutyronitrile et 100 mg de tensioactif SPAN 80 ;
la deuxième est composée de 1 g du complexe préparé selon l'exemple 2, 10 mL de dibutylphtalate, 100 mg d' azoisobutyronitrile et 100 mg de tensioactif SPAN 80.
Les prélèvements des deux solutions sont combinés dans un pilulier de 4 mL muni d'un agitateur selon la concentration en monomère dopé désirée. La solution fille ainsi obtenue est homogénéisée et subit un dégazage à l'argon pendant 3-5 minutes.
La solution de monomères préparée selon la méthode B est introduite dans une série de moules en polypropylène (ou en silicone) préalablement purgés à l'argon. L'ensemble est placé une nuit dans une étuve à 80°C. Les gels de polymère ainsi obtenus sont ensuite démoulés et placés dans des piluliers de 25 mL contenant 15 mL d'éthanol. L'éthanol des piluliers est renouvelé toutes les 48 heures durant une semaine. Cette méthode est dénommée ci-après « méthode de polymérisation en masse ».
La solution de monomères préparée préalablement selon la méthode A est introduite au goutte-à-goutte via une seringue dans un récipient de I L contenant 300 mL d'une solution d'alcool polyvinylique à 88% à 50 g/L et préchauffée à 45°C, de sorte à former une multitude de billes de phase organique à l'intérieur de la phase aqueuse. Le récipient est ensuite placé à l'horizontale, en légère rotation dans un bain marie (à 1 ' évaporateur rotatif) à 85°C pendant trois heures. Les billes de polymère ainsi obtenues sont récupérées, placées dans un pilulier de 25 mL contenant 15 mL d'eau distillée, puis rincées avec 2*15 mL d'eau distillée et 1*15 mL d'éthanol. Les billes sont conservées dans l'éthanol, le solvant étant renouvelé toutes les 48 heures pendant une semaine. Cette méthode est dénommée ci-après « méthode de polymère en émulsion ».
Les gels ainsi obtenus par ces deux méthodes de polymérisation sont ensuite séchés au dioxyde de carbone supercritique, de manière à obtenir des mousses en copolymère.
Différents essais ont été menés avec différents ratios (Complexe de l'exemple 2/DVB) , à savoir des ratios massiques en complexe de 50%, 66%, 75% et 100%, moyennant quoi l'on obtient les pourcentages massiques d'élément titane suivants : 7,65%, 10,1%, 11,47% et 15,3%, les pourcentages précédents correspondant aux pourcentages en masse de titane par rapport à la masse totale de monomères de la solution préparée préalablement (appelé par la suite % massique initial de titane) .
Les mousses obtenues, pour les différents ratios susmentionnés, ont fait l'objet des mesures suivantes : - mesure du pourcentage massique de titane dans les mousses (cette mesure étant effectuée par microanalyse) ;
- mesure de la surface spécifique par la méthode BET pour les mousses obtenues par la méthode de polymérisation en masse.
Les résultats sont regroupés dans le tableau ci-dessous.
Figure imgf000031_0001
Il ressort de ce tableau une teneur très importante de titane dans les mousses obtenues ainsi que des valeurs de surface spécifique très importantes. EXEMPLE 7
Cet exemple illustre la préparation d'un matériau polymérique obtenu par copolymérisation d'un complexe préparé selon l'exemple 2 avec du triméthylolpropanetriacrylate en présence d'un solvant porogène : le dibutylphtalate (DBP) .
Le mélange de monomères est préparé selon la méthode suivante.
Dans un pilulier de 25 mL muni d'un agitateur et purgé à l'argon sont introduits 1 g de mélange comprenant le complexe selon l'exemple 2 et du triméthylolpropanetriacrylate, 10 mL de DBP, 100 mg (10% massique) de tensioactif (SPAN 80) et 100 mg (10% massique) d'AIBN. Le mélange est placé sous agitation et subit un dégazage à l'argon pendant 10 minutes.
Le mélange de monomères préparé ci-dessus est polymérisé selon un procédé de polymérisation en suspension dans une phase continue aqueuse comme explicité ci-dessous.
Préparation de la phase continue : Dans une bouteille en verre de 5 L munie d'un agitateur magnétique sont introduits 2 L d'eau distillée. 105 g d'alcool polyvinylique (85% hydrolysé) sont ensuite ajoutés sous une agitation vigoureuse. Le mélange est chauffé à 60 °C sous agitation jusqu'à ce que la solution soit parfaitement limpide.
Polymérisation : 400 mL de phase continue sont prélevés et introduits dans un récipient cylindrique en verre (bouteille) de 2 L muni d'un rodage. La solution est préchauffée à 45 °C. 1 mL de mélange de polymérisation (préparé selon la méthode A) est ensuite introduit dans une seringue munie d'une aiguille de dimension 0,6x25 cm. La phase de monomères est introduite goutte à goutte, aiguille immergée à l'intérieur de la phase continue, de manière à former des billes de phase organique dispersées dans la phase aqueuse. Le récipient est ensuite fixé horizontalement sur un axe motorisé (par exemple une canule d ' évaporateur rotatif). Celui-ci est placé en rotation lente dans un bain marie à 85 °C pendant 3 h. En fin de polymérisation, le bain-marie est retiré et la rotation est maintenue jusqu'à ce que le milieu refroidisse à une température de -45 °C. Les billes de gel sont prélevées et lavées à 3 reprises avec 20 mL d'eau distillée. Elles sont ensuite conservées pendant une semaine dans des piluliers de 25 mL contenant 20 mL d'éthanol absolu, cette solution d'éthanol étant renouvelée 3 fois au cours de cette période. Les gels sont ensuite récupérés et séchés par CO2 supercritique afin d'obtenir des billes d' aérogels organiques.
Différents essais ont été menés avec différents ratios (Complexe de l'exemple 2/TMPTA) , à savoir des ratios massiques en complexe de 25%, 75%, moyennant quoi l'on obtient les pourcentages massiques d'élément titane respectifs suivants : 6,5% et 19,5% (soit respectivement en % atomique, 1,1 et 3,8% atomique) .

Claims

REVENDICATIONS
1. Complexe de coordination d'au moins un élément métallique avec au moins un monomère aromatique comprenant au moins un cycle aromatique, lequel cycle comprenant au moins un groupe éthylénique, au moins un groupe hydroxyde -OH, au moins un groupe oxime et les sels de celui-ci, ledit élément métallique étant sous forme d'un alcoxyde métallique.
2. Complexe selon la revendication 1, dans lequel le monomère répond à la formule (I) suivante :
Figure imgf000034_0001
dans laquelle :
- Ri est un groupe éthylénique ;
R2, R3, R4, R5 et R6 représentent, indépendamment l'un de l'autre, un atome d'hydrogène, un groupe -OH, un groupe aminé, un groupe -CHO, un groupe oxime, un groupe hydrazone, un groupe carboxyle -COOH, un atome d'halogène, un groupe trialkylsilane, et les éventuels sels de ceux-ci, à condition que l'un au moins des groupes R2 à R6 représente un groupe -OH et l'un au moins des groupes R2 à R6 représente un groupe oxime.
3. Complexe selon la revendication 1 ou 2, dans lequel le monomère comprend au moins un groupe -OH et au moins un groupe oxime situés en position ortho l'un de l'autre sur un même cycle aromatique.
4. Complexe selon l'une quelconque des revendications précédentes, dans lequel le monomère répond à la formule (II) suivante :
Figure imgf000035_0001
(II)
5. Complexe selon l'une quelconque des revendications précédentes, dans lequel l'élément métallique est choisi parmi les métaux alcalins, les métaux alcalino-terreux, les métaux de transition, les métaux lanthanides, les métaux actinides, les éléments Al, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi ou Po .
6. Complexe selon l'une quelconque des revendications précédentes, dans lequel l'élément métallique est le titane.
7. Complexe selon l'une quelconque des revendications précédentes, répondant à l'une des formules (III) et (IV) suivantes :
Figure imgf000036_0001
avec M représentant un élément métallique représentant un groupe alkyle ;
Figure imgf000036_0002
(IV) avec M représentant un élément métallique et R représentant un groupe alkyle.
8. Procédé de préparation d'un matériau polymérique dopé par au moins un élément métallique comprenant une étape de polymérisation d' au moins un complexe de coordination tel que défini selon l'une quelconque des revendications 1 à 7.
9. Procédé selon la revendication 8, dans lequel l'étape de polymérisation est réalisée en présence d'un ou plusieurs comonomères.
10. Procédé selon la revendication 9, dans lequel le ou les comonomères sont choisis parmi les monomères styréniques et les monomères acrylates.
11. Procédé selon la revendication 9 ou 10, dans lequel le ou les comonomères comprennent au moins deux groupes éthyléniques .
12. Procédé selon la revendication 10 ou 11, dans le ou les comonomères répondent à l'une des formules (V) ou (VI) suivantes :
Figure imgf000037_0001
dans lesquelles les (6-n) R , identiques ou différents, représentent un atome d'hydrogène, un groupe alkyle, un groupe aryle, un groupe -O-aryle, un groupe -O-alkyle, un groupe acyle, un groupe alkylaryle, un atome d'halogène, lesdits groupes alkyle, aryle, alkylaryle, -O-aryle, -O-alkyle étant éventuellement perfluorés, R8 représente un groupe alkyle, R9 représente H ou un groupe alkyle et n étant un entier allant de 1 à 3.
13. Procédé selon la revendication 12, dans lequel le comonomère est le divinylbenzène .
14. Procédé selon la revendication 12, dans lequel le comonomère est le triméthylolpropane- triacrylate .
15. Procédé selon l'une quelconque des revendications 8 à 14, comprenant, après l'étape de polymérisation, une étape de séchage supercritique au C02.
16. Procédé selon l'une quelconque des revendications 8 à 15, dans lequel l'étape de polymérisation consiste en la copolymérisation d'un complexe de coordination de formule suivante :
Figure imgf000038_0001
avec du divinylbenzène ou du triméthylolpropane- triacrylate .
17. Matériau polymérique dopé par au moins un élément métallique susceptible d'être obtenu par un procédé tel que défini selon l'une quelconque des définitions 8 à 16.
18. Utilisation du matériau tel que défini à la revendication 17, en tant catalyseur, matériaux luminescents, matériaux magnétiques ou matériaux à empreinte ionique.
19. Utilisation du matériau tel que défini à la revendication 17, en tant qu'élément de cible laser .
PCT/EP2010/067689 2009-11-19 2010-11-17 Complexes de coordination polymerisables et materiaux polymeriques obtenus a partir desdits monomeres WO2011061229A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/509,546 US8822713B2 (en) 2009-11-19 2010-11-17 Polymerizable coordination complexes and polymeric materials obtained from said monomers
JP2012539321A JP2013511488A (ja) 2009-11-19 2010-11-17 重合性配位錯体およびこのモノマーから得られたポリマー性材料
ES10776391.4T ES2661965T3 (es) 2009-11-19 2010-11-17 Complejos de coordinación polimerizables y materiales poliméricos obtenidos a partir de dichos complejos
EP10776391.4A EP2501675B1 (fr) 2009-11-19 2010-11-17 Complexes de coordination polymerisables et materiaux polymeriques obtenus a partir desdits complexes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958190 2009-11-19
FR0958190A FR2952637B1 (fr) 2009-11-19 2009-11-19 Monomeres complexants d'au moins un element metallique et materiaux polymeriques obtenus a partir desdits monomeres

Publications (1)

Publication Number Publication Date
WO2011061229A1 true WO2011061229A1 (fr) 2011-05-26

Family

ID=42288849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/067689 WO2011061229A1 (fr) 2009-11-19 2010-11-17 Complexes de coordination polymerisables et materiaux polymeriques obtenus a partir desdits monomeres

Country Status (6)

Country Link
US (1) US8822713B2 (fr)
EP (1) EP2501675B1 (fr)
JP (1) JP2013511488A (fr)
ES (1) ES2661965T3 (fr)
FR (1) FR2952637B1 (fr)
WO (1) WO2011061229A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017131A1 (fr) * 2014-02-06 2015-08-07 Commissariat Energie Atomique Procede de preparation de materiaux polymeres comprenant un ou plusieurs elements metalliques
WO2015177243A1 (fr) * 2014-05-23 2015-11-26 Commissariat à l'énergie atomique et aux énergies alternatives Procede de preparation de materiaux polymeres comprenant de l'or
CN109438597A (zh) * 2018-11-21 2019-03-08 中国人民解放军国防科技大学 磁性聚二乙烯苯微球树脂及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2816051B1 (fr) * 2013-06-19 2015-11-04 Scg Chemicals Co. Ltd. Catalyseur pour la polymérisation d'oléfines, procédé pour sa préparation et son utilisation
CN103709325B (zh) * 2013-12-23 2015-12-09 河北工业大学 一种磁性铅离子表面印迹聚合物的制备方法
CN103709342B (zh) * 2013-12-23 2015-11-18 河北工业大学 一种磁性镉离子表面印迹聚合物的制备方法
FR3052775B1 (fr) * 2016-06-20 2020-03-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composes aptes a complexer au moins un element metallique et materiaux polymeriques obtenus a partir desdits composes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584988A1 (fr) * 1992-08-20 1994-03-02 Zeneca Limited Procédé de préparation de dérivés d'aldoxime salicylique

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749811B2 (en) * 1998-04-28 2004-06-15 The Johns Hopkins University Molecularly imprinted polymer solution anion sensor
US6599414B1 (en) * 2001-08-07 2003-07-29 Cognis Corporation Solvent extraction processes for metal recovery
CN101704910B (zh) * 2009-11-25 2011-08-03 中国石油天然气股份有限公司 一种过渡金属烯烃聚合催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584988A1 (fr) * 1992-08-20 1994-03-02 Zeneca Limited Procédé de préparation de dérivés d'aldoxime salicylique

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE BEILSTEIN [online] BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; 1903, XP002590737, Database accession no. BRN 197381 *
DIAZ F R ET AL: "Synthesis and characterization of polymers derived from salicylaldoxime and their corresponding chelates with copper(II) or iron(III)", BOLETIN DE LA SOCIEDAD CHILENA DE QUIMICA, SOCIEDAD CHILENA DE QUIMICA, CONCEPCION, CL, vol. 36, no. 4, 1 January 1991 (1991-01-01), pages 253 - 258, XP009135740, ISSN: 0366-1644 *
FREUND ET AL, CHEMISCHE BERICHTE, vol. 36, 1903, pages 1533, ISSN: 0002-7864 *
SOUTHARD GLEN E ET AL: "Heck Cross-Coupling for Synthesizing Metal-Complexing Monomers", SYNTHESIS, GEORG THIEME VERLAG, STUTTGART, DE LNKD- DOI:10.1055/S-2006-942471, no. 15, 1 August 2006 (2006-08-01), pages 2475 - 2477, XP009135738, ISSN: 0039-7881 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017131A1 (fr) * 2014-02-06 2015-08-07 Commissariat Energie Atomique Procede de preparation de materiaux polymeres comprenant un ou plusieurs elements metalliques
WO2015118116A1 (fr) * 2014-02-06 2015-08-13 Commissariat à l'énergie atomique et aux énergies alternatives Procede de preparation de materiaux polymeres comprenant un ou plusieurs elements metalliques
US10040885B2 (en) 2014-02-06 2018-08-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for preparing polymeric materials comprising one or several metal elements
WO2015177243A1 (fr) * 2014-05-23 2015-11-26 Commissariat à l'énergie atomique et aux énergies alternatives Procede de preparation de materiaux polymeres comprenant de l'or
FR3021322A1 (fr) * 2014-05-23 2015-11-27 Commissariat Energie Atomique Procede de preparation de materiaux polymeres comprenant de l'or
US10030114B2 (en) 2014-05-23 2018-07-24 Commissariat à l'énergie atomique et aux énergies alternatives Method for producing polymer materials comprising gold
CN109438597A (zh) * 2018-11-21 2019-03-08 中国人民解放军国防科技大学 磁性聚二乙烯苯微球树脂及其制备方法和应用

Also Published As

Publication number Publication date
FR2952637B1 (fr) 2013-02-15
US8822713B2 (en) 2014-09-02
ES2661965T3 (es) 2018-04-04
FR2952637A1 (fr) 2011-05-20
US20120217432A1 (en) 2012-08-30
EP2501675B1 (fr) 2017-12-06
EP2501675A1 (fr) 2012-09-26
JP2013511488A (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
EP2501675B1 (fr) Complexes de coordination polymerisables et materiaux polymeriques obtenus a partir desdits complexes
EP2203487B1 (fr) Procede de preparation de materiaux polymeriques dopes par des elements metalliques et materiaux obtenus par ce procede
JP2014527089A (ja) リソグラフィーに利用するためのオリゴ糖/ケイ素含有ブロックコポリマー
US9192994B2 (en) Method for producing substrate having dispersed particles of dendrimer compound on the surface thereof, and substrate having dispersed particles of dendrimer compound on the surface thereof
EP2906526B1 (fr) Procede de preparation a hauts rendements de p-(r)calixarenes geants
EP2354171B1 (fr) Matériau polymère fluorocarboné et procédé de synthèse
JP2012207217A (ja) レジスト組成物用樹脂の製造方法
EP3145968B1 (fr) Procede de preparation de materiaux polymeres comprenant de l&#39;or
EP3102619B1 (fr) Procede de preparation de materiaux polymeres comprenant un ou plusieurs elements metalliques
JP5243738B2 (ja) 光分解を利用した高分子ナノ粒子の製造法
WO2000011055A1 (fr) Procede de fabrication de copolymers a architecture controlee et copolymeres obtenus
WO2023180658A1 (fr) Procédé de préparation d&#39;une mousse de polyuréthane
JP2023034894A (ja) Bcpのカプセル化及びプロペランの新規合成方法
JPWO2012029636A1 (ja) 化合物の製造方法
EP2788449A1 (fr) Compositions de matériaux photocommutables
JP2010207773A (ja) カルボニル化合物の製造方法、触媒及びその製造方法
JPH0468025A (ja) アニリン系重合体とそれを使用した光学異性体分割膜およびその製造方法
JP2011001508A (ja) 水溶性ハイパーブランチポリマー誘導体、該誘導体を用いた有効成分保持体、および有効成分保持体の製造方法
Van Schalkwyk Self-assembly of amphiphilic discotic materials
WO2015160194A1 (fr) Capsule polymère sur laquelle sont chargées des particules de métal de transition présentant une excellente dispersibilité dans l&#39;eau et une excellente stabilité, et son procédé de préparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10776391

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13509546

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012539321

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010776391

Country of ref document: EP