WO2011059172A2 - Equipment for improving the efficiency of solar photovoltaic equipment - Google Patents

Equipment for improving the efficiency of solar photovoltaic equipment Download PDF

Info

Publication number
WO2011059172A2
WO2011059172A2 PCT/KR2010/006263 KR2010006263W WO2011059172A2 WO 2011059172 A2 WO2011059172 A2 WO 2011059172A2 KR 2010006263 W KR2010006263 W KR 2010006263W WO 2011059172 A2 WO2011059172 A2 WO 2011059172A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
solar
unit
water
power generation
Prior art date
Application number
PCT/KR2010/006263
Other languages
French (fr)
Korean (ko)
Other versions
WO2011059172A3 (en
Inventor
유상필
Original Assignee
(주)하이레벤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)하이레벤 filed Critical (주)하이레벤
Publication of WO2011059172A2 publication Critical patent/WO2011059172A2/en
Publication of WO2011059172A3 publication Critical patent/WO2011059172A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/70Arrangements for moving spray heads automatically to or from the working position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/0409Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
    • B05B3/0418Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine
    • B05B3/0422Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements
    • B05B3/0431Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements the rotative movement of the outlet elements being reversible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a facility for improving efficiency of a photovoltaic power generation facility, and more particularly, to an efficiency improvement facility for a photovoltaic power generation facility having an excellent cooling and washing effect while efficiently utilizing a limited water resource.
  • the method of using solar energy is largely divided into a method using solar heat and a method using solar light.
  • the method of using solar heat is to heat and generate electricity using water heated by the sun, and the method of using solar light can generate electricity by using the light of the sun to operate various machines and appliances. It is called solar power.
  • a solar cell for condensing sunlight a photovoltaic module that is an assembly of solar cells, and a solar array in which the solar cells are constantly arranged are required.
  • EHP electron-hole pair
  • the efficiency of the photovoltaic module used in the photovoltaic power generation system is the most important factor that determines the economic feasibility of photovoltaic power generation in the range of about 16-18% of polycrystalline silicon material which is currently mainstream.
  • maintenance and repair through various devices are essential.
  • an efficiency improving device of a photovoltaic power generation facility is recently used.
  • Such an efficiency improving device is a method of cleaning a solar panel with a mechanical driving force such as a brush of a vehicle, and a water hose on the upper part of the solar panel. By connecting the water flowing through the solar panel washing method, and a separate water jet type to wash the solar panel by spraying water at a strong pressure through a separate nozzle.
  • the method of using the brush has to make a separate brush suitable for maintaining the photovoltaic facility, and when the solar panel is overheated, it does not provide a special way to cool it, and water by gravity through the water hose Flowing method has the disadvantage that it does not have a great effect on dirt removal or snow removal. Therefore, in recent years, the use of a water jet type to cool and wash the solar panel by spraying the cooling water having a hydraulic pressure through the nozzle has been attempted.
  • the number of nozzles for cooling and washing increases in proportion to this, so that limited water resources are injected by spraying water toward the photovoltaic module at an appropriate water pressure without dropping the space spatially. There is a challenge to obtain sufficient cooling and cleaning efficiency while using efficiently.
  • the present invention has been invented to solve such a problem, the photovoltaic power generation equipment consisting of a plurality of solar modules divided into a plurality of sectors and spraying the coolant for each sector, the coolant spraying means reciprocating rotation to spray the coolant
  • the coolant spraying means reciprocating rotation to spray the coolant
  • the present invention maintains or improves the efficiency of the photovoltaic power generation equipment by spraying a collision jet of cooling water to a photovoltaic power generation equipment composed of a plurality of solar modules to collect electricity to generate electricity
  • An efficiency improving apparatus of a photovoltaic power generation facility comprising: a storage tank for storing cooling water; Cooling water injection means is installed so as to correspond to each of the plurality of solar modules, spraying the jet of the coolant to the photovoltaic module while reciprocating rotation; Cooling water supply pipe for supplying the cooling water supplied from the storage tank to the cooling water injection means; A pump for pumping the cooling water stored in the storage tank and supplying the cooling water to the cooling water supply pipe; At least two valves for dividing the plurality of solar modules into two or more sectors and controlling opening and closing of the cooling water supply pipe connected to the injection means corresponding to the solar modules of each sector; And a controller for driving the pump and sequentially opening the two or more valves to supply cooling water to the photovoltaic module for
  • the efficiency improving apparatus of the solar power plant may further include a collecting unit for collecting used cooling water or rainwater.
  • the water collecting unit may include a drip tray collecting the cooling water used to be installed at the bottom of the solar module.
  • the water collecting unit may include a water collecting tank installed at a lower portion of the solar module to collect used cooling water.
  • the cooling water supply pipe is preferably embedded in the ground.
  • the cooling water has a flow rate of 30 m / s or more and a pressure of 1.6 kg / cm 2 or more based on the inlet of the cooling water injection means.
  • the efficiency improving apparatus of the solar power generation facility may further include a functional material addition unit for supplying a functional material including a cleaning agent or a freeze protection agent to the cooling water.
  • the efficiency improvement facility may be applied to both the tracked photovoltaic power generation facility and the stationary solar power generation facility.
  • the controller may determine whether it is a driving start time, drive the pump if the driving start time, and open and close the two or more valves sequentially for a predetermined time.
  • the controller determines, for example, whether the measured temperature difference between the temperature of the module and the coolant is greater than or equal to a set value of the difference between the temperature of the module and the coolant, and the measured temperature difference between the temperature of the module and the coolant is the temperature of the module. And if the temperature difference is greater than or equal to the set value of the coolant, the pump may be driven until it is less than that, and the two or more valves may be sequentially opened and closed.
  • the controller may measure the water pressure in the cooling water supply pipe and terminate the starting when the measured water pressure is less than the set minimum pressure or exceeds the maximum pressure.
  • the controller determines whether the rain sensor is on or off, and if it is determined that it is raining, the operation is terminated. If the coolant stored in the storage tank is greater than or equal to the set level, the controller terminates the operation if the temperature is less than the set level. It is judged whether or not the temperature is higher, and the start can be terminated if it is lower than the temperature.
  • the cooling water spraying means may include two or more cylindrical members having a different diameter and connected to each other in a cylindrical manner, the body extending in length as water is supplied from the pipe; And a spraying unit coupled to the body to reciprocate the water transferred from the body and spraying water into the solar module, wherein the spraying unit has a inlet and an outlet formed at both sides thereof so that water is introduced and discharged; A separation plate mounted inside the housing and having first and second flow holes formed therethrough in different directions so that water flowing through the inlet passes and components opposite to each other are formed; A rotation aberration rotatably mounted in the housing to reciprocate rotation in both directions by flow forces in different directions formed as water passes through the first flow hole or the second flow hole; A rotation opening / closing unit which reciprocates in both directions in association with the reciprocating rotation of the rotational aberration and alternately opens and closes the first and second flow holes; A link unit for interlocking the rotation aberration and the rotation opening / closing unit; And an injection unit disposed outside the housing and communicating with the internal space of the
  • the diameters of the cylindrical members are sequentially increased in order of joining from the injection side, and in order to prevent separation between the plurality of cylindrical members, a cap is formed at the top of the larger cylindrical member of the two cylindrical members to be joined.
  • the first locking jaw may be disposed at a lower end of the cylindrical member having a small diameter.
  • the two cylindrical members to be coupled may further include a guide portion protruding on the inner surface of the large diameter cylindrical member and a groove corresponding to the guide portion on the outer surface of the small diameter cylindrical member.
  • the efficiency improving apparatus for photovoltaic power generation facilities divides a photovoltaic power generation facility composed of a plurality of solar modules into a plurality of sectors and sprays coolant for each sector, while the coolant spraying means reciprocally rotates the coolant.
  • spraying it is possible to improve the cooling and washing efficiency by spraying the collision jet of the cooling water with sufficient water pressure while utilizing water resources more efficiently.
  • FIG. 1 is a block diagram showing the efficiency improvement equipment of the photovoltaic power generation equipment according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the efficiency improvement equipment of the photovoltaic power generation equipment according to another embodiment of the present invention.
  • FIG. 3 is a perspective view of the cooling water injection means according to an embodiment of the present invention.
  • FIG. 4 and 5 is a schematic cross-sectional view showing the configuration of the body of the coolant injection means according to an embodiment of the present invention, Figure 4 shows a state in which the body is folded, Figure 5 is a body lengthened by applying water pressure Show the appearance.
  • FIG. 6 is a perspective view of a sealing member included in the body of the coolant injection means and the cap in which the sealing member is coupled according to an embodiment of the present invention
  • FIG. 7 is a cross-sectional view of a sealing member taken along line II-II of FIG. 6 and a cap in which the sealing member is coupled.
  • FIG. 8 is a view showing a hydraulic pressure transmission unit installed in the body of the coolant injection means according to an embodiment of the present invention.
  • Figure 9 is a perspective view schematically showing the shape of the injection portion of the cooling water injection means according to an embodiment of the present invention.
  • FIG. 10 is an exploded perspective view schematically showing the configuration of the injection unit of the cooling water injection means according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing the internal structure of the injection portion of the cooling water injection means according to an embodiment of the present invention.
  • FIG. 12 is a perspective view schematically showing a connection relationship between the internal components of the injection unit of the cooling water injection means according to an embodiment of the present invention.
  • FIG 13 and 14 are perspective views schematically showing the structure of the rotation of the rotation aberration according to an embodiment of the present invention.
  • FIG. 15 is a bottom view schematically illustrating an opening and closing state of first and second flow holes according to an exemplary embodiment of the present invention.
  • FIG. 1 is a block diagram showing the efficiency improvement equipment of the photovoltaic power generation equipment according to an embodiment of the present invention.
  • solar modules 7 are listed, and efficiency improving facilities are installed as facilities for maintaining and managing the solar modules 7.
  • the photovoltaic module 7 is an assembly of a plurality of solar cells. When light enters the photovoltaic module 7 from the outside, the photovoltaic module 7 is housed by the light energy in which electrons of the conduction band of the p-type semiconductor are incident. The excited electrons are excited in a valence band, and the excited electrons form an electron hole pair (EHP) inside the p-type semiconductor, and the electrons in the electron-hole pair thus generated are interposed between the pn junctions. The existing electric field (electron field) is transferred to the n-type semiconductor to supply the current to the outside.
  • EHP electron hole pair
  • the solar module 7 since the solar module 7 is installed outside to collect sunlight, it is exposed to the external environment as it is, and contaminants such as scattering dust, algae secretions, and yellow sand are attached, thereby reducing the amount of collected light, thereby reducing power generation efficiency. Done. In addition, by being continuously exposed to sunlight and heated by solar heat, the internal resistance of the photovoltaic module is increased, which is also a factor for lowering the power generation efficiency.
  • the present invention relates to a facility that can maintain and improve the efficiency of photovoltaic power generation by cooling and washing the photovoltaic module (7).
  • Efficiency improvement equipment of the photovoltaic power generation equipment is a storage tank (1), cooling water injection means (6), cooling water supply pipe (5), pump 25, valves (21, 22, 23, 24) ) And the control unit 3.
  • Cooling water injection means (6) is installed to correspond to each of the solar modules (7) is a means for injecting the cooling water to spray the cooling water to the solar module (7).
  • the impingement jet of cooling water is sprayed on the solar module 7.
  • the impingement jet has excellent heat transfer and mass transfer effects from the fluid to the impingement surface, thereby improving cooling and cleaning effects.
  • the speed of the cooling water is preferably 30 m / s or more and the pressure is 1.6 kg / cm 2 or more based on the inlet of the cooling water injection means for injecting the cooling water into the solar module 7.
  • the inlet of the coolant jetting means refers to the end of the coolant jetting means in which the coolant is injected to the outside.
  • the cooling water spraying means 6 is fixed so that the cooling water is evenly sprayed on the front surface of the solar module 7 while reciprocating left and right, instead of spraying the cooling water only in one direction.
  • cooling water injection means 6 is fixed to spray the cooling water to the front of the photovoltaic module 7, the amount of water that can be used is limited, so the water pressure is not easy to generate a collision jet on the front of the photovoltaic module.
  • spraying the coolant only on a part of the photovoltaic module 7 may increase the water pressure of the coolant to easily generate a collision jet. Cooling and washing efficiency can be improved.
  • Cooling water injection means 6 may have a variety of configurations for injecting the cooling water while reciprocating rotation to the left and right, one exemplary configuration will be described later.
  • the cooling water supply pipe 5 receives the cooling water from the storage tank 1 and supplies the cooling water to the cooling water injection means 6, and a pump 25 is provided to pump the cooling water of the storage tank 1.
  • the cooling water supply pipe 5 is preferably embedded in the ground to maintain the temperature of the cooling water.
  • the cooling water supply pipe 5 may be arranged in various forms in consideration of the terrain, and the plurality of solar modules 7 may be divided into two or more sectors, and the cooling water may be supplied for each injection means corresponding to the solar modules of each sector. It is desirable to be arranged so that it is separated into several branches. Branches of the cooling water supply pipe may also be configured in various ways without limitation. For example, as shown in FIG. 1, the cooling water supply pipes 6 may be arranged by dividing each sector horizontally, as well as FIG. 2. Cooling water supply pipes 6 may be arranged by dividing each sector vertically and horizontally as shown in FIG.
  • Valves 21, 22, 23, and 24 are installed in the cooling water supply pipe 6 to control opening and closing of the cooling water supply pipe 5, and for each branch according to opening and closing of the valves 21, 22, 23, and 24. Cooling water supply and shut off are controlled.
  • the controller 3 is a part for controlling the pump 25 and the valves 21, 22, 23, and 24.
  • the controller 3 drives or stops the pump 25, and opens or closes the valves 21, 22, 23, and 24. Let's do it.
  • the two or more valves 21, 22, 23, 24 are sequentially opened so that the cooling water is supplied to each sector. Through this, the cooling water can be injected to the solar module 7 with sufficient water pressure even with a limited amount of cooling water to improve the cooling and washing efficiency by the collision jet.
  • control unit 3 controls the pump 25 and the valves 21, 22, 23, and 24 is not particularly limited, but is preferably designed to maximize the use efficiency of the cooling water.
  • An example of a control method for improving the use efficiency of the cooling water will be described.
  • the first example is time-based control. Specifically, the control unit 3 determines whether the drive start time, drives the pump 25 if the drive start time, and opens and closes two or more valves (21, 22, 23, 24) sequentially for a set time. . It is possible to set the start time of the driving and the opening times of the valves 21, 22, 23, 24 in consideration of the region where the solar power generation facility is installed and the characteristics of the facility.
  • Another example is temperature control. Specifically, it is determined whether the measured temperature difference between the temperature of the module 7 and the cooling water is equal to or greater than the set temperature difference between the temperature of the module 7 and the cooling water, and the measured temperature difference between the temperature of the module 7 and the cooling water is determined. If the temperature difference between the temperature of the module 7 and the cooling water is greater than or equal to the set value, the pump 25 is driven and the two or more valves 21, 22, 23, and 24 are sequentially opened and closed until the temperature is less than the set value.
  • the temperature difference setting value of the temperature of the module 7 and the cooling water may be set in consideration of the region where the solar power generation facility is installed and the characteristics of the facility.
  • the cooling water supply pipe 5 it is preferable to measure the pressure in the cooling water supply pipe 5 and to terminate the start of the efficiency improving apparatus when the pressure is out of a predetermined pressure range. If the measured pressure exceeds the maximum value of the set pressure range, a problem such as freezing of the coolant occurs in the coolant supply pipe 5, and if the measured pressure does not reach the minimum value of the set pressure range, the coolant supply pipe Since there is no problem such as leakage of water in (5), start-up is stopped to prevent the failure of the equipment and to efficiently use the cooling water.
  • the start-up is terminated. It is possible to judge whether the temperature of 7) is higher than the temperature of the cooling water, and even if the temperature is lower than the temperature of the cooling water, the start of the equipment can be stopped to prevent the failure of the equipment and the use of the cooling water can be more efficient.
  • the control unit 3 receives various sensing information from the sensing unit 4.
  • the control unit 3 includes a timer 41, a pressure sensor 42, a rain sensor 43, a water level sensor 44, a first temperature sensor (temperature measurement of the module) 45, and a second unit.
  • a temperature sensor (measurement of coolant temperature) 46 may be provided.
  • the efficiency improving apparatus may further include a collecting unit for collecting the cooling water used for reuse.
  • the water collecting unit may be installed in the form of a drip tray so as to be installed at the bottom of the solar module to collect the cooling water, and may also be installed in the form of a water collecting tank to collect the coolant falling from the module on the ground below the solar module. have.
  • the functional material addition unit may be connected to the cooling water supply pipe or the storage tank.
  • a cleaning agent or a freezing agent may be added to improve washing efficiency and prevent freezing of the cooling water supply pipe.
  • the photovoltaic power generation system includes a fixed photovoltaic power generation facility having a light collecting plate fixed thereto, and a tracking photovoltaic power generation facility which tracks sunlight by changing the position or angle of the light collecting plate at a predetermined time. It can be applied to both solar and tracked solar power plants.
  • the cooling water jetting means 6 includes a body 61 and two or more cylindrical members having a diameter different from each other. It is coupled to and includes a spraying portion 62 for reciprocating the cooling water transmitted from the body to spray to the solar module.
  • cooling water injection means 6 Since the cooling water injection means 6 according to the present embodiment has a long length only during operation, it is possible to prevent the efficiency of the photovoltaic power generation equipment from being lowered due to shadows, and the nozzles are reciprocally rotated through a mechanical circulation mechanism so that the solar module has a large area. Coolant can be sprayed on.
  • FIG. 4 and 5 is a schematic cross-sectional view showing the configuration of the body of the coolant injection means 6 according to the present embodiment, Figure 4 shows a state that the body is folded, Figure 5 is a body lengthened by applying water pressure Show the appearance. 4 and 5 show a body including two cylindrical members, the number of cylindrical members can be appropriately adjusted as needed.
  • FIG. 6 is a perspective view of a sealing member included in the body of the coolant injection means 6 and the cap in which the sealing member is coupled according to the present embodiment
  • FIG. 7 is a sealing member taken along the line II-II of FIG. Sectional view of the cap with sealing members engaged.
  • the body 61 may supply a cooling water to the second cylindrical member 82 by connecting a pipe for supplying cooling water to the pipe connection 87.
  • the body 61 of the coolant injection means 6 is coupled to each other so as to extend in a cylindrical manner and has first and second cylindrical members 10A and 10B having different diameters. ), A cap 85 coupled to the top of the second cylindrical member 82, and an elastic member 86 coupled within the cap 85.
  • the cylindrical member is disposed at the top and has a first cylindrical member 81 having a minimum diameter, and a second cylindrical member having a diameter larger than that of the first cylindrical member 81, which is tightly connected below the first cylindrical member 81. And (82).
  • the first cylindrical member 81 is connected to the inlet 121 of the injector housing, the second cylindrical member 82 is connected to the pipe.
  • each cylindrical member is formed in the form of an empty tube so that coolant can be supplied therein.
  • the first cylindrical member 81 is rigidly coupled to the second cylindrical member 82 thereunder, and thus is flexible.
  • a nozzle is connected to an upper end of the first cylindrical member 81 so that the coolant supplied from the inside of the second cylindrical member 82 may be sprayed onto the solar panel.
  • the cap 85 prevents the first cylindrical member 81 from leaving the second cylindrical member 82 when the first cylindrical member 81 extends from the second cylindrical member 82.
  • the cap 85 is composed of an upper portion 93 having a smaller diameter and a lower portion 94 having a larger diameter than the upper portion 93.
  • the first locking jaw 83 is formed at the lower end of the first cylindrical member 81 to be held by the upper bottom surface of the cap when extending from the first cylindrical member 82, thereby preventing departure from the outside.
  • the elastic member 86 is provided to increase the airtightness between the cap 85 and the cylindrical member 10. That is, when the cylindrical member 10 is extended to the outside by the hydraulic pressure of the cooling water supplied to the inside, it is possible to prevent the coolant supplied in the cylindrical member 10 from leaking to the outside.
  • the stretchable member 86 may be formed of rubber, soft plastic, or other material capable of increasing airtightness.
  • the elastic member 86 is formed so as to penetrate the inside thereof, a part is coupled so as to be in close contact with the upper portion 93 of the cap 85 and the other portion is in the bottom surface of the upper portion 93 of the cap 85 It can be combined to be in close contact.
  • the inner surface of the second cylindrical member 82 is further provided with a guide portion 91 to allow the first cylindrical member 81 to extend without rotating left and right by water pressure when supplying coolant into the second cylindrical member 82. It may include.
  • the guide portion 91 protrudes in the second cylindrical member 82, and correspondingly, the first cylindrical member 81 may be grooved.
  • the guide portion 91 and the groove may be engaged with each other, thereby preventing the cylindrical member 10 from rotating left and right.
  • the guide portion 91 is formed on the inner surface of the second cylindrical member 82 and the groove is formed to correspond to the guide portion 91 on the outside of the first cylindrical member 81.
  • the present invention is not limited thereto, and the guide portion 91 may protrude on the outer surface of the first cylindrical member 81, and a groove may be formed on the inner surface of the second cylindrical member 82 to correspond to the guide portion 91. .
  • the shape of the guide portion 91 and the corresponding groove may have a rectangular cross section as shown in the drawing, but the present invention is not limited thereto and prevents left and right rotation of the first cylindrical member 81 and smoothly. Any configuration can be taken as long as the extension of the first cylindrical member 81 is guided.
  • the body 61 may further include an elastic member 89 such as a spring on the outside of the first cylindrical member 81.
  • the elastic member 89 is positioned between the outer surface of the first cylindrical member 81 and the inner surface of the second cylindrical member 82 and formed on the upper bottom surface of the cap 85 and the lower end of the first cylindrical member 81. It is disposed between the two locking jaw (84).
  • the elastic member 89 is attached to the second locking jaw 84 formed at the lower end of the first cylindrical member 10 when the first cylindrical member 81 is extended to the outside by the hydraulic pressure of the coolant supplied therein.
  • the elastic force of the elastic member 89 acts to open the first cylindrical member 81. Restores the original position.
  • FIG 8 is a view showing a hydraulic pressure transmission unit installed in the body 61 of the coolant injection means 6 according to the present embodiment.
  • Body 61 may further include a hydraulic transmission unit 90 in the lower portion of the first cylindrical member 81 in order to more easily extend the first cylindrical member by the hydraulic pressure. .
  • the lower surface of the hydraulic pressure transmission unit 90 is blocked so that when the cooling water is supplied to the body 61 from the pipe, the lower surface immediately receives the hydraulic pressure so that the first cylindrical member 81 may be extended immediately upon supply of the cooling water.
  • the side surface of the hydraulic pressure transmission unit 90 may be drilled in the form of a mesh to prevent dirt from flowing into the first cylindrical valve.
  • FIGS. 4 and 5 are perspective views showing the folded and unfolded state of the body 61 of the coolant injection means 6 according to the present embodiment, respectively.
  • the body 61 is maintained in a contracted state as shown in FIG. 3 before the cooling water is supplied through the pipe.
  • the hydraulic pressure does not work, and thus the elastic force of the elastic member 89 provided outside the first cylindrical member 81 is applied, so that the elastic member 89 is lower than the first cylindrical member 81.
  • Pushing down the second locking step 84 formed in the body 61 is maintained in a contracted state.
  • the hydraulic pressure acts upward, and when the force pushing the first cylindrical member 81 upward by the hydraulic pressure is greater than or equal to the elastic force of the elastic member 50, the cylindrical member ( 10) extends upward as shown in FIG.
  • the solar panels are connected in series, so if any shadow is generated on the solar panels, the efficiency is drastically lowered.
  • the manufacturing efficiency of the photovoltaic power generation can be greatly improved by manufacturing the body 61 in a foldable manner that can be folded and unfolded as in the present invention.
  • FIG. 9 is a perspective view schematically showing the shape of the jetting part of the coolant jetting means 6 according to the present embodiment
  • FIG. 10 is an exploded view schematically showing the configuration of the jetting part of the coolant jetting means 6 according to the present embodiment
  • 11 is a sectional view schematically showing the internal structure of the jetting part of the coolant jetting means 6 according to the present embodiment
  • FIG. 12 is an internal component of the jetting part of the coolant jetting means 6 according to the present embodiment.
  • 13 and 14 are perspective views schematically showing the structure of the rotation of the aberration according to an embodiment of the present invention
  • Figure 15 is a perspective view according to an embodiment of the present invention A bottom view schematically showing the opening and closing states of the first and second flow holes.
  • the injection part 62 of the cooling water injection means 6 is a device for cleaning the solar panel by injecting a fluid, such as cooling water, as shown in FIG. 9 through a separate water supply facility (not shown). It comprises a housing 100 receives the fluid, and the injection unit 600 mounted to the outside of the housing 100, the injection unit 600 for injecting fluid through a mechanical mechanism without a separate electric power It is configured to be rotatable.
  • the injection unit is a component for enabling the injection unit 600 to be rotatable as shown in FIGS. 10 and 11.
  • the housing 100 has an inlet 121 and an outlet 111 formed at both sides in the longitudinal direction so that an accommodation space is formed therein and fluid flows into and discharges from the interior space.
  • the shape of the housing 100 is formed in a hollow cylindrical shape in which both sides are closed, and a separate cylindrical support barrel 130 may be provided inside the housing 100 so that the above components can be stably mounted.
  • the support barrel 130 has a fixed support shaft 131 is formed to rotatably mount the rotation aberration 300 and the opening and closing clutch unit 430 to be described later, the separation plate 200 is formed on the fixed support shaft 131 It can be fixedly mounted.
  • the support barrel 130 is fixedly coupled to one side inner surface of the housing 100 in communication with the inlet 121 to be configured to allow the fluid introduced into the inlet 121 to pass through the interior of the support barrel 130.
  • the support barrel 130 is according to an embodiment of the present invention, and may be configured in such a manner that the fixed support shaft 131 is formed on the inner surface of the housing 100 without the support barrel 130.
  • the housing 100 is coupled to the open body of the housing body 110 and the housing body 110, the outlet 111 is formed on one side of the hollow cylindrical shape of which one surface is open, the housing body 110 and the inlet 121 It may be formed separated into the housing cover 120 is formed.
  • the separating plate 200 may be formed in a circular plate shape to be coupled to the inside of the housing 100 in the transverse direction.
  • the first and second flow holes 210 and 220 having flow paths in different directions so that the fluid flowing into the housing 100 through the inlet 121 pass through the separation plate 200 and the flow direction components in opposite directions are formed. ) Is formed through. That is, the first and second flow holes 210 and 220 are formed such that a direction component, for example, an X direction component and a -X direction component, in which the flow directions of the fluid passing therethrough are opposite to each other, is generated. It will be described later.
  • the rotation aberration 300 is formed in a shape in which a plurality of rotating blades 310 are spaced at equal intervals along the circumferential direction, and the central axis C is inserted into the coupling groove 415 formed in the fixed support shaft 131. And rotatably coupled to each other and disposed adjacent to one side of the separating diaphragm 200 to be rotated by the flow force of the fluid passing through the first and second flow holes 210 and 220 of the separating diaphragm 200. Is configured to.
  • the flow direction of the fluid passing through the first and second flow holes 210 and 220 has components opposite to each other as described above, in which the first and second flow holes 210 and 220 are described below.
  • the rotation aberration 300 is reciprocally rotated in both directions by the flow force of the fluid having the components in the opposite direction passed through the first flow hole 210 or the second flow hole 220 so as to be alternately opened and closed by.
  • the rotation opening / closing unit 400 is rotatably mounted in the housing 100 to reciprocally rotate in conjunction with the reciprocating rotation of the rotation aberration 300, and alternately alternately rotate the first and second flow holes 210 and 220 according to the rotation. It is configured to open and close.
  • the rotation opening and closing unit 400 is interlocked with the rotary aberration 300 by a separate link unit 500, the link unit 500 is a variety of ways through a variety of power transmission mechanical elements, such as a plurality of link plates, chains, belts
  • the link unit 500 according to an embodiment of the present invention may be configured by using a plurality of gears as shown in FIGS. 10 and 11.
  • the injection unit 600 is disposed on the outside of the housing 100 and communicates with the interior space of the housing 100 through the discharge port 111 is configured to inject the fluid discharged from the housing 100.
  • the injection unit 600 is coupled to the rotation opening and closing unit 400 inside the housing 100 rotates integrally with the rotation opening and closing unit 400 and injects fluid. Therefore, since the injection unit 600 rotates and injects the fluid, the fluid is evenly injected to the entire area of the solar panel.
  • the washing apparatus of the solar power plant according to the embodiment of the present invention is supplied with a fluid and the rotation aberration 300 by the flow force of the fluid alternately passed through the first and second flow holes (210, 220) Is reciprocatingly rotated and thus the injection unit 600 rotates to inject fluid. Therefore, the injection unit 600 is configured to be rotatable through a mechanical mechanism without using an additional electric power, so that the energy efficiency is excellent and the structure can perform the washing function of the solar panel having a relatively large size.
  • the separating diaphragm 200 is fixedly mounted to the inside of the housing 100 in a flat shape as described above, and the first and second flow holes 210 and 220 are formed in the separating diaphragm 200.
  • At least one first and second flow holes 210 and 220 are each formed to have a straight flow path formed to be inclined with respect to the thickness direction of the separation plate 200, and at least one first and second flow holes 210 and 220 are inclined directions of the first and second flow holes 210 and 220.
  • Silver may be formed symmetrically with respect to the thickness direction of the separation plate 200.
  • the first flow hole 210 is inclined to form a fluid flow force for rotating the rotation aberration 300 in a counterclockwise direction with reference to FIG.
  • the second flow hole 220 is formed in the rotation aberration ( It may be inclined to form a fluid flow force for rotating the clockwise 300. Accordingly, the fluid passing through the first flow hole 210 forms a flow direction component in the inclined direction of the first flow hole 210 to rotate the rotation aberration 300 counterclockwise, and the second flow hole ( The fluid having passed through 220 forms a flow direction component along the inclined direction of the first flow hole 210 and the second flow hole 220 which are symmetrical with each other to rotate the rotation aberration 300 in a clockwise direction.
  • first and second flow holes (210, 220) are each other along the circumferential direction to the separation diaphragm 200, as shown in Figures 7 to 15 to enhance the fluid flow force for rotating the rotary aberration (300)
  • Each of the first and second flow holes 210 and 220 may be formed in alternating positions along the circumferential direction. Dogs and so on will be variously modifiable.
  • the rotation opening and closing unit 400 is reciprocating in both directions in conjunction with the reciprocating rotation of the rotary aberration 300 and alternately open and close the first and second flow holes (210, 220). Accordingly, the first and second flow holes 210 and 220 are alternately opened and closed by the reciprocating rotation of the rotary opening and closing unit 400, and the fluid flow passing therethrough is alternately opened and closed.
  • the power has components opposite to each other, so that the rotation aberration 300 reciprocates, and the reciprocation of the rotation aberration 300 again generates a circulation mechanism for reciprocating the rotation opening and closing unit 400.
  • this circulation mechanism the reciprocating rotation of the rotary aberration 300 and the rotary opening / closing unit 400 is continuously repeated as long as fluid is supplied into the housing 100.
  • the rotation opening and closing unit 400 is directly connected and coupled to the link unit 500 according to an embodiment of the present invention to rotate in conjunction with the rotation aberration 300
  • the rotary block unit 410 and the rotary block unit 410 are engaged with the rotary block unit 410 to rotate integrally with the rotary block unit 410 and to the separation plate 200 to open and close the first and second flow holes 210 and 220 alternately. It is configured to include an opening and closing clutch portion 430 is contacted.
  • the rotary block 410 is connected to the link unit 500 in accordance with an embodiment of the present invention so as to communicate with the circular rotary plate 411, the through-hole 416 formed in the center portion, the through-hole 416 A connecting sleeve 412 protruding from one surface of the rotating plate 411 to be coupled to the injection unit 600 and the outer side of the rotating plate 411 to be engaged with the opening / closing clutch unit 430 along the longitudinal direction of the housing 100.
  • It may be configured to include an extended formed locking bar 413, the rotating plate 411, the connecting sleeve 412 and the locking bar 413 is preferably formed integrally, but each formed separately and coupled to each other It can also be produced.
  • the connecting sleeve 412 is configured to be detachably coupled to the injection unit 600, the detachable coupling method may be applied to the screw coupling method as shown in Figure 9, in addition to the fitting method or separate It can be changed in various ways such as bolt fastening method.
  • the opening and closing clutch unit 430 is in contact with one side of the separating diaphragm 200 in accordance with an embodiment of the present invention so as to rotate integrally with the operating plate 431, the operating plate 431 It is coupled to engage the engaging bar 413 of the rotary block 410, and includes an operation locking plate 432 formed to protrude to the outside of the separation plate 200 to rotate, the operating plate 431 is rotated
  • the first and second flow holes 210 and 220 may be configured to be opened and closed alternately, and the operating plate 431 and the operating stopping plate 432 may be integrally formed with each other.
  • the opening / closing clutch unit 430 may be configured to further include an elastic spring 433 for elastically biasing the operating plate 431 such that the operating plate 431 rotates the lock portion 41 for closing the first flow hole 210. Can be.
  • the rotation opening / closing unit 400 is formed of the rotation block part 410 and the opening / closing clutch part 430 to be combined with the injection unit 600 to perform the function of rotating the injection unit 600 and the first and the same.
  • the rotation block unit 410 is rotated by the link unit 500 ( Rotate in conjunction with 300). More specifically, as shown in FIG. 12, when the rotary aberration 300 reciprocates, the circular rotary plate 411 and the connecting sleeve 412 which are directly coupled to the link unit 500 reciprocate, and thus The injection unit 600 coupled to the connecting sleeve 412 is reciprocated. In addition, when the connecting sleeve 412 reciprocally rotates, the catching bar 413 extending to the outer side of the connecting sleeve 412 is also reciprocally rotated.
  • the operation stopping plate 432 Since the engaging plate 432 is engaged, the operation stopping plate 432 is reciprocally rotated together with the locking bar 413.
  • the operation plate 431 integrally coupled thereto rotates reciprocally, and the first and second flow holes 210 and 220 alternately according to the reciprocating rotation of the operation plate 431. It is opened and closed. Selective opening and closing of the first and second flow holes 210 and 220 induces reciprocation of the rotation aberration 300 again as described above, and as a result, the rotation opening and closing unit 400 continuously reciprocates.
  • the locking bar 413 of the rotary block 410 and the operation locking plate 432 of the opening and closing clutch unit 430 may be formed to be engaged when both of the locking bar 413 rotates in both directions, as shown in FIG.
  • the engagement bar 413 may be configured to be engaged only in one direction rotation and to be disengaged in the opposite direction.
  • FIG. 15A in the state in which the operating plate 431 and the operating stopping plate 432 are rotated with the first flow hole 210 closed, the locking bar 413 is provided.
  • the rotation in one direction is engaged with the operation locking plate 432 is rotated so as to rotate the operating plate 431 to close the second flow hole 220 as shown in (b) of FIG.
  • the operation locking plate 432 is connected to the locking bar 413. Since the engagement plate 432 and the operation plate 431 do not rotate, the second flow hole 220 is kept closed because it is not engaged. Therefore, in this case, as shown in FIG. 10, the operating plate 431 is rotated to close the first flow hole 210 by a separate elastic spring 433 for elastically biasing the operating plate 431.
  • the rotation opening and closing unit 400 is to be reciprocated in accordance with the operation principle described above, such a rotation opening and closing unit 400 is a separate rotation stopper so that the reciprocating rotation angle can be adjusted according to an embodiment of the present invention ( 420 may be mounted. That is, as shown in FIG. 12, the rotary stopper 420 protruding outward from the rotary block 410 is coupled to the upper surface of the rotary plate 411 of the rotary block 410, and the inner circumferential surface of the housing 100. On one side, as the rotary stopper 420 rotates, a fixing protrusion 132 that may be engaged with the rotary stopper 420 may be formed.
  • the maximum rotation angle of the rotation block 410 is limited by the rotation stopper 420 and the fixing protrusion 132.
  • the rotary stopper 420 may be coupled to the connection sleeve 412 through the coupling hole 421 to be penetrated, and the coupling protrusion 422 is formed on the inner circumferential surface of the coupling hole 421.
  • the outer circumferential surface of the connecting sleeve 412 is formed with a plurality of coupling grooves 415 which can be inserted into the coupling protrusion 422 spaced along the circumferential direction, by the coupling protrusion 422 and the coupling groove 415
  • the rotary stopper 420 may be detachably coupled to the rotary block 410.
  • the coupling position of the rotary stopper 420 is changed to have various relative positions with respect to the rotating plate 411 according to the position of the coupling groove 415 to which the coupling protrusion 422 is coupled among the plurality of coupling grooves 415, According to the change of the coupling position, the maximum rotation angle of the rotation block part 410 limited by the rotation stopper 420 is adjusted.
  • the link unit 500 may be configured to include a plurality of gears that are engaged to the rotation opening and closing unit 400. That is, the link unit 500 is coupled to the central axis C of the rotational aberration 300, the driving gear 510 rotates, and the reduction gear is engaged with the driving gear 510 and transmits the rotational force of the driving gear 510.
  • It may be configured to include a gear unit 520 and a driven gear 530 that is meshed with the reduction gear unit 520 to which the rotational force of the driving gear 510 is transmitted.
  • the driven gear 530 is mounted to mesh with the gear teeth 414 of the rotation opening and closing unit 400. Therefore, when the rotation aberration 300 rotates, the driving gear 510 coupled to the central axis C of the rotation aberration 300 rotates, and the reduction gear unit 520 according to the rotation of the driving gear 510. ) And the driven gear 530 is rotated accordingly the rotation opening and closing unit 400 is rotated.
  • the reduction gear unit 520 may be configured through a plurality of compound gears 521 so that the rotational speed of the drive gear 510 can be reduced, by the reduction gear unit 520 rotation opening and closing unit 400 It is preferable that the rotational speed of Rx is relatively slower than the rotational speed of the rotational aberration 300.
  • the link unit 500 is engaged with the gear tooth 414 to support the rotation opening and closing unit 400 meshed with the driven gear 530 in accordance with one embodiment of the present invention (at least one idle gear ( It is preferably configured to further comprise 540.
  • the link unit 500 may be mounted through a separate gear box 550 provided inside the housing 100 as shown in FIGS. 10 to 12.
  • the gear box 550 is separated into a hollow cylindrical gear box body 551 and a flat gear box cover 553 that closes one surface of the gear box body 551, and is formed inside the gear box body 551.
  • the reduction gear unit 520 may be seated on the gear support 552, and the driven gear 530 and the idle gear 540 may be seated on an upper surface of the gear box cover 553.
  • the injection unit 600 may be configured in various ways to inject a fluid using the injection nozzle
  • the injection unit 600 according to an embodiment of the present invention is a rotation opening and closing unit ( It is detachably coupled to 400 and the injection case 610 is formed in the injection passage 611 is formed in communication with the interior of the housing 100 so that the fluid passes therein, and is detachably coupled to the outlet of the injection passage 611 It may be configured to include a spray nozzle (620). That is, the injection unit 600 may be detachably coupled to the connection sleeve 412 of the rotation opening and closing unit 400 as shown in FIG. 11, as described above, the connection sleeve 412 and the injection case 610.
  • Screws corresponding to each other can be screwed in a way that is formed, through which the various types of injection unit 600 can be easily exchanged as necessary.
  • the injection nozzle 620 may be detachably coupled to the injection flow path 611 as shown in Figure 9, this coupling method may be variously changed, such as bolt coupling method, screw coupling method According to this structure, various types of spray nozzles 620 may be easily combined and used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to equipment for improving the efficiency of solar photovoltaic equipment. In the equipment for improving the efficiency of solar photovoltaic equipment according to the present invention, solar photovoltaic equipment comprising a plurality of solar modules is divided into a plurality of sectors, and cooling water is sprayed separately for each sector, the cooling water being sprayed while a cooling-water-spraying means rotates backwards and forwards, thereby making more efficient use of water resources but nevertheless also making it possible to improve cooling and cleaning efficiency by spraying an impinging jet of cooling water with adequate water pressure.

Description

태양광 발전설비의 효율향상설비Efficiency Improvement Facility of Photovoltaic Power Generation Facilities
본 발명은 태양광 발전설비의 효율향상설비에 관한 것으로, 보다 상세하게는 한정된 수자원을 효율적으로 활용하면서도 우수한 냉각 및 세척 효과를 갖는 태양광 발전설비의 효율향상설비에 관한 것이다.The present invention relates to a facility for improving efficiency of a photovoltaic power generation facility, and more particularly, to an efficiency improvement facility for a photovoltaic power generation facility having an excellent cooling and washing effect while efficiently utilizing a limited water resource.
일반적으로 태양에너지를 이용하는 방법은 크게 태양열을 이용하는 방법과 태양광을 이용하는 방법으로 구분된다. 태양열을 이용하는 방법은 태양에 의해 데워진 물 등을 이용하여 난방 및 발전을 하는 방법이며, 태양광을 이용하는 방법은 태양의 빛을 이용하여 전기를 발생시킴으로써 이 전기로 각종 기계 및 기구를 작동시킬 수 있도록 하는 방법으로 태양광 발전이라고 한다.Generally, the method of using solar energy is largely divided into a method using solar heat and a method using solar light. The method of using solar heat is to heat and generate electricity using water heated by the sun, and the method of using solar light can generate electricity by using the light of the sun to operate various machines and appliances. It is called solar power.
상술한 방법 중 태양광 발전은 실리콘 결정 위에 n형 도핑을 하여 p-n접합을 한 태양광 전지판에 태양광을 조사하면 광 에너지에 의해 전자-정공에 의한 기전력이 발생하게 되는 광기전력 효과(photovoltaic effect)를 이용하여 전기를 발생시킨다.In the above-described method, the photovoltaic effect in which photovoltaic power generation is caused by electron-hole electromotive force generated by light energy when irradiating sunlight to a pn junction photovoltaic panel with n-type doping on a silicon crystal. Generate electricity using
이를 위하여 태양광을 집광하기 위한 태양전지(solar cell), 태양전지의 집합체인 태양광 모듈(photovoltaic module) 및 태양전지를 일정하게 배열한 태양광 어레이(solar array) 등이 요구된다.To this end, a solar cell for condensing sunlight, a photovoltaic module that is an assembly of solar cells, and a solar array in which the solar cells are constantly arranged are required.
일례로, 외부에서 빛이 태양광 모듈에 입사되면 p형 반도체의 전도대(conduction band)의 전자(electron)가 입사된 광에너지에 의해 가전자대(valance band)로 여기되고, 이렇기 여기된 전자는 p형 반도체 내부에 한 개의 전자-정공쌍(electron hole pair; EHP)을 형성하게 되며, 이렇게 발생된 전자-정공쌍 중 전자는 p-n 접합 사이에 존재하는 전기장(electron field)에 의해 n형 반도체로 넘어가게 되어 외부에 전류를 공급하게 된다.For example, when light is incident on the solar module from the outside, electrons in the conduction band of the p-type semiconductor are excited to the valence band by the incident light energy. One electron-hole pair (EHP) is formed inside the p-type semiconductor, and electrons in the electron-hole pair generated are transferred to the n-type semiconductor by an electric field existing between the pn junctions. It passes over and supplies current to the outside.
한편, 태양광 발전 시스템에 사용되는 태양광 발전 모듈의 효율은 현재 주류를 이루고 있는 다결정 실리콘 소재의 경우, 약 16~18%의 범위로 태양광 발전의 경제성을 결정짓는 가장 중요한 요인이다. 이러한 발전효율을 지속적으로 효율향상하기 위해서는 다양한 장치를 통한 유지, 보수가 필수적이다. Meanwhile, the efficiency of the photovoltaic module used in the photovoltaic power generation system is the most important factor that determines the economic feasibility of photovoltaic power generation in the range of about 16-18% of polycrystalline silicon material which is currently mainstream. In order to continuously improve such power generation efficiency, maintenance and repair through various devices are essential.
그런데 태양광을 집광하기 위한 태양전지, 태양광 모듈 및 태양광 어레이 등은 실외에 설치되므로 외부 환경에 그대로 노출되어 비산먼지, 조류 분비물, 황사 및 기타 오염물질이 부착되고, 그에 따라 집광량이 감소하여 발전효율이 저하된다. 특히, 겨울철에는 태양전지, 태양광 모듈 및 태양광 어레이에 눈이 쌓여 이물질이 부착된 것과 마찬가지로 집광량을 감소시키고, 이에 따라 출력이 떨어져 발전효율을 저하시킨다. 나아가, 태양광에 장시간 노출됨으로써 온도가 상승하고 이를 통해 기전력이 감소되면서 발전 효율이 떨어지게 된다.However, since solar cells, photovoltaic modules, and photovoltaic arrays for condensing sunlight are installed outdoors, they are exposed to the outside environment, causing scattering dust, algae secretions, yellow dust, and other contaminants to be deposited. The power generation efficiency is lowered. In particular, in winter, snow accumulates on solar cells, photovoltaic modules, and photovoltaic arrays, reducing the amount of condensing as if foreign matter is attached. In addition, the temperature is increased by prolonged exposure to sunlight, thereby reducing the electromotive force, thereby lowering the power generation efficiency.
따라서, 최근에는 이러한 문제를 해결하기 위해 태양광 발전설비의 효율향상장치가 사용되고 있는데, 이러한 효율향상장치로는 차량의 브러쉬와 같이 기계적인 구동력으로써 태양 전지판을 세척하는 방식, 태양 전지판 상부에 물호스를 연결하여 물을 흘려보냄으로써 태양 전지판을 세척하는 방식, 그리고 별도의 노즐을 통해 강한 수압으로 물을 분사하여 태양 전지판을 세척하는 물 분사식 등이 있다.Therefore, in order to solve such a problem, an efficiency improving device of a photovoltaic power generation facility is recently used. Such an efficiency improving device is a method of cleaning a solar panel with a mechanical driving force such as a brush of a vehicle, and a water hose on the upper part of the solar panel. By connecting the water flowing through the solar panel washing method, and a separate water jet type to wash the solar panel by spraying water at a strong pressure through a separate nozzle.
브러쉬를 이용하는 방식은 태양광 발전설비유지장치에 적합한 별도의 브러쉬를 제작하여야하고 태양 전지판이 과열되었을 경우에는 이를 식혀주기 위한 특별한 방법을 제공하지 못한다는 단점이 있으며, 물호스를 통해 중력에 의해 물을 흘려주는 방식은 오물 제거나 제설에 큰 효과가 없다는 단점이 있다. 따라서, 최근 노즐을 통해 수압을 갖는 냉각수를 분사하여 태양 전지판을 냉각, 세척하는 물 분사식의 이용이 시도되고 있다.The method of using the brush has to make a separate brush suitable for maintaining the photovoltaic facility, and when the solar panel is overheated, it does not provide a special way to cool it, and water by gravity through the water hose Flowing method has the disadvantage that it does not have a great effect on dirt removal or snow removal. Therefore, in recent years, the use of a water jet type to cool and wash the solar panel by spraying the cooling water having a hydraulic pressure through the nozzle has been attempted.
이러한 효율향상장치는 일반적으로 물을 분사하는 분사 노즐 부분이 고정된 형태로 회전 조절이 불가능하기 때문에 태양광발전 어레이의 면적이 넓을 경우, 다수의 노즐이 필요하기 때문에 냉각과 세척에 요구되는 수압을 유지하는데 고가의 설비비와 운전비용이 요구된다. 또한 고정된 형태의 노즐로 무작위로 분사하는 경우, 원하는 면적에 분사하기가 힘들어 이에 따른 대량의 수자원의 낭비가 발생한다. 아울러 노즐의 분사각도를 조절하기 위한 배관에 의해 태양광발전 어레이 상으로 그림자가 생기는 경우가 많아, 이로 인한 태양광발전효율의 저하가 발생하거나 태양광발전 어레이 간의 거리가 멀어져 추가 면적이 필요하다. 태양광발전 모듈 상의 일부 그림자는 모듈 내 직렬 연결된 태양전지의 출력을 급락시키는 hot spot effect를 야기시켜 반드시 피해야 하는 사항이다.Since the efficiency of the apparatus is generally fixed to the spray nozzle portion for spraying water, and the rotation is not adjustable, when the area of the photovoltaic array is large, a large number of nozzles are required, so that the water pressure required for cooling and cleaning is increased. Maintenance requires expensive equipment and running costs. In addition, when randomly spraying with a fixed type of nozzle, it is difficult to spray on a desired area, resulting in a waste of a large amount of water resources. In addition, shadows are often generated on the photovoltaic array by a pipe for adjusting the spray angle of the nozzle, and thus, a decrease in photovoltaic efficiency is generated or a distance between the photovoltaic arrays is increased, thereby requiring an additional area. Some shadows on photovoltaic modules must be avoided by causing a hot spot effect that can cause the output of series-connected solar cells to drop out of the module.
특히, 대규모 태양광발전 어레이의 경우, 이에 비례하여 냉각, 세척용 노즐의 개수가 급증하므로, 공간적으로 그림자가 드리우지 않으면서, 적정한 수압으로 태양광발전 모듈을 향해 물을 분사함으로써, 한정된 수자원을 효율적으로 이용하면서도 충분한 냉각 및 세척 효율을 얻어야 하는 과제를 안고 있다. In particular, in the case of a large-scale photovoltaic array, the number of nozzles for cooling and washing increases in proportion to this, so that limited water resources are injected by spraying water toward the photovoltaic module at an appropriate water pressure without dropping the space spatially. There is a challenge to obtain sufficient cooling and cleaning efficiency while using efficiently.
따라서 본 발명은 이러한 문제점을 해결하기 위해 발명한 것으로서, 다수의 태양광 모듈로 구성되는 태양광 발전설비를 다수의 섹터로 나누고 각 섹터 별로 냉각수를 분사하고, 냉각수 분사수단이 왕복 회전하면서 냉각수를 분사하게 함으로써, 수자원을 보다 효율적으로 활용하면서도 충분한 수압으로 냉각수의 충돌제트를 분사하여 냉각 및 세척 효율을 향상시킬 수 있는 태양광 발전설비의 효율향상장치를 제공하는 것을 목적으로 한다.Therefore, the present invention has been invented to solve such a problem, the photovoltaic power generation equipment consisting of a plurality of solar modules divided into a plurality of sectors and spraying the coolant for each sector, the coolant spraying means reciprocating rotation to spray the coolant By doing so, it is an object of the present invention to provide a device for improving efficiency of a photovoltaic power plant that can improve the cooling and washing efficiency by spraying a collision jet of cooling water with sufficient water pressure while utilizing water resources more efficiently.
상기한 목적을 달성하기 위하여 본 발명은, 태양광을 집광하여 전기를 발생시키는 다수의 태양광 모듈로 구성되는 태양광 발전설비에 냉각수의 충돌제트를 분사하여 태양광 발전설비의 효율을 유지 또는 향상시키는 태양광 발전설비의 효율향상설비에 있어서, 냉각수를 저장하는 저장탱크; 상기 다수의 태양광 모듈 각각에 대응하도록 설치되어, 왕복 회전하면서 상기 태양광 모듈에 냉각수의 충돌제트를 분사하는 냉각수 분사수단; 상기 저장탱크로부터 공급 받은 냉각수를 상기 냉각수 분사수단으로 공급하는 냉각수 공급관; 상기 저장탱크에 저장된 냉각수를 펌핑하여 상기 냉각수 공급관으로 공급하는 펌프; 상기 다수의 태양광 모듈을 2 이상의 섹터로 구분하여, 상기 각 섹터의 태양광 모듈에 대응하는 분사수단으로 연결된 냉각수 공급관의 개폐를 조절하는 2 이상의 밸브; 및 상기 펌프를 구동하고 상기 2 이상의 밸브를 순차적으로 개방하여 각 섹터 별로 냉각수를 상기 태양광 모듈에 공급하는 제어부를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비를 제공한다.In order to achieve the above object, the present invention maintains or improves the efficiency of the photovoltaic power generation equipment by spraying a collision jet of cooling water to a photovoltaic power generation equipment composed of a plurality of solar modules to collect electricity to generate electricity An efficiency improving apparatus of a photovoltaic power generation facility, comprising: a storage tank for storing cooling water; Cooling water injection means is installed so as to correspond to each of the plurality of solar modules, spraying the jet of the coolant to the photovoltaic module while reciprocating rotation; Cooling water supply pipe for supplying the cooling water supplied from the storage tank to the cooling water injection means; A pump for pumping the cooling water stored in the storage tank and supplying the cooling water to the cooling water supply pipe; At least two valves for dividing the plurality of solar modules into two or more sectors and controlling opening and closing of the cooling water supply pipe connected to the injection means corresponding to the solar modules of each sector; And a controller for driving the pump and sequentially opening the two or more valves to supply cooling water to the photovoltaic module for each sector.
상기 태양광 발전설비의 효율향상설비는 사용된 냉각수 또는 빗물을 집수하는 집수부를 더 포함할 수 있다.The efficiency improving apparatus of the solar power plant may further include a collecting unit for collecting used cooling water or rainwater.
상기 집수부는 상기 태양광 모듈의 하단에 설치되어 사용된 냉각수를 집수하는 물받이를 포함할 수 있다.The water collecting unit may include a drip tray collecting the cooling water used to be installed at the bottom of the solar module.
상기 집수부는 상기 태양광 모듈의 하부에 설치되어 사용된 냉각수를 집수하는 집수조를 포함할 수 있다.The water collecting unit may include a water collecting tank installed at a lower portion of the solar module to collect used cooling water.
상기 냉각수 공급관은 지중에 매설되는 것이 바람직하다.The cooling water supply pipe is preferably embedded in the ground.
냉각수는 상기 냉각수 분사수단 입구 기준으로 유속이 30 m/s 이상이고, 압력이 1.6 kg/cm2 이상인 것이 바람직하다.The cooling water has a flow rate of 30 m / s or more and a pressure of 1.6 kg / cm 2 or more based on the inlet of the cooling water injection means.
상기 태양광 발전설비의 효율향상설비는 냉각수로 세척제 또는 동파방지제를 포함하는 기능성 물질을 공급하는 기능성 물질 첨가부를 더 포함할 수 있다.The efficiency improving apparatus of the solar power generation facility may further include a functional material addition unit for supplying a functional material including a cleaning agent or a freeze protection agent to the cooling water.
상기 효율향상설비는 추적식 태양광 발전설비 및 고정식 태양광 발전설비 모두에 적용될 수 있다.The efficiency improvement facility may be applied to both the tracked photovoltaic power generation facility and the stationary solar power generation facility.
상기 제어부는 예를 들어, 구동개시시간인지를 판단하고, 구동개시시간이면 상기 펌프를 구동하고, 상기 2 이상의 밸브를 순차적으로 설정된 시간 동안 개방하고 폐쇄할 수 있다.For example, the controller may determine whether it is a driving start time, drive the pump if the driving start time, and open and close the two or more valves sequentially for a predetermined time.
또한, 상기 제어부는 예를 들어, 모듈의 온도와 냉각수의 온도 차이 측정값이 모듈의 온도와 냉각수의 온도 차이 설정값 이상인지를 판단하고, 모듈의 온도와 냉각수의 온도 차이 측정값이 모듈의 온도와 냉각수의 온도 차이 설정값 이상이면 그 미만이 될 때까지 펌프를 구동하고 상기 2 이상의 밸브를 순차적으로 개방하고 폐쇄할 수 있다.In addition, the controller determines, for example, whether the measured temperature difference between the temperature of the module and the coolant is greater than or equal to a set value of the difference between the temperature of the module and the coolant, and the measured temperature difference between the temperature of the module and the coolant is the temperature of the module. And if the temperature difference is greater than or equal to the set value of the coolant, the pump may be driven until it is less than that, and the two or more valves may be sequentially opened and closed.
상기 제어부는, 상기 냉각수 공급관 내의 수압을 측정하고 측정된 수압이 설정된 최소압력 미만이거나 최고압력을 초과하는 경우 기동을 종료할 수 있다.The controller may measure the water pressure in the cooling water supply pipe and terminate the starting when the measured water pressure is less than the set minimum pressure or exceeds the maximum pressure.
상기 제어부는, 레인센서의 온오프유무를 판단하여 강우 중이라고 판단되면 기동을 종료하고, 저장탱크 내에 저장된 냉각수가 설정 수위 이상인지를 판단하여 설정 수위 미만이면 기동을 종료하며, 모듈의 온도가 냉각수의 온도 이상인지를 판단하여 그 온도 이하일 경우 기동을 종료할 수 있다.The controller determines whether the rain sensor is on or off, and if it is determined that it is raining, the operation is terminated. If the coolant stored in the storage tank is greater than or equal to the set level, the controller terminates the operation if the temperature is less than the set level. It is judged whether or not the temperature is higher, and the start can be terminated if it is lower than the temperature.
상기 냉각수 분사수단은, 경통식으로 연장가능하게 결합되고 서로 다른 직경을 갖는 2개 이상의 원통형 부재를 포함하며, 배관으로부터 물을 공급받음에 따라 길이가 연장되는 몸체; 및 상기 몸체에 결합되어 상기 몸체로부터 전달된 물을 왕복 회전하며 태양광 모듈로 분사하는 분사부를 포함하되, 상기 분사부는 물이 유입되어 배출되도록 양측에 인입구 및 배출구가 형성된 하우징; 상기 하우징 내부에 장착되어 상기 인입구를 통해 유입된 물이 통과하며 서로 반대의 유동 방향 성분이 형성되도록 서로 다른 방향의 유로를 갖는 제 1 및 제 2 유동홀이 관통 형성되는 분리 격판; 상기 하우징 내부에 회전 가능하게 장착되어 물이 상기 제 1 유동홀 또는 제 2 유동홀을 통과함에 따라 형성된 서로 다른 방향의 유동력에 의해 양방향으로 왕복 회전하는 회전 수차; 상기 회전 수차의 왕복 회전에 연동하여 양방향으로 왕복 회전하며 상기 제 1 및 제 2 유동홀을 교대로 개폐하는 회전 개폐 유닛; 상기 회전 수차와 회전 개폐 유닛을 연동시키는 링크 유닛; 및 상기 하우징의 외측에 배치되며 상기 배출구를 통해 상기 하우징 내부 공간과 연통되어 상기 하우징으로부터 배출되는 물을 분사하는 분사 유닛을 포함하고, 상기 분사 유닛은 상기 회전 개폐 유닛에 결합되어 상기 회전 개폐 유닛과 함께 회전하며 물을 분사할 수 있다.The cooling water spraying means may include two or more cylindrical members having a different diameter and connected to each other in a cylindrical manner, the body extending in length as water is supplied from the pipe; And a spraying unit coupled to the body to reciprocate the water transferred from the body and spraying water into the solar module, wherein the spraying unit has a inlet and an outlet formed at both sides thereof so that water is introduced and discharged; A separation plate mounted inside the housing and having first and second flow holes formed therethrough in different directions so that water flowing through the inlet passes and components opposite to each other are formed; A rotation aberration rotatably mounted in the housing to reciprocate rotation in both directions by flow forces in different directions formed as water passes through the first flow hole or the second flow hole; A rotation opening / closing unit which reciprocates in both directions in association with the reciprocating rotation of the rotational aberration and alternately opens and closes the first and second flow holes; A link unit for interlocking the rotation aberration and the rotation opening / closing unit; And an injection unit disposed outside the housing and communicating with the internal space of the housing through the discharge port to inject water discharged from the housing, wherein the injection unit is coupled to the rotation opening / closing unit and It can rotate and spray water together.
상기 원통형 부재들의 직경은 상기 분사부 측으로부터 결합되는 순서에 따라 순차적으로 증가하며, 상기 복수의 원통형 부재 간 이탈을 방지하기 위하여, 결합되는 두 개의 원통형 부재 중 직경이 큰 원통형 부재의 상단에는 캡이 배치되고, 직경이 작은 원통형 부재의 하단에는 제1 걸림턱이 형성될 수 있다.The diameters of the cylindrical members are sequentially increased in order of joining from the injection side, and in order to prevent separation between the plurality of cylindrical members, a cap is formed at the top of the larger cylindrical member of the two cylindrical members to be joined. The first locking jaw may be disposed at a lower end of the cylindrical member having a small diameter.
상기 캡 내에 밀착 결합되어 상기 원통형 부재와 캡 간의 기밀성을 유지하는 신축성 부재를 더 포함할 수 있다.It may further include an elastic member that is tightly coupled in the cap to maintain the airtightness between the cylindrical member and the cap.
결합되는 두 개의 원통형 부재 중 직경이 큰 원통형 부재의 내면에 돌출하는 가이드부 및 직경이 작은 원통형 부재의 외면에 상기 가이드부와 대응하는 그루브를 더 포함할 수 있다.The two cylindrical members to be coupled may further include a guide portion protruding on the inner surface of the large diameter cylindrical member and a groove corresponding to the guide portion on the outer surface of the small diameter cylindrical member.
상기한 본 발명에 따른 태양광 발전설비의 효율향상장치는, 다수의 태양광 모듈로 구성되는 태양광 발전설비를 다수의 섹터로 나누고 각 섹터 별로 냉각수를 분사하고, 냉각수 분사수단이 왕복 회전하면서 냉각수를 분사하게 함으로써, 수자원을 보다 효율적으로 활용하면서도 충분한 수압으로 냉각수의 충돌제트를 분사하여 냉각 및 세척 효율을 향상시킬 수 있다.The efficiency improving apparatus for photovoltaic power generation facilities according to the present invention divides a photovoltaic power generation facility composed of a plurality of solar modules into a plurality of sectors and sprays coolant for each sector, while the coolant spraying means reciprocally rotates the coolant. By spraying, it is possible to improve the cooling and washing efficiency by spraying the collision jet of the cooling water with sufficient water pressure while utilizing water resources more efficiently.
도 1은 본 발명의 일 실시예에 따른 태양광 발전설비의 효율향상설비를 나타낸 구성도이다.1 is a block diagram showing the efficiency improvement equipment of the photovoltaic power generation equipment according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 태양광 발전설비의 효율향상설비를 나타낸 구성도이다.Figure 2 is a block diagram showing the efficiency improvement equipment of the photovoltaic power generation equipment according to another embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 냉각수 분사수단을 나타낸 사시도이다. Figure 3 is a perspective view of the cooling water injection means according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 일 실시예에 따른 냉각수 분사수단의 몸체의 구성을 도시한 개략적인 횡단면도로서, 도 4은 몸체가 접혀 있는 모습을 나타내고, 도 5는 수압이 가해져 몸체가 길게 늘어난 모습을 나타낸다.4 and 5 is a schematic cross-sectional view showing the configuration of the body of the coolant injection means according to an embodiment of the present invention, Figure 4 shows a state in which the body is folded, Figure 5 is a body lengthened by applying water pressure Show the appearance.
도 6은 본 발명의 일 실시예에 따른 냉각수 분사수단의 몸체에 포함된 실링 부재 및 상기 실링 부재가 결합된 캡의 사시도이고, 6 is a perspective view of a sealing member included in the body of the coolant injection means and the cap in which the sealing member is coupled according to an embodiment of the present invention;
도 7는 도 6의 라인 II-II에 따라 취한 실링 부재 및 상기 실링 부재가 결합된 캡의 단면도이다.7 is a cross-sectional view of a sealing member taken along line II-II of FIG. 6 and a cap in which the sealing member is coupled.
도 8는 본 발명의 일 실시예에 따른 냉각수 분사수단의 몸체에 설치되는 수압 전달부를 나타낸 도면이다.8 is a view showing a hydraulic pressure transmission unit installed in the body of the coolant injection means according to an embodiment of the present invention.
도 9은 본 발명의 일 실시예에 따른 냉각수 분사수단의 분사부의 형상을 개략적으로 도시한 사시도이다.Figure 9 is a perspective view schematically showing the shape of the injection portion of the cooling water injection means according to an embodiment of the present invention.
도 10는 본 발명의 일 실시예에 따른 냉각수 분사수단의 분사부의 구성을 개략적으로 도시한 분해사시도이다.10 is an exploded perspective view schematically showing the configuration of the injection unit of the cooling water injection means according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 냉각수 분사수단의 분사부의 내부 구조를 개략적으로 도시한 단면도이다.11 is a cross-sectional view schematically showing the internal structure of the injection portion of the cooling water injection means according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 냉각수 분사수단의 분사부의 내부 구성요소의 연결 관계를 개략적으로 도시한 사시도이다.12 is a perspective view schematically showing a connection relationship between the internal components of the injection unit of the cooling water injection means according to an embodiment of the present invention.
도 13 및 도 14는 본 발명의 일 실시예에 따른 회전 수차의 회전 동작 구조를 개략적으로 도시한 사시도이다.13 and 14 are perspective views schematically showing the structure of the rotation of the rotation aberration according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 제 1 및 제 2 유동홀의 개폐 상태를 개략적으로 도시한 저면도이다.FIG. 15 is a bottom view schematically illustrating an opening and closing state of first and second flow holes according to an exemplary embodiment of the present invention. FIG.
이하 동일한 부재번호는 동일한 구성요소를 참조로 하는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세하게 설명한다. 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.Hereinafter, the same reference numerals will be described in detail with reference to the accompanying drawings, with reference to the same components preferred embodiments of the present invention. The terms or words used in the specification and claims are not to be construed as being limited to conventional or dictionary meanings, but should be construed as meanings and concepts corresponding to the technical matters of the present invention.
본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 바람직한 실시 예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.The embodiments described in the specification and the configuration shown in the drawings are preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, various equivalents and modifications that can replace them at the time of the present application are There may be.
도 1은 본 발명의 일 실시예에 따른 태양광 발전설비의 효율향상설비를 나타낸 구성도이다.1 is a block diagram showing the efficiency improvement equipment of the photovoltaic power generation equipment according to an embodiment of the present invention.
도 1을 참조하면, 태양광 모듈들(7)이 나열되어 있으며, 이들 태양광 모듈들(7)을 유지, 관리하는 설비로서 효율향상설비가 설치되어 있다. Referring to FIG. 1, solar modules 7 are listed, and efficiency improving facilities are installed as facilities for maintaining and managing the solar modules 7.
태양광 모듈(7)은 다수의 태양전지의 집합체로서, 외부에서 빛이 태양광 모듈(7)에 입사되면 p형 반도체의 전도대(conduction band)의 전자(electron)가 입사된 광에너지에 의해 가전자대(valance band)로 여기되고, 여기된 전자는 p형 반도체 내부에 한 개의 전자-정공쌍(electron hole pair; EHP)을 형성하게 되며, 이렇게 발생된 전자-정공쌍 중 전자는 p-n 접합 사이에 존재하는 전기장(electron field)에 의해 n형 반도체로 넘어가게 되어 외부에 전류를 공급하게 된다.The photovoltaic module 7 is an assembly of a plurality of solar cells. When light enters the photovoltaic module 7 from the outside, the photovoltaic module 7 is housed by the light energy in which electrons of the conduction band of the p-type semiconductor are incident. The excited electrons are excited in a valence band, and the excited electrons form an electron hole pair (EHP) inside the p-type semiconductor, and the electrons in the electron-hole pair thus generated are interposed between the pn junctions. The existing electric field (electron field) is transferred to the n-type semiconductor to supply the current to the outside.
그런데, 태양광 모듈(7)은 태양광을 집광하기 위해 외부에 설치되므로 외부 환경에 그대로 노출되어 비산먼지, 조류 분비물, 황사 등의 오염불질이 부착되고 이를 통해 집광량이 감소하여 발전 효율이 감소하게 된다. 또한, 태양광에 계속 노출되어 태양열에 의해 가열됨으로써 태양광 모듈의 내부 저항을 증가시키며, 이 역시 발전 효율을 저하시키는 요인이 된다. However, since the solar module 7 is installed outside to collect sunlight, it is exposed to the external environment as it is, and contaminants such as scattering dust, algae secretions, and yellow sand are attached, thereby reducing the amount of collected light, thereby reducing power generation efficiency. Done. In addition, by being continuously exposed to sunlight and heated by solar heat, the internal resistance of the photovoltaic module is increased, which is also a factor for lowering the power generation efficiency.
본 발명은 태양광 모듈(7)을 냉각 및 세척함으로써 태양광 발전의 효율을 유지, 향상시킬 수 있는 설비에 관한 것이다.The present invention relates to a facility that can maintain and improve the efficiency of photovoltaic power generation by cooling and washing the photovoltaic module (7).
본 발명의 일 실시예에 따른 태양광 발전설비의 효율향상설비는 저장탱크(1), 냉각수 분사수단(6), 냉각수 공급관(5), 펌프(25), 밸브(21, 22, 23, 24) 및 제어부(3)를 포함한다.Efficiency improvement equipment of the photovoltaic power generation equipment according to an embodiment of the present invention is a storage tank (1), cooling water injection means (6), cooling water supply pipe (5), pump 25, valves (21, 22, 23, 24) ) And the control unit 3.
냉각수 분사수단(6)은 태양광 모듈(7) 각각에 대응하도록 설치되어 냉각수를 공급 받아 태양광 모듈(7)로 냉각수를 분사하는 수단이다. 냉각수를 태양광 모듈(7)에 흘려 주거나 약하게 분사하면 충분한 냉각 및 세척 효과를 얻기 어려우므로, 본 발명에서는 냉각수의 충돌제트를 태양광 모듈(7)에 분사하도록 한다. 충돌제트는 유체로부터 충돌면으로의 열전달과 물질 전달 효과가 뛰어나므로, 냉각 및 세척 효과를 향상시킬 수 있다. 다만, 충돌제트를 발생시키기 위해서는 태양광 모듈(7)에 냉각수를 분사하는 냉각수 분사수단의 입구를 기준으로 냉각수의 속도가 30m/s 이상이고 압력이 1.6kg/cm2 이상이 되는 것이 바람직하다. 여기서 냉각수 분사수단의 입구란 외부로 냉각수가 분사되는 냉각수 분사수단의 끝부분을 말한다.Cooling water injection means (6) is installed to correspond to each of the solar modules (7) is a means for injecting the cooling water to spray the cooling water to the solar module (7). When cooling water is poured into the solar module 7 or sprayed weakly, it is difficult to obtain sufficient cooling and cleaning effects. In the present invention, the impingement jet of cooling water is sprayed on the solar module 7. The impingement jet has excellent heat transfer and mass transfer effects from the fluid to the impingement surface, thereby improving cooling and cleaning effects. However, in order to generate a collision jet, the speed of the cooling water is preferably 30 m / s or more and the pressure is 1.6 kg / cm 2 or more based on the inlet of the cooling water injection means for injecting the cooling water into the solar module 7. Here, the inlet of the coolant jetting means refers to the end of the coolant jetting means in which the coolant is injected to the outside.
본 실시예에 따른 냉각수 분사수단(6)은 고정되어 일 방향으로만 냉각수를 분사하지 않고, 좌우로 왕복 회전하면서 태양광 모듈(7)의 전면에 고르게 냉각수가 분사되도록 한다. The cooling water spraying means 6 according to the present embodiment is fixed so that the cooling water is evenly sprayed on the front surface of the solar module 7 while reciprocating left and right, instead of spraying the cooling water only in one direction.
냉각수 분사수단(6)이 고정되어 태양광 모듈(7) 전면에 냉각수를 분사한다면, 사용할 수 있는 물의 양이 한정되어 있으므로 수압이 떨어져 태양광 모듈 전면에 충돌제트를 발생시키기 쉽지 않다. 그러나, 본 실시예에서처럼 냉각수 분사수단(6)이 좌우로 왕복 회전하면서 태양광 모듈(7)의 일 부분에만 냉각수를 분사하면 냉각수의 수압을 증대시켜 충돌제트를 용이하게 발생시킬 수 있으며, 이를 통해 냉각 및 세척 효율을 향상시킬 수 있다.If the cooling water injection means 6 is fixed to spray the cooling water to the front of the photovoltaic module 7, the amount of water that can be used is limited, so the water pressure is not easy to generate a collision jet on the front of the photovoltaic module. However, as in the present embodiment, when the coolant injection means 6 reciprocates to the left and right, spraying the coolant only on a part of the photovoltaic module 7 may increase the water pressure of the coolant to easily generate a collision jet. Cooling and washing efficiency can be improved.
냉각수 분사수단(6)은 냉각수를 좌우로 왕복 회전하면서 분사하기 위하여 다양한 구성을 가질 수 있으며, 하나의 예시적인 구성을 후술하도록 한다.Cooling water injection means 6 may have a variety of configurations for injecting the cooling water while reciprocating rotation to the left and right, one exemplary configuration will be described later.
냉각수 공급관(5)은 저장탱크(1)로부터 냉각수를 공급 받아 이를 냉각수 분사수단(6)으로 공급하는데, 저장탱크(1)의 냉각수를 펌핑하기 위하여 펌프(25)가 구비된다. 냉각수 공급관(5)은 냉각수의 온도를 유지시키기 위하여 지중에 매설되는 것이 바람직하다.The cooling water supply pipe 5 receives the cooling water from the storage tank 1 and supplies the cooling water to the cooling water injection means 6, and a pump 25 is provided to pump the cooling water of the storage tank 1. The cooling water supply pipe 5 is preferably embedded in the ground to maintain the temperature of the cooling water.
냉각수 공급관(5)은 지형을 고려하여 다양한 형태로 배치될 수 있는데, 다수의 태양광 모듈(7)을 2 이상의 섹터로 구분하여 각 섹터의 태양광 모듈에 대응하는 분사수단 별로 냉각수가 공급될 수 있도록 여러 개의 가지로 분리되도록 배치되는 것이 바람직하다. 냉각수 공급관의 가지가 분리되는 형태 또한 제한 없이 다양하게 구성될 수 있으며, 예를 들어 도 1에 도시된 바와 같이 각 섹터를 횡으로 등분하여 냉각수 공급관들(6)을 배치시킬 수 있을 뿐만 아니라 도 2에 도시된 바와 같이 각 섹터를 종횡으로 등분하여 냉각수 공급관들(6)을 배치시킬 수도 있다.The cooling water supply pipe 5 may be arranged in various forms in consideration of the terrain, and the plurality of solar modules 7 may be divided into two or more sectors, and the cooling water may be supplied for each injection means corresponding to the solar modules of each sector. It is desirable to be arranged so that it is separated into several branches. Branches of the cooling water supply pipe may also be configured in various ways without limitation. For example, as shown in FIG. 1, the cooling water supply pipes 6 may be arranged by dividing each sector horizontally, as well as FIG. 2. Cooling water supply pipes 6 may be arranged by dividing each sector vertically and horizontally as shown in FIG.
냉각수 공급관(6)에는 각 가지 별로 밸브(21, 22, 23, 24)가 설치되어 냉각수 공급관(5)의 개폐를 조절하며, 밸브(21, 22, 23, 24)의 개폐에 따라 각 가지 별로 냉각수의 공급 및 차단이 조절된다. Valves 21, 22, 23, and 24 are installed in the cooling water supply pipe 6 to control opening and closing of the cooling water supply pipe 5, and for each branch according to opening and closing of the valves 21, 22, 23, and 24. Cooling water supply and shut off are controlled.
제어부(3)는 펌프(25) 및 밸브(21, 22, 23, 24)를 제어하는 부분으로, 펌프(25)를 구동 또는 정지시키고, 밸브(21, 22, 23, 24)를 개방 또는 폐쇄시킨다. 밸브(21, 22, 23, 24)를 개방시킴에 있어서, 2 이상의 밸브(21, 22, 23, 24)를 순차적으로 개방함으로써 각 섹터 별로 냉각수가 공급되도록 한다. 이를 통해, 한정된 냉각수 공급량으로도 충분한 수압으로 냉각수를 태양광 모듈(7)에 분사하여 충돌제트에 의해 냉각 및 세척 효율을 향상시킬 수 있다.The controller 3 is a part for controlling the pump 25 and the valves 21, 22, 23, and 24. The controller 3 drives or stops the pump 25, and opens or closes the valves 21, 22, 23, and 24. Let's do it. In opening the valves 21, 22, 23, 24, the two or more valves 21, 22, 23, 24 are sequentially opened so that the cooling water is supplied to each sector. Through this, the cooling water can be injected to the solar module 7 with sufficient water pressure even with a limited amount of cooling water to improve the cooling and washing efficiency by the collision jet.
제어부(3)가 펌프(25) 및 밸브(21, 22, 23, 24)를 제어하는 방식은 특별히 제한되지 않으나, 냉각수의 사용 효율을 최대화할 수 있도록 설계되는 것이 바람직하다. 냉각수의 사용 효율을 향상시킬 수 있는 제어 방식을 예를 들어 설명하도록 한다.The manner in which the control unit 3 controls the pump 25 and the valves 21, 22, 23, and 24 is not particularly limited, but is preferably designed to maximize the use efficiency of the cooling water. An example of a control method for improving the use efficiency of the cooling water will be described.
첫 번째 예로서 시간에 따른 제어 방식이다. 구체적으로, 제어부(3)는 구동개시시간인지를 판단하고, 구동개시시간이면 펌프(25)를 구동하고, 2 이상의 밸브(21, 22, 23, 24)를 순차적으로 설정된 시간 동안 개방하고 폐쇄한다. 태양광 발전설비가 설치된 지역 및 설비의 특성 등을 고려하여 구동개시시간 및 밸브(21, 22, 23, 24)의 개방 시간을 설정할 수 있다.The first example is time-based control. Specifically, the control unit 3 determines whether the drive start time, drives the pump 25 if the drive start time, and opens and closes two or more valves (21, 22, 23, 24) sequentially for a set time. . It is possible to set the start time of the driving and the opening times of the valves 21, 22, 23, 24 in consideration of the region where the solar power generation facility is installed and the characteristics of the facility.
다른 예로서 온도 제어 방식이다. 구체적으로, 모듈(7)의 온도와 냉각수의 온도 차이 측정값이 모듈(7)의 온도와 냉각수의 온도 차이 설정값 이상인지를 판단하고, 모듈(7)의 온도와 냉각수의 온도 차이 측정값이 모듈(7)의 온도와 냉각수의 온도 차이 설정값 이상이면 그 미만이 될 때까지 펌프(25)를 구동하고 2 이상의 밸브(21, 22, 23, 24)를 순차적으로 개방하고 폐쇄한다. 태양광 발전설비가 설치된 지역 및 설비의 특성 등을 고려하여 모듈(7)의 온도와 냉각수의 온도 차이 설정값을 설정할 수 있다.Another example is temperature control. Specifically, it is determined whether the measured temperature difference between the temperature of the module 7 and the cooling water is equal to or greater than the set temperature difference between the temperature of the module 7 and the cooling water, and the measured temperature difference between the temperature of the module 7 and the cooling water is determined. If the temperature difference between the temperature of the module 7 and the cooling water is greater than or equal to the set value, the pump 25 is driven and the two or more valves 21, 22, 23, and 24 are sequentially opened and closed until the temperature is less than the set value. The temperature difference setting value of the temperature of the module 7 and the cooling water may be set in consideration of the region where the solar power generation facility is installed and the characteristics of the facility.
어떠한 제어 방식을 선택하더라도 냉각수 공급관(5) 내의 압력을 측정하고 그 압력이 설정된 소정 압력 범위를 벗어날 경우 효율향상장치의 기동을 종료하는 것이 바람직하다. 측정된 압력이 설정된 압력 범위의 최대값을 초과하는 경우는 냉각수 공급관(5) 내에 냉각수의 동결이 발생하는 등의 문제가 발생한 경우이고, 측정된 압력이 설정된 압력 범위의 최소값에 미달하는 경우 냉각수 공급관(5)에 누수가 발생하는 등의 무제가 발생한 경우이므로, 설비의 고장을 막고 냉각수의 효율적 사용을 위해 기동을 종료하게 된다.Whatever control method is selected, it is preferable to measure the pressure in the cooling water supply pipe 5 and to terminate the start of the efficiency improving apparatus when the pressure is out of a predetermined pressure range. If the measured pressure exceeds the maximum value of the set pressure range, a problem such as freezing of the coolant occurs in the coolant supply pipe 5, and if the measured pressure does not reach the minimum value of the set pressure range, the coolant supply pipe Since there is no problem such as leakage of water in (5), start-up is stopped to prevent the failure of the equipment and to efficiently use the cooling water.
또한, 레인센서(43)의 온오프유무를 판단하여 강우 중이라고 판단되면 기동을 종료하고, 저장탱크(1) 내에 저장된 냉각수가 설정 수위 이상인지를 판단하여 설정 수위 미만이면 기동을 종료하며, 모듈(7)의 온도가 냉각수의 온도 이상인지를 판단하여 그 온도 이하일 경우에도 설비의 기동을 종료하여 설비의 고장을 막고 냉각수의 사용을 더욱 효율화할 수 있다.In addition, when it is determined that the rain sensor 43 is on or off and is determined to be raining, the start-up is terminated. It is possible to judge whether the temperature of 7) is higher than the temperature of the cooling water, and even if the temperature is lower than the temperature of the cooling water, the start of the equipment can be stopped to prevent the failure of the equipment and the use of the cooling water can be more efficient.
위와 같이 펌프(25) 및 밸브(21, 22, 23, 24)를 제어하기 위하여, 제어부(3)는 센싱부(4)로부터 다양한 센싱 정보를 제공 받게 된다. 센싱부(4)에는 제어부(3)에는 타이머(41), 압력센서(42), 레인센서(43), 수위센서(44), 제1 온도센서(모듈의 온도 측정)(45), 제2 온도센서(냉각수의 온도 측정)(46) 등이 구비될 수 있다.In order to control the pump 25 and the valves 21, 22, 23, and 24 as described above, the control unit 3 receives various sensing information from the sensing unit 4. In the sensing unit 4, the control unit 3 includes a timer 41, a pressure sensor 42, a rain sensor 43, a water level sensor 44, a first temperature sensor (temperature measurement of the module) 45, and a second unit. A temperature sensor (measurement of coolant temperature) 46 may be provided.
한편, 본 실시예에 따른 효율향상장치에는 재사용을 위해 사용된 냉각수를 집수하는 집수부를 더 포함할 수 있다. 집수부는 예를 들어 태양광 모듈의 하단에 설치되어 냉각수를 집수할 수 있도록 물받이 형태로 설치될 수 있고, 또한 태양광 모듈의 아래 지면에 모듈에서 떨어지는 냉각수를 집수하는 집수조의 형태로도 설치될 수 있다.On the other hand, the efficiency improving apparatus according to the present embodiment may further include a collecting unit for collecting the cooling water used for reuse. The water collecting unit may be installed in the form of a drip tray so as to be installed at the bottom of the solar module to collect the cooling water, and may also be installed in the form of a water collecting tank to collect the coolant falling from the module on the ground below the solar module. have.
또한, 냉각수 공급관 또는 저장탱크에는 기능성 물질 첨가부가 연결될 수 있다. 기능성 물질로는 세척제 또는 동파방지제 등이 첨가되어 세척 효율을 향상시키고 냉각수 공급관의 동파를 방지할 수 있다.Also, the functional material addition unit may be connected to the cooling water supply pipe or the storage tank. As a functional material, a cleaning agent or a freezing agent may be added to improve washing efficiency and prevent freezing of the cooling water supply pipe.
태양광 발전설비는 집광판이 고정되어 있는 고정식 태양광 발전설비와 일정 시간 별로 집광판의 위치 또는 각도를 변경하여 태양광을 추적하도록 하는 추적식 태양광 발전설비가 있는데, 본 발명의 효율향상장치는 고정식 태양광 발전설비와 추적식 태양광 발전설비 모두에 적용될 수 있다.The photovoltaic power generation system includes a fixed photovoltaic power generation facility having a light collecting plate fixed thereto, and a tracking photovoltaic power generation facility which tracks sunlight by changing the position or angle of the light collecting plate at a predetermined time. It can be applied to both solar and tracked solar power plants.
이하, 본 발명의 효율향상장치에 사용되는 냉각수 분사수단의 예시적인 구성을 설명하도록 한다.Hereinafter, an exemplary configuration of the coolant injection means used in the efficiency improving apparatus of the present invention will be described.
도 3은 본 발명의 일 실시예에 따른 냉각수 분사수단(6)을 나타낸 사시도이다. 도 3에 도시된 바와 같이 본 실시예에 따른 냉각수 분사수단(6)은 경통식으로 연장가능하게 결합되고 서로 다른 직경을 갖는 2개 이상의 원통형 부재를 포함하는 몸체(61) 및 상기 몸체(61)에 결합되어 몸체로부터 전달된 냉각수를 왕복 회전하며 태양광 모듈로 분사하는 분사부(62)을 포함한다. 3 is a perspective view showing the coolant injection means 6 according to an embodiment of the present invention. As shown in FIG. 3, the cooling water jetting means 6 according to the present embodiment includes a body 61 and two or more cylindrical members having a diameter different from each other. It is coupled to and includes a spraying portion 62 for reciprocating the cooling water transmitted from the body to spray to the solar module.
본 실시예에 따른 냉각수 분사수단(6)은 작동시에만 길이가 길어지므로 그림자에 의한 태양광 발전설비의 효율 저하를 막을 수 있고, 기계적 순환 메카니즘을 통해 노즐이 왕복 회전하므로 넓은 면적의 태양광 모듈에 냉각수를 분사할 수 있다.Since the cooling water injection means 6 according to the present embodiment has a long length only during operation, it is possible to prevent the efficiency of the photovoltaic power generation equipment from being lowered due to shadows, and the nozzles are reciprocally rotated through a mechanical circulation mechanism so that the solar module has a large area. Coolant can be sprayed on.
도 4 및 도 5는 본 실시예에 따른 냉각수 분사수단(6)의 몸체의 구성을 도시한 개략적인 횡단면도로서, 도 4은 몸체가 접혀 있는 모습을 나타내고, 도 5는 수압이 가해져 몸체가 길게 늘어난 모습을 나타낸다. 도 4 및 도 5는 2개의 원통형 부재를 포함하는 몸체를 나타내고 있으나, 원통형 부재의 개수는 필요에 따라 적절히 조절될 수 있다. 4 and 5 is a schematic cross-sectional view showing the configuration of the body of the coolant injection means 6 according to the present embodiment, Figure 4 shows a state that the body is folded, Figure 5 is a body lengthened by applying water pressure Show the appearance. 4 and 5 show a body including two cylindrical members, the number of cylindrical members can be appropriately adjusted as needed.
도 6은 본 실시예에 따른 냉각수 분사수단(6)의 몸체에 포함된 실링 부재 및 상기 실링 부재가 결합된 캡의 사시도이고, 도 7은 도 6의 라인 II-II에 따라 취한 실링 부재 및 상기 실링 부재가 결합된 캡의 단면도이다.6 is a perspective view of a sealing member included in the body of the coolant injection means 6 and the cap in which the sealing member is coupled according to the present embodiment, and FIG. 7 is a sealing member taken along the line II-II of FIG. Sectional view of the cap with sealing members engaged.
도 4에 도시된 바와 같이 몸체(61)는 냉각수 공급을 위한 배관이 배관 연결부(87)에 연결되어 제2 원통형 부재(82) 내로 냉각수를 공급할 수 있다.As illustrated in FIG. 4, the body 61 may supply a cooling water to the second cylindrical member 82 by connecting a pipe for supplying cooling water to the pipe connection 87.
또한 도 4 내지 도 7를 참조하면 본 실시예에 따른 냉각수 분사수단(6) 몸체(61)는 서로 경통식으로 연장가능하게 결합되고 서로 다른 직경을 갖는 제1 및 제2 원통형 부재(10A, 10B), 제2 원통형 부재(82)의 상단에 결합되는 캡(85), 및 캡(85) 내에 결합된 신축성 부재(86)를 포함한다.4 to 7, the body 61 of the coolant injection means 6 according to the present embodiment is coupled to each other so as to extend in a cylindrical manner and has first and second cylindrical members 10A and 10B having different diameters. ), A cap 85 coupled to the top of the second cylindrical member 82, and an elastic member 86 coupled within the cap 85.
상기 원통형 부재는 최상부에 위치하고 최소 직경을 갖는 제1 원통형 부재(81), 상기 제1 원통형 부재(81) 바로 아래에 밀착 연결되고 상기 제1 원통형 부재(81) 보다 큰 직경을 갖는 제2 원통형 부재(82)를 포함한다. 제1 원통형 부재(81)는 분사부 하우징의 인입구(121)에 연결되고, 제2 원통형 부재(82)는 배관에 연결된다.The cylindrical member is disposed at the top and has a first cylindrical member 81 having a minimum diameter, and a second cylindrical member having a diameter larger than that of the first cylindrical member 81, which is tightly connected below the first cylindrical member 81. And (82). The first cylindrical member 81 is connected to the inlet 121 of the injector housing, the second cylindrical member 82 is connected to the pipe.
각각의 원통형 부재 내부는 비어 있는 관 형태로 형성되어 있고 따라서 그 내부로 냉각수가 공급될 수 있다.The interior of each cylindrical member is formed in the form of an empty tube so that coolant can be supplied therein.
상기 제1 원통형 부재(81)는 그 아래의 제2 원통형 부재(82)와 경통식으로 결합되어 있고 따라서 신축 가능하도록 되어 있다.The first cylindrical member 81 is rigidly coupled to the second cylindrical member 82 thereunder, and thus is flexible.
제1 원통형 부재(81)의 상단에는 노즐이 연결되어 제2 원통형 부재(82) 내부로부터 공급된 냉각수를 태양 전지판으로 분사할 수 있다.A nozzle is connected to an upper end of the first cylindrical member 81 so that the coolant supplied from the inside of the second cylindrical member 82 may be sprayed onto the solar panel.
캡(85)은 제1 원통형 부재(81)가 제2 원통형 부재(82)로부터 연장될 때 제1 원통형 부재(81)가 제2 원통형 부재(82)로부터 이탈하는 것을 방지한다.The cap 85 prevents the first cylindrical member 81 from leaving the second cylindrical member 82 when the first cylindrical member 81 extends from the second cylindrical member 82.
보다 상세하게는 도 4 및 도 6, 도 7에 도시된 바와 같이, 캡(85)은 직경이 작은 상부(93) 및 상부(93)보다 큰 직경을 갖는 하부(94)로 구성된다. 제1 원통형 부재(81)의 하단에는 제1 걸림턱(83)이 형성되어 제1 원통형 부재(82)로부터 연장될 때 캡의 상부 바닥면에 의해 홀딩되어 외부로 이탈이 방지된다.More specifically, as shown in FIGS. 4, 6, and 7, the cap 85 is composed of an upper portion 93 having a smaller diameter and a lower portion 94 having a larger diameter than the upper portion 93. The first locking jaw 83 is formed at the lower end of the first cylindrical member 81 to be held by the upper bottom surface of the cap when extending from the first cylindrical member 82, thereby preventing departure from the outside.
상기 신축성 부재(86)는 캡(85)과 원통형 부재(10) 사이의 기밀성을 높이기 위해 제공된다. 즉, 원통형 부재(10)가 내부로 공급되는 냉각수의 수압에 의해 외부로 연장될 때 원통형 부재(10) 내에 공급되는 냉각수가 그 외부로 누수되는 것을 방지할 수 있다.The elastic member 86 is provided to increase the airtightness between the cap 85 and the cylindrical member 10. That is, when the cylindrical member 10 is extended to the outside by the hydraulic pressure of the cooling water supplied to the inside, it is possible to prevent the coolant supplied in the cylindrical member 10 from leaking to the outside.
신축성 부재(86)는 고무, 연질 플라스틱, 기타 기밀성을 높일 수 있는 재료로 형성될 수 있다.The stretchable member 86 may be formed of rubber, soft plastic, or other material capable of increasing airtightness.
보다 상세하게는, 신축성 부재(86)는 그 내부가 관통되도록 형성되고 일부가 캡(85)의 상부(93)와 밀착되도록 결합되고 나머지 일부는 캡(85)의 상부(93)의 바닥면에 밀착되도록 결합될 수 있다.More specifically, the elastic member 86 is formed so as to penetrate the inside thereof, a part is coupled so as to be in close contact with the upper portion 93 of the cap 85 and the other portion is in the bottom surface of the upper portion 93 of the cap 85 It can be combined to be in close contact.
상기 제2 원통형 부재(82) 내면에는 제2 원통형 부재(82) 내로 냉각수 공급시 수압에 의해 제1 원통형 부재(81)가 좌우로 회전함이 없이 연장될 수 있도록 하는 가이드부(91)를 더 포함할 수 있다.The inner surface of the second cylindrical member 82 is further provided with a guide portion 91 to allow the first cylindrical member 81 to extend without rotating left and right by water pressure when supplying coolant into the second cylindrical member 82. It may include.
예컨대, 도 4 및 도 5에 도시된 바와 같이, 제2 원통형 부재(82)내에 가이드부(91)가 돌출 형성되고 이에 대응하여 제1 원통형 부재(81)는 그루브가 형성될 수 있다. For example, as shown in FIGS. 4 and 5, the guide portion 91 protrudes in the second cylindrical member 82, and correspondingly, the first cylindrical member 81 may be grooved.
따라서, 원통형 부재(10)가 연장될 때 상기 가이드부(91)와 그루브가 서로 맞물려 원통형 부재(10)가 좌우로 회전하는 것이 방지될 수 있다.Therefore, when the cylindrical member 10 is extended, the guide portion 91 and the groove may be engaged with each other, thereby preventing the cylindrical member 10 from rotating left and right.
본 실시예에서는 가이드부(91)가 제2 원통형 부재(82)의 내면에 형성되고 그루브가 제1 원통형 부재(81)의 외부에 상기 가이드부(91)에 대응하여 형성되도록 설명했으나, 본 발명은 이에 제한되지 않고 제1 원통형 부재(81)의 외면에 가이드부(91)가 돌출되고 제2 원통형 부재(82)의 내면에 상기 가이드부(91)와 대응하도록 그루브가 형성되도록 구성될 수 있다.In the present exemplary embodiment, the guide portion 91 is formed on the inner surface of the second cylindrical member 82 and the groove is formed to correspond to the guide portion 91 on the outside of the first cylindrical member 81. The present invention is not limited thereto, and the guide portion 91 may protrude on the outer surface of the first cylindrical member 81, and a groove may be formed on the inner surface of the second cylindrical member 82 to correspond to the guide portion 91. .
또한 상기 가이드부(91) 및 이에 대응하는 그루브의 형상은 도시된 바와 같이 그 단면이 직사각형 형태를 이룰 수 있지만 본 발명은 이에 제한되지 않고 제1 원통형 부재(81)의 좌우회전을 방지하고 원활하게 제1 원통형 부재(81)의 신축을 가이딩하는 한 여하한 구성을 취할 수 있다.In addition, the shape of the guide portion 91 and the corresponding groove may have a rectangular cross section as shown in the drawing, but the present invention is not limited thereto and prevents left and right rotation of the first cylindrical member 81 and smoothly. Any configuration can be taken as long as the extension of the first cylindrical member 81 is guided.
본 실시예에 따르면 몸체(61)는 제1 원통형 부재(81)의 외부에 스프링 등의 탄성부재(89)를 더 포함할 수 있다.According to the present embodiment, the body 61 may further include an elastic member 89 such as a spring on the outside of the first cylindrical member 81.
탄성부재(89)는 제1 원통형 부재(81)의 외면 및 제2 원통형 부재(82)의 내면 사이에 위치하며 캡(85)의 상부 바닥면 및 제1 원통형 부재(81)의 하단에 형성된 제2 걸림턱(84) 사이에 배치된다. The elastic member 89 is positioned between the outer surface of the first cylindrical member 81 and the inner surface of the second cylindrical member 82 and formed on the upper bottom surface of the cap 85 and the lower end of the first cylindrical member 81. It is disposed between the two locking jaw (84).
이와같이, 탄성부재(89)는 제1 원통형 부재(81)가 그 내부로 공급되는 냉각수의 수압에 의해 외부로 연장될 때 제1 원통형 부재(10)의 하단에 형성된 제2 걸림턱(84)에 홀딩되고 캡(85)의 상부(93)의 바닥면에 대항하여 수축되었다가 냉각수의 공급이 차단되고 이에 따라 수압이 약해지면 탄성부재(89)의 탄성력이 작용하여 제1 원통형 부재(81)를 원래의 위치로 복원시키는 역할을 한다.In this way, the elastic member 89 is attached to the second locking jaw 84 formed at the lower end of the first cylindrical member 10 when the first cylindrical member 81 is extended to the outside by the hydraulic pressure of the coolant supplied therein. When it is held and contracted against the bottom surface of the upper portion 93 of the cap 85 and the supply of the cooling water is cut off and the water pressure is weakened, the elastic force of the elastic member 89 acts to open the first cylindrical member 81. Restores the original position.
도 8은 본 실시예에 따른 냉각수 분사수단(6)의 몸체(61)에 설치되는 수압 전달부를 나타낸 도면이다.8 is a view showing a hydraulic pressure transmission unit installed in the body 61 of the coolant injection means 6 according to the present embodiment.
본 발명의 일 실시예에 따른 몸체(61)는 수압에 의해 제1 원통형 부재가 보다 용이하게 연장되도록 하기 위하여 제1 원통형 부재(81) 내의 하부에 수압 전달부(90)를 더 포함할 수 있다. Body 61 according to an embodiment of the present invention may further include a hydraulic transmission unit 90 in the lower portion of the first cylindrical member 81 in order to more easily extend the first cylindrical member by the hydraulic pressure. .
수압 전달부(90)는 하면이 막혀 있어 배관에서 몸체(61)로 냉각수가 공급될 때 하면이 바로 수압을 전달 받게 되어 냉각수 공급 즉시 제1 원통형 부재(81)가 연장되도록 할 수 있다. The lower surface of the hydraulic pressure transmission unit 90 is blocked so that when the cooling water is supplied to the body 61 from the pipe, the lower surface immediately receives the hydraulic pressure so that the first cylindrical member 81 may be extended immediately upon supply of the cooling water.
수압 전달부(90)의 하면이 막혀 있으므로 배관에서 공급된 냉각수는 수압 전달부(90)의 측면을 통해 제1 원통형 부재(81)로 공급된다. 수압 전달부(90)의 측면은 그물망 형태로 뚫려 있어 제1 원통형 밸브로 오물이 유입되는 것을 막을 수 있다.Since the lower surface of the hydraulic pressure transmission unit 90 is blocked, the cooling water supplied from the pipe is supplied to the first cylindrical member 81 through the side surface of the hydraulic pressure transmission unit 90. The side surface of the hydraulic pressure transmission unit 90 may be drilled in the form of a mesh to prevent dirt from flowing into the first cylindrical valve.
이하, 도 4 및 5를 참조하여 본 실시예에 따른 냉각수 분사수단(6)의 몸체(61)의 동작의 일 예를 구체적으로 설명한다.Hereinafter, an example of the operation of the body 61 of the coolant injection means 6 according to the present embodiment will be described in detail with reference to FIGS. 4 and 5.
도 4 및 5는 본 실시예에 따른 냉각수 분사수단(6)의 몸체(61)가 접혀 있는 모습 및 펼쳐진 모습을 각각 도시한 사시도이다.4 and 5 are perspective views showing the folded and unfolded state of the body 61 of the coolant injection means 6 according to the present embodiment, respectively.
먼저, 배관을 통해 냉각수가 공급되기 전에는 도 3에 도시된 바와 같이 몸체(61)는 수축된 상태로 유지된다.First, the body 61 is maintained in a contracted state as shown in FIG. 3 before the cooling water is supplied through the pipe.
구체적으로는, 냉각수가 공급되기 전에는 수압이 작용하지 않고 따라서 제1 원통형 부재(81) 외부에 제공된 탄성부재(89)의 탄성력이 작용하여 탄성부재(89)가 제1 원통형 부재(81)의 하단에 형성된 제2 걸림턱(84)을 아래로 밀어내므로 몸체(61)는 수축된 상태로 유지된다.Specifically, before the cooling water is supplied, the hydraulic pressure does not work, and thus the elastic force of the elastic member 89 provided outside the first cylindrical member 81 is applied, so that the elastic member 89 is lower than the first cylindrical member 81. Pushing down the second locking step 84 formed in the body 61 is maintained in a contracted state.
만일, 배관을 통해 몸체(61) 내로 냉각수가 공급되면 수압이 상향 작용하고 이러한 수압에 의해 제1 원통형 부재(81)를 상향으로 밀어내는 힘이 탄성부재(50)의 탄성력 이상이 되면 원통형 부재(10)는 도 5에 도시된 바와 같이 상향으로 연장된다.If the coolant is supplied into the body 61 through the pipe, the hydraulic pressure acts upward, and when the force pushing the first cylindrical member 81 upward by the hydraulic pressure is greater than or equal to the elastic force of the elastic member 50, the cylindrical member ( 10) extends upward as shown in FIG.
태양광 발전에 있어서, 태양 전지판은 직렬로 연결되어 있기 때문에 태양 전지판에 그림자가 조금이라도 생기면 효율이 급격히 낮아진다. 그러나, 본 발명과 같이 몸체(61)를 접었다 펼 수 있는 접철식으로 제조함에 의해 태양광 발전의 효율을 크게 향상시킬 수 있다. In solar power generation, the solar panels are connected in series, so if any shadow is generated on the solar panels, the efficiency is drastically lowered. However, the manufacturing efficiency of the photovoltaic power generation can be greatly improved by manufacturing the body 61 in a foldable manner that can be folded and unfolded as in the present invention.
도 9은 본 실시예에 따른 냉각수 분사수단(6)의 분사부의 형상을 개략적으로 도시한 사시도이고, 도 10는 본 실시예에 따른 냉각수 분사수단(6)의 분사부의 구성을 개략적으로 도시한 분해사시도이고, 도 11은 본 실시예에 따른 냉각수 분사수단(6)의 분사부의 내부 구조를 개략적으로 도시한 단면도이고, 도 12는 본 실시예에 따른 냉각수 분사수단(6)의 분사부의 내부 구성요소의 연결 관계를 개략적으로 도시한 사시도이고, 도 13 및 도 14은 본 발명의 일 실시예에 따른 회전 수차의 회전 동작 구조를 개략적으로 도시한 사시도이고, 도 15는 본 발명의 일 실시예에 따른 제 1 및 제 2 유동홀의 개폐 상태를 개략적으로 도시한 저면도이다. 9 is a perspective view schematically showing the shape of the jetting part of the coolant jetting means 6 according to the present embodiment, and FIG. 10 is an exploded view schematically showing the configuration of the jetting part of the coolant jetting means 6 according to the present embodiment. 11 is a sectional view schematically showing the internal structure of the jetting part of the coolant jetting means 6 according to the present embodiment, and FIG. 12 is an internal component of the jetting part of the coolant jetting means 6 according to the present embodiment. 13 and 14 are perspective views schematically showing the structure of the rotation of the aberration according to an embodiment of the present invention, Figure 15 is a perspective view according to an embodiment of the present invention A bottom view schematically showing the opening and closing states of the first and second flow holes.
본 실시예에 따른 냉각수 분사수단(6)의 분사부(62)는 냉각수와 같은 유체를 분사하여 태양 전지판을 세척하는 장치로서, 도 9에 도시된 바와 같이 별도의 급수 시설(미도시)을 통해 유체를 공급받는 하우징(100)과, 하우징(100)의 외측에 장착되는 분사 유닛(600)을 포함하여 구성되는데, 유체를 분사하는 분사 유닛(600)이 별도의 전기 동력 없이 기계적인 메카니즘을 통해 회전 가능하도록 구성된다.The injection part 62 of the cooling water injection means 6 according to the present embodiment is a device for cleaning the solar panel by injecting a fluid, such as cooling water, as shown in FIG. 9 through a separate water supply facility (not shown). It comprises a housing 100 receives the fluid, and the injection unit 600 mounted to the outside of the housing 100, the injection unit 600 for injecting fluid through a mechanical mechanism without a separate electric power It is configured to be rotatable.
상기 분사부은 도 10 및 도 11에 도시된 바와 같이 분사 유닛(600)을 회전 가능하게 하기 위한 구성요소로 하우징(100) 내부에 분리 격판(200), 회전 수차(300), 회전 개폐 유닛(400) 및 링크 유닛(500)이 장착된다.The injection unit is a component for enabling the injection unit 600 to be rotatable as shown in FIGS. 10 and 11. The separating diaphragm 200, the rotation aberration 300, and the rotation opening / closing unit 400 inside the housing 100. And a link unit 500 are mounted.
하우징(100)은 내부에 수용 공간이 형성되고 내부 공간에 유체가 유입되어 배출되도록 길이 방향의 양측에 인입구(121) 및 배출구(111)가 형성된다. 하우징(100)의 형상은 양측면이 폐쇄된 중공의 원통형으로 형성되며, 하우징(100)의 내부에는 상기한 구성요소들이 안정적으로 장착될 수 있도록 별도의 원통형 지지 경통(130)이 구비될 수 있다. 지지 경통(130)에는 후술할 회전 수차(300) 및 개폐 클러치부(430)가 회전 가능하게 장착되도록 고정 지지축(131)이 형성되며, 이러한 고정 지지축(131)에 분리 격판(200)이 고정 장착될 수 있다. 이러한 지지 경통(130)은 인입구(121)와 연통되게 하우징(100)의 일측 내측면에 고정 결합되어 인입구(121)로 유입된 유체가 지지 경통(130)의 내부를 통과하며 진행할 수 있도록 구성될 수 있다. 그러나 이러한 지지 경통(130)은 본 발명의 일 실시예에 따른 것으로, 이러한 지지 경통(130) 없이 고정 지지축(131)이 하우징(100) 내측면에 형성되는 방식으로 구성될 수도 있을 것이다. 한편, 하우징(100)은 일면이 개방된 중공의 원통형상으로 폐쇄된 일측면에 배출구(111)가 형성된 하우징 본체(110)와, 하우징 본체(110)의 개방된 일면에 결합되며 인입구(121)가 형성되는 하우징 덮개(120)로 분리 형성될 수 있다.The housing 100 has an inlet 121 and an outlet 111 formed at both sides in the longitudinal direction so that an accommodation space is formed therein and fluid flows into and discharges from the interior space. The shape of the housing 100 is formed in a hollow cylindrical shape in which both sides are closed, and a separate cylindrical support barrel 130 may be provided inside the housing 100 so that the above components can be stably mounted. The support barrel 130 has a fixed support shaft 131 is formed to rotatably mount the rotation aberration 300 and the opening and closing clutch unit 430 to be described later, the separation plate 200 is formed on the fixed support shaft 131 It can be fixedly mounted. The support barrel 130 is fixedly coupled to one side inner surface of the housing 100 in communication with the inlet 121 to be configured to allow the fluid introduced into the inlet 121 to pass through the interior of the support barrel 130. Can be. However, the support barrel 130 is according to an embodiment of the present invention, and may be configured in such a manner that the fixed support shaft 131 is formed on the inner surface of the housing 100 without the support barrel 130. On the other hand, the housing 100 is coupled to the open body of the housing body 110 and the housing body 110, the outlet 111 is formed on one side of the hollow cylindrical shape of which one surface is open, the housing body 110 and the inlet 121 It may be formed separated into the housing cover 120 is formed.
분리 격판(200)은 하우징(100) 내부에 횡방향으로 결합되도록 원형 플레이트 형상으로 형성될 수 있다. 분리 격판(200)에는 인입구(121)를 통해 하우징(100) 내부로 유입된 유체가 통과하며 서로 반대 방향의 유동 방향 성분이 형성되도록 서로 다른 방향의 유로를 갖는 제 1 및 제 2 유동홀(210,220)이 관통 형성된다. 즉, 제 1 및 제 2 유동홀(210,220)은 이를 통과한 유체의 유동 방향이 각각 서로 반대인 방향 성분, 예를 들어 X방향 성분 및 -X방향 성분이 발생되도록 형성되는데, 이에 대한 자세한 설명은 후술한다.The separating plate 200 may be formed in a circular plate shape to be coupled to the inside of the housing 100 in the transverse direction. The first and second flow holes 210 and 220 having flow paths in different directions so that the fluid flowing into the housing 100 through the inlet 121 pass through the separation plate 200 and the flow direction components in opposite directions are formed. ) Is formed through. That is, the first and second flow holes 210 and 220 are formed such that a direction component, for example, an X direction component and a -X direction component, in which the flow directions of the fluid passing therethrough are opposite to each other, is generated. It will be described later.
회전 수차(300)는 다수개의 회전 날개(310)가 원주 방향을 따라 등간격으로 이격 배치된 형태로 형성되며, 중심축(C)이 고정 지지축(131)에 형성된 결합홈(415)에 삽입되어 회전 가능하게 결합되는 방식으로 구성되며, 분리 격판(200)의 일측면에 인접하게 배치되어 분리 격판(200)의 제 1 및 제 2 유동홀(210,220)을 통과한 유체의 유동력에 의해 회전하도록 구성된다. 제 1 및 제 2 유동홀(210,220)을 통과한 유체의 유동 방향은 전술한 바와 같이 서로 반대 방향 성분을 가지는데, 이때 제 1 및 제 2 유동홀(210,220)은 후술할 회전 개폐 유닛(400)에 의해 교대로 개폐되므로 제 1 유동홀(210) 또는 제 2 유동홀(220)을 통과한 서로 반대 방향 성분을 갖는 유체의 유동력에 의해 회전 수차(300)는 양방향으로 왕복 회전하게 된다. The rotation aberration 300 is formed in a shape in which a plurality of rotating blades 310 are spaced at equal intervals along the circumferential direction, and the central axis C is inserted into the coupling groove 415 formed in the fixed support shaft 131. And rotatably coupled to each other and disposed adjacent to one side of the separating diaphragm 200 to be rotated by the flow force of the fluid passing through the first and second flow holes 210 and 220 of the separating diaphragm 200. Is configured to. The flow direction of the fluid passing through the first and second flow holes 210 and 220 has components opposite to each other as described above, in which the first and second flow holes 210 and 220 are described below. The rotation aberration 300 is reciprocally rotated in both directions by the flow force of the fluid having the components in the opposite direction passed through the first flow hole 210 or the second flow hole 220 so as to be alternately opened and closed by.
회전 개폐 유닛(400)은 회전 수차(300)의 왕복 회전에 연동하여 왕복 회전하도록 하우징(100) 내부에 회전 가능하게 장착되며, 이러한 회전에 따라 제 1 및 제 2 유동홀(210,220)을 교대로 개폐하도록 구성된다. 이러한 회전 개폐 유닛(400)은 별도의 링크 유닛(500)에 의해 회전 수차(300)와 연동되는데, 링크 유닛(500)은 다수개의 링크 플레이트, 체인, 벨트 등 다양한 동력 전달 기계 요소를 통해 다양한 방식으로 구성될 수 있으며, 본 발명의 일 실시예에 따른 링크 유닛(500)은 도 10 및 도 11에 도시된 바와 같이 다수개의 기어를 이용하여 구성될 수 있다.The rotation opening / closing unit 400 is rotatably mounted in the housing 100 to reciprocally rotate in conjunction with the reciprocating rotation of the rotation aberration 300, and alternately alternately rotate the first and second flow holes 210 and 220 according to the rotation. It is configured to open and close. The rotation opening and closing unit 400 is interlocked with the rotary aberration 300 by a separate link unit 500, the link unit 500 is a variety of ways through a variety of power transmission mechanical elements, such as a plurality of link plates, chains, belts The link unit 500 according to an embodiment of the present invention may be configured by using a plurality of gears as shown in FIGS. 10 and 11.
한편, 분사 유닛(600)은 하우징(100)의 외측에 배치되며 배출구(111)를 통해 하우징(100) 내부 공간과 연통되어 하우징(100)으로부터 배출되는 유체를 분사하도록 구성된다. 또한 분사 유닛(600)은 하우징(100) 내부의 회전 개폐 유닛(400)에 결합되어 회전 개폐 유닛(400)과 일체로 회전하며 유체를 분사한다. 따라서, 분사 유닛(600)이 회전하며 유체를 분사하기 때문에, 태양 전지판 전체 면적에 고르게 유체가 분사된다. On the other hand, the injection unit 600 is disposed on the outside of the housing 100 and communicates with the interior space of the housing 100 through the discharge port 111 is configured to inject the fluid discharged from the housing 100. In addition, the injection unit 600 is coupled to the rotation opening and closing unit 400 inside the housing 100 rotates integrally with the rotation opening and closing unit 400 and injects fluid. Therefore, since the injection unit 600 rotates and injects the fluid, the fluid is evenly injected to the entire area of the solar panel.
이러한 구조에 따라 본 발명의 일 실시예에 따른 태양광 발전설비의 세척 장치는 유체가 공급되며 제 1 및 제 2 유동홀(210,220)을 교대로 통과한 유체의 유동력에 의해 회전 수차(300)가 왕복 회전하고 이에 따라 분사 유닛(600)이 회전하며 유체를 분사하는 구조이다. 따라서, 별도의 전기 동력을 사용하지 않고 기계적 메카니즘을 통해서 분사 유닛(600)이 회전 가능하도록 구성되어 에너지 효율이 우수하며 크기가 상대적으로 큰 태양 전지판의 세척 기능을 원활히 수행할 수 있는 구조이다.According to such a structure, the washing apparatus of the solar power plant according to the embodiment of the present invention is supplied with a fluid and the rotation aberration 300 by the flow force of the fluid alternately passed through the first and second flow holes (210, 220) Is reciprocatingly rotated and thus the injection unit 600 rotates to inject fluid. Therefore, the injection unit 600 is configured to be rotatable through a mechanical mechanism without using an additional electric power, so that the energy efficiency is excellent and the structure can perform the washing function of the solar panel having a relatively large size.
다음으로 본 발명의 일 실시예에 따른 분사 유닛(600)이 양방향으로 회전하는 메카니즘에 대해 좀 더 자세히 살펴본다.Next, a more detailed look at the mechanism in which the injection unit 600 according to an embodiment of the present invention rotates in both directions.
분리 격판(200)은 전술한 바와 같이 평판형으로 하우징(100) 내부에 횡방향으로 고정 장착되며, 이러한 분리 격판(200)에는 제 1 및 제 2 유동홀(210,220)이 형성된다. 제 1 및 제 2 유동홀(210,220)은 분리 격판(200)의 두께 방향에 대해 경사지게 형성되는 직선 유로를 갖도록 각각 적어도 하나 이상씩 형성되며, 이때 제 1 및 제 2 유동홀(210,220)의 경사 방향은 분리 격판(200)의 두께 방향에 대해 서로 대칭되게 형성될 수 있다. 예를 들어, 제 1 유동홀(210)은 도 13를 기준으로 회전 수차(300)를 반시계 방향으로 회전시키는 유체 유동력이 형성되도록 경사지게 형성되고, 제 2 유동홀(220)은 회전 수차(300)를 시계 방향으로 회전시키는 유체 유동력이 형성되도록 경사지게 형성될 수 있다. 따라서, 제 1 유동홀(210)을 통과한 유체는 제 1 유동홀(210)의 경사 방향에 따른 유동 방향 성분이 형성되어 회전 수차(300)를 반시계 방향으로 회전시키고, 제 2 유동홀(220)을 통과한 유체는 제 1 유동홀(210)과 서로 대칭인 제 2 유동홀(220)의 경사 방향에 따른 유동 방향 성분이 형성되어 회전 수차(300)를 시계 방향으로 회전시킨다. 이때, 제 1 및 제 2 유동홀(210,220)은 회전 수차(300)를 회전시키는 유체 유동력의 강화를 위해 도 7 내지 도 15에 도시된 바와 같이 분리 격판(200)에 원주 방향을 따라 각각 서로 180°각도의 위치에 2개씩 형성될 수 있으며, 제 1 및 제 2 유동홀(210,220)의 개수는 제 1 및 제 2 유동홀(210,220)이 원주 방향을 따라 서로 교번하는 형태로 3개, 4개 등등 다양하게 변경 가능할 것이다.As described above, the separating diaphragm 200 is fixedly mounted to the inside of the housing 100 in a flat shape as described above, and the first and second flow holes 210 and 220 are formed in the separating diaphragm 200. At least one first and second flow holes 210 and 220 are each formed to have a straight flow path formed to be inclined with respect to the thickness direction of the separation plate 200, and at least one first and second flow holes 210 and 220 are inclined directions of the first and second flow holes 210 and 220. Silver may be formed symmetrically with respect to the thickness direction of the separation plate 200. For example, the first flow hole 210 is inclined to form a fluid flow force for rotating the rotation aberration 300 in a counterclockwise direction with reference to FIG. 13, and the second flow hole 220 is formed in the rotation aberration ( It may be inclined to form a fluid flow force for rotating the clockwise 300. Accordingly, the fluid passing through the first flow hole 210 forms a flow direction component in the inclined direction of the first flow hole 210 to rotate the rotation aberration 300 counterclockwise, and the second flow hole ( The fluid having passed through 220 forms a flow direction component along the inclined direction of the first flow hole 210 and the second flow hole 220 which are symmetrical with each other to rotate the rotation aberration 300 in a clockwise direction. At this time, the first and second flow holes (210, 220) are each other along the circumferential direction to the separation diaphragm 200, as shown in Figures 7 to 15 to enhance the fluid flow force for rotating the rotary aberration (300) Each of the first and second flow holes 210 and 220 may be formed in alternating positions along the circumferential direction. Dogs and so on will be variously modifiable.
한편, 회전 개폐 유닛(400)은 회전 수차(300)의 왕복 회전에 연동하여 양방향으로 왕복 회전하며 제 1 및 제 2 유동홀(210,220)을 교대로 개폐한다. 따라서, 회전 개폐 유닛(400)의 왕복 회전에 의해 제 1 및 제 2 유동홀(210,220)이 교대로 개폐되며, 제 1 및 제 2 유동홀(210,220)이 교대로 개폐됨에 따라 이를 통과하는 유체 유동력이 서로 반대 방향 성분을 갖게 되며 이에 따라 회전 수차(300)가 왕복 회전하게 되고, 이러한 회전 수차(300)의 왕복 회전은 다시 회전 개폐 유닛(400)을 왕복 회전시키는 순환 메카니즘이 발생된다. 이러한 순환 메카니즘에 의해 회전 수차(300) 및 회전 개폐 유닛(400)의 왕복 회전은 하우징(100) 내부로 유체가 공급되는 한 계속적으로 반복된다.On the other hand, the rotation opening and closing unit 400 is reciprocating in both directions in conjunction with the reciprocating rotation of the rotary aberration 300 and alternately open and close the first and second flow holes (210, 220). Accordingly, the first and second flow holes 210 and 220 are alternately opened and closed by the reciprocating rotation of the rotary opening and closing unit 400, and the fluid flow passing therethrough is alternately opened and closed. The power has components opposite to each other, so that the rotation aberration 300 reciprocates, and the reciprocation of the rotation aberration 300 again generates a circulation mechanism for reciprocating the rotation opening and closing unit 400. By this circulation mechanism, the reciprocating rotation of the rotary aberration 300 and the rotary opening / closing unit 400 is continuously repeated as long as fluid is supplied into the housing 100.
이와 같은 회전 개폐 유닛(400)의 구성을 좀 더 자세히 살펴보면, 회전 개폐 유닛(400)은 본 발명의 일 실시예에 따라 링크 유닛(500)과 직접 연결 결합되어 회전 수차(300)와 연동하여 회전하는 회전 블록부(410)와, 회전 블록부(410)에 맞물림되어 회전 블록부(410)와 일체로 회전하며 제 1 및 제 2 유동홀(210,220)을 교대로 개폐하도록 분리 격판(200)에 접촉 결합되는 개폐 클러치부(430)를 포함하여 구성된다.Looking at the configuration of the rotation opening and closing unit 400 in more detail, the rotation opening and closing unit 400 is directly connected and coupled to the link unit 500 according to an embodiment of the present invention to rotate in conjunction with the rotation aberration 300 The rotary block unit 410 and the rotary block unit 410 are engaged with the rotary block unit 410 to rotate integrally with the rotary block unit 410 and to the separation plate 200 to open and close the first and second flow holes 210 and 220 alternately. It is configured to include an opening and closing clutch portion 430 is contacted.
이때, 회전 블록부(410)는 본 발명의 일 실시예에 따라 링크 유닛(500)과 연결 결합되며 중앙부에 관통홀(416)이 형성된 원형 회전판(411)과, 관통홀(416)에 연통되도록 회전판(411)의 일면에 돌출 형성되어 분사 유닛(600)과 결합되는 연결 슬리브(412)와, 개폐 클러치부(430)와 맞물림되도록 회전판(411)의 외측부에 하우징(100)의 길이 방향을 따라 연장 형성된 걸림바(413)를 포함하여 구성될 수 있으며, 이러한 회전판(411), 연결 슬리브(412) 및 걸림바(413)는 일체로 형성되는 것이 바람직하나, 각각 별개로 형성되어 상호 결합되는 방식으로 제작될 수도 있다. 이때, 연결 슬리브(412)는 분사 유닛(600)이 탈착 가능하게 결합되도록 구성되는데, 이러한 탈착 가능한 결합 방식으로는 도 9에 도시된 바와 같이 나사 결합 방식이 적용될 수 있으며, 이외에도 끼워맞춤 방식 또는 별도의 볼트 체결 방식 등 다양한 방식으로 변경 가능하다. At this time, the rotary block 410 is connected to the link unit 500 in accordance with an embodiment of the present invention so as to communicate with the circular rotary plate 411, the through-hole 416 formed in the center portion, the through-hole 416 A connecting sleeve 412 protruding from one surface of the rotating plate 411 to be coupled to the injection unit 600 and the outer side of the rotating plate 411 to be engaged with the opening / closing clutch unit 430 along the longitudinal direction of the housing 100. It may be configured to include an extended formed locking bar 413, the rotating plate 411, the connecting sleeve 412 and the locking bar 413 is preferably formed integrally, but each formed separately and coupled to each other It can also be produced. At this time, the connecting sleeve 412 is configured to be detachably coupled to the injection unit 600, the detachable coupling method may be applied to the screw coupling method as shown in Figure 9, in addition to the fitting method or separate It can be changed in various ways such as bolt fastening method.
또한, 개폐 클러치부(430)는 본 발명의 일 실시예에 따라 분리 격판(200)의 일측면에 접촉되어 회전 가능하게 장착되는 작동판(431)과, 작동판(431)과 일체로 회전하도록 결합되고 회전 블록부(410)의 걸림바(413)와 맞물림되며 회전하도록 분리 격판(200)의 외측으로 돌출되게 형성되는 작동 걸림판(432)을 포함하며, 작동판(431)이 회전하며 제 1 및 제 2 유동홀(210,220)을 교대로 개폐하도록 구성될 수 있으며, 작동판(431)과 작동 걸림판(432)은 서로 일체로 형성될 수도 있을 것이다. 착되는 개폐 클러치부(430)는 작동판(431)이 제 1 유동홀(210)을 폐쇄하는 록부(41회전하도록 작동판(431)을 탄성 편의시키는 탄성 스프링(433)을 더 포함하여 구성될 수 있다.In addition, the opening and closing clutch unit 430 is in contact with one side of the separating diaphragm 200 in accordance with an embodiment of the present invention so as to rotate integrally with the operating plate 431, the operating plate 431 It is coupled to engage the engaging bar 413 of the rotary block 410, and includes an operation locking plate 432 formed to protrude to the outside of the separation plate 200 to rotate, the operating plate 431 is rotated The first and second flow holes 210 and 220 may be configured to be opened and closed alternately, and the operating plate 431 and the operating stopping plate 432 may be integrally formed with each other. The opening / closing clutch unit 430 may be configured to further include an elastic spring 433 for elastically biasing the operating plate 431 such that the operating plate 431 rotates the lock portion 41 for closing the first flow hole 210. Can be.
따라서, 회전 개폐 유닛(400)은 회전 블록부(410)와 개폐 클러치부(430)로 형성되어 분사 유닛(600)과 결합되어 분사 유닛(600)이 회전하도록 하는 기능을 수행함과 동시에 제 1 및 제 2 유동홀(210,220)을 교대로 개폐하는 기능을 수행한다. Accordingly, the rotation opening / closing unit 400 is formed of the rotation block part 410 and the opening / closing clutch part 430 to be combined with the injection unit 600 to perform the function of rotating the injection unit 600 and the first and the same. A function of alternately opening and closing the second flow holes (210, 220).
이러한 회전 개폐 유닛(400)의 동작 상태를 회전 블록부(410)와 개폐 클러치부(430)로 분리하여 좀 더 자세히 살펴보면, 먼저 회전 블록부(410)는 링크 유닛(500)에 의해 회전 수차(300)에 연동하여 회전한다. 좀 더 구체적으로는, 도 12에 도시된 바와 같이 회전 수차(300)가 왕복 회전하면 링크 유닛(500)에 직접 연결 결합되는 원형 회전판(411) 및 연결 슬리브(412)가 왕복 회전하고, 이에 따라 연결 슬리브(412)에 결합된 분사 유닛(600)이 왕복 회전하게 된다. 또한, 연결 슬리브(412)가 왕복 회전하는 경우 연결 슬리브(412)의 외측부에 연장 형성된 걸림바(413) 또한 왕복 회전하게 되는데, 이때 걸림바(413)가 개폐 클러치부(430)의 작동 걸림판(432)과 맞물림되기 때문에 작동 걸림판(432)은 걸림바(413)와 함께 왕복 회전하게 된다. 작동 걸림판(432)이 왕복 회전하면 이와 일체로 결합된 작동판(431)이 왕복 회전하게 되고, 이러한 작동판(431)의 왕복 회전에 따라 제 1 및 제 2 유동홀(210,220)이 교대로 개폐된다. 이러한 제 1 및 제 2 유동홀(210,220)의 선택적 개폐는 전술한 바와 같이 다시 회전 수차(300)의 왕복 회전을 유도하게 되며, 결국 회전 개폐 유닛(400)이 계속적으로 왕복 회전하게 된다.When the operation state of the rotation opening and closing unit 400 is divided into the rotation block unit 410 and the opening / closing clutch unit 430 to examine in more detail, first, the rotation block unit 410 is rotated by the link unit 500 ( Rotate in conjunction with 300). More specifically, as shown in FIG. 12, when the rotary aberration 300 reciprocates, the circular rotary plate 411 and the connecting sleeve 412 which are directly coupled to the link unit 500 reciprocate, and thus The injection unit 600 coupled to the connecting sleeve 412 is reciprocated. In addition, when the connecting sleeve 412 reciprocally rotates, the catching bar 413 extending to the outer side of the connecting sleeve 412 is also reciprocally rotated. Since the engaging plate 432 is engaged, the operation stopping plate 432 is reciprocally rotated together with the locking bar 413. When the operation stopping plate 432 reciprocally rotates, the operation plate 431 integrally coupled thereto rotates reciprocally, and the first and second flow holes 210 and 220 alternately according to the reciprocating rotation of the operation plate 431. It is opened and closed. Selective opening and closing of the first and second flow holes 210 and 220 induces reciprocation of the rotation aberration 300 again as described above, and as a result, the rotation opening and closing unit 400 continuously reciprocates.
이때, 회전 블록부(410)의 걸림바(413)와 개폐 클러치부(430)의 작동 걸림판(432)은 걸림바(413)의 양방향 회전시 모두 맞물림되도록 형성될 수도 있으나, 도 12에 도시된 바와 같이 걸림바(413)의 일방향 회전시에만 맞물림되고 반대 방향 회전시에는 맞물림 해제되는 방식으로 구성될 수도 있다. 예를 들어, 도 15의 (a)에 도시된 바와 같이 작동판(431) 및 작동 걸림판(432)이 제 1 유동홀(210)을 폐쇄한 상태로 회전한 상태에서, 걸림바(413)가 일방향으로 회전하면 작동 걸림판(432)이 이에 맞물림되어 회전하여 도 15의 (b)에 도시된 바와 같이 작동판(431)이 제 2 유동홀(220)을 폐쇄하도록 회전하게 된다. 이와 같이 작동판(431)이 제 2 유동홀(220)을 폐쇄한 상태에서 다시 걸림바(413)가 반대 방향으로 회전하게 되면, 이 경우에는 작동 걸림판(432)이 걸림바(413)에 맞물림되지 않기 때문에 작동 걸림판(432) 및 작동판(431)이 회전하지 않고 제 2 유동홀(220)을 폐쇄한 상태로 유지된다. 따라서, 이 경우에는 도 10에 도시된 바와 같이 작동판(431)을 탄성 편의시키는 별도의 탄성 스프링(433)에 의해 작동판(431)이 제 1 유동홀(210)을 폐쇄하도록 회전하게 된다.At this time, the locking bar 413 of the rotary block 410 and the operation locking plate 432 of the opening and closing clutch unit 430 may be formed to be engaged when both of the locking bar 413 rotates in both directions, as shown in FIG. As described above, the engagement bar 413 may be configured to be engaged only in one direction rotation and to be disengaged in the opposite direction. For example, as shown in FIG. 15A, in the state in which the operating plate 431 and the operating stopping plate 432 are rotated with the first flow hole 210 closed, the locking bar 413 is provided. When the rotation in one direction is engaged with the operation locking plate 432 is rotated so as to rotate the operating plate 431 to close the second flow hole 220 as shown in (b) of FIG. When the locking bar 413 rotates in the opposite direction while the operation plate 431 closes the second flow hole 220, in this case, the operation locking plate 432 is connected to the locking bar 413. Since the engagement plate 432 and the operation plate 431 do not rotate, the second flow hole 220 is kept closed because it is not engaged. Therefore, in this case, as shown in FIG. 10, the operating plate 431 is rotated to close the first flow hole 210 by a separate elastic spring 433 for elastically biasing the operating plate 431.
한편, 회전 개폐 유닛(400)은 이상에서 설명한 동작 원리에 따라 왕복 회전하게 되는데, 이러한 회전 개폐 유닛(400)은 본 발명의 일 실시예에 따라 왕복 회전 각도가 조절될 수 있도록 별도의 회전 스토퍼(420)가 장착될 수 있다. 즉, 도 12에 도시된 바와 같이 회전 블록부(410)의 외측 방향으로 돌출되는 회전 스토퍼(420)가 회전 블록부(410)의 회전판(411) 상부면에 결합되고, 하우징(100)의 내주면 일측에는 이러한 회전 스토퍼(420)가 회전함에 따라 회전 스토퍼(420)와 맞물림될 수 있는 고정 돌기(132)가 형성될 수 있다. 따라서, 회전 블록부(410)는 회전 스토퍼(420) 및 고정 돌기(132)에 의해 최대 회전 각도가 제한된다. 이때, 회전 스토퍼(420)는 결합홀(421)을 통해 도 12에 도시된 바와 같이 연결 슬리브(412)에 관통되게 결합될 수 있는데, 결합홀(421)의 내주면에는 결합 돌기(422)가 형성되고 연결 슬리브(412)의 외주면에는 결합 돌기(422)가 삽입될 수 있는 결합홈(415)이 원주 방향을 따라 이격되게 다수개 형성되며, 이러한 결합 돌기(422) 및 결합홈(415)에 의해 회전 스토퍼(420)가 회전 블록부(410)에 탈착 가능하게 결합될 수 있다. 따라서, 회전 스토퍼(420)의 결합 위치는 다수개의 결합홈(415) 중 결합 돌기(422)가 결합되는 결합홈(415)의 위치에 따라 회전판(411)에 대한 다양한 상대 위치를 갖도록 변경되며, 이러한 결합 위치의 변경에 따라 회전 스토퍼(420)에 의해 제한되는 회전 블록부(410)의 최대 회전 각도가 조절된다.On the other hand, the rotation opening and closing unit 400 is to be reciprocated in accordance with the operation principle described above, such a rotation opening and closing unit 400 is a separate rotation stopper so that the reciprocating rotation angle can be adjusted according to an embodiment of the present invention ( 420 may be mounted. That is, as shown in FIG. 12, the rotary stopper 420 protruding outward from the rotary block 410 is coupled to the upper surface of the rotary plate 411 of the rotary block 410, and the inner circumferential surface of the housing 100. On one side, as the rotary stopper 420 rotates, a fixing protrusion 132 that may be engaged with the rotary stopper 420 may be formed. Therefore, the maximum rotation angle of the rotation block 410 is limited by the rotation stopper 420 and the fixing protrusion 132. In this case, the rotary stopper 420 may be coupled to the connection sleeve 412 through the coupling hole 421 to be penetrated, and the coupling protrusion 422 is formed on the inner circumferential surface of the coupling hole 421. And the outer circumferential surface of the connecting sleeve 412 is formed with a plurality of coupling grooves 415 which can be inserted into the coupling protrusion 422 spaced along the circumferential direction, by the coupling protrusion 422 and the coupling groove 415 The rotary stopper 420 may be detachably coupled to the rotary block 410. Therefore, the coupling position of the rotary stopper 420 is changed to have various relative positions with respect to the rotating plate 411 according to the position of the coupling groove 415 to which the coupling protrusion 422 is coupled among the plurality of coupling grooves 415, According to the change of the coupling position, the maximum rotation angle of the rotation block part 410 limited by the rotation stopper 420 is adjusted.
다음으로, 회전 개폐 유닛(400)과 회전 수차(300)를 연동시키는 링크 유닛(500)에 대해 좀 더 자세히 살펴보면, 회전 개폐 유닛(400)의 내주면에 기어의 치형(G)이 형성되는 중공 원통형의 기어 치형부(414)가 형성되고, 링크 유닛(500)은 이러한 회전 개폐 유닛(400)에 치합되는 다수개의 기어를 포함하여 구성될 수 있다. 즉, 링크 유닛(500)은 회전 수차(300)의 중심축(C)에 결합되어 회전하는 구동 기어(510)와, 구동 기어(510)에 치합되며 구동 기어(510)의 회전력을 전달하는 감속 기어부(520)와, 감속 기어부(520)에 치합되어 구동 기어(510)의 회전력이 전달되는 종동 기어(530)를 포함하여 구성될 수 있다. 이때, 종동 기어(530)가 회전 개폐 유닛(400)의 기어 치형부(414)와 치합되게 장착된다. 따라서, 회전 수차(300)가 회전하게 되면, 회전 수차(300)의 중심축(C)에 결합된 구동 기어(510)가 회전하게 되고, 구동 기어(510)의 회전에 따라 감속 기어부(520) 및 종동 기어(530)가 회전하며 이에 따라 회전 개폐 유닛(400)이 회전하게 된다. 이때, 감속 기어부(520)는 구동 기어(510)의 회전 속도가 감속될 수 있도록 다수개의 컴파운드 기어(521)를 통해 구성될 수 있으며, 이러한 감속 기어부(520)에 의해 회전 개폐 유닛(400)의 회전 속도가 회전 수차(300)의 회전 속도보다 상대적으로 느리게 형성되는 것이 바람직하다. 또한, 링크 유닛(500)은 본 발명의 일 실시예에 따라 종동 기어(530)에 치합되어 회전하는 회전 개폐 유닛(400)을 지지하도록 기어 치형부(414)에 치합되는 적어도 하나 이상의 아이들 기어(540)를 더 포함하여 구성되는 것이 바람직하다.Next, looking at the link unit 500 for interlocking the rotary opening and closing unit 400 and the rotary aberration 300 in more detail, the hollow cylinder in which the teeth (G) of the gear is formed on the inner peripheral surface of the rotary opening and closing unit 400 Gear teeth 414 are formed, the link unit 500 may be configured to include a plurality of gears that are engaged to the rotation opening and closing unit 400. That is, the link unit 500 is coupled to the central axis C of the rotational aberration 300, the driving gear 510 rotates, and the reduction gear is engaged with the driving gear 510 and transmits the rotational force of the driving gear 510. It may be configured to include a gear unit 520 and a driven gear 530 that is meshed with the reduction gear unit 520 to which the rotational force of the driving gear 510 is transmitted. At this time, the driven gear 530 is mounted to mesh with the gear teeth 414 of the rotation opening and closing unit 400. Therefore, when the rotation aberration 300 rotates, the driving gear 510 coupled to the central axis C of the rotation aberration 300 rotates, and the reduction gear unit 520 according to the rotation of the driving gear 510. ) And the driven gear 530 is rotated accordingly the rotation opening and closing unit 400 is rotated. At this time, the reduction gear unit 520 may be configured through a plurality of compound gears 521 so that the rotational speed of the drive gear 510 can be reduced, by the reduction gear unit 520 rotation opening and closing unit 400 It is preferable that the rotational speed of Rx is relatively slower than the rotational speed of the rotational aberration 300. In addition, the link unit 500 is engaged with the gear tooth 414 to support the rotation opening and closing unit 400 meshed with the driven gear 530 in accordance with one embodiment of the present invention (at least one idle gear ( It is preferably configured to further comprise 540.
이러한 링크 유닛(500)은 도 10 내지 도 12에 도시된 바와 같이 하우징(100) 내부에 구비된 별도의 기어 박스(550)를 통해 장착될 수 있다. 기어 박스(550)는 중공의 원통형 기어 박스 본체(551)와 기어 박스 본체(551)의 일면을 폐쇄하는 평판형 기어 박스 덮개(553)로 분리 형성되며, 기어 박스 본체(551)의 내부에 형성된 기어 지지부(552)에 감속 기어부(520)가 안착되고, 기어 박스 덮개(553)의 상면에 종동 기어(530) 및 아이들 기어(540)가 안착되는 형태로 구성될 수 있다. The link unit 500 may be mounted through a separate gear box 550 provided inside the housing 100 as shown in FIGS. 10 to 12. The gear box 550 is separated into a hollow cylindrical gear box body 551 and a flat gear box cover 553 that closes one surface of the gear box body 551, and is formed inside the gear box body 551. The reduction gear unit 520 may be seated on the gear support 552, and the driven gear 530 and the idle gear 540 may be seated on an upper surface of the gear box cover 553.
한편, 분사 유닛(600)은 분사 노즐을 이용하여 유체를 분사하는 다양한 방식으로 구성될 수 있는데, 본 발명의 일 실시예에 따른 분사 유닛(600)은 도 11에 도시된 바와 같이 회전 개폐 유닛(400)에 탈착 가능하게 결합되며 내부에는 유체가 통과하도록 하우징(100) 내부와 연통되는 분사 유로(611)가 형성되는 분사 케이스(610)와, 분사 유로(611)의 출구에 탈착 가능하게 결합되는 분사 노즐(620)을 포함하여 구성될 수 있다. 즉, 분사 유닛(600)은 도 11에 도시된 바와 같이 회전 개폐 유닛(400)의 연결 슬리브(412)에 탈착 가능하게 결합될 수 있는데, 전술한 바와 같이 연결 슬리브(412) 및 분사 케이스(610)에 서로 대응되는 나사산이 형성되는 방식으로 나사 결합될 수 있으며, 이를 통해 다양한 형태의 분사 유닛(600)을 필요에 따라 용이하게 교환할 수 있다. 또한, 분사 노즐(620)은 도 9에 도시된 바와 같이 분사 유로(611)에 끼워맞춤 방식으로 탈착 가능하게 결합될 수 있으며, 이러한 결합 방식은 볼트 결합 방식, 나사 결합 방식 등 다양하게 변경 가능하며, 이러한 구조에 따라 다양한 형태의 분사 노즐(620)을 용이하게 결합하여 사용할 수 있다.On the other hand, the injection unit 600 may be configured in various ways to inject a fluid using the injection nozzle, the injection unit 600 according to an embodiment of the present invention is a rotation opening and closing unit ( It is detachably coupled to 400 and the injection case 610 is formed in the injection passage 611 is formed in communication with the interior of the housing 100 so that the fluid passes therein, and is detachably coupled to the outlet of the injection passage 611 It may be configured to include a spray nozzle (620). That is, the injection unit 600 may be detachably coupled to the connection sleeve 412 of the rotation opening and closing unit 400 as shown in FIG. 11, as described above, the connection sleeve 412 and the injection case 610. Screws corresponding to each other can be screwed in a way that is formed, through which the various types of injection unit 600 can be easily exchanged as necessary. In addition, the injection nozzle 620 may be detachably coupled to the injection flow path 611 as shown in Figure 9, this coupling method may be variously changed, such as bolt coupling method, screw coupling method According to this structure, various types of spray nozzles 620 may be easily combined and used.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (16)

  1. 태양광을 집광하여 전기를 발생시키는 다수의 태양광 모듈로 구성되는 태양광 발전설비에 냉각수의 충돌제트를 분사하여 태양광 발전설비의 효율을 유지 또는 향상시키는 태양광 발전설비의 효율향상설비에 있어서,In the efficiency improvement facility of the solar power generation facility to maintain or improve the efficiency of the solar power generation facility by spraying the impingement jet of cooling water to the solar power generation facility consisting of a plurality of solar modules to collect electricity to generate electricity ,
    냉각수를 저장하는 저장탱크;A storage tank for storing coolant;
    상기 다수의 태양광 모듈 각각에 대응하도록 설치되어, 왕복 회전하면서 상기 태양광 모듈에 냉각수의 충돌제트를 분사하는 냉각수 분사수단;Cooling water injection means is installed so as to correspond to each of the plurality of solar modules, spraying a jet of the cooling water to the photovoltaic module while reciprocating rotation;
    상기 저장탱크로부터 공급 받은 냉각수를 상기 냉각수 분사수단으로 공급하는 냉각수 공급관;Cooling water supply pipe for supplying the cooling water supplied from the storage tank to the cooling water injection means;
    상기 저장탱크에 저장된 냉각수를 펌핑하여 상기 냉각수 공급관으로 공급하는 펌프;A pump for pumping the cooling water stored in the storage tank and supplying the cooling water to the cooling water supply pipe;
    상기 다수의 태양광 모듈을 2 이상의 섹터로 구분하여, 상기 각 섹터의 태양광 모듈에 대응하는 분사수단으로 연결된 냉각수 공급관의 개폐를 조절하는 2 이상의 밸브; 및 At least two valves for dividing the plurality of solar modules into two or more sectors and controlling opening and closing of the cooling water supply pipe connected to the injection means corresponding to the solar modules of each sector; And
    상기 펌프를 구동하고 상기 2 이상의 밸브를 순차적으로 개방하여 각 섹터 별로 냉각수를 상기 태양광 모듈에 공급하는 제어부A controller for driving the pump and sequentially opening the two or more valves to supply cooling water to the solar module for each sector;
    를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.Efficiency improvement equipment of photovoltaic power generation equipment comprising a.
  2. 제1항에 있어서,The method of claim 1,
    사용된 냉각수를 집수하는 집수부를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.Efficiency improvement equipment of the solar power plant, characterized in that it further comprises a collecting section for collecting the used coolant.
  3. 제2항에 있어서,The method of claim 2,
    상기 집수부는 상기 태양광 모듈의 하단에 설치되어 사용된 냉각수 또는 빗물을 집수하는 물받이를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.The water collecting unit is installed at the bottom of the solar module efficiency improvement equipment of the solar power plant, characterized in that it comprises a drip tray for collecting the cooling water or rain water used.
  4. 제2항에 있어서,The method of claim 2,
    상기 집수부는 상기 태양광 모듈의 하부에 설치되어 사용된 냉각수를 집수하는 집수조를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.The water collecting unit is installed in the lower portion of the solar module, the efficiency improvement equipment of the solar power generation equipment, characterized in that it comprises a collecting tank for collecting the used coolant.
  5. 제1항에 있어서,The method of claim 1,
    상기 냉각수 공급관은 지중에 매설되는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.The cooling water supply pipe is efficiency improvement equipment of the solar power plant, characterized in that buried underground.
  6. 제1항에 있어서,The method of claim 1,
    상기 냉각수 분사수단으로부터 상기 태양광 모듈로 분사되는 냉각수는 상기 냉각수 분사수단 입구 기준으로 유속이 30 m/s 이상이고, 압력이 1.6 kg/cm2 이상인 것을 특징으로 하는 태양광 발전설비의 효율향상설비.The cooling water sprayed from the cooling water spraying means to the solar module has a flow rate of 30 m / s or more and a pressure of 1.6 kg / cm 2 or more based on the inlet of the cooling water spraying means. .
  7. 제1항에 있어서,The method of claim 1,
    냉각수로 세척제 또는 동파방지제를 포함하는 기능성 물질을 공급하는 기능성 물질 첨가부를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.Further improving efficiency of the solar power plant, characterized in that it further comprises a functional material addition unit for supplying a functional material including a cleaning agent or freeze protection agent with cooling water.
  8. 제1항에 있어서,The method of claim 1,
    상기 태양광 발전설비는 추적식 또는 고정식인 것을 특징으로 하는 태양광 발전설비의 효율향상설비.The solar power plant is an efficiency improvement system of the solar power plant, characterized in that the tracking or fixed.
  9. 제1항에 있어서,The method of claim 1,
    상기 제어부는, 구동개시시간인지를 판단하고, 구동개시시간이면 상기 펌프를 구동하고, 상기 2 이상의 밸브를 순차적으로 설정된 시간 동안 개방하고 폐쇄하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.The control unit determines whether the drive start time, and if the drive start time, driving the pump, and the efficiency improvement equipment of the photovoltaic power generation facility, characterized in that for opening and closing the two or more valves sequentially set time.
  10. 제1항에 있어서,The method of claim 1,
    상기 제어부는, 모듈의 온도와 냉각수의 온도 차이 측정값이 모듈의 온도와 냉각수의 온도 차이 설정값 이상인지를 판단하고, 모듈의 온도와 냉각수의 온도 차이 측정값이 모듈의 온도와 냉각수의 온도 차이 설정값 이상이면 그 미만이 될 때까지 펌프를 구동하고 상기 2 이상의 밸브를 순차적으로 개방하고 폐쇄하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.The controller determines whether the measured temperature difference between the temperature of the module and the coolant is greater than or equal to the set temperature difference between the temperature of the module and the coolant, and the measured temperature difference between the temperature of the module and the coolant differs between the temperature of the module and the coolant. If more than the set value, the efficiency of the photovoltaic power generation equipment characterized in that for driving the pump until it is less than that, and opening and closing the two or more valves in sequence.
  11. 제9항 또는 제10항에 있어서,The method of claim 9 or 10,
    상기 냉각수 공급관 내의 수압을 측정하고 측정된 수압이 설정된 최소압력 미만이거나 최고압력을 초과하는 경우 기동을 종료하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.Measuring the water pressure in the cooling water supply pipe and if the measured water pressure is less than the set minimum pressure or exceeds the maximum pressure, the efficiency improvement equipment of the solar power plant, characterized in that the end.
  12. 제11항에 있어서,The method of claim 11,
    레인센서의 온오프유무를 판단하여 강우 중이라고 판단되면 기동을 종료하고, 저장탱크 내에 저장된 냉각수가 설정 수위 이상인지를 판단하여 설정 수위 미만이면 기동을 종료하며, 모듈의 온도가 냉각수의 온도 이상인지를 판단하여 그 온도 이하일 경우 기동을 종료하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.If it is determined that the rain sensor is on or off, it is determined that it is raining, and the start is terminated. If the coolant stored in the storage tank is above the set level, the start is finished. If the temperature is lower than the set level, the start is finished. The efficiency improvement equipment of the photovoltaic power generation equipment characterized in that the start of the determination is terminated when the temperature is below the determined temperature.
  13. 제1항에 있어서, The method of claim 1,
    상기 냉각수 분사수단은, 경통식으로 연장가능하게 결합되고 서로 다른 직경을 갖는 2개 이상의 원통형 부재를 포함하며, 배관으로부터 물을 공급받음에 따라 길이가 연장되는 몸체; 및 상기 몸체에 결합되어 상기 몸체로부터 전달된 물을 왕복 회전하며 태양광 모듈로 분사하는 분사부를 포함하되,The cooling water spraying means may include two or more cylindrical members having a different diameter and connected to each other in a cylindrical manner, the body extending in length as water is supplied from the pipe; And an injection unit coupled to the body for reciprocating the water transferred from the body and spraying the solar module.
    상기 분사부는The injection unit
    물이 유입되어 배출되도록 양측에 인입구 및 배출구가 형성된 하우징;A housing having inlets and outlets formed at both sides thereof so that water flows in and out;
    상기 하우징 내부에 장착되어 상기 인입구를 통해 유입된 물이 통과하며 서로 반대의 유동 방향 성분이 형성되도록 서로 다른 방향의 유로를 갖는 제 1 및 제 2 유동홀이 관통 형성되는 분리 격판;A separation plate mounted inside the housing and having first and second flow holes formed therethrough in different directions so that water flowing through the inlet passes and components opposite to each other are formed;
    상기 하우징 내부에 회전 가능하게 장착되어 물이 상기 제 1 유동홀 또는 제 2 유동홀을 통과함에 따라 형성된 서로 다른 방향의 유동력에 의해 양방향으로 왕복 회전하는 회전 수차;A rotation aberration rotatably mounted in the housing to reciprocate rotation in both directions by flow forces in different directions formed as water passes through the first flow hole or the second flow hole;
    상기 회전 수차의 왕복 회전에 연동하여 양방향으로 왕복 회전하며 상기 제 1 및 제 2 유동홀을 교대로 개폐하는 회전 개폐 유닛;A rotation opening / closing unit which reciprocates in both directions in association with the reciprocating rotation of the rotational aberration and alternately opens and closes the first and second flow holes;
    상기 회전 수차와 회전 개폐 유닛을 연동시키는 링크 유닛; 및A link unit for interlocking the rotation aberration and the rotation opening / closing unit; And
    상기 하우징의 외측에 배치되며 상기 배출구를 통해 상기 하우징 내부 공간과 연통되어 상기 하우징으로부터 배출되는 물을 분사하는 분사 유닛을 포함하고,An injection unit disposed outside the housing and communicating with the internal space of the housing through the outlet to inject water discharged from the housing,
    상기 분사 유닛은 상기 회전 개폐 유닛에 결합되어 상기 회전 개폐 유닛과 함께 회전하며 물을 분사하는 것을 특징으로 하는 The injection unit is coupled to the rotation opening and closing unit to rotate with the rotation opening and closing unit, characterized in that for spraying water
    태양광 발전설비의 효율향상설비.Efficiency improvement equipment of photovoltaic power generation facilities.
  14. 제13항에 있어서, The method of claim 13,
    상기 원통형 부재들의 직경은 상기 분사부 측으로부터 결합되는 순서에 따라 순차적으로 증가하며,Diameters of the cylindrical members are sequentially increased in the order of coupling from the injection side,
    상기 복수의 원통형 부재 간 이탈을 방지하기 위하여, 결합되는 두 개의 원통형 부재 중 직경이 큰 원통형 부재의 상단에는 캡이 배치되고, 직경이 작은 원통형 부재의 하단에는 제1 걸림턱이 형성되는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.In order to prevent separation between the plurality of cylindrical members, a cap is disposed at the upper end of the larger diameter cylindrical member of the two cylindrical members to be joined, and a first locking step is formed at the lower end of the cylindrical member having a smaller diameter. Efficiency improvement equipment of photovoltaic power plant.
  15. 제14항에 있어서, The method of claim 14,
    상기 캡 내에 밀착 결합되어 상기 원통형 부재와 캡 간의 기밀성을 유지하는 신축성 부재를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.The efficiency improvement facility of the solar power generation equipment characterized in that it further comprises a stretchable member tightly coupled in the cap to maintain the airtightness between the cylindrical member and the cap.
  16. 제15항에 있어서, The method of claim 15,
    결합되는 두 개의 원통형 부재 중 직경이 큰 원통형 부재의 내면에 돌출하는 가이드부 및 직경이 작은 원통형 부재의 외면에 상기 가이드부와 대응하는 그루브를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.Improved efficiency of the photovoltaic power generation equipment characterized in that it further comprises a guide portion protruding on the inner surface of the larger cylindrical member of the two cylindrical members to be joined and grooves corresponding to the guide portion on the outer surface of the cylindrical member having a smaller diameter; equipment.
PCT/KR2010/006263 2009-11-10 2010-09-14 Equipment for improving the efficiency of solar photovoltaic equipment WO2011059172A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0107921 2009-11-10
KR1020090107921A KR100954530B1 (en) 2009-11-10 2009-11-10 Efficiency enhancement equipment for solar photovoltaic power facilities

Publications (2)

Publication Number Publication Date
WO2011059172A2 true WO2011059172A2 (en) 2011-05-19
WO2011059172A3 WO2011059172A3 (en) 2011-08-25

Family

ID=42220299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006263 WO2011059172A2 (en) 2009-11-10 2010-09-14 Equipment for improving the efficiency of solar photovoltaic equipment

Country Status (2)

Country Link
KR (1) KR100954530B1 (en)
WO (1) WO2011059172A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280262B1 (en) * 2011-11-08 2013-07-08 (주)하이레벤 Efficiency enhancement equipment for solar photovoltaic power facilities
CN102409720A (en) * 2011-11-10 2012-04-11 河北工业大学 Water-saving cleaning system for large-scale photovoltaic array and control method thereof
KR101307206B1 (en) 2012-03-27 2013-09-11 (주)하이레벤 Efficiency enhancement equipment for solar power facilities
KR101436964B1 (en) * 2013-01-30 2014-09-16 (주)하이레벤 A flat-type cooling water nozzle of solar power module
KR101443040B1 (en) * 2013-01-30 2014-09-23 (주)하이레벤 A turbulent flow-type cooling water nozzle of solar power module
KR101599420B1 (en) 2014-10-16 2016-03-03 케이씨솔라에너지(주) Solar Power System with Fog Spray Cooling and Cleaning Device for Solar PV Modules
CN105689313A (en) * 2016-04-19 2016-06-22 青海黄河上游水电开发有限责任公司 Automatic cleaning system for battery pack of photovoltaic power station
KR102023467B1 (en) 2019-02-11 2019-11-04 강남욱 Solar power generation system that improves efficiency by analyzing weather data
CN115532756A (en) * 2022-09-29 2022-12-30 中国电建集团河南省电力勘测设计院有限公司 Photovoltaic power station washing water collection and automatic spraying control system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350684A (en) * 1998-06-09 1999-12-21 Misawa Homes Co Ltd Roof with solar cell
JP2003181390A (en) * 2001-12-20 2003-07-02 Hightech Research Kk Water jet type cleaning apparatus for environment observation sensor
JP2004186632A (en) * 2002-12-06 2004-07-02 Yanmar Agricult Equip Co Ltd Solar battery panel apparatus
KR20090006908A (en) * 2007-07-13 2009-01-16 주식회사 뉴파워 프라즈마 Apparatus for cleaning solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044466A (en) 1999-07-29 2001-02-16 Kanegafuchi Chem Ind Co Ltd Method and system for cleaning integrated thin film solar cell
JP2001044467A (en) 1999-07-29 2001-02-16 Kanegafuchi Chem Ind Co Ltd System for cleaning integrated thin film solar cell
JP2002273351A (en) 2001-03-19 2002-09-24 Hino Jushi:Kk Method and apparatus for cleaning outer face of solar cell panel
KR20040028151A (en) * 2002-09-30 2004-04-03 은석기 A Multi-purpose Electric-powered Cleaner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350684A (en) * 1998-06-09 1999-12-21 Misawa Homes Co Ltd Roof with solar cell
JP2003181390A (en) * 2001-12-20 2003-07-02 Hightech Research Kk Water jet type cleaning apparatus for environment observation sensor
JP2004186632A (en) * 2002-12-06 2004-07-02 Yanmar Agricult Equip Co Ltd Solar battery panel apparatus
KR20090006908A (en) * 2007-07-13 2009-01-16 주식회사 뉴파워 프라즈마 Apparatus for cleaning solar cell

Also Published As

Publication number Publication date
KR100954530B1 (en) 2010-04-22
WO2011059172A3 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
WO2011059172A2 (en) Equipment for improving the efficiency of solar photovoltaic equipment
KR100914965B1 (en) Washing apparatus for solar photovoltaic power facilities
KR20130007069A (en) Cooling and cleaning apparatus of photovoltaic power generation
KR100986706B1 (en) Efficiency enhancement equipment for solar photovoltaic power facilities
KR20100007092A (en) Cleaning device of solar cell panel, solar cell street ramp comprising the same and solar cell panel thereof
WO2013105700A1 (en) Solar power generator which is to float on water surface
CN116131748A (en) Combined photovoltaic panel cleaning machine
WO2012011634A1 (en) Efficiency enhancement equipment for solar photovoltaic power facilities
KR101311891B1 (en) Efficiency enhancement equipment for solar photovoltaic power facilities
WO2014119831A1 (en) Cooling water distribution device for solar photovoltaic equipment
KR100983783B1 (en) Efficiency enhancement equipment for solar photovoltaic power facilities
KR20130124660A (en) Cleaning device for solar panel
WO2011037347A2 (en) Device for improving the efficiency of solar photovoltaic equipment
WO2016167422A1 (en) Efficiency enhancement equipment for solar photovoltaic power equipment
KR101381949B1 (en) cooling method and apparatus of solar module
KR101243176B1 (en) A cooling water nozzle of solar power module
KR101088773B1 (en) Cooling equipment for solar photovoltaic power facilities installed in slope
KR101263242B1 (en) Cooling water injection apparatus and power enhancement equipment for solar photovoltaic power facilities using the same
WO2013019005A2 (en) Efficiency enhancing system for a photovoltaic power generating facility using a two phase flow
KR100913972B1 (en) Hydraulic device for the maintenance of solar photovoltaic system
CN106305367A (en) Self-propelled canal irrigation device and irrigation method for same
WO2016143929A1 (en) Efficiency enhancement apparatus for photovoltaic power generation device having two-phase flow generation nozzle
KR101282739B1 (en) Efficiency enhancement equipment for solar photovoltaic power facilities
KR101410909B1 (en) Rotary nozzle for ejecting coolwater to solar module and efficiency enhancement equipment with the same for solar photovoltaic power facilities
KR101984780B1 (en) cleaning apparatus of solar battery module using sprayer

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10830105

Country of ref document: EP

Kind code of ref document: A2