WO2011058916A1 - Composite heat insulating material - Google Patents

Composite heat insulating material Download PDF

Info

Publication number
WO2011058916A1
WO2011058916A1 PCT/JP2010/069561 JP2010069561W WO2011058916A1 WO 2011058916 A1 WO2011058916 A1 WO 2011058916A1 JP 2010069561 W JP2010069561 W JP 2010069561W WO 2011058916 A1 WO2011058916 A1 WO 2011058916A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
honeycomb structure
composite heat
thermal conductivity
Prior art date
Application number
PCT/JP2010/069561
Other languages
French (fr)
Japanese (ja)
Inventor
渡邊敬一郎
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2011540480A priority Critical patent/JPWO2011058916A1/en
Publication of WO2011058916A1 publication Critical patent/WO2011058916A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/06Composite bricks or blocks, e.g. panels, modules
    • F27D1/063Individual composite bricks or blocks
    • F27D1/066Individual composite bricks or blocks made from hollow bricks filled up with another material

Definitions

  • the present invention relates to a composite heat insulating material, for example, a composite heat insulating material suitable for use in a heat insulating material such as a continuous furnace (tunnel furnace).
  • a continuous furnace (tunnel furnace) is often used when a ceramic molded body is fired to produce a ceramic sintered product.
  • the continuous furnace is, for example, a ceramic molded body by placing a workpiece (ceramic molded body) on a base made of a ceramic sintered body and transporting the base from the inlet to the outlet of the continuous furnace by a carriage. Is a furnace for firing.
  • a furnace for firing it is possible to form various temperature distributions from the inlet to the outlet depending on the temperature zone division for the continuous furnace body and the conveyance speed.
  • a chain conveyor, a pusher, etc. are used for conveyance of a trolley
  • the outer wall is made of a heat insulating material so that the internal temperature distribution can be maintained (see, for example, JP-A-7-49181).
  • Japanese Patent Application Laid-Open No. 2003-314970 discloses an example in which a refractory brick, a refractory heat insulating brick, a castable refractory, a ceramic fiber molded body, or the like is used as a heat insulating material for an electric furnace.
  • the thermal conductivity is an important parameter. Also, for furnaces that are large in scale, such as continuous furnaces, it is also important to be able to produce heat insulating materials at low cost and to be easily assembled in order to reduce the cost of products (ceramic sintered bodies, etc.) It becomes a big factor.
  • Examples of the heat insulating material that can be manufactured at low cost and can be easily assembled include refractory bricks described in Patent Document 2.
  • the thermal conductivity of refractory bricks, etc. is as high as 1.6 to 2.5 (W / m ⁇ K). For example, when used as a thermal insulation for a continuous furnace, it is difficult to maintain a set temperature distribution. There is a problem of becoming.
  • the present invention has been made in consideration of such problems.
  • a composite heat insulating material that can be manufactured at low cost, is easy to assemble, and has a thermal conductivity of less than 1.0 (W / m ⁇ K). The purpose is to provide.
  • a heat insulating material composed of a combination of a gas having a low thermal conductivity and ceramic powder was assumed.
  • the case where air is selected as the gas having a small thermal conductivity is shown in Table 1 described later.
  • this heat insulating material has a low thermal conductivity of 0.04 to 0.11 at room temperature, indicating that the heat insulating effect is high.
  • a large amount of ceramic powder is placed in a ceramic box-like container such as alumina when it is configured as a realistic heat insulating material. It is conceivable to form a heat insulating material by filling.
  • a box-shaped ceramic container is weak in strength and cannot maintain its shape due to breakage, so that it is difficult to assemble it into a continuous furnace or the like, and it is difficult to manufacture, and thus costs are high.
  • the composite heat insulating material according to the present invention includes a block-shaped honeycomb structure having a large number of accommodating spaces each partitioned by a thin wall, and ceramic powder filled in the accommodating spaces of the honeycomb structure. It is characterized by.
  • the ceramic powder filled in the honeycomb structure space suppresses heat transfer due to convection by interfering with the gas flow.
  • the present invention can provide a composite heat insulating material that can be manufactured at low cost, can be easily assembled, and has a thermal conductivity of less than 1.0 (W / m ⁇ K).
  • the thermal conductivity room temperature
  • the thermal conductivity can be 0.06 to 0.55 (W / m ⁇ K), which is one digit lower than that of refractory bricks.
  • disconnected in the direction orthogonal to the axial direction may be a shape where several thin walls were located in parallel.
  • the direction in which the plurality of thin walls are arranged (second direction) is smaller than the thermal conductivity in the direction in which the plurality of thin walls extend (first direction) because there is no heat conduction due to heat transfer of the thin walls.
  • the thermal conductivity can be made anisotropic. The anisotropy of the thermal conductivity can be increased several times or more as will be described later.
  • the heat radiation direction and the first direction are substantially matched.
  • the heat radiation direction and the second direction may be substantially matched.
  • the cross-sectional shape when the honeycomb structure is cut in a direction orthogonal to the axial direction thereof may be a shape in which a plurality of thin walls are combined in a lattice shape.
  • the angle of the lattice-like intersection is approximately 90 °, the heat conductivity does not depend on the assembling direction, so that it is possible to assemble without worrying about the directionality.
  • the angle of the lattice-like intersection may be 30 to 60 °.
  • the composite heat insulating material according to the present invention can be manufactured at low cost, can be easily assembled, and has a thermal conductivity (room temperature) of less than 1.0 (W / m ⁇ K). can do.
  • FIG. 6A is a front view showing a state in which the first to third Seralek honeycomb materials are installed in the opening of the box test firing furnace
  • FIG. 6B is a front view showing the state shown in FIG. 6A. It is a side view which abbreviate
  • the composite heat insulating material (hereinafter referred to as the first composite heat insulating material 10A) according to the first embodiment includes a large number of accommodation spaces 14 each partitioned by a thin wall 12, as shown in FIGS. And a ceramic powder 18 filled in the accommodation space 14 of the honeycomb structure 16.
  • the side surface of the honeycomb structure 16 is closed by an outer wall 20 (for example, a wall made of the same material as the thin wall 12), and the upper and lower surfaces of the honeycomb structure 16 are plugged layers 22 (made of the same material as the thin wall material). (See FIG. 1). That is, all the openings are sealed.
  • the planar shape of the upper surface and the lower surface of the honeycomb structure 16 is a quadrangle (a square in the example of FIG. 2).
  • the honeycomb structure 16 having the upper surface opening and the lower surface opening is manufactured, and then the plugging layer 22 is formed on the lower surface of the honeycomb structure 16, for example.
  • the honeycomb structure 16 having an upper surface opening is manufactured.
  • the ceramic powder 18 is inserted and filled into each housing space 14 from the upper surface opening, and then the upper surface opening is closed with the sealing layer 22, thereby producing the first composite heat insulating material 10 ⁇ / b> A.
  • the honeycomb structure 16 of the first composite heat insulating material 10A has a plurality of thin walls when the cross-sectional shape when the honeycomb structure 16 is cut in a direction orthogonal to the axial direction is viewed. 12 is arranged in parallel.
  • two outer walls (first outer wall and second outer wall) facing each other of the honeycomb structure 16 and a plurality of thin walls are arranged in parallel.
  • the material of the thin wall 12 is an oxide, carbide, nitride or a mixture thereof, and as constituent elements other than oxygen, carbon and nitrogen, sodium, potassium, calcium, magnesium, strontium, barium, titanium, manganese, An inorganic material containing at least one of iron, aluminum, and silicon can be used.
  • the main crystal phase is a ceramic material of mullite (3Al 2 O 3 ⁇ 2SiO 2 ) consisting of porosity thermal conductivity 30% 2.5 (W / m ⁇ K) .
  • a composite heat insulating material (hereinafter referred to as a second composite heat insulating material 10B) according to the second embodiment will be described with reference to FIG.
  • This second composite heat insulating material 10B has substantially the same configuration as the first composite heat insulating material 10A described above, but when the honeycomb structure 16 is cut in a direction orthogonal to the axial direction as shown in FIG. When the cross-sectional shape is viewed, the difference is that a plurality of thin walls 12 are combined in a lattice shape. In the example of FIG.
  • a composite heat insulating material (hereinafter referred to as a third composite heat insulating material 10C) according to a third embodiment will be described with reference to FIG.
  • the third composite heat insulating material 10C has substantially the same configuration as the above-described second composite heat insulating material 10B.
  • each thin wall 12 has a first outer wall 20a and a second outer wall 20b. It has a grid shape with an inclination of 45 ° and an inclination of 45 ° with respect to the third outer wall 20c and the fourth outer wall 20d.
  • the outer shape of the honeycomb structure 16 is a square, but other shapes include a rectangle, a rhombus, a parallelogram, a trapezoid, a hexagon, an octagon, and the like.
  • it is not limited to these, and when assembled, it can take a large contact area with other composite heat insulating materials, and in addition, a polygon with a plane portion so that loading is easy during assembly It is preferable that
  • the thermal conductivity in the arrow X direction and the arrow Y direction illustrated in FIGS. 2 to 4 and the Z direction which is the extrusion direction of the honeycomb structure is simulated. And obtained by actual measurement.
  • the thermal conductivity kp of the ceramic powder 18 when a specific gas layer 30 is filled with a large number of ceramic particles 32 is expressed by the following exact formula and simplified formula: I asked for it.
  • kp kc [1 + 2vd (1-kc / kd) / ⁇ (2kc / kd) +1 ⁇ ] / [1-vd (1-kc / kd) / ⁇ (kc / kd) +1 ⁇ ] (1 )
  • kp kc (1 + 2vd) / (1-vd) (2)
  • kc is the thermal conductivity of the gas
  • kd is the thermal conductivity of the ceramic particles
  • vd is the ceramic volume fraction, indicating the volume ratio of the ceramic in the ceramic powder.
  • thermal conductivity kp with respect to the ceramic volume fraction at room temperature is as shown in Table 1 below from the equations (1) and (2).
  • the thermal conductivity of ceramic particles is 30 W / m ⁇ K (alumina) larger than 2 W / m ⁇ K (zirconia).
  • the thermal conductivity of the powder is ceramic.
  • the thermal conductivity of the ceramic powder can be reduced. Since the ceramic volume fraction is proportional to the bulk density of the ceramic powder, the thermal conductivity can be reduced by selecting a powder with a low bulk density.
  • the thermal conductivities of air, alumina and zirconia at 1,000 ° C. are 0.076 (W / m ⁇ K), 6 (W / m ⁇ K) and 2.3 (W / m ⁇ K), respectively. It is. Therefore, the thermal conductivity kp of the ceramic powder with respect to the ceramic volume fraction at 1,000 ° C. is as shown in Table 2 below.
  • the thermal conductivity of the powder is 6 W / m ⁇ K (alumina) or more than twice as large as 2.3 W / m ⁇ K (zirconia), the thermal conductivity of the powder is increased. Is almost determined by the ceramic volume fraction, and by using a powder having a small ceramic volume fraction, the thermal conductivity of the powder can be reduced. Since the ceramic volume fraction of the powder is proportional to the bulk density of the powder, the thermal conductivity can be reduced by selecting a powder with a low bulk density.
  • Example 1 As shown in FIG. 2, the heat conductivity about the arrow Y direction in 10 A of 1st composite heat insulating materials was calculated
  • the arrow Y direction is a direction connecting the third outer wall 20c and the fourth outer wall 20d, and is also an extending direction of each thin wall 12.
  • Mullite composition as the honeycomb structure becomes such clay 55 wt% (high purity kaolinite: Al 2 Si 2 O 5 ( OH) 4) and ordinary alumina powder 45 wt% (purity: 99.6%, average particle size: 55 ⁇ m)
  • a columnar clay that has been deaerated with a vacuum kneader is prepared. Extrusion molding was carried out using a die. The obtained honeycomb structure formed body was dried and then fired in air at 1,450 ° C.
  • a sample having a cross-sectional shape of 30 mm square and a thickness of one cell in the X direction and a sample having a thickness of 6 mm in the Y direction were also prepared for thermal conductivity measurement.
  • the thickness of the thin wall after firing was 1 mm
  • the cell pitch in the X direction was 5 mm
  • the aperture ratio was 0.8.
  • a paste made by adding an appropriate amount of water and a binder to the same mixture of clay and alumina as the honeycomb structure on one end face of the honeycomb structure was press-fitted uniformly about 5 mm from one side, dried and sealed.
  • alumina powder was filled into the container formed in the gap between the thin walls from the opening on the opposite side with the sealed surface down.
  • the alumina powder used was coarse alumina with an alumina purity of 99.6%, an average particle size of 75 ⁇ m, a specific surface area of 0.6 m 2 / g, a bulk density of 1 g / cc when filled, and a ceramic volume fraction of 0.25. Met.
  • a paste made by adding an appropriate amount of water and a binder to the same clay and alumina mixture as the honeycomb structure at the opening end portion was pressed uniformly about 5 mm from one side, dried and sealed. .
  • the honeycomb structure thus obtained was fired in the atmosphere at 1,400 ° C. for 3 hours to produce a block-shaped composite heat insulating material of 100 mm ⁇ 100 mm ⁇ 100 mm.
  • the thin wall portion made of mullite had a porosity of 30% and a thermal conductivity of 2.5 W / m ⁇ K at room temperature.
  • the thermal conductivity (room temperature) of the ceramic powder portion is 0.05 (W / m ⁇ K) [From Table 1] Since the thermal conductivity (room temperature) of the thin wall 12 is 2.5 (W / m ⁇ K), the thermal conductivity in the arrow Y direction in the first composite heat insulating material 10A was determined.
  • v 1 is the honeycomb aperture ratio (opening area of the accommodation space 14 / upper surface area of the honeycomb structure 16)
  • v 2 is 1-v 1
  • k 1 is the thermal conductivity of the ceramic powder 18
  • k 2 is thin This is the thermal conductivity of the wall 12.
  • the Z direction which is the extrusion direction of the honeycomb, has the same structure as the Y direction, so the thermal conductivity in the Z direction is equal to the thermal conductivity in the Y direction.
  • the thermal conductivity in the arrow X direction in the first composite heat insulating material 10A was determined.
  • the arrow X direction is a direction connecting the first outer wall 20a and the second outer wall 20b, and is also a direction orthogonal to the extending direction of each thin wall 12.
  • the thermal conductivity in the arrow X direction in the first composite heat insulating material 10A is expressed by the following equation (4).
  • kpx k 1 k 2 / (v 1 k 2 + v 2 k 1 ) (4)
  • the calculated values kpx and kpy of the thermal conductivity (room temperature) with respect to the honeycomb aperture ratio in the directions of the arrows X and Y (Z) in the first composite heat insulating material 10A are as shown in Table 3 below.
  • the thermal conductivity was 9 times different between the X and Y directions.
  • the Z direction which is the extrusion direction of the honeycomb has the same structure as the Y direction of the first composite heat insulating material 10A, and can be obtained by Expression (3).
  • Example 1 As in Example 1, 55% by weight of clay (high purity kaolinite: Al 2 Si 2 O 5 (OH) 4 ) and ordinary alumina with a mullite composition (3Al 2 O 3 .2SiO 2 ) as a honeycomb structure. After adding 45% by weight of powder (purity: 99.6%, average particle size: 55 ⁇ m) to a mixture of a mixture ratio, water and a binder are added in an appropriate amount, kneaded to form a clay, and then degassed with a vacuum kneader. A clay was prepared and extruded using a predetermined die. The obtained honeycomb structure formed body was dried and then fired in air at 1,450 ° C.
  • powder purity: 99.6%, average particle size: 55 ⁇ m
  • a sample with an extrusion length of 30 mm for measuring the thermal conductivity in the X direction and a sample with an extrusion length of 20 mm for measuring the thermal conductivity in the Z direction was also prepared.
  • the thickness of the thin wall after firing was 0.25 mm
  • the cell pitch in the X direction and the Y direction was 5 mm
  • the aperture ratio was 0.9.
  • a paste made by adding an appropriate amount of water and a binder to the same mixture of clay and alumina as the honeycomb structure on one end face of the honeycomb structure was press-fitted uniformly about 5 mm from one side, dried and sealed.
  • alumina powder was filled into the container formed in the gap between the thin walls from the opening on the opposite side with the sealed surface down.
  • the alumina powder used was coarse alumina with an alumina purity of 99.6%, an average particle size of 75 ⁇ m, a specific surface area of 0.6 m 2 / g, a bulk density of 1 g / cc when filled, and a ceramic volume fraction of 0.25. Met.
  • a paste made by adding an appropriate amount of water and a binder to the same clay and alumina mixture as the honeycomb structure at the open end was press-fitted uniformly about 5 mm from one side, dried and sealed. .
  • the honeycomb structure thus obtained was fired in the atmosphere at 1,400 ° C. for 3 hours, and 100 mm ⁇ 100 mm ⁇ 100 mm, 100 mm ⁇ 100 mm ⁇ 30 mm, 100 mm ⁇ 100 mm ⁇ 20 mm block composite heat insulating materials were produced.
  • the thin wall portion made of mullite had a porosity of 30% and a thermal conductivity of 2.5 W / m ⁇ K at room temperature.
  • the thermal conductivity (room temperature) of the ceramic powder portion is 0.05 (W / M ⁇ K). Since the thermal conductivity (room temperature) of the thin wall 12 is 2.5 (W / m ⁇ K), the thermal conductivity in the direction of the arrow X in the second composite heat insulating material 10B is calculated from the equation (6) in the Z direction. The thermal conductivity of was determined from equation (3).
  • one cell was cut out from a sample with a length of 30 mm in the Z direction, processed to a 30 mm square, and the thermal conductivity was measured by a laser flash method.
  • the heat conductivity in the Z direction is cut out from the sample with a thickness of 20 mm in the Z direction by machining about 30 mm square parts for 6 cells in the X and Y directions, and the plugged portions are cut off from the upper and lower surfaces in the Z direction.
  • the thickness of the part was finished so as to be about 1 mm, and the thermal conductivity was measured by a laser flash method.
  • Example 3 As shown in FIG. 4, the heat conductivity about the arrow X direction and the Y direction in 10 C of 3rd composite heat insulating materials was calculated
  • Example 1 As in Example 1, 55% by weight of clay (high purity kaolinite: Al 2 Si 2 O 5 (OH) 4 ) and ordinary alumina with a mullite composition (3Al 2 O 3 .2SiO 2 ) as a honeycomb structure. After adding 45% by weight of powder (purity: 99.6%, average particle size: 55 ⁇ m) to a mixture of a mixture ratio, water and a binder are added in an appropriate amount, kneaded to form a clay, and then degassed with a vacuum kneader. A clay was prepared and extruded using a predetermined die. The obtained honeycomb structure formed body was dried and then fired in air at 1,450 ° C.
  • powder purity: 99.6%, average particle size: 55 ⁇ m
  • a sample having an extrusion length of 30 mm for measuring the thermal conductivity in the X direction and a 20 mm extrusion length for measuring the thermal conductivity in the Z direction was also prepared.
  • the thickness of the thin wall after firing was 0.4 mm
  • the cell pitch in the X and Y directions was 5 mm
  • the aperture ratio was 0.85.
  • a paste made by adding an appropriate amount of water and a binder to the same mixture of clay and alumina as the honeycomb structure on one end face of the honeycomb structure was press-fitted uniformly about 5 mm from one side, dried and sealed.
  • alumina powder was filled into the container formed in the gap between the thin walls from the opening on the opposite side with the sealed surface down.
  • the alumina powder used was coarse alumina with an alumina purity of 99.6%, an average particle size of 75 ⁇ m, a specific surface area of 0.6 m 2 / g, a bulk density of 1 g / cc when filled, and a ceramic volume fraction of 0.25. Met.
  • a paste made by adding an appropriate amount of water and a binder to the same clay and alumina mixture as the honeycomb structure at the opening end portion was pressed uniformly about 5 mm from one side, dried and sealed. .
  • the honeycomb structure thus obtained was fired in the atmosphere at 1,400 ° C. for 3 hours, and 100 mm ⁇ 100 mm ⁇ 100 mm, 100 mm ⁇ 100 mm ⁇ 30 mm, 100 mm ⁇ 100 mm ⁇ 20 mm block composite heat insulating materials were produced.
  • the thin wall portion made of mullite had a porosity of 30% and a thermal conductivity of 2.5 W / m ⁇ K at room temperature.
  • the thermal conductivity (room temperature) of the ceramic powder portion is 0.05 (W / M ⁇ K). Since the thermal conductivity (room temperature) of the thin wall 12 is 2.5 (W / m ⁇ K), the thermal conductivity in the direction of the arrow X in the third composite heat insulating material 10C is calculated from the equation (6) in the Z direction. The thermal conductivity of was determined from equation (3).
  • one cell was cut out from a sample with a length of 30 mm in the Z direction, processed to a 30 mm square, and the thermal conductivity was measured by a laser flash method.
  • the heat conductivity in the Z direction is cut out from the sample with a thickness of 20 mm in the Z direction by machining about 30 mm square parts for 6 cells in the X and Y directions, and the plugged portions are cut off from the upper and lower surfaces in the Z direction.
  • the thickness of the part was finished so as to be about 1 mm, and the thermal conductivity was measured by a laser flash method.
  • Example 4 A commercial product (Ceralek) having a cordierite composition (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) was used as the honeycomb structure.
  • the size of the honeycomb after firing is a honeycomb structure in which the X direction and the Y direction are 100 mm ⁇ 100 mm and the Z direction is 50 mm, the thin wall thickness is 0.9 mm, and the cell pitch in the X direction and the Y direction is 5.9 mm.
  • the aperture ratio was 0.72.
  • the raw paste (a mixture of talc, kaolin, alumina, and silica) having the same cordierite composition as that of the honeycomb structure was previously press-sealed uniformly about 5 mm from one side at one opening end face of the honeycomb structure, The opening on one side of the fired honeycomb structure was sealed.
  • alumina powder was filled into the container formed in the gap between the thin walls from the opening on the opposite side with the sealed surface down.
  • the alumina powder used was coarse alumina with an alumina purity of 99.6%, an average particle size of 75 ⁇ m, a specific surface area of 0.6 m 2 / g, a bulk density of 1 g / cc when filled, and a ceramic volume fraction of 0.25. Met.
  • the alumina powder was filled about 5 mm lower than the upper end of the opening, and after filling, a raw paste having the same cordierite composition as the honeycomb structure was pressed into the end of the honeycomb uniformly from one side, dried and sealed.
  • the honeycomb structure thus obtained was fired in the air at 1,350 ° C. for 3 hours to produce a block-shaped composite heat insulating material of 100 mm ⁇ 100 mm ⁇ 50 mm.
  • the thin wall portion made of cordierite had a porosity of 45%, and the thermal conductivity of this honeycomb wall was 1.3 W / m ⁇ K at room temperature and 1.0 W / m ⁇ K at 800 ° C.
  • the actual insulation performance at high temperature of the composite insulation material in which the cordierite honeycomb was filled with alumina powder was evaluated by the following method.
  • a box test firing furnace 40 having a front opening size of width 282 mm, height 200 mm and depth 400 mm is prepared.
  • Two first seralek honeycomb materials 42A having an X direction and a Y direction of 120 mm ⁇ 48 mm and a height of 200 mm in the Z direction, and two second seracle honeycomb materials 42A having an X direction and a Y direction of 42 mm ⁇ 48 mm and a Z direction of 75 mm
  • the REC honeycomb material 42B was covered with one third Ceralek honeycomb 42C) having 42 mm ⁇ 48 mm in the X and Y directions and 50 mm in the Z direction.
  • the first Ceralek honeycomb 42A to the third Cerarec honeycomb 42C are not filled with an alumina material.
  • the surface temperature of the third Ceralek honeycomb 42C (42 mm ⁇ 48 mm ⁇ 50 mm) installed in the center was 282 ° C.
  • a B-class fireproof insulating brick (made by Isolite, catalog thermal conductivity 0.39 W / m ⁇ K or less) cut out to 42 mm ⁇ 48 mm ⁇ 50 mm
  • the surface temperature of the class B fireproof heat insulating brick installed at the center was 266 ° C.
  • a composite heat insulating material in which the third Ceralek honeycomb 42C is filled with alumina powder is cut into 42 mm ⁇ 48 mm in the X and Y directions and 50 mm in the Z direction.
  • the surface temperature of the composite heat insulating material installed at the center was 244 ° C.
  • the ceramic powder filled in the honeycomb structure space suppresses heat transfer due to convection by interfering with the gas flow.
  • heat transfer by radiation accounts for a large proportion at high temperatures, but in such powders, light is scattered between particles, so that heat transfer by radiation can also be suppressed.
  • this embodiment can provide a composite heat insulating material that can be manufactured at low cost, can be easily assembled, and has a thermal conductivity of less than 1.0 (W / m ⁇ K).
  • the thermal conductivity room temperature
  • the thermal conductivity (room temperature) can be 0.06 to 0.55 (W / m ⁇ K), which is one digit lower than that of refractory bricks.
  • the heat radiation direction and the first direction are substantially matched.
  • the heat radiation direction and the second direction may be substantially matched.
  • the cross-sectional shape when the honeycomb structure 16 is cut in a direction orthogonal to the axial direction as in the second composite heat insulating material 10B and the third composite heat insulating material 10C, a plurality of shapes are obtained. If the thin walls 12 are combined in a lattice shape, the overall strength will be high, so that there is no concern that the composite heat insulating material will collapse after assembly by assembling it in a portion where stress is concentrated. In particular, if the angle of the grid-like intersection is approximately 90 °, the heat conductivity does not depend on the assembling direction, so that it is possible to assemble without worrying about the directionality.
  • composite heat insulating material according to the present invention is not limited to the above-described embodiment, but can of course have various configurations without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Insulation (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is a composite heat insulating material which is inexpensively producible, is easily incorporated into an assembly, and, moreover, has thermal conductivity lower than 1.0 (W/m·K). The composite heat insulating material comprises: a rectangular tube-shaped honeycomb structure (16) having numerous housing spaces (14) which are divided from one another by thin walls (12); and ceramic powder (18) with which the insides of the respective housing spaces (14) of the honeycomb structure (16) are filled up. While the side faces of the honeycomb structure (16) are covered with outer walls (20) (for example, walls made of a material similar to that of the thin walls (12)), the upper and lower faces thereof are covered with plugging layers (22). A cross-sectional shape of the honeycomb structure (16) taken along a direction perpendicular to the axis thereof is a shape having the multiple thin walls (12) arranged in parallel with one another.

Description

複合断熱材Composite insulation
 本発明は、複合断熱材に関し、例えば連続炉(トンネル炉)等の断熱材に用いて好適な複合断熱材に関する。 The present invention relates to a composite heat insulating material, for example, a composite heat insulating material suitable for use in a heat insulating material such as a continuous furnace (tunnel furnace).
 例えばセラミック成形体を焼成してセラミック焼結体の製品として製造する場合に、連続炉(トンネル炉)が使用される場合が多い。連続炉は、例えばワーク(セラミック成形体)を、セラミック焼結体にて構成された基台に載置し、該基台を台車で連続炉の入口から出口へ搬送することによって、セラミック成形体を焼成する炉である。特に、連続炉本体に対する温度ゾーン分けと、搬送スピードにより、入口から出口までに様々な温度分布を形成することが可能である。なお、台車の搬送にはチェーンコンベアやプッシャー等が使われる。 For example, a continuous furnace (tunnel furnace) is often used when a ceramic molded body is fired to produce a ceramic sintered product. The continuous furnace is, for example, a ceramic molded body by placing a workpiece (ceramic molded body) on a base made of a ceramic sintered body and transporting the base from the inlet to the outlet of the continuous furnace by a carriage. Is a furnace for firing. In particular, it is possible to form various temperature distributions from the inlet to the outlet depending on the temperature zone division for the continuous furnace body and the conveyance speed. In addition, a chain conveyor, a pusher, etc. are used for conveyance of a trolley | bogie.
 そして、このような連続炉においては、外壁が断熱材で構成され、内部の温度分布が保持できるようになっている(例えば特開平7-49181号公報参照)。また、特開2003-314970号公報には、電気炉の断熱材として、耐火煉瓦、耐火断熱煉瓦、キャスタブル耐火物、セラミックファイバー成形体等を使用する例が開示されている。 In such a continuous furnace, the outer wall is made of a heat insulating material so that the internal temperature distribution can be maintained (see, for example, JP-A-7-49181). Japanese Patent Application Laid-Open No. 2003-314970 discloses an example in which a refractory brick, a refractory heat insulating brick, a castable refractory, a ceramic fiber molded body, or the like is used as a heat insulating material for an electric furnace.
 ところで、上述のような連続炉や電気炉にて使用される断熱材は、熱伝導率が重要なパラメータとなってくる。また、連続炉等のように規模が大きくなる炉に対しては、製品(セラミック焼結体等)のコスト低減のためにも、安価に断熱材が作製でき、組み付けが容易であることも重要なファクターとなる。安価に作製でき、組み付けが容易な断熱材としては、特許文献2に挙げられた例えば耐火煉瓦等が挙げられる。しかし、耐火煉瓦等の熱伝導率は、1.6~2.5(W/m・K)と高く、例えば連続炉の断熱材として使用した場合、設定された温度分布を保持することが困難になるという問題がある。 By the way, for the heat insulating material used in the continuous furnace and the electric furnace as described above, the thermal conductivity is an important parameter. Also, for furnaces that are large in scale, such as continuous furnaces, it is also important to be able to produce heat insulating materials at low cost and to be easily assembled in order to reduce the cost of products (ceramic sintered bodies, etc.) It becomes a big factor. Examples of the heat insulating material that can be manufactured at low cost and can be easily assembled include refractory bricks described in Patent Document 2. However, the thermal conductivity of refractory bricks, etc. is as high as 1.6 to 2.5 (W / m · K). For example, when used as a thermal insulation for a continuous furnace, it is difficult to maintain a set temperature distribution. There is a problem of becoming.
 本発明はこのような課題を考慮してなされたものであり、安価に作製でき、組み付けも容易で、しかも、熱伝導率が1.0(W/m・K)未満である複合断熱材を提供することを目的とする。 The present invention has been made in consideration of such problems. A composite heat insulating material that can be manufactured at low cost, is easy to assemble, and has a thermal conductivity of less than 1.0 (W / m · K). The purpose is to provide.
 先ず、本発明を完成させる前に、熱伝導率の小さい気体とセラミック粉体の組み合わせによる断熱材を想定した。例えば熱伝導率の小さい気体として空気を選んだ場合を後述する表1に示す。表1を参照してもわかるように、この断熱材は室温での熱伝導率が0.04~0.11と低く、断熱効果が高いことがわかる。しかし、このような気体と粉体の混合物は不定形で保形性が無いため、現実的な断熱材として構成する場合、例えばアルミナ等のセラミック製の箱状の容器に、多量のセラミック粉末を充填して断熱材を構成することが考えられる。しかし、箱状のセラミックの容器は強度的にも弱く破損により形状を維持できなくなったりするため連続炉等への組み付けが困難であり、製作上も難しいことからコストもかかる。 First, before completing the present invention, a heat insulating material composed of a combination of a gas having a low thermal conductivity and ceramic powder was assumed. For example, the case where air is selected as the gas having a small thermal conductivity is shown in Table 1 described later. As can be seen from Table 1, this heat insulating material has a low thermal conductivity of 0.04 to 0.11 at room temperature, indicating that the heat insulating effect is high. However, since such a mixture of gas and powder is indefinite and has no shape retention, a large amount of ceramic powder is placed in a ceramic box-like container such as alumina when it is configured as a realistic heat insulating material. It is conceivable to form a heat insulating material by filling. However, a box-shaped ceramic container is weak in strength and cannot maintain its shape due to breakage, so that it is difficult to assemble it into a continuous furnace or the like, and it is difficult to manufacture, and thus costs are high.
 そこで、本発明では、以下の構成によって従来の課題を解決した。 Therefore, in the present invention, the conventional problem is solved by the following configuration.
 本発明に係る複合断熱材は、それぞれ薄壁で区画された多数の収容空間を有するブロック状のハニカム構造体と、前記ハニカム構造体の前記収容空間内に充填されたセラミック粉体とを有することを特徴とする。 The composite heat insulating material according to the present invention includes a block-shaped honeycomb structure having a large number of accommodating spaces each partitioned by a thin wall, and ceramic powder filled in the accommodating spaces of the honeycomb structure. It is characterized by.
 薄壁で区画された多数の収容空間内にセラミック粉体を充填することにより、先ず、熱伝導による熱伝達を収容空間に充填されたセラミック粉体によって抑制することができる。これは上述した空気とセラミック粉体との組み合わせからなる断熱材が非常に小さな熱伝導率を示し、高い断熱効果が期待されることからも明らかである。そして、ハニカム構造体の収容空間にセラミック粉体を充填するだけでよいため、作製が簡単であり、しかも、ハニカム構造体の存在により、構造体としての強度を高くすることができると共に、形状を維持することができることから、連続炉等への組み付けも簡単になる。 By filling ceramic powder into a large number of accommodation spaces partitioned by thin walls, first, heat transfer by heat conduction can be suppressed by the ceramic powder filled in the accommodation space. This is also clear from the fact that a heat insulating material made of a combination of air and ceramic powder described above exhibits a very low thermal conductivity and is expected to have a high heat insulating effect. And since it is only necessary to fill the ceramic powder in the accommodation space of the honeycomb structure, the production is easy, and the presence of the honeycomb structure can increase the strength of the structure and the shape. Since it can be maintained, assembly to a continuous furnace or the like becomes easy.
 また、ハニカム構造体の空間に充填されたセラミック粉体は、気体の流れを邪魔することで対流による熱伝達を抑制する。 Also, the ceramic powder filled in the honeycomb structure space suppresses heat transfer due to convection by interfering with the gas flow.
 また、高温においては輻射による熱伝達が大きな割合を占めるが、このようなセラミック粉体では、光が粒子間で散乱されるため輻射による熱伝達も抑制することが可能となる。 In addition, although heat transfer by radiation accounts for a large proportion at high temperatures, such ceramic powder can also suppress heat transfer by radiation because light is scattered between particles.
 すなわち、本発明は、安価に作製でき、組み付けも容易で、熱伝導率が1.0(W/m・K)未満である複合断熱材を提供することができる。もちろん、熱伝導率(室温)として、耐火煉瓦等よりも1桁低い0.06~0.55(W/m・K)を実現することができる。 That is, the present invention can provide a composite heat insulating material that can be manufactured at low cost, can be easily assembled, and has a thermal conductivity of less than 1.0 (W / m · K). Of course, the thermal conductivity (room temperature) can be 0.06 to 0.55 (W / m · K), which is one digit lower than that of refractory bricks.
 そして、本発明において、前記ハニカム構造体を、その軸方向と直交する方向に切断したときの断面形状は、複数の薄壁が平行に並んだ形状であってもよい。この場合、複数の薄壁が延在する方向(第1方向)への熱伝導率よりも、複数の薄壁が並ぶ方向(第2方向)が薄壁の伝熱による熱伝導が無い分小さくなり、熱伝導率を異方性にすることができる。熱伝導率の異方性は後述するように数倍以上にすることができる。従って、例えば連続炉に複合断熱材を組み付ける際に、熱を外部に伝達したいゾーン(断熱効果がそれほど必要でないゾーン)では、熱の放射方向と前記第1方向とをほぼ一致させて組み付ければよく、熱を外部に伝達したくないゾーン(断熱効果が必要なゾーン)では、熱の放射方向と前記第2方向とをほぼ一致させて組み付ければよい。 And in this invention, the cross-sectional shape when the said honeycomb structure is cut | disconnected in the direction orthogonal to the axial direction may be a shape where several thin walls were located in parallel. In this case, the direction in which the plurality of thin walls are arranged (second direction) is smaller than the thermal conductivity in the direction in which the plurality of thin walls extend (first direction) because there is no heat conduction due to heat transfer of the thin walls. Thus, the thermal conductivity can be made anisotropic. The anisotropy of the thermal conductivity can be increased several times or more as will be described later. Therefore, for example, when assembling a composite heat insulating material in a continuous furnace, in a zone where heat is to be transmitted to the outside (a zone where the heat insulating effect is not so much necessary), the heat radiation direction and the first direction are substantially matched. In a zone where heat is not desired to be transmitted to the outside (a zone where a heat insulation effect is necessary), the heat radiation direction and the second direction may be substantially matched.
 また、本発明において、前記ハニカム構造体を、その軸方向と直交する方向に切断したときの断面形状は、複数の薄壁が格子状に組み合わされた形状であってもよい。 In the present invention, the cross-sectional shape when the honeycomb structure is cut in a direction orthogonal to the axial direction thereof may be a shape in which a plurality of thin walls are combined in a lattice shape.
 このような構造では強度が高くなることから、応力が集中する部分等に組み付けることで、組み付け後に複合断熱材が崩れるという心配がない。 ¡Since this structure has high strength, there is no concern that the composite heat insulating material will collapse after assembly by assembling it in a portion where stress is concentrated.
 特に、前記格子状の交差部分の角度がほぼ90°であれば、熱伝導率の組み付け方向の依存性がないため、方向性を気にせずに組み付けることが可能となる。もちろん、前記格子状の交差部分の角度が30~60°であってもよい。 In particular, if the angle of the lattice-like intersection is approximately 90 °, the heat conductivity does not depend on the assembling direction, so that it is possible to assemble without worrying about the directionality. Of course, the angle of the lattice-like intersection may be 30 to 60 °.
 以上説明したように、本発明に係る複合断熱材によれば、安価に作製でき、組み付けも容易で、しかも、熱伝導率(室温)として、1.0(W/m・K)未満を実現することができる。 As described above, according to the composite heat insulating material according to the present invention, it can be manufactured at low cost, can be easily assembled, and has a thermal conductivity (room temperature) of less than 1.0 (W / m · K). can do.
第1複合断熱材を一部破断して示す斜視図である。It is a perspective view which shows a 1st composite heat insulating material partly fractured | ruptured. 第1複合断熱材について、ハニカム構造体を、その軸方向と直交する方向に切断した際の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape at the time of cut | disconnecting a honeycomb structure in the direction orthogonal to the axial direction about a 1st composite heat insulating material. 第2複合断熱材について、ハニカム構造体を、その軸方向と直交する方向に切断した際の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape at the time of cut | disconnecting a honeycomb structure in the direction orthogonal to the axial direction about a 2nd composite heat insulating material. 第3複合断熱材について、ハニカム構造体を、その軸方向と直交する方向に切断した際の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape at the time of cut | disconnecting a honeycomb structure in the direction orthogonal to the axial direction about a 3rd composite heat insulating material. 特定の気体層中に多数のセラミック粒子(アルミナ又はジルコニア)を充填した場合のセラミック粉体を示す模式図である。It is a schematic diagram which shows the ceramic powder at the time of filling many ceramic particles (alumina or zirconia) in a specific gas layer. 図6Aは函型試験焼成炉の開口部に第1セラレックハニカム材~第3セラレックハニカム材を設置した状態を示す正面図であり、図6Bは図6Aに示す状態を第1セラレックハニカム材を省略して示す側面図である。FIG. 6A is a front view showing a state in which the first to third Seralek honeycomb materials are installed in the opening of the box test firing furnace, and FIG. 6B is a front view showing the state shown in FIG. 6A. It is a side view which abbreviate | omits and shows a material.
 以下、本発明に係る複合断熱材の実施の形態例を図1~図6Bを参照しながら説明する。 Hereinafter, embodiments of the composite heat insulating material according to the present invention will be described with reference to FIGS. 1 to 6B.
 先ず、第1の実施の形態に係る複合断熱材(以下、第1複合断熱材10Aと記す)は、図1及び図2に示すように、それぞれ薄壁12で区画された多数の収容空間14を有する角筒状のハニカム構造体16と、該ハニカム構造体16の収容空間14内に充填されたセラミック粉体18とを有する。ハニカム構造体16の側面は、外壁20(例えば薄壁12と同様の材質の壁)にて塞がれ、ハニカム構造体16の上面及び下面は、薄壁材と同様の材質からなる目封じ層22(図1参照)にて塞がれている。すなわち、すべての開口が目封じされている。また、ハニカム構造体16の上面及び下面の平面形状は四角形(図2の例では正方形)とされている。 First, the composite heat insulating material (hereinafter referred to as the first composite heat insulating material 10A) according to the first embodiment includes a large number of accommodation spaces 14 each partitioned by a thin wall 12, as shown in FIGS. And a ceramic powder 18 filled in the accommodation space 14 of the honeycomb structure 16. The side surface of the honeycomb structure 16 is closed by an outer wall 20 (for example, a wall made of the same material as the thin wall 12), and the upper and lower surfaces of the honeycomb structure 16 are plugged layers 22 (made of the same material as the thin wall material). (See FIG. 1). That is, all the openings are sealed. Moreover, the planar shape of the upper surface and the lower surface of the honeycomb structure 16 is a quadrangle (a square in the example of FIG. 2).
 第1複合断熱材10Aを作製する場合は、上面開口及び下面開口のハニカム構造体16を作製した後、ハニカム構造体16の例えば下面に目封じ層22を形成する。この段階で、上面開口のハニカム構造体16が作製される。その後、上面開口から各収容空間14にセラミック粉体18を挿入、充填し、次いで、上面開口を目封じ層22で塞ぐことで、この第1複合断熱材10Aが作製される。 When the first composite heat insulating material 10A is manufactured, the honeycomb structure 16 having the upper surface opening and the lower surface opening is manufactured, and then the plugging layer 22 is formed on the lower surface of the honeycomb structure 16, for example. At this stage, the honeycomb structure 16 having an upper surface opening is manufactured. Thereafter, the ceramic powder 18 is inserted and filled into each housing space 14 from the upper surface opening, and then the upper surface opening is closed with the sealing layer 22, thereby producing the first composite heat insulating material 10 </ b> A.
 また、第1複合断熱材10Aのハニカム構造体16は、図2に示すように、ハニカム構造体16を、その軸方向と直交する方向に切断した際の断面形状をみたとき、複数の薄壁12が平行に並んだ形状となっている。図2では、ハニカム構造体16の互いに対向する2つの外壁(第1外壁及び第2外壁)と、複数の薄壁とが平行に並んだ形状となっている。 Further, as shown in FIG. 2, the honeycomb structure 16 of the first composite heat insulating material 10A has a plurality of thin walls when the cross-sectional shape when the honeycomb structure 16 is cut in a direction orthogonal to the axial direction is viewed. 12 is arranged in parallel. In FIG. 2, two outer walls (first outer wall and second outer wall) facing each other of the honeycomb structure 16 and a plurality of thin walls are arranged in parallel.
 薄壁12の材料としては、酸化物又は炭化物又は窒化物あるいはこれらの混合物であって、酸素、炭素、窒素以外の構成元素として、ナトリウム、カリウム、カルシウム、マグネシウム、ストロンチウム、バリウム、チタン、マンガン、鉄、アルミニウム、ケイ素のうち、少なくとも1種類を含む無機材料を使用することができる。本実施の形態では、主結晶相がムライト(3Al・2SiO)からなる気孔率が30%で熱伝導率が2.5(W/m・K)のセラミック材料を用いた。 The material of the thin wall 12 is an oxide, carbide, nitride or a mixture thereof, and as constituent elements other than oxygen, carbon and nitrogen, sodium, potassium, calcium, magnesium, strontium, barium, titanium, manganese, An inorganic material containing at least one of iron, aluminum, and silicon can be used. In this embodiment, the main crystal phase is a ceramic material of mullite (3Al 2 O 3 · 2SiO 2 ) consisting of porosity thermal conductivity 30% 2.5 (W / m · K) .
 次に、第2の実施の形態に係る複合断熱材(以下、第2複合断熱材10Bと記す)について図3を参照しながら説明する。 Next, a composite heat insulating material (hereinafter referred to as a second composite heat insulating material 10B) according to the second embodiment will be described with reference to FIG.
 この第2複合断熱材10Bは、上述した第1複合断熱材10Aとほぼ同様の構成を有するが、図3に示すように、ハニカム構造体16を、その軸方向と直交する方向に切断した際の断面形状をみたとき、複数の薄壁12が格子状に組み合わされた形状となっている点で異なる。図3の例では、ハニカム構造体16の互いに対向する2つの外壁(第1外壁20a及び第2外壁20b)と、一方向に延在する複数の薄壁12aとが平行に並び、ハニカム構造体16の互いに対向する他の2つの外壁(第3外壁20c及び第4外壁20d)と、他方向(一方向と直交する方向)に延在する複数の薄壁12bとが平行に並んだ格子状になっている。 This second composite heat insulating material 10B has substantially the same configuration as the first composite heat insulating material 10A described above, but when the honeycomb structure 16 is cut in a direction orthogonal to the axial direction as shown in FIG. When the cross-sectional shape is viewed, the difference is that a plurality of thin walls 12 are combined in a lattice shape. In the example of FIG. 3, two outer walls (first outer wall 20 a and second outer wall 20 b) facing each other of the honeycomb structure 16 and a plurality of thin walls 12 a extending in one direction are arranged in parallel, and the honeycomb structure 16 other two outer walls (third outer wall 20c and fourth outer wall 20d) facing each other and a plurality of thin walls 12b extending in the other direction (a direction orthogonal to one direction) are arranged in parallel. It has become.
 次に、第3の実施の形態に係る複合断熱材(以下、第3複合断熱材10Cと記す)について図4を参照しながら説明する。 Next, a composite heat insulating material (hereinafter referred to as a third composite heat insulating material 10C) according to a third embodiment will be described with reference to FIG.
 この第3複合断熱材10Cは、上述した第2複合断熱材10Bとほぼ同様の構成を有するが、図4に示すように、各薄壁12が第1外壁20a及び第2外壁20bに対して45°の傾きで、且つ、第3外壁20c及び第4外壁20dに対して45°の傾きで並んだ格子状とされている。 The third composite heat insulating material 10C has substantially the same configuration as the above-described second composite heat insulating material 10B. However, as shown in FIG. 4, each thin wall 12 has a first outer wall 20a and a second outer wall 20b. It has a grid shape with an inclination of 45 ° and an inclination of 45 ° with respect to the third outer wall 20c and the fourth outer wall 20d.
 上述した第1複合断熱材10A~第3複合断熱材10C以外にも様々な断面形状の組み合わせが考えられることはもちろんである。また、ハニカム構造体16の外形形状、特に、上面及び下面の平面形状を正方形としたが、その他、長方形、ひし形、平行四辺形、台形、六角形、八角形等が挙げられる。もちろん、これらに限定されることなく、組み付けたときに、他の複合断熱材との接触面積を大きくとることができ、しかも、組み付けの際に積載が容易なように、平面部分がある多角形であることが好ましい。 Of course, combinations of various cross-sectional shapes other than the first composite heat insulating material 10A to the third composite heat insulating material 10C described above are conceivable. In addition, the outer shape of the honeycomb structure 16, particularly the planar shape of the upper surface and the lower surface, is a square, but other shapes include a rectangle, a rhombus, a parallelogram, a trapezoid, a hexagon, an octagon, and the like. Of course, it is not limited to these, and when assembled, it can take a large contact area with other composite heat insulating materials, and in addition, a polygon with a plane portion so that loading is easy during assembly It is preferable that
 次に、第1複合断熱材10A~第3複合断熱材10Cについて、図2~図4において図示した矢印X方向と矢印Y方向とハニカム構造の押出し方向であるZ方向についての熱伝導率をシミュレーションと実測にて求めた。 Next, for the first composite heat insulating material 10A to the third composite heat insulating material 10C, the thermal conductivity in the arrow X direction and the arrow Y direction illustrated in FIGS. 2 to 4 and the Z direction which is the extrusion direction of the honeycomb structure is simulated. And obtained by actual measurement.
(粉体の熱伝導率)
 先ず、図5に示すように、特定の気体層30中に多数のセラミック粒子32(アルミナ又はジルコニア)を充填した場合のセラミック粉体18の熱伝導率kpを以下の厳密式と簡易式とを使って求めた。
(厳密式)
   kp=kc[1+2vd(1-kc/kd)/{(2kc/kd)+1}]/[1-vd(1-kc/kd)/{(kc/kd)+1}]   ・・・・(1)
(簡易式)
   kp=kc(1+2vd)/(1-vd) ・・・・(2)
(Thermal conductivity of powder)
First, as shown in FIG. 5, the thermal conductivity kp of the ceramic powder 18 when a specific gas layer 30 is filled with a large number of ceramic particles 32 (alumina or zirconia) is expressed by the following exact formula and simplified formula: I asked for it.
(Exact formula)
kp = kc [1 + 2vd (1-kc / kd) / {(2kc / kd) +1}] / [1-vd (1-kc / kd) / {(kc / kd) +1}] (1 )
(Simple formula)
kp = kc (1 + 2vd) / (1-vd) (2)
 ここで、kcは気体の熱伝導率、kdはセラミック粒子の熱伝導率、vdはセラミック体積分率でセラミック粉体中にセラミックスが占める体積割合を示す。 Here, kc is the thermal conductivity of the gas, kd is the thermal conductivity of the ceramic particles, and vd is the ceramic volume fraction, indicating the volume ratio of the ceramic in the ceramic powder.
 ここでは気体として空気を選定した。空気、アルミナ及びジルコニアの室温に於ける熱伝導率はそれぞれ0.027(W/m・K)、30(W/m・K)及び2(W/m・K)である。従って、(1)式及び(2)式より室温におけるセラミック体積分率に対する熱伝導率kpは以下の表1の通りである。 Here, air was selected as the gas. The thermal conductivities of air, alumina and zirconia at room temperature are 0.027 (W / m · K), 30 (W / m · K) and 2 (W / m · K), respectively. Therefore, the thermal conductivity kp with respect to the ceramic volume fraction at room temperature is as shown in Table 1 below from the equations (1) and (2).
 この結果から分かるように、セラミック粒子の熱伝導率が2W/m・K(ジルコニア)に対して30W/m・K(アルミナ)と一桁以上大きくなっても、粉体の熱伝導率はセラミック体積分率でほぼ決まり、セラミック体積分率が小さい粉末を用いることで、セラミック粉体の熱伝導率を小さくすることができる。セラミック体積分率はセラミック粉体のかさ密度に比例するため、かさ密度の小さい粉体を選べば熱伝導率を小さくすることができる。 As can be seen from this result, even if the thermal conductivity of ceramic particles is 30 W / m · K (alumina) larger than 2 W / m · K (zirconia), the thermal conductivity of the powder is ceramic. By using a powder that is almost determined by the volume fraction and has a small ceramic volume fraction, the thermal conductivity of the ceramic powder can be reduced. Since the ceramic volume fraction is proportional to the bulk density of the ceramic powder, the thermal conductivity can be reduced by selecting a powder with a low bulk density.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、空気、アルミナ及びジルコニアの1,000℃に於ける熱伝導率はそれぞれ0.076(W/m・K)、6(W/m・K)及び2.3(W/m・K)である。従って、1,000℃におけるセラミック体積分率に対するセラミック粉体の熱伝導率kpは以下の表2の通りである。 The thermal conductivities of air, alumina and zirconia at 1,000 ° C. are 0.076 (W / m · K), 6 (W / m · K) and 2.3 (W / m · K), respectively. It is. Therefore, the thermal conductivity kp of the ceramic powder with respect to the ceramic volume fraction at 1,000 ° C. is as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この結果からも分かるように、粉末の熱伝導率が2.3W/m・K(ジルコニア)に対して6W/m・K(アルミナ)と2倍以上大きくなっても、粉体の熱伝導率はセラミック体積分率でほぼ決まり、セラミック体積分率が小さい粉体を用いることで、粉体の熱伝導率を小さくすることができる。粉体のセラミック体積分率は粉体のかさ密度に比例するため、かさ密度の小さい粉体を選べば熱伝導率を小さくすることができる。 As can be seen from this result, even when the thermal conductivity of the powder is 6 W / m · K (alumina) or more than twice as large as 2.3 W / m · K (zirconia), the thermal conductivity of the powder is increased. Is almost determined by the ceramic volume fraction, and by using a powder having a small ceramic volume fraction, the thermal conductivity of the powder can be reduced. Since the ceramic volume fraction of the powder is proportional to the bulk density of the powder, the thermal conductivity can be reduced by selecting a powder with a low bulk density.
(実施例1)
 図2に示すように、第1複合断熱材10Aにおける矢印Y方向についての熱伝導率を求めた。矢印Y方向は、第3外壁20cと第4外壁20dとを結ぶ方向であり、各薄壁12の延在方向でもある。
Example 1
As shown in FIG. 2, the heat conductivity about the arrow Y direction in 10 A of 1st composite heat insulating materials was calculated | required. The arrow Y direction is a direction connecting the third outer wall 20c and the fourth outer wall 20d, and is also an extending direction of each thin wall 12.
 ハニカム構造体としてムライト組成(3Al・2SiO)となるような粘土55重量%(高純度カオリナイト:AlSi(OH))と普通アルミナ粉末45重量%(純度:99.6%、平均粒径:55μm)調合割合の混合物に水とバインダーを適量加えて充分混練して粘土状にした後、真空土練機で脱気した柱状の坏土を作製し、所定の口金を用いて押出し成形した。得られたハニカム構造成形体を乾燥後1,450℃、3時間、大気中で焼成して100mm×100mm×100mmの立方体のハニカム構造体を作製した。併せて熱伝導率測定用に断面形状が30mm角でX方向に1セル分の厚みを有するサンプルとY方向の厚みが6mmのサンプルも作製した。焼成後の薄壁の肉厚は1mm、X方向のセルピッチは5mmで開口率は0.8であった。 Mullite composition as the honeycomb structure (3Al 2 O 3 · 2SiO 2 ) become such clay 55 wt% (high purity kaolinite: Al 2 Si 2 O 5 ( OH) 4) and ordinary alumina powder 45 wt% (purity: 99.6%, average particle size: 55 μm) After adding a suitable amount of water and binder to the mixture of the mixture ratio and kneading it into a clay, a columnar clay that has been deaerated with a vacuum kneader is prepared. Extrusion molding was carried out using a die. The obtained honeycomb structure formed body was dried and then fired in air at 1,450 ° C. for 3 hours to produce a cubic honeycomb structure of 100 mm × 100 mm × 100 mm. In addition, a sample having a cross-sectional shape of 30 mm square and a thickness of one cell in the X direction and a sample having a thickness of 6 mm in the Y direction were also prepared for thermal conductivity measurement. The thickness of the thin wall after firing was 1 mm, the cell pitch in the X direction was 5 mm, and the aperture ratio was 0.8.
 このハニカム構造体の片方の開口端面にハニカム構造体と同じ粘土とアルミナの混合物に水とバインダーを適量加えてペースト状にしたものを、片側から約5mm均一に圧入後乾燥して目封じした。 A paste made by adding an appropriate amount of water and a binder to the same mixture of clay and alumina as the honeycomb structure on one end face of the honeycomb structure was press-fitted uniformly about 5 mm from one side, dried and sealed.
 次に、目封じされた面を下側にし、反対側の開口部より薄壁の隙間に形成された収容容器内にアルミナ粉末を充填した。用いたアルミナ粉末は粗粒アルミナでアルミナ純度99.6%、平均粒径75μm、比表面積0.6m/gで、充填したときのかさ密度が1g/ccでセラミック体積分率は0.25であった。 Next, alumina powder was filled into the container formed in the gap between the thin walls from the opening on the opposite side with the sealed surface down. The alumina powder used was coarse alumina with an alumina purity of 99.6%, an average particle size of 75 μm, a specific surface area of 0.6 m 2 / g, a bulk density of 1 g / cc when filled, and a ceramic volume fraction of 0.25. Met.
 このアルミナ粉末を充填後、開口端部にハニカム構造体と同じ粘土とアルミナの混合物に水とバインダーを適量加えてペースト状にしたものを、片側から約5mm均一に圧入後乾燥して目封じした。 After filling this alumina powder, a paste made by adding an appropriate amount of water and a binder to the same clay and alumina mixture as the honeycomb structure at the opening end portion was pressed uniformly about 5 mm from one side, dried and sealed. .
 こうして得られたハニカム構造体を1,400℃、3時間、大気中で焼成し、100mm×100mm×100mmのブロック状の複合断熱材を作製した。併せてX方向の厚みが1セル分の熱伝導率測定用の30mm角×6mmの複合断熱材サンプルとY方向の厚みが6mmの熱伝導率測定用の30mm角×6mmの複合断熱材サンプルを得た。ムライトからなる薄壁部は気孔率30%で熱伝導率は室温で2.5W/m・Kであった。 The honeycomb structure thus obtained was fired in the atmosphere at 1,400 ° C. for 3 hours to produce a block-shaped composite heat insulating material of 100 mm × 100 mm × 100 mm. In addition, a 30 mm square × 6 mm composite thermal insulation sample for measuring the thermal conductivity for one cell in the X direction and a 30 mm square × 6 mm composite thermal insulation sample for measuring the thermal conductivity in the Y direction having a thickness of 6 mm. Obtained. The thin wall portion made of mullite had a porosity of 30% and a thermal conductivity of 2.5 W / m · K at room temperature.
 ハニカム構造体16の収容空間14に充填されたセラミック粉体18のセラミック体積分率が0.25であることから、セラミック粉体部の熱伝導率(室温)は0.05(W/m・K)[表1より]となる。薄壁12の熱伝導率(室温)が2.5(W/m・K)であることから、第1複合断熱材10Aにおける矢印Y方向についての熱伝導率を求めた。 Since the ceramic volume fraction of the ceramic powder 18 filled in the accommodation space 14 of the honeycomb structure 16 is 0.25, the thermal conductivity (room temperature) of the ceramic powder portion is 0.05 (W / m · K) [From Table 1] Since the thermal conductivity (room temperature) of the thin wall 12 is 2.5 (W / m · K), the thermal conductivity in the arrow Y direction in the first composite heat insulating material 10A was determined.
 この場合の熱伝導率の計算式は以下の(3)式の通りになる。
   kp=v+v  ・・・・(3)
The calculation formula of the thermal conductivity in this case is as the following formula (3).
kp y = v 1 k 1 + v 2 k 2 (3)
 ここで、vはハニカム開口率(収容空間14の開口面積/ハニカム構造体16の上面面積)、vは1-v、kはセラミック粉体18の熱伝導率、kは薄壁12の熱伝導率である。 Here, v 1 is the honeycomb aperture ratio (opening area of the accommodation space 14 / upper surface area of the honeycomb structure 16), v 2 is 1-v 1 , k 1 is the thermal conductivity of the ceramic powder 18, and k 2 is thin This is the thermal conductivity of the wall 12.
 第1複合断熱材10Aの場合ハニカムの押出方向であるZ方向もY方向と同じ構造となるため、Z方向の熱伝導率はY方向の熱伝導率に等しい。 In the case of the first composite heat insulating material 10A, the Z direction, which is the extrusion direction of the honeycomb, has the same structure as the Y direction, so the thermal conductivity in the Z direction is equal to the thermal conductivity in the Y direction.
 次に、第1複合断熱材10Aにおける矢印X方向についての熱伝導率を求めた。矢印X方向は、第1外壁20aと第2外壁20bとを結ぶ方向であり、各薄壁12の延在方向と直交する方向でもある。 Next, the thermal conductivity in the arrow X direction in the first composite heat insulating material 10A was determined. The arrow X direction is a direction connecting the first outer wall 20a and the second outer wall 20b, and is also a direction orthogonal to the extending direction of each thin wall 12.
 第1複合断熱材10Aにおける矢印X方向についての熱伝導率は以下(4)式のようになる。
   kpx=k/(v+v) ・・・・(4)
The thermal conductivity in the arrow X direction in the first composite heat insulating material 10A is expressed by the following equation (4).
kpx = k 1 k 2 / (v 1 k 2 + v 2 k 1 ) (4)
 従って、第1複合断熱材10Aにおける矢印X、Y(Z)方向についてのハニカム開口率に対する熱伝導率(室温)の計算値kpxとkpyは以下の表3の通りである。 Therefore, the calculated values kpx and kpy of the thermal conductivity (room temperature) with respect to the honeycomb aperture ratio in the directions of the arrows X and Y (Z) in the first composite heat insulating material 10A are as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 同時に得られた熱伝導率測定用のサンプルを用いてレーザーフラッシュ法によりX方向とY方向の熱伝導率を実測したところ、計算値と一致した。 When the thermal conductivity in the X direction and the Y direction was measured by the laser flash method using the sample for thermal conductivity measurement obtained at the same time, the calculated values agreed.
 このように、X方向とY方向では熱伝導率が9倍も異なる結果となった。 Thus, the thermal conductivity was 9 times different between the X and Y directions.
(実施例2)
 図3に示すように、第2複合断熱材10Bにおける矢印X方向及びY方向についての熱伝導率を求めた。第2複合断熱材10Bでは、X方向及びY方向の断面については、薄壁12が連続的に繋がり、その間にセラミック粉体18が存在している。この場合の熱伝導率は(5)式で表される。
   kpxy=k{1+2v1(1-k/k)/(2k/k+1)}/{1-v(1-k/k)/(k/k+1)}  ・・・・(5)
(Example 2)
As shown in FIG. 3, the heat conductivity about the arrow X direction and the Y direction in the 2nd composite heat insulating material 10B was calculated | required. In the second composite heat insulating material 10B, the thin walls 12 are continuously connected with respect to the cross sections in the X direction and the Y direction, and the ceramic powder 18 exists therebetween. In this case, the thermal conductivity is expressed by equation (5).
kpxy = k 2 {1 + 2v 1 (1-k 2 / k 1 ) / (2k 2 / k 1 +1)} / {1-v 1 (1-k 2 / k 1 ) / (k 2 / k 1 +1) } ・ ・ ・ ・ (5)
 k>kの場合近似的に(6)式で表される。
   kpxy≒k(1-v)/(1+v) ・・・・(6)
When k 2 > k 1 , it is approximately expressed by equation (6).
kpxy≈k 2 (1−v 1 ) / (1 + v 1 ) (6)
 ハニカムの押出方向であるZ方向については、第1複合断熱材10AのY方向と同じ構造になり(3)式で求めることができる。 The Z direction which is the extrusion direction of the honeycomb has the same structure as the Y direction of the first composite heat insulating material 10A, and can be obtained by Expression (3).
 実施例1と同様に、ハニカム構造体としてムライト組成(3Al・2SiO)となるような粘土55重量%(高純度カオリナイト:AlSi(OH))と普通アルミナ粉末45重量%(純度:99.6%、平均粒径:55μm)調合割合の混合物に水とバインダーを適量加えて充分混練して粘土状にした後、真空土練機で脱気した柱状の坏土を作製し、所定の口金を用いて押出し成形した。得られたハニカム構造成形体を乾燥後1,450℃、3時間、大気中で焼成して100mm×100mm×100mmの立方体のハニカム構造体を作製した。併せてX方向の熱伝導率測定用に押出長さが30mm、Z方向の熱伝導率測定用に押出長さが20mmのサンプルも作製した。焼成後の薄壁の肉厚は0.25mm、X方向及びY方向のセルピッチは5mmで開口率は0.9であった。 As in Example 1, 55% by weight of clay (high purity kaolinite: Al 2 Si 2 O 5 (OH) 4 ) and ordinary alumina with a mullite composition (3Al 2 O 3 .2SiO 2 ) as a honeycomb structure. After adding 45% by weight of powder (purity: 99.6%, average particle size: 55 μm) to a mixture of a mixture ratio, water and a binder are added in an appropriate amount, kneaded to form a clay, and then degassed with a vacuum kneader. A clay was prepared and extruded using a predetermined die. The obtained honeycomb structure formed body was dried and then fired in air at 1,450 ° C. for 3 hours to produce a cubic honeycomb structure of 100 mm × 100 mm × 100 mm. In addition, a sample with an extrusion length of 30 mm for measuring the thermal conductivity in the X direction and a sample with an extrusion length of 20 mm for measuring the thermal conductivity in the Z direction was also prepared. The thickness of the thin wall after firing was 0.25 mm, the cell pitch in the X direction and the Y direction was 5 mm, and the aperture ratio was 0.9.
 このハニカム構造体の片方の開口端面にハニカム構造体と同じ粘土とアルミナの混合物に水とバインダーを適量加えてペースト状にしたものを、片側から約5mm均一に圧入後乾燥して目封じした。 A paste made by adding an appropriate amount of water and a binder to the same mixture of clay and alumina as the honeycomb structure on one end face of the honeycomb structure was press-fitted uniformly about 5 mm from one side, dried and sealed.
 次に、目封じされた面を下側にし、反対側の開口部より薄壁の隙間に形成された収容容器内にアルミナ粉末を充填した。用いたアルミナ粉末は粗粒アルミナでアルミナ純度99.6%、平均粒径75μm、比表面積0.6m/gで、充填したときのかさ密度が1g/ccでセラミック体積分率は0.25であった。 Next, alumina powder was filled into the container formed in the gap between the thin walls from the opening on the opposite side with the sealed surface down. The alumina powder used was coarse alumina with an alumina purity of 99.6%, an average particle size of 75 μm, a specific surface area of 0.6 m 2 / g, a bulk density of 1 g / cc when filled, and a ceramic volume fraction of 0.25. Met.
 このアルミナ粉末を充填後、開口端部にハニカム構造体と同じ粘土とアルミナの混合物に水とバインダーを適量加えてペースト状にしたものを、片側から約5mm均一に圧入後乾燥して目封じした。 After filling this alumina powder, a paste made by adding an appropriate amount of water and a binder to the same clay and alumina mixture as the honeycomb structure at the open end was press-fitted uniformly about 5 mm from one side, dried and sealed. .
 こうして得られたハニカム構造体を1,400℃、3時間、大気中で焼成し、100mm×100mm×100mm、100mm×100mm×30mm、100mm×100mm×20mmのブロック状の複合断熱材を作製した。ムライトからなる薄壁部は気孔率30%で熱伝導率は室温で2.5W/m・Kであった。 The honeycomb structure thus obtained was fired in the atmosphere at 1,400 ° C. for 3 hours, and 100 mm × 100 mm × 100 mm, 100 mm × 100 mm × 30 mm, 100 mm × 100 mm × 20 mm block composite heat insulating materials were produced. The thin wall portion made of mullite had a porosity of 30% and a thermal conductivity of 2.5 W / m · K at room temperature.
 ハニカム構造体16の収容空間14に充填されたセラミック粉体18のセラミック体積分率が0.25であることから、表1よりセラミック粉体部の熱伝導率(室温)は0.05(W/m・K)となる。薄壁12の熱伝導率(室温)が2.5(W/m・K)であることから、第2複合断熱材10Bにおける矢印X方向についての熱伝導率を(6)式より、Z方向の熱伝導率を(3)式より求めた。 Since the ceramic volume fraction of the ceramic powder 18 filled in the accommodation space 14 of the honeycomb structure 16 is 0.25, the thermal conductivity (room temperature) of the ceramic powder portion is 0.05 (W / M · K). Since the thermal conductivity (room temperature) of the thin wall 12 is 2.5 (W / m · K), the thermal conductivity in the direction of the arrow X in the second composite heat insulating material 10B is calculated from the equation (6) in the Z direction. The thermal conductivity of was determined from equation (3).
 X方向及びY方向の熱伝導率測定用にZ方向の長さが30mmのサンプルより1セル分を加工によって切り出し、30mm角に仕上げて熱伝導率をレーザーフラッシュ法にて測定した。Z方向の熱伝導率はZ方向の厚みが20mmのサンプルから、X方向及びY方向に6セル分約30mm角の部分を加工によって切り出し、Z方向の上下両面から目封じ部を削って目封じ部の厚みが1mm程度になるように仕上げ、熱伝導率をレーザーフラッシュ法にて測定した。 For measuring the thermal conductivity in the X direction and the Y direction, one cell was cut out from a sample with a length of 30 mm in the Z direction, processed to a 30 mm square, and the thermal conductivity was measured by a laser flash method. The heat conductivity in the Z direction is cut out from the sample with a thickness of 20 mm in the Z direction by machining about 30 mm square parts for 6 cells in the X and Y directions, and the plugged portions are cut off from the upper and lower surfaces in the Z direction. The thickness of the part was finished so as to be about 1 mm, and the thermal conductivity was measured by a laser flash method.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例3)
 図4に示すように、第3複合断熱材10Cにおける矢印X方向及びY方向についての熱伝導率を求めた。この場合も第2複合断熱材と同様に、X方向及びY方向の断面については、薄壁12が連続的に繋がり、その間にセラミック粉体18が存在している。この場合の熱伝導率は(5)式で表される。k>kの場合近似的に(6)式で表される。
(Example 3)
As shown in FIG. 4, the heat conductivity about the arrow X direction and the Y direction in 10 C of 3rd composite heat insulating materials was calculated | required. Also in this case, similarly to the second composite heat insulating material, the thin walls 12 are continuously connected with respect to the cross sections in the X direction and the Y direction, and the ceramic powder 18 is present therebetween. In this case, the thermal conductivity is expressed by equation (5). When k 2 > k 1 , it is approximately expressed by equation (6).
 実施例1と同様に、ハニカム構造体としてムライト組成(3Al・2SiO)となるような粘土55重量%(高純度カオリナイト:AlSi(OH))と普通アルミナ粉末45重量%(純度:99.6%、平均粒径:55μm)調合割合の混合物に水とバインダーを適量加えて充分混練して粘土状にした後、真空土練機で脱気した柱状の坏土を作製し、所定の口金を用いて押出し成形した。得られたハニカム構造成形体を乾燥後1,450℃、3時間、大気中で焼成して100mm×100mm×100mmの立方体のハニカム構造体を作製した。合わせてX方向の熱伝導率測定用に押出長さが30mm、Z方向の熱伝導率測定用に押出長さが20mmのサンプルも作製した。焼成後の薄壁の肉厚は0.4mm、X方向及びY方向のセルピッチは5mmで開口率は0.85であった。 As in Example 1, 55% by weight of clay (high purity kaolinite: Al 2 Si 2 O 5 (OH) 4 ) and ordinary alumina with a mullite composition (3Al 2 O 3 .2SiO 2 ) as a honeycomb structure. After adding 45% by weight of powder (purity: 99.6%, average particle size: 55 μm) to a mixture of a mixture ratio, water and a binder are added in an appropriate amount, kneaded to form a clay, and then degassed with a vacuum kneader. A clay was prepared and extruded using a predetermined die. The obtained honeycomb structure formed body was dried and then fired in air at 1,450 ° C. for 3 hours to produce a cubic honeycomb structure of 100 mm × 100 mm × 100 mm. In addition, a sample having an extrusion length of 30 mm for measuring the thermal conductivity in the X direction and a 20 mm extrusion length for measuring the thermal conductivity in the Z direction was also prepared. The thickness of the thin wall after firing was 0.4 mm, the cell pitch in the X and Y directions was 5 mm, and the aperture ratio was 0.85.
 このハニカム構造体の片方の開口端面にハニカム構造体と同じ粘土とアルミナの混合物に水とバインダーを適量加えてペースト状にしたものを、片側から約5mm均一に圧入後乾燥して目封じした。 A paste made by adding an appropriate amount of water and a binder to the same mixture of clay and alumina as the honeycomb structure on one end face of the honeycomb structure was press-fitted uniformly about 5 mm from one side, dried and sealed.
 次に、目封じされた面を下側にし、反対側の開口部より薄壁の隙間に形成された収容容器内にアルミナ粉末を充填した。用いたアルミナ粉末は粗粒アルミナでアルミナ純度99.6%、平均粒径75μm、比表面積0.6m/gで、充填したときのかさ密度が1g/ccでセラミック体積分率は0.25であった。 Next, alumina powder was filled into the container formed in the gap between the thin walls from the opening on the opposite side with the sealed surface down. The alumina powder used was coarse alumina with an alumina purity of 99.6%, an average particle size of 75 μm, a specific surface area of 0.6 m 2 / g, a bulk density of 1 g / cc when filled, and a ceramic volume fraction of 0.25. Met.
 このアルミナ粉末を充填後、開口端部にハニカム構造体と同じ粘土とアルミナの混合物に水とバインダーを適量加えてペースト状にしたものを、片側から約5mm均一に圧入後乾燥して目封じした。 After filling this alumina powder, a paste made by adding an appropriate amount of water and a binder to the same clay and alumina mixture as the honeycomb structure at the opening end portion was pressed uniformly about 5 mm from one side, dried and sealed. .
 こうして得られたハニカム構造体を1,400℃、3時間、大気中で焼成し、100mm×100mm×100mm、100mm×100mm×30mm、100mm×100mm×20mmのブロック状の複合断熱材を作製した。ムライトからなる薄壁部は気孔率30%で熱伝導率は室温で2.5W/m・Kであった。 The honeycomb structure thus obtained was fired in the atmosphere at 1,400 ° C. for 3 hours, and 100 mm × 100 mm × 100 mm, 100 mm × 100 mm × 30 mm, 100 mm × 100 mm × 20 mm block composite heat insulating materials were produced. The thin wall portion made of mullite had a porosity of 30% and a thermal conductivity of 2.5 W / m · K at room temperature.
 ハニカム構造体16の収容空間14に充填されたセラミック粉体18のセラミック体積分率が0.25であることから、表1よりセラミック粉体部の熱伝導率(室温)は0.05(W/m・K)となる。薄壁12の熱伝導率(室温)が2.5(W/m・K)であることから、第3複合断熱材10Cにおける矢印X方向についての熱伝導率を(6)式より、Z方向の熱伝導率を(3)式より求めた。 Since the ceramic volume fraction of the ceramic powder 18 filled in the accommodation space 14 of the honeycomb structure 16 is 0.25, the thermal conductivity (room temperature) of the ceramic powder portion is 0.05 (W / M · K). Since the thermal conductivity (room temperature) of the thin wall 12 is 2.5 (W / m · K), the thermal conductivity in the direction of the arrow X in the third composite heat insulating material 10C is calculated from the equation (6) in the Z direction. The thermal conductivity of was determined from equation (3).
 X方向及びY方向の熱伝導率測定用にZ方向の長さが30mmのサンプルより1セル分を加工によって切り出し、30mm角に仕上げて熱伝導率をレーザーフラッシュ法にて測定した。Z方向の熱伝導率はZ方向の厚みが20mmのサンプルから、X方向及びY方向に6セル分約30mm角の部分を加工によって切り出し、Z方向の上下両面から目封じ部を削って目封じ部の厚みが1mm程度になるように仕上げ、熱伝導率をレーザーフラッシュ法にて測定した。 For measuring the thermal conductivity in the X direction and the Y direction, one cell was cut out from a sample with a length of 30 mm in the Z direction, processed to a 30 mm square, and the thermal conductivity was measured by a laser flash method. The heat conductivity in the Z direction is cut out from the sample with a thickness of 20 mm in the Z direction by machining about 30 mm square parts for 6 cells in the X and Y directions, and the plugged portions are cut off from the upper and lower surfaces in the Z direction. The thickness of the part was finished so as to be about 1 mm, and the thermal conductivity was measured by a laser flash method.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例4)
 ハニカム構造体としてコージェライト組成(2MgO・2Al・5SiO)の市販品(セラレック)を使用した。焼成後のハニカムの大きさはX方向及びY方向が100mm×100mm、Z方向が50mmのハニカム構造体で、薄壁の肉厚は0.9mm、X方向及びY方向のセルピッチは5.9mmで開口率は0.72であった。
Example 4
A commercial product (Ceralek) having a cordierite composition (2MgO · 2Al 2 O 3 · 5SiO 2 ) was used as the honeycomb structure. The size of the honeycomb after firing is a honeycomb structure in which the X direction and the Y direction are 100 mm × 100 mm and the Z direction is 50 mm, the thin wall thickness is 0.9 mm, and the cell pitch in the X direction and the Y direction is 5.9 mm. The aperture ratio was 0.72.
 このハニカム構造体の片方の開口端面には、ハニカム構造体と同じコージェライト組成の生ペースト(タルク、カオリン、アルミナ、シリカの混合物)を予め片側から約5mm均一に圧入目封じしておいたため、焼成後のハニカム構造体の片側開口部は目封じされていた。 Because the raw paste (a mixture of talc, kaolin, alumina, and silica) having the same cordierite composition as that of the honeycomb structure was previously press-sealed uniformly about 5 mm from one side at one opening end face of the honeycomb structure, The opening on one side of the fired honeycomb structure was sealed.
 次に、目封じされた面を下側にし、反対側の開口部より薄壁の隙間に形成された収容容器内にアルミナ粉末を充填した。用いたアルミナ粉末は粗粒アルミナでアルミナ純度99.6%、平均粒径75μm、比表面積0.6m/gで、充填したときのかさ密度が1g/ccでセラミック体積分率は0.25であった。 Next, alumina powder was filled into the container formed in the gap between the thin walls from the opening on the opposite side with the sealed surface down. The alumina powder used was coarse alumina with an alumina purity of 99.6%, an average particle size of 75 μm, a specific surface area of 0.6 m 2 / g, a bulk density of 1 g / cc when filled, and a ceramic volume fraction of 0.25. Met.
 このアルミナ粉末を開口端上部より約5mm低く、充填後、ハニカム開口端部にハニカム構造体と同じコージェライト組成の生ペーストを、片側から均一に圧入後乾燥して目封じした。 The alumina powder was filled about 5 mm lower than the upper end of the opening, and after filling, a raw paste having the same cordierite composition as the honeycomb structure was pressed into the end of the honeycomb uniformly from one side, dried and sealed.
 こうして得られたハニカム構造体を1,350℃、3時間、大気中で焼成し、100mm×100mm×50mmのブロック状の複合断熱材を作製した。コージェライトからなる薄壁部は気孔率45%で、このハニカムの壁の熱伝導率は室温で1.3W/m・K、800℃で1.0W/m・Kであった。 The honeycomb structure thus obtained was fired in the air at 1,350 ° C. for 3 hours to produce a block-shaped composite heat insulating material of 100 mm × 100 mm × 50 mm. The thin wall portion made of cordierite had a porosity of 45%, and the thermal conductivity of this honeycomb wall was 1.3 W / m · K at room temperature and 1.0 W / m · K at 800 ° C.
 このコージェライトハニカムにアルミナ粉末を充填した複合断熱材の高温における実際の断熱性能を以下の方法で評価した。 The actual insulation performance at high temperature of the composite insulation material in which the cordierite honeycomb was filled with alumina powder was evaluated by the following method.
 図6A及び図6Bに示すように、前面の開口部の大きさが幅282mm、高さ200mmで奥行400mmの函型試験焼成炉40を準備し、前面の開口部を、5枚のハニカム材(X方向及びY方向が120mm×48mmでZ方向の高さ200mmの2枚の第1セラレックハニカム材42Aと、X方向及びY方向が42mm×48mmでZ方向が75mmの2枚の第2セラレックハニカム材42Bと、X方向及びY方向が42mm×48mmでZ方向が50mmの1枚の第3セラレックハニカム42C)で蓋をした。これら第1セラレックハニカム42A~第3セラレックハニカム42Cにはアルミナ材は充填されていない。このような状態で炉内温度を1,000℃に保持したとき、中央に設置した第3セラレックハニカム42C(42mm×48mm×50mm)の表面温度は282℃であった。 As shown in FIG. 6A and FIG. 6B, a box test firing furnace 40 having a front opening size of width 282 mm, height 200 mm and depth 400 mm is prepared. Two first seralek honeycomb materials 42A having an X direction and a Y direction of 120 mm × 48 mm and a height of 200 mm in the Z direction, and two second seracle honeycomb materials 42A having an X direction and a Y direction of 42 mm × 48 mm and a Z direction of 75 mm The REC honeycomb material 42B was covered with one third Ceralek honeycomb 42C) having 42 mm × 48 mm in the X and Y directions and 50 mm in the Z direction. The first Ceralek honeycomb 42A to the third Cerarec honeycomb 42C are not filled with an alumina material. When the furnace temperature was maintained at 1,000 ° C. in such a state, the surface temperature of the third Ceralek honeycomb 42C (42 mm × 48 mm × 50 mm) installed in the center was 282 ° C.
 次に、中央に設置した第3セラレックハニカム42Cの代わりに、B類耐火断熱レンガ(イソライト社製、カタログ熱伝導率0.39W/m・K以下)を42mm×48mm×50mmに切り出したものを挿入して、炉内温度を1,000℃に保持したとき、中央に設置したB類耐火断熱レンガの表面温度は266℃であった。 Next, instead of the third Ceralek honeycomb 42C installed at the center, a B-class fireproof insulating brick (made by Isolite, catalog thermal conductivity 0.39 W / m · K or less) cut out to 42 mm × 48 mm × 50 mm When the furnace temperature was kept at 1,000 ° C., the surface temperature of the class B fireproof heat insulating brick installed at the center was 266 ° C.
 さらに、中央に設置した第3セラレックハニカム42Cの代わりに、第3セラレックハニカム42Cにアルミナ粉末を充填した複合断熱材をX方向及びY方向が42mm×48mm、Z方向が50mmに切り出したものを挿入して、炉内温度を1,000℃に保持したとき、中央に設置した複合断熱材の表面温度は244℃であった。 Further, instead of the third Ceralek honeycomb 42C installed in the center, a composite heat insulating material in which the third Ceralek honeycomb 42C is filled with alumina powder is cut into 42 mm × 48 mm in the X and Y directions and 50 mm in the Z direction. When the furnace temperature was kept at 1,000 ° C., the surface temperature of the composite heat insulating material installed at the center was 244 ° C.
 セラレック材のみで断熱した場合、ハニカムセルで形成される空間の中を空気による対流と放射熱の作用のために断熱材が悪いが、アルミナ粉末を充填することにより、対流と熱放射による熱の伝達が抑制されて、表面温度が38℃も低くなり断熱性が改善された。さらにその温度はB類耐火断熱レンガより低く優れた断熱性を示した。 When heat insulation is performed only with Ceralek material, the heat insulation material is poor in the space formed by the honeycomb cells due to the effect of convection by air and radiant heat, but by filling the alumina powder, the heat of convection and heat radiation is reduced. Transmission was suppressed and the surface temperature was lowered by 38 ° C. to improve the heat insulation. Furthermore, the temperature was lower than that of Class B fireproof insulating bricks and showed excellent heat insulating properties.
(考察)
 熱は主に熱伝導と対流と輻射によって伝わる。本実施の形態に係る複合断熱材においては、まず、熱伝導による熱伝達を収容空間14に充填されたセラミック粉体18の低熱伝導性によって抑制することができる。これは、図5に示す気体層30と多数のセラミック粒子32との組み合わせからなるセラミック粉体18の熱伝導率が非常に小さいことからも明らかである。そして、ハニカム構造体16の収容空間14にセラミック粉体18を充填するだけでよいため、作製が簡単であり、しかも、ハニカム構造体16の存在により、強度を高くすることができると共に、形状を維持することができることから、連続炉等への組み付けも簡単になる。
(Discussion)
Heat is transmitted mainly by heat conduction, convection and radiation. In the composite heat insulating material according to the present embodiment, first, heat transfer by heat conduction can be suppressed by the low heat conductivity of the ceramic powder 18 filled in the accommodation space 14. This is also clear from the fact that the thermal conductivity of the ceramic powder 18 composed of a combination of the gas layer 30 and a large number of ceramic particles 32 shown in FIG. Since the ceramic powder 18 only needs to be filled in the accommodation space 14 of the honeycomb structure 16, the production is simple, and the presence of the honeycomb structure 16 can increase the strength and shape. Since it can be maintained, assembly to a continuous furnace or the like is also simplified.
 また、ハニカム構造体の空間に充填されたセラミック粉体は、気体の流れを邪魔することで対流による熱伝達を抑制する。 Also, the ceramic powder filled in the honeycomb structure space suppresses heat transfer due to convection by interfering with the gas flow.
 また、高温においては輻射による熱伝達が大きな割合を占めるが、このような粉体では、光が粒子間で散乱されるため、輻射による熱伝達も抑制することが可能となる。 Also, heat transfer by radiation accounts for a large proportion at high temperatures, but in such powders, light is scattered between particles, so that heat transfer by radiation can also be suppressed.
 すなわち、本実施の形態は、安価に作製でき、組み付けも容易で、熱伝導率が1.0(W/m・K)未満である複合断熱材を提供することができる。もちろん、熱伝導率(室温)として、耐火煉瓦等よりも1桁低い0.06~0.55(W/m・K)を実現することができる。 That is, this embodiment can provide a composite heat insulating material that can be manufactured at low cost, can be easily assembled, and has a thermal conductivity of less than 1.0 (W / m · K). Of course, the thermal conductivity (room temperature) can be 0.06 to 0.55 (W / m · K), which is one digit lower than that of refractory bricks.
 そして、本実施の形態において、第1複合断熱材10Aのように、ハニカム構造体16を、その軸方向と直交する方向に切断した際の断面形状をみたとき、複数の薄壁12が平行に並んだ形状であれば、複数の薄壁12が延在する方向(第1方向:図2のY方向)への熱伝導率よりも、複数の薄壁12が並ぶ方向(第2方向:図2のX方向)への熱伝導率(実施例1参照)が約1桁分低くなる。従って、例えば連続炉に第1複合断熱材10Aを組み付ける際に、熱を外部に伝達したいゾーン(断熱効果がそれほど必要でないゾーン)では、熱の放射方向と前記第1方向とをほぼ一致させて組み付ければよく、熱を外部に伝達したくないゾーン(断熱効果が必要なゾーン)では、熱の放射方向と前記第2方向とをほぼ一致させて組み付ければよい。 And in this Embodiment, when the cross-sectional shape at the time of cut | disconnecting the honeycomb structure 16 in the direction orthogonal to the axial direction like the 1st composite heat insulating material 10A is seen, several thin wall 12 is parallel. If the shapes are arranged, the direction in which the plurality of thin walls 12 are arranged (the second direction: the figure) rather than the thermal conductivity in the direction in which the plurality of thin walls 12 extend (the first direction: the Y direction in FIG. 2). 2 in the X direction) (see Example 1) is reduced by about one digit. Therefore, for example, when assembling the first composite heat insulating material 10A in a continuous furnace, in a zone where heat is to be transmitted to the outside (a zone where the heat insulation effect is not so necessary), the heat radiation direction and the first direction are substantially matched. In a zone where heat is not desired to be transmitted to the outside (a zone where a heat insulation effect is necessary), the heat radiation direction and the second direction may be substantially matched.
 また、本実施の形態において、第2複合断熱材10Bや第3複合断熱材10Cのように、ハニカム構造体16を、その軸方向と直交する方向に切断した際の断面形状をみたとき、複数の薄壁12が格子状に組み合わされた形状であれば、全体的な強度が高くなることから、応力が集中する部分等に組み付けることで、組み付け後に複合断熱材が崩れるという心配がない。特に、格子状の交差部分の角度がほぼ90°であれば、熱伝導率の組み付け方向の依存性がないため、方向性を気にせずに組み付けることが可能となる。 Further, in the present embodiment, when the cross-sectional shape when the honeycomb structure 16 is cut in a direction orthogonal to the axial direction, as in the second composite heat insulating material 10B and the third composite heat insulating material 10C, a plurality of shapes are obtained. If the thin walls 12 are combined in a lattice shape, the overall strength will be high, so that there is no concern that the composite heat insulating material will collapse after assembly by assembling it in a portion where stress is concentrated. In particular, if the angle of the grid-like intersection is approximately 90 °, the heat conductivity does not depend on the assembling direction, so that it is possible to assemble without worrying about the directionality.
 なお、本発明に係る複合断熱材は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 It should be noted that the composite heat insulating material according to the present invention is not limited to the above-described embodiment, but can of course have various configurations without departing from the gist of the present invention.

Claims (5)

  1.  それぞれ薄壁(12)で区画された多数の収容空間(14)を有するブロック状のハニカム構造体(16)と、
     前記ハニカム構造体(16)の前記収容空間(14)内に充填されたセラミック粉体(18)とを有することを特徴とする複合断熱材。
    A block-shaped honeycomb structure (16) having a large number of accommodating spaces (14) each partitioned by a thin wall (12);
    A composite heat insulating material comprising ceramic powder (18) filled in the accommodation space (14) of the honeycomb structure (16).
  2.  請求項1記載の複合断熱材において、
     前記ハニカム構造体(16)を、その軸方向と直交する方向に切断したときの断面形状は、複数の前記薄壁(12)が平行に並んだ形状であることを特徴とする複合断熱材。
    The composite heat insulating material according to claim 1,
    The composite heat insulating material, wherein a cross-sectional shape of the honeycomb structure (16) when cut in a direction perpendicular to the axial direction is a shape in which the plurality of thin walls (12) are arranged in parallel.
  3.  請求項1記載の複合断熱材において、
     前記ハニカム構造体(16)を、その軸方向と直交する方向に切断したときの断面形状は、複数の前記薄壁(12)が格子状に組み合わされた形状であることを特徴とする複合断熱材。
    The composite heat insulating material according to claim 1,
    A cross-sectional shape of the honeycomb structure (16) when cut in a direction perpendicular to the axial direction thereof is a composite heat insulation characterized in that a plurality of the thin walls (12) are combined in a lattice shape. Wood.
  4.  請求項3記載の複合断熱材において、
     前記格子状の交差部分の角度がほぼ90度であることを特徴とする複合断熱材。
    In the composite heat insulating material according to claim 3,
    A composite heat insulating material characterized in that an angle of the lattice-like intersection is approximately 90 degrees.
  5.  請求項1記載の複合断熱材において、
     熱伝導率が0.06~0.55(W/m・K)であることを特徴とする複合断熱材。
    The composite heat insulating material according to claim 1,
    A composite heat insulating material having a thermal conductivity of 0.06 to 0.55 (W / m · K).
PCT/JP2010/069561 2009-11-11 2010-11-04 Composite heat insulating material WO2011058916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011540480A JPWO2011058916A1 (en) 2009-11-11 2010-11-04 Composite insulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009257937 2009-11-11
JP2009-257937 2009-11-11

Publications (1)

Publication Number Publication Date
WO2011058916A1 true WO2011058916A1 (en) 2011-05-19

Family

ID=43991575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069561 WO2011058916A1 (en) 2009-11-11 2010-11-04 Composite heat insulating material

Country Status (2)

Country Link
JP (1) JPWO2011058916A1 (en)
WO (1) WO2011058916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155716A (en) * 2014-02-20 2015-08-27 京セラ株式会社 Heat insulation member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821605U (en) * 1981-08-03 1983-02-10 ミサワホ−ム株式会社 Panels with built-in insulation
GB2347440A (en) * 1999-02-12 2000-09-06 Ams Admatsys Limited Insulating panel with a honeycomb core filled with granular ceramic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821605U (en) * 1981-08-03 1983-02-10 ミサワホ−ム株式会社 Panels with built-in insulation
GB2347440A (en) * 1999-02-12 2000-09-06 Ams Admatsys Limited Insulating panel with a honeycomb core filled with granular ceramic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155716A (en) * 2014-02-20 2015-08-27 京セラ株式会社 Heat insulation member

Also Published As

Publication number Publication date
JPWO2011058916A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5372494B2 (en) Manufacturing method of honeycomb structure
JP5411851B2 (en) High porosity ceramic honeycomb article containing rare earth oxide and method for producing the same
JP4745963B2 (en) Method for manufacturing honeycomb structure and honeycomb formed body
US10493394B2 (en) Porous material, method for manufacturing porous material, and honeycomb structure
US20100096783A1 (en) Method for producing ceramic honeycomb structure
JP2014195783A5 (en)
US20130247525A1 (en) Honeycomb structure and manufacturing method of honeycomb structure
US20100116427A1 (en) Honeycomb segment-forming die and method for manufacturing honeycomb structure
JP5694695B2 (en) Insulated refractory and method for producing the same
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP4847339B2 (en) Method for manufacturing honeycomb structure and honeycomb structure
JPWO2006006667A1 (en) Method for manufacturing porous honeycomb structure
JP5478025B2 (en) Cordierite ceramics and method for producing the same
WO2011058916A1 (en) Composite heat insulating material
KR200489656Y1 (en) Saggar assembly
MX2015002820A (en) Honeycomb structure production method.
JP2011148676A (en) Raw material for foamed lightweight tile, foamed lightweight tile and method for producing the same
WO2009093691A1 (en) Sintering method for honeycomb compact
JPS62182158A (en) Cordierite honeycom structure and manufacture
US10443461B2 (en) Honey comb assembly
JP2011213499A (en) Floor plate for sintering
JP5770228B2 (en) Manufacturing method of honeycomb structure
JP2020019690A (en) Manufacturing method of honeycomb structure
US20190301801A1 (en) Heating furnace
EP2233871A1 (en) Method for firing Si-bonded SiC ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540480

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829875

Country of ref document: EP

Kind code of ref document: A1