WO2011058827A1 - Filament winding device - Google Patents

Filament winding device Download PDF

Info

Publication number
WO2011058827A1
WO2011058827A1 PCT/JP2010/066774 JP2010066774W WO2011058827A1 WO 2011058827 A1 WO2011058827 A1 WO 2011058827A1 JP 2010066774 W JP2010066774 W JP 2010066774W WO 2011058827 A1 WO2011058827 A1 WO 2011058827A1
Authority
WO
WIPO (PCT)
Prior art keywords
liner
resin
fiber bundle
guide
filament winding
Prior art date
Application number
PCT/JP2010/066774
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 中西
晃 前田
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2011058827A1 publication Critical patent/WO2011058827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core

Definitions

  • the present invention relates to the technology of a filament winding apparatus. More specifically, the present invention relates to a technique for impregnating a fiber bundle in a filament winding apparatus with a resin.
  • a filament winding apparatus that winds a fiber bundle impregnated with a resin around the outer peripheral surface of a liner is known.
  • a method of impregnating the fiber bundle with resin a method of immersing the fiber bundle in a resin tank (for example, see Patent Document 1), a method of spraying resin on the fiber bundle (for example, see Patent Document 2), and the like. Is known.
  • the method of immersing the fiber bundle in the resin tank has a problem that the frequency of maintenance increases because the resin adheres to a guide roller or the like that feeds the fiber bundle after immersion.
  • the resin in the method of spraying the resin on the fiber bundle, the resin can be prevented from adhering to the guide roller or the like by spraying the resin immediately before the fiber bundle is wound around the liner. It was difficult to impregnate the resin without unevenness depending on the embodiment. JP-A-8-108487 JP-A-9-262910
  • An object of the present invention is to provide a technique for reliably impregnating a fiber bundle without unevenness in a filament winding apparatus using a method of spraying resin on the fiber bundle.
  • a first aspect of the present invention is a filament winding apparatus that transports while rotating a liner and winds a fiber bundle guided by a fiber supply guide disposed around the outer peripheral surface of the liner around the outer peripheral surface of the liner
  • a resin supply nozzle that sprays resin on the fiber bundle in front of the liner wound around the liner;
  • the resin supply nozzle has a double tube structure constituted by an outer tube for ejecting air and an inner tube for ejecting resin.
  • the resin supply nozzle adjusts the direction of spraying the resin by decentering the axial centers of the outer tube and the inner tube.
  • the resin supply nozzle adjusts a direction in which the resin is sprayed according to a winding angle of a fiber bundle wound around the liner.
  • the fiber supply guide includes a guide member that guides the fiber bundle to the liner; A guide rotation mechanism that rotates the guide member about the axis of the guide member as a central axis, The resin supply nozzle adjusts the direction of spraying resin in conjunction with the guide rotation mechanism.
  • the effect of gravity on the resin spray characteristics of the resin supply nozzle is used to convey the resin ejected from the inner pipe using the air jet formed by ejecting from the outer pipe. Can be reduced. As a result, the resin can be sprayed constantly and stably on the fiber bundle. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle before being wound around the liner.
  • the resin spraying direction can be appropriately adjusted while having a simple structure.
  • the resin can be sprayed constantly and stably on the fiber bundle. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle before being wound around the liner.
  • the resin spraying direction can be appropriately adjusted according to the winding angle of the fiber bundle wound around the liner.
  • the resin can be sprayed constantly and stably on the fiber bundle. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle before being wound around the liner.
  • the resin spraying direction can be appropriately adjusted in conjunction with the guide rotation mechanism. This makes it possible to spray the resin stably and constantly against the fiber bundle while having a simple structure. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle before being wound around the liner.
  • FIG. 1 is a side view of a filament winding apparatus 100 according to the present invention.
  • An arrow A shown in the figure indicates the transfer direction of the liner 2.
  • the direction parallel to the transfer direction of the liner 2 is the front-rear direction of the liner 2 or the filament winding apparatus 100
  • the direction in which the liner 2 is transferred is the front side (left side in this figure)
  • the opposite side is the rear side (this figure). (Right side).
  • the front-rear direction is opposite when the liner 2 is transferred to the opposite side to the transfer direction shown in FIG.
  • the filament winding apparatus 100 is an apparatus for winding the fiber bundles 1A and 1B impregnated with resin on the outer peripheral surface 2a of the liner 2 provided.
  • the filament winding apparatus 100 mainly includes a main base 10, a liner transfer device 20, a hoop winding device 30, and a helical winding device 40.
  • the liner 2 is a wound object in which the fiber bundles 1A and 1B are wound around the outer peripheral surface 2a by the filament winding apparatus 100.
  • the liner 2 is a substantially cylindrical hollow container formed of, for example, a high-strength aluminum material or a polyamide-based resin, and the pressure resistance characteristics are improved by winding the fiber bundles 1A and 1B around the outer peripheral surface 2a of the liner 2.
  • the liner 2 is a base material constituting the pressure vessel.
  • the main base 10 constitutes the main structure of the filament winding apparatus 100.
  • a liner transfer device 20 is placed on the liner transfer device rail 11 provided on the upper portion of the main base 10 so as to be movable in the front-rear direction of the filament winding device 100.
  • a hoop winding device 30 is mounted on a hoop winding device rail 12 provided in parallel with the liner transfer device rail 11 so as to be movable in the front-rear direction of the filament winding device 100.
  • the liner transfer device 20 is a device that rotates the provided liner 2 and transfers the liner 2 in the front-rear direction of the filament winding device 100.
  • the liner transfer device 20 mainly includes a transfer device base 21, a transfer driving device (not shown), and a liner support portion 22.
  • the transfer device base 21 is a main structure of the liner transfer device 20. As described above, the liner transfer device 20 is placed on the liner transfer device rail 11 of the main base 10 and can be moved in the front-rear direction by the transfer drive device.
  • the transfer device base 21 is provided with a pair of liner support portions 22 in the front-rear direction, and the liner 2 is supported by the liner support portions 22.
  • the liner support portion 22 is mainly extended from the transfer device base 21 toward the upper side, and the liner support frame 23 is extended from the upper portion of the liner support frame 23 in the front-rear direction.
  • a rotating shaft portion 24 a rotating shaft portion 24.
  • the liners 2 attached to the respective rotary shaft portions 24 constituting the pair of liner support portions 22 by a chuck or the like are rotated in one direction by the rotary shaft portions 24.
  • the liner 2 is rotated so that the rotation axis of the liner 2 is parallel to the front-rear direction of the filament winding apparatus 100 and is transferred in the front-rear direction of the filament winding apparatus 100.
  • the hoop winding device 30 is a device that performs so-called hoop winding in which the fiber bundle 1A is wound around the outer peripheral surface 2a of the liner 2 so as to be substantially perpendicular to the front-rear direction of the filament winding device 100.
  • the hoop winding device 30 mainly includes a hoop winding device base 31, a transfer driving device (not shown), a rotation driving device 32, and a hoop winding device 33.
  • the hoop winding device base 31 is a main structure of the hoop winding device 30. As described above, the hoop winding device 30 is placed on the hoop winding device rail 12 of the main base 10 and can be moved in the front-rear direction by the transfer driving device.
  • the hoop winding device base 31 is provided with a rotation driving device 32 and a hoop winding device 33, and the hoop winding device 33 is rotated by the rotation driving device 32 to wind the fiber bundle 1A. It is.
  • the hoop winding device 33 mainly includes a winding table 34 that performs hoop winding, and a bobbin 35 that supplies the fiber bundle 1A to the winding table 34.
  • the winding table 34 includes a plurality of fiber supply guides that guide the fiber bundle 1A to the outer peripheral surface 2a of the liner 2, and a plurality of resin supply nozzles that spray resin onto the fiber bundle 1A that travels from the fiber supply guide toward the liner 2. Is a member arranged.
  • fiber supply guides are radially arranged on the winding table 34 so as to be at an equal distance from the outer peripheral surface 2a of the liner 2, and each fiber bundle 1A guided by these fiber supply guides. Resin is sprayed from the resin supply nozzle. The fiber bundle 1A impregnated with the resin in this manner is wound around the outer peripheral surface 2a of the liner 2 by the hoop winding device 30 moving in the front-rear direction while rotating the winding table 34.
  • the helical winding device 40 is a device that performs so-called helical winding in which the fiber bundle 1B is wound around the outer peripheral surface 2a of the liner 2 so as to have a predetermined angle with respect to the front-rear direction of the filament winding device 100.
  • the helical winding device 40 is mainly composed of a helical winding device base 41 and a helical winding device 42.
  • the helical winding device base 41 is a main structure of the helical winding device 40.
  • the helical winding device 40 is fixed to the main base 10.
  • the helical winding device base 41 is provided with a helical winding device 42, and the liner 2 provided in the liner transfer device 20 is transferred while being rotated, and passes through the helical winding device 42, thereby the fiber bundle 1B. Is wound.
  • the helical winding device 42 mainly includes a helical winding head 43 that performs helical winding, and a bobbin (not shown) that supplies the fiber bundle 1B to the helical winding head 43.
  • the helical winding head 43 includes a plurality of fiber supply guides 44 that guide the fiber bundle 1B to the outer peripheral surface 2a of the liner 2 and a plurality of resin supplies that spray resin onto the fiber bundle 1B that travels from the fiber supply guide 44 toward the liner 2. This is a member in which the nozzle 45 is disposed (see FIG. 2).
  • fiber supply guides 44 are radially arranged in the helical winding head 43 so as to be at equal distances from the outer peripheral surface 2a of the liner 2, and the respective fibers guided by these fiber supply guides 44. Resin is sprayed from the resin supply nozzle 45 to the bundle 1B. The fiber bundle 1B impregnated with the resin in this manner is wound around the outer peripheral surface 2a of the liner 2 as the liner 2 provided in the liner transfer device 20 is transferred while being rotated.
  • the helical winding device 40 of the filament winding apparatus 100 according to the present invention, the fiber supply guide 44 and the resin supply nozzle 45 constituting the helical winding device 40 will be described with reference to FIGS.
  • FIG. 2 is a side view showing the configuration of the helical winding device 40 of the filament winding apparatus 100.
  • FIG. 3A is a side view showing the fiber supply guide 44 and the resin supply nozzle 45 constituting the helical winding device 40.
  • FIG. 3B shows a rear view thereof.
  • the helical winding device 40 includes the helical winding device base 41 that forms the main structure, and the helical winding device 42 that includes the helical winding head 43 and the like.
  • the fiber supply guide 44 provided in the helical winding head 43 guides the fiber bundle 1B supplied from a bobbin (not shown) to the liner 2, and the resin supply nozzle 45 goes from the fiber supply guide 44 to the liner 2. Resin is sprayed on the fiber bundle 1B.
  • the fiber supply guide 44 mainly includes a guide 50, a guide advance / retreat mechanism 60, and a guide rotation mechanism 70.
  • the guide 50 guides the fiber bundle 1 ⁇ / b> B supplied from the bobbin to the outer peripheral surface 2 a of the liner 2.
  • the guide 50 is mainly composed of a substantially tapered guide member 51 in which a guide passage for the fiber bundle 1B is formed, and a guide support member 52 having an L shape in side view through which the guide member 51 is inserted.
  • the guide member 51 is formed with a guide passage so as to penetrate from the inlet portion 51a on one side to the outlet portion 51b on the other side, and the fiber bundle 1B supplied from the bobbin passes to the outer peripheral surface 2a of the liner 2. It is a guide.
  • the shape of the exit part 51b of the guide member 51 is formed in a substantially oval shape, and it is possible to supply the fiber bundle 1B smoothly.
  • the guide support member 52 is provided with a through hole 52a through which the guide member 51 is inserted, and rotatably supports the guide member 51 with its axis as the central axis.
  • the fiber bundle 1B supplied from the bobbin is guided to the guide member 51 supported by the guide support member 52 and is wound around the outer peripheral surface 2a of the liner 2.
  • the guide advance / retreat mechanism 60 is a mechanism for moving the guide 50 in a direction to advance / retreat with respect to the outer peripheral surface 2a of the liner 2.
  • the guide advancing / retracting mechanism 60 is mainly inserted through a through hole 52b provided in the guide support member 52 to make the guide support member 52 movable in the axial direction, and a guide for guiding the guide support member 52.
  • an annular groove cam 62 having a groove 62a.
  • the guide shaft 61 is provided in a direction in which its axis is perpendicular to the rotation axis of the liner 2, and both ends of the guide shaft 61 are arranged so as to be coaxial with the rotation axis of the liner 2. It is fixed to a C-shaped annular member 46.
  • the groove cam 62 is disposed so that the rotation axis thereof is coaxial with the rotation axis of the liner 2, and is provided in the recess 46 a of the annular member 46.
  • a guide groove 62a whose orbit changes in the radial direction with rotation is formed on one surface of the groove cam 62, and a guide support member is provided in the guide groove 62a so as to project parallel to the front-rear direction. 52 protrusions 52c are inserted.
  • Such a configuration makes it possible to move the guide 50 in a direction that advances and retreats with respect to the outer peripheral surface 2a of the liner 2 as shown in FIGS. 4 (A) and 4 (B). That is, when the groove cam 62 is rotated according to the outer diameter of the liner 2, the guide support member 52 can be guided in the guide groove 62 a of the groove cam 62, and the guide 50 is moved in the axial direction of the guide shaft 61. It becomes possible.
  • the distance between the outer peripheral surface 2a and the guide member 51 is increased. It can be made substantially constant. In this way, it is possible to stabilize the tension of the fiber bundle 1B. Even when the outer diameter of the liner 2 at the winding position of the fiber bundle 1B is changed from the state shown in FIG. 4B to the state shown in FIG. 4A, the tension of the fiber bundle 1B is similarly stabilized. It becomes possible.
  • the guide rotation mechanism 70 is a mechanism that rotates the guide member 51 about the axis of the guide member 51 as a central axis.
  • the guide rotation mechanism 70 is inserted mainly by a transmission shaft 71 that is inserted into a through hole 52d provided in the guide support member 52 and is rotatably supported, and a spline shaft portion formed at one end of the transmission shaft 71.
  • the substantially cylindrical socket 72 and the annular face gear 73 are configured.
  • the transmission shaft 71 is provided in parallel with the guide shaft 61 that constitutes the guide advance / retreat mechanism 60 in a direction in which the axis is perpendicular to the rotation axis of the liner 2.
  • One end of the transmission shaft 71 is rotatably inserted into the through hole 52d of the guide support member 52, and the other end where the spline shaft portion is formed is inserted into the socket 72.
  • a drive gear 71 a is provided in the middle of the transmission shaft 71 so as to mesh with a driven gear 51 c provided at one end of the guide member 51.
  • the socket 72 has a spline hole formed in the axial direction thereof, and the spline shaft portion of the transmission shaft 71 is inserted into the spline hole as described above.
  • the socket 72 is supported by an annular member 46 disposed so as to be coaxial with the rotation axis of the liner 2 so as to be rotatable about its axis.
  • the face gear 73 is disposed so that its rotation axis is coaxial with the rotation axis of the liner 2, and is rotatably fitted around the outer periphery of the annular member 46.
  • the gear portion of the face gear 73 is meshed with a driven gear 72 a provided at one end of the socket 72.
  • the guide member 51 can be rotated about the axis of the guide member 51 as the central axis. That is, when the face gear 73 is rotated, the guide member 51 can be rotated via the transmission shaft 71 and the socket 72.
  • the phases of the substantially elliptical outlet portions 51b of the guide member 51 can be adjusted so as not to interfere with each other. This makes it possible to avoid contact between the 51 members.
  • the resin supply nozzle 45 mainly includes a nozzle body 80, a double tube nozzle portion 85, and a double tube nozzle eccentric mechanism 90.
  • the resin supply nozzle 45 is attached to the side of the guide support member 52 constituting the fiber supply guide 44.
  • the nozzle main body 80 is connected to an air tank (not shown) via a valve or the like, and guides air supplied from the air tank to the double-tube nozzle 85.
  • the nozzle main body 80 is provided with an air passage 80a to which a pipe (not shown) for guiding air from an air tank is connected, and an air chamber 80b into which air guided by the air passage 80a flows.
  • the air chamber 80b is a cylindrical space drilled from one end surface of the nozzle body 80, and an air passage 80a communicates perpendicularly to the axis of the air chamber 80b.
  • the double tube nozzle portion 85 is a discharge tube having a double tube structure that causes air and resin to be discharged from an injection port 85a at the tip portion thereof.
  • the double tube nozzle portion 85 is mainly composed of a circular tube-shaped outer tube 86 and a circular tube-shaped inner tube 87 provided in the outer tube 86.
  • the outer tube 86 is an air nozzle that ejects air. At one end of the outer tube 86, a tube expansion portion 86a having an outer diameter substantially the same as the inner diameter of the air chamber 80b provided in the nozzle main body portion 80 is formed. And the outer pipe
  • the inner tube 87 is a resin nozzle that ejects resin.
  • a pipe (not shown) for guiding resin from a resin tank (not shown) is connected to one end of the inner pipe 87.
  • the inner tube 87 is inserted into a through-hole 80c provided so as to be coaxial with the air chamber 80b of the nozzle body 80, thereby constituting a double tube nozzle portion 85 and air generated by the outer tube 86.
  • the resin can be ejected in the same direction as the ejection direction.
  • the air supplied from the air tank can be ejected from the gap between the outer tube 86 and the inner tube 87, and the resin supplied from the resin tank can be ejected from the inner tube 87.
  • the double tube nozzle eccentric mechanism 90 is a mechanism that eccentrically centers the outer tube 86 and the inner tube 87 constituting the double tube nozzle portion 85.
  • the double-tube nozzle eccentric mechanism 90 is mainly composed of a cam portion 51d provided at one end portion of the guide member 51, an arm portion 91 driven by the cam portion 51d, and a shaft for swingably supporting the arm portion 91. Part 92.
  • the cam portion 51 d is provided so that its base circle portion is coaxial with the central axis of the guide member 51.
  • the cam portion 51d is also rotated.
  • the arm portion 91 is rotatably provided at one end thereof with a roller 91a that comes into contact with the cam portion 51d of the guide member 51.
  • the other end portion of the arm portion 91 is provided with a pushing arm 91b that pushes the inner tube 87 constituting the double tube nozzle portion 85 in a direction perpendicular to the axis.
  • the shaft portion 92 is a member that is provided in the middle portion of the arm portion 91 and supports the arm portion 91 so as to be swingable with respect to the guide support member 52.
  • the cam portion 51d of the guide member 51 is rotated, the arm portion 91 is swung around the shaft portion 92 (see the arrow in FIG. 3B).
  • the roller 91a of the arm portion 91 serves as a force point
  • the shaft portion 92 serves as a fulcrum
  • the pushing arm 91b of the arm portion 91 serves as an action point.
  • the inner tube 87 is pushed in a direction perpendicular to the axis.
  • the inner tube 87 constituting the double tube nozzle portion 85 can be eccentric with respect to the central axis of the outer tube 86. That is, when the cam portion 51 d of the guide member 51 is rotated by the mechanism of the guide rotation mechanism 70, the arm portion 91 can be swung, and the pushing arm 91 b of the arm portion 91 pushes the inner tube 87. It is possible to make it eccentric.
  • a boot 81 made of an elastic material such as rubber is provided between a through hole 80c provided in the nozzle body 80 and an inner tube 87 inserted through the through hole 80c.
  • the inner tube 87 constituting the double tube nozzle portion 85 is a mechanism that is eccentric with respect to the central axis of the outer tube 86. It is good also as a mechanism which decenters with respect to the central axis of the inner pipe
  • FIG. 5A is a front view showing resin spraying of the filament winding apparatus 100 according to the present invention.
  • FIG. 5B is a side view thereof.
  • the fiber supply guide 44 and the resin supply nozzle 45 are each described and described.
  • an arrow A shown in the drawing indicates a transfer direction of the liner 2 and an arrow B indicates a rotation direction thereof.
  • the resin supply nozzle 45 rotates the liner 2 more than an imaginary line D (two-dot chain line in the figure) connecting the injection port 85a of the resin supply nozzle 45 and the rotation axis C of the liner 2.
  • an imaginary line D two-dot chain line in the figure
  • the imaginary line E two-dot chain line in the figure
  • the fiber bundle 1B guided from the guide member 51 of the fiber supply guide 44 to the liner 2 is rotated clockwise when viewed from the front, while being viewed from the side.
  • the liner 2 In order to be wound around the outer peripheral surface 2 a by the liner 2 transferred to the front side of the liner 2, it is stretched on the downstream side in the rotation direction of the liner 2 and on the front side of the liner 2.
  • the fiber bundle 1B stretched between the guide member 51 and the liner 2 is directed toward the liner 2 along the resin spray RS formed by being ejected from the resin supply nozzle 45.
  • the resin spray RS that has reached the outer peripheral surface 2a of the liner 2 then flows along the outer peripheral surface 2a, it is possible to prevent the yield from deteriorating due to the scattering of the resin.
  • FIG. 6A is a diagram showing the resin spray RS formed by the resin supply nozzle 45 in the standard state.
  • FIG. 6B is a view showing the resin spray RS formed by the resin supply nozzle 45 in a state where the axes of the outer tube 86 and the inner tube 87 are eccentric.
  • the arrow F shown in the figure has shown the spraying direction of resin.
  • the resin ejected from the inner tube 87 of the double tube nozzle portion 85 is appropriately atomized by the air jet AF formed around the outer tube 86 even when the viscosity is relatively high. .
  • the atomized resin is transported by multiplying the air jet AF even when the specific gravity is relatively large.
  • the inner tube 87 and the outer tube 86 of the double tube nozzle portion 85 are coaxial, that is, the resin ejected from the resin supply nozzle 45 in the standard state is around it. Since the air jet AF formed uniformly is transported, it goes straight.
  • the resin ejected from the resin supply nozzle 45 in a state where the axial centers of the outer tube 86 and the inner tube 87 of the double tube nozzle portion 85 are eccentric is formed around the resin. Since the air jet AF is not uniform, it cannot go straight. That is, since the air jet AF ejected from the narrow gap portion is rapidly dissipated with respect to the air jet AF ejected from the wide gap portion between the outer pipe 86 and the inner pipe 87, the downstream side where the air jet AF is dissipated. As the resin spray RS spreads on the side, the resin spraying direction changes.
  • the resin supply nozzle 45 of the filament winding apparatus 100 according to the present invention is perpendicular to the front-rear direction of the filament winding apparatus 100 on the mechanism of the double tube nozzle eccentric mechanism 90, in other words, with respect to the transfer direction of the liner 2.
  • the amount of eccentricity of the inner tube 87 with respect to the outer tube 86 is determined by the cam shape of the cam portion 51d and its rotation angle. Therefore, the cam shape and the rotation angle of the cam portion 51d are designed so that the resin spraying direction becomes a desired direction in conjunction with the guide rotation mechanism 70.
  • the winding angle of the fiber bundle 1B wound around the liner 2 is changed by adjusting the transfer speed of the liner 2 by the liner transfer apparatus 20.
  • FIG. 7A is a top view showing the yarn path of the fiber bundle 1B and the spraying direction of the resin when the transfer speed of the liner 2 is a predetermined standard speed.
  • FIG. 7B is a top view showing the yarn path of the fiber bundle 1B and the resin spraying direction when the transfer speed of the liner 2 is increased from the standard speed.
  • the arrow A shown in the figure indicates the transfer direction of the liner 2
  • the arrow B indicates the rotation direction
  • the arrow G indicates the winding angle of the fiber bundle 1B.
  • the resin supply nozzle 45 is directed toward the downstream side in the rotation direction of the liner 2 with respect to the imaginary line D connecting the injection port 85a of the resin supply nozzle 45 and the rotation axis of the liner 2. (See FIG. 5A.)
  • the resin is sprayed toward the front side of the liner 2 (see FIG. 5B) from a virtual line E perpendicular to the transfer direction of the liner 2 (see FIG. 5B).
  • the transfer speed of the liner 2 by the liner transfer device 20 is a predetermined standard speed
  • the yarn path of the fiber bundle 1B before being wound around the liner 2 is on the downstream side in the rotation direction of the liner 2, And it will be stretched to the front side of the liner 2.
  • the winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 is a predetermined angle R1.
  • the resin is sprayed to ensure that the fiber bundle 1B is uniformly impregnated with resin. It is necessary to adjust the direction appropriately.
  • the double-tube nozzle eccentric mechanism 90 can adjust the spraying direction of the resin perpendicular to the transfer direction of the liner 2 due to the mechanism.
  • a mechanism that can adjust not only the direction perpendicular to the transfer direction of the liner 2 but also the transfer direction of the liner 2 may be provided.
  • the winding angle of the fiber bundle 1B is changed only by increasing the transfer speed of the liner 2.
  • the winding angle of the fiber bundle 1B is reduced by reducing the transfer speed of the liner 2. It is also possible to change the configuration.
  • the liner 2 is viewed from above. It adjusts so that resin may be sprayed toward the yarn path of the fiber bundle 1B located at a position spaced apart from the rotation axis.
  • the resin can be stably sprayed on the fiber bundle 1B by appropriately adjusting the resin spraying direction according to the winding angle of the fiber bundle 1B wound around the liner 2. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle 1B before being wound around the liner 2.
  • the winding angle of the fiber bundle 1B is changed by adjusting the transfer speed of the liner 2 by the liner transfer device 20, but the fiber bundle 1B is adjusted by adjusting the rotation speed of the liner 2.
  • a configuration in which the winding angle is changed is also conceivable.
  • the resin can be stably sprayed onto the fiber bundle 1B by appropriately adjusting the direction of resin spraying according to the winding angle of the fiber bundle 1B wound around the liner 2. . Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle 1B before being wound around the liner 2.
  • the guide member 51 is rotated by the guide rotation mechanism 70 to smoothly feed the fiber bundle 1B, regardless of the configuration in which the winding angle of the fiber bundle 1B is changed.
  • the phase of the outlet 51b is changed.
  • the direction of resin spraying by the resin supply nozzle 45 is also adjusted to the optimum direction in conjunction with this.
  • FIG. 8A is a top view showing the yarn path of the fiber bundle 1B and the resin spraying direction when the outer diameter of the liner 2 is a predetermined standard diameter.
  • FIG. 8B is a top view showing the yarn path of the fiber bundle 1B and the resin spraying direction when the outer diameter of the liner 2 is smaller than the standard diameter.
  • the arrow A shown in the figure indicates the transfer direction of the liner 2
  • the arrow B indicates the rotation direction
  • the arrow G indicates the winding angle of the fiber bundle 1B.
  • the resin supply nozzle 45 is directed toward the downstream side in the rotation direction of the liner 2 with respect to the imaginary line D connecting the injection port 85a of the resin supply nozzle 45 and the rotation axis of the liner 2. (See FIG. 5A.)
  • the resin is sprayed toward the front side of the liner 2 (see FIG. 5B) from a virtual line E perpendicular to the transfer direction of the liner 2 (see FIG. 5B).
  • the yarn path of the front fiber bundle 1B wound around the liner 2 is on the downstream side in the rotation direction of the liner 2 and the liner 2 It will be stretched to the front side.
  • the winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 is also a predetermined angle r1.
  • the resin spray is surely impregnated into the fiber bundle 1B without unevenness. It is necessary to adjust the direction appropriately.
  • the yarn path of the fiber bundle 1B located closer to the rotation axis of the liner 2 than when the outer diameter of the liner 2 is the standard diameter when viewed from above. It adjusts so that resin may be sprayed toward (refer FIG. 8B).
  • the double-tube nozzle eccentric mechanism 90 can adjust the spraying direction of the resin perpendicular to the transfer direction of the liner 2 due to the mechanism.
  • a mechanism that can adjust not only the direction perpendicular to the transfer direction of the liner 2 but also the transfer direction of the liner 2 may be provided.
  • the winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 is larger than the angle r1. Therefore, the resin is adjusted to be sprayed toward the yarn path of the fiber bundle 1B located at a position separated from the rotation axis of the liner 2 in a top view.
  • the resin can be stably sprayed on the fiber bundle 1B. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle 1B before being wound around the liner 2.
  • the layer thickness of the already wound fiber bundles 1A and 1B gradually increases, and the outer diameter of the wound portion is increased. Gradually grows. Therefore, it is necessary to gradually change the resin spraying direction in accordance with the winding amount of the fiber bundles 1A and 1B. Furthermore, when the winding position moves to the front side or rear side end portion of the liner 2, the outer diameter of the winding portion gradually decreases and the winding angle also changes. It is also necessary to link the direction of resin spraying. According to the present invention, such adjustment can be performed as appropriate.
  • the present invention is applicable to the filament winding apparatus technology.

Abstract

A filament winding device (100) transfers a liner (2) while rotating same, and winds, on the outer circumference surface (2a) of the liner (2), a fiber bundle (1B) introduced by means of a fiber supplying guide (44) disposed on the periphery of the outer circumference surface of the liner (2). Said filament winding device (100) is provided with a resin supplying nozzle (45) for spraying a resin on a segment of the fiber bundle (1B) about to be wound upon the liner (2), wherein the resin supplying nozzle (45) has a double pipe structure constituting an outer pipe (86) for blowing air, and an inner pipe (87) for spraying the resin.

Description

フィラメントワインディング装置Filament winding equipment
 本発明は、フィラメントワインディング装置の技術に関する。より詳細には、フィラメントワインディング装置における繊維束に樹脂を含浸させる技術に関する。 The present invention relates to the technology of a filament winding apparatus. More specifically, the present invention relates to a technique for impregnating a fiber bundle in a filament winding apparatus with a resin.
 従来より、樹脂を含浸させた繊維束をライナーの外周面に巻き付けていくフィラメントワインディング装置が知られている。また、繊維束に樹脂を含浸させる方法として、繊維束を樹脂槽に浸漬させる方法(例えば特許文献1参照。)や、繊維束に対して樹脂を吹付ける方法(例えば特許文献2参照。)等が公知となっている。 Conventionally, a filament winding apparatus that winds a fiber bundle impregnated with a resin around the outer peripheral surface of a liner is known. In addition, as a method of impregnating the fiber bundle with resin, a method of immersing the fiber bundle in a resin tank (for example, see Patent Document 1), a method of spraying resin on the fiber bundle (for example, see Patent Document 2), and the like. Is known.
 しかし、繊維束を樹脂槽に浸漬させる方法においては、浸漬後の繊維束を送り出すガイドローラ等に樹脂が付着するためにメンテナンスの頻度が増加するという問題点があった。一方、繊維束に対して樹脂を吹付ける方法においては、繊維束がライナーに巻き付けられる直前に樹脂を吹付けることによってガイドローラ等に樹脂が付着することを回避できるが、繊維束のあらゆる巻き付けの態様に応じてムラ無く樹脂を含浸させることは困難であった。
特開平8-108487号公報 特開平9-262910号公報
However, the method of immersing the fiber bundle in the resin tank has a problem that the frequency of maintenance increases because the resin adheres to a guide roller or the like that feeds the fiber bundle after immersion. On the other hand, in the method of spraying the resin on the fiber bundle, the resin can be prevented from adhering to the guide roller or the like by spraying the resin immediately before the fiber bundle is wound around the liner. It was difficult to impregnate the resin without unevenness depending on the embodiment.
JP-A-8-108487 JP-A-9-262910
 本発明は、繊維束に対して樹脂を吹付ける方法を用いたフィラメントワインディング装置において、繊維束にムラ無く確実に樹脂を含浸させる技術を提供することを目的としている。 An object of the present invention is to provide a technique for reliably impregnating a fiber bundle without unevenness in a filament winding apparatus using a method of spraying resin on the fiber bundle.
 本発明の第一の態様は、ライナーを回転させながら移送するとともに、該ライナーの外周面の周囲に配置された繊維供給ガイドにより導かれる繊維束を該ライナーの外周面に巻き付けていくフィラメントワインディング装置において、
 前記ライナーに巻き付けられる手前の前記繊維束に対して樹脂を吹付ける樹脂供給ノズルを備え、
 前記樹脂供給ノズルは、空気を噴出させる外管と樹脂を噴出させる内管とにより構成される二重管構造とした。
A first aspect of the present invention is a filament winding apparatus that transports while rotating a liner and winds a fiber bundle guided by a fiber supply guide disposed around the outer peripheral surface of the liner around the outer peripheral surface of the liner In
A resin supply nozzle that sprays resin on the fiber bundle in front of the liner wound around the liner;
The resin supply nozzle has a double tube structure constituted by an outer tube for ejecting air and an inner tube for ejecting resin.
 本発明の第二の態様は、第一の態様において、前記樹脂供給ノズルは、前記外管と前記内管の軸心を偏心させることにより樹脂を吹付ける方向を調節する。 In a second aspect of the present invention, in the first aspect, the resin supply nozzle adjusts the direction of spraying the resin by decentering the axial centers of the outer tube and the inner tube.
 本発明の第三の態様は、第一又は第二の態様において、前記樹脂供給ノズルは、前記ライナーに巻き付けられる繊維束の巻き付け角度に応じて樹脂を吹付ける方向を調節する。 In a third aspect of the present invention, in the first or second aspect, the resin supply nozzle adjusts a direction in which the resin is sprayed according to a winding angle of a fiber bundle wound around the liner.
 本発明の第四の態様は、第一から第三のいずれかの態様おいて、前記繊維供給ガイドは、前記繊維束を前記ライナーへ導くガイド部材と、
 前記ガイド部材の軸心を中心軸として該ガイド部材を回転させるガイド回転機構と、を備え、
 前記樹脂供給ノズルは、前記ガイド回転機構に連動して樹脂を吹付ける方向を調節する。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the fiber supply guide includes a guide member that guides the fiber bundle to the liner;
A guide rotation mechanism that rotates the guide member about the axis of the guide member as a central axis,
The resin supply nozzle adjusts the direction of spraying resin in conjunction with the guide rotation mechanism.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明の第一の態様によれば、外管から噴出して形成される空気噴流を用いて内管から噴出する樹脂を搬送するために、樹脂供給ノズルの樹脂吹付け特性に及ぼす重力の影響を低減させることができる。これにより、繊維束に対して常に安定して樹脂を吹付けることが可能となる。従って、ライナーに巻き付けられる手前の繊維束にムラ無く確実に樹脂を含浸させることが可能となる。 According to the first aspect of the present invention, the effect of gravity on the resin spray characteristics of the resin supply nozzle is used to convey the resin ejected from the inner pipe using the air jet formed by ejecting from the outer pipe. Can be reduced. As a result, the resin can be sprayed constantly and stably on the fiber bundle. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle before being wound around the liner.
 本発明の第二の態様によれば、簡易な構造でありながら樹脂の吹付け方向を適宜調節することができる。これにより、繊維束に対して常に安定して樹脂を吹付けることが可能となる。従って、ライナーに巻き付けられる手前の繊維束にムラ無く確実に樹脂を含浸させることが可能となる。 According to the second aspect of the present invention, the resin spraying direction can be appropriately adjusted while having a simple structure. As a result, the resin can be sprayed constantly and stably on the fiber bundle. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle before being wound around the liner.
 本発明の第三の態様によれば、ライナーに巻き付けられる繊維束の巻き付け角度に応じて樹脂の吹付け方向を適宜調節することができる。これにより、繊維束に対して常に安定して樹脂を吹付けることが可能となる。従って、ライナーに巻き付けられる手前の繊維束にムラ無く確実に樹脂を含浸させることが可能となる。 According to the third aspect of the present invention, the resin spraying direction can be appropriately adjusted according to the winding angle of the fiber bundle wound around the liner. As a result, the resin can be sprayed constantly and stably on the fiber bundle. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle before being wound around the liner.
 本発明の第四の態様によれば、ガイド回転機構と連動して樹脂の吹付け方向を適宜調節することができる。これにより、簡易な構造でありながら繊維束に対して常に安定して樹脂を吹付けることが可能となる。従って、ライナーに巻き付けられる手前の繊維束にムラ無く確実に樹脂を含浸させることが可能となる。 According to the fourth aspect of the present invention, the resin spraying direction can be appropriately adjusted in conjunction with the guide rotation mechanism. This makes it possible to spray the resin stably and constantly against the fiber bundle while having a simple structure. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle before being wound around the liner.
本発明に係るフィラメントワインディング装置の全体構成を示す図。The figure which shows the whole structure of the filament winding apparatus which concerns on this invention. 本発明に係るフィラメントワインディング装置を構成するヘリカル巻き装置を示す側面図。The side view which shows the helical winding apparatus which comprises the filament winding apparatus which concerns on this invention. (3A)ヘリカル巻き装置を構成する繊維供給ガイドならびに樹脂供給ノズルを示す側面図。(3B)ヘリカル巻き装置を構成する繊維供給ガイドならびに樹脂供給ノズルを示す背面図。(3A) The side view which shows the fiber supply guide and resin supply nozzle which comprise a helical winding apparatus. (3B) The rear view which shows the fiber supply guide and resin supply nozzle which comprise a helical winding apparatus. (4A)繊維供給ガイドならびに樹脂供給ノズルを移動する動作を示す一の図。(4B)繊維供給ガイドならびに樹脂供給ノズルを移動する動作を示す他の図。(4A) One figure which shows the operation | movement which moves a fiber supply guide and a resin supply nozzle. (4B) Another view showing the operation of moving the fiber supply guide and the resin supply nozzle. (5A)本発明に係るフィラメントワインディング装置の樹脂の吹付けを示す正面図。(5B)本発明に係るフィラメントワインディング装置の樹脂の吹付けを示す側面図。(5A) Front view showing resin spraying of the filament winding apparatus according to the present invention. (5B) Side view showing resin spraying of the filament winding apparatus according to the present invention. (6A)標準状態における樹脂供給ノズルによって形成された樹脂噴霧を示す図。(6B)外管と内管の軸心を偏心させた状態における樹脂供給ノズルによって形成された樹脂噴霧を示す図。(6A) The figure which shows the resin spray formed by the resin supply nozzle in a standard state. (6B) The figure which shows the resin spray formed by the resin supply nozzle in the state which eccentrically put the axial center of the outer tube and the inner tube. (7A)ライナーの移送速度が所定の標準速度である場合における繊維束の糸道と樹脂の吹付け方向とを示す上面図。(7B)ライナーの移送速度が標準速度より増速された場合における繊維束の糸道と樹脂の吹付け方向とを示す上面図。(7A) Top view showing the yarn path of the fiber bundle and the direction of resin spray when the liner transfer speed is a predetermined standard speed. (7B) Top view showing the yarn path of the fiber bundle and the resin spraying direction when the liner transfer speed is increased from the standard speed. (8A)ライナーの外径が所定の標準径である場合における繊維束の糸道と樹脂の吹付け方向とを示す上面図。(8B)ライナーの外径が標準径より小さい場合における繊維束の糸道と樹脂の吹付け方向とを示す上面図。(8A) Top view showing the yarn path of the fiber bundle and the spraying direction of the resin when the outer diameter of the liner is a predetermined standard diameter. (8B) Top view showing the yarn path of the fiber bundle and the resin spraying direction when the outer diameter of the liner is smaller than the standard diameter.
 1A・1B    繊維束
 2        ライナー
 2a       外周面
 10       主基台
 20       ライナー移送装置
 30       フープ巻き装置
 40       ヘリカル巻き装置
 42       ヘリカル巻き掛け装置
 43       ヘリカル巻きヘッド
 44       繊維供給ガイド
 45       樹脂供給ノズル
 50       ガイド
 51       ガイド部材
 51d      カム部
 52       ガイド支持部材
 60       ガイド進退機構
 61       ガイド軸
 62       溝カム
 62a      案内溝
 70       ガイド回転機構
 71       伝達軸
 72       ソケット
 73       フェースギヤ
 80       ノズル本体部
 85       二重管ノズル部
 85a      噴射口
 86       外管
 87       内管
 90       二重管ノズル偏心機構
 91       アーム部
 91a      ローラ
 91b      押動腕
 92       軸部
 100      フィラメントワインディング装置
 D        仮想線
 E        仮想線
1A and 1B Fiber bundle 2 Liner 2a Outer peripheral surface 10 Main base 20 Liner transfer device 30 Hoop winding device 40 Helical winding device 42 Helical winding device 43 Helical winding head 44 Fiber supply guide 45 Resin supply nozzle 50 Guide 51 Guide member 51d Cam Part 52 Guide support member 60 Guide advance / retreat mechanism 61 Guide shaft 62 Groove cam 62a Guide groove 70 Guide rotation mechanism 71 Transmission shaft 72 Socket 73 Face gear 80 Nozzle body part 85 Double pipe nozzle part 85a Injection port 86 Outer pipe 87 Inner pipe 90 Double pipe nozzle eccentric mechanism 91 Arm portion 91a Roller 91b Pushing arm 92 Shaft portion 100 Filler Cement winding apparatus D virtual line E imaginary line
 次に、発明の実施の形態を説明する。 Next, an embodiment of the invention will be described.
 まず、図1を用いて本発明に係るフィラメントワインディング装置100の全体構成について説明する。 First, the overall configuration of the filament winding apparatus 100 according to the present invention will be described with reference to FIG.
 図1は、本発明に係るフィラメントワインディング装置100の側面図である。図中に示す矢印Aは、ライナー2の移送方向を示している。ここで、ライナー2の移送方向に平行となる方向をライナー2若しくはフィラメントワインディング装置100の前後方向とし、ライナー2が移送される方向を前側(本図左側)、その反対側を後側(本図右側)と定義する。なお、ライナー2は、フィラメントワインディング装置100の前後方向に往復動するものであるため、図1に示す移送方向と反対側に移送される場合には、前後方向が反対向きとなる。 FIG. 1 is a side view of a filament winding apparatus 100 according to the present invention. An arrow A shown in the figure indicates the transfer direction of the liner 2. Here, the direction parallel to the transfer direction of the liner 2 is the front-rear direction of the liner 2 or the filament winding apparatus 100, the direction in which the liner 2 is transferred is the front side (left side in this figure), and the opposite side is the rear side (this figure). (Right side). In addition, since the liner 2 reciprocates in the front-rear direction of the filament winding apparatus 100, the front-rear direction is opposite when the liner 2 is transferred to the opposite side to the transfer direction shown in FIG.
 フィラメントワインディング装置100は、備え付けられたライナー2の外周面2aに樹脂を含浸させた繊維束1A・1Bを巻き付けていく装置である。フィラメントワインディング装置100は、主に主基台10と、ライナー移送装置20と、フープ巻き装置30と、ヘリカル巻き装置40と、から構成される。 The filament winding apparatus 100 is an apparatus for winding the fiber bundles 1A and 1B impregnated with resin on the outer peripheral surface 2a of the liner 2 provided. The filament winding apparatus 100 mainly includes a main base 10, a liner transfer device 20, a hoop winding device 30, and a helical winding device 40.
 ライナー2は、フィラメントワインディング装置100によって、外周面2aに繊維束1A・1Bが巻き付けられる被巻回物である。ライナー2は、例えば高強度アルミニウム材やポリアミド系樹脂等によって形成された略円筒形状の中空容器とされ、該ライナー2の外周面2aに繊維束1A・1Bが巻き付けられることによって耐圧特性の向上が図られる。つまり、ライナー2は、耐圧容器を構成する基材とされる。 The liner 2 is a wound object in which the fiber bundles 1A and 1B are wound around the outer peripheral surface 2a by the filament winding apparatus 100. The liner 2 is a substantially cylindrical hollow container formed of, for example, a high-strength aluminum material or a polyamide-based resin, and the pressure resistance characteristics are improved by winding the fiber bundles 1A and 1B around the outer peripheral surface 2a of the liner 2. Figured. That is, the liner 2 is a base material constituting the pressure vessel.
 主基台10は、フィラメントワインディング装置100の主たる構造体をなすものである。そして、主基台10の上部に設けられたライナー移送装置用レール11には、ライナー移送装置20がフィラメントワインディング装置100の前後方向に移動可能に載置されている。また、ライナー移送装置用レール11と平行するように設けられたフープ巻き装置用レール12には、フープ巻き装置30がフィラメントワインディング装置100の前後方向に移動可能に載置されている。 The main base 10 constitutes the main structure of the filament winding apparatus 100. A liner transfer device 20 is placed on the liner transfer device rail 11 provided on the upper portion of the main base 10 so as to be movable in the front-rear direction of the filament winding device 100. In addition, a hoop winding device 30 is mounted on a hoop winding device rail 12 provided in parallel with the liner transfer device rail 11 so as to be movable in the front-rear direction of the filament winding device 100.
 ライナー移送装置20は、備え付けられたライナー2を回転させるとともに、該ライナー2をフィラメントワインディング装置100の前後方向に移送する装置である。ライナー移送装置20は、主に移送装置基台21と、図示しない移送用駆動装置と、ライナー支持部22と、から構成される。 The liner transfer device 20 is a device that rotates the provided liner 2 and transfers the liner 2 in the front-rear direction of the filament winding device 100. The liner transfer device 20 mainly includes a transfer device base 21, a transfer driving device (not shown), and a liner support portion 22.
 移送装置基台21は、ライナー移送装置20の主たる構造体をなすものである。上述したように、ライナー移送装置20は、主基台10のライナー移送装置用レール11に載置されて移送用駆動装置によって前後方向に移動可能とされる。移送装置基台21には、前後方向に一対のライナー支持部22が設けられており、該ライナー支持部22によってライナー2が支持されることとなる。 The transfer device base 21 is a main structure of the liner transfer device 20. As described above, the liner transfer device 20 is placed on the liner transfer device rail 11 of the main base 10 and can be moved in the front-rear direction by the transfer drive device. The transfer device base 21 is provided with a pair of liner support portions 22 in the front-rear direction, and the liner 2 is supported by the liner support portions 22.
 具体的には、ライナー支持部22は、主に移送装置基台21から上方に向けて延設されたライナー支持フレーム23と、該ライナー支持フレーム23の上部から前後方向に向けて延設された回転軸部24と、で構成される。そして、一対のライナー支持部22を構成するそれぞれの回転軸部24にチャック等によって取り付けられたライナー2は、回転軸部24によって一方向に回転されることとなる。 Specifically, the liner support portion 22 is mainly extended from the transfer device base 21 toward the upper side, and the liner support frame 23 is extended from the upper portion of the liner support frame 23 in the front-rear direction. And a rotating shaft portion 24. The liners 2 attached to the respective rotary shaft portions 24 constituting the pair of liner support portions 22 by a chuck or the like are rotated in one direction by the rotary shaft portions 24.
 このような構成により、ライナー2は、該ライナー2の回転軸がフィラメントワインディング装置100の前後方向に対して平行となるように回転されるとともに、フィラメントワインディング装置100の前後方向に移送されるのである。 With such a configuration, the liner 2 is rotated so that the rotation axis of the liner 2 is parallel to the front-rear direction of the filament winding apparatus 100 and is transferred in the front-rear direction of the filament winding apparatus 100. .
 フープ巻き装置30は、フィラメントワインディング装置100の前後方向に対して略垂直となるようにライナー2の外周面2aに繊維束1Aを巻き付けていく、いわゆるフープ巻きを行なう装置である。フープ巻き装置30は、主にフープ巻き装置基台31と、図示しない移送用駆動装置と、回転用駆動装置32と、フープ巻き掛け装置33と、から構成される。 The hoop winding device 30 is a device that performs so-called hoop winding in which the fiber bundle 1A is wound around the outer peripheral surface 2a of the liner 2 so as to be substantially perpendicular to the front-rear direction of the filament winding device 100. The hoop winding device 30 mainly includes a hoop winding device base 31, a transfer driving device (not shown), a rotation driving device 32, and a hoop winding device 33.
 フープ巻き装置基台31は、フープ巻き装置30の主たる構造体をなすものである。上述したように、フープ巻き装置30は、主基台10のフープ巻き装置用レール12に載置されて移送用駆動装置によって前後方向に移動可能とされる。フープ巻き装置基台31には、回転用駆動装置32ならびにフープ巻き掛け装置33が設けられており、回転用駆動装置32によりフープ巻き掛け装置33が回転されることによって繊維束1Aの巻き付けが行なわれる。 The hoop winding device base 31 is a main structure of the hoop winding device 30. As described above, the hoop winding device 30 is placed on the hoop winding device rail 12 of the main base 10 and can be moved in the front-rear direction by the transfer driving device. The hoop winding device base 31 is provided with a rotation driving device 32 and a hoop winding device 33, and the hoop winding device 33 is rotated by the rotation driving device 32 to wind the fiber bundle 1A. It is.
 具体的には、フープ巻き掛け装置33は、主にフープ巻きを行なう巻き掛けテーブル34と、該巻き掛けテーブル34に繊維束1Aの供給を行なうボビン35と、で構成される。巻き掛けテーブル34は、ライナー2の外周面2aに繊維束1Aを導く複数の繊維供給ガイドと、該繊維供給ガイドからライナー2へ向かう繊維束1Aに対して樹脂を吹付ける複数の樹脂供給ノズルとが配置された部材である。 Specifically, the hoop winding device 33 mainly includes a winding table 34 that performs hoop winding, and a bobbin 35 that supplies the fiber bundle 1A to the winding table 34. The winding table 34 includes a plurality of fiber supply guides that guide the fiber bundle 1A to the outer peripheral surface 2a of the liner 2, and a plurality of resin supply nozzles that spray resin onto the fiber bundle 1A that travels from the fiber supply guide toward the liner 2. Is a member arranged.
 詳細に説明すると、巻き掛けテーブル34には、ライナー2の外周面2aから互いに等しい距離となるように繊維供給ガイドが放射状に配置されており、これらの繊維供給ガイドにより導かれるそれぞれの繊維束1Aに対して樹脂供給ノズルから樹脂を吹付ける。そして、このようにして樹脂が含浸された繊維束1Aは、フープ巻き装置30が巻き掛けテーブル34を回転させながら前後方向に移動することによってライナー2の外周面2aに巻き付けられていくのである。 More specifically, fiber supply guides are radially arranged on the winding table 34 so as to be at an equal distance from the outer peripheral surface 2a of the liner 2, and each fiber bundle 1A guided by these fiber supply guides. Resin is sprayed from the resin supply nozzle. The fiber bundle 1A impregnated with the resin in this manner is wound around the outer peripheral surface 2a of the liner 2 by the hoop winding device 30 moving in the front-rear direction while rotating the winding table 34.
 ヘリカル巻き装置40は、フィラメントワインディング装置100の前後方向に対して所定の角度となるようにライナー2の外周面2aに繊維束1Bを巻き付けていく、いわゆるヘリカル巻きを行なう装置である。ヘリカル巻き装置40は、主にヘリカル巻き装置基台41と、ヘリカル巻き掛け装置42と、から構成される。 The helical winding device 40 is a device that performs so-called helical winding in which the fiber bundle 1B is wound around the outer peripheral surface 2a of the liner 2 so as to have a predetermined angle with respect to the front-rear direction of the filament winding device 100. The helical winding device 40 is mainly composed of a helical winding device base 41 and a helical winding device 42.
 ヘリカル巻き装置基台41は、ヘリカル巻き装置40の主たる構造体をなすものである。ヘリカル巻き装置40は、主基台10に固設されている。ヘリカル巻き装置基台41にはヘリカル巻き掛け装置42が設けられており、ライナー移送装置20に備え付けられたライナー2が回転されながら移送されて、ヘリカル巻き掛け装置42を通過することによって繊維束1Bの巻き付けが行なわれる。 The helical winding device base 41 is a main structure of the helical winding device 40. The helical winding device 40 is fixed to the main base 10. The helical winding device base 41 is provided with a helical winding device 42, and the liner 2 provided in the liner transfer device 20 is transferred while being rotated, and passes through the helical winding device 42, thereby the fiber bundle 1B. Is wound.
 具体的には、ヘリカル巻き掛け装置42は、主にヘリカル巻きを行なうヘリカル巻きヘッド43と、該ヘリカル巻きヘッド43に繊維束1Bの供給を行なう図示しないボビンと、で構成される。ヘリカル巻きヘッド43は、ライナー2の外周面2aに繊維束1Bを導く複数の繊維供給ガイド44と、該繊維供給ガイド44からライナー2へ向かう繊維束1Bに対して樹脂を吹付ける複数の樹脂供給ノズル45とが配置された部材である(図2参照。)。 Specifically, the helical winding device 42 mainly includes a helical winding head 43 that performs helical winding, and a bobbin (not shown) that supplies the fiber bundle 1B to the helical winding head 43. The helical winding head 43 includes a plurality of fiber supply guides 44 that guide the fiber bundle 1B to the outer peripheral surface 2a of the liner 2 and a plurality of resin supplies that spray resin onto the fiber bundle 1B that travels from the fiber supply guide 44 toward the liner 2. This is a member in which the nozzle 45 is disposed (see FIG. 2).
 詳細に説明すると、ヘリカル巻きヘッド43には、ライナー2の外周面2aから互いに等しい距離となるように繊維供給ガイド44が放射状に配置されており、これらの繊維供給ガイド44により導かれるそれぞれの繊維束1Bに対して樹脂供給ノズル45から樹脂を吹付ける。そして、このようにして樹脂が含浸された繊維束1Bは、ライナー移送装置20に備え付けられたライナー2が回転されながら移送されることによって該ライナー2の外周面2aに巻き付けられていくのである。 More specifically, fiber supply guides 44 are radially arranged in the helical winding head 43 so as to be at equal distances from the outer peripheral surface 2a of the liner 2, and the respective fibers guided by these fiber supply guides 44. Resin is sprayed from the resin supply nozzle 45 to the bundle 1B. The fiber bundle 1B impregnated with the resin in this manner is wound around the outer peripheral surface 2a of the liner 2 as the liner 2 provided in the liner transfer device 20 is transferred while being rotated.
 図2、図3を用いて本発明に係るフィラメントワインディング装置100のヘリカル巻き装置40と、該ヘリカル巻き装置40を構成する繊維供給ガイド44ならびに樹脂供給ノズル45について説明する。 The helical winding device 40 of the filament winding apparatus 100 according to the present invention, the fiber supply guide 44 and the resin supply nozzle 45 constituting the helical winding device 40 will be described with reference to FIGS.
 図2は、フィラメントワインディング装置100のヘリカル巻き装置40の構成を示す側面図である。図3Aは、ヘリカル巻き装置40を構成する繊維供給ガイド44ならびに樹脂供給ノズル45を示す側面図である。図3Bは、その背面図を示している。 FIG. 2 is a side view showing the configuration of the helical winding device 40 of the filament winding apparatus 100. FIG. 3A is a side view showing the fiber supply guide 44 and the resin supply nozzle 45 constituting the helical winding device 40. FIG. 3B shows a rear view thereof.
 上述したように、ヘリカル巻き装置40は、主たる構造体をなすヘリカル巻き装置基台41と、ヘリカル巻きヘッド43等からなるヘリカル巻き掛け装置42と、から構成される。そして、ヘリカル巻きヘッド43に設けられた繊維供給ガイド44は、図示しないボビンから供給された繊維束1Bをライナー2へ導くものとされ、樹脂供給ノズル45は、繊維供給ガイド44からライナー2へ向かう繊維束1Bに対して樹脂を吹付けるものとされる。 As described above, the helical winding device 40 includes the helical winding device base 41 that forms the main structure, and the helical winding device 42 that includes the helical winding head 43 and the like. The fiber supply guide 44 provided in the helical winding head 43 guides the fiber bundle 1B supplied from a bobbin (not shown) to the liner 2, and the resin supply nozzle 45 goes from the fiber supply guide 44 to the liner 2. Resin is sprayed on the fiber bundle 1B.
 図2、図3を用いて繊維供給ガイド44について詳細に説明する。繊維供給ガイド44は、主にガイド50と、ガイド進退機構60と、ガイド回転機構70と、から構成される。 The fiber supply guide 44 will be described in detail with reference to FIGS. The fiber supply guide 44 mainly includes a guide 50, a guide advance / retreat mechanism 60, and a guide rotation mechanism 70.
 ガイド50は、ボビンから供給された繊維束1Bをライナー2の外周面2aまで導くものである。ガイド50は、主に繊維束1Bの案内通路が形成された略テーパ形状のガイド部材51と、該ガイド部材51が挿通される側面視L字形状のガイド支持部材52と、で構成される。 The guide 50 guides the fiber bundle 1 </ b> B supplied from the bobbin to the outer peripheral surface 2 a of the liner 2. The guide 50 is mainly composed of a substantially tapered guide member 51 in which a guide passage for the fiber bundle 1B is formed, and a guide support member 52 having an L shape in side view through which the guide member 51 is inserted.
 ガイド部材51は、その一側である入口部51aから他側である出口部51bまで貫通するように案内通路が形成されており、ボビンから供給された繊維束1Bをライナー2の外周面2aまで導くものである。なお、ガイド部材51は、その出口部51bの形状が略長円形状に形成されており、繊維束1Bを円滑に供給することを可能としている。 The guide member 51 is formed with a guide passage so as to penetrate from the inlet portion 51a on one side to the outlet portion 51b on the other side, and the fiber bundle 1B supplied from the bobbin passes to the outer peripheral surface 2a of the liner 2. It is a guide. In addition, the shape of the exit part 51b of the guide member 51 is formed in a substantially oval shape, and it is possible to supply the fiber bundle 1B smoothly.
 ガイド支持部材52は、ガイド部材51が挿通される貫通穴52aが設けられて、該ガイド部材51をその軸心を中心軸として回転自在に支持するものである。 The guide support member 52 is provided with a through hole 52a through which the guide member 51 is inserted, and rotatably supports the guide member 51 with its axis as the central axis.
 このような構成により、ボビンから供給された繊維束1Bは、ガイド支持部材52に支持されたガイド部材51に導かれてライナー2の外周面2aに巻き付けられていくのである。 With such a configuration, the fiber bundle 1B supplied from the bobbin is guided to the guide member 51 supported by the guide support member 52 and is wound around the outer peripheral surface 2a of the liner 2.
 ガイド進退機構60は、ライナー2の外周面2aに対して進退する方向にガイド50を移動させる機構である。ガイド進退機構60は、主にガイド支持部材52に設けられた貫通穴52bに挿通されて該ガイド支持部材52を軸心方向に移動自在とするガイド軸61と、ガイド支持部材52を案内する案内溝62aが穿設された環状の溝カム62と、で構成される。 The guide advance / retreat mechanism 60 is a mechanism for moving the guide 50 in a direction to advance / retreat with respect to the outer peripheral surface 2a of the liner 2. The guide advancing / retracting mechanism 60 is mainly inserted through a through hole 52b provided in the guide support member 52 to make the guide support member 52 movable in the axial direction, and a guide for guiding the guide support member 52. And an annular groove cam 62 having a groove 62a.
 ガイド軸61は、その軸心がライナー2の回転軸に対して垂直となる方向に設けられており、該ガイド軸61の両端はライナー2の回転軸と同軸となるように配置された断面視C字形状の環状部材46に固設されている。 The guide shaft 61 is provided in a direction in which its axis is perpendicular to the rotation axis of the liner 2, and both ends of the guide shaft 61 are arranged so as to be coaxial with the rotation axis of the liner 2. It is fixed to a C-shaped annular member 46.
 溝カム62は、その回転軸がライナー2の回転軸と同軸となるように配置され、環状部材46の凹部46aに内設されている。そして、溝カム62の一面には回転に伴って径方向に軌道が変化する案内溝62aが穿設されており、該案内溝62aには前後方向に対して平行に突設されたガイド支持部材52の突出部52cが挿入されている。 The groove cam 62 is disposed so that the rotation axis thereof is coaxial with the rotation axis of the liner 2, and is provided in the recess 46 a of the annular member 46. A guide groove 62a whose orbit changes in the radial direction with rotation is formed on one surface of the groove cam 62, and a guide support member is provided in the guide groove 62a so as to project parallel to the front-rear direction. 52 protrusions 52c are inserted.
 このような構成により、図4(A)、図4(B)に示すように、ライナー2の外周面2aに対して進退する方向にガイド50を移動させることが可能となる。つまり、ライナー2の外径に応じて溝カム62を回転すると、該溝カム62の案内溝62aにガイド支持部材52を案内させることができ、ガイド50をガイド軸61の軸心方向に移動させることが可能となるのである。 Such a configuration makes it possible to move the guide 50 in a direction that advances and retreats with respect to the outer peripheral surface 2a of the liner 2 as shown in FIGS. 4 (A) and 4 (B). That is, when the groove cam 62 is rotated according to the outer diameter of the liner 2, the guide support member 52 can be guided in the guide groove 62 a of the groove cam 62, and the guide 50 is moved in the axial direction of the guide shaft 61. It becomes possible.
 これにより、図4(A)から図4(B)に示す状態へ繊維束1Bの巻き付け位置におけるライナー2の外径が変化した場合であっても、外周面2aとガイド部材51との距離を略一定とすることができる。こうして、繊維束1Bの張力の安定化を図ることが可能となるのである。なお、図4(B)から図4(A)に示す状態へ繊維束1Bの巻き付け位置におけるライナー2の外径が変化した場合であっても、同様に繊維束1Bの張力の安定化を図ることが可能となる。 Accordingly, even when the outer diameter of the liner 2 at the winding position of the fiber bundle 1B is changed from the state shown in FIG. 4A to the state shown in FIG. 4B, the distance between the outer peripheral surface 2a and the guide member 51 is increased. It can be made substantially constant. In this way, it is possible to stabilize the tension of the fiber bundle 1B. Even when the outer diameter of the liner 2 at the winding position of the fiber bundle 1B is changed from the state shown in FIG. 4B to the state shown in FIG. 4A, the tension of the fiber bundle 1B is similarly stabilized. It becomes possible.
 ガイド回転機構70は、ガイド部材51の軸心を中心軸として該ガイド部材51を回転させる機構である。ガイド回転機構70は、主にガイド支持部材52に設けられた貫通穴52dに挿通されて回転自在に支持される伝達軸71と、該伝達軸71の一端部に形成されたスプライン軸部により挿通される略円筒形状のソケット72と、環状のフェースギヤ73と、で構成される。 The guide rotation mechanism 70 is a mechanism that rotates the guide member 51 about the axis of the guide member 51 as a central axis. The guide rotation mechanism 70 is inserted mainly by a transmission shaft 71 that is inserted into a through hole 52d provided in the guide support member 52 and is rotatably supported, and a spline shaft portion formed at one end of the transmission shaft 71. The substantially cylindrical socket 72 and the annular face gear 73 are configured.
 伝達軸71は、その軸心がライナー2の回転軸に対して垂直となる方向であってガイド進退機構60を構成するガイド軸61と平行に設けられている。そして、伝達軸71の一端はガイド支持部材52の貫通穴52dに回転自在に挿通され、スプライン軸部が形成された他端はソケット72に挿通されている。また、伝達軸71の中途部にはガイド部材51の一端部に設けられたドリブンギヤ51cと噛合するようにドライブギヤ71aが設けられている。 The transmission shaft 71 is provided in parallel with the guide shaft 61 that constitutes the guide advance / retreat mechanism 60 in a direction in which the axis is perpendicular to the rotation axis of the liner 2. One end of the transmission shaft 71 is rotatably inserted into the through hole 52d of the guide support member 52, and the other end where the spline shaft portion is formed is inserted into the socket 72. A drive gear 71 a is provided in the middle of the transmission shaft 71 so as to mesh with a driven gear 51 c provided at one end of the guide member 51.
 ソケット72は、その軸心方向にスプライン穴が形成されており、該スプライン穴には上述したように伝達軸71のスプライン軸部が挿通される。そして、ソケット72は、ライナー2の回転軸と同軸となるように配置された環状部材46にその軸心を中心軸として回転自在に支持されている。 The socket 72 has a spline hole formed in the axial direction thereof, and the spline shaft portion of the transmission shaft 71 is inserted into the spline hole as described above. The socket 72 is supported by an annular member 46 disposed so as to be coaxial with the rotation axis of the liner 2 so as to be rotatable about its axis.
 フェースギヤ73は、その回転軸がライナー2の回転軸と同軸となるように配置され、環状部材46の外周に回転自在に外嵌されている。そして、フェースギヤ73のギヤ部はソケット72の一端部に設けられたドリブンギヤ72aと噛合される。 The face gear 73 is disposed so that its rotation axis is coaxial with the rotation axis of the liner 2, and is rotatably fitted around the outer periphery of the annular member 46. The gear portion of the face gear 73 is meshed with a driven gear 72 a provided at one end of the socket 72.
 このような構成により、ガイド部材51の軸心を中心軸として該ガイド部材51を回転させることが可能となる。つまり、フェースギヤ73を回転すると、伝達軸71やソケット72を介してガイド部材51を回転させることが可能となるのである。 With this configuration, the guide member 51 can be rotated about the axis of the guide member 51 as the central axis. That is, when the face gear 73 is rotated, the guide member 51 can be rotated via the transmission shaft 71 and the socket 72.
 これにより、ガイド部材51とライナー2とを近接させた場合であっても、該ガイド部材51の略長円形状である出口部51bを互いに干渉しない角度に位相を揃えることができ、該ガイド部材51同士の当接を回避することが可能となるのである。 Thereby, even when the guide member 51 and the liner 2 are brought close to each other, the phases of the substantially elliptical outlet portions 51b of the guide member 51 can be adjusted so as not to interfere with each other. This makes it possible to avoid contact between the 51 members.
 次に、図2、図3を用いて樹脂供給ノズル45について詳細に説明する。樹脂供給ノズル45は、主にノズル本体部80と、二重管ノズル部85と、二重管ノズル偏心機構90と、で構成される。なお、樹脂供給ノズル45は、繊維供給ガイド44を構成するガイド支持部材52の側方に取り付けられている。 Next, the resin supply nozzle 45 will be described in detail with reference to FIGS. The resin supply nozzle 45 mainly includes a nozzle body 80, a double tube nozzle portion 85, and a double tube nozzle eccentric mechanism 90. The resin supply nozzle 45 is attached to the side of the guide support member 52 constituting the fiber supply guide 44.
 ノズル本体部80は、バルブ等を介して図示しない空気タンクと接続されており、該空気タンクから供給される空気を二重管ノズル部85へ導くものである。ノズル本体部80には、空気タンクから空気を導く配管(図示せず)が接続される空気通路80aと、該空気通路80aによって導かれた空気が流入する空気室80bと、が設けられている。本実施形態において、空気室80bは、ノズル本体部80の一端面から穿設された円筒形状の空間であり、該空気室80bの軸心に対して垂直に空気通路80aが連通されている。 The nozzle main body 80 is connected to an air tank (not shown) via a valve or the like, and guides air supplied from the air tank to the double-tube nozzle 85. The nozzle main body 80 is provided with an air passage 80a to which a pipe (not shown) for guiding air from an air tank is connected, and an air chamber 80b into which air guided by the air passage 80a flows. . In the present embodiment, the air chamber 80b is a cylindrical space drilled from one end surface of the nozzle body 80, and an air passage 80a communicates perpendicularly to the axis of the air chamber 80b.
 二重管ノズル部85は、その先端部分にある噴射口85aから空気ならびに樹脂を噴出させる二重管構造の噴出管である。二重管ノズル部85は、主に円管形状の外管86と、該外管86に内設された円管形状の内管87と、から構成される。 The double tube nozzle portion 85 is a discharge tube having a double tube structure that causes air and resin to be discharged from an injection port 85a at the tip portion thereof. The double tube nozzle portion 85 is mainly composed of a circular tube-shaped outer tube 86 and a circular tube-shaped inner tube 87 provided in the outer tube 86.
 外管86は、空気を噴出させるエアノズルである。外管86の一端部には、ノズル本体部80に設けられた空気室80bの内径と略同一の外径とする拡管部86aが形成されている。そして、外管86は、空気室80bの開口部に拡管部86aが圧入されることによって取り付けられ、空気タンクから空気室80bに導かれた空気を噴射口85aから噴出することを可能としている。 The outer tube 86 is an air nozzle that ejects air. At one end of the outer tube 86, a tube expansion portion 86a having an outer diameter substantially the same as the inner diameter of the air chamber 80b provided in the nozzle main body portion 80 is formed. And the outer pipe | tube 86 is attached by the pipe expansion part 86a being press-fitted in the opening part of the air chamber 80b, and enables the air led to the air chamber 80b from the air tank to be ejected from the injection port 85a.
 内管87は、樹脂を噴出させる樹脂ノズルである。内管87の一端部には、図示しない樹脂タンクから樹脂を導く配管(図示せず)が接続されている。そして、内管87は、ノズル本体部80の空気室80bと同軸となるように設けられた貫通穴80cに挿通されることによって、二重管ノズル部85を構成するとともに、外管86による空気の噴出方向と同じ方向に樹脂を噴出することを可能としている。 The inner tube 87 is a resin nozzle that ejects resin. A pipe (not shown) for guiding resin from a resin tank (not shown) is connected to one end of the inner pipe 87. The inner tube 87 is inserted into a through-hole 80c provided so as to be coaxial with the air chamber 80b of the nozzle body 80, thereby constituting a double tube nozzle portion 85 and air generated by the outer tube 86. The resin can be ejected in the same direction as the ejection direction.
 このような構成により、空気タンクから供給された空気は、外管86と内管87との隙間から噴出し、樹脂タンクから供給された樹脂は、内管87から噴出させることが可能となる。 With this configuration, the air supplied from the air tank can be ejected from the gap between the outer tube 86 and the inner tube 87, and the resin supplied from the resin tank can be ejected from the inner tube 87.
 二重管ノズル偏心機構90は、二重管ノズル部85を構成する外管86と内管87の軸心を偏心させる機構である。二重管ノズル偏心機構90は、主にガイド部材51の一端部に設けられたカム部51dと、該カム部51dにより従動するアーム部91と、該アーム部91を揺動自在に支持する軸部92と、で構成される。 The double tube nozzle eccentric mechanism 90 is a mechanism that eccentrically centers the outer tube 86 and the inner tube 87 constituting the double tube nozzle portion 85. The double-tube nozzle eccentric mechanism 90 is mainly composed of a cam portion 51d provided at one end portion of the guide member 51, an arm portion 91 driven by the cam portion 51d, and a shaft for swingably supporting the arm portion 91. Part 92.
 カム部51dは、そのベース円部がガイド部材51の中心軸と同軸となるように設けられている。そして、ガイド回転機構70の機構によりガイド部材51が回転された際には、カム部51dも共に回転する。 The cam portion 51 d is provided so that its base circle portion is coaxial with the central axis of the guide member 51. When the guide member 51 is rotated by the mechanism of the guide rotation mechanism 70, the cam portion 51d is also rotated.
 アーム部91は、その一端部にガイド部材51のカム部51dと当接されるローラ91aが回転自在に設けられている。そして、アーム部91の他端部には二重管ノズル部85を構成する内管87を、その軸心に対して垂直となる方向へ押動させる押動腕91bが設けられている。 The arm portion 91 is rotatably provided at one end thereof with a roller 91a that comes into contact with the cam portion 51d of the guide member 51. The other end portion of the arm portion 91 is provided with a pushing arm 91b that pushes the inner tube 87 constituting the double tube nozzle portion 85 in a direction perpendicular to the axis.
 軸部92は、アーム部91の中途部に設けられて、該アーム部91をガイド支持部材52に対して揺動可能に支持する部材である。そして、ガイド部材51のカム部51dが回転された際には、軸部92を支点としてアーム部91が揺動するものとされる(図3B矢印参照。)。 The shaft portion 92 is a member that is provided in the middle portion of the arm portion 91 and supports the arm portion 91 so as to be swingable with respect to the guide support member 52. When the cam portion 51d of the guide member 51 is rotated, the arm portion 91 is swung around the shaft portion 92 (see the arrow in FIG. 3B).
 これにより、アーム部91のローラ91aが力点、軸部92が支点、そして、アーム部91の押動腕91bが作用点とされて、作用点である押動腕91bによって二重管ノズル部85の内管87が、その軸心に対して垂直となる方向へ押動されることとなる。 As a result, the roller 91a of the arm portion 91 serves as a force point, the shaft portion 92 serves as a fulcrum, and the pushing arm 91b of the arm portion 91 serves as an action point. The inner tube 87 is pushed in a direction perpendicular to the axis.
 このような構成により、二重管ノズル部85を構成する内管87を外管86の中心軸に対して偏心させることが可能となる。つまり、ガイド回転機構70の機構によりガイド部材51のカム部51dを回転すると、アーム部91を揺動させることができ、該アーム部91の押動腕91bが内管87を押動することによって偏心させることが可能となるのである。 With such a configuration, the inner tube 87 constituting the double tube nozzle portion 85 can be eccentric with respect to the central axis of the outer tube 86. That is, when the cam portion 51 d of the guide member 51 is rotated by the mechanism of the guide rotation mechanism 70, the arm portion 91 can be swung, and the pushing arm 91 b of the arm portion 91 pushes the inner tube 87. It is possible to make it eccentric.
 なお、ノズル本体部80に設けられた貫通穴80cと該貫通穴80cに挿通された内管87との間にはゴム等の弾性体でなるブーツ81が環装されている。これにより、二重管ノズル偏心機構90の機構により内管87が押動された場合であっても貫通穴80cから空気漏れを防ぐことができるとともに、内管87が押動されていないときにはブーツ81によって外管86と内管87とが同軸となるように支持される。 A boot 81 made of an elastic material such as rubber is provided between a through hole 80c provided in the nozzle body 80 and an inner tube 87 inserted through the through hole 80c. Thus, even when the inner tube 87 is pushed by the mechanism of the double tube nozzle eccentric mechanism 90, air leakage can be prevented from the through hole 80c, and when the inner tube 87 is not pushed, the boot The outer tube 86 and the inner tube 87 are supported by 81 so as to be coaxial.
 また、本発明に係るフィラメントワインディング装置100の樹脂供給ノズル45においては、二重管ノズル部85を構成する内管87を外管86の中心軸に対して偏心させる機構としているが、外管86を内管87の中心軸に対して偏心させる機構としても良い。 Further, in the resin supply nozzle 45 of the filament winding apparatus 100 according to the present invention, the inner tube 87 constituting the double tube nozzle portion 85 is a mechanism that is eccentric with respect to the central axis of the outer tube 86. It is good also as a mechanism which decenters with respect to the central axis of the inner pipe | tube 87. FIG.
 以上のような構成において、本発明に係るフィラメントワインディング装置100における樹脂の吹付けの態様について説明する。 In the above-described configuration, a mode of resin spraying in the filament winding apparatus 100 according to the present invention will be described.
 図5Aは、本発明に係るフィラメントワインディング装置100の樹脂の吹付けを示す正面図である。図5Bは、その側面図である。なお、簡単のために繊維供給ガイド44ならびに樹脂供給ノズル45については各1個を記載して説明する。また、図中に示す矢印Aはライナー2の移送方向、矢印Bはその回転方向を示している。 FIG. 5A is a front view showing resin spraying of the filament winding apparatus 100 according to the present invention. FIG. 5B is a side view thereof. In addition, for simplicity, the fiber supply guide 44 and the resin supply nozzle 45 are each described and described. In addition, an arrow A shown in the drawing indicates a transfer direction of the liner 2 and an arrow B indicates a rotation direction thereof.
 本発明に係るフィラメントワインディング装置100において、樹脂供給ノズル45は、該樹脂供給ノズル45の噴射口85aとライナー2の回転軸Cとを結ぶ仮想線D(図示二点鎖線)よりもライナー2の回転方向(図示時計方向)の下流側に向けて(図5A参照。)、且つ、ライナー2の移送方向に対して垂直となる仮想線E(図示二点鎖線)よりもライナー2の前側に向けて(図5B参照。)樹脂を吹付けるものとされる。 In the filament winding apparatus 100 according to the present invention, the resin supply nozzle 45 rotates the liner 2 more than an imaginary line D (two-dot chain line in the figure) connecting the injection port 85a of the resin supply nozzle 45 and the rotation axis C of the liner 2. Toward the downstream side of the direction (clockwise in the figure) (see FIG. 5A) and toward the front side of the liner 2 from the imaginary line E (two-dot chain line in the figure) perpendicular to the transfer direction of the liner 2 (Refer FIG. 5B.) Resin should be sprayed.
 また、図5A、図5Bに示すように、繊維供給ガイド44のガイド部材51からライナー2へ導かれる繊維束1Bは、正面視にて時計方向に回転されながら、側面視にてフィラメントワインディング装置100の前側に移送されるライナー2によってその外周面2aに巻き付けられていくために、ライナー2の回転方向の下流側、且つ、ライナー2の前側へ張架されることとなる。 As shown in FIGS. 5A and 5B, the fiber bundle 1B guided from the guide member 51 of the fiber supply guide 44 to the liner 2 is rotated clockwise when viewed from the front, while being viewed from the side. In order to be wound around the outer peripheral surface 2 a by the liner 2 transferred to the front side of the liner 2, it is stretched on the downstream side in the rotation direction of the liner 2 and on the front side of the liner 2.
 このため、ガイド部材51とライナー2との間で張架された繊維束1Bは、樹脂供給ノズル45から噴出して形成される樹脂噴霧RSに沿うようにしてライナー2へ向かうこととなるために、該ライナー2に巻き付けられる手前の繊維束1Bに樹脂を含浸させることが可能となる。また、ライナー2の外周面2aに達した樹脂噴霧RSは、その後、外周面2aに沿って流れることとなるために、樹脂の飛散に起因した歩留りの悪化を防止することが可能となる。 For this reason, the fiber bundle 1B stretched between the guide member 51 and the liner 2 is directed toward the liner 2 along the resin spray RS formed by being ejected from the resin supply nozzle 45. Thus, it is possible to impregnate the fiber bundle 1B before being wound around the liner 2 with resin. In addition, since the resin spray RS that has reached the outer peripheral surface 2a of the liner 2 then flows along the outer peripheral surface 2a, it is possible to prevent the yield from deteriorating due to the scattering of the resin.
 ここで、樹脂供給ノズル45から樹脂を噴出することによって形成される樹脂噴霧RSについて詳細に説明する。 Here, the resin spray RS formed by ejecting resin from the resin supply nozzle 45 will be described in detail.
 図6Aは、標準状態における樹脂供給ノズル45によって形成された樹脂噴霧RSを示す図である。図6Bは、外管86と内管87の軸心を偏心させた状態における樹脂供給ノズル45によって形成された樹脂噴霧RSを示す図である。なお、図中に示す矢印Fは樹脂の吹付け方向を示している。 FIG. 6A is a diagram showing the resin spray RS formed by the resin supply nozzle 45 in the standard state. FIG. 6B is a view showing the resin spray RS formed by the resin supply nozzle 45 in a state where the axes of the outer tube 86 and the inner tube 87 are eccentric. In addition, the arrow F shown in the figure has shown the spraying direction of resin.
 二重管ノズル部85の内管87から噴出された樹脂は、比較的に粘度が高い場合であっても外管86から噴出されて周囲に形成される空気噴流AFによって適度に微粒化される。そして、微粒化された樹脂は、比較的に比重が大きい場合であっても空気噴流AFに乗じることによって搬送されることとなる。 The resin ejected from the inner tube 87 of the double tube nozzle portion 85 is appropriately atomized by the air jet AF formed around the outer tube 86 even when the viscosity is relatively high. . The atomized resin is transported by multiplying the air jet AF even when the specific gravity is relatively large.
 これにより、図6Aに示すように、二重管ノズル部85の内管87と外管86とが同軸である、即ち、標準状態である樹脂供給ノズル45から噴出された樹脂は、その周囲に均一に形成された空気噴流AFに乗じて搬送されるために直進することとなる。 As a result, as shown in FIG. 6A, the inner tube 87 and the outer tube 86 of the double tube nozzle portion 85 are coaxial, that is, the resin ejected from the resin supply nozzle 45 in the standard state is around it. Since the air jet AF formed uniformly is transported, it goes straight.
 一方、図6Bに示すように、二重管ノズル部85の外管86と内管87の軸心を偏心させた状態である樹脂供給ノズル45から噴出された樹脂は、その周囲に形成された空気噴流AFが不均一であるために直進することができない。つまり、外管86と内管87との隙間が広い部分から噴出された空気噴流AFに対して隙間が狭い部分から噴出された空気噴流AFは急速に消散するため、空気噴流AFが消散した下流側において樹脂噴霧RSが広がることによって樹脂の吹付け方向が変化するのである。 On the other hand, as shown in FIG. 6B, the resin ejected from the resin supply nozzle 45 in a state where the axial centers of the outer tube 86 and the inner tube 87 of the double tube nozzle portion 85 are eccentric is formed around the resin. Since the air jet AF is not uniform, it cannot go straight. That is, since the air jet AF ejected from the narrow gap portion is rapidly dissipated with respect to the air jet AF ejected from the wide gap portion between the outer pipe 86 and the inner pipe 87, the downstream side where the air jet AF is dissipated. As the resin spray RS spreads on the side, the resin spraying direction changes.
 従って、外管86と内管87との偏心量を制御することによって簡易な構造でありながら最適な樹脂の吹付け方向に調節することができ、ライナー2に巻き付けられる手前の繊維束1Bにムラ無く確実に樹脂を含浸させることが可能となるのである。 Therefore, by controlling the amount of eccentricity between the outer tube 86 and the inner tube 87, it is possible to adjust to the optimum resin spraying direction while having a simple structure, and unevenness is caused in the fiber bundle 1B before being wound around the liner 2. This makes it possible to impregnate the resin reliably.
 なお、本発明に係るフィラメントワインディング装置100の樹脂供給ノズル45は、二重管ノズル偏心機構90の機構上、フィラメントワインディング装置100の前後方向に対して垂直、換言すると、ライナー2の移送方向に対して垂直となる方向に樹脂の吹付け方向を調節することが可能とされる。 The resin supply nozzle 45 of the filament winding apparatus 100 according to the present invention is perpendicular to the front-rear direction of the filament winding apparatus 100 on the mechanism of the double tube nozzle eccentric mechanism 90, in other words, with respect to the transfer direction of the liner 2. Thus, it is possible to adjust the direction of spraying the resin in a direction that is vertical.
 また、外管86に対する内管87の偏心量は、カム部51dのカム形状とその回転角によって決定される。そのため、ガイド回転機構70と連動して樹脂の吹付け方向が所望の方向となるようにカム部51dのカム形状ならびに回転角が設計されている。 Further, the amount of eccentricity of the inner tube 87 with respect to the outer tube 86 is determined by the cam shape of the cam portion 51d and its rotation angle. Therefore, the cam shape and the rotation angle of the cam portion 51d are designed so that the resin spraying direction becomes a desired direction in conjunction with the guide rotation mechanism 70.
 次に、ライナー2に巻き付けられる繊維束1Bの巻き付け角度に応じて樹脂の吹付け方向を調節する一実施形態について説明する。 Next, an embodiment in which the resin blowing direction is adjusted according to the winding angle of the fiber bundle 1B wound around the liner 2 will be described.
 ここで、本実施形態に係るフィラメントワインディング装置100においては、ライナー移送装置20によるライナー2の移送速度を調節することによって、ライナー2に巻き付けられる繊維束1Bの巻き付け角度を変更するものとしている。 Here, in the filament winding apparatus 100 according to the present embodiment, the winding angle of the fiber bundle 1B wound around the liner 2 is changed by adjusting the transfer speed of the liner 2 by the liner transfer apparatus 20.
 図7Aは、ライナー2の移送速度が所定の標準速度である場合における繊維束1Bの糸道と樹脂の吹付け方向とを示す上面図である。図7Bは、ライナー2の移送速度が標準速度より増速された場合における繊維束1Bの糸道と樹脂の吹付け方向とを示す上面図である。なお、図中に示す矢印Aはライナー2の移送方向、矢印Bはその回転方向、矢印Gは繊維束1Bの巻き付け角度を示している。 FIG. 7A is a top view showing the yarn path of the fiber bundle 1B and the spraying direction of the resin when the transfer speed of the liner 2 is a predetermined standard speed. FIG. 7B is a top view showing the yarn path of the fiber bundle 1B and the resin spraying direction when the transfer speed of the liner 2 is increased from the standard speed. In addition, the arrow A shown in the figure indicates the transfer direction of the liner 2, the arrow B indicates the rotation direction, and the arrow G indicates the winding angle of the fiber bundle 1B.
 本実施形態においても前述したように、樹脂供給ノズル45は、該樹脂供給ノズル45の噴射口85aとライナー2の回転軸とを結ぶ仮想線Dよりもライナー2の回転方向の下流側に向けて(図5A参照。)、且つ、ライナー2の移送方向に対して垂直となる仮想線Eよりもライナー2の前側に向けて(図5B参照。)樹脂を吹付けるものとされる。 Also in the present embodiment, as described above, the resin supply nozzle 45 is directed toward the downstream side in the rotation direction of the liner 2 with respect to the imaginary line D connecting the injection port 85a of the resin supply nozzle 45 and the rotation axis of the liner 2. (See FIG. 5A.) In addition, the resin is sprayed toward the front side of the liner 2 (see FIG. 5B) from a virtual line E perpendicular to the transfer direction of the liner 2 (see FIG. 5B).
 図7Aに示すように、ライナー移送装置20によるライナー2の移送速度が所定の標準速度である場合、ライナー2に巻き付けられる手前の繊維束1Bの糸道は、ライナー2の回転方向の下流側、且つ、ライナー2の前側へ張架されることとなる。そして、フィラメントワインディング装置100の前後方向とライナー2に巻き付けられる手前の繊維束1Bとでなる繊維束1Bの巻き付け角度は所定の角度R1となる。 As shown in FIG. 7A, when the transfer speed of the liner 2 by the liner transfer device 20 is a predetermined standard speed, the yarn path of the fiber bundle 1B before being wound around the liner 2 is on the downstream side in the rotation direction of the liner 2, And it will be stretched to the front side of the liner 2. The winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 is a predetermined angle R1.
 一方、図7Bに示すように、ライナー移送装置20によるライナー2の移送速度が標準速度より増速された場合、ライナー2に巻き付けられる手前の繊維束1Bの糸道は、更にライナー2の前側へ移動することとなる。これにより、フィラメントワインディング装置100の前後方向とライナー2に巻き付けられる手前の繊維束1Bとでなる繊維束1Bの巻き付け角度は、角度R1より小さい角度R2となる。 On the other hand, as shown in FIG. 7B, when the transfer speed of the liner 2 by the liner transfer device 20 is increased from the standard speed, the yarn path of the fiber bundle 1 </ b> B before being wound around the liner 2 further moves to the front side of the liner 2. Will move. Thereby, the winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 becomes an angle R2 smaller than the angle R1.
 このように、ライナー2に巻き付けられる手前の繊維束1Bは、ライナー2の移送速度によって糸道が変化するために、繊維束1Bに対してムラ無く確実に樹脂を含浸させるには樹脂の吹付け方向を適宜に調節することが必要とされるのである。 Thus, since the yarn path of the fiber bundle 1B before being wound around the liner 2 changes depending on the transfer speed of the liner 2, the resin is sprayed to ensure that the fiber bundle 1B is uniformly impregnated with resin. It is necessary to adjust the direction appropriately.
 具体的には、ライナー2の移送速度が標準速度よりも増速された場合、上面視にてライナー2の移送速度が標準速度のときよりもライナー2の回転軸に近接した位置にある繊維束1Bの糸道に向けて樹脂を吹付けるように調節される(図7B参照。)。 Specifically, when the transfer speed of the liner 2 is increased from the standard speed, the fiber bundle at a position closer to the rotation axis of the liner 2 than when the transfer speed of the liner 2 is the standard speed when viewed from above. It is adjusted so that resin is sprayed toward the thread path of 1B (see FIG. 7B).
 これは、二重管ノズル偏心機構90は、その機構上、ライナー2の移送方向に対して垂直に樹脂の吹付け方向を調節することが可能とされるためである。例えば、ライナー2の移送方向に対して垂直となる方向のみならずライナー2の移送方向にも調節可能とする機構を設けても良い。 This is because the double-tube nozzle eccentric mechanism 90 can adjust the spraying direction of the resin perpendicular to the transfer direction of the liner 2 due to the mechanism. For example, a mechanism that can adjust not only the direction perpendicular to the transfer direction of the liner 2 but also the transfer direction of the liner 2 may be provided.
 なお、本実施形態においては、ライナー2の移送速度を増速するのみによって繊維束1Bの巻き付け角度を変更するものとしているが、例えばライナー2の移送速度を減速することによって繊維束1Bの巻き付け角度を変更する構成も考えられる。 In the present embodiment, the winding angle of the fiber bundle 1B is changed only by increasing the transfer speed of the liner 2. However, for example, the winding angle of the fiber bundle 1B is reduced by reducing the transfer speed of the liner 2. It is also possible to change the configuration.
 この場合においては、フィラメントワインディング装置100の前後方向とライナー2に巻き付けられる手前の繊維束1Bとでなる繊維束1Bの巻き付け角度が、角度R1より大きい角度となるために、上面視にてライナー2の回転軸から離間した位置にある繊維束1Bの糸道に向けて樹脂を吹付けるように調節される。 In this case, since the winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 is larger than the angle R1, the liner 2 is viewed from above. It adjusts so that resin may be sprayed toward the yarn path of the fiber bundle 1B located at a position spaced apart from the rotation axis.
 このように、ライナー2に巻き付けられる繊維束1Bの巻き付け角度に応じて樹脂の吹付け方向を適宜に調節することで、繊維束1Bに対して安定して樹脂を吹付けることが可能となる。従って、ライナー2に巻き付けられる手前の繊維束1Bにムラ無く確実に樹脂を含浸させることが可能となるのである。 As described above, the resin can be stably sprayed on the fiber bundle 1B by appropriately adjusting the resin spraying direction according to the winding angle of the fiber bundle 1B wound around the liner 2. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle 1B before being wound around the liner 2.
 更に、本実施形態においては、ライナー移送装置20によるライナー2の移送速度を調節することによって繊維束1Bの巻き付け角度を変更するものとしているが、ライナー2の回転速度を調節することによって繊維束1Bの巻き付け角度を変更する構成も考えられる。 Furthermore, in this embodiment, the winding angle of the fiber bundle 1B is changed by adjusting the transfer speed of the liner 2 by the liner transfer device 20, but the fiber bundle 1B is adjusted by adjusting the rotation speed of the liner 2. A configuration in which the winding angle is changed is also conceivable.
 この場合においても、ライナー2に巻き付けられる繊維束1Bの巻き付け角度に応じて樹脂の吹付け方向を適宜に調節することで、繊維束1Bに対して安定して樹脂を吹付けることが可能となる。従って、ライナー2に巻き付けられる手前の繊維束1Bにムラ無く確実に樹脂を含浸させることが可能となる。 Even in this case, the resin can be stably sprayed onto the fiber bundle 1B by appropriately adjusting the direction of resin spraying according to the winding angle of the fiber bundle 1B wound around the liner 2. . Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle 1B before being wound around the liner 2.
 なお、繊維束1Bの巻き付け角度を変更する構成がいずれの場合であったとしても、ガイド部材51は、繊維束1Bを円滑に送り出すべくガイド回転機構70によって回転されて、その略長円形状の出口部51bの位相を変更される。そして、樹脂供給ノズル45による樹脂の吹付け方向もこれに連動して最適な方向に調節されるのである。 In any case, the guide member 51 is rotated by the guide rotation mechanism 70 to smoothly feed the fiber bundle 1B, regardless of the configuration in which the winding angle of the fiber bundle 1B is changed. The phase of the outlet 51b is changed. The direction of resin spraying by the resin supply nozzle 45 is also adjusted to the optimum direction in conjunction with this.
 次に、ライナー2の外径に応じて樹脂の吹付け方向を調節する一実施形態について説明する。 Next, an embodiment in which the resin spraying direction is adjusted according to the outer diameter of the liner 2 will be described.
 図8Aは、ライナー2の外径が所定の標準径である場合における繊維束1Bの糸道と樹脂の吹付け方向とを示す上面図である。図8Bは、ライナー2の外径が標準径より小さい場合における繊維束1Bの糸道と樹脂の吹付け方向とを示す上面図である。なお、図中に示す矢印Aはライナー2の移送方向、矢印Bはその回転方向、矢印Gは繊維束1Bの巻き付け角度を示している。 FIG. 8A is a top view showing the yarn path of the fiber bundle 1B and the resin spraying direction when the outer diameter of the liner 2 is a predetermined standard diameter. FIG. 8B is a top view showing the yarn path of the fiber bundle 1B and the resin spraying direction when the outer diameter of the liner 2 is smaller than the standard diameter. In addition, the arrow A shown in the figure indicates the transfer direction of the liner 2, the arrow B indicates the rotation direction, and the arrow G indicates the winding angle of the fiber bundle 1B.
 本実施形態においても前述したように、樹脂供給ノズル45は、該樹脂供給ノズル45の噴射口85aとライナー2の回転軸とを結ぶ仮想線Dよりもライナー2の回転方向の下流側に向けて(図5A参照。)、且つ、ライナー2の移送方向に対して垂直となる仮想線Eよりもライナー2の前側に向けて(図5B参照。)樹脂を吹付けるものとされる。 Also in the present embodiment, as described above, the resin supply nozzle 45 is directed toward the downstream side in the rotation direction of the liner 2 with respect to the imaginary line D connecting the injection port 85a of the resin supply nozzle 45 and the rotation axis of the liner 2. (See FIG. 5A.) In addition, the resin is sprayed toward the front side of the liner 2 (see FIG. 5B) from a virtual line E perpendicular to the transfer direction of the liner 2 (see FIG. 5B).
 図8Aに示すように、ライナー2の外径が所定の標準径である場合、ライナー2に巻き付けられる手前の繊維束1Bの糸道は、ライナー2の回転方向の下流側、且つ、ライナー2の前側へ張架されることとなる。そして、フィラメントワインディング装置100の前後方向とライナー2に巻き付けられる手前の繊維束1Bとでなる繊維束1Bの巻き付け角度も所定の角度r1となる。 As shown in FIG. 8A, when the outer diameter of the liner 2 is a predetermined standard diameter, the yarn path of the front fiber bundle 1B wound around the liner 2 is on the downstream side in the rotation direction of the liner 2 and the liner 2 It will be stretched to the front side. The winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 is also a predetermined angle r1.
 一方、図8Bに示すように、ライナー2の外径が標準径より小さい場合、ライナー2に巻き付けられる手前の繊維束1Bの糸道は、更にライナー2の前側へ移動することとなる。これは、ライナー2の回転速度が標準径であるときの回転速度と同じであったとしても、ライナー2の回転によって繊維束1Bを巻き付ける速度が遅くなるためである。これにより、フィラメントワインディング装置100の前後方向とライナー2に巻き付けられる手前の繊維束1Bとでなる繊維束1Bの巻き付け角度は、角度r1より小さい角度r2となる。 On the other hand, as shown in FIG. 8B, when the outer diameter of the liner 2 is smaller than the standard diameter, the yarn path of the front fiber bundle 1B wound around the liner 2 further moves to the front side of the liner 2. This is because even if the rotation speed of the liner 2 is the same as the rotation speed when the diameter is the standard diameter, the speed at which the fiber bundle 1B is wound by the rotation of the liner 2 becomes slow. Thereby, the winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 becomes an angle r2 smaller than the angle r1.
 このように、ライナー2に巻き付けられる手前の繊維束1Bは、ライナー2の外径によって糸道が変化するために、繊維束1Bに対してムラ無く確実に樹脂を含浸させるには樹脂の吹付け方向を適宜に調節することが必要とされるのである。 Thus, since the yarn path of the front fiber bundle 1B wound around the liner 2 changes depending on the outer diameter of the liner 2, the resin spray is surely impregnated into the fiber bundle 1B without unevenness. It is necessary to adjust the direction appropriately.
 具体的には、ライナー2の外径が標準径より小さい場合、上面視にてライナー2の外径が標準径のときよりもライナー2の回転軸に近接した位置にある繊維束1Bの糸道に向けて樹脂を吹付けるように調節される(図8B参照。)。 Specifically, when the outer diameter of the liner 2 is smaller than the standard diameter, the yarn path of the fiber bundle 1B located closer to the rotation axis of the liner 2 than when the outer diameter of the liner 2 is the standard diameter when viewed from above. It adjusts so that resin may be sprayed toward (refer FIG. 8B).
 これは、二重管ノズル偏心機構90は、その機構上、ライナー2の移送方向に対して垂直に樹脂の吹付け方向を調節することが可能とされるためである。例えば、ライナー2の移送方向に対して垂直となる方向のみならずライナー2の移送方向にも調節可能とする機構を設けても良い。 This is because the double-tube nozzle eccentric mechanism 90 can adjust the spraying direction of the resin perpendicular to the transfer direction of the liner 2 due to the mechanism. For example, a mechanism that can adjust not only the direction perpendicular to the transfer direction of the liner 2 but also the transfer direction of the liner 2 may be provided.
 また、例えばライナー2の外径が標準径より大きい場合では、フィラメントワインディング装置100の前後方向とライナー2に巻き付けられる手前の繊維束1Bとでなる繊維束1Bの巻き付け角度が、角度r1より大きい角度となるために、上面視にてライナー2の回転軸から離間した位置にある繊維束1Bの糸道に向けて樹脂を吹付けるように調節される。 For example, when the outer diameter of the liner 2 is larger than the standard diameter, the winding angle of the fiber bundle 1B formed by the front and rear direction of the filament winding apparatus 100 and the front fiber bundle 1B wound around the liner 2 is larger than the angle r1. Therefore, the resin is adjusted to be sprayed toward the yarn path of the fiber bundle 1B located at a position separated from the rotation axis of the liner 2 in a top view.
 このように、ライナー2の外径に応じて樹脂の吹付け方向を適宜に調節することで、繊維束1Bに対して安定して樹脂を吹付けることが可能となる。従って、ライナー2に巻き付けられる手前の繊維束1Bにムラ無く確実に樹脂を含浸させることが可能となるのである。 As described above, by appropriately adjusting the spray direction of the resin according to the outer diameter of the liner 2, the resin can be stably sprayed on the fiber bundle 1B. Accordingly, it is possible to reliably impregnate the resin with no unevenness in the fiber bundle 1B before being wound around the liner 2.
 また、当然のことながら、ライナー2に繊維束1A・1Bを巻き付けていくと、既に巻かれた繊維束1A・1Bの層の厚さが徐々に増していくことになり、巻き付け部の外径は次第に大きくなる。従って、繊維束1A・1Bの巻き付け量に応じて樹脂の吹付け方向も徐々に変えていく必要がある。更に、ライナー2の前側若しくは後側端部に巻き付け位置が移っていくと、巻き付け部の外径は徐々に小さくなり巻き付け角度も変化する。樹脂の吹き付け方向もこれに連動させる必要がある。本発明によれば、このような調節も適宜に行なうことが可能となる。 As a matter of course, when the fiber bundles 1A and 1B are wound around the liner 2, the layer thickness of the already wound fiber bundles 1A and 1B gradually increases, and the outer diameter of the wound portion is increased. Gradually grows. Therefore, it is necessary to gradually change the resin spraying direction in accordance with the winding amount of the fiber bundles 1A and 1B. Furthermore, when the winding position moves to the front side or rear side end portion of the liner 2, the outer diameter of the winding portion gradually decreases and the winding angle also changes. It is also necessary to link the direction of resin spraying. According to the present invention, such adjustment can be performed as appropriate.
 本発明は、フィラメントワインディング装置の技術に利用可能である。 The present invention is applicable to the filament winding apparatus technology.

Claims (4)

  1.  ライナーを回転させながら移送するとともに、該ライナーの外周面の周囲に配置された繊維供給ガイドにより導かれる繊維束を該ライナーの外周面に巻き付けていくフィラメントワインディング装置において、
     前記ライナーに巻き付けられる手前の前記繊維束に対して樹脂を吹付ける樹脂供給ノズルを備え、
     前記樹脂供給ノズルは、空気を噴出させる外管と樹脂を噴出させる内管とにより構成される二重管構造とした、ことを特徴とするフィラメントワインディング装置。
    In a filament winding apparatus that moves while rotating a liner and winds a fiber bundle guided by a fiber supply guide disposed around the outer peripheral surface of the liner around the outer peripheral surface of the liner.
    A resin supply nozzle that sprays resin on the fiber bundle in front of the liner wound around the liner;
    The filament winding apparatus according to claim 1, wherein the resin supply nozzle has a double tube structure including an outer tube for ejecting air and an inner tube for ejecting resin.
  2.  前記樹脂供給ノズルは、前記外管と前記内管の軸心を偏心させることにより樹脂を吹付ける方向を調節する、ことを特徴とする請求項1に記載のフィラメントワインディング装置。 The filament winding apparatus according to claim 1, wherein the resin supply nozzle adjusts a direction in which the resin is sprayed by decentering an axis of the outer tube and the inner tube.
  3.  前記樹脂供給ノズルは、前記ライナーに巻き付けられる繊維束の巻き付け角度に応じて樹脂を吹付ける方向を調節する、ことを特徴とする請求項1又は請求項2に記載のフィラメントワインディング装置。 3. The filament winding apparatus according to claim 1, wherein the resin supply nozzle adjusts a direction in which the resin is sprayed according to a winding angle of a fiber bundle wound around the liner.
  4.  前記繊維供給ガイドは、前記繊維束を前記ライナーへ導くガイド部材と、
     前記ガイド部材の軸心を中心軸として該ガイド部材を回転させるガイド回転機構と、を備え、
     前記樹脂供給ノズルは、前記ガイド回転機構に連動して樹脂を吹付ける方向を調節する、ことを特徴とする請求項1から請求項3のいずれか一項に記載のフィラメントワインディング装置。
    The fiber supply guide includes a guide member that guides the fiber bundle to the liner;
    A guide rotation mechanism that rotates the guide member about the axis of the guide member as a central axis,
    The filament winding apparatus according to any one of claims 1 to 3, wherein the resin supply nozzle adjusts a direction of spraying the resin in conjunction with the guide rotation mechanism.
PCT/JP2010/066774 2009-11-11 2010-09-28 Filament winding device WO2011058827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-258419 2009-11-11
JP2009258419A JP2011102009A (en) 2009-11-11 2009-11-11 Filament winding apparatus

Publications (1)

Publication Number Publication Date
WO2011058827A1 true WO2011058827A1 (en) 2011-05-19

Family

ID=43991487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066774 WO2011058827A1 (en) 2009-11-11 2010-09-28 Filament winding device

Country Status (2)

Country Link
JP (1) JP2011102009A (en)
WO (1) WO2011058827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097561A (en) * 2014-11-20 2016-05-30 Jxエネルギー株式会社 Composite container manufacturing method and composite container
WO2016142402A1 (en) * 2015-03-12 2016-09-15 Wobben Properties Gmbh Method and apparatus for producing a preform
WO2024057023A1 (en) * 2022-09-14 2024-03-21 Graphene Innovations Manchester Ltd Multiple nozzle array for forming composite articles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687983B2 (en) * 2011-09-16 2015-03-25 村田機械株式会社 Filament winding equipment
JP6874614B2 (en) * 2017-09-21 2021-05-19 トヨタ自動車株式会社 High-pressure tank manufacturing method and manufacturing equipment
KR102217830B1 (en) * 2020-02-18 2021-02-19 일진복합소재 주식회사 Filament winding apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114918A (en) * 1981-12-28 1983-07-08 Yokohama Rubber Co Ltd:The Method of winding filament
JPH0740465A (en) * 1993-07-27 1995-02-10 Kureha Elastomer- Kk Manufacture of elastic ring
JP2004184897A (en) * 2002-12-06 2004-07-02 Canon Inc Method of manufacturing electrophotographic member and electrophotographic member manufactured by the same
JP2007260974A (en) * 2006-03-27 2007-10-11 Toyota Motor Corp Filament winding apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114918A (en) * 1981-12-28 1983-07-08 Yokohama Rubber Co Ltd:The Method of winding filament
JPH0740465A (en) * 1993-07-27 1995-02-10 Kureha Elastomer- Kk Manufacture of elastic ring
JP2004184897A (en) * 2002-12-06 2004-07-02 Canon Inc Method of manufacturing electrophotographic member and electrophotographic member manufactured by the same
JP2007260974A (en) * 2006-03-27 2007-10-11 Toyota Motor Corp Filament winding apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097561A (en) * 2014-11-20 2016-05-30 Jxエネルギー株式会社 Composite container manufacturing method and composite container
WO2016142402A1 (en) * 2015-03-12 2016-09-15 Wobben Properties Gmbh Method and apparatus for producing a preform
CN107405795A (en) * 2015-03-12 2017-11-28 乌本产权有限公司 Method and apparatus for manufacturing parison
WO2024057023A1 (en) * 2022-09-14 2024-03-21 Graphene Innovations Manchester Ltd Multiple nozzle array for forming composite articles

Also Published As

Publication number Publication date
JP2011102009A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2011058827A1 (en) Filament winding device
JP5540616B2 (en) Filament winding equipment
FI105015B (en) Apparatus for coating molten material with molten material
JP6721131B2 (en) Cylindrical coating device
CA2451390A1 (en) A device and a method for rehabilitating conduits
JP5589357B2 (en) Resin dispenser
EP0747115B1 (en) Steam precipitation jet
CN103874555B (en) Discharging processor for line electrode and its line electrode feeding method
CN1305584C (en) Rotary atomizing coating machine
US7107740B2 (en) Method and device for depositing a filament tow
JP2011037242A (en) Filament winding apparatus
JP2007260974A (en) Filament winding apparatus
KR101487325B1 (en) Painting Apparatus for Pipe
CN1298435C (en) Rotary atomizing coating machine
JP2020104428A (en) Apparatus for manufacturing tow prepreg, and method for manufacturing tow prepreg
JP2010030065A (en) Filament winding apparatus
JP2010030063A (en) Filament winding apparatus
CN210787884U (en) Pipeline inner wall spraying device
JP5206950B2 (en) Yarn delivery ring mechanism in filament winding equipment
CN110803874B (en) Optical fiber spiral line color bar coloring device
US20070017182A1 (en) Apparatus for depositing a filament tow
JPH10249954A (en) Manufacture of reinforced hose
JP2009150917A (en) Coating film forming device, electrophotographic fixing member with coating film formed by coating film forming device and image forming apparatus having electrophotographic fixing member
JP2022092651A (en) Fiber winder
JP2022131927A (en) Nozzle for flame spray gun, and flame spraying method using nozzle for flame spray gun

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829787

Country of ref document: EP

Kind code of ref document: A1