WO2011058111A1 - Dérivés d'aminopurine en tant qu'inhibiteurs de kinase - Google Patents

Dérivés d'aminopurine en tant qu'inhibiteurs de kinase Download PDF

Info

Publication number
WO2011058111A1
WO2011058111A1 PCT/EP2010/067307 EP2010067307W WO2011058111A1 WO 2011058111 A1 WO2011058111 A1 WO 2011058111A1 EP 2010067307 W EP2010067307 W EP 2010067307W WO 2011058111 A1 WO2011058111 A1 WO 2011058111A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
compound
mmol
piperazin
formula
Prior art date
Application number
PCT/EP2010/067307
Other languages
English (en)
Inventor
Daniel Rees Allen
Roland BÜRLI
Alan Findlay Haughan
Mizio Matteucci
Andrew Pate Owens
Gilles Raphy
Andrew Sharpe
Original Assignee
Ucb Pharma S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0919821A external-priority patent/GB0919821D0/en
Priority claimed from GBGB1012100.2A external-priority patent/GB201012100D0/en
Application filed by Ucb Pharma S.A. filed Critical Ucb Pharma S.A.
Publication of WO2011058111A1 publication Critical patent/WO2011058111A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/16Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two nitrogen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a class of aminopurine derivatives, and to their use in therapy. More particularly, the compounds in accordance with the present invention are substituted 2-amino-9H-purin-6-yl derivatives. These compounds are selective inhibitors of phosphoinositide 3-kinase (PI3K) enzymes, and are accordingly of benefit as pharmaceutical agents, especially in the treatment of adverse inflammatory, autoimmune, cardiovascular, neurodegenerative, metabolic, oncological, nociceptive and ophthalmic conditions.
  • PI3K phosphoinositide 3-kinase
  • PI3K pathway is implicated in a variety of physiological and pathological functions that are believed to be operative in a range of human diseases.
  • PI3Ks provide a critical signal for cell proliferation, cell survival, membrane trafficking, glucose transport, neurite outgrowth, membrane ruffling, superoxide production, actin
  • the compounds in accordance with the present invention are therefore beneficial in the treatment and/or prevention of various human ailments.
  • autoimmune and inflammatory disorders such as rheumatoid arthritis, multiple sclerosis, asthma, inflammatory bowel disease, psoriasis and transplant rejection; cardiovascular disorders including thrombosis, cardiac hypertrophy, hypertension, and irregular contractility of the heart (e.g. during heart failure);
  • neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease,
  • the compounds in accordance with the present invention may be beneficial as pharmacological standards for use in the development of new biological tests and in the search for new pharmacological agents.
  • the compounds of this invention may be useful as radioligands in assays for detecting compounds capable of binding to human PI3K enzymes.
  • WO 2008/118454, WO 2008/118455 and WO 2008/118468 describe various series of quinoline and quinoxaline derivatives that are structurally related to each other and are stated to be useful to inhibit the biological activity of human PI3K8 and to be of use in treating PI3K-mediated conditions or disorders.
  • WO 2009/081105 copending international application PCT/GB2009/002504, published on 29 April 2010 as WO 2010/046639 (claiming priority from United Kingdom patent application 0819593.5), copending international application PCT/GB2010/000243, published on 19 August 2010 as WO 2010/092340 (claiming priority from United Kingdom patent applications 0902450.6 and 0914533.5), copending international application PCT/GB2010/000361 , published on 10 September 2010 as WO 2010/100405 (claiming priority from United Kingdom patent applications 0903949.6 and 0915586.2), and copending international application PCT/GB2010/001000 (claiming priority from United Kingdom patent application 0908957.4) describe separate classes of fused bicyclic heteroaryl derivatives as selective inhibitors of PI3K enzymes that are of benefit in the treatment of adverse inflammatory, autoimmune, cardiovascular, neurodegenerative, metabolic, oncological, nociceptive and ophthalmic conditions.
  • the compounds of the present invention are potent and selective PI3K inhibitors having a binding affinity (IC 50 ) for the human PI3K and/or ⁇ 3 ⁇ and/or ⁇ 3 ⁇ and/or PI3K6 isoform of 50 ⁇ or less, generally of 20 ⁇ or less, usually of 5 ⁇ or less, typically of 1 ⁇ or less, suitably of 500 nM or less, ideally of 100 nM or less, and preferably of 20 nM or less (the skilled person will appreciate that a lower IC 50 figure denotes a more active compound).
  • IC 50 binding affinity
  • the compounds of the invention may possess at least a 10-fold selective affinity, typically at least a 20-fold selective affinity, suitably at least a 50-fold selective affinity, and ideally at least a 100-fold selective affinity, for the human PI3Ka and/or ⁇ 3 ⁇ and/or ⁇ 3 ⁇ and/or PI3K5 isoform relative to other human kinases
  • the present invention provides a compound of formula (I) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof:
  • E represents an optionally substituted straight or branched C] -4 alkylene chain
  • Q represents oxygen, sulfur, N-R 4 or a covalent bond
  • M represents the residue of an optionally substituted saturated five-, six- or seven- membered monocyclic ring containing one nitrogen atom and 0, 1 , 2 or 3 additional heteroatoms independently selected from N, O and S, but containing no more than one 0 or S atom;
  • W represents C-R 5 or N
  • R 1 , R 2 and R 3 independently represent hydrogen, halogen, cyano, nitro, C 1-6 alkyl, trifluoromethyl, aryl(C 1-6 )alkyl, hydroxy, C 1-6 alkoxy, difmoromethoxy, trifluoromethoxy, Ci -6 alkylthio, C 1-6 alkylsulfinyl, C 1-6 alkylsulfonyl, amino, C 1-6 alkylamino, di(C 1-6 )alkyl- amino, C 2- alkylcarbonylamino, C 2- alkoxycarbonylamino, C 1-6 alkylsulfonylamino, formyl, C 2-6 alkylcarbonyl, carboxy, C 2-6 alkoxycarbonyl, aminocarbonyl, C 1-6
  • alkylaminocarbonyl di(C 1-6 )alkylaminocarbonyl, aminosulfonyl, C 1-6 alkylaminosulfonyl or di(Ci.6)alkylaminosulfonyl;
  • R a represents hydrogen or C 1-6 alkyl
  • R b represents hydrogen or trifluoromethyl
  • R c represents hydrogen, C] -6 alkyl or C 3-7 cycloalkyl.
  • any of the groups in the compounds of formula (I) above is stated to be optionally substituted, this group may be unsubstituted, or substituted by one or more substituents. Typically, such groups will be unsubstituted, or substituted by one or two substituents.
  • Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound of the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, methanesulphonic acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid or phosphoric acid.
  • a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, methanesulphonic acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid or phosphoric acid.
  • pharmaceutically acceptable salts thereof may include alkali metal salts, e.g. sodium or potassium salts; alkaline earth metal salts, e.g. calcium or magnesium salts; and salts formed with suitable organic ligands, e.g. quaternary ammonium salts.
  • alkali metal salts e.g. sodium or potassium salts
  • alkaline earth metal salts e.g. calcium or magnesium salts
  • suitable organic ligands e.g. quaternary ammonium salts.
  • solvates of the compounds of formula (I) above include within its scope solvates of the compounds of formula (I) above.
  • Such solvates may be formed with common organic solvents, e.g. hydrocarbon solvents such as benzene or toluene; chlorinated solvents such as chloroform or dichloromethane; alcoholic solvents such as methanol, ethanol or isopropanol; ethereal solvents such as diethyl ether or tetrahydrofuran; or ester solvents such as ethyl acetate.
  • the solvates of the compounds of formula (I) may be formed with water, in which case they will be hydrates.
  • Suitable alkyl groups which may be present on the compounds of the invention include straight-chained and branched C 1-6 alkyl groups, for example C 1-4 alkyl groups. Typical examples include methyl and ethyl groups, and straight-chained or branched propyl, butyl and pentyl groups. Particular alkyl groups include methyl, ethyl, ⁇ -propyl, isopropyl, -butyl, sec-butyl, isobutyl, tert-butyl, 2,2-dimethylpropyl and 3-methylbutyl. Derived expressions such as "C 1-6 alkoxy", "Ci -6 alkylthio", "Ci -6 alkylsulphonyl” and "C 1-6 alkylamino" are to be construed accordingly.
  • C 1-3 alkylene chain refers to a divalent straight or branched alkylene chain containing 1 to 3 carbon atoms. Typical examples include methylene, ethylene, methylmethylene, ethylmethylene and dimethylmethylene.
  • C 3-7 cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
  • Suitable aryl groups include phenyl and naphthyl, preferably phenyl.
  • Suitable aryl(Ci -6 )alkyl groups include benzyl, phenylethyl, phenylpropyl and naphthylmethyl.
  • Suitable heterocycloalkyl groups which may comprise benzo-fused analogues thereof, include azetidinyl, tetrahydrofuranyl, dihydrobenzofuranyl, pyrrolidinyl, indolinyl, thiazolidinyl, imidazolidinyl, tetrahydropyranyl, chromanyl, piperidinyl, 1,2,3,4- tetrahydroquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, piperazinyl, 1,2,3,4-tetrahydro- quinoxalinyl, homopiperazinyl, morpholinyl, benzoxazinyl and thiomorpholinyl.
  • Suitable heteroaryl groups include furyl, benzofuryl, dibenzofuryl, thienyl, benzothienyl, dibenzothienyl, pyrrolyl, indolyl, pyrrolo[2,3-b]pyridinyl, pyrrolo[3,2- cjpyridinyl, pyrazolyl, pyrazolo[l,5-a]pyridinyl, pyrazolo[3,4- ]pyrimidinyl, indazolyl, oxazolyl, benzoxazolyl, isoxazolyl, thiazolyl, benzothiazolyl, isothiazolyl, imidazolyl, benzimidazolyl, imidazo[l,2- ]pyridinyl, imidazo[4,5-£]pyridinyl, purinyl, imidazo[l,2- a]pyrimidinyl, imidazo[l,2-a]pyrazinyl,
  • halogen as used herein is intended to include fluorine, chlorine, bromine and iodine atoms, typically fluorine, chlorine or bromine.
  • Formula (I) and the formulae depicted hereinafter are intended to represent all individual tautomers and all possible mixtures thereof, unless stated or shown otherwise.
  • each individual atom present in formula (I), or in the formulae depicted hereinafter may in fact be present in the form of any of its naturally occurring isotopes, with the most abundant isotope(s) being preferred.
  • each individual hydrogen atom present in formula (I), or in the formulae depicted hereinafter may be present as a 1H, 2 H (deuterium) or 3 H (tritium) atom, preferably ⁇ .
  • each individual carbon atom present in formula (I), or in the formulae depicted hereinafter may be present as a 12 C, 13 C or 14 C atom, preferably 12 C.
  • W represents C-R 5 . In another embodiment, W represents N.
  • Typical values of E include methylene (-CH 2 -), (methyl)methylene, ethylene (-CH 2 CH 2 -), (ethyl)methylene, (dimethyl)methylene, (methyl)ethylene, (propyl)methylene and (dimethyl)ethylene, any of which chains may be optionally substituted by one or more substituents.
  • such chains are unsubstituted, monosubstituted or disubstituted.
  • such chains are unsubstituted or monosubstituted. In one embodiment, such chains are unsubstituted. In another embodiment, such chains are monosubstituted.
  • Examples of suitable substituents on the alkylene chain represented by E include trifluoromethyl, C 3-7 heterocycloalkyl, aryl, oxo, hydroxy, C 1-6 alkoxy, C 2-6 alkoxy- carbonyl(C 1 . 6 )alkoxy, aminocarbonyl(C 1-6 )alkoxy, trifluoromethoxy, amino, C 1-6 alkylamino, di(C 1-6 )alkylamino, aminocarbonyl, Cj- alkylaminocarbonyl and
  • Examples of particular substituents on the alkylene chain represented by E include trifluoromethyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, phenyl, oxo, hydroxy, ethoxy, ethoxycarbonylmethoxy, aminocarbonylmethoxy, trifluoromethoxy, amino, methylamino, dimethylamino, aminocarbonyl, methylaminocarbonyl and dimethylamino- carbonyl.
  • Suitable values of E include methylene (-CH 2 -) and (methyl)methylene.
  • E is (methyl)methylene, i.e. -CH(CH 3 )-.
  • E is methylene, i.e. -CH 2 -.
  • Suitable values of Q include oxygen and N-R 4 .
  • Q represents oxygen. In another embodiment, Q represents sulfur. In a further embodiment, Q represents N-R 4 . In a still further embodiment, Q represents a covalent bond.
  • M represents the residue of an optionally substituted saturated five-membered monocyclic ring. In another embodiment, M represents the residue of an optionally substituted saturated six-membered monocyclic ring. In a further embodiment, M represents the residue of an optionally substituted saturated seven-membered monocyclic ring.
  • the monocyclic ring of which M is the residue contains one nitrogen atom and no additional heteroatoms (i.e. it is an optionally substituted pyrrolidin- 1-yl, piperidin-l-yl or hexahydroazepin-l-yl ring).
  • the monocyclic ring of which M is the residue contains one nitrogen atom and one additional heteroatom selected from N, O and S.
  • the monocyclic ring of which M is the residue contains one nitrogen atom and two additional heteroatoms selected from N, O and S, of which not more than one is O or S.
  • the monocyclic ring of which M is the residue contains one nitrogen atom and three additional heteroatoms selected from N, O and S, of which not more than one is O or S.
  • Suitable values of the monocyclic ring of which M is the residue include pyrrolidin-l-yl, imidazolidin-l-yl, piperidin-l-yl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-l-yl and [l,4]diazepan-l-yl, any of which rings may be optionally substituted by one or more substituents.
  • Selected values of the monocyclic ring of which M is the residue include pyrrolidin-l-yl, piperidin-l-yl and morpholin-4-yl, any of which rings may be optionally substituted by one or more substituents.
  • a particular value of the monocyclic ring of which M is the residue is optionally substituted piperazin- 1 -yl.
  • the monocyclic ring of which M is the residue is
  • the monocyclic ring of which M is the residue is substituted by one or more substituents.
  • the monocyclic ring of which M is the residue is substituted by one or more substituents.
  • the monocyclic ring of which M is the residue is monosubstituted. In another subset of that embodiment, the monocyclic ring of which M is the residue is disubstituted.
  • Suitable substituents on the monocyclic ring of which M is the residue include halogen, C 1-6 alkyl, heteroaryl, Ci -6 alkoxy, difluoromethoxy,
  • Additional examples include hydroxy(Ci -6 )alkylcarbonyl, di(Ci -6 )alkylamino(C 1-6 )alkylcarbonyl and (Ci_ 6 )alkyl- carbonylamino(C i -6 )alkyl .
  • Selected examples of suitable substituents on the monocyclic ring of which M is the residue include hydroxy(C 1-6 )alkyl, oxo, C 2-6 alkylcarbonyl, hydroxy(C 1-6 )alkyl- carbonyl, di(C 1-6 )alkylamino(C 1-6 )alkylcarbonyl, carboxy(C 1-6 )alkyl, C 2- alkoxycarbonyl, C 2-6 alkylcarbonylamino, (Ci -6 )alkylcarbonylamino(C 1-6 )alkyl, hydroxy(C 1-6 )alkyl- carbonylamino, (C3.
  • Suitable substituents on the monocyclic ring of which M is the residue include hydroxy(C 1-6 )alkyl, oxo and di(C 1-6 )alky laminocarbonyl.
  • Typical examples of specific substituents on the monocyclic ring of which M is the residue include fluoro, chloro, bromo, methyl, ethyl, isopropyl, pyridinyl, pyrazinyl, methoxy, isopropoxy, difluoromethoxy, trifluoromethoxy, methoxymethyl, methylthio, ethylthio, methylsulphonyl, hydroxy, hydroxymethyl, hydroxyethyl, cyano,
  • aminomethyl aminomethyl, methylamino, ethylamino, dimethylamino, phenylamino, pyridinylamino, acetylamino, hydroxyacetylamino, cyclopropylcarbonylamino, tert-butoxycarbonylamino, methylsulphonylamino, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl and dimethylaminocarbonylmethyl. Additional examples include hydroxy acetyl, dimethylaminoacetyl and acetylaminomethyl.
  • Selected examples of specific substituents on the monocyclic ring of which M is the residue include hydroxyethyl, oxo, acetyl, hydroxyacetyl, dimethylaminoacetyl, carboxymethyl, methoxycarbonyl, acetylamino, acetylaminomethyl, hydroxyacetylamino, cyclopropylcarbonylamino, aminocarbonyl, methylaminocarbonyl, dimethylamino- carbonyl and dimethylaminocarbonylmethyl.
  • Illustrative examples of specific substituents on the monocyclic ring of which M is the residue include hydroxyethyl (especially 2-hydroxyethyl), oxo and dimethylaminocarbonyl.
  • Typical values of the monocyclic ring of which M is the residue include pyrrolidin- 1 -yl, 3-hydroxypyrrolidin- 1 -yl, 3-(acetylamino)pyrrolidin- 1 -yl, 3-(hydroxy- acetylamino)pyrrolidin- 1 -yl, 3 -(cyclopropylcarbonylamino)pyrrolidin- 1 -yl, imidazolidin- 1-yl, 4-(acetylamino)piperidin-l-yl, 4-(methylsulphonylamino)piperidin-l-yl, morpholin- 4-yl, 3-methylmorpholin-4-yl, thiomorpholin-4-yl, l,l-dioxothiomorpholin-4-yl, piperazin-l-yl, 4-(pyridin-2-yl)piperazin-l-yl, 4-(pyrazin-2-yl)piperazin-l-yl, 4- (
  • Additional values include 3-(acetylaminomethyl)pyrrolidin-l-yl, 4-(aminocarbonyl)piperi din- 1-yl, 4- (hydroxyacetyl)piperazin- 1 -yl, 4-(dimethylaminoacetyl)piperazin- 1 -yl, 4-(methylamino- carbonyl)piperazin- 1 -yl and 4-(dimethylaminocarbonyl)piperazin- 1 -yl.
  • Selected values of the monocyclic ring of which M is the residue include 3- (acetylamino)pyrrolidin- 1 -yl, 3 -(acetylaminomethyl)pyrrolidin- 1 -yl, 3 -(hydroxyacetyl- amino)pyrrolidin- 1 -yl, 3 -(cyclopropylcarbonylamino)pyrrolidin- 1 -yl, 4-(acetylamino)- piperidin-l-yl, 4-(aminocarbonyl)piperidin-l-yl, 4-(2-hydroxyethyl)piperazin-l-yl, 3- oxopiperazin- 1 -yl, 4-acetylpiperazin- 1 -yl, 4-(hydroxyacetyl)piperazin- 1 -yl, 4-(dimethyl- aminoacetyl)piperazin- 1 -yl, 4-(carboxymethyl)piperazin- 1 -yl, 4-(me
  • Particular values of the monocyclic ring of which M is the residue include 4-(2- hydroxy ethyl)piperazin- 1 -yl, 3 -oxopiperazin- 1 -yl and 4-(dimethylaminocarbonyl)- piperazin-l-yl.
  • Typical values of R 1 , R 2 and/or R 3 include hydrogen, halogen, C 1-6 alkyl, aryl(Ci -6 )alkyl and Ci -6 alkoxy.
  • R 1 , R 2 and R 3 independently represent hydrogen, fluoro, chloro, bromo, cyano, nitro, methyl, ethyl, trifluoromethyl, benzyl, hydroxy, methoxy, difluoromethoxy, trifluoromethoxy, methylthio, methylsulfinyl, methylsulfonyl, amino, methylamino, dimethylamino, acetylamino, methoxycarbonylamino, methylsulfonylamino, formyl, acetyl, carboxy, methoxycarbonyl, aminocarbonyl, methylaminocarbonyl,
  • R 1 represents hydrogen, halogen, C 1-6 alkyl, aryl(C 1-6 )alkyl or C 1-6 alkoxy.
  • R 1 examples include hydrogen, halogen and C 1-6 alkyl.
  • R 1 represents hydrogen.
  • R 1 represents halogen, particularly fluoro or chloro.
  • R 1 represents fluoro.
  • R 1 represents chloro.
  • R 1 represents Ci- alkyl, particularly methyl or ethyl.
  • R 1 represents methyl.
  • R 1 represents ethyl.
  • R 1 represents aryl(Ci -6 )alkyl, especially benzyl.
  • R 1 represents Ci -6 alkoxy, especially methoxy.
  • R 2 represents hydrogen or halogen.
  • R 2 represents hydrogen. In another embodiment, R 2
  • R 2 represents halogen, particularly fluoro or chloro. In one aspect of that embodiment, R 2 represents fluoro. In another aspect of that embodiment, R 2 represents chloro.
  • R 3 represents hydrogen
  • R 2 and R 3 both represent hydrogen.
  • R 4 represents hydrogen. In another embodiment, R 4 represents C 1-6 alkyl, especially methyl.
  • Suitable values of the group R 4 include hydrogen and methyl.
  • R 5 represents hydrogen or C 1-6 alkyl.
  • R 5 represents hydrogen. In another embodiment, R 5 represents halogen, particularly fluoro or chloro. In one aspect of that embodiment, R 5 represents fluoro. In another aspect of that embodiment, R 5 represents chloro. In a further embodiment, R 5 represents C 1-6 alkyl, especially methyl. In an additional embodiment, R 5 represents C 1-6 alkoxy, especially methoxy.
  • Suitable values of the group R 5 include hydrogen, fluoro, chloro, bromo, methyl and methoxy.
  • R 5 represents hydrogen or methyl.
  • R 5 represents hydrogen.
  • R a represents hydrogen. In another embodiment, R a represents C 1-6 alkyl, especially methyl.
  • Suitable values of R a include hydrogen and methyl.
  • R b represents hydrogen; or Cj -6 alkyl or aryl(C 1- )alkyl, either of which groups may be optionally substituted by one or more substituents.
  • Typical values of R b include hydrogen and Ci -6 alkyl.
  • R b represents hydrogen or trifluoromethyl; or methyl, ethyl, ⁇ -propyl, isopropyl, n-butyl, 2-methylpropyl, fer/-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, phenyl, benzyl, phenylethyl, azetidinyl, tetrahydrofuryl,
  • pyrrolidinylpropyl thiazolidinylmethyl, imidazolidinylethyl, piperidinylmethyl, piperidinylethyl, tetrahydroquinolinylmethyl, piperazinylpropyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, pyridinyl, indolylmethyl, pyrazolylmethyl, pyrazolylethyl, imidazolylmethyl, imidazolylethyl, benzimidazolylmethyl, triazolylmethyl, pyridinylmethyl or pyridinylethyl, any of which groups may be optionally substituted by one or more substituents.
  • Suitable substituents on R b include halogen, C 1-6 alkyl, C 1-6 alkoxy, difluoromethoxy, trifluoromethoxy, C 1-6 alkoxy(C 1-6 )alkyl, C 1-6 alkylthio, Ci -6 alkylsulphonyl, hydroxy, hydroxy(C 1-6 )alkyl, amino(Ci -6 )alkyl, cyano, trifluoromethyl, oxo, C 2- 6 alkylcarbonyl, carboxy, C 2-6 alkoxy carbonyl, amino, C 1-6 alkylamino, di(Ci -6 )- alkylamino, phenylamino, pyridinylamino, C 2-6 alkylcarbonylamino, C 2-6 alkoxycarbonyl- amino and aminocarbonyl.
  • Typical examples of specific substituents on R b include fluoro, chloro, bromo, methyl, ethyl, isopropyl, methoxy, isopropoxy, difluoromethoxy, trifluoromethoxy, mefhoxymethyl, methylthio, ethylthio, methylsulphonyl, hydroxy, hydroxymethyl, hydroxyethyl, aminomethyl, cyano, trifluoromethyl, oxo, acetyl, carboxy,
  • R b represents hydrogen. In another embodiment, R b represents d.6 alkyl, especially methyl. In a further embodiment, R b represents optionally substituted aryl(C 1-6 )alkyl. In one aspect of that embodiment, R represents methoxy- benzyl.
  • R c represents hydrogen or C 1-6 alkyl.
  • R c is hydrogen.
  • R c represents C 1-6 alkyl, especially methyl or ethyl, particularly methyl.
  • R c represents C 3-7 cycloalkyl, e.g. cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • One sub-class of compounds according to the invention is represented by the compounds of formula (IIA) and N-oxides thereof, and pharmaceutically acceptable salts and solvates thereof:
  • the present invention also provides a pharmaceutical composition which comprises a compound in accordance with the invention as described above, or a pharmaceutically acceptable salt or solvate thereof, in association with one or more pharmaceutically acceptable carriers.
  • compositions according to the invention may take a form suitable for oral, buccal, parenteral, nasal, topical, ophthalmic or rectal administration, or a form suitable for administration by inhalation or insufflation.
  • compositions may take the form of, for example, tablets, lozenges or capsules prepared by conventional means with
  • binding agents e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methyl cellulose
  • fillers e.g. lactose, microcrystalline cellulose or calcium hydrogenphosphate
  • lubricants e.g. magnesium stearate, talc or silica
  • disintegrants e.g. potato starch or sodium glycollate
  • wetting agents e.g. sodium lauryl sulphate.
  • the tablets may be coated by methods well known in the art.
  • Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use.
  • Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles or preservatives.
  • the preparations may also contain buffer salts, flavouring agents, colouring agents or sweetening agents, as appropriate.
  • Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
  • compositions may take the form of tablets or lozenges formulated in conventional manner.
  • the compounds of formula (I) may be formulated for parenteral administration by injection, e.g. by bolus injection or infusion.
  • Formulations for injection may be presented in unit dosage form, e.g. in glass ampoules or multi-dose containers, e.g. glass vials.
  • the compositions for injection may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, preserving and/or dispersing agents.
  • the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use.
  • the compounds of formula (I) may also be formulated as a depot preparation. Such long-acting formulations may be administered by implantation or by intramuscular injection.
  • the compounds according to the present invention may be conveniently delivered in the form of an aerosol spray presentation for pressurised packs or a nebuliser, with the use of a suitable propellant, e.g. dichlorodifluoromethane, fluorotrichloromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.
  • a suitable propellant e.g. dichlorodifluoromethane, fluorotrichloromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.
  • compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient.
  • the pack or dispensing device may be accompanied by instructions for administration.
  • the compounds of use in the present invention may be conveniently formulated in a suitable ointment containing the active component suspended or dissolved in one or more pharmaceutically acceptable carriers.
  • Particular carriers include, for example, mineral oil, liquid petroleum, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax and water.
  • the compounds of use in the present invention may be formulated in a suitable lotion containing the active component suspended or dissolved in one or more pharmaceutically acceptable carriers.
  • Particular carriers include, for example, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, benzyl alcohol, 2-octyldodecanol and water.
  • the compounds of use in the present invention may be conveniently formulated as micronized suspensions in isotonic, pH-adjusted sterile saline, either with or without a preservative such as a bactericidal or fungicidal agent, for example phenylmercuric nitrate, benzylalkonium chloride or chlorhexidine acetate.
  • a bactericidal or fungicidal agent for example phenylmercuric nitrate, benzylalkonium chloride or chlorhexidine acetate.
  • ophthalmic administration compounds may be formulated in an ointment such as petrolatum.
  • the compounds of use in the present invention may be conveniently formulated as suppositories. These can be prepared by mixing the active component with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and so will melt in the rectum to release the active component.
  • suitable non-irritating excipient include, for example, cocoa butter, beeswax and polyethylene glycols.
  • daily dosages may range from around 10 ng/kg to 1000 mg/kg, typically from 100 ng/kg to 100 mg/kg, e.g. around 0.01 mg/kg to 40 mg/kg body weight, for oral or buccal administration, from around 10 ng/kg to 50 mg/kg body weight for parenteral administration, and from around 0.05 mg to around 1000 mg, e.g. from around 0.5 mg to around 1000 mg, for nasal administration or administration by inhalation or insufflation.
  • the compounds of formula (I) above wherein Q represents oxygen, sulphur or N-R 4 may be prepared by a process which comprises reacting a compound of formula (III) with a compound of formula (IV):
  • Q 1 represents oxygen, sulphur or N-R 4
  • L 1 represents a suitable leaving group
  • E, M, W, R 1 , R 2 , R 3 , R 4 , R a , R b and R c are as defined above.
  • the leaving group L 1 is typically a halogen atom, e.g. bromo or iodo.
  • the reaction is conveniently effected at ambient or elevated temperature in a suitable solvent, e.g. N, N-dimethylformamide or acetonitrile.
  • a suitable solvent e.g. N, N-dimethylformamide or acetonitrile.
  • the reaction may be performed in the presence of a suitable base, e.g. an inorganic base such as potassium carbonate, cesium carbonate, sodium hydride or aqueous sodium hydroxide.
  • E, M, W, R 1 , R 2 and R 3 are as defined above; by bromination or iodination.
  • the bromination reaction is conveniently effected by stirring compound (V) with an appropriate brominating agent, e.g. phosphorus tribromide, in a suitable solvent, e.g. a halogenated hydrocarbon such as dichloromethane.
  • an appropriate brominating agent e.g. phosphorus tribromide
  • a suitable solvent e.g. a halogenated hydrocarbon such as dichloromethane.
  • the iodination reaction is conveniently effected by stirring compound (V) with an appropriate iodinating agent, e.g. elemental iodine, in a suitable solvent, e.g. a halogenated hydrocarbon such as dichloromethane, typically in the presence of triphenylphosphine and imidazole.
  • an appropriate iodinating agent e.g. elemental iodine
  • a suitable solvent e.g. a halogenated hydrocarbon such as dichloromethane
  • triphenylphosphine and imidazole e.g. a halogenated hydrocarbon
  • the reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. a halogenated solvent such as carbon tetrachloride, in the presence of a suitable brominating agent, e.g. N-bromosuccinimide, typically in the presence of a catalyst such as benzoyl peroxide.
  • a suitable solvent e.g. a halogenated solvent such as carbon tetrachloride
  • a suitable brominating agent e.g. N-bromosuccinimide
  • a catalyst such as benzoyl peroxide.
  • the compounds of formula (I) wherein Q represents oxygen may be prepared by a process which comprises reacting a compound of formula (V) as defined above with a compound of formula (VII):
  • the leaving group L 2 is typically a halogen atom, e.g. chloro or bromo.
  • reaction is conveniently effected by stirring compounds (V) and (VII) at an elevated temperature in a suitable solvent, e.g. N,N-dimethylformamide or 1,4-dioxane, typically under basic conditions, e.g. in the presence of an inorganic base such as sodium hydride.
  • a suitable solvent e.g. N,N-dimethylformamide or 1,4-dioxane
  • an inorganic base such as sodium hydride
  • the reaction is conveniently effected by stirring compounds (VII) and (VIII) in a suitable solvent, e.g. a lower alkanol such as methanol, typically under basic conditions, e.g. in the presence of an alkali metal alkoxide such as sodium methoxide.
  • a suitable solvent e.g. a lower alkanol such as methanol
  • an alkali metal alkoxide such as sodium methoxide.
  • the intermediates of formula (VIII) may typically be prepared by treating a suitable compound of formula (III) above with thiolacetic acid; followed by treatment of the resulting compound with a base, e.g. an alkali metal alkoxide such as sodium methoxide.
  • a base e.g. an alkali metal alkoxide such as sodium methoxide.
  • the compounds of formula (I) wherein Q represents N-R 4 may be prepared by a process which comprises reacting a compound of formula (VII) as defined above with a compound of formula (IX):
  • the reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. tetrahydrofuran, «-butanol, 1 -methyl-2-pyrrolidinone (NMP) or 1,4-dioxane.
  • a suitable solvent e.g. tetrahydrofuran, «-butanol, 1 -methyl-2-pyrrolidinone (NMP) or 1,4-dioxane.
  • NMP 1 -methyl-2-pyrrolidinone
  • 1,4-dioxane 1,4-dioxane.
  • the reaction may be performed in the presence of a suitable base, e.g. an organic base such as N,N-diisopropylethylamine.
  • they may be prepared by treating a suitable compound of formula (III) above with sodium azide; followed by treatment of the resulting compound with triphenylphosphine.
  • the compounds of formula (I) wherein E represents methylene and Q represents N-R 4 may be prepared by a process which comprises reacting a compound of formula (IV) wherein Q 1 represents N-R 4 with a compound of formula (X):
  • M, W, R 1 , R 2 and R 3 are as defined above; under reducing conditions.
  • the reaction is conveniently effected by stirring the reactants at an elevated temperature in a suitable solvent, e.g. a cyclic ether such as tetrahydrofuran, in the presence of a reducing agent.
  • a suitable reducing agent comprises a mixture of di-n- butyltin dichloride and phenylsilane.
  • the intermediates of formula (IX) wherein E represents methylene and R 4 represents C 1-6 alkyl, e.g. methyl may be prepared by treating a suitable compound of formula (X) above with a C 1-6 alkylamine, e.g. methylamine, in the presence of titanium(IV) n-propoxide and a base, e.g. an organic base such as N,N-diisopropylamine; followed by treatment of the resulting compound with a reducing agent, e.g. sodium triacetoxyborohydride.
  • a suitable compound of formula (X) above e.g. methylamine
  • a base e.g. an organic base such as N,N-diisopropylamine
  • the intermediates of formula (V) wherein E represents methylene may be prepared from the corresponding compound of formula (X) by treatment with a reducing agent, e.g. sodium borohydride.
  • a reducing agent e.g. sodium borohydride.
  • the intermediates of formula (V), (VIII) and (IX) may be prepared by reacting a compound of formula (XI) with a compound of formula (XII):
  • the leaving group L 3 is typically a halogen atom, e.g. chloro.
  • the reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. tetrahydrofuran, /7-butanol, l-methyl-2-pyrrolidinone (NMP) or ethylene glycol dimethyl ether (DME).
  • a suitable solvent e.g. tetrahydrofuran, /7-butanol, l-methyl-2-pyrrolidinone (NMP) or ethylene glycol dimethyl ether (DME).
  • NMP l-methyl-2-pyrrolidinone
  • DME ethylene glycol dimethyl ether
  • the intermediates of formula (XI) wherein E represents methylene and Q 1 represents NH may be prepared by a three-step procedure which comprises: (i) treating a suitable compound of formula (XIII) above with 2-methyl-2-propanesulfinamide in the presence of titanium(IV) isopropoxide; (ii) reaction of the resulting compound with a reducing reagent, e.g. sodium borohydride; and (iii) treatment of the resulting compound with a mineral acid, e.g. hydrochloric acid.
  • any compound of formula (I) initially obtained from any of the above processes may, where appropriate, subsequently be elaborated into a further compound of formula (I) by techniques known from the art.
  • a compound of formula (I) which contains an ester moiety e.g. methoxycarbonyl or ethoxycarbonyl
  • the desired product can be separated therefrom at an appropriate stage by conventional methods such as preparative HPLC; or column chromatography utilising, for example, silica and/or alumina in conjunction with an appropriate solvent system.
  • the diastereomers may then be separated by any convenient means, for example by crystallisation, and the desired enantiomer recovered, e.g. by treatment with an acid in the instance where the diastereomer is a salt.
  • a racemate of formula (I) may be separated using chiral HPLC.
  • a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described above.
  • a particular enantiomer may be obtained by performing an enantiomer-specific enzymatic biotransformation, e.g. an ester hydrolysis using an esterase, and then purifying only the enantiomerically pure hydrolysed acid from the unreacted ester antipode.
  • the compounds in accordance with this invention potently inhibit the activity of human PI3Ka and/or ⁇ 3 ⁇ and/or ⁇ 3 ⁇ and/or PI3K6.
  • THF tetrahydrofuran
  • TFA trifluoroacetic acid
  • Si0 2 silica h: hour
  • reaction mixture was washed with 2M aqueous NaOH solution (2 x 5 mL) and water (2 x 5 mL).
  • the organic phase was separated and dried (MgS0 4 ), and the solvent was removed in vacuo, to afford the title compound (146 mg, 51%) as a yellow gum.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention concerne une série de dérivés de 2-amino-9H-purin-6-yle substitués, étant des inhibiteurs sélectifs d'enzymes kinase PI3, et qui sont en conséquence bénéfiques en médecine, par exemple dans le traitement d'affections inflammatoires, auto-immunes, cardiovasculaires, neurodégénératives, métaboliques, oncologiques, nociceptives ou ophtalmiques.
PCT/EP2010/067307 2009-11-12 2010-11-11 Dérivés d'aminopurine en tant qu'inhibiteurs de kinase WO2011058111A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0919821A GB0919821D0 (en) 2009-11-12 2009-11-12 Therapeutic agents
GB0919821.9 2009-11-12
GBGB1012100.2A GB201012100D0 (en) 2010-07-19 2010-07-19 Therapeutic agents
GB1012100.2 2010-07-19

Publications (1)

Publication Number Publication Date
WO2011058111A1 true WO2011058111A1 (fr) 2011-05-19

Family

ID=43413948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/067307 WO2011058111A1 (fr) 2009-11-12 2010-11-11 Dérivés d'aminopurine en tant qu'inhibiteurs de kinase

Country Status (1)

Country Link
WO (1) WO2011058111A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003271A1 (fr) * 2010-07-02 2012-01-05 Amgen Inc. Composés hétérocycliques et leur utilisation comme inhibiteurs de l'activité pi3k
US8940752B2 (en) 2009-06-29 2015-01-27 Incyte Corporation Pyrimidinones as PI3K inhibitors
US9062055B2 (en) 2010-06-21 2015-06-23 Incyte Corporation Fused pyrrole derivatives as PI3K inhibitors
US9096600B2 (en) 2010-12-20 2015-08-04 Incyte Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9108984B2 (en) 2011-03-14 2015-08-18 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as PI3K inhibitors
US9126948B2 (en) 2011-03-25 2015-09-08 Incyte Holdings Corporation Pyrimidine-4,6-diamine derivatives as PI3K inhibitors
US9193721B2 (en) 2010-04-14 2015-11-24 Incyte Holdings Corporation Fused derivatives as PI3Kδ inhibitors
US9199982B2 (en) 2011-09-02 2015-12-01 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9309251B2 (en) 2012-04-02 2016-04-12 Incyte Holdings Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US9403847B2 (en) 2009-12-18 2016-08-02 Incyte Holdings Corporation Substituted heteroaryl fused derivatives as P13K inhibitors
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US10336759B2 (en) 2015-02-27 2019-07-02 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
WO2023016477A1 (fr) * 2021-08-11 2023-02-16 Taizhou Eoc Pharma Co., Ltd. Inhibiteur de kinases cycline-dépendantes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118454A2 (fr) 2007-03-23 2008-10-02 Amgen Inc. Composés hétérocycliques et leurs utilisations
WO2008118455A1 (fr) 2007-03-23 2008-10-02 Amgen Inc. Dérivés de quinoléine ou quinoxaline 3-substituée et leur utilisation en tant qu'inhibiteurs de phosphatidylinositol 3-kinase (pi3k)
WO2008118468A1 (fr) 2007-03-23 2008-10-02 Amgen Inc. Composés hétérocycliques et leurs utilisations
WO2009081105A2 (fr) 2007-12-21 2009-07-02 Ucb Pharma S.A. Dérivés de quinoxaline et de quinoléine en tant qu'inhibiteurs de kinase
WO2010036380A1 (fr) 2008-09-26 2010-04-01 Intellikine, Inc. Inhibiteurs hétérocycliques de kinases
WO2010046639A1 (fr) 2008-10-24 2010-04-29 Ucb Pharma S.A. Dérivés de pyridine fusionnés comme inhibiteurs de kinases
WO2010092340A1 (fr) 2009-02-13 2010-08-19 Ucb Pharma S.A. Dérivés condensés de pyridine et de pyrazine en tant qu'inhibiteurs de kinases
WO2010100405A1 (fr) 2009-03-06 2010-09-10 Ucb Pharma S.A. Dérivés de triazine en tant qu'inhibiteurs de kinases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118454A2 (fr) 2007-03-23 2008-10-02 Amgen Inc. Composés hétérocycliques et leurs utilisations
WO2008118455A1 (fr) 2007-03-23 2008-10-02 Amgen Inc. Dérivés de quinoléine ou quinoxaline 3-substituée et leur utilisation en tant qu'inhibiteurs de phosphatidylinositol 3-kinase (pi3k)
WO2008118468A1 (fr) 2007-03-23 2008-10-02 Amgen Inc. Composés hétérocycliques et leurs utilisations
WO2009081105A2 (fr) 2007-12-21 2009-07-02 Ucb Pharma S.A. Dérivés de quinoxaline et de quinoléine en tant qu'inhibiteurs de kinase
WO2010036380A1 (fr) 2008-09-26 2010-04-01 Intellikine, Inc. Inhibiteurs hétérocycliques de kinases
WO2010046639A1 (fr) 2008-10-24 2010-04-29 Ucb Pharma S.A. Dérivés de pyridine fusionnés comme inhibiteurs de kinases
WO2010092340A1 (fr) 2009-02-13 2010-08-19 Ucb Pharma S.A. Dérivés condensés de pyridine et de pyrazine en tant qu'inhibiteurs de kinases
WO2010100405A1 (fr) 2009-03-06 2010-09-10 Ucb Pharma S.A. Dérivés de triazine en tant qu'inhibiteurs de kinases

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Protective Groups in Organic Chemistry", 1973, PLENUM PRESS
GRAY ET AL., ANAL. BIOCHEM., vol. 313, 2003, pages 234 - 245
M.P. WYMANN ET AL., TRENDS IN PHARMACOL. SCI., vol. 24, 2003, pages 366 - 376
S. BRADER; S.A. ECCLES, TUMORI, vol. 90, 2004, pages 2 - 8
S. WARD ET AL., CHEMISTRY & BIOLOGY, vol. 10, 2003, pages 207 - 213
S.G. WARD; P. FINAN, CURRENT OPINION IN PHARMACOLOGY, vol. 3, 2003, pages 426 - 434
T.W. GREENE; P.G.M. WUTS: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401280B2 (en) 2009-06-29 2022-08-02 Incyte Holdings Corporation Pyrimidinones as PI3K inhibitors
US8940752B2 (en) 2009-06-29 2015-01-27 Incyte Corporation Pyrimidinones as PI3K inhibitors
US9975907B2 (en) 2009-06-29 2018-05-22 Incyte Holdings Corporation Pyrimidinones as PI3K inhibitors
US10428087B2 (en) 2009-06-29 2019-10-01 Incyte Corporation Pyrimidinones as PI3K inhibitors
US9434746B2 (en) 2009-06-29 2016-09-06 Incyte Corporation Pyrimidinones as PI3K inhibitors
US10829502B2 (en) 2009-06-29 2020-11-10 Incyte Corporation Pyrimidinones as PI3K inhibitors
US9403847B2 (en) 2009-12-18 2016-08-02 Incyte Holdings Corporation Substituted heteroaryl fused derivatives as P13K inhibitors
US9193721B2 (en) 2010-04-14 2015-11-24 Incyte Holdings Corporation Fused derivatives as PI3Kδ inhibitors
US9062055B2 (en) 2010-06-21 2015-06-23 Incyte Corporation Fused pyrrole derivatives as PI3K inhibitors
WO2012003271A1 (fr) * 2010-07-02 2012-01-05 Amgen Inc. Composés hétérocycliques et leur utilisation comme inhibiteurs de l'activité pi3k
US9815839B2 (en) 2010-12-20 2017-11-14 Incyte Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9527848B2 (en) 2010-12-20 2016-12-27 Incyte Holdings Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9096600B2 (en) 2010-12-20 2015-08-04 Incyte Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9108984B2 (en) 2011-03-14 2015-08-18 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as PI3K inhibitors
US9126948B2 (en) 2011-03-25 2015-09-08 Incyte Holdings Corporation Pyrimidine-4,6-diamine derivatives as PI3K inhibitors
US10646492B2 (en) 2011-09-02 2020-05-12 Incyte Corporation Heterocyclylamines as PI3K inhibitors
US11819505B2 (en) 2011-09-02 2023-11-21 Incyte Corporation Heterocyclylamines as PI3K inhibitors
US11433071B2 (en) 2011-09-02 2022-09-06 Incyte Corporation Heterocyclylamines as PI3K inhibitors
US9199982B2 (en) 2011-09-02 2015-12-01 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US10092570B2 (en) 2011-09-02 2018-10-09 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9707233B2 (en) 2011-09-02 2017-07-18 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US10376513B2 (en) 2011-09-02 2019-08-13 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9730939B2 (en) 2011-09-02 2017-08-15 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9944646B2 (en) 2012-04-02 2018-04-17 Incyte Holdings Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US9309251B2 (en) 2012-04-02 2016-04-12 Incyte Holdings Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US10259818B2 (en) 2012-04-02 2019-04-16 Incyte Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US10479803B2 (en) 2014-06-11 2019-11-19 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US11130767B2 (en) 2014-06-11 2021-09-28 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US11999751B2 (en) 2014-06-11 2024-06-04 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US10336759B2 (en) 2015-02-27 2019-07-02 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US11084822B2 (en) 2015-02-27 2021-08-10 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US12024522B2 (en) 2015-02-27 2024-07-02 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US10125150B2 (en) 2015-05-11 2018-11-13 Incyte Corporation Crystalline forms of a PI3K inhibitor
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
WO2023016477A1 (fr) * 2021-08-11 2023-02-16 Taizhou Eoc Pharma Co., Ltd. Inhibiteur de kinases cycline-dépendantes

Similar Documents

Publication Publication Date Title
EP2499144B1 (fr) Dérivés quinoline et quinoxaline en tant qu' inhibiteurs de kinase
WO2011058111A1 (fr) Dérivés d'aminopurine en tant qu'inhibiteurs de kinase
EP2499129B1 (fr) Dérivés de quinoléine et de quinoxaline en tant qu'inhibiteurs de kinase
EP2499126B1 (fr) Derivés bicycliques de pyridine et pyrazine en tant qu' inhibiteurs de kinase
WO2011058109A1 (fr) Dérivés de pyrrole et d'imidazole bicycliques condensés en tant qu'inhibiteurs de kinase
US20120095005A1 (en) Fused Bicyclic Pyrazole Derivatives As Kinase Inhibitors
US10221135B2 (en) 1,4-substituted piperidine derivatives
ES2598358T3 (es) Derivados de quinolina como inhibidores de PI3K quinasa
US8785628B2 (en) Triazine derivatives as kinase inhibitors
US8633206B2 (en) Pyrrolo[2,3-D]pyrimidine compounds
US8604051B2 (en) Thieno-pyridine derivatives as MEK inhibitors
US8653272B2 (en) Fused pyridine derivatives as kinase inhibitors
US11370796B2 (en) Substituted pyrazoles as LRRK2 inhibitors
KR102680160B1 (ko) 심부전의 치료를 위한 rock의 5원-아미노헤테로사이클 및 5,6- 또는 6,6-원 비시클릭 아미노헤테로시클릭 억제제
US20080318949A1 (en) Pyrazolopyrimidinone Derivatives, Their Preparation And Their Use
WO2010061180A1 (fr) Dérivés de quinoléine en tant qu’inhibiteurs de pi3-kinase
WO2011058112A1 (fr) Dérivés de pyrazole bicycliques condensés en tant qu'inhibiteurs de kinase
US20240051946A1 (en) Targeted protein degradation of parp14 for use in therapy
US20240101540A1 (en) Targeted protein degradation of parp14 for use in therapy
TW202417434A (zh) 用於治療之parp14之靶向蛋白質降解

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777002

Country of ref document: EP

Kind code of ref document: A1