WO2011055905A2 - System and method for space-adaptive wireless power transmission using evanescent wave resonance - Google Patents

System and method for space-adaptive wireless power transmission using evanescent wave resonance Download PDF

Info

Publication number
WO2011055905A2
WO2011055905A2 PCT/KR2010/006447 KR2010006447W WO2011055905A2 WO 2011055905 A2 WO2011055905 A2 WO 2011055905A2 KR 2010006447 W KR2010006447 W KR 2010006447W WO 2011055905 A2 WO2011055905 A2 WO 2011055905A2
Authority
WO
WIPO (PCT)
Prior art keywords
coil
resonant coil
power
resonant
transmitter
Prior art date
Application number
PCT/KR2010/006447
Other languages
French (fr)
Korean (ko)
Other versions
WO2011055905A3 (en
Inventor
박영진
이순우
강지명
김진욱
김관호
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100090388A external-priority patent/KR101197579B1/en
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to US13/508,345 priority Critical patent/US9786430B2/en
Publication of WO2011055905A2 publication Critical patent/WO2011055905A2/en
Publication of WO2011055905A3 publication Critical patent/WO2011055905A3/en
Priority to US14/975,044 priority patent/US20160104570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices

Definitions

  • the present invention relates to a wireless power transmission system and method using the magnetic resonance (or resonance) of the attenuation wave generated around the wireless power transmission coil, in particular, the power receiver resonant coil to have the same resonance frequency as the power transmitter resonant coil
  • the magnetic field coupling between the transmitting resonant coil and the receiving resonant coil should be configured and positioned on a plane having a vertical or arbitrary angle so that the power receiver has a vertical or arbitrary angle even when the power transmission unit and the central axis are not in a straight line.
  • a space-adaptive self-resonant wireless power transmission system capable of reliably receiving power by bringing electronic devices, such as a mobile phone with a built-in power receiver device coil, near the power transmission unit so that power transmission can be efficiently performed; It is about a method.
  • Korean Patent Registration No. 10-0809461 discloses a configuration for increasing a power reception distance by using an electromagnetic amplification repeater using LC resonance.
  • a LC resonance is performed by using a variable capacitor in a solenoid type coil wound around a magnetic body to increase magnetic flux.
  • This method uses a separate LC resonant coil in the transmitter and receiver, unlike the conventional electromagnetic induction.
  • transmission distance and efficiency can be increased.
  • the invention disclosed herein uses a variable capacitor to tune the resonant frequencies of the transmit and receive resonant coils.
  • what has been dealt with in this prior patent discloses wireless power transmission using only a parallel arrangement between resonant coils, which makes it difficult to apply to various real life.
  • US Patent Publication No. US2009-0153273A1 proposes a method for improving transmission distance and efficiency by using a separate resonance coil between transmission and reception so that the arrangement of transmission and reception is identical.
  • this method is for the case of a one-line array in consideration of the coupling constant between coils, and all resonant coils exist on the same plane. When all the resonant coils exist in the same plane, the coupling constant between the coils is lowered and the transmission efficiency is lowered.
  • an object of the present invention is to solve the above-described problems, and an object of the present invention is to provide a quantitative and quantitative characteristic for magnetic resonance coils in which magnetic resonance of attenuation waves occurring around a wireless power transmission coil occurs.
  • an object of the present invention is to provide a quantitative and quantitative characteristic for magnetic resonance coils in which magnetic resonance of attenuation waves occurring around a wireless power transmission coil occurs.
  • the present invention provides a space adaptive self-resonant wireless power transmission system and method for providing a power transmission method.
  • the space-adaptive type adopts a helical or spiral coil for overcoming the spatial limitations of the parallel arrangement through the vertical or arbitrary angle arrangement of the resonant coils, and for resonant transmission and reception of the resonant coils in an open form.
  • a self-resonant wireless power transmission system and method are provided.
  • the wireless power transmission method using the magnetic resonance of the attenuation wave generated around the coil for achieving the above object, the transmission unit in the electromagnetic coil induction method Transferring power to the resonant coil; Transferring power from the transmitter resonant coil to a receiver resonant coil having the same resonance frequency as the transmitter resonant coil according to magnetic resonance coupling; And transmitting electric power from the power receiver resonant coil to the device coil of the electronic device in an electromagnetic induction manner, wherein the power transmitter resonant coil and the power receiver resonant coil are arranged perpendicular to each other or inclined at a predetermined angle.
  • the self-resonant wireless power transmission method the step of transferring the power from the source coil to the transmission unit resonant coil in an electromagnetic induction method; Transferring power from the transmitter resonant coil to a relay resonant coil having the same resonance frequency as the transmitter resonant coil according to magnetic resonance coupling; Transferring power from the relay resonant coil to a power receiver resonant coil having the same resonance frequency as the relay resonant coil according to a magnetic resonance mechanism; And transferring electric power from the power receiver resonant coil to the device coil of the electronic device in an electromagnetic induction manner, wherein the relay resonant coil is inclined perpendicularly or at an angle to the power transmitter resonant coil and the power receiver resonant coil. Characterized in that it is arranged.
  • the self-resonant wireless power transmission system according to another aspect of the present invention, a source coil for receiving power from the source; A transmission unit resonant coil receiving electric power from the source coil in an electromagnetic induction manner; And a power receiver resonant coil that receives power from the power transmitter resonant coil at the same resonance frequency as the power transmitter resonant coil according to self resonance coupling, wherein the power transmitter resonant coil and the power receiver resonant coil It is arranged vertically or inclined at an angle, characterized in that the power receiver resonant coil transfers power to the device coil of the electronic device in an electromagnetic induction manner.
  • the self-resonant wireless power transmission system includes a source coil receiving power from a source; A transmission unit resonant coil receiving electric power from the source coil in an electromagnetic induction manner; A relay resonant coil receiving electric power from the transmitter resonant coil at the same resonance frequency as the transmitter resonant coil according to a magnetic resonance mechanism; And a power receiver resonant coil receiving power from the relay resonant coil at the same resonance frequency as the relay resonant coil according to magnetic resonance coupling, wherein the relay resonant coil includes the power transmitter resonant coil and the power receiver resonator. It is arranged perpendicular to the coil or inclined at an angle, characterized in that the power receiver resonant coil transfers power to the device coil of the electronic device in an electromagnetic induction manner.
  • the apparatus may further include a circuit for impedance matching between the source and the source coil, or between the device coil and a rectifier circuit or a load.
  • a device such as a lumped inductor or a capacitor may be connected to both ends of the magnetic resonance coil and the relay resonant coil, or to an intermediate portion of the relay resonance coil. At this time, it is recommended that parasitic resistances of the inductor and the capacitor be less than a few ohms.
  • Such devices include high Q lumped-inductors and capacitors having high Q values.
  • a structure capable of providing precise capacitor values such as coaxial lines may be used.
  • the capacitance value of the capacitor used herein preferably has a value of 100 pF or more in combination with the capacitor made in the coil in order to prevent the capacitor from changing due to the contact between the human body and the foreign material and the resonance frequency.
  • Q-factor quality factor
  • the additionally attached capacitor can be used for fine tuning of the resonance frequency.
  • accurate resonant frequency tuning of the transmit and receive resonant coils can directly affect power transfer. Therefore, in order to maximize the efficiency of the system, the resonant frequency should be adjusted to be the same, but in actual production, even if they have the same structure, the resonant frequency varies according to the parasitic effect.
  • the resonant frequency duplexing process for these devices is essential.
  • a capacitor may be fixed and an inductor having a low loss or high Q value may be used.
  • the electronic device may operate an internal circuit using the power induced by the device coil, or may rectify the power induced by the device coil to charge the battery.
  • the power transmitter resonant coil is installed inside an insulator wall, and the power receiver resonant coil is installed inside a desk or table or the space around the insulator wall, inside another insulator wall, inside a pad, or inside a container. All of the electronics around the resonant coil can be powered.
  • the space-adaptive self-resonant wireless power transmission system and method according to the present invention it is possible to overcome the limitations of the practical application of power transmission through the existing parallel arrangement (when the center axis of the transmitting and receiving coils coincide).
  • the existing parallel arrangement when the distance between transmission and reception increases, there is an obstacle between transmission and reception, or in parallel with transmission and reception (when the coil axes coincide) due to space constraints between transmission and reception. Since the relay coil often cannot be placed, the application is limited in situations where it is difficult to receive power in a parallel arrangement.
  • the entire disadvantage of the transmission part may be eliminated since the entire transmission part is embedded in the wall or invisible. That is, the arrangement of the resonant coil can be configured to suit the surrounding environment, thereby improving the power transmission distance and improving the power transmission efficiency.
  • the magnetic resonance method uses characteristics that are not significantly affected by obstacles such as walls, water, etc., and the power transmission unit resonant coil can be placed at any desired location because the space where power is transmitted can be determined as the position of the power receiver resonance coil. Can be installed and used.
  • the power receiver resonant coil is a helical or spiral coil that is located alone, so that the wires do not need to be additionally connected, and thus may be embedded in a desk or the floor.
  • 1 is an equivalent circuit of a space adaptive self-resonant wireless power transmission system according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a power transmission method in a space adaptive self-resonant wireless power transmission system according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining a space-adaptive magnetic resonance wireless power transmission system according to another embodiment of the present invention.
  • FIG. 4 is a diagram for describing a magnetic field pattern in the vertical arrangement of the transmission and reception resonant coil as shown in FIG. 2.
  • FIG. 5 is an S parameter result seen through the simulation of FIG. 4.
  • FIG. 6 is a diagram for describing a magnetic field pattern when there is a relay resonant coil arranged vertically with respect to the transmission and reception resonant coil as shown in FIG. 3.
  • FIG. 7 shows changes over time of attenuation wave modes in each resonant coil with respect to the case of using the relay resonant coil.
  • FIG. 8A illustrates a coordinate system in which a power transmission unit resonant coil and a power reception unit resonant coil are disposed vertically.
  • 8B is a view for explaining a change in efficiency as the power receiving unit resonant coil is changed to the z-axis.
  • FIG. 9 is a variation of FIG. 2, and illustrates a structure in which the transmission and reception resonant coils are not present on the same plane so that their central axes are parallel but the central axes do not coincide.
  • FIG. 10 is a modification of FIG. 3, in which a relay resonant coil may not be coplanar with the transmitter resonant coil and the receiver resonant coil, and may be arranged such that the central axes thereof are parallel but the central axes do not coincide. Indicates.
  • 11 is a helical coil fabricated to have a resonant frequency at 900 kHz.
  • FIG. 12 is a view showing a region (3dB boundary line) where power transmission efficiency of 50% is seen when the resonant coil shown in FIG. 11 is used in the transmitter and receiver.
  • 13 to 17 are examples of applications in which the transmission and reception resonant coils 114 and 121 are arranged in a vertical or arbitrary angle rather than in a parallel arrangement to increase utilization in real life.
  • FIG. 1 is an equivalent circuit of a space-adaptive magnetic resonance wireless power transmission system 100 according to an embodiment of the present invention.
  • a space-adaptive magnetic resonance wireless power transmission system 100 includes a power transmitter 110 and a power receiver 120, and the power transmitter 110 is a source.
  • the power receiver includes a resonant coil 121, a device coil 122, a rectifier circuit 123, and a load 124.
  • the transmitter resonant coil 114 and the receiver resonant coil 121 may be formed of a Litz wire, or the like, and may have various shapes in addition to the helical or spiral shape, and may be made of a superconductor material to reduce electrical resistance. .
  • a predetermined wire may be wound around a predetermined magnetic material.
  • the power transmitter resonant coil 114 and the power receiver resonant coil 121 may have a constant capacitance component, and if necessary, a device such as a lumped capacitor or inductor having a predetermined capacitor or inductance having a high Q value may be used.
  • a capacitor or an inductor connected to the transmitter resonant coil 114 or the receiver resonant coil 121 may have both electrodes connected between both ends of the coil, but is not limited thereto. Connecting only one of the electrodes to both ends of the resonant coil 114/121 (which may be both ends, or may be either end).
  • the total capacitor (Ct) of each resonant coil is composed of a capacitor (Co) by the coil itself and a capacitor (Ca) additionally attached for resonant frequency tuning and external influence reduction (only Ct is shown in the figure).
  • the capacitances of Co and Ca add up to 10 nF or less.
  • the present invention is not limited thereto, and the capacitance sum of Co and Ca may be 100pF or less or 10nF or more, depending on the system environment.
  • the energy transfer mechanism is as follows. Power supplied from the source 111 is applied to the source coil 113 via the source 111 and the matching circuit 112. According to the time-varying current applied through the matching circuit 112, the source coil 113 transfers power to the power transmission unit resonant coil 114 in an electromagnetic induction manner.
  • the transmitter resonant coil 114 stores power through self-resonance, and when there is a receiver resonant coil 121 having the same resonant frequency, energy is transmitted through the attenuation wave magnetic field resonance coupling between the transmission and reception resonant coils.
  • the transfer channel is formed to transfer power to the power receiver resonance coil 121.
  • the power transmitter resonant coil 114 and the power receiver resonant coil 121 may transmit power in a low frequency band of about 100 kHz to several MHz.
  • the matching circuit 112 is used between the source 111 and the source coil 113 for impedance matching between the source coil 113 and the transmitter resonant coil 114 in the power transmitter 110, the matching circuit 112 is used. Resonance by adjusting the number and size of windings of the transmission unit resonant coil 114 and the power receiving unit resonant coil 121 or the source coil 113 in consideration of the number and size (diameter) of the winding of the source coil 113 even without Matching can also be made automatically at the frequency. Similarly, although not shown in the figure, impedance matching is required between both ends of the device coil 122, for example, between the device coil 122 and the rectifier circuit 123, or between the device coil 122 and the load 124. A circuit may be placed, followed by the rectifier circuit 123 and the load 124 after the impedance matching circuit. In this case, the winding of the device coil 122 may be controlled to automatically match at the resonance frequency by adjusting the number and size of the windings.
  • FIG. 2 is a view for explaining a power transmission method in the space adaptive self-resonant wireless power transmission system 100 according to an embodiment of the present invention.
  • energy transmission is performed through magnetic resonance between the transmission and reception resonant coils 114 and 121 arranged to have a vertical or arbitrary angle, and for example, the transmission unit resonant coil 114 according to an electromagnetic induction method.
  • Stores energy and when there is a power receiver resonant coil 121 having the same resonant frequency, an energy transfer channel is formed through attenuation wave magnetic field resonance coupling between the transmission and reception resonant coils to transfer power to the power receiver resonant coil 121.
  • the power delivered to the power receiver resonant coil 121 may be directed to an adjacent device coil 122, and the power rectified by the rectifier circuit 123 may be used at the load 124 of the device.
  • the device coil 122, the rectifier circuit 123, and the load 124 may be embedded in a device, i.e., an electrical device, and the load 124 may be used to charge power delivered through the rectifier circuit 123. It may be a battery such as a car battery.
  • the power receiving method proposed in the present invention is disposed inclined at a predetermined angle to have a vertical or arbitrary angle, rather than a general parallel arrangement between the transmission and reception resonant coils (114, 121) It refers to the power receiving method in the state.
  • a magnetic resonance method using the transmission and reception resonance coils 114 and 121 having the same resonance frequency is used.
  • FIG. 3 is a view for explaining a space-adaptive magnetic resonance wireless power transmission system according to another embodiment of the present invention.
  • the space adaptive self-resonant wireless power transmission system includes a power transmitter 110 and a power receiver.
  • the transmission relay 130 may further include a helical or spiral type relay resonant coil 131 and a relay device coil 132 (or a device coil may be omitted if necessary).
  • the relay resonant coil 131 may also be made of a Litz wire, or the like, and may have various shapes in addition to the helical or spiral form, and may be made of a superconductor material to reduce electrical resistance.
  • a predetermined wire may be wound around a predetermined magnetic material.
  • the relay resonant coil 131 may also have a constant capacitance component, and a device such as a lumped inductor having a predetermined capacitor or inductance having a high Q value may be connected to the coil if necessary.
  • a capacitor or an inductor connected to the relay resonant coil 131 may have both electrodes connected between both ends of the relay resonant coil 131, but is not limited thereto. Both ends of the relay resonant coil 131 (or both ends may be included).
  • the entire capacitor (Ct) of the relay resonant coil 131 is composed of a capacitor (Co) by the coil itself and a capacitor (Ca) additionally attached for resonant frequency tuning and external influence reduction.
  • a capacitor (Co) by the coil itself in order to prevent the capacitor from changing due to the influence of the human body and the contact of the material and the resonance frequency, it is preferable to have a value of 100 pF or more by adding the capacitances of Co and Ca, and to have a high quality factor (Q-factor).
  • Q-factor quality factor
  • the capacitances of Co and Ca add up to 10 nF or less.
  • the present invention is not limited thereto, and the capacitance sum of Co and Ca may be 100pF or less or 10nF or more, depending on the system environment.
  • the relay resonant coil 131 of the power transmission relay 130 is vertically arranged with the power transmitter resonant coil 114 and the power receiver resonant coil 121.
  • the power transmission unit resonant coil 114 and the power receiving unit resonant coil 121 may be parallel.
  • the relay resonant coil 131 may be arranged to be inclined at a predetermined angle with the power transmitter resonant coil 114 and the power receiver resonant coil 121, the power transmitter resonant coil 114 and the power receiver resonant coil 121 may be inclined. This is not always arranged in parallel.
  • the relay resonant coil 131 relays power from the transmitter resonant coil 114 to increase the power transmission distance, and at the same time, rectifies the electric power induced by the device coil 132 to be used for the load. 130 may itself serve as a power receiver. As described above, the strong magnetic field coupling occurs by the magnetic resonance between the power transmission unit resonant coil 114 and the relay resonant coil 131, and the power stored in the relay resonant coil 131 is again received.
  • the resonance coil 121 may be transmitted through a strong magnetic field coupling by magnetic resonance.
  • power may be transferred to the device coils 132/122 according to an electromagnetic induction method.
  • FIG. 4 is a diagram for describing a magnetic field pattern in the vertical arrangement of the transmission and reception resonant coil as shown in FIG. 2.
  • the narrower the interval between the contour lines the greater the magnetic field strength.
  • FIG. 4 it can be seen that a very large magnetic field is formed only around the power transmitter resonant coil 114 and the power receiver resonant coil 121 to generate magnetic resonance between the two coils.
  • the helical transmission and reception resonant coils 114 and 121 used for the simulation are the same, the wire diameter is 4mm, the number of turns 5 times, the coil diameter is 20cm, the pitch is 0.54cm.
  • the resonance frequency is 28MHz, but in practice it is at 22MHz. Although the theoretical value and resonance frequency are different, it can be seen that resonance occurs between coils having the same resonance frequency.
  • the source coil 113 gave a port with a 50 ⁇ impedance for signal excitation, and the device coil 122 also gave a port with a 50 ⁇ impedance.
  • the reflection coefficient of the power transmission unit 110 is -7.52 dB and the reflection coefficient of the power reception unit 120 is -9.4 dB at 22 MHz, which is a resonance frequency of the transmission and reception resonance coils 114 and 121. Able to know.
  • the impedance matching can be automatically performed at the resonant frequencies of the transmission and reception resonant coils 114 and 121.
  • the power transfer efficiency between the transmission and reception resonant coils 114 and 121 due to magnetic resonance is about 60%.
  • FIG. 6 is a diagram for describing a magnetic field pattern when there is a relay resonant coil 131 arranged vertically with respect to the transmission and reception resonant coils 114 and 121 as shown in FIG. 3.
  • a is a magnetic field pattern when viewed from the side
  • b is a magnetic field pattern when viewed from above.
  • FIG. 6 illustrates a result of simulating a magnetic resonance phenomenon using a single loop connected to a plate capacitor between both ends as a relay resonant coil 131.
  • the use as relay resonant coil 131 here is given in reference US2007 / 0222542 A1 "Wireless non-radiative energy transfer".
  • the wire thickness is 2cm
  • the loop diameter is 60cm
  • the plate capacitor's plate spacing is 4mm
  • the plate width is 138cm2
  • the dielectric constant is 10.
  • the resonant frequency of the loop at this time is 7.8 MHz.
  • the distance between the transmission and reception resonant coils 114 and 121 is 1m, it can be seen that power can be well transmitted to the power receiving unit 120 due to the vertically arranged relay resonant coil 131.
  • the coupling phenomenon between the resonant coils having the same resonant frequency is that the attenuation waves generated around the transmission unit resonant coil 114 is coupled with the adjacent receiving unit resonant coil 121. 4 and 6, the coupling occurs at the shortest distance between the transmitter resonant coil 114 and the receiver resonant coil 121.
  • the size of this coupling may be small, but if the attenuation of the attenuation wave occurs slowly, a large amount of energy is transferred to the power receiver for a small amount of time even with a small coupling. This result can be seen in FIG. That is, as shown in FIG.
  • the change in the attenuation wave modes of the resonant coils 114/121/131 in the case of using the relay resonant coil 131 of FIG. 6 is shown with time.
  • the attenuation wave mode in the transmission unit resonant coil 114 in the figure continues oscillating with the resonant frequency, and the size gradually decreases.
  • the relay resonant coil 131 receives energy little by little, and the energy received from the relay resonant coil 131 is transmitted to the power receiver resonant coil 121 again.
  • the transmission unit resonant coil 114 may also be directly transmitted to the receiving unit resonant coil 121, but this is very small compared to the amount passed through the relay resonant coil 131.
  • the proposed invention arranges the resonant coils to have a vertical or arbitrary angle, and it may be difficult to transmit power in a portion where the coupling is rapidly small.
  • . 8 shows the transfer characteristics for the vertical arrangement between such resonant coils.
  • the power transmission unit resonant coil 114 and the power receiving unit resonant coil 121 are vertically arranged and simulated within a quarter quadrant.
  • the resonant coils used here are those disclosed in reference US2007 / 0222542 A1 "Wireless non-radiative energy transfer".
  • the wire thickness is 2 cm
  • the loop diameter is 60 cm
  • the plate capacitor's plate spacing is 4 mm
  • the plate width is 138 cm2
  • the dielectric constant is 10.
  • the resonant frequency of the loop at this time is 7.8 MHz.
  • FIG. 9 is a variation of FIG. 2, wherein the power transmission and resonant coils 114 and 121 may be disposed to be inclined at an angle to have a vertical or arbitrary angle.
  • the coils do not exist on the same plane. Thus indicating that the central axes are parallel but may be arranged such that they do not coincide.
  • FIG. 10 is a variation of FIG. 3, wherein the relay resonant coil 131 may be disposed to be inclined at a predetermined angle to have a vertical or arbitrary angle with the power transmitter resonant coil 114 and the power receiver resonant coil 121.
  • the relay resonant coil 131 may be disposed such that the relay resonant coil 131 is not coplanar with the power transmitter resonant coil 114 and the power receiver resonant coil 121, and the center axes thereof are parallel but the center axes thereof do not coincide. It is present.
  • FIG. 11 shows a configuration and a photograph of a helical coil manufactured to have a resonance frequency at 900 kHz.
  • the shape of the power transmitter resonant coil 114 and the power receiver resonant coil 121 can be the same.
  • the lead wire used was a Litz wire diameter of 1mm, the diameter of the coil was 26cm, the height was 8cm, and the number of turns was 78 times.
  • the number of turns of the resonant coil and the source coil of the power transmission unit for magnetic induction and the device coil of the power receiving unit is one time.
  • the coil was wound using a cylindrical structure as shown in the figure.
  • the helical coil as shown in FIG. 7 may be used as the transmission and reception resonance coils 114 and 121 or the relay resonance coil 131.
  • FIG. 12 is a view showing a region (3dB boundary line) where power transmission efficiency of 50% is seen when the resonant coil shown in FIG. 11 is used in the transmitter and receiver.
  • the 3 dB boundary of a is a result of measuring the efficiency while moving the position while parallelizing the transmission and reception resonant coils (114, 121)
  • the 3dB boundary of b shows the transmission and reception resonant coils (114, 121) and It is the result of measuring efficiency while moving the position vertically together. If there is a transmitter of a certain size, power can be delivered with 50% efficiency even if the receiver is located in any direction within the 3 dB boundary of the transmitter resonant coil 114.
  • the inner space of the line indicated by the dots in FIG. 12 is a 3 dB region.
  • the transmission and reception resonant coils 114 and 121 are arranged in a vertical or arbitrary angle rather than in a parallel arrangement to increase utilization in real life.
  • the relay resonant coil 113 may be arranged at an appropriate position around the transmission and reception resonant coils 114 and 121 as shown in FIG. 3.
  • the power transmission unit resonant coil 114 may be installed inside the insulator wall, and the power reception unit resonance coil 121 may be installed around the inside of a desk or a space below the desk that is in contact with the wall vertically.
  • the electronic device may be a device including the device coil 122, the rectifier circuit 123, and the load 124, and the electric power induced and transmitted from the power receiving unit resonant coil 121 to the device coil 122 may be
  • the rectifier circuit 123 may be used to charge the load 124, for example, a battery.
  • a transmission unit resonant coil 114 may be installed inside an insulator wall, and a pad including a small power receiver resonant coil 121 may be disposed on a desk, such as a desk perpendicular to the wall.
  • the electronic device may be placed on or around the pad and supplied with power for charging purposes as described above.
  • a transmission unit resonant coil 114 may be installed inside the insulator wall, and a container such as a basket or a cup in which the power receiver resonant coil 121 is built may be disposed on a desk that is in contact with the wall vertically.
  • the electronic device can be stored in a container, and the electric power can be supplied for the purpose of charging.
  • a transmission unit resonant coil 114 may be installed inside one insulator wall, and a power receiver resonant coil 121 may be installed inside another insulator wall that is perpendicular to and in contact with each other. It can also power electronic devices that can be hung on walls such as electronic photo frames.
  • the electronic device that can be hung on a wall such as a wall-mounted TV or an electronic picture frame may be a device including the device coil 122, and the electric power induced by the power receiving unit resonant coil 121 to the device coil 122 may be transferred. It can be used for the operation of internal circuits or display devices of electronic equipment.
  • the transmission unit resonant coil 114 may be installed inside the insulator wall, and the power receiver resonant coil 121 may be built in or around the table near the wall. ) So that the power receiver resonant coil 121 and the power transmitter resonant coil 114 are vertically arranged, and may be operated by supplying power to electronic devices such as a laptop or a mobile phone on a table.
  • the power receiver resonant coil 121 and the power transmitter resonant coil 114 are not to be arranged only vertically (the direction in which the coil is wound vertically), and in some cases, the power receiver resonant coil 121 and the power transmitter resonant coil 114 may be arranged at an angle and not at each other. have.
  • the power receiver resonant coil 121 and the power transmitter resonant coil 114 which may be arranged vertically or at an arbitrary angle, electric power may be transmitted around the power receiver resonant coil 121 in an electromagnetic induction manner.
  • electric power may be transmitted around the power receiver resonant coil 121 in an electromagnetic induction manner.
  • the electronic devices having the device coil 122 so as to supply power to each electronic device, it is possible to operate the charging or electronic devices.
  • Such a method has better advantages than aesthetical electromagnetic induction or horizontal arrangement because the transmission unit resonant coil 114 is installed in the wall to completely eliminate the wire cable.
  • such a magnetic resonance method can be transmitted with little power loss because it is less affected by objects such as walls and desks.
  • the space-adaptive magnetic resonance wireless power transmission system 100 rather than adding an artificial capacitor to the coil to perform LC resonance, self-resonance (helical resonance) of the coil such as helical, spiral, etc.
  • the transmission and reception resonant coils 114 and 121 may be configured, and through this, the power transmission unit 110 and the power reception unit 120 may be vertically or arbitrarily arranged to be inclined at a predetermined angle.
  • Overcoming the limitations can deliver power more efficiently than electromagnetic induction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

According to one aspect of the present invention, a magnetic resonance wireless power transmission method comprises the following steps: enabling a source coil to transmit electrical energy to a power-transmitting resonant coil via electromagnetic induction; enabling the power-transmitting resonant coil to transmit electrical energy to a power-receiving resonant coil which has a resonant frequency identical to that of the power-transmitting resonant coil in accordance with a magnetic resonant coupling; enabling the power-receiving resonant coil to transmit electrical energy to a device coil of electronic equipment via electromagnetic induction, wherein the power-transmitting resonant coil and the power-receiving resonant coil are arranged vertically to each other or inclined at a predetermined angle.

Description

감쇄파 공진을 이용한 공간 적응형 무선전력전송 시스템 및 방법Space Adaptive Wireless Power Transmission System and Method Using Attenuation Wave Resonance
본 발명은 무선전력전송 코일 주위에 발생하는 감쇄파의 자기 공진(또는 공명)을 이용한 무선전력전송 시스템 및 방법에 관한 것으로서,특히, 수전부 공진 코일을 송전부 공진 코일과 동일한 공진 주파수를 갖도록 하여, 송신 공진 코일과 수신 공진 코일 간에 자계 결합이 일어나도록 구성하고 수직 또는 임의의 각을 가지는 면에 위치시켜서, 수전부가 송전부와 중심 축이 일직선이 아닌 경우에도(수직 또는 임의의 각을 가져야 하는 경우) 전력 전송이 효율적으로 이루어질 수 있도록 함으로써, 수전부 디바이스 코일이 내장된 휴대폰 등의 전자기기를 송전부 근처에 가져가면 안정적으로 전력을 수전할 수 있는 공간 적응형 자기 공진 무선전력전송 시스템 및 방법에 관한 것이다.The present invention relates to a wireless power transmission system and method using the magnetic resonance (or resonance) of the attenuation wave generated around the wireless power transmission coil, in particular, the power receiver resonant coil to have the same resonance frequency as the power transmitter resonant coil The magnetic field coupling between the transmitting resonant coil and the receiving resonant coil should be configured and positioned on a plane having a vertical or arbitrary angle so that the power receiver has a vertical or arbitrary angle even when the power transmission unit and the central axis are not in a straight line. In this case, a space-adaptive self-resonant wireless power transmission system capable of reliably receiving power by bringing electronic devices, such as a mobile phone with a built-in power receiver device coil, near the power transmission unit so that power transmission can be efficiently performed; It is about a method.
최근 저주파 대역에서 전자기 유도를 이용한 무선전력전송에 대한 연구가 많이 이루어지고 있다. 하지만 수 cm 이내의 근거리에서만 전력전송을 할 수 있다는 단점이 있다. 또한, 이러한 전자기 유도 방식은 송신과 수신 코일의 배열이 서로 일치하지 않을 경우 효율이 급격히 떨어지기 때문에 무선전력전송 시스템의 활용에 많은 애로 사항들이 있었다. Recently, many researches have been conducted on wireless power transmission using electromagnetic induction in a low frequency band. However, there is a disadvantage in that power transmission can be performed only within a few cm. In addition, the electromagnetic induction method has a lot of difficulties in the use of the wireless power transmission system because the efficiency is sharply reduced when the arrangement of the transmitting and receiving coils do not match.
대한민국등록특허번호 제10-0809461호에는 LC 공진을 이용한 전자기파 증폭 중계기를 이용하여 전력 수신 거리를 증가시키는 구성을 개시한다. 여기서는 자속을 증가시키기 위한 자성체에 유도 코일을 감은 솔레노이드 타입의 코일에 가변 커패시터를 사용하여 LC 공진을 시키는 방식을 사용한다. 이와 같은 방식은 기존의 전자기 유도에서의 구성과 달리 송신부와 수신부에 별도의LC 공진 코일을 사용한다. 이 특허에서도 언급한 것과 같이 전송거리 및 효율을 증가시킬 수 있다. 그러나, 여기서 개시된 발명은 가변 커패시터를 사용하여 송신과 수신 공진 코일의 공진 주파수를 튜닝하도록 하고 있다. 그러나, 공진 주파수에 부합되는 가변 커패시터의 값을 정밀하게 조정하기 어려운 단점이 있다. 또한, 이 선행 특허에서 다루고 있는 것은 공진 코일 사이의 평행 배열만을 이용한 무선전력전송을 개시하고 있어, 다양한 실생활에 적용시키기 어려운 문제점이 있다.Korean Patent Registration No. 10-0809461 discloses a configuration for increasing a power reception distance by using an electromagnetic amplification repeater using LC resonance. In this case, a LC resonance is performed by using a variable capacitor in a solenoid type coil wound around a magnetic body to increase magnetic flux. This method uses a separate LC resonant coil in the transmitter and receiver, unlike the conventional electromagnetic induction. As mentioned in this patent, transmission distance and efficiency can be increased. However, the invention disclosed herein uses a variable capacitor to tune the resonant frequencies of the transmit and receive resonant coils. However, it is difficult to precisely adjust the value of the variable capacitor corresponding to the resonance frequency. In addition, what has been dealt with in this prior patent discloses wireless power transmission using only a parallel arrangement between resonant coils, which makes it difficult to apply to various real life.
그리고, 미국 공개특허번호 US2009-0224856A1호에서는, 모두 자기 공명 방식을 사용한 무선 전력 전송 방식을 개시한다. 여기서 제안된 발명에서는 자기 공명 방식에 대한 전반적인 내용을 개시하며, Q-factor, 공진 주파수 등과 관련된 구성들을 개시한다. 여기서는 동일한 공진 주파수를 갖고, 매우 강력한 자계 결합을 갖는 자기 공진형 구조를 이용한 전력전송 효율 및 전송 거리 개선 방안을 제시하였다. In US Patent Publication No. US2009-0224856A1, a wireless power transfer method using a magnetic resonance method is disclosed. In the present invention, the general contents of the magnetic resonance method are disclosed, and configurations related to Q-factor, resonant frequency, and the like are disclosed. Here, a method of improving power transmission efficiency and transmission distance using a magnetic resonance type structure having the same resonance frequency and having a very strong magnetic field coupling is proposed.
미국공개특허번호 US2009-0072629A1호에서는 국내등록특허 (등록번호:10-080941)와 유사한 방법으로 가변 커패시터를 사용하여 공진 코일을 구성하였다. In US Patent Publication No. US2009-0072629A1, a resonant coil is constructed by using a variable capacitor in a manner similar to that of a Korean patent (Registration No.:10-080941).
미국공개특허번호 US2009-0153273A1호에서는 송신과 수신 사이에 별도의 공진 코일을 송신과 수신이 배열이 일치하도록 하여 전송 거리 및 효율을 개선하는 방법을 제시하였다. 그러나, 이 방법에서는 코일간의 결합 상수를 고려하여 일렬 배열인 경우에 대한 것으로, 모든 공진 코일은 동일 평면상에 존재한다. 동일 평면에 모든 공진 코일이 존재할 경우, 코일간의 결합 상수는 떨어지고, 전송 효율이 떨어진다.US Patent Publication No. US2009-0153273A1 proposes a method for improving transmission distance and efficiency by using a separate resonance coil between transmission and reception so that the arrangement of transmission and reception is identical. However, this method is for the case of a one-line array in consideration of the coupling constant between coils, and all resonant coils exist on the same plane. When all the resonant coils exist in the same plane, the coupling constant between the coils is lowered and the transmission efficiency is lowered.
위와 같은 종래의 4개의 선행 특허들에서는, 코일의 배열에 관하여는 기재하지 않고 있으며, 모두 평행 배열임을 가정하고 전력전달 효율 개선 및 거리 개선 방안에 대한 접근을 시도 하였다. 하지만, 평행 배열만을 사용할 경우 실생활에서 공간적 제약으로 인해 적용시키기 어려운 부분이 많아 이에 대한 해결 방안이 필요하다. 또한, 전력 수신부의 자유로운 공간 배치를 위해서는 수직 배열 또는 송수신 코일 간의 다양한 배치에서도 전력 전송이 가능한 방법이 필요하나, 이에 대한 해결 방안이 없었다. In the prior art of the four prior patents, the coil arrangement is not described, and all attempts to approach the power transmission efficiency and distance improvement methods on the assumption that all of the parallel arrangement. However, when only parallel arrangement is used, there are many parts that are difficult to apply due to spatial constraints in real life, and thus a solution for this is needed. In addition, there is a need for a method capable of transmitting power in various arrangements between the vertical arrangement or the transmission / reception coils for free space arrangement of the power receiver, but there is no solution.
따라서, 본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 무선전력전송 코일 주위에 발생하는 감쇄파의 자기 공진(magnetic resonance)이 일어나는 자기 공진 코일들의 방향성 특성에 대하여, 정량적, 정성적 특징을 분석하여 자기 공진 방식의 방향성에 대한 특성을 제시함으로써, 자기 공진을 갖는 코일들의 방향성 영향이 작은 특징을 기반으로, 자기 유도 방식에서의 방향성 문제를 해결하고, 송수신 간의 다양한 공간 배치에서도 전력전송이 가능한 공간 적응형 자기 공진 무선전력전송 시스템 및 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to solve the above-described problems, and an object of the present invention is to provide a quantitative and quantitative characteristic for magnetic resonance coils in which magnetic resonance of attenuation waves occurring around a wireless power transmission coil occurs. By analyzing the qualitative characteristics and presenting the characteristics of the directionality of the magnetic resonance method, based on the characteristic that the directional influence of the coils with the magnetic resonance is small, the directional problem in the magnetic induction method is solved, and even in various spatial arrangements between the transmission and reception The present invention provides a space adaptive self-resonant wireless power transmission system and method capable of power transmission.
또한, 자기 공진을 갖는 코일들의 방향성 영향이 작은 특징을 기반으로, 자기 공진을 갖은 코일들의 다양한 위치 조합을 통한 에너지 전송 거리를 확장시키기 위하여, 공진 코일 간의 다양한 배치를 통하여 다양한 수평, 수직 공간에 적합한 전력전송 방법을 제공하는 공간 적응형 자기 공진 무선전력전송 시스템 및 방법을 제공하는 데 있다.In addition, based on the characteristic that the directional influence of the coils with the magnetic resonance is small, it is suitable for various horizontal and vertical spaces through various arrangements between the resonant coils in order to extend the energy transfer distance through various position combinations of the coils with the magnetic resonance. The present invention provides a space adaptive self-resonant wireless power transmission system and method for providing a power transmission method.
그리고, 공진 코일의 수직 또는 임의의 각을 가지는 배열을 통해 평행 배열이 가지는 공간상의 한계를 극복하고, 송수전 공진 코일을 개방된 형태로 공진되도록 하기 위한 헬리컬 또는 스파이럴 형태의 코일을 적용한 공간 적응형 자기 공진 무선전력전송 시스템 및 방법을 제공하는 데 있다.In addition, the space-adaptive type adopts a helical or spiral coil for overcoming the spatial limitations of the parallel arrangement through the vertical or arbitrary angle arrangement of the resonant coils, and for resonant transmission and reception of the resonant coils in an open form. A self-resonant wireless power transmission system and method are provided.
먼저, 본 발명의 특징을 요약하면, 상기의 목적을 달성하기 위한 본 발명의 일면에 따른 코일 주위에 발생하는 감쇄파의 자기 공진을 이용한 무선전력전송 방법은, 소스 코일에서 전자기 유도 방식으로 송전부 공진 코일로 전력을 전달하는 단계; 상기 송전부 공진 코일에서 자기 공진 결합 (coupling)에 따라 상기 송전부 공진 코일과 동일 공진 주파수를 가지는 수전부 공진 코일로 전력을 전달하는 단계; 및 상기 수전부 공진 코일에서 전자기 유도 방식으로 전자기기의 디바이스 코일로 전력을 전달하는 단계를 포함하고, 상기 송전부 공진 코일과 상기 수전부 공진 코일은 서로 수직하게 또는 일정 각도로 기울어지게 배열된 것을 특징으로 한다.First, to summarize the features of the present invention, the wireless power transmission method using the magnetic resonance of the attenuation wave generated around the coil according to an aspect of the present invention for achieving the above object, the transmission unit in the electromagnetic coil induction method Transferring power to the resonant coil; Transferring power from the transmitter resonant coil to a receiver resonant coil having the same resonance frequency as the transmitter resonant coil according to magnetic resonance coupling; And transmitting electric power from the power receiver resonant coil to the device coil of the electronic device in an electromagnetic induction manner, wherein the power transmitter resonant coil and the power receiver resonant coil are arranged perpendicular to each other or inclined at a predetermined angle. It features.
또한, 본 발명의 다른 일면에 따른 자기 공진 무선전력전송 방법은, 소스 코일에서 전자기 유도 방식으로 송전부 공진 코일로 전력을 전달하는 단계; 상기 송전부 공진 코일에서 자기 공진 결합 (coupling)에 따라 상기 송전부 공진 코일과 동일 공진 주파수를 가지는 중계 공진 코일로 전력을 전달하는 단계; 상기 중계 공진 코일에서 자기 공진 메커니즘에 따라 상기 중계 공진 코일과 동일 공진 주파수를 가지는 수전부 공진 코일로 전력을 전달하는 단계; 및 상기 수전부 공진 코일에서 전자기 유도 방식으로 전자기기의 디바이스 코일로 전력을 전달하는 단계를 포함하고, 상기 중계 공진 코일은 상기 송전부 공진 코일 및 상기 수전부 공진 코일과 수직하게 또는 일정 각도로 기울어지게 배열된 것을 특징으로 한다.In addition, the self-resonant wireless power transmission method according to another aspect of the present invention, the step of transferring the power from the source coil to the transmission unit resonant coil in an electromagnetic induction method; Transferring power from the transmitter resonant coil to a relay resonant coil having the same resonance frequency as the transmitter resonant coil according to magnetic resonance coupling; Transferring power from the relay resonant coil to a power receiver resonant coil having the same resonance frequency as the relay resonant coil according to a magnetic resonance mechanism; And transferring electric power from the power receiver resonant coil to the device coil of the electronic device in an electromagnetic induction manner, wherein the relay resonant coil is inclined perpendicularly or at an angle to the power transmitter resonant coil and the power receiver resonant coil. Characterized in that it is arranged.
또한, 본 발명의 또 다른 일면에 따른 자기 공진 무선전력전송 시스템은, 소스로부터 전력을 인가받는 소스 코일; 상기 소스 코일로부터 전자기 유도 방식으로 전력을 전달받는 송전부 공진 코일; 및 상기 송전부 공진 코일로부터 자기 공진 결합 (coupling)에 따라 상기 송전부 공진 코일과 동일 공진 주파수로 전력을 전달받는 수전부 공진 코일을 포함하고, 상기 송전부 공진 코일과 상기 수전부 공진 코일은 서로 수직하게 또는 일정 각도로 기울어지게 배열되고, 상기 수전부 공진 코일이 전자기 유도 방식으로 전자기기의 디바이스 코일로 전력을 전달하는 것을 특징으로 한다.In addition, the self-resonant wireless power transmission system according to another aspect of the present invention, a source coil for receiving power from the source; A transmission unit resonant coil receiving electric power from the source coil in an electromagnetic induction manner; And a power receiver resonant coil that receives power from the power transmitter resonant coil at the same resonance frequency as the power transmitter resonant coil according to self resonance coupling, wherein the power transmitter resonant coil and the power receiver resonant coil It is arranged vertically or inclined at an angle, characterized in that the power receiver resonant coil transfers power to the device coil of the electronic device in an electromagnetic induction manner.
그리고, 본 발명의 또 다른 일면에 따른 자기 공진 무선전력전송 시스템은, 소스로부터 전력을 인가 받는 소스 코일; 상기 소스 코일로부터 전자기 유도 방식으로 전력을 전달받는 송전부 공진 코일; 상기 송전부 공진 코일로부터 자기 공진 메커니즘에 따라 상기 송전부 공진 코일과 동일 공진 주파수로 전력을 전달받는 중계 공진 코일; 및 상기 중계 공진 코일로부터 자기 공진 결합 (coupling)에 따라 상기 중계 공진 코일과 동일 공진 주파수로 전력을 전달받는 수전부 공진 코일을 포함하고, 상기 중계 공진 코일은 상기 송전부 공진 코일 및 상기 수전부 공진 코일과 수직하게 또는 일정 각도로 기울어지게 배열되고, 상기 수전부 공진 코일이 전자기 유도 방식으로 전자기기의 디바이스 코일로 전력을 전달하는 것을 특징으로 한다.The self-resonant wireless power transmission system according to another aspect of the present invention includes a source coil receiving power from a source; A transmission unit resonant coil receiving electric power from the source coil in an electromagnetic induction manner; A relay resonant coil receiving electric power from the transmitter resonant coil at the same resonance frequency as the transmitter resonant coil according to a magnetic resonance mechanism; And a power receiver resonant coil receiving power from the relay resonant coil at the same resonance frequency as the relay resonant coil according to magnetic resonance coupling, wherein the relay resonant coil includes the power transmitter resonant coil and the power receiver resonator. It is arranged perpendicular to the coil or inclined at an angle, characterized in that the power receiver resonant coil transfers power to the device coil of the electronic device in an electromagnetic induction manner.
상기 소스와 상기 소스 코일 사이, 또는 상기 디바이스 코일과 정류회로나 부하 사이에 임피던스 매칭을 위한 회로를 더 포함할 수 있다.The apparatus may further include a circuit for impedance matching between the source and the source coil, or between the device coil and a rectifier circuit or a load.
상기 자기 공진 코일 및 중계 공진 코일의 양끝 위치나 중간 부분에 집중 인덕터 (Lumped inductor) 또는 커패시터(capacitor)와 같은 소자를 연결할 수 있다. 이 때 인덕터와 커패시터와 같은 소자는 기생적으로 생기는 저항이 수 오옴(ohm)이하일 것을 권장한다. 이러한 소자로서 높은 Q값을 갖는 집중 인덕터 (High Q lumped-inductor) 및 커패시터가 있으며, 이외에도, 동축선과 같은 정밀한 커패시터 값을 제공할 수 있는 구조를 사용할 수 있다.A device such as a lumped inductor or a capacitor may be connected to both ends of the magnetic resonance coil and the relay resonant coil, or to an intermediate portion of the relay resonance coil. At this time, it is recommended that parasitic resistances of the inductor and the capacitor be less than a few ohms. Such devices include high Q lumped-inductors and capacitors having high Q values. In addition, a structure capable of providing precise capacitor values such as coaxial lines may be used.
위와 같이 제안된 커패시터를 사용함으로서 동일 공진 주파수(f=1/(LC)1/2)에 대하여 상대적으로 낮은 코일 인덕턴스 값이 필요하게 되어, 코일의 길이 및 부피를 줄일 수 있고, 이는 다시 전체 공진 구조의 부피를 줄일 수 있다. 그러나, 커패시터를 사용할 경우 효율이 떨어지는 단점이 있을 수 있으나, 적절한 커패시터를 사용할 경우 자기 공진 구조에서 큰 문제가 되고 있는 송신 수신 공진 주파수 튜닝이 쉬워진다. By using the proposed capacitor as described above, a relatively low coil inductance value is required for the same resonance frequency (f = 1 / (LC) 1/2), thereby reducing the length and volume of the coil, which in turn is a total resonance. The volume of the structure can be reduced. However, the use of a capacitor may be disadvantageous in efficiency, but using an appropriate capacitor facilitates tuning of the transmit and receive resonant frequency, which is a major problem in the self resonant structure.
여기서 사용되는 커패시터의 커패시턴스 값은 인체 및 이 물질의 접촉 등의 영향에 의하여 커패시터가 변동되어 공진 주파수가 변화되지 않도록 하기 위해서, 코일에서 만들어지는 커패시터와 합하여 100pF이상의 값을 갖는 것이 바람직하다. 또한, 높은 Quality factor (Q-factor)를 유지 하기 위하여 코일에서 만들어지지는 커패시터와 추가된 커패시터의 합이 10nF이하의 값을 갖는 것이 바람직하다.The capacitance value of the capacitor used herein preferably has a value of 100 pF or more in combination with the capacitor made in the coil in order to prevent the capacitor from changing due to the contact between the human body and the foreign material and the resonance frequency. In addition, in order to maintain a high quality factor (Q-factor), it is desirable that the sum of the capacitors made in the coil and the added capacitors has a value of 10 nF or less.
또한, 위와 같이 추가로 부착되는 커패시터는 공진 주파수의 미세한 튜닝을 위하여 사용할 수 있다. 즉, 송신과 수신공진 코일들의 정확한 공진 주파수 튜닝은 전력 전달에 직접적인 영향을 줄 수 있다. 따라서, 시스템의 효율을 최대로 만들기 위해서는 공진주파수를 동일하게 맞추어야 하나, 실제 제작에서는 동일한 구조를 갖더라도 기생효과에 따라 공진 주파수가 달라지며, 이러한 결과로 효율이 급격히 떨어지기 때문에 송신과 수신 공진 코일들에 대한 공진 주파수 듀닝 과정이 필수적이다. In addition, the additionally attached capacitor can be used for fine tuning of the resonance frequency. In other words, accurate resonant frequency tuning of the transmit and receive resonant coils can directly affect power transfer. Therefore, in order to maximize the efficiency of the system, the resonant frequency should be adjusted to be the same, but in actual production, even if they have the same structure, the resonant frequency varies according to the parasitic effect. The resonant frequency duplexing process for these devices is essential.
특히, 송수신 공진 코일 간의 공진 주파수를 정확히 맞추기 위하여 커패시터를 고정하고 손실이 적은 또는 높은 Q값을 갖는 인덕터를 사용해도 된다.In particular, in order to accurately match the resonant frequency between the transmission and reception resonant coil, a capacitor may be fixed and an inductor having a low loss or high Q value may be used.
상기 전자기기는 상기 디바이스 코일로 유도된 전력을 이용하여 내부 회로를 작동하거나, 상기 디바이스 코일로 유도된 전력을 정류하여 배터리를 충전할 수 있다.The electronic device may operate an internal circuit using the power induced by the device coil, or may rectify the power induced by the device coil to charge the battery.
절연체 벽 내부에 상기 송전부 공진 코일을 설치하고, 상기 수전부 공진 코일을 상기 절연체 벽 주위의 책상이나 탁자 내부 또는 그 주위 공간, 다른 절연체 벽 내부, 패드 내부, 또는 용기 내부에 설치하여, 상기 수전부 공진 코일 주위의 전자기기가 전력을 공급받을 수 있다.The power transmitter resonant coil is installed inside an insulator wall, and the power receiver resonant coil is installed inside a desk or table or the space around the insulator wall, inside another insulator wall, inside a pad, or inside a container. All of the electronics around the resonant coil can be powered.
본 발명에 따른 공간 적응형 자기 공진 무선전력전송 시스템 및 방법에 따르면, 기존의 평행 배열(송수신 코일의 중심 축이 일치하는 경우)을 통해 전력을 전달하는 것의 실생활 적용 한계를 극복할 수 있다. 기존의 평행 배열의 경우 송신과 수신 간의 거리가 증가할 경우 송신과 수신 사이에 장애물이 존재할 경우나, 송신과 수신 사이에 공간상의 제약으로 송수신과 평행하게(코일의 중심축이 일치하는 경우) 새로운 중계 코일을 놓을 수 없을 경우가 빈번히 발생하기 때문에, 평행 배열로 전력을 수전하기 힘든 상황에서는 적용에 한계가 생겼다. According to the space-adaptive self-resonant wireless power transmission system and method according to the present invention, it is possible to overcome the limitations of the practical application of power transmission through the existing parallel arrangement (when the center axis of the transmitting and receiving coils coincide). In the case of the existing parallel arrangement, when the distance between transmission and reception increases, there is an obstacle between transmission and reception, or in parallel with transmission and reception (when the coil axes coincide) due to space constraints between transmission and reception. Since the relay coil often cannot be placed, the application is limited in situations where it is difficult to receive power in a parallel arrangement.
하지만 본 발명과 같이 수직 또는 임의의 각을 가지는 배열을 이용하면 송전부 전체가 벽면 또는 보이지 않는 곳에 내장되기 때문에 기존의 단점을 없앨 수 있다. 즉, 주위 환경에 적합하도록 공진 코일의 배치를 구성할 수 있어, 전력전송 거리 확장 및 전력전송 효율이 개선된다. 이는 자기 공명 방식의 특성상 벽면, 물 등의 장애물의 영향을 크게 받지 않는 특성을 이용한 것이고, 전력 전달이 이루어지는 공간을 수전부 공진 코일의 위치로 결정할 수 있기 때문에 원하는 임의의 장소에 송전부 공진 코일을 설치하여 사용할 수 있다. 수전부 공진 코일은 헬리컬 또는 스파이럴 형태의 코일이 단독으로 위치한 것이어서 전선이 부가적으로 연결될 필요가 없기 때문에 책상 밑이나 바닥 등에 내장시킬 수도 있다. However, if the vertical or arbitrary angle arrangement as in the present invention is used, the entire disadvantage of the transmission part may be eliminated since the entire transmission part is embedded in the wall or invisible. That is, the arrangement of the resonant coil can be configured to suit the surrounding environment, thereby improving the power transmission distance and improving the power transmission efficiency. The magnetic resonance method uses characteristics that are not significantly affected by obstacles such as walls, water, etc., and the power transmission unit resonant coil can be placed at any desired location because the space where power is transmitted can be determined as the position of the power receiver resonance coil. Can be installed and used. The power receiver resonant coil is a helical or spiral coil that is located alone, so that the wires do not need to be additionally connected, and thus may be embedded in a desk or the floor.
도 1은 본 발명의 일실시예에 따른 공간 적응형 자기공진 무선전력전송 시스템의 등가회로이다. 1 is an equivalent circuit of a space adaptive self-resonant wireless power transmission system according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 공간 적응형 자기공진 무선전력전송 시스템에서의 전력 전달 방식을 설명하기 위한 도면이다.2 is a view for explaining a power transmission method in a space adaptive self-resonant wireless power transmission system according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 공간 적응형 자기공진 무선전력전송 시스템을 설명하기 위한 도면이다.3 is a view for explaining a space-adaptive magnetic resonance wireless power transmission system according to another embodiment of the present invention.
도 4는 도 2와 같이 송수전 공진 코일의 수직 배열 시의 자기장 패턴을 설명하기 위한 도면이다.FIG. 4 is a diagram for describing a magnetic field pattern in the vertical arrangement of the transmission and reception resonant coil as shown in FIG. 2.
도 5는 도 4의 시뮬레이션을 통해 본 S 파라미터 결과이다.FIG. 5 is an S parameter result seen through the simulation of FIG. 4.
도 6은 도 3과 같이 송수전 공진 코일과 수직으로 배열된 중계 공진 코일이 있는 경우의 자기장 패턴을 설명하기 위한 도면이다.FIG. 6 is a diagram for describing a magnetic field pattern when there is a relay resonant coil arranged vertically with respect to the transmission and reception resonant coil as shown in FIG. 3.
도 7은 중계 공진 코일을 사용한 경우에 대하여 각 공진 코일에서의 감쇄파 모드들의 시간에 따른 변화를 나타낸다.FIG. 7 shows changes over time of attenuation wave modes in each resonant coil with respect to the case of using the relay resonant coil.
도 8a는 송전부 공진 코일과 수전부 공진 코일이 수직으로 배치되는 좌표계를 나타낸다.8A illustrates a coordinate system in which a power transmission unit resonant coil and a power reception unit resonant coil are disposed vertically.
도 8b는 수전부 공진 코일이 z축으로 변화됨에 따라 효율의 변화를 설명하기 위한 도면이다.8B is a view for explaining a change in efficiency as the power receiving unit resonant coil is changed to the z-axis.
도 9는 도 2의 변형예로서, 송수전 공진 코일들이 동일 평면상에 존재하지 않아 그 중심축들이 평행하지만 그 중심축들이 일치하지는 않도록 배치될 수 있는 구조를 나타낸다.FIG. 9 is a variation of FIG. 2, and illustrates a structure in which the transmission and reception resonant coils are not present on the same plane so that their central axes are parallel but the central axes do not coincide.
도 10은 도 3의 변형예로서, 중계 공진 코일이 송전부 공진 코일 및 수전부 공진 코일과 동일 평면상에 존재하지 않고 그 중심축들이 평행하지만 그 중심축들이 일치하지는 않도록 배치될 수 있는 구조를 나타낸다.FIG. 10 is a modification of FIG. 3, in which a relay resonant coil may not be coplanar with the transmitter resonant coil and the receiver resonant coil, and may be arranged such that the central axes thereof are parallel but the central axes do not coincide. Indicates.
도 11은 900kHz에서 공진 주파수를 갖도록 제작된 헬리컬 코일이다.11 is a helical coil fabricated to have a resonant frequency at 900 kHz.
도 12는 도 11과 같은 공진 코일을 송수전부에 사용했을 경우에 50%의 전력전송 효율이 보이는 영역(3dB 경계선)을 나타낸 그림이다. FIG. 12 is a view showing a region (3dB boundary line) where power transmission efficiency of 50% is seen when the resonant coil shown in FIG. 11 is used in the transmitter and receiver.
도 13 내지 도 17은 송수전 공진 코일(114, 121)을 평행 배열이 아닌 수직 또는 임의의 각으로 배열하여 실생활에서 활용도를 높일 수 있도록 한 적용 예시들이다.13 to 17 are examples of applications in which the transmission and reception resonant coils 114 and 121 are arranged in a vertical or arbitrary angle rather than in a parallel arrangement to increase utilization in real life.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하지만, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings and the contents described in the accompanying drawings, but the present invention is not limited or limited to the embodiments.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시 예에 따른 공간 적응형 자기공진 무선전력전송 시스템(100)의 등가회로이다. 1 is an equivalent circuit of a space-adaptive magnetic resonance wireless power transmission system 100 according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일실시예에 따른 공간 적응형 자기공진 무선전력전송 시스템(100)은, 송전부(110) 및 수전부(120)를 포함하고, 송전부(110)는 소스(111), 매칭회로(112), 소스 코일(113), 및 헬리컬(helical) 또는 스파이럴(spiral) 형태의 송전부 공진 코일(114)을 포함하며, 수전부(120)는 헬리컬 또는 스파이럴 형태의 수전부 공진 코일(121), 디바이스 코일(122), 정류 회로(123), 및 부하(124)를 포함한다. 송전부 공진 코일(114)과 수전부 공진 코일(121)은 리츠(Litz) 와이어 등으로 이루어질 수 있으며, 헬리컬 또는 스파이럴 형태 이외에도 다양한 모양을 가질 수 있고, 전기 저항을 줄이기 위하여 초전도체 재료로 이루어질 수 있다. 송전부 공진 코일(114)과 수전부 공진 코일(121)의 크기를 줄이기 위하여 소정 자성체에 소정 와이어를 감아 사용할 수도 있다. 이와 같은 송전부 공진 코일(114)과 수전부 공진 코일(121)은 일정 커패시턴스 성분을 가질 수 있으며, 필요시 높은 Q값을 갖는 소정 커패시터 또는 인덕턴스를 갖는 집중(lumped) 커패시터 또는 인덕터 등의 소자가 해당 코일에 추가로 연결되어 사용될 수 있다. 예를 들어, 송전부 공진 코일(114) 또는 수전부 공진 코일(121)에 연결되는 커패시터나 인덕터는 그 양쪽 전극이 해당 코일의 양끝 사이에 모두 연결될 수도 있지만, 이에 한정되는 것은 아니며, 그 양쪽 전극 중 어느 한쪽 전극 만을 공진 코일(114/121)의 양끝(양쪽 끝일 수도 있고 어느 한쪽 끝일 수도 있음.) 위치나 중간 부분에 연결하는 것을 포함한다. 이때, 각 공진 코일의 전체 커패시터 (Ct)는 코일 자체에의한 커패시터 (Co)와 공진 주파수 튜닝 및 외부 영향 감소 등을 위해 추가적으로 부착되는 커패시터 (Ca)로 구성된다 (그림에서는 Ct만 나타냄). 여기서, 인체 및 이 물질의 접촉 등의 영향에 의하여 커패시터가 변동되어 공진 주파수가 변화되지 않도록 하기 위해서 Co와 Ca의 커패시턴스를 합하여 100pF이상의 값을 갖는 것이 바람직하고, 높은 Quality factor (Q-factor)를 유지 하기 위하여 Co와 Ca의 커패시턴스를 합하여 10nF이하의 값을 갖는 것이 바람직하다. 다만, 이에 한정되는 것은 아니며 시스템 환경에 따라 Co와 Ca의 커패시턴스 합의 값이 100pF 이하나 10nF 이상의 값을 갖도록 할 수도 있다.Referring to FIG. 1, a space-adaptive magnetic resonance wireless power transmission system 100 according to an embodiment of the present invention includes a power transmitter 110 and a power receiver 120, and the power transmitter 110 is a source. A reference numeral 111, a matching circuit 112, a source coil 113, and a transmission resonant coil 114 in a helical or spiral form, wherein the power receiver 120 is in a helical or spiral form. The power receiver includes a resonant coil 121, a device coil 122, a rectifier circuit 123, and a load 124. The transmitter resonant coil 114 and the receiver resonant coil 121 may be formed of a Litz wire, or the like, and may have various shapes in addition to the helical or spiral shape, and may be made of a superconductor material to reduce electrical resistance. . In order to reduce the sizes of the power transmitter resonant coil 114 and the power receiver resonant coil 121, a predetermined wire may be wound around a predetermined magnetic material. The power transmitter resonant coil 114 and the power receiver resonant coil 121 may have a constant capacitance component, and if necessary, a device such as a lumped capacitor or inductor having a predetermined capacitor or inductance having a high Q value may be used. It can be used in addition to the coil. For example, a capacitor or an inductor connected to the transmitter resonant coil 114 or the receiver resonant coil 121 may have both electrodes connected between both ends of the coil, but is not limited thereto. Connecting only one of the electrodes to both ends of the resonant coil 114/121 (which may be both ends, or may be either end). At this time, the total capacitor (Ct) of each resonant coil is composed of a capacitor (Co) by the coil itself and a capacitor (Ca) additionally attached for resonant frequency tuning and external influence reduction (only Ct is shown in the figure). Here, in order to prevent the capacitor from changing due to the influence of the human body and the contact of the material and the resonance frequency, it is preferable to have a value of 100 pF or more by adding the capacitances of Co and Ca, and to have a high quality factor (Q-factor). In order to maintain, it is preferable that the capacitances of Co and Ca add up to 10 nF or less. However, the present invention is not limited thereto, and the capacitance sum of Co and Ca may be 100pF or less or 10nF or more, depending on the system environment.
에너지 전송 메카니즘은 다음과 같다. 소스(111)로부터 공급되는 전력은 소스(111)와 매칭 회로(112)를 거쳐 소스 코일(113)로 인가된다. 매칭 회로(112)를 통하여 인가되는 시변 전류에 따라 소스 코일(113)은 송전부 공진 코일(114)에 전자기 유도 방식으로 전력을 전달한다. 송전부 공진 코일(114)은 자체 공진(Self-resonance)을 통해 전력을 저장하고 있다가 동일 공진 주파수를 가지는 수전부 공진 코일(121)이 있을 경우 송수신 공진 코일간의 감쇄파 자계 공진 결합을 통해 에너지 전달 채널을 형성하여 수전부 공진 코일(121)로 전력을 전달한다. 송전부 공진 코일(114)과 수전부 공진 코일(121)은 백 kHz에서부터 수 MHz까지의 저주파 대역으로 전력을 전달할 수 있다. The energy transfer mechanism is as follows. Power supplied from the source 111 is applied to the source coil 113 via the source 111 and the matching circuit 112. According to the time-varying current applied through the matching circuit 112, the source coil 113 transfers power to the power transmission unit resonant coil 114 in an electromagnetic induction manner. The transmitter resonant coil 114 stores power through self-resonance, and when there is a receiver resonant coil 121 having the same resonant frequency, energy is transmitted through the attenuation wave magnetic field resonance coupling between the transmission and reception resonant coils. The transfer channel is formed to transfer power to the power receiver resonance coil 121. The power transmitter resonant coil 114 and the power receiver resonant coil 121 may transmit power in a low frequency band of about 100 kHz to several MHz.
송전부(110)에서 소스 코일(113)과 송전부 공진 코일(114) 간의 임피던스 매칭을 위하여, 소스(111)와 소스 코일(113) 사이에 매칭 회로(112)를 이용하지만, 매칭 회로(112)가 없이도 소스 코일(113)의 감은 횟수와 크기(직경) 등을 고려하여 송전부 공진 코일(114)과 수전부 공진 코일(121) 또는 소스 코일(113)의 감은 횟수와 크기를 조절함으로써 공진 주파수에서 자동적으로 매칭이 이루어지도록 할 수도 있다. 마찬가지로, 도면에는 도시하지 않았지만, 필요시 디바이스 코일(122)의 양끝 사이, 예를 들어, 디바이스 코일(122)과 정류회로(123) 사이 또는 디바이스 코일(122)과 부하(124) 사이에도 임피던스 매칭 회로를 둘 수 있으며, 이 임피던스 매칭 회로 뒤에 정류 회로(123), 및 부하(124)가 오도록 할 수 있다. 이때에도, 디바이스 코일(122)의 감은 횟수와 크기를 조절함으로써 공진 주파수에서 자동적으로 매칭이 이루어지도록 할 수도 있다.Although the matching circuit 112 is used between the source 111 and the source coil 113 for impedance matching between the source coil 113 and the transmitter resonant coil 114 in the power transmitter 110, the matching circuit 112 is used. Resonance by adjusting the number and size of windings of the transmission unit resonant coil 114 and the power receiving unit resonant coil 121 or the source coil 113 in consideration of the number and size (diameter) of the winding of the source coil 113 even without Matching can also be made automatically at the frequency. Similarly, although not shown in the figure, impedance matching is required between both ends of the device coil 122, for example, between the device coil 122 and the rectifier circuit 123, or between the device coil 122 and the load 124. A circuit may be placed, followed by the rectifier circuit 123 and the load 124 after the impedance matching circuit. In this case, the winding of the device coil 122 may be controlled to automatically match at the resonance frequency by adjusting the number and size of the windings.
도 2는 본 발명의 일실시예에 따른 공간 적응형 자기공진 무선전력전송 시스템(100)에서의 전력 전달 방식을 설명하기 위한 도면이다.2 is a view for explaining a power transmission method in the space adaptive self-resonant wireless power transmission system 100 according to an embodiment of the present invention.
도 2에서, 수직 또는 임의의 각을 가지도록 배열된 송수전 공진 코일(114, 121) 사이에는 자기 공명을 통해 에너지 전달이 이루어지고, 예를 들어, 전자기 유도 방식에 따라 송전부 공진 코일(114)이 에너지를 저장하고 있다가 같은 공진 주파수를 가지는 수전부 공진 코일(121)이 있을 경우 송수신 공진 코일간의 감쇄파 자계 공진 결합을 통해 에너지 전달 채널을 형성하여 수전부 공진 코일(121)로 전력을 전달하며, 수전부 공진 코일(121)로 전달된 전력은 인접한 디바이스 코일(122)로 유도될 수 있고, 정류 회로(123)에 의하여 정류된 전력이 디바이스의 부하(124)에서 사용될 수 있다. 디바이스 코일(122), 정류 회로(123), 및 부하(124)는 디바이스, 즉, 전기기기에 내장될 수 있으며, 부하(124)는 정류 회로(123)를 거쳐 전달되는 전력을 충전하기 위한 2차 전지 등 배터리일 수도 있다.In FIG. 2, energy transmission is performed through magnetic resonance between the transmission and reception resonant coils 114 and 121 arranged to have a vertical or arbitrary angle, and for example, the transmission unit resonant coil 114 according to an electromagnetic induction method. ) Stores energy, and when there is a power receiver resonant coil 121 having the same resonant frequency, an energy transfer channel is formed through attenuation wave magnetic field resonance coupling between the transmission and reception resonant coils to transfer power to the power receiver resonant coil 121. The power delivered to the power receiver resonant coil 121 may be directed to an adjacent device coil 122, and the power rectified by the rectifier circuit 123 may be used at the load 124 of the device. The device coil 122, the rectifier circuit 123, and the load 124 may be embedded in a device, i.e., an electrical device, and the load 124 may be used to charge power delivered through the rectifier circuit 123. It may be a battery such as a car battery.
도 1 및 도 2 에서 알 수 있듯이, 본 발명에서 제안하는 전력 수전 방식은 송수전 공진 코일(114, 121) 사이에 일반적인 평행 배열이 아닌 수직 또는 임의의 각을 가지도록 일정 각도로 기울어지게 배치된 상태에서의 전력 수전 방식을 말한다. 수직 또는 임의의 각을 가지는 상태에서도 효율적으로 전력을 전달할 수 있도록, 같은 공진 주파수를 가지는 송수전 공진 코일(114, 121)을 사용한 자기 공명 방식을 사용하였다.As can be seen in Figures 1 and 2, the power receiving method proposed in the present invention is disposed inclined at a predetermined angle to have a vertical or arbitrary angle, rather than a general parallel arrangement between the transmission and reception resonant coils (114, 121) It refers to the power receiving method in the state. In order to efficiently transmit power even in a vertical or arbitrary angle, a magnetic resonance method using the transmission and reception resonance coils 114 and 121 having the same resonance frequency is used.
도 3은 본 발명의 다른 실시예에 따른 공간 적응형 자기공진 무선전력전송 시스템을 설명하기 위한 도면이다.3 is a view for explaining a space-adaptive magnetic resonance wireless power transmission system according to another embodiment of the present invention.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 공간 적응형 자기공진 무선전력전송 시스템은, 도 1에서 설명한 송전부(110) 및 수전부(120) 이외에도, 송전부(110)와 수전부(120) 사이에 헬리컬 또는 스파이럴 형태의 중계 공진 코일(131)과 중계 디바이스 코일(132)을 포함한(필요에 따라 디바이스 코일을 생략할 수도 있음) 송전 중계부(130)를 더 포함할 수 있다. 중계 공진 코일(131)도 리츠(Litz) 와이어 등으로 이루어질 수 있으며, 헬리컬 또는 스파이럴 형태 이외에도 다양한 모양을 가질 수 있고, 전기 저항을 줄이기 위하여 초전도체 재료로 이루어질 수 있다. 중계 공진 코일(131)의 크기를 줄이기 위하여 소정 자성체에 소정 와이어를 감아 사용할 수도 있다. 또한, 도면에 도시하지는 않았지만, 중계 공진 코일(131)도 일정 커패시턴스 성분을 가질 수 있으며, 필요시 높은 Q값을 갖는 소정 커패시터 또는 인덕턴스를 갖는 집중(lumped) 인덕터 등의 소자가 해당 코일에 연결되어 사용될 수 있다. 예를 들어, 중계 공진 코일(131)에 연결되는 커패시터나 인덕터는 그 양쪽 전극이 중계 공진 코일(131)의 양끝 사이에 모두 연결될 수도 있지만, 이에 한정되는 것은 아니며, 그 양쪽 전극 중 어느 한쪽 전극 만을 중계 공진 코일(131)의 양끝(양쪽 끝일 수도 있고 어느 한쪽 끝일 수도 있음.) 위치나 중간 부분에 연결하는 것을 포함한다. 이때 중계 공진 코일(131)의 전체 커패시터 (Ct)는 코일 자체에의한 커패시터 (Co)와 공진 주파수 튜닝 및 외부 영향 감소 등을 위해 추가적으로 부착되는 커패시터 (Ca)로 구성된다. 여기서, 인체 및 이 물질의 접촉 등의 영향에 의하여 커패시터가 변동되어 공진 주파수가 변화되지 않도록 하기 위해서 Co와 Ca의 커패시턴스를 합하여 100pF이상의 값을 갖는 것이 바람직하고, 높은 Quality factor (Q-factor)를 유지 하기 위하여 Co와 Ca의 커패시턴스를 합하여 10nF이하의 값을 갖는 것이 바람직하다. 다만, 이에 한정되는 것은 아니며 시스템 환경에 따라 Co와 Ca의 커패시턴스 합의 값이 100pF 이하나 10nF 이상의 값을 갖도록 할 수도 있다.Referring to FIG. 3, in addition to the power transmitter 110 and the power receiver 120 described with reference to FIG. 1, the space adaptive self-resonant wireless power transmission system according to another embodiment of the present invention includes a power transmitter 110 and a power receiver. The transmission relay 130 may further include a helical or spiral type relay resonant coil 131 and a relay device coil 132 (or a device coil may be omitted if necessary). The relay resonant coil 131 may also be made of a Litz wire, or the like, and may have various shapes in addition to the helical or spiral form, and may be made of a superconductor material to reduce electrical resistance. In order to reduce the size of the relay resonant coil 131, a predetermined wire may be wound around a predetermined magnetic material. In addition, although not shown in the drawing, the relay resonant coil 131 may also have a constant capacitance component, and a device such as a lumped inductor having a predetermined capacitor or inductance having a high Q value may be connected to the coil if necessary. Can be used. For example, a capacitor or an inductor connected to the relay resonant coil 131 may have both electrodes connected between both ends of the relay resonant coil 131, but is not limited thereto. Both ends of the relay resonant coil 131 (or both ends may be included). At this time, the entire capacitor (Ct) of the relay resonant coil 131 is composed of a capacitor (Co) by the coil itself and a capacitor (Ca) additionally attached for resonant frequency tuning and external influence reduction. Here, in order to prevent the capacitor from changing due to the influence of the human body and the contact of the material and the resonance frequency, it is preferable to have a value of 100 pF or more by adding the capacitances of Co and Ca, and to have a high quality factor (Q-factor). In order to maintain, it is preferable that the capacitances of Co and Ca add up to 10 nF or less. However, the present invention is not limited thereto, and the capacitance sum of Co and Ca may be 100pF or less or 10nF or more, depending on the system environment.
도 3에서, 송전 중계부(130)의 중계 공진 코일(131)은 송전부 공진 코일(114) 및 수전부 공진 코일(121)과 수직으로 배열된다. 이때, 송전부 공진 코일(114)과 수전부 공진 코일(121)은 평행할 수도 있다. 다만, 중계 공진 코일(131)은 송전부 공진 코일(114) 및 수전부 공진 코일(121)과 일정 각도로 기울어지게 배열도 가능하므로, 송전부 공진 코일(114)과 수전부 공진 코일(121)이 항상 평행하게 배열되는 것은 아니다. 이와 같은 중계 공진 코일(131)은 송전부 공진 코일(114)로부터의 전력을 중계시켜 전력 전달 거리를 증가시키는 동시에, 디바이스 코일(132)로 유도된 전력을 정류하여 부하에 사용할 수 있도록 송전 중계부(130) 자체가 수전부 역할을 할 수도 있다. 송전부 공진 코일(114)과 중계 공진 코일(131) 사이에 위에서 기술한 바와 같이 동일 공진 주파수에서 자기 공진에 의한 강한 자계 결합이 일어나며, 중계 공진 코일(131)에서 저장하고 있던 전력은 다시 수전부 공진 코일(121)로 자기 공진에 의한 강한 자계 결합을 통해 전달될 수 있다. 그리고, 수전부 공진 코일(121) 또는 중계 공진 코일(131) 근처에 디바이스 코일(132/122)이 위치할 경우, 전자기 유도 방식에 따라 디바이스 코일(132/122)로 전력이 전달될 수 있다.In FIG. 3, the relay resonant coil 131 of the power transmission relay 130 is vertically arranged with the power transmitter resonant coil 114 and the power receiver resonant coil 121. At this time, the power transmission unit resonant coil 114 and the power receiving unit resonant coil 121 may be parallel. However, since the relay resonant coil 131 may be arranged to be inclined at a predetermined angle with the power transmitter resonant coil 114 and the power receiver resonant coil 121, the power transmitter resonant coil 114 and the power receiver resonant coil 121 may be inclined. This is not always arranged in parallel. The relay resonant coil 131 relays power from the transmitter resonant coil 114 to increase the power transmission distance, and at the same time, rectifies the electric power induced by the device coil 132 to be used for the load. 130 may itself serve as a power receiver. As described above, the strong magnetic field coupling occurs by the magnetic resonance between the power transmission unit resonant coil 114 and the relay resonant coil 131, and the power stored in the relay resonant coil 131 is again received. The resonance coil 121 may be transmitted through a strong magnetic field coupling by magnetic resonance. In addition, when the device coils 132/122 are positioned near the power receiving unit resonant coil 121 or the relay resonant coil 131, power may be transferred to the device coils 132/122 according to an electromagnetic induction method.
도 4는 도 2와 같이 송수전 공진 코일의 수직 배열 시의 자기장 패턴을 설명하기 위한 도면이다.FIG. 4 is a diagram for describing a magnetic field pattern in the vertical arrangement of the transmission and reception resonant coil as shown in FIG. 2.
도 4와 같은 자기장 세기의 등고선 분포에서, 등고선 간 간격이 좁을수록 자기장 세기가 큼을 의미한다. 도 4에서 알 수 있듯이 송전부 공진 코일(114)과 수전부 공진 코일(121) 주위에서만 매우 큰 자기장이 형성되어 두 코일 간에 자기 공진이 발생함을 알 수 있다. 시뮬레이션을 위하여 사용한 헬리컬 형태의 송수신 공진 코일(114, 121)은 동일하며, 도선의 지름은 4mm, 감은 수는 5회, 코일 지름은 20cm, 피치는 0.54cm이다. 이론적인 계산으로는 공진 주파수가 28MHz지만, 실제로는 22MHz에서 공진하였다. 이론적인 값과 공진 주파수가 차이는 있지만 같은 공진 주파수를 가지는 코일 사이에 공진이 일어난다는 것을 확인할 수 있었다. 도 4에서 확인할 수 있듯이 동일 공진 주파수를 같은 공진 코일 사이에서는 자기장이 방사되지 않고, 코일 주위에 존재하는 감쇄파들의 꼬리가 서로 연결되어 있음을 알 수 있다. 이러한 상호간의 결합은 공진 코일 간의 배치 구조에 거의 영향이 없음을 알 수 있다. In the contour distribution of the magnetic field strength as shown in FIG. 4, the narrower the interval between the contour lines, the greater the magnetic field strength. As can be seen in FIG. 4, it can be seen that a very large magnetic field is formed only around the power transmitter resonant coil 114 and the power receiver resonant coil 121 to generate magnetic resonance between the two coils. The helical transmission and reception resonant coils 114 and 121 used for the simulation are the same, the wire diameter is 4mm, the number of turns 5 times, the coil diameter is 20cm, the pitch is 0.54cm. Theoretically, the resonance frequency is 28MHz, but in practice it is at 22MHz. Although the theoretical value and resonance frequency are different, it can be seen that resonance occurs between coils having the same resonance frequency. As can be seen in Figure 4 it can be seen that the magnetic field is not radiated between the same resonant coil at the same resonant frequency, the tail of the attenuation waves present around the coil is connected to each other. It can be seen that such mutual coupling has little effect on the arrangement between the resonant coils.
도 5는 도 4의 시뮬레이션을 통해 본 스캐트링(Scattering) 파라미터 결과이다. 소스 코일(113)은 신호 여기(exciting)를 위하여 50Ω 임피던스를 갖는 포트(port)를 주었으며, 디바이스 코일(122)도 마찬가지로 50Ω의 임피던스를 가지도록 포트를 주었다. 도 5와 같이, 송수전 공진 코일(114, 121)의 공진 주파수인 22MHz에서 송전부(110)의 반사 계수는 -7.52dB, 수전부(120)의 반사 계수는 -9.4dB로 매칭이 이루어진 것을 알 수 있다. 이처럼 별도의 임피던스 매칭 회로를 추가하지 않고서도 송전부(110)의 소스 코일(113)과 공진 코일(114)(수전부에서는 디바이스 코일과 공진 코일) 사이의 간격과 소스 코일(디바이스 코일)의 형태(감은 횟수나 크기) 등을 조정하면 송수전 공진 코일(114, 121)의 공진 주파수에서 자동적으로 임피던스 매칭이 가능하다. 시뮬레이션 결과 송수전 공진 코일(114, 121) 사이의 거리 24cm에서 송수전부의 매칭에 의한 영향을 보상해주면 자기 공명에 의한 송수전 공진 코일(114, 121) 사이의 전력 전달 효율은 약 60%이다. 5 is a scattering parameter result seen through the simulation of FIG. 4. The source coil 113 gave a port with a 50 Ω impedance for signal excitation, and the device coil 122 also gave a port with a 50 Ω impedance. As shown in FIG. 5, the reflection coefficient of the power transmission unit 110 is -7.52 dB and the reflection coefficient of the power reception unit 120 is -9.4 dB at 22 MHz, which is a resonance frequency of the transmission and reception resonance coils 114 and 121. Able to know. The spacing between the source coil 113 and the resonant coil 114 (the device coil and the resonant coil in the power receiver) and the shape of the source coil (device coil) of the power transmitter 110 without the addition of a separate impedance matching circuit. By adjusting the number of windings and the size, the impedance matching can be automatically performed at the resonant frequencies of the transmission and reception resonant coils 114 and 121. As a result of the simulation, when the distance between the transmission and reception resonant coils 114 and 121 is compensated for by the matching of the transmission and reception unit, the power transfer efficiency between the transmission and reception resonant coils 114 and 121 due to magnetic resonance is about 60%.
도 6은 도 3과 같이 송수전 공진 코일(114, 121)과 수직으로 배열된 중계 공진 코일(131)이 있는 경우의 자기장 패턴을 설명하기 위한 도면이다. 도 6에서 a는 측면에서 볼 때의 자기장 패턴이고, b는 위에 볼 때의 자기장 패턴이다. 도 6은 양끝 사이에 평판형 커패시터와 연결된 단일 루프를 중계 공진 코일(131)로 사용하여 자기 공진 현상을 시뮬레이션 한 결과이다. 여기서 중계 공진 코일(131)로 사용한 것은 참고문헌 US2007/0222542 A1 "Wireless non-radiative energy transfer"에 제시된 것이다. 도선의 두께는 2cm, 루프 지름은 60cm, 평판형 커패시터의 평판의 간격은 4mm, 평판 넓이는 138cm2, 유전율은 10이다. 이때의 루프의 공진 주파수는 7.8 MHz 이다. 송수전 공진 코일(114, 121) 사이의 거리는 1m인데, 수직 배열된 중계 공진 코일(131)로 인해서 수전부(120)에 까지 전력이 잘 전달될 수 있음을 알 수 있다.FIG. 6 is a diagram for describing a magnetic field pattern when there is a relay resonant coil 131 arranged vertically with respect to the transmission and reception resonant coils 114 and 121 as shown in FIG. 3. In FIG. 6, a is a magnetic field pattern when viewed from the side, and b is a magnetic field pattern when viewed from above. FIG. 6 illustrates a result of simulating a magnetic resonance phenomenon using a single loop connected to a plate capacitor between both ends as a relay resonant coil 131. The use as relay resonant coil 131 here is given in reference US2007 / 0222542 A1 "Wireless non-radiative energy transfer". The wire thickness is 2cm, the loop diameter is 60cm, the plate capacitor's plate spacing is 4mm, the plate width is 138cm2 and the dielectric constant is 10. The resonant frequency of the loop at this time is 7.8 MHz. Although the distance between the transmission and reception resonant coils 114 and 121 is 1m, it can be seen that power can be well transmitted to the power receiving unit 120 due to the vertically arranged relay resonant coil 131.
좀 더 구체적으로, 기본적인 원리를 설명하면, 동일 공진주파수를 갖는 공진코일 간의 커플링 현상은 송전부 공진 코일(114) 주위에서 만들어지는 감쇄파가 인접한 수전부 공진 코일(121)과 결합되는 것이다. 이러한 결합 현상은 도 4와 도 6에 보여주고 있으며, 송전부 공진 코일(114)과 수전부 공진 코일(121) 사이 중 가장 짧은 거리에서 결합이 일어난다. 이러한 결합의 크기는 작을 수 있으나, 감쇄파의 감쇄가 천천히 일어난다면, 작은 결합에 의해서도 작은 시간 동안 많은 양의 에너지가 수전부 쪽으로 전달된다. 이러한 결과는 도 7에서 보여 질 수 있다. 즉, 도 7과 같이, 도 6의 중계 공진 코일(131)을 사용한 경우에 대하여 각 공진 코일(114/121/131)에서의 감쇄파 모드들의 시간에 따른 변화를 나타낸다. 그림에서의 송전부 공진 코일(114)에서의 감쇄파 모드는 공진 주파수를 갖고 계속하여 오실레이션하고 있으며, 크기는 점차 작아진다. 중계 공진 코일(131)은 이와 같이 조금씩 에너지를 받고 있으며, 중계 공진 코일(131)에서 받은 에너지는 다시 수전부 공진 코일(121)로 전달된다. 물론 송전부 공진 코일(114)에서 수전부 공진 코일(121)로도 직접 전달될 수 있으나, 이는 중계 공진 코일(131)을 통과하여 전달되는 양에 비해 매우 작다. 그러나, 기존 전자기 유도에서는 이러한 커플링 현상 대신에 항상 큰 커플링이 되도록 해야 하기 때문에 커플링이 작은 수직 방향의 전력전달이 어려웠다. More specifically, when explaining the basic principle, the coupling phenomenon between the resonant coils having the same resonant frequency is that the attenuation waves generated around the transmission unit resonant coil 114 is coupled with the adjacent receiving unit resonant coil 121. 4 and 6, the coupling occurs at the shortest distance between the transmitter resonant coil 114 and the receiver resonant coil 121. The size of this coupling may be small, but if the attenuation of the attenuation wave occurs slowly, a large amount of energy is transferred to the power receiver for a small amount of time even with a small coupling. This result can be seen in FIG. That is, as shown in FIG. 7, the change in the attenuation wave modes of the resonant coils 114/121/131 in the case of using the relay resonant coil 131 of FIG. 6 is shown with time. The attenuation wave mode in the transmission unit resonant coil 114 in the figure continues oscillating with the resonant frequency, and the size gradually decreases. The relay resonant coil 131 receives energy little by little, and the energy received from the relay resonant coil 131 is transmitted to the power receiver resonant coil 121 again. Of course, the transmission unit resonant coil 114 may also be directly transmitted to the receiving unit resonant coil 121, but this is very small compared to the amount passed through the relay resonant coil 131. However, in the conventional electromagnetic induction, it is difficult to transfer power in a vertical direction where the coupling is small because a large coupling is always required instead of such a coupling phenomenon.
제안 발명의 경우 평행 배열(코일의 중심축이 일치하는 배열)과는 달리, 수직 또는 임의의 각을 가지도록 공진 코일들을 배열하는 형태로서, 커플링이 급속도로 작은 부분에서는 전력 전달이 어려울 수 있다. 도 8은 이러한 공진 코일 간의 수직 배열에 대한 전달 특성을 나타낸다. 도 8a와 같이 송전부 공진 코일(114)과 수전부 공진 코일(121)이 수직으로 배치되어 있고, 1/4분면 내에서 시뮬레이션한 것이다. 여기서 공진 코일로 사용한 것은 참고문헌 US2007/0222542 A1 "Wireless non-radiative energy transfer"에 제시된 것을 사용하였다. 도선의 두께는 2 cm, 루프 지름은 60 cm, 평판형 커패시터의 평판의 간격은 4 mm, 평판 넓이는 138 cm2, 유전율은 10이다. 이때의 루프의 공진 주파수는 7.8 MHz 이다. 도 8b와 같이, 수전부 공진 코일(121)의 위치가 z축으로 변화됨에 따라 효율이 변화됨을 알 수 있다. 그러나, 일정 거리 이하에서는 전송 효율이 80% 이상임을 확인할 수 있다. 그러나, x=0 근처의 경우에 대해서는 커플링 계수가 이론적으로 극히 작기 때문에 전력 전송 효율이 낮을 수 있다.Unlike the parallel arrangement (array in which the central axes of the coils coincide), the proposed invention arranges the resonant coils to have a vertical or arbitrary angle, and it may be difficult to transmit power in a portion where the coupling is rapidly small. . 8 shows the transfer characteristics for the vertical arrangement between such resonant coils. As shown in Fig. 8A, the power transmission unit resonant coil 114 and the power receiving unit resonant coil 121 are vertically arranged and simulated within a quarter quadrant. The resonant coils used here are those disclosed in reference US2007 / 0222542 A1 "Wireless non-radiative energy transfer". The wire thickness is 2 cm, the loop diameter is 60 cm, the plate capacitor's plate spacing is 4 mm, the plate width is 138 cm2, and the dielectric constant is 10. The resonant frequency of the loop at this time is 7.8 MHz. As shown in FIG. 8B, it can be seen that the efficiency changes as the position of the power receiving unit resonant coil 121 is changed to the z-axis. However, below a certain distance it can be confirmed that the transmission efficiency is more than 80%. However, for the case near x = 0, the power transfer efficiency may be low because the coupling coefficient is theoretically very small.
도 9는 도 2의 변형예로서, 송수전 공진 코일(114, 121)은 수직 또는 임의의 각을 가지도록 일정 각도로 기울어지게 배치될 수 있는데, 도 9에서는 그 코일들이 동일 평면상에 존재하지 않아 그 중심축들이 평행하지만 그 중심축들이 일치하지는 않도록 배치될 수도 있음을 나타낸다.9 is a variation of FIG. 2, wherein the power transmission and resonant coils 114 and 121 may be disposed to be inclined at an angle to have a vertical or arbitrary angle. In FIG. 9, the coils do not exist on the same plane. Thus indicating that the central axes are parallel but may be arranged such that they do not coincide.
도 10은 도 3의 변형예로서, 중계 공진 코일(131)은 송전부 공진 코일(114) 및 수전부 공진 코일(121)과 수직 또는 임의의 각을 가지도록 일정 각도로 기울어지게 배치될 수 있는데, 도 10에서는 중계 공진 코일(131)이 송전부 공진 코일(114) 및 수전부 공진 코일(121)과 동일 평면상에 존재하지 않고 그 중심축들이 평행하지만 그 중심축들이 일치하지는 않도록 배치될 수도 있음을 나타낸다.FIG. 10 is a variation of FIG. 3, wherein the relay resonant coil 131 may be disposed to be inclined at a predetermined angle to have a vertical or arbitrary angle with the power transmitter resonant coil 114 and the power receiver resonant coil 121. In FIG. 10, the relay resonant coil 131 may be disposed such that the relay resonant coil 131 is not coplanar with the power transmitter resonant coil 114 and the power receiver resonant coil 121, and the center axes thereof are parallel but the center axes thereof do not coincide. It is present.
도 11은 900kHz에서 공진 주파수를 갖도록 제작된 헬리컬 코일의 구성과 사진을 나타내었다. 송전부 공진 코일(114)과 수전부 공진 코일(121)의 모양은 동일하게 할 수 있다. 이때 사용한 도선은 리츠(Litz) 와이어 직경 1mm이고, 코일의 지름은 26cm, 높이는 8cm, 감은 횟수는 78회이다. 이 코일의 저항은 3.2Ω이고, 인덕턴스는 2.074mH, Q-factor (2 f L/R: L=inductance, R: 전도 저항+방사저항)는 3670이다. 공진 코일과 자기 유도를 위한 송전부의 소스 코일과 수전부의 디바이스 코일의 감은 회수는 1회이다. 특히, 송전부 공진 코일(114), 수전부 공진 코일(121), 중계 공진 코일(131)에 대하여 동일한 공진 주파수를 얻기 위하여 그림에서 처럼 원통 모양의 구조체를 활용하여 코일을 감았다. 도 7과 같은 헬리컬 코일은 송수전 공진 코일(114, 121) 또는 중계 공진 코일(131)로 사용될 수 있다.11 shows a configuration and a photograph of a helical coil manufactured to have a resonance frequency at 900 kHz. The shape of the power transmitter resonant coil 114 and the power receiver resonant coil 121 can be the same. The lead wire used was a Litz wire diameter of 1mm, the diameter of the coil was 26cm, the height was 8cm, and the number of turns was 78 times. The coil's resistance is 3.2 kΩ, the inductance is 2.074 mH, and the Q-factor (2 f L / R: L = inductance, R: conduction resistance + radiation resistance) is 3670. The number of turns of the resonant coil and the source coil of the power transmission unit for magnetic induction and the device coil of the power receiving unit is one time. In particular, in order to obtain the same resonant frequency for the transmitter resonant coil 114, the power receiver resonant coil 121, and the relay resonant coil 131, the coil was wound using a cylindrical structure as shown in the figure. The helical coil as shown in FIG. 7 may be used as the transmission and reception resonance coils 114 and 121 or the relay resonance coil 131.
도 12는 도 11과 같은 공진 코일을 송수전부에 사용했을 경우에 50%의 전력전송 효율이 보이는 영역(3dB 경계선)을 나타낸 그림이다. 여기서, a의 3dB 경계선은 송수전 공진 코일(114, 121)을 평행하게 한 채 위치를 이동시키면서 효율을 측정한 결과이고, b의 3dB 경계선은 송수전 공진 코일(114, 121)을 도 1과 같이 수직으로 한 채 위치를 이동시키면서 효율을 측정한 결과이다. 어떤 크기의 송전부가 있을 경우 송전부 공진 코일(114)이 가지는 3 dB 경계 이내에서는 어떤 방향으로 수전부가 위치해도 50% 효율로 전력을 전달받을 수 있다. 도 12에서 점으로 표시된 선의 안쪽 공간이 3 dB 영역이다.FIG. 12 is a view showing a region (3dB boundary line) where power transmission efficiency of 50% is seen when the resonant coil shown in FIG. 11 is used in the transmitter and receiver. Here, the 3 dB boundary of a is a result of measuring the efficiency while moving the position while parallelizing the transmission and reception resonant coils (114, 121), and the 3dB boundary of b shows the transmission and reception resonant coils (114, 121) and It is the result of measuring efficiency while moving the position vertically together. If there is a transmitter of a certain size, power can be delivered with 50% efficiency even if the receiver is located in any direction within the 3 dB boundary of the transmitter resonant coil 114. The inner space of the line indicated by the dots in FIG. 12 is a 3 dB region.
도 13 내지 도 17은 송수전 공진 코일(114, 121)을 평행 배열이 아닌 수직 또는 임의의 각으로 배열하여 실생활에서 활용도를 높일 수 있도록 한 적용 예시들이다. 이하에서 중계 공진 코일(113)이 도 3과 같이 송수전 공진 코일(114, 121) 주변의 적절한 위치에 배열될 수 있다.13 to 17 are examples of applications in which the transmission and reception resonant coils 114 and 121 are arranged in a vertical or arbitrary angle rather than in a parallel arrangement to increase utilization in real life. Hereinafter, the relay resonant coil 113 may be arranged at an appropriate position around the transmission and reception resonant coils 114 and 121 as shown in FIG. 3.
예를 들어, 도 13과 같이, 절연체 벽 내부에 송전부 공진 코일(114)을 설치할 수 있고, 벽에 수직으로 접해있는 책상 내부 또는 책상 아래쪽 공간 등 주위에 수전부 공진 코일(121)을 설치할 수 있으며, 책상 위의 어떤 공간에 전자 기기(디바이스)를 놓아도 충전 등의 목적으로 전력을 공급 받을 수 있다. 여기서, 전자 기기는 디바이스 코일(122), 정류 회로(123), 및 부하(124)을 포함하는 디바이스일 수 있고, 수전부 공진 코일(121)로부터 디바이스 코일(122)로 유도되어 전달된 전력이 정류 회로(123)를 거쳐 부하(124), 예를 들어, 배터리에 충전될 수 있다.For example, as shown in FIG. 13, the power transmission unit resonant coil 114 may be installed inside the insulator wall, and the power reception unit resonance coil 121 may be installed around the inside of a desk or a space below the desk that is in contact with the wall vertically. In addition, even if an electronic device (device) is placed in a space on the desk, it can be supplied with power for charging or the like. Here, the electronic device may be a device including the device coil 122, the rectifier circuit 123, and the load 124, and the electric power induced and transmitted from the power receiving unit resonant coil 121 to the device coil 122 may be The rectifier circuit 123 may be used to charge the load 124, for example, a battery.
또한, 도 14와 같이, 절연체 벽 내부에 송전부 공진 코일(114)을 설치할 수 있고, 벽에 수직으로 접해있는 책상 위 같은 곳에 크기가 작은 수전부 공진 코일(121)이 내장된 패드를 배치할 수 있으며, 전자 기기(디바이스)를 패드 위나 그 주변에 놓고 위와 같이 충전 등의 목적으로 전력을 공급 받을 수 있다. In addition, as shown in FIG. 14, a transmission unit resonant coil 114 may be installed inside an insulator wall, and a pad including a small power receiver resonant coil 121 may be disposed on a desk, such as a desk perpendicular to the wall. The electronic device (device) may be placed on or around the pad and supplied with power for charging purposes as described above.
또한, 도 15와 같이, 절연체 벽 내부에 송전부 공진 코일(114)을 설치할 수 있고, 벽에 수직으로 접해있는 책상 위 같은 곳에 수전부 공진 코일(121)이 내장된 바구니 또는 컵 등 용기를 배치할 수 있으며, 용기 속에 전자 기기(디바이스)를 담아 두어 위와 같이 충전 등의 목적으로 전력을 공급 받을 수 있다. In addition, as shown in FIG. 15, a transmission unit resonant coil 114 may be installed inside the insulator wall, and a container such as a basket or a cup in which the power receiver resonant coil 121 is built may be disposed on a desk that is in contact with the wall vertically. The electronic device (device) can be stored in a container, and the electric power can be supplied for the purpose of charging.
또한, 도 16과 같이, 한쪽의 절연체 벽 내부에 송전부 공진 코일(114)을 설치할 수 있고, 서로 수직이면서 접해있는 다른쪽 절연체 벽 내부에 수전부 공진 코일(121)을 설치할 수 있으며, 벽걸이 TV나 전자 액자 등의 벽에 걸 수 있는 전자 기기들에 전력을 공급할 수도 있다. 여기서, 벽걸이 TV나 전자 액자 등의 벽에 걸 수 있는 전자 기기는 디바이스 코일(122)을 포함하는 디바이스일 수 있고, 수전부 공진 코일(121)로부터 디바이스 코일(122)로 유도되어 전달된 전력이 전자 기기 내부 회로나 디스플레이 장치 등의 작동에 사용될 수 있다.In addition, as shown in FIG. 16, a transmission unit resonant coil 114 may be installed inside one insulator wall, and a power receiver resonant coil 121 may be installed inside another insulator wall that is perpendicular to and in contact with each other. It can also power electronic devices that can be hung on walls such as electronic photo frames. Here, the electronic device that can be hung on a wall such as a wall-mounted TV or an electronic picture frame may be a device including the device coil 122, and the electric power induced by the power receiving unit resonant coil 121 to the device coil 122 may be transferred. It can be used for the operation of internal circuits or display devices of electronic equipment.
그리고, 도 17과 같이, 절연체 벽 내부에 송전부 공진 코일(114)을 설치할 수 있고, 벽에 가까운 곳 주위의 탁자에 수전부 공진 코일(121)을 내장하거나 그 주위에 수전부 공진 코일(121)을 설치하여 수전부 공진 코일(121)과 송전부 공진 코일(114)이 수직으로 배열되도록 하고, 탁자 위에 노트북이나 휴대폰 같은 전자 기기들에 전력을 공급하여 동작시킬 수도 있다.And, as shown in FIG. 17, the transmission unit resonant coil 114 may be installed inside the insulator wall, and the power receiver resonant coil 121 may be built in or around the table near the wall. ) So that the power receiver resonant coil 121 and the power transmitter resonant coil 114 are vertically arranged, and may be operated by supplying power to electronic devices such as a laptop or a mobile phone on a table.
수전부 공진 코일(121)과 송전부 공진 코일(114)이 수직(코일을 감아 나가는 방향이 수직)으로만 배열되어야 하는 것은 아니고, 경우에 따라서는 서로 평행하지는 않고 일정 각도로 기울어져 배열될 수도 있다.The power receiver resonant coil 121 and the power transmitter resonant coil 114 are not to be arranged only vertically (the direction in which the coil is wound vertically), and in some cases, the power receiver resonant coil 121 and the power transmitter resonant coil 114 may be arranged at an angle and not at each other. have.
이와 같이, 수직 또는 임의의 각으로 배열될 수 있는 수전부 공진 코일(121)과 송전부 공진 코일(114)을 이용하여, 수전부 공진 코일(121) 주변에 전자기 유도 방식으로 전력을 전달받을 수 있도록 디바이스 코일(122)을 갖는 전자기기들을 올려놓고 각각의 전자기기로 전력을 공급하여, 충전 또는 전자기기를 작동 시킬 수 있게 된다. 이와 같은 방식은 벽 안에 송전부 공진 코일(114)이 설치되어 전선 케이블을 완전히 없앨 수 있기 때문에 미관상 전자기 유도 방식이나 수평 배열 방식보다 더 나은 장점을 가진다. 또한, 이와 같은 자기 공명 방식은 벽이나 책상 같은 물체에 의한 영향이 적기 때문에 전력 손실이 거의 없이 전달될 수 있다. As such, by using the power receiver resonant coil 121 and the power transmitter resonant coil 114, which may be arranged vertically or at an arbitrary angle, electric power may be transmitted around the power receiver resonant coil 121 in an electromagnetic induction manner. In order to put the electronic devices having the device coil 122 so as to supply power to each electronic device, it is possible to operate the charging or electronic devices. Such a method has better advantages than aesthetical electromagnetic induction or horizontal arrangement because the transmission unit resonant coil 114 is installed in the wall to completely eliminate the wire cable. In addition, such a magnetic resonance method can be transmitted with little power loss because it is less affected by objects such as walls and desks.
이상과 같이, 본 발명에 따른 공간 적응형 자기공진 무선전력전송 시스템(100)에서는, 코일에 인위적인 커패시터를 추가하여 LC 공진을 시키는 것이 아니라 헬리컬, 스파이럴 등의 코일이 가지는 자체 공진(self resonance)을 이용하여 송수전 공진 코일(114, 121)을 구성할 수 있으며, 이를 통해 송전부(110)와 수전부(120)를 수직 또는 임의 각을 갖고 일정 각도로 기울어지게 배열함으로써 종래의 평행 배열이 가지는 한계를 극복하면서 전자기 유도 방식에 비해 더 효율적으로 전력을 전달할 수 있다. As described above, in the space-adaptive magnetic resonance wireless power transmission system 100 according to the present invention, rather than adding an artificial capacitor to the coil to perform LC resonance, self-resonance (helical resonance) of the coil such as helical, spiral, etc. The transmission and reception resonant coils 114 and 121 may be configured, and through this, the power transmission unit 110 and the power reception unit 120 may be vertically or arbitrarily arranged to be inclined at a predetermined angle. Overcoming the limitations can deliver power more efficiently than electromagnetic induction.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (14)

  1. 소스 코일에서 전자기 유도(magnetic induction) 방식으로 송전부 공진 코일로 전력을 전달하는 단계; Transferring power from the source coil to the transmitter resonant coil in an electromagnetic induction manner;
    상기 송전부 공진 코일에서 자기 공진 결합(coupling)에 따라 상기 송전부 공진 코일과 동일 공진 주파수를 가지는 수전부 공진 코일로 전력을 전달하는 단계; 및Transferring power from the transmitter resonant coil to a receiver resonant coil having the same resonance frequency as the transmitter resonant coil according to self resonance coupling; And
    상기 수전부 공진 코일에서 전자기 유도 방식으로 전자기기의 디바이스 코일로 전력을 전달하는 단계를 포함하고, Transmitting power from the power receiver resonant coil to a device coil of an electronic device in an electromagnetic induction manner;
    상기 송전부 공진 코일과 상기 수전부 공진 코일은 서로 수직하게 또는 일정 각도로 기울어지게 배열된 것을 특징으로 하는 자기 공진 무선전력전송 방법.And the power transmitter resonant coil and the power receiver resonant coil are arranged perpendicular to each other or inclined at a predetermined angle.
  2. 소스 코일에서 전자기 유도 방식으로 송전부 공진 코일로 전력을 전달하는 단계; Transferring power from the source coil to the transmitter resonant coil in an electromagnetic induction manner;
    상기 송전부 공진 코일에서 자기 공진 결합(coupling)에 따라 상기 송전부 공진 코일과 동일 공진 주파수를 가지는 중계 공진 코일로 전력을 전달하는 단계;Transferring power from the transmitter resonant coil to a relay resonant coil having the same resonance frequency as the transmitter resonant coil according to magnetic resonance coupling;
    상기 중계 공진 코일에서 자기 공진 결합(coupling)에 따라 상기 중계 공진 코일과 동일 공진 주파수를 가지는 수전부 공진 코일로 전력을 전달하는 단계; 및Transferring power from the relay resonant coil to a power receiver resonant coil having the same resonant frequency as the relay resonant coil according to magnetic resonance coupling; And
    상기 수전부 공진 코일에서 전자기 유도 방식으로 전자기기의 디바이스 코일로 전력을 전달하는 단계를 포함하고, Transmitting power from the power receiver resonant coil to a device coil of an electronic device in an electromagnetic induction manner;
    상기 중계 공진 코일은 상기 송전부 공진 코일 및 상기 수전부 공진 코일과 수직하게 또는 일정 각도로 기울어지게 배열된 것을 특징으로 하는 자기 공진 무선전력전송 방법.The relay resonant coil is a self-resonant wireless power transmission method, characterized in that arranged in the transmission unit resonant coil and the power receiver resonant coil perpendicularly or inclined at a predetermined angle.
  3. 소스로부터 전력을 인가받는 소스 코일;A source coil receiving power from the source;
    상기 소스 코일로부터 전자기 유도 방식으로 전력을 전달받는 송전부 공진 코일; 및A transmission unit resonant coil receiving electric power from the source coil in an electromagnetic induction manner; And
    상기 송전부 공진 코일로부터 자기 공진 결합(coupling)에 따라 상기 송전부 공진 코일과 동일 공진 주파수로 전력을 전달받는 수전부 공진 코일을 포함하고,A power receiver resonant coil receiving electric power at the same resonant frequency as the power transmitter resonant coil according to magnetic resonance coupling from the power transmitter resonant coil,
    상기 송전부 공진 코일과 상기 수전부 공진 코일은 서로 수직하게 또는 일정 각도로 기울어지게 배열되고, 상기 수전부 공진 코일이 전자기 유도 방식으로 전자기기의 디바이스 코일로 전력을 전달하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템.The power transmitter resonant coil and the power receiver resonant coil are arranged perpendicular to each other or inclined at an angle, and the power receiver resonant coil transfers power to the device coil of the electronic device in an electromagnetic induction manner. Wireless power transmission system.
  4. 소스로부터 전력을 인가받는 소스 코일;A source coil receiving power from the source;
    상기 소스 코일로부터 전자기 유도 방식으로 전력을 전달받는 송전부 공진 코일; A transmission unit resonant coil receiving electric power from the source coil in an electromagnetic induction manner;
    상기 송전부 공진 코일로부터 자기 공진 메커니즘에 따라 상기 송전부 공진 코일과 동일 공진 주파수로 전력을 전달받는 중계 공진 코일; 및A relay resonant coil receiving electric power from the transmitter resonant coil at the same resonance frequency as the transmitter resonant coil according to a magnetic resonance mechanism; And
    상기 중계 공진 코일로부터 자기 공진 결합(coupling)에 따라 상기 중계 공진 코일과 동일 공진 주파수로 전력을 전달받는 수전부 공진 코일을 포함하고,A power receiver resonant coil receiving electric power at the same resonant frequency as the relay resonant coil according to magnetic resonance coupling from the relay resonant coil,
    상기 중계 공진 코일은 상기 송전부 공진 코일 및 상기 수전부 공진 코일과 수직하게 또는 일정 각도로 기울어지게 배열되고, 상기 수전부 공진 코일이 전자기 유도 방식으로 전자기기의 디바이스 코일로 전력을 전달하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템.The relay resonant coil may be arranged to be perpendicular to the power transmitter resonant coil and the power receiver resonant coil or inclined at a predetermined angle, and the power receiver resonant coil transfers power to the device coil of the electronic device in an electromagnetic induction manner. Magnetic resonance wireless power transmission system.
  5. 제3항 또는 제4항에 있어서,The method according to claim 3 or 4,
    상기 소스와 상기 소스 코일 사이, 또는 상기 디바이스 코일과 상기 전자기기의 정류회로나 부하 사이에 임피던스 매칭을 위한 회로를 더 포함하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템.And a circuit for impedance matching between the source and the source coil or between the device coil and the rectifier circuit or load of the electronic device.
  6. 제3항 또는 제4항에 있어서,The method according to claim 3 or 4,
    임피던스 매칭 회로 없이도 임피던스 매칭을 위하여, 상기 소스 코일과 상기 송전부 공진 코일 사이의 간격이나, 상기 소스 코일 또는 상기 송전부 공진 코일과 상기 수전부 공진 코일의 감은 횟수와 크기가 미리 결정된 것을 특징으로 하는 자기 공진 무선전력전송 시스템.For impedance matching without an impedance matching circuit, the interval between the source coil and the transmitter resonant coil, or the number and size of windings of the source coil or the transmitter resonant coil and the power receiver resonant coil is predetermined Magnetic resonance wireless power transmission system.
  7. 제 3항에 있어서, The method of claim 3, wherein
    상기 송전부 공진 코일 및 상기 수전부 공진 코일 중 적어도 어느 하나는, At least one of the power transmitter resonant coil and the power receiver resonant coil,
    두 전극이 상기 적어도 어느 하나의 양쪽 끝 사이에 연결되거나, Two electrodes are connected between both ends of the at least one;
    한 전극만이 상기 적어도 어느 하나의 양쪽 끝 중 한쪽이나 양쪽에 각각, 또는 상기 적어도 어느 하나의 중간 부분에 연결된 추가 집중 인덕터 또는 커패시터를 포함하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템. And an additional lumped inductor or capacitor connected to one or both ends of each of the at least one of the at least one ends, or to the middle portion of the at least one of the at least one ends.
  8. 제4항에 있어서, The method of claim 4, wherein
    상기 송전부 공진 코일, 상기 수전부 공진 코일, 및 상기 중계 공진 코일 중 적어도 어느 하나는, At least one of the power transmitter resonant coil, the power receiver resonant coil, and the relay resonant coil,
    두 전극이 상기 적어도 어느 하나의 양쪽 끝 사이에 연결되거나, Two electrodes are connected between both ends of the at least one;
    한 전극만이 상기 적어도 어느 하나의 양쪽 끝 중 한쪽이나 양쪽에 각각, 또는 상기 적어도 어느 하나의 중간 부분에 연결된 추가 집중 인덕터 또는 커패시터를 포함하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템. And an additional concentrated inductor or capacitor connected to one or both ends of each of the at least one of the at least one ends, or to the intermediate portion of the at least one of the at least one ends.
  9. 제7항 또는 제8항에 있어서, The method according to claim 7 or 8,
    상기 커패시터가 추가적으로 연결된 해당 코일의 자체 커패시턴스와 추가된 상기 커패시터의 커패시턴스를 합한 값은, 100pF이상 10nF이하인 것을 특징으로 하는 자기 공진 무선전력전송 시스템. The sum of the self capacitance of the coil to which the capacitor is additionally connected and the capacitance of the added capacitor is greater than or equal to 100 pF and less than or equal to 10 nF.
  10. 제3항 또는 제4항에 있어서,The method according to claim 3 or 4,
    절연체 벽 내부에 상기 송전부 공진 코일을 설치하고, 상기 수전부 공진 코일을 상기 절연체 벽 주위의 책상이나 탁자 내부 또는 그 주위 공간, 다른 절연체 벽 내부, 패드 내부, 또는 용기 내부에 설치하여, 상기 수전부 공진 코일 주위의 전자기기가 전력을 공급받는 것을 특징으로 하는 자기 공진 무선전력전송 시스템.The power transmitter resonant coil is installed inside an insulator wall, and the power receiver resonant coil is installed inside a desk or table or the space around the insulator wall, inside another insulator wall, inside a pad, or inside a container. Magnetic resonance wireless power transmission system, characterized in that all of the electronic devices around the resonant coil is supplied with power.
  11. 제3항에 있어서,The method of claim 3,
    상기 송전부 공진 코일 또는 상기 수전부 공진 코일은 헬리컬 또는 스파이럴 형태를 포함하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템.The transmitter resonance coil or the receiver resonance coil has a helical or spiral form, characterized in that the magnetic resonance wireless power transmission system.
  12. 제4항에 있어서, The method of claim 4, wherein
    상기 송전부 공진 코일, 상기 수전부 공진 코일, 또는 상기 중계 공진 코일은 헬리컬 또는 스파이럴 형태를 포함하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템.The transmitter resonance coil, the receiver resonance coil, or the relay resonance coil may include a helical or spiral form.
  13. 제11항에 있어서, The method of claim 11,
    상기 송전부 공진 코일 또는 상기 수전부 공진 코일은 자성체에 소정 와이어가 감긴 형태를 포함하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템.The transmitter resonant coil or the receiver resonant coil is a magnetic resonance wireless power transmission system, characterized in that it comprises a form in which a predetermined wire wound around a magnetic material.
  14. 제12항에 있어서, The method of claim 12,
    상기 송전부 공진 코일, 상기 수전부 공진 코일, 또는 상기 중계 공진 코일은 자성체에 소정 와이어가 감긴 형태를 포함하는 것을 특징으로 하는 자기 공진 무선전력전송 시스템. The power transmitter resonant coil, the power receiver resonant coil, or the relay resonant coil is a magnetic resonance wireless power transmission system, characterized in that it comprises a form in which a predetermined wire wound around a magnetic material.
PCT/KR2010/006447 2009-11-04 2010-09-17 System and method for space-adaptive wireless power transmission using evanescent wave resonance WO2011055905A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/508,345 US9786430B2 (en) 2009-11-04 2010-09-17 Space-adaptive wireless power transfer system and method using evanescent field resonance
US14/975,044 US20160104570A1 (en) 2009-11-04 2015-12-18 Space-adaptive wireless power transfer system and method using multiple resonance coils

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0105919 2009-11-04
KR20090105919 2009-11-04
KR1020100090388A KR101197579B1 (en) 2009-11-04 2010-09-15 Space-adaptive Wireless Power Transmission System and Method using Resonance of Evanescent Waves
KR10-2010-0090388 2010-09-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/508,345 A-371-Of-International US9786430B2 (en) 2009-11-04 2010-09-17 Space-adaptive wireless power transfer system and method using evanescent field resonance
US14/975,044 Division US20160104570A1 (en) 2009-11-04 2015-12-18 Space-adaptive wireless power transfer system and method using multiple resonance coils

Publications (2)

Publication Number Publication Date
WO2011055905A2 true WO2011055905A2 (en) 2011-05-12
WO2011055905A3 WO2011055905A3 (en) 2011-09-01

Family

ID=43970491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006447 WO2011055905A2 (en) 2009-11-04 2010-09-17 System and method for space-adaptive wireless power transmission using evanescent wave resonance

Country Status (1)

Country Link
WO (1) WO2011055905A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289698A (en) * 2019-07-05 2019-09-27 同济大学 Radio energy transmission system and its transmission method based on three resonance coils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389175B1 (en) * 2000-06-30 2003-06-27 미쓰비시 덴키 시스템 엘에스아이 디자인 가부시키가이샤 Cordless power transmission system, power transmission terminal and electrical appliance
KR20050013605A (en) * 2002-06-26 2005-02-04 코닌클리케 필립스 일렉트로닉스 엔.브이. Planar resonator for wireless power transfer
JP2006517778A (en) * 2003-02-04 2006-07-27 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Adaptive induction power supply with communication means
KR20090050912A (en) * 2007-11-15 2009-05-20 삼성전자주식회사 Apparatus and system for transfering power wirelessly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389175B1 (en) * 2000-06-30 2003-06-27 미쓰비시 덴키 시스템 엘에스아이 디자인 가부시키가이샤 Cordless power transmission system, power transmission terminal and electrical appliance
KR20050013605A (en) * 2002-06-26 2005-02-04 코닌클리케 필립스 일렉트로닉스 엔.브이. Planar resonator for wireless power transfer
JP2006517778A (en) * 2003-02-04 2006-07-27 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Adaptive induction power supply with communication means
KR20090050912A (en) * 2007-11-15 2009-05-20 삼성전자주식회사 Apparatus and system for transfering power wirelessly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289698A (en) * 2019-07-05 2019-09-27 同济大学 Radio energy transmission system and its transmission method based on three resonance coils
CN110289698B (en) * 2019-07-05 2023-09-22 同济大学 Wireless power transmission system based on three resonance coils and transmission method thereof

Also Published As

Publication number Publication date
WO2011055905A3 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
KR101197579B1 (en) Space-adaptive Wireless Power Transmission System and Method using Resonance of Evanescent Waves
US11309126B2 (en) Wireless power transmittal
US20180233949A1 (en) Wireless Electrical Energy Transmission System
EP2693601B1 (en) Power supply device, power supply system, and electronic device
KR101159565B1 (en) Long range low frequency resonator and materials
US20120248893A1 (en) Wireless Power Transmittal
WO2015167054A1 (en) Wireless power relay device and wireless power transmission system
KR20130099576A (en) Apparatus for transferring power
EP2711946A1 (en) Power supply device, power supply system, and electronic device
WO2012150746A1 (en) Self-resonance coil having multiloop for magnetic resonance wireless power transfer
EP2953237B1 (en) Wireless power transmission system
KR20120019219A (en) Apparatus for reducing electric field and radiation field in magnetic resonant coupling coils or magnetic induction device for wireless energy transfer
KR20150032366A (en) Resonator device with improved isoalation for stable wireless power transfer
US10978791B2 (en) Combination antenna
KR20140090045A (en) Antenna for wireless charging and Dual mode antenna having the same
WO2016114629A1 (en) Wireless power transmission device
US20230369895A1 (en) Systems and methods for wireless power transferring
CN117223191A (en) Charging coil for hearing aid charger
WO2013141533A1 (en) Transmitter for transmitting wireless power and wireless power transmitting system including same
WO2011055905A2 (en) System and method for space-adaptive wireless power transmission using evanescent wave resonance
KR102183887B1 (en) Antenna for wireless charging and Dualmode antenna having the same
WO2011126306A1 (en) Antenna having a broadband power supply structural body, and a power supply method
WO2022035059A1 (en) Power conversion unit of wireless power transmission apparatus
KR102109104B1 (en) Apparatus for transferring power
CN108599394B (en) Wireless charging system capable of realizing energy funnel effect and wireless charging method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13508345

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10828440

Country of ref document: EP

Kind code of ref document: A2