WO2011055682A1 - 多層透明受光素子および電子機器 - Google Patents

多層透明受光素子および電子機器 Download PDF

Info

Publication number
WO2011055682A1
WO2011055682A1 PCT/JP2010/069197 JP2010069197W WO2011055682A1 WO 2011055682 A1 WO2011055682 A1 WO 2011055682A1 JP 2010069197 W JP2010069197 W JP 2010069197W WO 2011055682 A1 WO2011055682 A1 WO 2011055682A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
receiving element
light receiving
transparent light
cytochrome
Prior art date
Application number
PCT/JP2010/069197
Other languages
English (en)
French (fr)
Inventor
イ ラ
義夫 後藤
斉爾 山田
戸木田 裕一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP10828242A priority Critical patent/EP2498302A4/en
Priority to CN201080010327.7A priority patent/CN102341920B/zh
Priority to KR1020117019851A priority patent/KR20120088534A/ko
Priority to BRPI1008307A priority patent/BRPI1008307A2/pt
Priority to US13/203,896 priority patent/US20120141831A1/en
Publication of WO2011055682A1 publication Critical patent/WO2011055682A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/14Peptides being immobilised on, or in, an inorganic carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a multilayer transparent light receiving element and an electronic device, and in particular, various types such as a multilayer transparent light receiving element using protein and a three-dimensional display, a three-dimensional image sensor, and a camera using the multilayer transparent light-receiving element as a photodetector. Relating to electronic devices.
  • CCDs, CMOSs, and the like have been used exclusively as light receiving elements, but since these are built on the basis of silicon semiconductor technology, the light receiving elements themselves were not transparent. For this reason, most cameras that perform stereoscopic viewing using these conventional light receiving elements use binocular parallax that mimics the same mechanism as the human eye (for example, a stereo camera). However, when such a mechanism is used, it is necessary to connect two or more cameras, and the structure becomes complicated. In addition, it is inevitably necessary to prepare two or more lenses, and it is difficult to make the camera compact. In addition, since the focus of the imaging part is one point per eye, it was not possible to take images with various focal points at the same time. Also, if you want to take a close-up shot from a very far-in-focus state, the focus is only one point per eye, so it is necessary to move the lens significantly to achieve high-speed focus. There was a limit to focusing.
  • the optical disk has been multilayered, and the recording capacity has been dramatically increased by the multilayering.
  • the above-described conventional light receiving element since it is impossible for the above-described conventional light receiving element to make a light receiving element for light detection in an optical disk system, this is an obstacle to the development of an optical disk system using a multilayered optical disk.
  • Patent Document 1 a light transmissive image recognition element capable of transmitting an input image.
  • This light-transmissive image recognition element is disposed between a first transparent substrate having a plurality of transparent pixel electrodes formed in a two-dimensional array on the surface, a second transparent substrate having a transparent counter electrode formed on the surface, and both electrodes.
  • a visual-substance-like protein alignment sequence film layer and a transparent insulating layer As the visual substance-like protein alignment / alignment film layer, an alignment alignment film layer of bacteriorhodopsin is used.
  • a protein-immobilized electrode in which a zinc-substituted equine myocardial cytochrome c (the iron of the prosthetic group hem of the equine myocardial cytochrome c is replaced with zinc) is immobilized on a gold electrode has been proposed (see Patent Document 2). It is shown that a photocurrent can be obtained from this protein-immobilized electrode.
  • the light transmissive image recognition element proposed in Patent Document 1 is such that when an image is projected from the first transparent substrate side onto the visual substance-like protein alignment array film layer, the electrical property of the visual substance-like protein alignment array film layer is Since the induced current induced in the pixel electrode due to polarization is detected, not only the light response speed is slow, but also the Langmuir-Blodgett method is used to produce the visual-substance-like protein alignment array film layer. Is bad. Further, Patent Document 1 does not demonstrate any detection of the induced current induced in the pixel electrode due to the electric polarization of the visual substance-like protein alignment array film layer. Therefore, the problem to be solved by the present invention is to provide a multilayer transparent light-receiving element that has an extremely fast optical response speed and that is easy to manufacture, and a high-performance electronic device that uses this multilayer transparent light-receiving element.
  • the present invention provides: It is a multilayer transparent light receiving element having a plurality of protein transparent light receiving elements using electron transfer proteins stacked on each other.
  • this invention It is an electronic device having a multilayer transparent light receiving element having a plurality of protein transparent light receiving elements using electron transfer proteins, which are stacked on each other.
  • a conventionally known electron transfer protein can be used as the electron transfer protein. More specifically, as an electron transfer protein, an electron transfer protein containing a metal or a metal-free (metal free) electron transfer protein can be used.
  • the metal contained in the electron transfer protein is preferably a transition metal (for example, zinc or iron) having electrons in a high energy orbit higher than the d orbit.
  • a novel electron transfer protein described later can also be used.
  • the electron transfer protein is typically immobilized on a transparent electrode made of a material transparent to light to be received, typically visible light.
  • the protein transparent light receiving element has a protein-immobilized electrode in which an electron transfer protein is immobilized on a transparent electrode, and a transparent counter electrode.
  • the protein transparent light-receiving element has a structure in which a solid protein layer made of an electron transfer protein is sandwiched between a first transparent electrode and a second transparent electrode.
  • a material for the transparent electrode either an inorganic material or an organic material may be used, and it is selected as necessary.
  • Electronic devices may be of various types as long as a multilayer transparent light receiving element can be used.
  • a three-dimensional display a three-dimensional image sensor, a camera, an optical recording / reproducing system, etc. It is.
  • the electron transfer protein not only has a higher light response speed than a visual substance-like protein such as bacteriorhodopsin, but also, for example, a solution containing the electron transfer protein is applied to the transparent electrode.
  • a protein-immobilized electrode can be easily produced.
  • the present invention it is possible to realize a multi-layer transparent light-receiving element that has an extremely fast optical response speed and is easy to manufacture.
  • a high-performance electronic device can be realized using this excellent multilayer transparent light-receiving element.
  • FIG. It is a basic diagram which shows an example of the fitting of the secondary reaction type
  • FIG. 1 It is sectional drawing which expands and shows the principal part of the non-wetted all solid type protein transparent light receiving element shown in FIG. It is a basic diagram for demonstrating operation
  • FIG. 1 It is a basic diagram which shows the measurement result of the light degradation curve of the non-wetted all-solid-type protein transparent light receiving element and liquid type protein light receiving element which comprise the multilayer transparent light receiving element by the Example of this invention.
  • FIG. It is a basic diagram which shows the measurement result of the frequency response of a liquid type protein transparent light receiving element. It is a basic diagram which shows the measurement result of the frequency response of the non-wetted all solid protein photoelectric conversion element which comprises the multilayer transparent light receiving element by the Example of this invention. It is a basic diagram which shows the measurement result of the photocurrent action spectrum of the non-wetted all-solid protein transparent light receiving element which comprises the multilayer transparent light receiving element by the Example of this invention.
  • FIG. 1 shows a multilayer transparent light-receiving element according to the first embodiment.
  • this multilayer transparent light receiving element is composed of N protein transparent light receiving elements 1 of N layers (N is an integer of 2 or more) stacked on each other.
  • the number N of stacked protein transparent light receiving elements 1 can be appropriately selected according to the use of the multilayer transparent light receiving element.
  • the planar shape, size and thickness of the multilayer transparent light receiving element 1 and the protein transparent light receiving element 1 can also be selected as appropriate.
  • the thickness of the protein transparent light-receiving element 1 is generally, for example, 10 ⁇ m to 1 mm, but is not limited thereto.
  • FIG. 2 shows a configuration example of the protein transparent light receiving element 1.
  • an electron transfer protein layer 13 is immobilized on a transparent electrode 12 provided on a transparent substrate 11, and the electron transfer protein layer 13 and the electrolyte layer 14 are interposed therebetween.
  • the transparent counter electrode 15 is provided so as to face each other.
  • the electron transfer protein layer 13 is composed of a monomolecular film or a multimolecular film of an electron transfer protein.
  • Each electron transfer protein of the electron transfer protein layer 13 may be directly fixed to the transparent electrode 12, or may be indirectly fixed via an intermediate layer such as a self-assembled monolayer.
  • the electrolyte layer 14 is made of an electrolyte solution or a solid electrolyte.
  • the periphery of the electrolyte layer 14 is preferably sealed with a sealing wall (not shown). Or the whole protein transparent light receiving element 1 may be accommodated in a transparent container.
  • each layer constituting the protein transparent light-receiving element 1 is drawn so as to have a flat surface shape, but the surface shape of each layer is arbitrary, for example, any of concave surface, convex surface, uneven surface, etc. It may be.
  • the electron transfer protein layer 13 can be easily immobilized on the transparent electrode 12 regardless of the shape of the surface.
  • the material of the transparent substrate 11 for example, various inorganic or organic transparent materials such as glass, mica (mica), polyethylene terephthalate (PET) can be used.
  • various inorganic or organic transparent materials such as glass, mica (mica), polyethylene terephthalate (PET) can be used.
  • Examples of the material for the transparent electrode 12 include transparent metal oxides such as ITO (indium-tin composite oxide), FTO (fluorine-doped tin oxide), and nesa glass (SnO 2 glass), as well as electrodes capable of transmitting light.
  • transparent metal oxides such as ITO (indium-tin composite oxide), FTO (fluorine-doped tin oxide), and nesa glass (SnO 2 glass), as well as electrodes capable of transmitting light.
  • a thin metal film such as an Au film can be used.
  • cytochromes examples include cytochrome c (zinc-substituted cytochrome c, metal-free cytochrome c, etc.), cytochrome b, cytochrome b5, cytochrome c1, cytochrome a, cytochrome a3, cytochrome f, cytochrome b6, and the like.
  • cytochrome c zinc-substituted cytochrome c, metal-free cytochrome c, etc.
  • cytochrome b examples include cytochrome b, cytochrome b5, cytochrome c1, cytochrome a, cytochrome a3, cytochrome f, cytochrome b6, and the like.
  • iron-sulfur proteins examples include rubredoxin, diiron ferredoxin, triiron ferredoxin, and tetrairon ferredoxin.
  • blue copper proteins examples include plastocyanin, azurin, pseudoazurin, plantacyanin, stellacyanin, and amicyanine.
  • the electron transfer protein is not limited to these.
  • use of derivatives of these electron transfer proteins skeletal amino acid residues chemically modified) or mutants thereof (skeletal amino acid residues partially substituted with other amino acid residues) You can also.
  • These electron transfer proteins are all water-soluble proteins.
  • the protein transparent light-receiving element 1 can be operated either in a solution (electrolyte solution) or in a dry environment as long as the photoelectric conversion function and the electron transfer function of the electron transfer protein of the electron transfer protein layer 13 are not impaired.
  • the electrolyte layer 14 may be made of an electrolyte solution or a solid electrolyte.
  • an oxidation reaction occurs at the protein-immobilized electrode in which the electron transfer protein layer 13 is immobilized on the transparent electrode 12, and a reduction reaction occurs at the transparent counter electrode 15, or the above
  • the electrode having the protein-immobilized electrode undergoes a reduction reaction and the transparent counter electrode 15 undergoes an oxidation reaction.
  • K 4 [Fe (CN) 6 ] or [Co (NH 3 ) 6 ] Cl 3 is used as the electrolyte.
  • the protein transparent light-receiving element 1 When the protein transparent light-receiving element 1 is operated in a dry environment, typically, for example, a solid electrolyte that does not adsorb electron transfer protein, specifically, a wet solid electrolyte such as agar or polyacrylamide gel.
  • An electrolyte layer 14 is sandwiched between the protein-immobilized electrode and the transparent counter electrode 15, and a sealing wall for preventing the solid electrolyte from drying is preferably provided around the electrolyte layer 14.
  • a photocurrent can be obtained when light is received by the light-receiving portion made of the electron transfer protein layer 13 with a polarity based on the difference in natural electrode potential between the protein-immobilized electrode and the transparent counter electrode 15. .
  • a transparent metal oxide such as ITO, FTO, and Nesa glass
  • an extremely thin metal film that can transmit light such as an Au film
  • FIG. 3 shows a first example of usage of the protein transparent light-receiving element 1.
  • a protein-immobilized electrode in which an electron transfer protein layer 13 is immobilized on a transparent electrode 12 and a transparent counter electrode 15 are provided to face each other.
  • These protein-immobilized electrode and transparent counter electrode 15 are immersed in an electrolyte layer 14 made of an electrolyte solution placed in a transparent container 16.
  • the electrolyte solution one that does not impair the function of the electron transfer protein of the electron transfer protein layer 13 is used.
  • the electrolyte (or redox species) of the electrolyte solution is one that undergoes an oxidation reaction at the protein-immobilized electrode and undergoes a reduction reaction at the transparent counter electrode 15, or undergoes a reduction reaction at the protein-immobilized electrode and occurs at the transparent counter electrode 15. Those in which an oxidation reaction occurs are used.
  • light is applied to the electron transfer protein layer 13 of the protein-immobilized electrode while a bias voltage is applied to the protein-immobilized electrode with respect to the transparent reference electrode 18 by the bias power source 17. Irradiate.
  • This light is monochromatic light of light capable of photoexcitation of the electron transfer protein of the electron transfer protein layer 13 or light having a component of this light.
  • the bias voltage applied to the protein-immobilized electrode by adjusting at least one of the bias voltage applied to the protein-immobilized electrode, the intensity of the irradiated light, and the wavelength of the irradiated light, the magnitude and / or polarity of the photocurrent flowing inside the device is adjusted. Can be changed.
  • the photocurrent is taken out from the terminals 19a and 19b.
  • FIG. 4 shows a second example of the usage pattern of the protein transparent light-receiving element 1.
  • the bias voltage is not generated using the bias power source 17 as in the first example, but the natural electrode potential of the protein-immobilized electrode and the transparent counter electrode 15 is not increased. The difference is used as the bias voltage.
  • the transparent reference electrode 18 need not be used. Therefore, this protein transparent light receiving element 1 is a two-electrode system using a protein-immobilized electrode and a transparent counter electrode 15.
  • the second example is the same as the first example.
  • FIG. 5 shows a third example of the usage pattern of the protein transparent light-receiving element 1.
  • the protein transparent light receiving element 1 according to the first and second examples is operated in a solution, whereas the protein transparent light receiving element 1 can be operated in a dry environment.
  • an electrolyte layer 14 made of a solid electrolyte is sandwiched between a protein-immobilized electrode and a transparent counter electrode 15.
  • a sealing wall 20 for preventing the solid electrolyte from drying is provided so as to surround the periphery of the electrolyte layer 14.
  • the solid electrolyte one that does not impair the function of the electron transfer protein of the electron transfer protein layer 13 is used, and specifically, agar or polyacrylamide gel that does not adsorb the electron transfer protein is used.
  • the difference in natural electrode potential between the protein-immobilized electrode and the transparent counter electrode 15 is used as a bias voltage, and light is applied to the electron transfer protein layer 13 of the protein-immobilized electrode. .
  • This light is monochromatic light capable of photoexcitation of the electron transfer protein of the electron transfer protein layer 13 or light having a component of this light.
  • the third example is the same as the first example.
  • a multi-layer transparent light receiving element in which protein transparent light receiving elements 1 using electron transfer proteins are laminated in multiple layers.
  • This multilayer transparent light-receiving element can be used for various devices and devices using photoelectric conversion, and specifically, for example, can be used for an electronic device having a light-receiving unit.
  • Such an electronic device may be basically any type, and includes both a portable type and a stationary type.
  • this multilayer transparent light receiving element it is possible to achieve multi-focus with one eye and high-speed focus. Furthermore, by using this multilayer transparent light receiving element as a light receiving element of an optical disk system using a multilayer optical disk or an optical recording / reproducing system using a holographic recording medium, parallel reading of the multilayer optical disk and reading of the holographic recording medium are possible. (Lead out) can be easily performed.
  • the multilayer transparent light receiving element according to the second embodiment is a multilayer transparent light receiving element according to the first embodiment except that a novel electron transfer protein is used as the electron transfer protein of the electron transfer protein layer 13 of the protein transparent light receiving element 1. It has the same configuration as the light receiving element.
  • This novel electron transfer protein has a tin-substituted cytochrome c obtained by substituting iron, which is the central metal in the heme of cytochrome c derived from mammals, or one or several amino acids in the amino acid sequence of cytochrome c derived from mammals.
  • a protein comprising a substituted or added amino acid sequence and containing tin.
  • examples of the cytochrome c derived from mammals include equine cardiac muscle cytochrome c and bovine cardiac muscle cytochrome c. These novel electron transfer proteins have extremely high stability against light irradiation, and can maintain a photoelectric conversion function for a long period of time. Details of the tin-substituted cytochrome c and the preparation method will be described.
  • Table 1 shows the amino acid sequences (single letter symbols) of horse cardiac cytochrome c (designated CYC HORSE) and bovine cardiac cytochrome c (designated CYC BOVIN).
  • bovine heart muscle cytochrome c and horse heart muscle cytochrome c differ by only 3 residues out of all 104 amino acid residues.
  • Thr48, Lys61, and Thr90 of equine cardiac muscle cytochrome c are replaced with Ser48, Gly61, and Gly90, respectively, in bovine cardiac muscle cytochrome c.
  • bovine heart cytochrome c has higher protein part stability against heat and denaturing agent (guanidine hydrochloride) than horse heart cytochrome c (Non-patent Documents 1 and 2).
  • Table 2 shows the denatured midpoint temperature T 1/2 and denatured midpoint concentration [Gdn-HCl] 1/2 of horse heart cytochrome c and bovine heart cytochrome c.
  • the denaturation midpoint temperature T 1/2 is a temperature at which the ratio of the denatured protein is halved (1/2) in the total protein in the system.
  • the denaturation midpoint concentration [Gdn-HCl] 1/2 is the concentration of guanidine hydrochloride (Gdn-HCl) when the proportion of the denatured protein is halved (1/2) in the total protein in the system. . Higher values of T 1/2 and [Gdn-HCl] 1/2 are more stable.
  • Tin-substituted horse myocardial cytochrome c and tin-substituted bovine myocardial cytochrome c were prepared as follows.
  • Zinc-substituted equine myocardial cytochrome c and zinc-substituted bovine myocardial cytochrome c were also prepared for comparative experiments.
  • the preparation method of tin-substituted equine cardiac muscle cytochrome c will be mainly described, but the preparation method of tin-substituted bovine cardiac muscle cytochrome c, zinc-substituted equine cardiac muscle cytochrome c, and zinc-substituted bovine cardiac muscle cytochrome c is also the same.
  • the amino acid sequence of horse cardiac cytochrome c or bovine cardiac cytochrome c is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added, and tin-containing proteins are also used for techniques such as random mutation and chemical modification. Can be prepared in the same manner as appropriate.
  • the tin-substituted equine cardiac muscle cytochrome c is abbreviated as Snhhc
  • the tin-substituted bovine cardiac muscle cytochrome c is abbreviated as Snbvc
  • the zinc-substituted equine cardiac muscle cytochrome c is abbreviated as Znhhc
  • the zinc-substituted bovine cardiac muscle cytochrome c is abbreviated as necessary.
  • the zinc-substituted horse myocardial cytochrome c and the zinc-substituted bovine myocardial cytochrome c have absorption maxima at wavelengths of 280, 346, 423, 550, and 584 nm
  • the tin-substituted horse myocardial cytochrome c And tin-substituted bovine cardiac muscle cytochrome c has absorption maxima at wavelengths of 280, 409, 540, and 578 nm, and does not have a ⁇ band (near 346 nm).
  • the zinc-substituted product had a wavelength of 420 nm (intensity 1255 ⁇ W) and the tin-substituted product had a wavelength of 408 nm (intensity 1132 ⁇ W).
  • ) was irradiated at room temperature in a dark room.
  • An ultraviolet-visible absorption spectrum with a wavelength of 240 to 700 nm was measured every 30 minutes. The results are shown in FIGS.
  • the arrows in FIGS. 12 and 13 indicate the direction of spectrum change.
  • FIG. 14 shows a reciprocal (1 / C) -time (t) plot of concentrations of tin-substituted equine myocardial cytochrome c and tin-substituted bovine myocardial cytochrome c.
  • a (1 / C) -time (t) plot is shown in FIG.
  • C0 is the initial concentration.
  • the slope of this straight line is the photolysis rate constant k.
  • t is represented by x and 1 / C is represented by y.
  • the photodegradation rate constant k of the above four types of metal-substituted cytochrome c was determined from the average of two experiments. As a result, the photodegradation rate constant k was 1.39 ⁇ 0.13 M ⁇ 1 s ⁇ 1 for tin-substituted horse myocardial cytochrome c, 0.90 ⁇ 0.20 M ⁇ 1 s ⁇ 1 for tin-substituted bovine myocardial cytochrome c, zinc The substituted horse myocardial cytochrome c was 67.2 ⁇ 1.4 M ⁇ 1 s ⁇ 1 , and the zinc-substituted bovine myocardial cytochrome c was 56.1 ⁇ 1.0 M ⁇ 1 s ⁇ 1 .
  • both the tin-substituted horse myocardial cytochrome c and the tin-substituted bovine myocardial cytochrome c had a photolysis rate 50 to 60 times slower than that of the zinc-substituted horse myocardial cytochrome c and the zinc-substituted bovine myocardial cytochrome c. It was found to be extremely stable. In addition, it was also found that bovine heart cytochrome c was 1.2 to 1.5 times slower in photolysis rate than horse heart cytochrome c and zinc-substituted and tin-substituted were more stable to light irradiation. It was. In particular, tin-substituted bovine myocardial cytochrome c is 75 times more stable to light irradiation than zinc-substituted equine myocardial cytochrome c used in Patent Document 1.
  • a protein-immobilized electrode used in the photocurrent generation experiment was prepared as follows. As shown in FIG. 16, an ITO electrode 22 having a predetermined shape was formed on a glass substrate 21 having a size of 15.0 mm ⁇ 25.0 mm and a thickness of 1 mm. The dimensions of each part of the ITO electrode 22 are as shown in FIG. The thickness of the ITO electrode 22 is 100 nm. The ITO electrode 22 serves as a working electrode. The size of the irradiation region 23 is 4.0 mm ⁇ 4.0 mm.
  • a drop was prepared with 10 ⁇ L of 50 ⁇ M metal-substituted cytochrome c solution (dissolved in 10 mM Tris-HCl (pH 8.0)) on the ITO electrode 22 in the irradiated region 23 and left at 4 ° C. for 2 days. In this way, a protein-immobilized electrode was produced.
  • This protein-immobilized electrode is immersed in 27 mL of 10 mM sodium phosphate buffer (pH 7.0) containing 0.25 mM potassium ferrocyanide, a platinum mesh is used as a counter electrode, and a silver / silver chloride electrode is used as a reference electrode.
  • a photocurrent action spectrum with a wavelength of 380 to 600 nm was measured at a potential of 120 mV with respect to the silver / silver chloride electrode.
  • the standby time was 900 seconds
  • the measurement time was 60 seconds
  • the current range was 10 nA
  • the filter frequency was 30 Hz
  • the time resolution was 50 ms. Measurement was performed by preparing five electrodes for each of the four types of metal-substituted cytochrome c.
  • the obtained photocurrent action spectrum is shown in FIG.
  • the maximum of the photocurrent action spectrum was observed at 408, 540, and 578 nm, similar to the solution absorption spectrum.
  • the intensity ratio between the Soret band (408 nm) and the Q band (540 nm) is 10: 1
  • the photocurrent generation mechanism of the tin-substituted horse myocardial cytochrome c and the tin-substituted bovine heart cytochrome c is It is considered to be a hole transfer type as in equine myocardial cytochrome c (Non-patent Document 4).
  • the absorbance at a wavelength of 409 nm is plotted on the horizontal axis (x axis)
  • the integrated fluorescence intensity between wavelengths of 560 to 670 nm is plotted on the vertical axis (y axis)
  • each data is plotted to obtain a linear approximation curve. I drew.
  • the slope of the straight line thus obtained is the fluorescence quantum yield.
  • the area between wavelengths 560 to 670 nm was defined as the integrated fluorescence intensity (arbitrary unit (au)).
  • the slope of the straight line of the zinc-substituted horse heart cytochrome c that is, the relative fluorescence quantum yield ⁇ of each metal-substituted cytochrome c when the fluorescence quantum yield was 1.0 was calculated.
  • the results are shown in Table 3.
  • the fluorescence intensity of the tin substitution product is approximately 1/7 to 1/8 of the fluorescence intensity of the zinc substitution product. It is considered that the short lifetime of excited electrons in this tin-substituted product suppresses the generation of radicals during light irradiation and contributes to stabilization.
  • both the tin-substituted horse myocardial cytochrome c and the tin-substituted bovine myocardial cytochrome c are much more stable than the zinc-substituted horse myocardial cytochrome c and the zinc-substituted bovine heart cytochrome c. Therefore, by using the tin-substituted horse myocardial cytochrome c or tin-substituted bovine myocardial cytochrome c, it is possible to realize a novel protein transparent light-receiving element 1 that can be used stably for a long time.
  • This protein transparent light-receiving element 1 can be used for an optical sensor, an image sensor, or the like. Further, both of these tin-substituted horse myocardial cytochrome c and tin-substituted bovine myocardial cytochrome c have a light absorption maximum wavelength of 409 nm, which is the current level of semiconductor lasers used in optical disk systems capable of high-density recording. The wavelength is close to 405 nm.
  • a new memory can be realized by using, for example, a medium in which tin-substituted horse myocardial cytochrome c or tin-substituted bovine myocardial cytochrome c is spread on a substrate instead of the optical disk. Furthermore, since the diameters of these tin-substituted equine myocardial cytochrome c and tin-substituted bovine myocardial cytochrome c are as small as about 2 nm, the number of elements that can be mounted per unit area of the substrate can be greatly increased as compared with the conventional case. . For this reason, it is possible to realize a high-definition optical sensor, an image sensor, or the like, or it is possible to realize a large-capacity memory.
  • Monochromatic light having a wavelength (for example, about 409 nm) corresponding to the electron transfer protein of the electron transfer protein layer 13 or light containing this wavelength component is applied to the electron transfer protein layer 13 of each protein transparent light receiving element 1 of the multilayer transparent light receiving element.
  • a photocurrent is extracted from the transparent electrode 12 and the transparent counter electrode 15 to the outside.
  • the electron transfer protein layer 13 made of tin-substituted equine myocardial cytochrome c or tin-substituted bovine myocardial cytochrome c having high light irradiation stability is fixed on the transparent electrode 12. It tries to become. For this reason, the electron transfer protein layer 13 is not deteriorated by light irradiation for a long time, and a novel protein transparent light receiving element 1 that can be stably used for a long time, and thus a multilayer transparent light receiving element can be realized.
  • This multilayer transparent light receiving element can be used for various devices and devices using photoelectric conversion, like the multilayer transparent light receiving element according to the first embodiment, and specifically includes, for example, a light receiving section. It can be used for electronic devices.
  • this multilayer transparent light receiving element it is possible to realize a camera that can simultaneously focus on a plurality of subjects at different positions using a single lens.
  • this multilayer transparent light receiving element it is possible to achieve multi-focus with one eye and high-speed focus.
  • this multilayer transparent light receiving element as a light receiving element of an optical disk system using a multilayer optical disk or an optical recording / reproducing system using a holographic recording medium, parallel reading of the multilayer optical disk and reading of the holographic recording medium can be easily performed. Can do.
  • the multilayer transparent light receiving element according to the third embodiment is a multilayer transparent light receiving element according to the first embodiment except that a novel electron transfer protein is used as the electron transfer protein of the electron transfer protein layer 13 of the protein transparent light receiving element 1. It has the same configuration as the light receiving element.
  • this novel electron transfer protein the central metal iron of cytochrome c heme derived from mammals is replaced with a metal other than zinc and tin, and the fluorescence excitation lifetime ⁇ is 5.0 ⁇ 10 ⁇ 11 s ⁇ ⁇ 8.0.
  • cytochrome c that is ⁇ 10 ⁇ 10 s or cytochrome c derived from mammals, and a metal other than zinc and tin
  • examples of the cytochrome c derived from mammals include equine cardiac muscle cytochrome c and bovine cardiac muscle cytochrome c.
  • Metal-substituted cytochrome c The metal-substituted horse myocardial cytochrome c and metal-substituted bovine myocardial cytochrome c obtained by substituting iron of the central metal of the heme of horse myocardial cytochrome c and bovine heart cytochrome c with a metal other than tin and zinc will be described.
  • Examples of metals used in these metal-substituted horse myocardial cytochrome c and metal-substituted bovine heart cytochrome c are shown in Table 4. It is known that porphyrin containing this metal as a central metal emits fluorescence (Non-patent Document 5). In Table 4, the numerical value described under each element symbol indicates the phosphorescence lifetime measured with metal octaethylporphyrin.
  • tin (Sn) porphyrin has a phosphorescence lifetime of 30 ms, but it is considered that a metal porphyrin having a phosphorescence lifetime equal to or shorter than this does not damage proteins or porphyrin ring portions by light irradiation.
  • these metals are beryllium (Be), strontium (Sr), niobium (Nb), barium (Ba), lutetium (Lu), hafnium (Hf), tantalum (Ta), cadmium (Cd), antimony ( Sb), thorium (Th), lead (Pb) and the like.
  • the iron of the central metal of the heme of horse heart cytochrome c and bovine heart cytochrome c is substituted with these metals.
  • a method similar to that described in the second embodiment can be used.
  • the thus obtained metal-substituted horse myocardial cytochrome c and metal-substituted bovine myocardial cytochrome c are as stable to light irradiation as tin-substituted horse myocardial cytochrome c and tin-substituted bovine myocardial cytochrome c, and hardly undergo photolysis.
  • the intramolecular hole transfer rate (non-patent document 4) of the zinc-substituted horse heart cytochrome c is as follows.
  • the molecular orbital number according to Non-Patent Document 4 is used as the molecular orbital (MO) number, 1.5 ⁇ 10 11 s ⁇ 1 at the transition between MO3272 and MO3271 and 2.0 ⁇ at the transition between MO3268 and MO3270 10 10 s ⁇ 1 . Therefore, the lower limit of the intramolecular hole transfer rate is the latter 2.0 ⁇ 10 10 s ⁇ 1 .
  • the fluorescence excitation lifetime (Non-patent Document 3) of tin-substituted horse cardiac muscle cytochrome c is 8.0 ⁇ 10 ⁇ 10 s.
  • the fluorescence excitation lifetime of zinc-substituted horse heart cytochrome c is 3.2 ⁇ 10 ⁇ 10 s.
  • the number of intramolecular hole transfers during one electronic excitation of tin-substituted horse heart cytochrome c is (1.5 ⁇ 10 11 s ⁇ 1 ) ⁇ (8.0 ⁇ 10 ⁇ 10 s) in the transition between MO3272 and MO3271.
  • the range of the fluorescence excitation lifetime ( ⁇ ) of the metal-substituted equine myocardial cytochrome c and the metal-substituted bovine myocardial cytochrome c necessary for causing hole transfer without causing damage to the protein part or porphyrin by light irradiation is 5 0.0 ⁇ 10 ⁇ 11 s (fluorescence excitation lifetime required to cause at least one hole transfer) ⁇ ⁇ 8.0 ⁇ 10 ⁇ 10 s (fluorescence excitation lifetime of tin-substituted horse heart cytochrome c).
  • a tin-substituted equine myocardial cytochrome c or a metal-substituted equine myocardial cytochrome c or a metal-substituted equine myocardial cytochrome c is used as the electron transfer protein of the electron transfer protein layer 13 of the protein transparent light receiving element 1.
  • Advantages similar to those of the multilayer transparent light-receiving element according to the second embodiment using c and tin-substituted bovine cardiac muscle cytochrome c can be obtained.
  • the multilayer transparent light receiving element according to the fourth embodiment is a multilayer transparent light receiving element according to the first embodiment except that a solid protein layer made of an electron transfer protein is used as the electron transfer protein layer 13 of the protein transparent light receiving element 1. It has the same configuration as the element.
  • FIG. 23 shows a non-wetted all solid protein transparent light receiving element used as the protein transparent light receiving element 1.
  • a solid protein layer is used.
  • the solid protein layer means a layer in which proteins are aggregated to form a layered solid without containing a liquid such as water.
  • non-wetted of the non-wetted all solid protein transparent light-receiving element means that the inside and outside of the protein transparent light-receiving element are used in a state where they do not come into contact with a liquid such as water.
  • all solid type of the non-wetted all solid protein transparent light-receiving element means that all parts of the element do not contain liquid such as water.
  • this non-wetted all solid protein transparent light receiving element has a structure in which a solid protein layer 43 made of an electron transfer protein is sandwiched between a transparent electrode 41 and a transparent electrode.
  • the solid protein layer 43 is fixed to the transparent electrodes 41 and 42.
  • the solid protein layer 43 is typically immobilized directly on the transparent electrodes 41 and 42, but a liquid such as water is included between the solid protein layer 43 and the transparent electrodes 41 and 42 as necessary.
  • An intermediate layer may be provided.
  • the solid protein layer 43 does not contain a liquid such as water.
  • the solid protein layer 43 is composed of a monomolecular film or a multimolecular film of protein.
  • FIG. 24 shows an example of the structure when the solid protein layer 43 is composed of a multimolecular film.
  • electron transfer proteins 43a composed of tin-substituted equine cardiac muscle cytochrome c, tin-substituted bovine cardiac muscle cytochrome c, zinc-substituted equine cardiac muscle cytochrome c, and the like are two-dimensionally assembled.
  • the formed monomolecular film is formed by stacking n layers (n is an integer of 2 or more).
  • these transparent electrodes 41 and 42 are made of a conductive material transparent to the light used for this photoexcitation, such as ITO, FTO, nesa glass, etc., or an extremely thin Au film that can transmit light Etc.
  • a solution containing the electron transfer protein 43a typically a protein solution in which the electron transfer protein 43a is dissolved in a buffer solution containing water on one of the transparent electrodes 41, 42, for example, the transparent electrode 41
  • a solution containing the electron transfer protein 43a is subjected to the droplet dropping method, spin Adhere by coating, dipping, spraying, etc.
  • an electron transfer protein 43a in the attached protein solution is immobilized on the transparent electrode 41 by holding the protein solution attached on the transparent electrode 41 at room temperature or lower temperature.
  • the solution in which the electron transfer protein 43a in the protein solution is immobilized on the transparent electrode 41 is dried by heating to a temperature lower than the denaturation temperature of the electron transfer protein 43a. Remove all by evaporation. Thus, only the electron transfer protein 43a is immobilized on the transparent electrode 41, and the solid protein layer 43 is formed.
  • the thickness of the solid protein layer 43 can be easily controlled by the amount of the protein solution deposited on the transparent electrode 41, the concentration of the protein solution, and the like.
  • the transparent electrode 42 is formed on the solid protein layer 43.
  • the transparent electrode 42 can be formed by depositing a conductive material by a sputtering method, a vacuum evaporation method, or the like.
  • the intended non-wetted all solid protein transparent light receiving element is manufactured as described above.
  • a voltage bias voltage
  • the solid protein layer 43 of the non-wetted all solid protein transparent light receiving element When no light is incident on the solid protein layer 43 of the non-wetted all solid protein transparent light receiving element, the solid protein layer 43 is insulative and no current flows between the transparent electrode 41 and the transparent electrode 42. This state is the off state of the non-wetted all solid protein transparent light receiving element.
  • FIG. 1 A voltage (bias voltage) is applied between the transparent electrode 41 and the transparent electrode 42 of the non-wetted all solid protein transparent light receiving element so that the transparent electrode 42 side has a low potential.
  • the electron transfer protein 43a constituting the solid protein layer 43 is photoexcited, As a result, the solid protein layer 43 becomes conductive. Then, electrons (e) flow from the transparent electrode 42 through the solid protein layer 43 to the transparent electrode 41, and a photocurrent flows between the transparent electrode 41 and the transparent electrode 42. This state is the ON state of the non-wetted all solid protein transparent light receiving element.
  • the solid protein layer 43 behaves as a photoconductor, and can be turned on / off depending on whether light is incident on the non-wetted all solid protein transparent light receiving element.
  • an ITO electrode 52 having a predetermined shape was formed as a transparent electrode 41 on a glass substrate 51.
  • the ITO electrode 52 has a thickness of 100 nm and an area of 1 mm 2 .
  • the ITO electrode 52 serves as a working electrode.
  • a protein solution (200 ⁇ M) was prepared by dissolving tin-substituted equine cardiac cytochrome c, tin-substituted bovine cardiac cytochrome c, and zinc-substituted equine cardiac cytochrome c in Tris-HCl buffer (pH 8.0) at high concentrations.
  • this sample was put in a dryer maintained at a temperature of 30 to 40 ° C. and dried for 30 to 60 minutes. By this drying, a liquid such as water contained in the protein droplet 53 was removed by evaporation. As a result, only tin-substituted equine cardiac muscle cytochrome c, tin-substituted bovine cardiac muscle cytochrome c, or zinc-substituted equine cardiac muscle cytochrome c is left on the ITO electrode 52, and a solid protein layer 43 is formed as shown in FIG. 27A. The thickness of the solid protein layer 43 is about 1 ⁇ m.
  • the transparent electrode 54 is formed so as to overlap the solid protein layer 43, and the transparent electrode 55 is formed so as to overlap the other end portion 52 b of the ITO electrode 52.
  • the transparent electrode 55 is used as a counter electrode and a working electrode.
  • These transparent electrodes 54 and 55 are formed of an Au film or an Al film, and the thickness of the Au film is 20 nm, and the thickness of the Al film is 50 nm.
  • These transparent electrodes 54 and 55 can be formed, for example, by masking portions other than the regions where these transparent electrodes 54 and 55 are formed, and depositing a transparent electrode material by a sputtering method or a vacuum evaporation method.
  • the planar shapes of the transparent electrodes 54 and 55 are rectangular or square. In this way, a non-wetted all solid protein transparent light receiving element is produced.
  • FIG. 28 shows a cross-sectional structure of this non-wetted all solid protein transparent light receiving element.
  • the resistance between the transparent electrodes 54 and 55 was measured in the atmosphere, it was distributed in a wide range of 1 k ⁇ to 30 M ⁇ .
  • the resistance between the transparent electrodes 54 and 55 covers a wide range because the thickness of the solid protein layer 43 is different for each element or the type of the electron transfer protein 43a constituting the solid protein layer 43 is different. It is because it is included.
  • the photocurrent action spectrum of this non-wetted all solid protein transparent light receiving element was measured.
  • the electron transfer protein 43a constituting the solid protein layer 43 tin-substituted bovine cardiac muscle cytochrome c and zinc-substituted horse cardiac muscle cytochrome c were used.
  • the measurement was performed by connecting the working electrode of the potentiostat to the transparent electrode 54 connected to the ITO electrode 52, and connecting the counter electrode and the reference electrode to the transparent electrode 55.
  • the transparent electrodes 54 and 55 are made of an Au film having a thickness of 20 nm.
  • FIG. 29 shows the results of action spectrum measurement under potentials of 0 mV and ⁇ 800 mV when zinc-substituted equine cardiac muscle cytochrome c is used as the electron transfer protein 43a constituting the solid protein layer 43.
  • FIG. 38 shows the action spectrum measurement results under a potential of 0 mV when tin-substituted bovine cardiac muscle cytochrome c is used as the electron transfer protein 43a constituting the solid protein layer 43.
  • the action spectrum is observed both when the zinc-substituted horse myocardial cytochrome c is used as the electron transfer protein 43a constituting the solid protein layer 43 and when the tin-substituted bovine myocardial cytochrome c is used. I was able to.
  • FIG. 29 when a zinc-substituted horse myocardial cytochrome c was used as the electron transfer protein 43a constituting the solid protein layer 43, an action spectrum in both positive and negative directions could be observed. Further, as shown in FIG. 29, the action spectrum could be measured even under an overvoltage of ⁇ 800 mV, which is a new finding and is a remarkable result.
  • FIG. 30 shows the application of a voltage (bias voltage) between the transparent electrodes 54 and 55 of a non-wetted all solid protein transparent light receiving element using zinc-substituted horse heart cytochrome c as the electron transfer protein 43a constituting the solid protein layer 43.
  • the measurement result of the background current (current flowing when the light is turned off) at each voltage is shown.
  • the curve indicating the relationship between the voltage and the background current is a straight line, which indicates that the conductivity of the solid protein layer 43 is similar to that of a semiconductor. From the slope of this straight line, it can be seen that the resistance between the transparent electrodes 54 and 55 is about 50 M ⁇ .
  • FIG. 31 shows each voltage when a voltage is applied between the transparent electrodes 54 and 55 of the non-wetted all solid protein transparent light receiving element using zinc-substituted horse heart cytochrome c as the electron transfer protein 43a constituting the solid protein layer 43.
  • the measurement result of the photocurrent (current that flows when the light is on) is shown.
  • the curve indicating the relationship between the voltage and the photocurrent is also a substantially straight line, which indicates that the solid protein layer 43 functions as a photoconductor.
  • FIG. 32 shows a non-wetted all solid protein transparent light receiving element using zinc-substituted horse heart cytochrome c as the electron transfer protein 43a constituting the solid protein layer 43, and a liquid protein transparent light receiving element produced by the method described later.
  • the measurement result of the photocurrent action spectrum of is shown.
  • the non-wetted all solid protein transparent light receiving element is abbreviated as “solid system” and the liquid protein transparent light receiving element is abbreviated as “liquid system”.
  • the liquid protein transparent light receiving element was produced as follows. First, a predetermined portion of the surface of the ITO film formed on the glass substrate is masked with tape or resin.
  • the unmasked portion of the ITO film is removed by wet etching for 90 seconds using 12M HCl (50 ° C.).
  • this glass substrate is washed with water, the mask is removed and further dried in a stream of air.
  • this glass substrate was subjected to ultrasonic treatment for 30 minutes in a 1% Alconox (registered trademark) aqueous solution, followed by ultrasonic treatment for 15 minutes in isopropanol, and further ultrasonication for 15 minutes in water. The process is performed twice.
  • this glass substrate is immersed in 0.01 M NaOH for 3 minutes and then dried with air or a nitrogen stream. Thereafter, the glass substrate is subjected to ultraviolet (UV) -ozone surface treatment at about 60 ° C.
  • UV ultraviolet
  • the ITO electrode formed as described above is rinsed with a protein solution (50 ⁇ M) in which zinc-substituted equine cardiac muscle cytochrome c is dissolved in Tris-HCl buffer (pH 8.0).
  • the ITO electrode thus rinsed with the protein solution is kept at 4 ° C. overnight, rinsed with water, and dried with air or nitrogen flow.
  • the ITO electrode formed as described above is rinsed with a protein solution (50 ⁇ M) in which zinc-substituted equine cardiac muscle cytochrome c is dissolved in Tris-HCl buffer (pH 8.0).
  • the ITO electrode formed as described above is rinsed with a protein solution (5 ⁇ M) obtained by dissolving zinc-substituted horse myocardial cytochrome c in a sodium phosphate buffer (pH 7.0).
  • a protein solution 5 ⁇ M
  • the ITO electrode thus rinsed with the protein solution is dried in vacuum.
  • the ITO electrode is rinsed with water and dried with air or nitrogen flow.
  • the protein-immobilized electrode in which the protein is immobilized on the ITO electrode is formed.
  • the protein side of the protein-immobilized electrode is opposed to a clean ITO electrode separately prepared as a counter electrode at a predetermined distance, and the outer peripheral portions of the protein-immobilized electrode and the ITO electrode are sealed with a resin.
  • a pinhole communicating with the space between the protein-immobilized electrode and the ITO electrode is formed as an air entrance / exit.
  • the protein-immobilized electrode and the outer periphery of the ITO electrode sealed with resin are immersed in an electrolyte solution placed in a container.
  • an electrolyte solution a solution in which 0.25 mM potassium ferrocyanide was dissolved in 10 mM sodium phosphate buffer (pH 7.0) was used.
  • this container is held in a vacuum, and air in the space between the protein-immobilized electrode and the ITO electrode is discharged to the outside from the pinhole.
  • this container is returned to atmospheric pressure, and the electrolyte solution is filled in the space between the protein-immobilized electrode and the ITO electrode. Thereafter, the pinhole is sealed with resin. As a result, a liquid protein transparent light-receiving element is produced.
  • FIG. 33 is obtained by normalizing the spectra of the non-wetted all solid protein transparent light receiving element and the liquid protein transparent light receiving element shown in FIG. 32 so that the photocurrent density of a peak near the wavelength of 420 nm is 1. . As shown in FIG. 32, both spectra have the same photocurrent density, but the Soret band near the wavelength of 423 nm and the peak wavelengths of the Q bands near the wavelengths of 550 nm and 583 nm are the same. It can be seen that a photocurrent derived from zinc-substituted horse heart cytochrome c is obtained.
  • the present inventors can obtain a photocurrent derived from the zinc-substituted equine cardiac muscle cytochrome c. It is a surprising result that overturns conventional common sense.
  • FIG. 34 shows the measurement results of the photodegradation curve (curve showing the decrease in photocurrent density with respect to light irradiation time) for the non-wetted all solid protein transparent light receiving element and the liquid protein transparent light receiving element.
  • the measurement is to measure the photocurrent density while irradiating the non-wetted all solid protein transparent light receiving element and the liquid protein transparent light receiving element with a laser beam having a wavelength of 405.5 nm at an intensity of 0.2 mW / mm 2. It went by. The reason why the irradiation intensity of the laser beam is increased to 0.2 mW / mm 2 is to increase the light deterioration rate and shorten the test time.
  • FIG. 34 shows the measurement results of the photodegradation curve (curve showing the decrease in photocurrent density with respect to light irradiation time) for the non-wetted all solid protein transparent light receiving element and the liquid protein transparent light receiving element.
  • 35 is a graph obtained by standardizing the photodegradation curves of the non-wetted all solid protein transparent light receiving element and the liquid protein transparent light receiving element shown in FIG. 34 so that the photocurrent density becomes 1 when the irradiation time is 0. is there.
  • f (x) a * exp (b * x) + c * exp (d * x)
  • the coefficients a, b, c and d of this function f (x) are as follows. The number in parentheses after each coefficient indicates a 95% confidence interval.
  • FIG. 36 shows the measurement result of the frequency response of the liquid protein transparent light receiving element
  • FIG. 37 shows the measurement result of the frequency response of the non-wetted all solid protein transparent light receiving element.
  • the liquid protein transparent light receiving element has a 3 dB bandwidth (frequency at which the photocurrent value is 50% of the maximum photocurrent value) is lower than 30 Hz, whereas the non-wetted all solid protein transparent light receiving device.
  • the 3 dB bandwidth of the device was 400 Hz or more. This shows that the response speed of the non-wetted all solid protein transparent light receiving element is at least 13 times faster than the response speed of the liquid protein transparent light receiving element.
  • FIG. 39 shows a non-wetted all solid protein transparent light receiving element using tin-substituted bovine cardiac muscle cytochrome c as the electron transfer protein 43a constituting the solid protein layer 43, and a liquid protein transparent using tin-substituted bovine heart cytochrome c.
  • the light degradation curves are measured for the light receiving element, and these light degradation curves are normalized so that the photocurrent density becomes 1 when the irradiation time is 0.
  • the production method of this liquid protein transparent light-receiving element is the same as described above except that tin-substituted bovine cardiac muscle cytochrome c is used instead of zinc-substituted horse cardiac muscle cytochrome c.
  • the non-wetted all solid protein transparent light-receiving element one having a monomolecular film of tin-substituted bovine cardiac muscle cytochrome c and one having a multi-molecular film of tin-substituted bovine cardiac muscle cytochrome c were prepared.
  • the measurement is to measure the photocurrent density while irradiating the non-wetted all solid protein transparent light receiving element and the liquid protein transparent light receiving element with a laser beam having a wavelength of 405.5 nm at an intensity of 0.2 mW / mm 2. It went by. The reason why the irradiation intensity of the laser beam is increased to 0.2 mW / mm 2 is to increase the light deterioration rate and shorten the test time.
  • the average time constants of the photodegradation of these non-wetted all solid protein transparent light receiving elements and liquid protein transparent light receiving elements are as follows. Liquid protein transparent light receiving element: 2.54 ⁇ 10 2 seconds Non-wetted all solid protein transparent light receiving element (monomolecular film): 2.71 ⁇ 10 3 seconds Non-wetted all solid protein transparent light receiving element (multimolecular) Membrane): 2.73 ⁇ 10 3 seconds
  • the non-wetted all solid protein transparent light-receiving element used as the protein transparent light-receiving element 1 constituting this multilayer transparent light-receiving element has no water in the element and can operate without being in contact with water. Therefore, it can be mounted on an electronic device as a light receiving element that replaces a conventional light receiving element using a semiconductor.
  • this non-wetted all solid protein transparent light receiving element since this non-wetted all solid protein transparent light receiving element has no water inside, it can prevent thermal denaturation, radical damage, decay, etc. of the protein due to the presence of water, and has high stability. , Durability is excellent.
  • this non-wetted all solid protein transparent light receiving element since this non-wetted all solid protein transparent light receiving element has no water inside and outside the element, there is no fear of electric shock and it is easy to ensure strength.
  • the solid protein layer 43 is directly fixed to the transparent electrodes 41 and 42 without using a linker molecule or the like.
  • a larger photocurrent can be obtained as compared with the case of being fixed.
  • the solid protein layer 43 in addition to the solid protein layer 43 being directly fixed to the transparent electrodes 41 and 42, the solid protein layer 43 can be formed extremely thin, so that the space between the transparent electrode 41 and the transparent electrode 22 is not limited. Can be made extremely short.
  • this non-wetted all solid protein transparent light receiving element can be configured to be thin, and the transparent electrodes 41 and 42 are made transparent so that the non-wetted all solid protein transparent light receiving element can be laminated in multiple layers. Can be used.
  • the size of the electron transfer protein 43a constituting the solid protein layer 43 is as small as about 2 nm.
  • light is incident on any position of the solid protein layer 43, for example. It is possible to detect this very precisely. For this reason, a high-definition optical sensor or imaging device can be realized.
  • the photoconductive effect of the electron transfer protein 43a is presumed to be due to “one-photon-multi-electron generation”.
  • the resistance (solution resistance) of the solution existing between the electrodes is high, and it is considered that this “one-photon-multi-electron generation” is hindered.
  • this solution resistance does not exist, so this “one-photon-multi-electron generation” is possible, and the photoelectric conversion efficiency can be greatly improved. , A larger photocurrent can be obtained.
  • This non-wetted all solid protein transparent light receiving element can realize an optical switch element, an optical sensor, an imaging element, and the like. As described above, this non-wetted all solid protein transparent light receiving element has a fast frequency response, so an optical switch element capable of high-speed switching, a high-speed response optical sensor, an image sensor capable of imaging a moving object at high speed, etc. Can be realized. An excellent electronic device can be realized by using this non-wetted all solid protein transparent light receiving element for an optical switch element, an optical sensor, an imaging element or the like. For example, as described later, it is possible to realize a camera that can simultaneously focus on a plurality of subjects at different positions using a single lens.
  • this multilayer transparent light receiving element it is possible to achieve multi-focus with one eye and high-speed focus. Further, by using this multilayer transparent light receiving element as a light receiving element of an optical disk system using a multilayer optical disk or an optical recording / reproducing system using a holographic recording medium, parallel reading of the multilayer optical disk and reading of the holographic recording medium can be easily performed at high speed. It can be carried out.
  • the multilayer transparent light receiving element according to the fifth embodiment has the same structure as that of the multilayer transparent light receiving element according to the first embodiment except that N layers of protein transparent light receiving elements 1 are stacked.
  • the difference from the first embodiment is that a large number of pixels consisting of 1 are integrated in the plane. That is, as shown in FIG. 40, in this multilayer transparent light receiving element, for example, a transparent spacer 61 is provided between the Nth transparent substrate 11 and the (N ⁇ 1) th transparent substrate 11, and this The distance between the transparent substrates 11 is defined by the thickness of the spacer 61.
  • pixels 62 made of the protein transparent light-receiving element 1 are provided, and a large number of pixels 62 are arranged in a two-dimensional matrix in the plane.
  • the surface on which the pixels 62 are arranged constitutes a light receiving surface, and there are a total of N light receiving surfaces.
  • Conventionally known techniques can be used for taking out and processing signals from each pixel 62 in the integrated multilayer transparent light receiving element. For example, wiring is formed in the row direction and the column direction so as to be connected to the upper and lower electrodes of each pixel 62 arranged in a two-dimensional matrix of m rows and n columns.
  • a predetermined bias voltage is applied only to the wiring connected to one electrode of the pixel 62 in this column, and at this time, m The photocurrent flowing in the wiring connected to the other electrode of the pixel 62 in the row is detected.
  • the integrated multilayer transparent light receiving element can be applied in the same manner as the multilayer transparent light receiving element according to the first embodiment.
  • the height is variable and transparent between the Nth transparent substrate 11 and the (N ⁇ 1) th transparent substrate 11.
  • a spacer 61 is provided, and the distance between the transparent substrates 11 is defined by the thickness of the spacer 61.
  • the pixel 62 which consists of the protein transparent light receiving element 1 is provided in the space between the spacer 61 and the spacer 61, and many this pixel 62 is arranged in the surface in the two-dimensional matrix form.
  • the surface on which the pixels 62 are arranged constitutes a light receiving surface, and there are a total of N light receiving surfaces.
  • the thickness of the pixel 62 composed of the protein transparent light receiving element 1 is smaller than the thickness of the spacer 61
  • the width of the pixel 62 composed of the protein transparent light receiving element 1 is the space between the spacer 61 and the spacer 61.
  • the gap is smaller than the width, and there are gaps between the transparent substrate 11 and the pixel 62 and between the spacer 61 and the pixel 62.
  • this multilayer transparent light receiving element can be configured flexibly.
  • Conventionally known techniques can be used for taking out and processing signals from each pixel 62 in the integrated multilayer transparent light receiving element.
  • the same advantages as those of the first embodiment can be obtained.
  • the integrated multilayer transparent light receiving element can be applied in the same manner as the multilayer transparent light receiving element according to the first embodiment.
  • a camera including the integrated multilayer transparent light receiving element according to the fifth or sixth embodiment is used as an optical sensor.
  • This camera is a digital camera or a video camera.
  • This camera is configured such that the optical axis direction of the imaging optical system of this camera coincides with the stacking direction of the pixels 62 composed of the protein transparent light receiving element 1 of the integrated multilayer transparent light receiving element.
  • each of the N-stage light receiving surfaces of the integrated multilayer transparent light receiving element can be used for focusing when photographing a subject. For this reason, it is possible to focus and image any subject at a different distance from the camera. For example, as shown in FIG.
  • the integrated multi-layer transparent light receiving element can focus on both the flower 72 and the mountain 73, and photographing can be performed in that state.
  • a three-dimensional image can be obtained by processing a signal from the integrated multilayer transparent light receiving element. In this image, both the flower 72 and the mountain 73 are clearly photographed, and the flower 72 appears close and the mountain 73 appears far away, and a sense of perspective can be sufficiently obtained.
  • a case where an image photographed by the camera 71 is displayed on the display will be described.
  • a realistic three-dimensional image captured by the camera 71 is displayed on the display.
  • a particularly desired portion of the three-dimensional image photographed by the camera 71 is highlighted.
  • FIG. 42 when it is desired to view only the flower 72 in the three-dimensional image including the flower 72 and the mountain 73 photographed by the camera 71, as shown in FIG.
  • the flower 72 can be clearly displayed and the mountain 73 can be displayed in a blurred manner.
  • FIG. 43B only the mountain 73 can be clearly displayed and the flower 72 can be blurred by processing the image signal. In this way, an image as desired by the user can be displayed on the display 74.
  • FIG. 44 shows an imaging optical system of an integrated multilayer transparent light receiving element.
  • the imaging optical system generally includes two or more lenses, but here, for the sake of simplicity, it is assumed that there is only one lens L.
  • Image planes I 1 to I N correspond to the N-stage light receiving surfaces of the integrated multilayer transparent light receiving element.
  • the image of the object O 1 by the lens L is formed on the image plane I 2 (image point O 1 ′), and the image of the object O 2 is formed on the image plane I 1 (image point O 2 ′).
  • both the objects O 1 and O 2 can be focused, and a clear image of them can be obtained.
  • a change in the position of the imaging plane in the integrated multilayer transparent light-receiving element that is, a change in the position of the focal point according to the distance of the subject from the lens L will be described.
  • FIG. 45 an image of an object at a distance f 1 from the lens L with a focal length f 0 is formed at a position at a distance f 2 from the lens L.
  • f 1 f 2 f 0 / (f 2 ⁇ f 0 ) holds from the lens formula.
  • the relationship between f 1 and f 2 is as shown in Table 5, and is shown in FIG. 46 as a graph.
  • the distance f 1 of the subject from the lens L changes from 1 m to 10000 m
  • the distance f 2 from the lens L to the subject image changes only by about 0.26 cm.
  • the distance between the first-stage light-receiving surface and the N-th light-receiving surface in the integrated multilayer transparent light-receiving element is 0.3 cm or less.
  • the image plane of the subject image formed by the lens L does not coincide with the light receiving surface of the integrated multilayer transparent light receiving element, in other words, when the light receiving surface is not in focus, the signal obtained from each light receiving surface is softened.
  • the image of the subject can be reconstructed by the wear algorithm.
  • the image of the subject formed by the lens L is between the light receiving surface R 1 and the light receiving surface R 2 among the light receiving surfaces R 1 to R 3 of the integrated multilayer transparent light receiving element.
  • the point spread function on the image plane of the subject is a function F (SPF1, SPF2, SPF3) of the point spread function SPF1, SPF2, SPF3 on each of the light receiving surfaces R 1 to R 3.
  • SPF x can be determined. This calculation can be easily performed by a computer. An image of the subject can be obtained using this point spread function SPF x and this image can be displayed on the display.
  • a person 75 in the first row stands on the ground
  • a person 76 in the second row stands on a lower stand 77
  • a person 78 in the third row stands on a stand 79 higher than the stand 77.
  • these people 75, 76, and 78 are photographed by the camera 71.
  • the multi-layer transparent light receiving element of the camera 71 can focus on these persons 75, 76, and 78, clear images of these persons 75, 76, and 78 can be obtained simultaneously.
  • the subject to be photographed can be focused at high speed.
  • FIG. 49 when a game is being played on a soccer court 79, a case where the state of the game is photographed with a camera 71 is considered.
  • the focus is on point B from the state where focus is on point A of the soccer court 79.
  • the camera 71 when the camera 71 is used, the focus can be focused on the point B without much movement of the lens L. Matching can be performed at high speed. This is due to the following reason.
  • an image O 1 ′ is formed on the light receiving surface R 1 of the integrated multi-layer transparent light receiving element of the camera 71 while focusing on the object O 1 at the point A of the soccer court 79.
  • the object O 2 at the point B is not focused and an image O 2 ′ is formed at a position slightly deviated from the light receiving surface R 2 of the integrated multilayer transparent light receiving element of the camera 71.
  • the lens L is moved by a distance ⁇ x2 corresponding to the difference in position between the image O 1 ′ and the image O 2 ′.
  • the camera 71 As shown in FIG. 50B, the light-receiving surface and 'the image O 2 to image on the light receiving surface R 2 which is adjacent to the light receiving surface R 1' image O 2 R Since it is only necessary to move the lens 2 by the distance ⁇ x1 , the moving distance of the lens L is small, and therefore focusing on the point B can be performed at high speed. Further, the camera 71 can be configured to be thinner.
  • chromatic aberration can be corrected without using an expensive achromatic lens. That is, as shown in FIG. 51, when white light enters the lens L, for example, blue light, green light, and red light have different surfaces (distances from the lens L are f b , f g , Even when the image is formed at f r ), the blue light, the green light, and the red light can be received by any one of the light receiving surfaces R 1 to R N of the integrated multilayer transparent light receiving element of the camera 71. .
  • a camera including the integrated multilayer transparent light receiving element according to the sixth embodiment is used as an optical sensor.
  • an integrated multilayer transparent light receiving element 80 having a curved shape is used as an optical sensor.
  • a lens L is disposed in the vicinity of the center of curvature of the integrated multilayer transparent light receiving element 80.
  • a camera including the integrated multilayer transparent light receiving element according to the sixth embodiment is used as the light receiving element.
  • a cylindrical surface-shaped integrated multilayer transparent light receiving element 81 is used as the light receiving element.
  • a lens L is disposed on the outer periphery of the integrated multilayer transparent light receiving element 81.
  • FIG. 54 shows an optical disk system according to the tenth embodiment.
  • a multilayer optical disk 91 having N recording layers is used, and a multilayer transparent light receiving element 92 having N layers of protein transparent light receiving elements 1 is used.
  • the digital data recorded on the recording layer of the layer is read at once.
  • the light 94 from the low-coherence light source 93 is divided into two by a beam splitter 95, and the light transmitted through the beam splitter 95 is incident on the multilayer optical disc 91.
  • the light incident on the multilayer optical disc 91 is reflected by each recording layer and enters the multilayer transparent light receiving element 92.
  • the light reflected by the beam splitter 95 is sequentially reflected by the mirrors 96 and 97 and then incident on the multilayer transparent light receiving element 92.
  • these lights cause interference.
  • a light intensity distribution on the light receiving surface of the N layer of the multilayer transparent light receiving element 92 is obtained.
  • This intensity distribution reflects data recorded in each recording layer of the multilayer optical disc 91.
  • the digital data recorded on the multilayer optical disk 91 can be read by setting “1” when the intensity peak is higher than the threshold intensity I 0 and “0” when the intensity peak is lower.
  • FIG. 55 shows an optical recording / reproducing system according to the eleventh embodiment.
  • recording is performed on the holographic recording medium 101 using a holographic recording medium 101 and a multilayer transparent light receiving element 102 having an N-layer protein transparent light receiving element 1.
  • the light 104 from the high-coherence light source 103 is divided into two by a beam splitter 105, and the light transmitted through the beam splitter 105 is made incident on the holographic recording medium 101.
  • Light incident on the holographic recording medium 101 travels to the multilayer transparent light receiving element 92.
  • the light reflected by the beam splitter 105 passes through the lens 106 and enters the multilayer transparent light receiving element 102, and is superposed on the light coming from the holographic recording medium 101.
  • an image recorded on the holographic recording medium 101 appears on the multilayer transparent light receiving element 92 as a light intensity distribution.
  • the image recorded on the holographic recording medium 101 can be reproduced.
  • the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention. Is possible.
  • the numerical values, structures, configurations, shapes, materials, and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, configurations, shapes, materials, etc. are used as necessary. Also good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 光応答速度が極めて速く、しかも製造が容易な多層透明受光素子およびこの多層透明受光素子を用いた高性能の電子機器を提供する。電子伝達タンパク質を用いたタンパク質透明受光素子1を複数積層して多層透明受光素子を構成する。タンパク質透明受光素子1は、透明基板、透明電極、電子伝達タンパク質層、電解質層および透明対極を順次積層した構造を有する。この多層透明受光素子をカメラ、光ディスクシステムなどの受光素子として用いる。

Description

多層透明受光素子および電子機器
 この発明は、多層透明受光素子および電子機器に関し、特に、タンパク質を用いた多層透明受光素子およびこの多層透明受光素子を光検出器などに用いた三次元ディスプレイ、三次元イメージセンサー、カメラなどの各種の電子機器に関する。
 従来、受光素子としてはもっぱらCCDやCMOSなどが用いられているが、これらはシリコン半導体技術をベースに構築されているため、受光素子自体は透明ではなかった。そのため、これらの従来の受光素子を用いて立体視を行うカメラは、人間の目と同様の機構を模した両眼視差を利用したものがほとんどである(例えば、ステレオカメラなど)。しかしながら、このような機構を用いると、二つ以上のカメラを連結させる必要があり、構造が複雑になる。また、必然的にレンズを二つ以上用意する必要があり、カメラをコンパクトにするのも難しい。また、撮像部分の焦点が一眼につき一点であるため、同時に様々な焦点に合わせた映像を取ることができなかった。また、非常に遠くに焦点が合った状態からいきなり近くを撮影するような場合、焦点が一眼につき一点しかないことから、焦点を高速に合わせるためにはレンズを大きく動かす必要が生じ、超高速で焦点を合わせるのにも限界があった。
 一方、光ディスクシステムにおいては、光ディスクの多層化が進み、多層化により記録容量を飛躍的に伸ばしてきている。しかしながら、光ディスクシステムの光検出用の受光素子を多層化することは上述の従来の受光素子ではできないことから、これが多層化光ディスクを用いる光ディスクシステムの開発の障害となっている。
 従来、入力された画像を透過させることができる光透過型画像認識素子が提案されている(特許文献1参照。)。この光透過型画像認識素子は、表面に複数の透明画素電極が2次元配列状に形成された第1透明基板と表面に透明対向電極が形成された第2透明基板と両電極間に配された視物質類似タンパク質配向配列フィルム層および透明絶縁層とを備えている。視物質類似タンパク質配向配列フィルム層としては、バクテリオロドプシンの配向配列フィルム層が用いられる。
 なお、タンパク質を用いた光電変換素子として、亜鉛置換ウマ心筋シトクロムc(ウマ心筋シトクロムcの補欠分子族ヘムの中心金属の鉄を亜鉛に置換したもの)を金電極に固定化したタンパク質固定化電極を用いたものが提案されている(特許文献2参照。)。そして、このタンパク質固定化電極から光電流が得られることが示されている。
特開2002-334986号公報 特開2007-220445号公報
McLendon,G.and Smith,M.J.Biol.Chem.253,4004(1978) Moza,B.and 2 others,Biochim.Biophys.Acta1646,49(2003) Vanderkooi,J.M.and 2others,Eur.J.Biochem.64,381-387(1976) Tokita,Y.and 4others,J.Am.Chem.Soc.130,5302(2008) Gouterman M.,Optical spectra and electronicstructure of porphyrins and related rings, in "The Porphyrins"Vol.3,Dolphin,D.ed.,pp.1-156, Academic Press(1978)
 しかしながら、特許文献1で提案された光透過型画像認識素子は、画像が第1透明基板側から視物質類似タンパク質配向配列フィルム層に投影された時に、この視物質類似タンパク質配向配列フィルム層の電気分極によって画素電極に誘導される誘導電流を検出するようにしているため、光応答速度が遅いだけでなく、視物質類似タンパク質配向配列フィルム層の作製にラングミュアブロジェット法を用いているため生産性が悪い。また、特許文献1では、視物質類似タンパク質配向配列フィルム層の電気分極により画素電極に誘導される誘導電流の検出については何ら実証されていない。
 そこで、この発明が解決しようとする課題は、光応答速度が極めて速く、しかも製造が容易な多層透明受光素子およびこの多層透明受光素子を用いた高性能の電子機器を提供することである。
 上記課題を解決するために、この発明は、
 互いに積層された複数の、電子伝達タンパク質を用いたタンパク質透明受光素子を有する多層透明受光素子である。
 また、この発明は、
 互いに積層された複数の、電子伝達タンパク質を用いたタンパク質透明受光素子を有する多層透明受光素子を有する電子機器である。
 この発明において、電子伝達タンパク質としては、従来公知の電子伝達タンパク質を用いることができる。より具体的には、電子伝達タンパク質としては、金属を含む電子伝達タンパク質または金属を含まない(金属フリー)電子伝達タンパク質を用いることができる。電子伝達タンパク質に含まれる金属は、好適には、d軌道以上の高エネルギーの軌道に電子を有する遷移金属(例えば、亜鉛や鉄など)である。電子伝達タンパク質としては後述の新規な電子伝達タンパク質を用いることもできる。
 電子伝達タンパク質は、典型的には、受光しようとする光、典型的には可視光に対して透明な材料からなる透明電極に固定化される。典型的な一つの例においては、タンパク質透明受光素子は、電子伝達タンパク質が透明電極に固定化されたタンパク質固定化電極と透明対極とを有する。他の典型的な一つの例においては、タンパク質透明受光素子は、第1の透明電極と第2の透明電極との間に電子伝達タンパク質からなる固体タンパク質層を挟んだ構造を有する。透明電極の材料としては無機材料、有機材料のいずれを用いてもよく、必要に応じて選ばれる。
 電子機器は、多層透明受光素子を用いることができるものである限り各種のものであってよいが、具体例をいくつか挙げると、三次元ディスプレイ、三次元イメージセンサー、カメラ、光記録再生システムなどである。
 上述のように構成されたこの発明においては、電子伝達タンパク質はバクテリオロドプシンのような視物質類似タンパク質に比べて光応答速度が速いだけでなく、例えば電子伝達タンパク質を含む溶液を透明電極に塗布することにより容易にタンパク質固定化電極を作製することができる。
 この発明によれば、光応答速度が極めて速く、しかも製造が容易な多層透明受光素子を実現することができる。そして、この優れた多層透明受光素子を用いて高性能の電子機器を実現することができる。
この発明の第1の実施の形態による多層透明受光素子を示す略線図である。 この発明の第1の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子を示す断面図である。 この発明の第1の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子の使用形態の第1の例を示す略線図である。 この発明の第1の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子の使用形態の第2の例を示す略線図である。 この発明の第1の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子の使用形態の第3の例を示す略線図である。 この発明の第2の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子において用いられるスズ置換ウマ心筋シトクロムcの紫外可視吸収スペクトルの測定結果を示す略線図である。 この発明の第2の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子において用いられるスズ置換ウシ心筋シトクロムcの紫外可視吸収スペクトルの測定結果を示す略線図である。 亜鉛置換ウマ心筋シトクロムcの紫外可視吸収スペクトルの測定結果を示す略線図である。 亜鉛置換ウシ心筋シトクロムcの紫外可視吸収スペクトルの測定結果を示す略線図である。 この発明の第2の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子において用いられるスズ置換ウマ心筋シトクロムcの紫外可視吸収スペクトルの経時変化の測定結果を示す略線図である。 この発明の第2の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子において用いられるスズ置換ウシ心筋シトクロムcの紫外可視吸収スペクトルの経時変化の測定結果を示す略線図である。 亜鉛置換ウマ心筋シトクロムcの紫外可視吸収スペクトルの経時変化の測定結果を示す略線図である。 亜鉛置換ウシ心筋シトクロムcの紫外可視吸収スペクトルの経時変化の測定結果を示す略線図である。 この発明の第2の実施の形態による多層透明受光素子を構成するタンパク質透明受光素子において用いられるスズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcの光分解反応の二次反応式のフィッティングの一例を示す略線図である。 亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcの光分解反応の二次反応式のフィッティングの一例を示す略線図である。 この発明の第2の実施の形態において金属置換シトクロムcの光電流発生実験に用いたタンパク質固定化電極を示す平面図である。 図16に示すタンパク質固定化電極の光電流アクションスペクトルの測定結果を示す略線図である。 図16に示すタンパク質固定化電極のSoret帯光電流値の平均値を示す略線図である。 各種の金属置換シトクロムcの紫外可視吸収スペクトルの測定結果を示す略線図である。 各種の金属置換シトクロムcの蛍光スペクトルの測定結果を示す略線図である。 スズ置換ウマ心筋シトクロムcおよび亜鉛置換ウマ心筋シトクロムcの波長409nmにおける吸光度に対する積分蛍光強度を示す略線図である。 スズ置換ウシ心筋シトクロムc、亜鉛置換ウシ心筋シトクロムcおよび亜鉛置換ウマ心筋シトクロムcの波長409nmにおける吸光度に対する積分蛍光強度を示す略線図である。 この発明の第4の実施の形態による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子を示す断面図である。 図23に示す非接液全固体型タンパク質透明受光素子の要部を拡大して示す断面図である。 この発明の第4の実施の形態による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子の動作を説明するための略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子の製造方法を説明するための平面図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子の製造方法を説明するための平面図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子を示す断面図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子の光電流アクションスペクトルの測定結果を示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子のバックグラウンド電流-電圧特性の測定結果を示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子の電流-電圧特性の測定結果を示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子の光電流アクションスペクトルの測定結果を示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子および液系タンパク質受光素子の光電流アクションスペクトルの測定結果を光電流のピーク値が1となるように規格化して示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子および液系タンパク質受光素子の光劣化曲線の測定結果を示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子および液系タンパク質受光素子の光劣化曲線の測定結果を照射開始時の光電流のピーク値が1となるように規格化して示す略線図である。 液系タンパク質透明受光素子の周波数応答の測定結果を示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質光電変換素子の周波数応答の測定結果を示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子の光電流アクションスペクトルの測定結果を示す略線図である。 この発明の実施例による多層透明受光素子を構成する非接液全固体型タンパク質透明受光素子の光劣化曲線の測定結果を示す略線図である。 この発明の第5の実施の形態による多層透明受光素子を示す略線図である。 この発明の第6の実施の形態による多層透明受光素子を示す略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第7の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第8の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第9の実施の形態による立体イメージングシステムを説明するための略線図である。 この発明の第10の実施の形態による光ディスクシステムを示す略線図である。 この発明の第11の実施の形態による光記録再生システムを示す略線図である。
 以下、発明を実施するための形態(以下「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(多層透明受光素子)
2.第2の実施の形態(多層透明受光素子)
3.第3の実施の形態(多層透明受光素子)
4.第4の実施の形態(多層透明受光素子)
5.第5の実施の形態(多層透明受光素子)
6.第6の実施の形態(多層透明受光素子)
7.第7の実施の形態(立体イメージングシステム)
8.第8の実施の形態(立体イメージングシステム)
9.第9の実施の形態(立体イメージングシステム)
10.第10の実施の形態(光ディスクシステム)
11.第11の実施の形態(光記録再生システム)
〈1.第1の実施の形態〉
[多層透明受光素子]
 図1は第1の実施の形態による多層透明受光素子を示す。
 図1に示すように、この多層透明受光素子は、互いに積層されたN層(Nは2以上の整数)のタンパク質透明受光素子1により構成されている。タンパク質透明受光素子1の積層数Nは、この多層透明受光素子の用途に応じて適宜選ぶことができる。また、この多層透明受光素子およびタンパク質透明受光素子1の平面形状、大きさおよび厚さも適宜選ぶことができる。タンパク質透明受光素子1の厚さは一般的には例えば10μm~1mmであるが、これに限定されるものではない。
 図2にタンパク質透明受光素子1の構成例を示す。
 図2に示すように、このタンパク質透明受光素子1においては、透明基板11上に設けられた透明電極12に電子伝達タンパク質層13が固定化され、この電子伝達タンパク質層13と電解質層14を介して対向するように透明対極15が設けられている。電子伝達タンパク質層13は電子伝達タンパク質の単分子膜または多分子膜からなる。電子伝達タンパク質層13の各電子伝達タンパク質は透明電極12に対して直接に固定化されてもよいし、自己組織化単分子膜などの中間層を介して間接的に固定化されてもよい。電解質層14は電解質溶液または固体電解質からなる。電解質層14が外部に洩れたり、空気と接触したり、乾燥したりするのを防止するために、好適には、電解質層14の周囲は封止壁(図示せず)により封止される。あるいは、タンパク質透明受光素子1の全体が透明容器に収納されることもある。
 図2においては、タンパク質透明受光素子1を構成する各層はいずれも平坦な表面形状を有するように描かれているが、各層の表面形状は任意であり、例えば凹面、凸面、凹凸面などのいずれであってよい。特に、透明電極12に表面がいずれの形状であっても容易に電子伝達タンパク質層13を固定化することが可能である。
 透明基板11の材料としては、例えば、ガラス、雲母(マイカ)、ポリエチレンテレフタレート(PET)などの各種の無機または有機の透明材料を用いることができる。
 透明電極12の材料としては、例えば、ITO(インジウム-スズ複合酸化物)、FTO(フッ素ドープ酸化スズ)、ネサガラス(SnO2ガラス)などの透明金属酸化物のほか、光の透過が可能な極薄い金属膜、例えばAu膜などを用いることができる。
 電子伝達タンパク質層13の電子伝達タンパク質としては、具体的には、例えば、シトクロム類、鉄-硫黄タンパク質類、ブルー銅タンパク質類などを用いることができる。シトクロム類としては、シトクロムc(亜鉛置換シトクロムc、金属フリーシトクロムcなど)、シトクロムb、シトクロムb5、シトクロムc1、シトクロムa、シトクロムa3、シトクロムf、シトクロムb6などが挙げられる。鉄-硫黄タンパク質類としては、ルブレドキシン、二鉄フェレドキシン、三鉄フェレドキシン、四鉄フェレドキシンなどが挙げられる。ブルー銅タンパク質類としては、プラストシアニン、アズリン、シュードアズリン、プランタシアニン、ステラシアニン、アミシアニンなどが挙げられる。電子伝達タンパク質はこれらに限定されるものではない。例えば、これらの電子伝達タンパク質の誘導体(骨格のアミノ酸残基が化学修飾されたもの)またはその変異体(骨格のアミノ酸残基の一部が他のアミノ酸残基に置換されたもの)を用いることもできる。これらの電子伝達タンパク質はいずれも水溶性タンパク質である。
 タンパク質透明受光素子1は、電子伝達タンパク質層13の電子伝達タンパク質の光電変換機能および電子伝達機能を損なわない限り、溶液(電解質溶液)中、ドライな環境中のいずれでも動作させることが可能である。言い換えると、電解質層14は電解質溶液からなるものであっても、固体電解質からなるものであってもよい。電解質層14の電解質(あるいはレドックス種)としては、電子伝達タンパク質層13が透明電極12に固定化されたタンパク質固定化電極で酸化反応が起こり、透明対極15で還元反応が起こるもの、または、上記のタンパク質固定化電極で還元反応が起こり、透明対極15で酸化反応が起こるものが用いられる。具体的には、電解質としては、例えば、K4[Fe(CN)6 ]や[Co(NH3 )6 ]Clなどが用いられる。このタンパク質透明受光素子1をドライな環境中で動作させる場合には、典型的には、例えば、電子伝達タンパク質を吸着しない固体電解質、具体的には例えば寒天やポリアクリルアミドゲルなどの湿潤な固体電解質からなる電解質層14が、タンパク質固定化電極と透明対極15との間に挟み込まれ、好適にはその周囲にこの固体電解質の乾燥を防ぐための封止壁が設けられる。これらの場合においては、タンパク質固定化電極と透明対極15との自然電極電位の差に基づいた極性で、電子伝達タンパク質層13からなる受光部で光を受光したときに光電流を得ることができる。
 透明対極15の材料としては、例えば、ITO、FTO、ネサガラスなどの透明金属酸化物のほか、光の透過が可能な極薄い金属膜、例えばAu膜などを用いることができる。
[タンパク質透明受光素子1の使用形態]
 図3はこのタンパク質透明受光素子1の使用形態の第1の例を示す。
 図3に示すように、この第1の例では、透明電極12上に電子伝達タンパク質層13が固定化されたタンパク質固定化電極と透明対極15とが互いに対向して設けられる。これらのタンパク質固定化電極および透明対極15は、透明容器16中に入れられた電解質溶液からなる電解質層14中に浸漬される。電解質溶液は、電子伝達タンパク質層13の電子伝達タンパク質の機能を損なわないものが用いられる。また、この電解質溶液の電解質(あるいはレドックス種)は、タンパク質固定化電極で酸化反応が起こり、透明対極15で還元反応が起こるもの、または、タンパク質固定化電極で還元反応が起こり、透明対極15で酸化反応が起こるものが用いられる。
 このタンパク質透明受光素子1により光電変換を行うには、バイアス電源17により透明参照電極18に対してタンパク質固定化電極にバイアス電圧を印加した状態で、タンパク質固定化電極の電子伝達タンパク質層13に光を照射する。この光は、電子伝達タンパク質層13の電子伝達タンパク質の光励起が可能な光の単色光またはこの光の成分を有する光である。この場合、タンパク質固定化電極に印加するバイアス電圧、照射する光の強度および照射する光の波長のうちの少なくとも一つを調節することによって、素子内部を流れる光電流の大きさおよび/または極性を変化させることができる。光電流は端子19a、19bより外部に取り出される。
 図4はこのタンパク質透明受光素子1の使用形態の第2の例を示す。
 図4に示すように、この第2の例では、第1の例のようにバイアス電源17を用いてバイアス電圧を発生させるのではなく、タンパク質固定化電極および透明対極15が持つ自然電極電位の差をバイアス電圧として用いる。この場合、透明参照電極18は用いる必要がない。したがって、このタンパク質透明受光素子1は、タンパク質固定化電極および透明対極15を用いる二電極系である。第2の例の上記以外のことは第1の例と同様である。
 図5はこのタンパク質透明受光素子1の使用形態の第3の例を示す。第1および第2の例によるタンパク質透明受光素子1が溶液中で動作させるものであるのに対し、このタンパク質透明受光素子1はドライな環境中で動作させることができるものである。
 図5に示すように、このタンパク質透明受光素子1においては、タンパク質固定化電極と透明対極15との間に固体電解質からなる電解質層14が挟み込まれている。さらに、この電解質層14の周囲を取り巻くように、固体電解質の乾燥を防ぐための封止壁20が設けられている。固体電解質としては、電子伝達タンパク質層13の電子伝達タンパク質の機能を損なわないものが用いられ、具体的には、電子伝達タンパク質を吸着しない寒天やポリアクリルアミドゲルなどが用いられる。このタンパク質透明受光素子1により光電変換を行うには、タンパク質固定化電極および透明対極15が持つ自然電極電位の差をバイアス電圧として用い、タンパク質固定化電極の電子伝達タンパク質層13に光を照射する。この光は、電子伝達タンパク質層13の電子伝達タンパク質の光励起が可能な単色光またはこの光の成分を有する光である。この場合、タンパク質固定化電極および透明対極15が持つ自然電極電位の差、照射する光の強度および照射する光の波長のうちの少なくとも一つを調節することによって、素子内部を流れる光電流の大きさおよび/または極性を変化させることができる。第3の例の上記以外のことは第1の例と同様である。
 [多層透明受光素子の製造方法]
 この多層透明受光素子の製造方法の一例について説明する。
 まず、透明基板11上に透明電極12を形成したものを電子伝達タンパク質と緩衝液とを含む溶液に浸漬し、電子伝達タンパク質を透明電極12上に固定化する。こうして、透明電極12上に電子伝達タンパク質層13が形成されたタンパク質固定化電極が形成される。
 次に、このタンパク質固定化電極と透明対極15とを用いて例えば図3、図4または図5に示すタンパク質透明受光素子1を製造する。
 この後、このタンパク質透明受光素子1を必要な数だけ積層し、この際、必要に応じて透明接着剤などによりタンパク質透明受光素子1同士を接着する。
[多層透明受光素子の動作]
 この多層透明受光素子の各タンパク質透明受光素子1の電子伝達タンパク質層13にこの電子伝達タンパク質層13の電子伝達タンパク質に応じた波長の単色光またはこの波長成分を含む光が入射すると、電子伝達タンパク質層13の電子伝達タンパク質から光励起により電子が発生し、電子伝達により透明電極12に電子が移動する。そして、透明電極12と透明対極15とから外部に光電流が取り出される。
 この第1の実施の形態によれば、電子伝達タンパク質を用いたタンパク質透明受光素子1が多層に積層された多層透明受光素子を実現することができる。
 この多層透明受光素子は、光電変換を利用する各種の装置や機器などに用いることができ、具体的には、例えば、受光部を有する電子機器などに用いることができる。このような電子機器は、基本的にはどのようなものであってもよく、携帯型のものと据え置き型のものとの双方を含む。例えば、後述のように、一つのレンズを用いて互いに異なる位置にある複数の被写体に焦点を同時に合わせることができるカメラを実現することができる。これは一度に立体映像を再現する情報を一眼で取得することができることを示しており、よりシンプルでコンパクトなステレオカメラを実現することができる。また、この多層透明受光素子を用いることにより、一眼でのマルチフォーカス化や高速フォーカス化も可能となる。さらに、多層光ディスクを用いる光ディスクシステムやホログラフィック記録媒体を用いる光記録再生システムの受光素子としてこの多層透明受光素子を用いることにより、多層光ディスクの並列読み出し(パラレルリードアウト)やホログラフィック記録媒体の読み出し(リードアウト)を容易に行うことができる。
〈2.第2の実施の形態〉
[多層透明受光素子]
 第2の実施の形態による多層透明受光素子は、タンパク質透明受光素子1の電子伝達タンパク質層13の電子伝達タンパク質として新規な電子伝達タンパク質を用いることを除いて、第1の実施の形態による多層透明受光素子と同様な構成を有する。
 この新規な電子伝達タンパク質は、哺乳類由来のシトクロムcのヘムの中心金属の鉄をスズに置換したスズ置換シトクロムc、または、哺乳類由来のシトクロムcのアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、スズを含むタンパク質である。ここで、哺乳類由来のシトクロムcとしては、例えば、ウマ心筋シトクロムcまたはウシ心筋シトクロムcが挙げられる。これらの新規な電子伝達タンパク質は、光照射に対する安定性が極めて高く、光電変換機能を長期にわたって維持することができる。
 スズ置換シトクロムcの詳細および調製方法について説明する。
〈スズ置換シトクロムc〉
 表1にウマ心筋シトクロムc(CYC HORSEと表示)およびウシ心筋シトクロムc(CYC BOVINと表示)のアミノ酸配列(一文字記号)を示す。表1に示すように、ウシ心筋シトクロムcとウマ心筋シトクロムcとは全104アミノ酸残基中、3残基だけが異なる。ウマ心筋シトクロムcのThr48、Lys61、Thr90が、ウシ心筋シトクロムcではSer48、Gly61、Gly90にそれぞれ置換されている。
Figure JPOXMLDOC01-appb-T000001
 ウシ心筋シトクロムcは、ウマ心筋シトクロムcに比べて、熱、変性剤(グアニジン塩酸塩)に対するタンパク質部の安定性が高いことが知られている(非特許文献1、2)。表2にウマ心筋シトクロムcおよびウシ心筋シトクロムcの変性中点温度T1/2および変性中点濃度[Gdn-HCl]1/2 を示す。変性中点温度T1/2 は系にある全タンパク質中、変性タンパク質の占める割合が半分(1/2)になるときの温度である。また、変性中点濃度[Gdn-HCl]1/2は系にある全タンパク質中、変性タンパク質の占める割合が半分(1/2)になるときのグアニジン塩酸塩(Gdn-HCl)の濃度である。T1/2および[Gdn-HCl]1/2 の数値が高いほど安定である。
Figure JPOXMLDOC01-appb-T000002
〈スズ置換シトクロムcの調製〉
 スズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcを次のようにして調製した。比較実験用に亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcも調製した。
 ウマ心筋シトクロムcおよびウシ心筋シトクロムcとしては、ともにSigma社製のものを使用した。
 以下においては、スズ置換ウマ心筋シトクロムcの調製方法を主に説明するが、スズ置換ウシ心筋シトクロムc、亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcの調製方法も同様である。なお、ウマ心筋シトクロムcまたはウシ心筋シトクロムcのアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、スズを含むタンパク質も、ランダムミューテーション、化学修飾などの技術を適宜用いて同様に調製可能である。
 ウマ心筋シトクロムc粉末100mgに70%フッ酸/ピリジンを6mL加え、室温で10分インキュベートすることにより、ウマ心筋シトクロムcからヘムの中心金属の鉄を抜く。こうして鉄を抜いたウマ心筋シトクロムcに50mM酢酸アンモニウム緩衝液(pH5.0)を9mL加えて、反応停止後、ゲルろ過カラムクロマトグラフィー(カラム体積:150mL、樹脂:Sephadex G-50、展開溶媒:50mM酢酸ナトリウム緩衝液(pH5.0))により、中心金属の抜けた金属フリーウマ心筋シトクロムcを得る。
 この金属フリーウマ心筋シトクロムc溶液を可能な限り濃縮し、これに氷酢酸を加えてpH2.5(±0.05)とする。こうして得られた溶液に塩化スズ粉末約25mgを加えて、遮光下、50℃で30分インキュベートする。この過程で塩化スズの代わりに酢酸亜鉛または塩化亜鉛を加えると亜鉛置換体が得られる。10分毎に紫外可視吸収スペクトルを測定し、タンパク質の波長280nmにおける吸収ピークとスズポルフィリン由来の波長408nmにおける吸収ピークとの比が一定になるまでインキュベーションを続ける。
 これ以降の操作は全て遮光下で行う。上記の最終的に得られた溶液に飽和二リン酸-水素ナトリウム溶液を加えてpHを中性(6.0<)にした後、10mMリン酸ナトリウム緩衝液(pH7.0)への緩衝液交換を行う。その後、陽イオン交換カラムクロマトグラフィー(カラム体積:40mL、樹脂:SP-Sephadex Fast Flow、溶出:10~150mMリン酸ナトリウム緩衝液(pH7.0)の直線濃度勾配)により単量体の画分を回収する。こうしてスズ置換ウマ心筋シトクロムcが調製される。
 上記のようにして調製されたスズ置換ウマ心筋シトクロムc、スズ置換ウシ心筋シトクロムc、亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcの紫外可視吸収スペクトルの測定結果を図6~図9に示す。以下においては、必要に応じて、スズ置換ウマ心筋シトクロムcをSnhhc、スズ置換ウシ心筋シトクロムcをSnbvc、亜鉛置換ウマ心筋シトクロムcをZnhhc、亜鉛置換ウシ心筋シトクロムcをZnbvcと略記する。図6~図9に示すように、亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcは波長280、346、423、550、584nmに吸収極大を持つのに対して、スズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcは波長280、409、540、578nmに吸収極大を持ち、δ帯(346nm付近)を持たない。
〈金属置換シトクロムcの光照射分解実験〉
 上記の4種類の金属置換シトクロムc、すなわちスズ置換ウマ心筋シトクロムc、スズ置換ウシ心筋シトクロムc、亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcの光照射分解実験を以下のようにして行った。
 約4μMの金属置換シトクロムc(10mMリン酸ナトリウム緩衝液(pH7.0)に溶解)1mLをキュベットに入れ、亜鉛置換体には波長420nm(強度1255μW)、スズ置換体には波長408nm(強度1132μW)の光を暗室中、室温で照射した。30分毎に波長240~700nmの紫外可視吸収スペクトルを測定した。その結果を図10~図13に示す。図12および図13中の矢印は、スペクトルの変化方向を示す。
 図12および図13より、亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcは、時間の経過とともに急速に光分解が進むことが分かる。これに対して、図10および図11より、スズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcは、時間が経過した後のスペクトルは初期のスペクトルとほとんど重なっており、時間が経過しても光分解がほとんど起きていないことが分かる。図10~図13に示す紫外可視吸収スペクトルにおけるSoret帯(亜鉛(Zn):423nm、スズ(Sn):409nm)の吸光度から、ミリモル吸光係数ε(Zn:243000M-1cm-1、Sn:267000M-1cm-1、数値は非特許文献3より引用)を用いて、濃度(M)を算出し、その逆数を時間(秒(s))に対してプロットし、その傾きから光分解速度定数kを算出した。スズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcの濃度の逆数(1/C)-時間(t)プロットを図14に、亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcの濃度の逆数(1/C)-時間(t)プロットを図15に示す。図14および図15において、直線は二次反応式(1/C=kt+1/C0)のフィッティング曲線である。ここで、C0 は初期濃度である。この直線の傾きが光分解速度定数kとなる。図14および図15中に記載した直線を表す一次式においてはtをx、1/Cをyで表した。
 2回の実験の平均から上記の4種類の金属置換シトクロムcの光分解速度定数kを求めた。その結果、光分解速度定数kは、スズ置換ウマ心筋シトクロムcは1.39±0.13M-1s-1、スズ置換ウシ心筋シトクロムcは0.90±0.20M-1-1、亜鉛置換ウマ心筋シトクロムcは67.2±1.4M-1-1、亜鉛置換ウシ心筋シトクロムcは56.1±1.0M-1-1であった。この結果から、スズ置換ウマ心筋シトクロムc、スズ置換ウシ心筋シトクロムcともに、亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcに比べて光分解速度が50~60倍遅く、光照射に対して極めて安定であることが分かった。また、亜鉛置換体、スズ置換体ともに、ウマ心筋シトクロムcに比べてウシ心筋シトクロムcの方が光分解速度は1.2~1.5倍遅く、光照射に対して安定であることも分かった。特に、スズ置換ウシ心筋シトクロムcは、特許文献1において用いられた亜鉛置換ウマ心筋シトクロムcに比べ、光照射に対して75倍も安定である。
〈金属置換シトクロムcの光電流発生実験〉
 光電流発生実験に用いるタンパク質固定化電極を次のようにして作製した。
 図16に示すように、大きさが15.0mm×25.0mmで厚さが1mmのガラス基板21上に所定形状のITO電極22を形成した。ITO電極22の各部の寸法は図16に示す通りである。ITO電極22の厚さは100nmである。このITO電極22は作用極となる。照射領域23の大きさは4.0mm×4.0mmである。この照射領域23におけるITO電極22上に50μMの金属置換シトクロムc溶液(10mM Tris-HCl(pH8.0)に溶解)10μLでドロップを作製し、4℃、二日間放置した。こうしてタンパク質固定化電極を作製した。
 このタンパク質固定化電極を0.25mMフェロシアン化カリウムを含む10mMリン酸ナトリウム緩衝液(pH7.0)27mLに浸し、対極として白金メッシュ、参照極として銀/塩化銀電極を用い、特許文献2の図4に示す光電流測定装置を用いて、銀/塩化銀電極に対する電位を120mVとして波長380~600nmの光電流アクションスペクトルを測定した。この測定に際しては、待機時間を900秒、測定時間を60秒、電流レンジを10nA、フィルターの周波数を30Hz、時間分解能を50msとした。4種類の金属置換シトクロムcのそれぞれにつき5枚、電極を作製して測定を行った。
 得られた光電流アクションスペクトルを図17に示す。光電流アクションスペクトルの極大は溶液吸収スペクトルと同様、408、540、578nmに見られた。図17より、Soret帯(408nm)とQ帯(540nm)との強度比が10:1であることから、スズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcの光電流発生機構は、亜鉛置換ウマ心筋シトクロムcと同様にホールトランスファー(holetransfer)タイプであると考えられる(非特許文献4)。Soret帯における光電流値平均値グラフ(サンプル数=5)を図18に示す。図18より、ウマ、ウシともにスズ置換シトクロムcは亜鉛置換ウマ心筋シトクロムcと同様の光電流(10nA)を発生することが分かった。
〈金属置換シトクロムcの蛍光量子収率〉
 金属置換シトクロムcの異なる濃度の希薄溶液を用意し、波長380~440nmの紫外可視吸収スペクトル、波長500~700nmの蛍光スペクトル(励起波長409nm)を測定した。その結果を図19および図20に示す。
 図21および図22に示すように、波長409nmにおける吸光度を横軸(x軸)に、波長560~670nm間の積分蛍光強度を縦軸(y軸)にとり、各データをプロットして直線近似曲線を描いた。こうして得られた直線の傾きが蛍光量子収率となる。図20に示す蛍光スペクトルにおいて波長560~670nm間の面積を積分蛍光強度(任意単位(a.u.))とした。亜鉛置換ウマ心筋シトクロムcの直線の傾き、すなわち蛍光量子収率を1.0としたときの各金属置換シトクロムcの相対蛍光量子収率Φを算出した。その結果を表3に示す。表3から分かるように、スズ置換体の蛍光強度は、亜鉛置換体の蛍光強度のおよそ1/7~1/8である。このスズ置換体における励起電子の寿命の短さが、光照射時のラジカル発生を抑え、安定化に寄与していると考えられる。
Figure JPOXMLDOC01-appb-T000003
 以上のように、スズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcとも、光照射に対する安定性が亜鉛置換ウマ心筋シトクロムcおよび亜鉛置換ウシ心筋シトクロムcに比べて極めて高い。このため、スズ置換ウマ心筋シトクロムcまたはスズ置換ウシ心筋シトクロムcを用いることにより、長期安定利用可能な新規なタンパク質透明受光素子1を実現することが可能となる。このタンパク質透明受光素子1は光センサーや撮像素子などに用いることができる。また、これらのスズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcとも、光の吸収極大の波長が409nmであり、これは現在、高密度記録が可能な光ディスクシステムに用いられている半導体レーザの波長405nmに近い。このため、光ディスクの代わりに、例えば、スズ置換ウマ心筋シトクロムcまたはスズ置換ウシ心筋シトクロムcを基板上に敷き詰めた媒体を用いることにより、新規なメモリを実現することが可能となる。さらに、これらのスズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcの直径は約2nmと極めて小さいため、基板の単位面積あたりに搭載できる素子数を従来に比べて飛躍的に多くすることができる。このため、高精細な光センサーや撮像素子などの実現が可能となり、あるいは、大容量のメモリの実現が可能となる。
[多層透明受光素子の製造方法]
 この多層透明受光素子の製造方法の一例について説明する。
 まず、透明基板11上に透明電極12を形成したものを電子伝達タンパク質と緩衝液とを含む溶液に浸漬し、電子伝達タンパク質を透明電極12上に固定化する。こうして、透明電極12上に電子伝達タンパク質層13が形成されたタンパク質固定化電極が形成される。
 次に、このタンパク質固定化電極と透明対極15とを用いて例えば図3、図4または図5に示すタンパク質透明受光素子1を製造する。
 この後、このタンパク質透明受光素子1を必要な数だけ積層し、この際、必要に応じて透明接着剤などによりタンパク質透明受光素子1同士を接着する。
[多層透明受光素子の動作]
 この多層透明受光素子の各タンパク質透明受光素子1の電子伝達タンパク質層13にこの電子伝達タンパク質層13の電子伝達タンパク質に応じた波長(例えば、409nm程度)の単色光またはこの波長成分を含む光が入射すると、電子伝達タンパク質層13の電子伝達タンパク質から光励起により電子が発生し、電子伝達により透明電極12に電子が移動する。そして、透明電極12と透明対極15とから外部に光電流が取り出される。
 以上のように、この第2の実施の形態によれば、高い光照射安定性を有するスズ置換ウマ心筋シトクロムcまたはスズ置換ウシ心筋シトクロムcからなる電子伝達タンパク質層13を透明電極12上に固定化するようにしている。このため、電子伝達タンパク質層13が長時間の光照射によっても劣化することがなく、長期安定利用可能な新規なタンパク質透明受光素子1、従って多層透明受光素子を実現することができる。
 この多層透明受光素子は、第1の実施の形態による多層透明受光素子と同様に、光電変換を利用する各種の装置や機器などに用いることができ、具体的には、例えば、受光部を有する電子機器などに用いることができる。
 例えば、後述のように、一つのレンズを用いて互いに異なる位置にある複数の被写体に焦点を同時に合わせることができるカメラを実現することができる。また、この多層透明受光素子を用いることにより、一眼でのマルチフォーカス化や高速フォーカス化も可能となる。さらに、多層光ディスクを用いる光ディスクシステムやホログラフィック記録媒体を用いる光記録再生システムの受光素子としてこの多層透明受光素子を用いることにより、多層光ディスクの並列読み出しやホログラフィック記録媒体の読み出しを容易に行うことができる。
〈3.第3の実施の形態〉
[多層透明受光素子]
 第3の実施の形態による多層透明受光素子は、タンパク質透明受光素子1の電子伝達タンパク質層13の電子伝達タンパク質として新規な電子伝達タンパク質を用いることを除いて、第1の実施の形態による多層透明受光素子と同様な構成を有する。
 この新規な電子伝達タンパク質は、哺乳類由来のシトクロムcのヘムの中心金属の鉄を亜鉛およびスズ以外の金属に置換し、蛍光励起寿命τが5.0×10-11s<τ≦8.0×10-10 sである金属置換シトクロムc、または、哺乳類由来のシトクロムcのアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、亜鉛およびスズ以外の金属を含み、蛍光励起寿命τが5.0×10-11s<τ≦8.0×10-10 sであるタンパク質である。ここで、哺乳類由来のシトクロムcとしては、例えば、ウマ心筋シトクロムcまたはウシ心筋シトクロムcが挙げられる。これらの新規な電子伝達タンパク質は、光照射に対する安定性が極めて高く、光電変換機能を長期にわたって維持することができる。
〈金属置換シトクロムc〉
 ウマ心筋シトクロムcおよびウシ心筋シトクロムcのヘムの中心金属の鉄をスズおよび亜鉛以外の金属に置換した金属置換ウマ心筋シトクロムcおよび金属置換ウシ心筋シトクロムcについて説明する。
 これらの金属置換ウマ心筋シトクロムcおよび金属置換ウシ心筋シトクロムcに用いられる金属の例を表4に示す。この金属を中心金属として含むポルフィリンは蛍光を発することが知られている(非特許文献5)。表4において、各元素記号の下に記載されている数値は金属オクタエチルポルフィリンで測定したりん光寿命を示す。
Figure JPOXMLDOC01-appb-T000004
 表4よりスズ(Sn)ポルフィリンのりん光寿命は30msであるが、りん光寿命がこれと同等またはこれより短い金属ポルフィリンは、光照射によりタンパク質やポルフィリン環部分にダメージを与えないと考えられる。表4よりこれらの金属は、ベリリウム(Be)、ストロンチウム(Sr)、ニオブ(Nb)、バリウム(Ba)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、カドミウム(Cd)、アンチモン(Sb)、トリウム(Th)、鉛(Pb)などである。
 そこで、ウマ心筋シトクロムcおよびウシ心筋シトクロムcのヘムの中心金属の鉄をこれらの金属に置換する。この置換には第2の実施の形態で述べたものと同様の方法を用いることができる。
 こうして得られる金属置換ウマ心筋シトクロムcおよび金属置換ウシ心筋シトクロムcは光照射に対して、スズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcと同等に安定であり、光分解がほとんど起こらない。
 ここで、金属置換ウマ心筋シトクロムcおよび金属置換ウシ心筋シトクロムcに必要とされる蛍光励起寿命の範囲について説明する。
 亜鉛置換ウマ心筋シトクロムcの分子内ホールトランスファー速度(非特許文献4)は次の通りである。分子軌道(MO)の番号として非特許文献4に準じた分子軌道番号を用いると、MO3272-MO3271間の遷移では1.5×1011-1、MO3268-MO3270間の遷移では2.0×1010-1である。そこで、分子内ホールトランスファー速度の下限を後者の2.0×1010-1とする。
 スズ置換ウマ心筋シトクロムcの蛍光励起寿命(非特許文献3)は8.0×10-10sである。亜鉛置換ウマ心筋シトクロムcの蛍光励起寿命は3.2×10-10 sである。
 スズ置換ウマ心筋シトクロムcの電子励起1回の間の分子内ホールトランスファー回数は、MO3272-MO3271間の遷移では(1.5×1011-1)×(8.0×10-10s)=120回、MO3268-MO3270間の遷移では(2.0×1010-1)×(8.0×10-10s)=16回である。そこで、電子励起1回の間の分子内ホールトランスファー回数の下限を後者の16回とする。
 この場合、ホールトランスファーを最低1回起こすのに必要な蛍光励起寿命は8.0×10-10s/16=5.0×10-11 sである。
 以上より、光照射により、タンパク質部あるいはポルフィリンにダメージを与えず、かつホールトランスファーが起こるために必要な金属置換ウマ心筋シトクロムcおよび金属置換ウシ心筋シトクロムcの蛍光励起寿命(τ)の範囲は5.0×10-11s(最低1回ホールトランスファーを起こすのに必要な蛍光励起寿命)<τ≦8.0×10-10 s(スズ置換ウマ心筋シトクロムcの蛍光励起寿命)である。
 この第3の実施の形態によれば、タンパク質透明受光素子1の電子伝達タンパク質層13の電子伝達タンパク質として金属置換ウマ心筋シトクロムcまたは金属置換ウシ心筋シトクロムcを用いることにより、スズ置換ウマ心筋シトクロムcおよびスズ置換ウシ心筋シトクロムcを用いた第2の実施の形態による多層透明受光素子と同様な利点を得ることができる。
〈4.第4の実施の形態〉
[多層透明受光素子]
 第4の実施の形態による多層透明受光素子は、タンパク質透明受光素子1の電子伝達タンパク質層13として電子伝達タンパク質からなる固体タンパク質層を用いることを除いて、第1の実施の形態による多層透明受光素子と同様な構成を有する。
 図23はタンパク質透明受光素子1として用いられる非接液全固体型タンパク質透明受光素子を示す。この非接液全固体型タンパク質透明受光素子においては固体タンパク質層を用いる。ここで、固体タンパク質層とは、水などの液体を含まずにタンパク質が集合して層状の固体をなすものを意味する。また、非接液全固体型タンパク質透明受光素子の「非接液」とは、タンパク質透明受光素子の内外が水などの液体と接触しない状態で使用されることを意味する。また、非接液全固体型タンパク質透明受光素子の「全固体型」とは、素子の全ての部位が水などの液体を含まないものであることを意味する。
 図23に示すように、この非接液全固体型タンパク質透明受光素子は、透明電極41と透明電極42との間に、電子伝達タンパク質からなる固体タンパク質層43が挟まれた構造を有する。固体タンパク質層43は透明電極41、42に対して固定化されている。固体タンパク質層43は典型的には透明電極41、42に対して直接固定化されるが、必要に応じて、固体タンパク質層43と透明電極41、42との間に水などの液体が含まれていない中間層を設けてもよい。この固体タンパク質層43には水などの液体が含まれていない。この固体タンパク質層43はタンパク質の単分子膜または多分子膜からなる。
 この固体タンパク質層43が多分子膜からなる場合の構造の一例を図24に示す。図24に示すように、固体タンパク質層43は、例えば、スズ置換ウマ心筋シトクロムc、スズ置換ウシ心筋シトクロムc、亜鉛置換ウマ心筋シトクロムcなどからなる電子伝達タンパク質43aが二次元的に集合して形成された単分子膜がn層(nは2以上の整数)積層されたものからなる。図24ではn=3の場合が示されている。
 透明電極41、42の材料としては透明電極12と同様な材料を用いることができる。具体的には、これらの透明電極41、42を、この光励起に用いられる光に対して透明な導電材料、例えばITO、FTO、ネサガラスなどにより構成したり、光の透過が可能な極薄いAu膜などにより構成したりする。
 次に、この非接液全固体型タンパク質透明受光素子の製造方法について説明する。
 まず、透明電極41、42の一方、例えば透明電極41上に、電子伝達タンパク質43aを含む溶液、典型的には電子伝達タンパク質43aを水を含む緩衝液に溶解したタンパク質溶液を液滴下法、スピンコート法、ディップ法、スプレー法などにより付着させる。 次に、透明電極41上にタンパク質溶液を付着させたものを、室温またはより低い温度に保持することにより、付着させたタンパク質溶液中の電子伝達タンパク質43aを透明電極41に固定化させる。
 次に、こうしてタンパク質溶液中の電子伝達タンパク質43aを透明電極41に固定化させたものをこの電子伝達タンパク質43aの変性温度より低い温度に加熱して乾燥させることにより、タンパク質溶液に含まれる液を全て蒸発させて除去する。
 こうして、電子伝達タンパク質43aのみが透明電極41に固定化され、固体タンパク質層43が形成される。この固体タンパク質層43の厚さは、透明電極41上に付着させるタンパク質溶液の量やタンパク質溶液の濃度などにより容易に制御することができる。 次に、この固体タンパク質層43上に透明電極42を形成する。この透明電極42は、スパッタリング法、真空蒸着法などにより導電材料を堆積させることにより形成することができる。
 以上のようにして目的とする非接液全固体型タンパク質透明受光素子が製造される。
 次に、この非接液全固体型タンパク質透明受光素子の動作について説明する。
 非接液全固体型タンパク質透明受光素子の透明電極41と透明電極42との間に透明電極42側が低電位となるように電圧(バイアス電圧)を印加しておく。この非接液全固体型タンパク質透明受光素子の固体タンパク質層43に光が入射しないときには、この固体タンパク質層43は絶縁性であり、透明電極41と透明電極42との間に電流は流れない。この状態が非接液全固体型タンパク質透明受光素子のオフ状態である。これに対して、図25に示すように、例えば、透明電極41を透過して固体タンパク質層43に光(hν)が入射すると、この固体タンパク質層43を構成する電子伝達タンパク質43aが光励起され、その結果、この固体タンパク質層43が導電性となる。そして、透明電極42から電子(e)が固体タンパク質層43を通って透明電極41に流れ、透明電極41と透明電極42との間に光電流が流れる。この状態が非接液全固体型タンパク質透明受光素子のオン状態である。このように固体タンパク質層43は光導電体として振る舞い、この非接液全固体型タンパク質透明受光素子への光の入射の有無によりオン/オフ動作が可能である。
〈実施例〉
  図26Aに示すように、ガラス基板51上に透明電極41として所定形状のITO電極52を形成した。ITO電極52の厚さは100nm、面積は1mm2である。このITO電極52は作用極となる。
 スズ置換ウマ心筋シトクロムc、スズ置換ウシ心筋シトクロムcおよび亜鉛置換ウマ心筋シトクロムcをそれぞれTris-HCl緩衝液(pH8.0)に高濃度に溶解したタンパク質溶液(200μM)を調製した。
 次に、図26Bに示すように、ITO電極52の一端部52aの上に、上述のようにして調製されたタンパク質溶液を10μL滴下し、タンパク質液滴53をITO電極52に付着させた。
 次に、室温で2時間、あるいは4℃で一昼夜置き、タンパク質液滴53中のスズ置換ウマ心筋シトクロムc、スズ置換ウシ心筋シトクロムcまたは亜鉛置換ウマ心筋シトクロムcをITO電極52に固定化させた。
 次に、この試料を30~40℃の温度に保たれた乾燥機に入れて30~60分乾燥させた。この乾燥によって、タンパク質液滴53に含まれる水などの液体を蒸発させて除去した。この結果、ITO電極52上にはスズ置換ウマ心筋シトクロムc、スズ置換ウシ心筋シトクロムcまたは亜鉛置換ウマ心筋シトクロムcだけが残され、図27Aに示すように、固体タンパク質層43が形成される。この固体タンパク質層43の厚さは約1μmである。
 次に、図27Bに示すように、固体タンパク質層43と重なるように透明電極54を形成するとともに、ITO電極52の他端部52bと重なるように透明電極55を形成する。透明電極55は対極および作用極として用いられる。これらの透明電極54、55はAu膜またはAl膜により形成し、Au膜の厚さは20nm、Al膜の厚さは50nmである。これらの透明電極54、55は、例えば、これらの透明電極54、55を形成する領域以外の部分をマスクし、透明電極材料をスパッタリング法または真空蒸着法により堆積させることにより形成することができる。これらの透明電極54、55の平面形状は長方形または正方形とする。
 こうして非接液全固体型タンパク質透明受光素子が製造される。この非接液全固体型タンパク質透明受光素子の断面構造を図28に示す。
 こうして非接液全固体型タンパク質透明受光素子を多数製造し、大気中において透明電極54、55間の抵抗を測定したところ、1kΩ~30MΩの範囲と広範囲に分布していた。このように透明電極54、55間の抵抗が広範囲にわたっているのは、素子毎に固体タンパク質層43の厚さが異なっていたり、固体タンパク質層43を構成する電子伝達タンパク質43aに種類が異なるものが含まれていたりすることなどによるものである。
 この非接液全固体型タンパク質透明受光素子の光電流アクションスペクトルを測定した。固体タンパク質層43を構成する電子伝達タンパク質43aとしては、スズ置換ウシ心筋シトクロムcおよび亜鉛置換ウマ心筋シトクロムcを用いた。測定は、ポテンショスタットの作用極をITO電極52に接続された透明電極54に接続し、対極および参照極を透明電極55に接続して行った。透明電極54、55は厚さ20nmのAu膜からなる。固体タンパク質層43を構成する電子伝達タンパク質43aとして亜鉛置換ウマ心筋シトクロムcを用いた場合の0mVおよび-800mVの電位下でのアクションスペクトルの測定結果を図29に示す。また、固体タンパク質層43を構成する電子伝達タンパク質43aとしてスズ置換ウシ心筋シトクロムcを用いた場合の0mVの電位下でのアクションスペクトルの測定結果を図38に示す。図29および図38に示すように、固体タンパク質層43を構成する電子伝達タンパク質43aとして亜鉛置換ウマ心筋シトクロムcを用いた場合もスズ置換ウシ心筋シトクロムcを用いた場合もアクションスペクトルを観測することができた。特に、図29に示すように、固体タンパク質層43を構成する電子伝達タンパク質43aとして亜鉛置換ウマ心筋シトクロムcを用いた場合には、正負両方向のアクションスペクトルを観測することができた。また、図29に示すように、-800mVという過電圧下でもアクションスペクトルを測定することができたが、これは新たな知見であり、極めて注目すべき結果である。
 図30は、固体タンパク質層43を構成する電子伝達タンパク質43aとして亜鉛置換ウマ心筋シトクロムcを用いた非接液全固体型タンパク質透明受光素子の透明電極54、55間に電圧(バイアス電圧)を印加したときの各電圧におけるバックグラウンド電流(光オフ時に流れる電流)の測定結果を示す。図30に示すように、電圧とバックグラウンド電流との関係を示す曲線は直線であり、これは固体タンパク質層43の伝導性が半導体と似ていることを示す。この直線の傾きより、透明電極54、55間の抵抗は約50MΩであることが分かる。
 図31は固体タンパク質層43を構成する電子伝達タンパク質43aとして亜鉛置換ウマ心筋シトクロムcを用いた非接液全固体型タンパク質透明受光素子の透明電極54、55間に電圧を印加したときの各電圧における光電流(光オン時に流れる電流)の測定結果を示す。図31に示すように、電圧と光電流との関係を示す曲線もほぼ直線であり、これは固体タンパク質層43が光導電体として機能していることを示す。
 図32は、固体タンパク質層43を構成する電子伝達タンパク質43aとして亜鉛置換ウマ心筋シトクロムcを用いた非接液全固体型タンパク質透明受光素子と、後述の方法により作製した液系タンパク質透明受光素子との光電流アクションスペクトルの測定結果を示す。図32および以下の図33~図35においては、上記の非接液全固体型タンパク質透明受光素子を「固体系」、液系タンパク質透明受光素子を「液系」と略記する。
 液系タンパク質透明受光素子は次のようにして作製した。まず、ガラス基板上に形成されたITO膜の表面の所定部位をテープまたは樹脂でマスクする。次に、マスクされていない部分のITO膜を12M HCl(50℃)を用いて90秒ウエットエッチングすることにより除去する。次に、このガラス基板を水で洗浄した後、マスクを除去し、さらに空気流中で乾燥させる。次に、このガラス基板に対して1%Alconox(登録商標)水溶液中で30分の超音波処理を行い、引き続いてイソプロパノール中で15分の超音波処理を行い、さらに水中で15分の超音波処理を2回行う。次に、このガラス基板を0.01M NaOH中に3分間浸漬した後、空気または窒素流で乾燥させる。この後、このガラス基板に対して約60℃で15分紫外線(UV)-オゾン表面処理を行う。以上のようにしてITO電極を形成した。このITO電極は作用極となる。次に、第1の方法では、亜鉛置換ウマ心筋シトクロムcをTris-HCl緩衝液(pH8.0)に溶解したタンパク質溶液(50μM)により上述のようにして形成されたITO電極をリンスする。次に、こうしてタンパク質溶液によりリンスしたITO電極を4℃で一晩保持した後、水でリンスし、空気または窒素流で乾燥させる。第2の方法では、亜鉛置換ウマ心筋シトクロムcをTris-HCl緩衝液(pH8.0)に溶解したタンパク質溶液(50μM)により上述のようにして形成されたITO電極をリンスする。あるいは、亜鉛置換ウマ心筋シトクロムcをリン酸ナトリウム緩衝液(pH7.0)に溶解したタンパク質溶液(5μM)により上述のようにして形成されたITO電極をリンスする。次に、こうしてタンパク質溶液によりリンスしたITO電極を真空中で乾燥させる。この後、このITO電極を水でリンスし、空気または窒素流で乾燥させる。以上のようにしてITO電極上にタンパク質が固定化されたタンパク質固定化電極が形成される。次に、このタンパク質固定化電極のタンパク質側を対向電極として別途作製した清浄なITO電極と所定の距離離して対向させ、これらのタンパク質固定化電極およびITO電極の外周部を樹脂により封止する。対向電極としてのITO電極には、これらのタンパク質固定化電極およびITO電極の間の空間と連通するピンホールを空気の出入り口として形成しておく。次に、こうしてタンパク質固定化電極およびITO電極の外周部を樹脂により封止したものを容器中に入れられた電解質溶液中に浸漬する。電解質溶液としては、10mMリン酸ナトリウム緩衝液(pH7.0)中に0.25mMのフェロシアン化カリウムを溶解したものを用いた。次に、この容器を真空中に保持し、タンパク質固定化電極およびITO電極の間の空間中の空気を上記のピンホールから外部に排出する。次に、この容器を大気圧に戻し、タンパク質固定化電極およびITO電極の間の空間に電解質溶液を満たす。この後、上記のピンホールを樹脂で封止する。以上により、液系タンパク質透明受光素子が作製される。
 図33は、図32に示す非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子のスペクトルを波長420nm付近にあるピークの光電流密度が1となるように規格化したものである。図32に示すように、両スペクトルは、光電流密度に差はあるものの、波長423nm付近のソーレー(Soret)帯および波長550nm、583nm付近のQ帯のピーク波長が同一であることから、いずれも亜鉛置換ウマ心筋シトクロムcに由来する光電流が得られていることが分かる。亜鉛置換ウマ心筋シトクロムcからなる固体タンパク質層43を用いた非接液全固体型タンパク質透明受光素子においてこのように亜鉛置換ウマ心筋シトクロムcに由来する光電流が得られることは、本発明者らにより初めて見出されたことであり、従来の常識を覆す驚くべき結果である。
 図34は、上記の非接液全固体型タンパク質透明受光素子と、液系タンパク質透明受光素子とについての光劣化曲線(光の照射時間に対する光電流密度の減少を示す曲線)の測定結果を示す。測定は、波長405.5nmのレーザ光を0.2mW/mm2の強度でこれらの非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子に照射しながら光電流密度を測定することにより行った。レーザ光の照射強度を0.2mW/mm2と高くしたのは、光劣化速度を速くし、試験時間を短縮するためである。図35は図34に示す非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子の光劣化曲線を照射時間が0のときの光電流密度が1となるように規格化したものである。
 図35に示す光劣化曲線を下記の関数でフィッティングした。
    f(x)=a×exp(b×x)+c×exp(d×x)
 この関数f(x)の係数a、b、c、dは下記の通りである。各係数の後の括弧内の数値は95%信頼区間を示す。
液系タンパク質透明受光素子
  a=5.204×10-9(5.029×10-9,5.378×10-9
  b=-0.00412(-0.00441,-0.003831)
  c=1.799×10-10(2.062×10-11 ,3.392×10-10 )
  d=-0.0004618(-0.0008978,-2.58×10-5
非接液全固体型タンパク質透明受光素子
  a=5.067×10-11(4.883×10-11 ,5.251×10-11 )
  b=-0.0009805(-0.001036,-0.0009249)
  c=4.785×10-11(4.58×10-11 ,4.99×10-11 )
  d=-0.0001298(-0.0001374,-0.0001222)
 ここで、これらの非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子の寿命tを
   t=[a/(a+c)](-1/b)+[c/(a+c)](-1/d)
と定義する。この定義によると、液系タンパク質透明受光素子の寿命は306秒であるのに対し、非接液全固体型タンパク質透明受光素子の寿命は4266秒である。従って、非接液全固体型タンパク質透明受光素子の寿命は液系タンパク質透明受光素子の寿命の少なくとも14倍以上長いことが分かる。
 なお、図34に示す液系タンパク質透明受光素子の光劣化曲線には鋸歯状の波形が見られるが、これは電解質溶液中に発生する酸素を除去するために測定を中断しなければならなかったためであり、酸素を除去する操作後に光電流は少し上昇する。
 次に、非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子の周波数応答を測定した結果について説明する。
 図36は液系タンパク質透明受光素子の周波数応答の測定結果、図37は非接液全固体型タンパク質透明受光素子の周波数応答の測定結果を示す。図36および図37より、液系タンパク質透明受光素子の3dB帯域幅(光電流値が最大光電流値の50%となる周波数)は30Hzより低いのに対し、非接液全固体型タンパク質透明受光素子の3dB帯域幅は400Hz以上であった。このことから、非接液全固体型タンパク質透明受光素子の応答速度は液系タンパク質透明受光素子の応答速度の少なくとも13倍以上も速いことが分かる。
 図39は、固体タンパク質層43を構成する電子伝達タンパク質43aとしてスズ置換ウシ心筋シトクロムcを用いた非接液全固体型タンパク質透明受光素子と、スズ置換ウシ心筋シトクロムcを用いた液系タンパク質透明受光素子とについて光劣化曲線を測定し、これらの光劣化曲線を照射時間が0のときの光電流密度が1となるように規格化したものである。この液系タンパク質透明受光素子の作製方法は、亜鉛置換ウマ心筋シトクロムcの代わりにスズ置換ウシ心筋シトクロムcを用いることを除いて、上記と同様である。非接液全固体型タンパク質透明受光素子としては、スズ置換ウシ心筋シトクロムcの単分子膜を有するものとスズ置換ウシ心筋シトクロムcの多分子膜を有するものとを作製した。測定は、波長405.5nmのレーザ光を0.2mW/mm2の強度でこれらの非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子に照射しながら光電流密度を測定することにより行った。レーザ光の照射強度を0.2mW/mm2と高くしたのは、光劣化速度を速くし、試験時間を短縮するためである。
 図39に示す光劣化曲線を下記の関数でフィッティングした。
    f(x)=a×exp(b×x)+c×exp(d×x)
 この関数f(x)の係数a、b、c、dは下記の通りである。
液系タンパク質透明受光素子
  a=1.72×10-8
  b=-0.00462
  c=3.51×10-9
  d=-0.000668
非接液全固体型タンパク質透明受光素子(単分子膜)
  a=0.4515
  b=-0.002599
  c=0.3444
  d=-0.0001963
非接液全固体型タンパク質透明受光素子(多分子膜)
  a=0.5992
  b=-0.002991
  c=0.2371
  d=-0.0001513
 ここで、これらの非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子の光劣化の平均時定数は次の通りである。
 
 液系タンパク質透明受光素子           :2.54×102
 非接液全固体型タンパク質透明受光素子(単分子膜):2.71×103
 非接液全固体型タンパク質透明受光素子(多分子膜):2.73×103
 上述と同様に、これらの非接液全固体型タンパク質透明受光素子および液系タンパク質透明受光素子の寿命tを
   t=[a/(a+c)](-1/b)+[c/(a+c)](-1/d)
と定義する。この定義によると、液系タンパク質透明受光素子の寿命は434秒であるのに対し、非接液全固体型タンパク質透明受光素子(単分子膜)の寿命は2423秒、非接液全固体型タンパク質透明受光素子(多分子膜)の寿命は2113秒である。従って、非接液全固体型タンパク質透明受光素子の寿命は液系タンパク質透明受光素子の寿命の少なくとも約5倍以上長いことが分かる。
 この第4の実施の形態による多層透明受光素子によれば、次のような種々の利点を得ることができる。すなわち、この多層透明受光素子を構成するタンパク質透明受光素子1として用いられる非接液全固体型タンパク質透明受光素子は、素子の内部に水が存在せず、しかも水に接触させないでも動作が可能であるため、従来の半導体を用いた受光素子に代わる受光素子として電子機器に搭載することが可能となる。また、この非接液全固体型タンパク質透明受光素子は、内部に水が存在しないため、水の存在に起因するタンパク質の熱変性、ラジカルダメージ、腐敗などを防止することができ、安定性が高く、耐久性が優れている。また、この非接液全固体型タンパク質透明受光素子は、素子の内外に水が存在しないため、感電のおそれがなく、強度の確保も容易である。
 また、この非接液全固体型タンパク質透明受光素子においては、固体タンパク質層43は透明電極41、42に対し、リンカー分子などを介することなく直接固定化されていることにより、リンカー分子などを介して固定化される場合に比べて大きな光電流を得ることができる。さらに、固体タンパク質層43が透明電極41、42に対して直接固定化されていることに加えて、固体タンパク質層43は極薄く形成することができるので、透明電極41と透明電極22との間の距離を極めて短くすることができる。このため、この非接液全固体型タンパク質透明受光素子は薄型に構成することができ、しかも透明電極41、42を透明化することにより、この非接液全固体型タンパク質透明受光素子を多層積層して使用することができる。さらに、この非接液全固体型タンパク質透明受光素子においては、固体タンパク質層43を構成する電子伝達タンパク質43aのサイズは2nm程度と極めて小さいので、例えば固体タンパク質層43のどの位置に光が入射したかを極めて精密に検出することが可能である。このため、高精細の光センサーあるいは撮像素子を実現することができる。
 さらに、電子伝達タンパク質43aの光導電効果は「一光子-多電子発生」によるものと推測される。ところが、液系タンパク質透明受光素子においては、電極間に存在する溶液の抵抗(溶液抵抗)が高いため、この「一光子-多電子発生」が妨げられていたと考えられる。これに対し、この非接液全固体型タンパク質透明受光素子では、この溶液抵抗が存在しないため、この「一光子-多電子発生」が可能となり、光電変換効率の大幅な向上を図ることができ、より大きな光電流を得ることができる。
 この非接液全固体型タンパク質透明受光素子は、光スイッチ素子、光センサー、撮像素子などを実現することができる。上述のようにこの非接液全固体型タンパク質透明受光素子は周波数応答が速いため、高速スイッチングが可能な光スイッチ素子、高速応答の光センサー、高速で動く物体の撮像が可能な撮像素子などを実現することができる。そして、この非接液全固体型タンパク質透明受光素子を光スイッチ素子、光センサー、撮像素子などに用いることにより優れた電子機器を実現することができる。
 例えば、後述のように、一つのレンズを用いて互いに異なる位置にある複数の被写体に焦点を同時に合わせることができるカメラを実現することができる。また、この多層透明受光素子を用いることにより、一眼でのマルチフォーカス化や高速フォーカス化も可能となる。さらに、多層光ディスクを用いる光ディスクシステムやホログラフィック記録媒体を用いる光記録再生システムの受光素子としてこの多層透明受光素子を用いることにより、多層光ディスクの並列読み出しやホログラフィック記録媒体の読み出しを高速で容易に行うことができる。
〈5.第5の実施の形態〉
[多層透明受光素子]
 第5の実施の形態による多層透明受光素子は、N層のタンパク質透明受光素子1を積層した構成を有するのは第1の実施の形態による多層透明受光素子と同じであるが、タンパク質透明受光素子1からなる画素が面内において多数集積形成されている点が第1の実施の形態と異なる。
 すなわち、図40に示すように、この多層透明受光素子においては、例えばN番目の透明基板11と(N-1)番目の透明基板11との間に透明なスペーサ61が設けられており、このスペーサ61の厚さによりこれらの透明基板11の間隔が規定されている。スペーサ61とスペーサ61との間の空間にタンパク質透明受光素子1からなる画素62が設けられており、この画素62が面内に二次元マトリクス状に多数配列されている。この画素62が配列された面が受光面を構成し、この受光面が合計N段存在する。
 この集積型多層透明受光素子における各画素62からの信号の取り出しや処理などには従来公知の技術を用いることができる。例えば、m行n列の二次元マトリクス状に配列された各画素62の上下の電極と接続されるように、行方向および列方向に配線を形成しておく。そして、例えば、選択された列のm個の画素62からの信号を読み出すためには、この列の画素62の一方の電極に接続された配線にだけ所定のバイアス電圧を印加し、このときm行の画素62の他方の電極に接続された配線に流れる光電流を検出する。
 この第5の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。また、この集積型多層透明受光素子は、第1の実施の形態による多層透明受光素子と同様な応用が可能である。
〈6.第6の実施の形態〉
[多層透明受光素子]
 図41に示すように、この第6の実施の形態による多層透明受光素子においては、例えばN番目の透明基板11と(N-1)番目の透明基板11との間に高さが可変で透明なスペーサ61が設けられており、このスペーサ61の厚さによりこれらの透明基板11の間隔が規定されている。そして、スペーサ61とスペーサ61との間の空間にタンパク質透明受光素子1からなる画素62が設けられており、この画素62が面内に二次元マトリクス状に多数配列されている。この画素62が配列された面が受光面を構成し、この受光面が合計N段存在する。この場合、このタンパク質透明受光素子1からなる画素62の厚さはスペーサ61の厚さよりも小さく、しかもこのタンパク質透明受光素子1からなる画素62の幅はスペーサ61とスペーサ61との間の空間の幅よりも小さく、透明基板11とこの画素62との間およびスペーサ61とこの画素62との間には隙間が存在している。このように透明基板11と画素62との間およびスペーサ61と画素62との間に隙間が存在するため、この多層透明受光素子をフレキシブルに構成することができる。
 この集積型多層透明受光素子における各画素62からの信号の取り出しや処理などには従来公知の技術を用いることができる。
 この第6の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。
また、この集積型多層透明受光素子は、第1の実施の形態による多層透明受光素子と同様な応用が可能である。
〈7.第7の実施の形態〉
 [立体イメージングシステム]
 第7の実施の形態による立体イメージングシステムにおいては、光センサーとして第5または第6の実施の形態による集積型多層透明受光素子を備えたカメラを用いる。このカメラはデジタルカメラやビデオカメラなどである。
 このカメラは、このカメラの撮像光学系の光軸方向が、集積型多層透明受光素子のタンパク質透明受光素子1からなる画素62の積層方向と一致するように構成されている。こうすることで、このカメラでは、集積型多層透明受光素子のN段の受光面のそれぞれを被写体を撮影する際の焦点合わせに用いることができる。このため、このカメラから異なる距離にある被写体のいずれにも焦点を合わせて撮像することができる。例えば、図42に示すように、カメラ71から距離d1の位置に花72があり、距離d2 (d2 >d1 )の位置に山73がある場合、これらの花72および山73をカメラ71により撮影する際、集積型多層透明受光素子によりこれらの花72および山73の両方に焦点を合わせることができ、その状態で撮影することができる。そして、集積型多層透明受光素子からの信号を処理することにより三次元の画像を得ることができる。この画像では、花72および山73の両方とも鮮明に撮影されており、しかも花72は近くに、山73は遠くに見え、遠近感も十分に得ることができる。
 カメラ71により撮影された画像をディスプレイに表示する場合について説明する。
 第1の例では、カメラ71により撮影されたリアルな三次元画像をディスプレイに表示する。例えば、花71が近くに位置し、山72が遠くに位置するリアルな三次元画像を表示することができる。
 第2の例では、カメラ71により撮影された三次元画像のうち特に見たい部分を強調して表示する。例えば、図42の例では、カメラ71により撮影された花72および山73を含む三次元画像のうち花72だけを見たい場合には、図43Aに示すように、ディスプレイ74に画像信号の処理により花72だけを鮮明に表示し、山73をぼかして表示することができる。逆に、図43Bに示すように、画像信号の処理により山73だけを鮮明に表示し、花72をぼかすことができる。このようにすることにより、ユーザーの希望通りの画像をディスプレイ74に表示することができる。
 集積型多層透明受光素子のN段の受光面(電子伝達タンパク質層13の面)のそれぞれを被写体を撮影する際の焦点合わせに用いることができることについて改めて詳細に説明する。
 図44は集積型多層透明受光素子の撮像光学系を示す。撮像光学系には一般には二つ以上のレンズが含まれるが、ここでは説明を簡単にするため一つのレンズLだけがあるとする。像面I1~IN は集積型多層透明受光素子のN段の受光面に対応する。いま、レンズLから互いに異なる距離にある物体O1 、O2を考える。レンズLによる物体O1 の像は像面I2 に結像し(像点O1 ´)、物体O2の像は像面I1 に結像する(像点O2 ´)。この場合、物体O1 、O2の両方とも焦点を合わせることができ、それらの鮮明な像を得ることができる。
 レンズLからの被写体の距離による集積型多層透明受光素子における結像面の位置の変化、言い換えれば焦点の位置の変化について説明する。図45に示すように、焦点距離がf0のレンズLから距離f1 にある物体の像がレンズLから距離f2 の位置に結像する。このとき、レンズ公式より、f1=f2 f0 /(f2 -f0 )が成り立つ。一例として、f0=5cmの場合を考えると、f1 とf2 との関係は表5のようになり、グラフに表すと図46に示すようになる。
Figure JPOXMLDOC01-appb-T000005
 表5および図46から分かるように、レンズLからの被写体の距離f1が1mから10000mまで変化しても、レンズLから被写体の像までの距離f2 はわずか約0.26cmしか変化しない。この場合、集積型多層透明受光素子における1段目の受光面とN段の受光面との間隔は0.3cm以下で足りることになる。
 レンズLによる被写体の像の結像面が集積型多層透明受光素子の受光面と一致していない、言い換えると受光面に焦点が合っていない場合には、各受光面で得られた信号からソフトウエアのアルゴリズムにより被写体の画像を再構成することができる。
 いま、図47に示すように、レンズLにより結像された被写体の像が、集積型多層透明受光素子の受光面R1~R3 のうち受光面R1 と受光面Rとの間にあるとする。この場合、受光面R1~R3 のそれぞれにおける点像強度分布関数(point spread function)SPF1、SPF2、SPF3の関数F(SPF1、SPF2、SPF3)として被写体の結像面の点像強度分布関数SPFxを求めることができる。この計算はコンピュータにより容易に行うことができる。そして、この点像強度分布関数SPFx を用いて被写体の画像を得ることができ、この画像をディスプレイに表示することができる。
 例えば放送局においてテレビカメラにより撮影を行う場合にこの技術を用いることにより、放送局から配信される映像信号を用いて三次元テレビで画像を表示する場合、集積型多層透明受光素子の受光面からの出力信号に基づいて、表示されている画像のうちユーザーが特に見たい部分のズームインまたはズームアウトを自在に行うことができる。
 カメラ71を用いることにより、カメラ71から互いに異なる距離にある複数の物体(被写体)の鮮明な画像を同時に得ることができる。例えば、図48に示すように、1列目の人75が地面に立ち、二列目の人76が低い台77の上に立ち、三列目の人78が台77より高い台79の上に立っており、カメラ71によりこれらの人75、76、78を撮影する場合を考える。この場合、カメラ71の多層透明受光素子によりこれらの人75、76、78にそれぞれ焦点を合わせることができるので、これらの人75、76、78の鮮明な画像を同時に得ることができる。
 カメラ71を用いることにより、撮影したい被写体に高速で焦点を合わせることができる。例えば、図49に示すように、サッカーコート79で試合が行われている場合に、試合の様子をカメラ71で撮影する場合を考える。いま、サッカーコート79のA点に焦点が合った状態からB点に焦点を合わせるとする。この場合、通常のカメラを用いた場合にはカメラのレンズを大きく動かす必要があるが、カメラ71を用いた場合には、レンズLをあまり動かさないでもB点に焦点を合わせることができ、焦点合わせを高速で行うことができる。これは次のような理由による。
 すなわち、図50Aに示すように、最初、サッカーコート79のA点にある物体O1に焦点が合っていてカメラ71の集積型多層透明受光素子の受光面R1 に像O1 ´が結像しており、B点にある物体O2 には焦点が合っておらずカメラ71の集積型多層透明受光素子の受光面R2から少しずれた位置に像O´が結像している。この状態からB点に焦点を合わせる場合、従来のカメラでは、図50Cに示すように、レンズLを像O1´と像O2 ´との位置の差に相当する距離Δx2 だけ移動させることにより物体Oの像O2´が受光面に結像するようにする必要がある。これに対し、カメラ71を用いた場合には、図50Bに示すように、像O2 ´が受光面R1に隣接する受光面R2 に結像するように像O2 ´と受光面R2 との間の距離Δx1だけ動かすだけでよいので、レンズLの移動距離が小さくて済み、従ってB点への焦点合わせを高速で行うことができる。また、カメラ71をより薄型に構成することができる。
 カメラ71を用いることにより、高価なアクロマートレンズを用いることなく、色収差を補正することができる。すなわち、図51に示すように、白色光がレンズLに入射した場合、レンズLの色収差により例えば青色光、緑色光および赤色光が異なる面(レンズLからの距離がそれぞれfb、fg 、fr )で結像しても、カメラ71の集積型多層透明受光素子の受光面R1 ~RNのいずれかの受光面でこれらの青色光、緑色光および赤色光を受光することができる。
〈8.第8の実施の形態〉
[立体イメージングシステム]
 第8の実施の形態による立体イメージングシステムにおいては、光センサーとして第6の実施の形態による集積型多層透明受光素子を備えたカメラを用いる。
 図52に示すように、このカメラ71においては、光センサーとして、湾曲した形状の集積型多層透明受光素子80を用いる。そして、この集積型多層透明受光素子80の曲率中心の近傍にレンズLを配置する。こうすることで、広い角度範囲にある複数の物体(例えば、物体O1、O2 )を同時に撮影することができる。
〈9.第9の実施の形態〉
[立体イメージングシステム]
 第9の実施の形態による立体イメージングシステムにおいては、受光素子として第6の実施の形態による集積型多層透明受光素子を備えたカメラを用いる。
 図53に示すように、このカメラ71においては、受光素子として、円柱面状の集積型多層透明受光素子81を用いる。そして、この集積型多層透明受光素子81の外周にレンズLを配置する。こうすることで、360°の角度範囲にある物体O1、O2 を同時に撮影することができ、全方位の立体イメージングシステムを得ることができる。
〈10.第10の実施の形態〉
[光ディスクシステム]
 図54に第10の実施の形態による光ディスクシステムを示す。
 図54に示すように、この光ディスクシステムにおいては、N層の記録層を有する多層光ディスク91を用い、N層のタンパク質透明受光素子1を有する多層透明受光素子92を用いてこの多層光ディスク91のN層の記録層に記録されたデジタルデータを一括して読み出す。具体的には、図54に示すように、低コヒーレンスの光源93からの光94をビームスプリッタ95により二つに分け、ビームスプリッタ95を透過した光を多層光ディスク91に入射させる。多層光ディスク91に入射した光は各記録層でそれぞれ反射されて多層透明受光素子92に入射する。一方、ビームスプリッタ95で反射された光はミラー96、97で順次反射させた後、多層透明受光素子92に入射させる。こうして、ビームスプリッタ95により二つに分けられた光が多層透明受光素子92に入射すると、これらの光は干渉を起こす。その結果、図54の多層透明受光素子92の直ぐ横に示すように、多層透明受光素子92のN層の受光面における光の強度の分布が得られる。この強度分布は多層光ディスク91の各記録層に記録されたデータを反映したものとなる。この場合、例えば、しきい値強度I0より強度のピークが高いときを「1」、低いときを「0」とすることにより、多層光ディスク91に記録されたデジタルデータを読み出すことができる。
〈11.第11の実施の形態〉
[光記録再生システム]
 図55に第11の実施の形態による光記録再生システムを示す。
 図55に示すように、この光記録再生システムにおいては、ホログラフィック記録媒体101を用い、N層のタンパク質透明受光素子1を有する多層透明受光素子102を用いてこのホログラフィック記録媒体101に記録されたデータを読み出す。具体的には、図55に示すように、高コヒーレンスの光源103からの光104をビームスプリッタ105により二つに分け、ビームスプリッタ105を透過した光をホログラフィック記録媒体101に入射させる。ホログラフィック記録媒体101に入射した光は多層透明受光素子92に向かう。一方、ビームスプリッタ105で反射された光はレンズ106を通って多層透明受光素子102に入射し、ホログラフィック記録媒体101から来た光と重ね合わされる。その結果、多層透明受光素子92上に、ホログラフィック記録媒体101に記録された画像が光の強度分布として現れる。こうして、ホログラフィック記録媒体101に記録された画像を再生することができる。
 以上、この発明の実施の形態および実施例について具体的に説明したが、この発明は、上述の実施の形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施の形態および実施例において挙げた数値、構造、構成、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、構成、形状、材料などを用いてもよい。

Claims (13)

  1.  互いに積層された複数の、電子伝達タンパク質を用いたタンパク質透明受光素子を有する多層透明受光素子。
  2.  上記電子伝達タンパク質は、哺乳類由来のシトクロムcのヘムの中心金属の鉄をスズに置換したスズ置換シトクロムc、または、哺乳類由来のシトクロムcのアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、スズを含むタンパク質である請求項1記載の多層透明受光素子。
  3.  上記哺乳類由来のシトクロムcがウマ心筋シトクロムcまたはウシ心筋シトクロムcである請求項2記載の多層透明受光素子。
  4.  上記電子伝達タンパク質が透明電極に固定化されている請求項1記載の多層透明受光素子。
  5.  上記タンパク質透明受光素子は上記電子伝達タンパク質が上記透明電極に固定化されたタンパク質固定化電極と対極とを有する請求項4記載の多層透明受光素子。
  6.  上記タンパク質透明受光素子は第1の電極と第2の電極との間に上記電子伝達タンパク質からなる固体タンパク質層を挟んだ構造を有する請求項1記載の多層透明受光素子。
  7.  互いに積層された複数の、電子伝達タンパク質を用いたタンパク質透明受光素子を有する多層透明受光素子を備えた電子機器。
  8.  上記電子伝達タンパク質は、哺乳類由来のシトクロムcのヘムの中心金属の鉄をスズに置換したスズ置換シトクロムc、または、哺乳類由来のシトクロムcのアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、スズを含むタンパク質である請求項7記載の電子機器。
  9.  上記哺乳類由来のシトクロムcがウマ心筋シトクロムcまたはウシ心筋シトクロムcである請求項8記載の電子機器。
  10.  上記電子伝達タンパク質が透明電極に固定化されている請求項7記載の電子機器。
  11.  上記タンパク質透明受光素子は上記電子伝達タンパク質が上記透明電極に固定化されたタンパク質固定化電極と対極とを有する請求項10記載の電子機器。
  12.  上記タンパク質透明受光素子は第1の電極と第2の電極との間に上記電子伝達タンパク質からなる固体タンパク質層を挟んだ構造を有する請求項7記載の電子機器。
  13.  上記電子機器が三次元ディスプレイ、三次元イメージセンサー、カメラまたは光記録再生システムである請求項7記載の電子機器。
     
PCT/JP2010/069197 2009-11-04 2010-10-28 多層透明受光素子および電子機器 WO2011055682A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10828242A EP2498302A4 (en) 2009-11-04 2010-10-28 MULTILAYER TRANSPARENT LIGHT RECEIVING ELEMENT AND ELECTRONIC DEVICE
CN201080010327.7A CN102341920B (zh) 2009-11-04 2010-10-28 多层透明光接收器件和电子装置
KR1020117019851A KR20120088534A (ko) 2009-11-04 2010-10-28 다층 투명 수광 소자 및 전자 기기
BRPI1008307A BRPI1008307A2 (pt) 2009-11-04 2010-10-28 dispositivo de recepção de luz transparente de múltiplas camadas, e, dispositivo eletrônico
US13/203,896 US20120141831A1 (en) 2009-11-04 2010-10-29 Multilayer transparent light-receiving device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009252778A JP2011100759A (ja) 2009-11-04 2009-11-04 多層透明受光素子および電子機器
JP2009-252778 2009-11-04

Publications (1)

Publication Number Publication Date
WO2011055682A1 true WO2011055682A1 (ja) 2011-05-12

Family

ID=43969922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069197 WO2011055682A1 (ja) 2009-11-04 2010-10-28 多層透明受光素子および電子機器

Country Status (7)

Country Link
US (1) US20120141831A1 (ja)
EP (1) EP2498302A4 (ja)
JP (1) JP2011100759A (ja)
KR (1) KR20120088534A (ja)
CN (1) CN102341920B (ja)
BR (1) BRPI1008307A2 (ja)
WO (1) WO2011055682A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444747B2 (ja) * 2009-02-17 2014-03-19 ソニー株式会社 カラー撮像素子およびその製造方法ならびに光センサーおよびその製造方法ならびに光電変換素子およびその製造方法ならびに電子機器
JP5195693B2 (ja) * 2009-08-28 2013-05-08 ソニー株式会社 タンパク質光電変換素子
JP6550673B2 (ja) * 2015-04-03 2019-07-31 国立大学法人 東京大学 フォトルミネセンス寿命測定装置及び測定方法
KR101962030B1 (ko) * 2017-09-20 2019-07-17 성균관대학교산학협력단 단백질 기반의 비휘발성 메모리 소자 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237585A (ja) * 1987-03-26 1988-10-04 Mitsubishi Electric Corp 光応答性スイツチ素子
JPH02281770A (ja) * 1989-04-24 1990-11-19 Agency Of Ind Science & Technol 機能性蛋白質複合体を用いた光電変換素子の製造方法
JP2007220445A (ja) * 2006-02-16 2007-08-30 Sony Corp 光電変換素子、半導体装置および電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021501A (ja) * 2007-07-13 2009-01-29 Sony Corp 分子素子、単分子光スイッチ素子、機能素子、分子ワイヤーおよび電子機器
JP5233650B2 (ja) * 2008-12-18 2013-07-10 ソニー株式会社 タンパク質固定化電極およびその製造方法ならびに機能素子およびその製造方法
JP5195693B2 (ja) * 2009-08-28 2013-05-08 ソニー株式会社 タンパク質光電変換素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237585A (ja) * 1987-03-26 1988-10-04 Mitsubishi Electric Corp 光応答性スイツチ素子
JPH02281770A (ja) * 1989-04-24 1990-11-19 Agency Of Ind Science & Technol 機能性蛋白質複合体を用いた光電変換素子の製造方法
JP2007220445A (ja) * 2006-02-16 2007-08-30 Sony Corp 光電変換素子、半導体装置および電子機器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOCHEMISTRY, vol. 26, no. 11, 1987, pages 3142 - 3148, XP055053510 *
EUR. J. BIOCHEM., vol. 64, no. 2, pages 381 - 387, XP009011969 *
See also references of EP2498302A4 *

Also Published As

Publication number Publication date
EP2498302A4 (en) 2013-03-27
US20120141831A1 (en) 2012-06-07
CN102341920A (zh) 2012-02-01
CN102341920B (zh) 2014-01-15
BRPI1008307A2 (pt) 2016-02-23
KR20120088534A (ko) 2012-08-08
JP2011100759A (ja) 2011-05-19
EP2498302A1 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
US7592539B2 (en) Solid state photosensitive devices which employ isolated photosynthetic complexes
WO2011055682A1 (ja) 多層透明受光素子および電子機器
US8178872B2 (en) Molecular device, imaging device, photosensor, and electronic apparatus
US20050045808A1 (en) Photodetector and photo detecting system
JP2008103670A (ja) 有機薄膜受光素子、有機薄膜受光素子の製造方法、有機薄膜受発光素子、有機薄膜受発光素子の製造方法、及び脈拍センサ
WO2010095532A1 (ja) カラー撮像素子およびその製造方法ならびに光センサーおよびその製造方法ならびに光電変換素子およびその製造方法ならびに電子機器
CN101120458B (zh) 采用孤立的光合作用复合物的固态光敏器件
US8895965B2 (en) Photoelectric conversion element, production method for a photoelectric conversion element, solid-state image sensor, production method for a solid-state image sensor, electronic apparatus, photoconductor, production method for a photoconductor and multilayer transparent photoelectric conversion element
JP5195693B2 (ja) タンパク質光電変換素子
RU2539815C2 (ru) Не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь, способ его изготовления и электронное устройство
JPH03237769A (ja) カラー画像受光素子
JP2725089B2 (ja) 光電変換素子による像情報検出方法
US8748874B2 (en) Protein photoelectric conversion device, photoelectric conversion system, protein photoelectric conversion device manufacturing method, photoelectric conversion system manufacturing method and protein-immobilized electrode
Wang et al. Light-addressable bacteriorhodopsin photocell
JP2574702B2 (ja) 光記録素子
JP2009117480A (ja) 有機光電変換素子、及びこれを用いた光センサ、カラー撮像素子
JPH06186078A (ja) 光電変換材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010327.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828242

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010828242

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117019851

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6524/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13203896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1008307

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1008307

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110829