WO2011055667A1 - Coating composition and optical article - Google Patents

Coating composition and optical article Download PDF

Info

Publication number
WO2011055667A1
WO2011055667A1 PCT/JP2010/069097 JP2010069097W WO2011055667A1 WO 2011055667 A1 WO2011055667 A1 WO 2011055667A1 JP 2010069097 W JP2010069097 W JP 2010069097W WO 2011055667 A1 WO2011055667 A1 WO 2011055667A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
component
compound
parts
Prior art date
Application number
PCT/JP2010/069097
Other languages
French (fr)
Japanese (ja)
Inventor
力宏 森
俊一郎 中司
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2011055667A1 publication Critical patent/WO2011055667A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a coating composition applied to the surface of an optical substrate such as a plastic lens. Specifically, the present invention relates to a coating composition suitable for a hard coat layer formed on the surface of a plastic substrate made of urethane resin, (meth) acrylic resin, or the like.
  • the coating composition for an optical substrate is used for forming a hard coat layer for improving scratch resistance by applying and curing on the surface of an optical substrate such as a plastic lens.
  • a coating composition it is desired to form a cured body (hard coat layer) that maintains transparency and has high scratch resistance.
  • a silica sol dispersed in a colloidal form, etc. A composition containing inorganic oxide fine particles and an organosilicon compound such as alkoxysilane is used (see Patent Documents 1 to 6).
  • the (meth) acrylic resin refers to a resin obtained by polymerizing an acrylic monomer and a methacrylic monomer ⁇ hereinafter sometimes collectively referred to as a (meth) acrylic monomer ⁇ . .
  • a photochromic lens is a lens that quickly colors and functions as sunglasses when exposed to light containing ultraviolet rays such as sunlight, and fades and is transparent in an indoor environment without such light irradiation. These glasses function as glasses, and their demand is increasing in recent years.
  • a method for producing a photochromic lens using a (meth) acrylic resin a method of directly obtaining a photochromic lens by dissolving a photochromic compound in a (meth) acrylic monomer and polymerizing it (kneading) And a layer having photochromic properties on the surface of the plastic lens (hereinafter referred to as a photochromic coating layer) using a curable composition (hereinafter also referred to as a photochromic coating agent) comprising a photochromic compound and a (meth) acrylic monomer. Also known is a method (coating method).
  • the photochromic compound existing between the resins easily moves in the resulting photochromic lens or in the photochromic coat layer, so that excellent photochromic properties can be exhibited.
  • a hard coat layer is usually formed on the surface thereof. In recent years, the performance required for such a hard coat layer has been further enhanced not only in optical substrates made of (meth) acrylic resins but also in optical substrates made of other resins.
  • Patent Documents 1 to 3 when the coating composition disclosed in Patent Documents 1 to 3 is used for an optical substrate made of a (meth) acrylic resin, the hard coat layer may not have sufficient adhesion, or scratch resistance
  • Patent Documents 4 and 5 describe a hard coat that exhibits excellent adhesion and hardness when the amount of inorganic oxide fine particles, organosilicon compound, and water is optimized and applied to the surface of a (meth) acrylic resin layer.
  • Forming coating compositions are shown, but these coating compositions also have the following problems.
  • An optical article having a hard coat layer may come into contact with warm water in that application.
  • Patent Document 6 discloses a coating composition for forming a hard coat layer containing a curing catalyst, which is suitable for an optical substrate composed of an allyl resin and a thiourethane resin. In this coating composition, too, There was room for improvement in the following points. Patent Document 6 discloses the use of an organosilicon compound having an epoxy group that functions as a binder and other organosilicon compounds. However, according to the study by the present inventors, the coating composition is a combination of specific silicon compounds, and a hard coat layer excellent in hot water resistance and scratch resistance is obtained unless they are used in a specific amount. It turned out that it cannot be formed.
  • the objective of this invention is providing the coating composition which can form the hard-coat layer excellent in the adhesiveness with respect to optical base materials, such as a plastics lens, and abrasion resistance, and also excellent in hot water resistance.
  • Another object of the present invention is to provide a coating composition suitable as a hard coat layer for an optical substrate made of urethane resin or (meth) acrylic resin, particularly an optical substrate made of the latter resin.
  • (A) inorganic oxide fine particles and (B1) an epoxy group-containing silicon compound having an epoxy group and a hydrolyzable group (hereinafter sometimes simply referred to as an epoxy group-containing silicon compound) are further included. It is possible to solve the above problems by blending a specific amount of (C) a ketimine compound having a ketimine group (hereinafter sometimes simply referred to as a ketimine compound) into a coating composition for forming a hard coat layer.
  • the headline and the present invention have been completed.
  • the present invention is a coating composition for forming a hard coat layer comprising (A) inorganic oxide fine particles, (B1) an epoxy group-containing silicon compound, and (C) a ketimine compound, wherein the component (A) is 100 It is the said coating composition characterized by including 50 mass parts or more and 350 mass parts or less (B1) component as a mass part, and 0.1 mass part or more and 10 mass parts or less of (C) component.
  • the (C) ketimine compound is preferably a ketimine group-containing silicon compound having a ketimine group and a hydrolyzable group (hereinafter sometimes simply referred to as a ketimine group-containing silicon compound).
  • the ketimine group is (Wherein R is an organic group).
  • R 3 is an alkylene group having 1 to 8 carbon atoms
  • R 4 and R 5 are alkyl groups having 1 to 3 carbon atoms
  • R 6 and R 7 are alkyl groups having 1 to 3 carbon atoms
  • B is an integer of 0-2.
  • It contains at least one silicon compound selected from the group consisting of silicon compounds represented by the formula (A), 100 parts by mass of the component (A2), and 10 parts by mass or more and 150 parts by mass or less of the component (B2).
  • a coating composition is preferred. By blending the component (B2), scratch resistance can be enhanced.
  • the present invention further relates to an optical article having a hard coat layer obtained by curing the coating composition on a plastic optical substrate.
  • the present invention exhibits an excellent effect when the substrate is a substrate made of a (meth) acrylic resin or a urethane resin.
  • the substrate is made of a (meth) acrylic resin and further includes a photochromic compound, an excellent effect is exhibited.
  • the coating composition of the present invention can form a hard coat layer having good adhesion and excellent scratch resistance on the surface of an optical substrate such as a plastic lens.
  • an optical substrate such as a plastic lens.
  • the optical substrate is a urethane resin or a substrate made of a (meth) acrylic resin
  • an excellent effect is obtained, particularly when the substrate is a (meth) acrylic resin containing a photochromic compound. Exhibits excellent effects.
  • the reason why the coating composition of the present invention has excellent adhesion to an optical substrate such as a plastic lens, particularly excellent hot water resistance, is that (B1) an epoxy group-containing silicon compound and (C) a ketimine compound are in a specific amount. It is thought to be in use.
  • (C) A ketimine compound generates an amino group by hydrolyzing a ketimine group in a coating agent obtained by mixing a coating composition. It is considered that the amino group reacts with a functional group present on the surface of the plastic substrate, and also participates in the addition reaction of the (B1) epoxy group-containing silicon compound to the epoxy group. As a result, it is considered that the adhesion between the formed hard coat layer and the plastic optical substrate, in particular, the hot water resistance is increased.
  • the ketimine compound is a ketimine group-containing silicon compound
  • a silanol group is generated by hydrolyzing a hydrolyzable group, for example, an alkoxysilyl group, in addition to the amino group.
  • the silanol group is considered to condense with other silicon compounds in the hard coat layer or react with the hydroxyl group on the surface of the inorganic oxide fine particles.
  • the action of the silanol group also occurs. Therefore, by using the ketimine group-containing silicon compound, the adhesion between the formed hard coat layer and the plastic substrate, in particular, hot water resistance Is considered to improve more.
  • the (meth) acrylic resin When a (meth) acrylic resin is used as an optical substrate, in addition to the above action, the (meth) acryloyl group remaining in the (meth) acrylic resin and the amino group are bonded by a Michael addition reaction, It is considered that the formed hard coat layer exhibits high adhesion, particularly hot water resistance. Furthermore, when a urethane-based resin is used, it is considered that the amino group interacts with the urethane bond portion such as hydrogen bond, and thus exhibits high adhesion, particularly hot water resistance. As described above, the (C) ketimine compound can act on both the hard coat layer and the optical substrate, and is considered to contribute to the improvement of adhesion between the hard coat layer and the optical substrate, particularly hot water resistance. .
  • the coating composition of the present invention has high transparency, can form a hard coat layer having excellent scratch resistance, and has excellent adhesion, particularly hot water resistance. Therefore, the coating composition of the present invention is suitably used not only as the above-mentioned (meth) acrylic resin or urethane resin, but also as a coating composition for forming a hard coat layer for a substrate made of another resin. it can.
  • the coating composition of the present invention is a coating composition characterized by comprising (A) inorganic oxide fine particles, (B1) an epoxy group-containing silicon compound, and (C) a ketimine compound.
  • A inorganic oxide fine particles
  • B1 an epoxy group-containing silicon compound
  • C a ketimine compound
  • the inorganic oxide fine particles (A) may be composed of one kind of inorganic oxide, or may be composite inorganic oxide fine particles containing two or more kinds of inorganic oxides. From the viewpoint that the (A) inorganic oxide fine particles can be uniformly dispersed in the hard coat layer to be formed, usually, water (alcohol solvent) or other organic solvent is used as a dispersion medium. Used in the form of a sol in which fine particles are colloidally dispersed. Hereinafter, the inorganic oxide fine particles may be simply used as the component (A).
  • the dispersion medium examples include alcohol solvents such as methanol, ethanol, isopropanol, and ethylene glycol; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; water; and mixed solvents thereof. Among these, an alcohol solvent or water is preferable.
  • alcohol solvents such as methanol, ethanol, isopropanol, and ethylene glycol
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone
  • water and mixed solvents thereof.
  • an alcohol solvent or water is preferable.
  • (A) the solid content concentration of the inorganic oxide fine particles ⁇ the concentration of the (A) inorganic oxide fine particles contained in the sol ⁇ is the stability of the dispersion state and the coating composition obtained. From the viewpoint of easy adjustment of the composition, it is preferably 10 to 45% by mass.
  • the inorganic oxide fine particles those having a primary particle diameter of about 1 to 300 nm observed with an electron microscope (TEM) can be preferably used.
  • the amount of the (A) inorganic oxide fine particles used is such that the proportion of the (A) inorganic oxide fine particles in the finally formed hard coat layer is preferably 20% by mass to 70% by mass, more preferably It is preferable to set according to the amount of other components used so that it is 25 mass% to 60 mass%.
  • the hard coat layer formed has high hardness and excellent heat resistance. Furthermore, it becomes easier to form a hard coat layer, and cracks can be reduced when the coating agent is cured.
  • the inorganic oxide fine particles (A) in the present invention are not particularly limited, and an oxide of at least one element selected from Si, Al, Fe, In, Zr, Sn, Sb, Ce, Ti and W Oxide fine particles made of Among these, oxide fine particles made of an oxide of at least one element selected from Si, Zr, Sn, Sb, and Ti are preferable. Specifically, it may be silicon oxide fine particles (silica fine particles), antimony pentoxide fine particles, or composite inorganic oxide fine particles containing a plurality of oxides of the above elements. The ratio is appropriately determined.
  • silica fine particles when applied to a low refractive index plastic lens substrate having a refractive index of 1.50 or less, silica fine particles are used.
  • the silica fine particles are not particularly limited, and known ones can be used. Specifically, a dispersion in which the solid content concentration is 10% to 45% by mass and the primary particle size is 1 to 300 nm dispersed in water, an alcohol solvent, or another organic solvent is used. Is preferred.
  • Commercially available dispersions of these silica fine particles can be used.
  • water such as SNOWTEX OXS, SNOWTEX OS, SNOWTEX O, SNOWTEX O-40, etc. is used as a dispersion medium from Nissan Chemical Industries, Ltd.
  • silica sols having a dispersion medium of alcohol such as MA-ST-MS (dispersion medium: methanol) and IPA-ST (dispersion medium: isopropanol).
  • antimony pentoxide fine particles or composite inorganic oxide fine particles containing a plurality of oxides of the above elements are preferably used.
  • composite inorganic oxide fine particles composed of oxides of Si, Zr, Sn, Sb, and Ti.
  • the blending ratio of each component of the composite inorganic oxide fine particles may be appropriately determined according to the application to be used, but 50% to 96% by mass of tin oxide, 3% to 49% by mass of zirconium oxide, and oxidation.
  • the antimony pentoxide fine particles and the composite inorganic oxide fine particles are dispersed in water, an alcohol solvent, or other organic solvent, and a solid content concentration of 10% by mass to 45% by mass and a primary particle size of 1 to 300 nm are dispersed. It is preferable to use a liquid state.
  • a commercially available dispersion of these inorganic oxide fine particles can be used.
  • an antimony pentoxide sol such as AMT-332S ⁇ NV (dispersion medium: methanol) manufactured by Nissan Chemical Industries, Ltd.
  • HX series (dispersion medium: methanol), which is a composite inorganic oxide fine particle of zirconium oxide or tin oxide.
  • inorganic oxide fine particles obtained by mixing antimony pentoxide fine particles or the above composite inorganic oxide fine particles and cerium oxide fine particles are preferably used in order to improve weather resistance.
  • the content of the cerium oxide fine particles is preferably 1% by mass to 30% by mass in 100% by mass of the total inorganic oxide fine particles.
  • the (B1) epoxy group-containing silicon compound (epoxy group-containing silicon compound) having an epoxy group and a hydrolyzable group of the present invention is a transparent curing that becomes a matrix when a hard coat layer is formed by curing a coating agent. It is a component that forms a body and has a function as a binder of the (A) inorganic oxide fine particles.
  • the (B1) epoxy group-containing silicon compound may be simply used as the component (B1).
  • the (B1) epoxy group-containing silicon compound is an organosilicon compound containing an epoxy group in the molecule and a hydrolyzable group such as an alkoxysilyl group (a group in which an alkoxy group is bonded to a Si atom).
  • This epoxy group-containing silicon compound has the effect of increasing the adhesion of the hard coat layer to an optical substrate such as a plastic lens.
  • the epoxy group-containing silicon compound can be used without particular limitation as long as it is an organosilicon compound having at least one epoxy group in the molecule and having a hydrolyzable group.
  • Specific examples of the compound include a silicon compound represented by the following formula (III).
  • R 9 represents the following formula: (Wherein R 11 is an alkylene group having 1 to 8 carbon atoms), or a group represented by the following formula (Wherein R 12 is an alkylene group having 1 to 8 carbon atoms), R 8 is an alkyl group having 1 to 3 carbon atoms, R 10 is an alkyl group having 1 to 3 carbon atoms, C is an integer of 0-2.
  • R 8 examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group, and a methyl group and an ethyl group are particularly preferable.
  • R 8 examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group, and a methyl group and an ethyl group are particularly preferable.
  • C is preferably 0 or 1 in view of reactivity, adhesion, and scratch resistance.
  • R 10 include a methyl group, an ethyl group, a propyl group, and an isopropyl group as in R 8, and a methyl group and an ethyl group are particularly preferable.
  • R 11 and R 12 are each an alkylene group having 1 to 8 carbon atoms, and may be linear or branched. Of these, a linear alkylene group having 2 to 3 carbon atoms is preferable.
  • component (B1) represented by the formula (III) include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, Mention may be made of ⁇ -glycidoxypropyltriethoxysilane or ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane. These may be used alone or in combination of two or more.
  • ⁇ -glycidoxypropyltrimethoxysilane (GTS) and ⁇ -glycidoxypropylmethyldimethoxysilane are considered in consideration of adhesion to a plastic optical substrate and scratch resistance in the hard coat layer to be formed.
  • GDS ⁇ -glycidoxypropyltrimethoxysilane
  • GTS and GDS can be used alone or in combination.
  • GTS exhibits excellent effects even when used alone, but when used in combination with GDS, the mass ratio of GTS to GDS (GTS / GDS) is 2.0 or more and 10.0 or less. It is preferable to do.
  • the mass of the epoxy-containing silicon compound is the blending amount of the component (B1) described in detail below.
  • those total amounts correspond to the compounding quantity of (B1) component.
  • the compounding quantity of (B1) component is 50 to 350 mass parts by making the compounding quantity of the said (A) inorganic oxide microparticles into 100 mass parts.
  • the component (B1) is less than 50 parts by mass, the heat resistance and adhesion of the hard coat layer to be formed are lowered, the flexibility is further lowered, and the hard coat layer itself becomes brittle.
  • the preferable blending amount of the component (B1) is 80 parts by mass or more and 300 parts by mass or less.
  • the compounding quantity of this (B1) component is the quantity of the (B1) epoxy group containing silicon compound of the state by which a hydrolysable group, for example, an alkoxysilyl group, is not hydrolyzed.
  • the (C) ketimine compound ⁇ hereinafter sometimes simply referred to as the component (C) ⁇ exhibits the effect of further improving the adhesion between the hard coat layer to be formed and the plastic optical substrate.
  • This adhesion includes not only the adhesion immediately after forming the hard coat layer, but also the adhesion after a weather resistance test taking into account long-term actual use (hereinafter, this adhesion is assumed to be weather resistance). There is also.) Furthermore, the adhesiveness (hot water resistance) after contacting with warm water can also be improved.
  • the (C) ketimine compound is a compound having at least one ketimine group in the molecule obtained by blocking the primary amino group of an amine with a ketone.
  • the reason why the (C) ketimine compound exhibits an excellent effect is estimated as follows. When a ketimine compound is used, the ketimine group is hydrolyzed in the coating agent to produce an amino group (—NH 2 ), and this amino group is a hard coat layer on a plastic optical substrate by the reaction mechanism described below. It is thought that the adhesiveness of is improved.
  • the generated amino group reacts with the functional group generated on the surface of the plastic optical substrate activated by pretreatment such as alkali treatment, and the (meth) acryloyl group, epoxy group, isocyanate group, etc. in the substrate. Or is considered to be involved in hydrogen bonds with urethane bonds or carbonate bonds in the substrate.
  • the amino group is also considered to be involved in the addition reaction of the epoxy group of the (B1) epoxy group-containing silicon compound. Due to the effects of hydroxyl groups and amino groups generated by the addition reaction to this epoxy group, the bond and interaction with the plastic optical substrate can be strengthened, so the adhesion between the hard coat layer and the plastic optical substrate, In particular, it is estimated to increase the hot water resistance.
  • the ketimine compound can be synthesized by reacting an amine compound and a ketone compound. Specifically, the (C) ketimine compound can be synthesized by reacting the amino group of the amine compound with the carbonyl group of the ketone compound.
  • the amine compound an amine compound having 2 to 15 carbon atoms, such as diethylenetriamine, triethylenetetramine, diethylaminopropylamine, m-xylylenediamine, ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, trimethylhexamethylenediamine, N -Aminoethylpiperazine, 1,2-diaminopropane.
  • Examples of the amine compound containing a silicon compound include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyldiethoxymethylsilane, ⁇ -aminopropyldimethoxymethylsilane, and the like.
  • examples of the ketone compound include those having 2 to 10 carbon atoms such as acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl t-butyl ketone, diisopropyl ketone, and methyl isobutyl ketone.
  • a ketimine compound obtained by reacting the following amine compound with a ketone compound is particularly preferable.
  • Suitable amine compounds include amine compounds containing silicon compounds such as ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyldiethoxymethylsilane, ⁇ -aminopropyldimethoxymethylsilane,
  • suitable ketone compounds include methyl isopropyl ketone, methyl t-butyl ketone, and methyl isobutyl ketone that can be suitably used as the water-soluble organic solvent in the coating composition of the present invention.
  • Reaction of an amine compound and a ketone compound can be achieved by mixing both. Since the reaction between the amine compound and the ketone compound is an equilibrium reaction in which water is generated, it is necessary to carry out the reaction while removing water.
  • a reaction is performed in the presence of a dehydrating agent such as anhydrous sulfate or molecular sieve, or an azeotropic solvent such as toluene is added to the reaction system in advance to carry out the reaction while performing azeotropic dehydration. The method of making it progress is mentioned.
  • the (C) ketimine compound used in the present invention it is preferable to use an amine compound and a ketone compound so that the number of moles of the carbonyl group is larger than the number of moles of the amino group. Specifically, it is set to be 1.5 mol or more and 3.0 mol or less of carbonyl group with respect to 1 mol of amino group.
  • the reason why many ketone compounds are used is that when the amine compound remains unreacted, if it is added to the coating composition of the present invention, hydrolysis and condensation reaction of the organosilicon compound contained in the coating composition proceeds. This is because viscosity may increase or gelation may occur, and the appearance of the hard coat layer to be formed may be deteriorated and hardness may be decreased.
  • ketone compound which is a reaction product of an amine compound and a ketone compound, can be confirmed by molecular weight analysis using GC-MASS (gas chromatograph mass spectrometer). Before conducting the analysis by GC-MASS, it is preferable to confirm that the amine compound as a raw material has disappeared.
  • GC-MASS gas chromatograph mass spectrometer
  • the ketimine compound is a ketimine group-containing silicon compound having a ketimine group and a hydrolyzable group (hereinafter sometimes simply referred to as “ketimine group-containing silicon compound”)
  • the amino group In addition to the above action, the following action occurs, and it is considered that a particularly excellent effect is exhibited.
  • a ketimine group-containing silicon compound is used, not only does the ketimine group hydrolyze in the coating agent to produce an amino group (—NH 2 ), but also a hydrolyzable group such as an alkoxysilyl group hydrolyzes to form a silanol group. Arise.
  • the silanol group (B1) undergoes a condensation reaction with a silanol group generated from a silicon compound such as an epoxy group-containing silicon compound, or reacts with a silanol group on the surface of the component (A) to form a crosslinked body (cured body).
  • the amino group is considered to act as described above.
  • the ketimine group-containing silicon compound becomes a part of the cross-linked body forming the hard coat layer, and can further strengthen the bond with the plastic optical substrate. It is presumed that the adhesiveness with the substrate, particularly the hot water resistance is increased.
  • organosilicon compounds having amino groups such as ⁇ -aminopropyltriethoxysilane and N-phenyl- ⁇ -aminopropyltrimethoxysilane are also used for the plastic optical substrate and the hard coat layer to be formed.
  • a coating agent component for the following reasons.
  • a compound having a primary amino group such as ⁇ -aminopropyltriethoxysilane has a strong basicity, so that it is considered that the hydrolysis and condensation reaction of the organosilicon compound proceeds locally.
  • N-phenyl- ⁇ -aminopropyltrimethoxysilane has a weak basic amino group, it must be added in an increased amount in order to improve adhesion. As a result, the hard coat layer to be formed tends to decrease in hardness.
  • the ketimine group-containing silicon compound exhibits a better effect than the organosilicon compound having an amino group.
  • a compound represented by the following formula (IV) is suitable.
  • R 13 , R 14 , R 16 and R 17 are alkyl groups having 1 to 5 carbon atoms, R 15 is an alkylene group having 1 to 10 carbon atoms, and X is 2 or It is an integer of 3.
  • R 13 , R 14 , R 16 and R 17 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a t-butyl group. Of these, a methyl group and an ethyl group are preferable.
  • R 15 include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group. Among these, an ethylene group, a propylene group, a butylene group, and a pentylene group are preferable.
  • X is preferably 3 from the viewpoint that a hard coat layer having higher crosslinkability can be formed.
  • ketimine group-containing silicon compound represented by the formula (IV) include 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-trimethoxysilyl-N- (1, 3-dimethyl-butylidene) propylamine, 3-methyldiethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-methyldimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-triethoxysilyl-N- (1,2-dimethyl-propylidene) propylamine, 3-trimethoxysilyl-N- (1,2-dimethyl-propylidene) propylamine, 3-methyldiethoxysilyl-N- ( 1,2-dimethyl-propylidene) propylamine, 3-methyldimethoxysilyl-N- (1,2-dimethyl) Propylidene) and prop
  • 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine and 3-trimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine are preferable.
  • these ketimine group-containing silicon compounds commercially available products can be used, and specific examples include trade name “KBE-9103” manufactured by Shin-Etsu Chemical Co., Ltd.
  • (C) ketimine compound can also be used independently and can also use 2 or more types of things.
  • the amount of the ketimine compound is 0.1 to 10 parts by mass with respect to 100 parts by mass of the (A) inorganic oxide fine particles.
  • the blending amount of the (C) ketimine compound is less than 0.1 parts by mass, it is not preferable because the effect of improving the adhesion between the hard coat layer to be formed and the plastic optical substrate, in particular, the hot water resistance is not sufficient.
  • the amount exceeds 10 parts by mass the hardness of the hard coat layer to be formed is lowered, so that sufficient scratch resistance cannot be exhibited.
  • the blending amount of (C) ketimine compound is more preferably 0.2 parts by mass or more and 8 parts by mass or less, and 0.4 parts by mass or more and 5.5 parts by mass. More preferably, it is 0.5 parts by mass or less, and particularly preferably 0.5 parts by mass or less.
  • the total amount of ketimine compounds only needs to satisfy the above range.
  • the amount of component (C) is the amount of the ketimine group-containing silicon compound in a state where a hydrolyzable group, for example, an alkoxysilyl group is not hydrolyzed. .
  • the blending amount of the component (C) may satisfy the above range, but in order for the coating composition to exhibit a particularly excellent effect, the blending ratio of the component (B1) and the component (C) is in the following range. Is preferably satisfied.
  • the blending ratio of the component (B1) and the component (C) is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the component (B1). It is more preferable that the amount is not less than mass parts and not more than 5.5 parts by mass, and it is further preferable that the amount is not less than 0.4 parts by mass and not more than 5.5 parts by mass.
  • the component (C) satisfies the range of 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the component, whereby the adhesion between the hard coat layer and the plastic optical substrate, particularly heat resistance Aqueous property is improved, and a hard coat layer having sufficient hardness is formed to improve scratch resistance.
  • the coating composition of the present invention contains the component (A), the component (B1), and the component (C) as essential components, but other components can be blended as necessary.
  • component (A) the component (B1)
  • component (C) the component (C)
  • other components will be described.
  • the (B2) other silicon compound that is suitably blended in addition to the silicon compound as the component (B1) and the ketimine group-containing silicon compound as the component (C) will be described.
  • component (B2) ⁇ (B2) Other silicon compounds>
  • (B2) in addition to the ketimine group-containing silicon compound of the component (B1) and the component (C) for the purpose of improving the hardness of the hard coat layer to be formed, (B2) other than these The silicon compound ⁇ hereinafter sometimes simply referred to as component (B2) ⁇ can be blended.
  • the component (B2) used in the present invention includes the following formula (I) (Where R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R 2 is an alkyl group having 1 to 3 carbon atoms, A is an integer of 0-2. ) And a silicon compound represented by the following formula (II) (Where R 3 is an alkylene group having 1 to 8 carbon atoms, R 4 and R 5 are alkyl groups having 1 to 3 carbon atoms, R 6 and R 7 are alkyl groups having 1 to 3 carbon atoms, B is an integer of 0-2. ) Of these, at least one silicon compound selected from the group consisting of silicon compounds is preferred.
  • R 1 is a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, or the like. Of these, a methyl group and an ethyl group are preferable.
  • R 2 is a methyl group, an ethyl group, a propyl group, an isopropyl group or the like, and is preferably a methyl group or an ethyl group.
  • A is preferably 0 or 1.
  • R 3 may be a linear or branched alkylene group, specifically, a methylene group, an ethylene group, a propylene group, a butylene group, or pentylene. Group, hexylene group, heptylene group, octylene group and the like, and a methylene group, an ethylene group, a propylene group, and a butylene group are particularly preferable.
  • R 4 and R 5 are a methyl group, an ethyl group, a propyl group, an isopropyl group, and the like, and among them, a methyl group and an ethyl group are preferable.
  • R 6 and R 7 are a methyl group, an ethyl group, a propyl group, an isopropyl group, and the like, and among them, a methyl group and an ethyl group are preferable.
  • Specific examples of the compounds represented by the formulas (I) and (II) include tetraalkoxysilanes such as tetraethoxysilane; methyltrialkoxysilanes such as methyltrimethoxysilane and methyltriethoxysilane; ethyltriethoxysilane.
  • Dimethyldimethoxysilane 1,2-bis (triethoxysilyl) ethane, 1,2-bis (trimethoxysilyl) ethane, 1,6-bis (triethoxysilyl) hexane, 1,6-bis (diethoxymethyl) Silyl) hexane, 1,6-bis (trimethoxysilyl) hexane, 1,6-bis (dimethoxymethylsilyl) hexane, 1,8-bis (triethoxysilyl) octane, 1,8-bis (trimethoxysilyl) Octane, 1,8-bis (diethoxymethylsilyl) octane, 1- (triethoxysilane Le) -2-(diethoxy methyl silyl) ethane and the like.
  • a silicon compound having three or more hydrolyzable groups is preferable.
  • tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane 1,2-bis (triethoxysilyl) ethane and the like are preferably used.
  • the compounds represented by the formulas (I) and (II) can be used alone or in combination of two or more.
  • the blending amount of the component (B2) is preferably 10 parts by mass or more and 150 parts by mass or less with the component (A) as 100 parts by mass.
  • the blending amount of the component (B2) satisfies the above range, the hardness of the hard coat layer to be formed can be improved, and furthermore, cracks generated when the coating agent is cured can be reduced.
  • the blending amount of the component (B2) is more preferably 20 parts by mass or more and 120 parts by mass or less.
  • the compounding quantity of this (B2) component is the quantity of the (B2) component of the state which is not hydrolyzed.
  • the component (B2) is preferably used so as to satisfy the above blending amount with respect to the component (A), but the blending ratio with the component (B1) is in the following range. Satisfying the effect is particularly excellent. That is, with respect to 100 parts by mass of component (B1), the component (B2) is preferably 1 part by mass or more and 150 parts by mass or less, more preferably 10 parts by mass or more and 120 parts by mass or less, and 15 parts by mass. More preferably, the amount is 100 parts by mass or less.
  • the blending ratio of the component (B1) and the component (C) is such that the component (C) is 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the component (B1). Is more preferably 0.3 parts by mass or more and 5.5 parts by mass or less, and further preferably 0.4 parts by mass or more and 5.5 parts by mass or less.
  • coating composition of the present invention known components used in ordinary coating compositions, specifically, water, curing catalyst, water-soluble organic solvent, additives and the like can be blended.
  • the component (B1) and the component (B2) blended as necessary are hydrolyzed, and the hydrolyzate is polymerized and cured (polycondensation) with the component (A) incorporated.
  • the hydrolyzate is polymerized and cured (polycondensation) with the component (A) incorporated.
  • a hard coat layer in which the component (A) is densely dispersed in the matrix is formed.
  • water it is preferable to add water in order to promote hydrolysis of the components (B1) and (B2).
  • the amount of such water is preferably 10 parts by mass or more and 100 parts by mass or less, more preferably 15 parts by mass or more and 90 parts by mass per 100 parts by mass of the total mass of the components (B1) and (B2) used in the present invention. It is 15 parts by mass or less and particularly preferably 80 parts by mass or less.
  • the compounding quantity of the said water makes the quantity of only (B1) component 100 mass parts.
  • the blending amount of the water is based on that in which the components (B1) and (B2) are not hydrolyzed. If the amount of water is too small, hydrolysis of each component (B1) and (B2) does not proceed sufficiently, and the scratch resistance of the resulting hard coat layer tends to decrease.
  • (C) component is a ketimine group-containing silicon compound
  • this (C) component is also hydrolyzed, but since the blending amount of (C) component is smaller than the blending amount of (B1) component, It can be sufficiently hydrolyzed with the above amount of water.
  • the component (A) may be used in the form of a dispersion (sol) dispersed in water.
  • the amount of water used includes the amount of water used in the dispersion.
  • the amount of water contained in the dispersion satisfies the range of the amount of water, it is not necessary to add water to the coating composition.
  • the water content is less than the range, water is further added.
  • the water used by this invention accelerates
  • the quantity of aqueous acid solution can be made into the compounding quantity of water.
  • an aqueous acid solution such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or an organic acid such as acetic acid or propionic acid can be used.
  • hydrochloric acid and acetic acid are preferably used from the viewpoints of storage stability and hydrolyzability of the coating composition.
  • the concentration of the acid aqueous solution is preferably 0.001 to 0.5N, particularly 0.01 to 0.1N.
  • the total mass of water and acid aqueous solution should just satisfy the compounding quantity of the said water.
  • the following curing catalyst can be mix
  • the curing catalyst is used to promote condensation (polymerization curing) of each hydrolyzate of the component (B1), the (C) ketimine group-containing silicon compound, and the component (B2) to be blended as necessary.
  • an acetylacetonate complex, a perchlorate, an organic metal salt, and various Lewis acids are used, and these can be used alone or in combination of two or more.
  • the hard coat layer can be made harder.
  • Examples of the acetylacetonate complex include those described in JP-A-11-119011, specifically, aluminum acetylacetonate, lithium acetylacetonate, indium acetylacetonate, chromium acetylacetonate, nickel acetylacetate. Examples thereof include narate, titanium acetylacetonate, iron acetylacetonate, zinc acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, and zirconium acetylacetonate. Among these, aluminum acetylacetonate and titanium acetylacetonate are preferable.
  • Examples of the perchlorate include magnesium perchlorate, aluminum perchlorate, zinc perchlorate, and ammonium perchlorate.
  • Examples of the organic metal salt include sodium acetate, zinc naphthenate, cobalt naphthenate, and zinc octylate.
  • Examples of Lewis acids include stannic chloride, aluminum chloride, ferric chloride, titanium chloride, zinc chloride, and antimony chloride. From the viewpoint that a hard coat layer having high scratch resistance can be obtained in a short time even at a relatively low temperature, and the storage stability of the coating composition is excellent, an acetylacetonate complex or perchlorate is used as a curing catalyst. It is preferable to do. Among them, it is preferable that 50% by mass or more of the curing catalyst, particularly 70% by mass or more, and optimally the entire amount of the curing catalyst is an acetylacetonate complex or a perchlorate.
  • the curing catalyst is 0.5 parts by mass or more and 15 parts by mass or less, particularly 1 part by mass or more and 13 parts by mass or less per 100 parts by mass of the component (A). It is preferably used in amounts in the range. In addition, when using 2 or more types of curing catalysts, the total amount should just satisfy the said range.
  • water-soluble organic solvent A water-soluble organic solvent can be added to the coating composition of the present invention.
  • the water-soluble organic solvent means an organic solvent having a solubility in water at 25 ° C. of 10% by mass or more, preferably 50% by mass or more.
  • the water-soluble organic solvent serves as a solvent for the component (B1), the component (C), and the component (B2) to be blended as necessary, and a dispersion medium for the component (A).
  • Specific examples of such water-soluble organic solvents include alcohols such as methanol, ethanol, propanol, isopropanol, t-butyl alcohol, 2-butanol and diacetone alcohol; lower alcohol esters of lower carboxylic acids such as methyl acetate.
  • Ethers such as cellosolve, dioxane and ethylene glycol monoisopropyl ether; ketones such as acetone, methyl ethyl ketone and acetylacetone.
  • These organic solvents can be used alone or in admixture of two or more. From the viewpoint of easily evaporating when a coating agent is applied and cured to form a smooth hard coat layer, methanol, isopropanol, t-butyl alcohol, diacetone alcohol, ethylene glycol monoisopropyl ether, acetylacetone are particularly used. It is preferable to use it.
  • a part of such a water-soluble organic solvent can be mixed with inorganic oxide fine particles in advance as a dispersion medium for the component (A).
  • the amount of the water-soluble organic solvent used is not particularly limited, but in order to obtain storage stability and sufficient scratch resistance, it is preferably 200 parts by mass or more and 1000 parts by mass per 100 parts by mass of the component (A). Hereinafter, more preferably, the range is 250 parts by mass or more and 800 parts by mass or less.
  • the compounding quantity of this water-soluble organic solvent is the quantity which does not contain the alcohol which (B1) component, (C) ketimine group containing silicon compound, and (B2) component produced
  • the total amount should just satisfy the said range.
  • a cyclic ketone compound can also be added to the coating composition of the present invention for the purpose of improving and stabilizing the adhesion between the hard coat layer and the plastic lens substrate.
  • Specific examples include N-methylpyrrolidone, ⁇ -caprolactam, ⁇ -butyrolactone, 1-vinyl-2-pyrrolidone, isophorone, cyclohexanone, methylcyclohexanone, and the like.
  • the compounding amount of these cyclic ketone compounds is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the component (A).
  • a quaternary ammonium salt can be added to the coating composition used in the present invention for the purpose of improving the adhesion between the plastic lens substrate and the hard coat layer.
  • the function as a reaction catalyst in which the quaternary ammonium salt accelerates the reaction of the epoxy group of the (B1) epoxy group-containing silicon compound since it has a function as a surfactant, it is considered that the adhesion is improved due to such a function.
  • quaternary ammonium salt those in which an alkyl group having 1 to 4 carbon atoms is substituted for nitrogen are preferable, and those having a halogen atom as a counter ion are preferable.
  • Specific examples of such quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, dimethyldiisopropylammonium chloride, tetra-n-butyl. Examples thereof include ammonium acetate and tetraisopropylammonium chloride.
  • tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium chloride, and tetra-n-butylammonium bromide are preferably used from the viewpoint of easy availability and an effect of improving adhesion.
  • the amount of the quaternary ammonium salt is preferably 0.1 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the component (A).
  • the quaternary ammonium salt only needs to be contained in a trace amount in the coating composition, and when it exceeds 1 part by mass, the hard coat layer may be whitened, which is not preferable.
  • additives that are usually blended in the coating composition for forming the hard coat layer can be blended.
  • additives include surfactants, antioxidants, radical scavengers, UV stabilizers, UV absorbers, mold release agents, anti-coloring agents, antistatic agents, fluorescent dyes, dyes, pigments, and fragrances. And plasticizers.
  • any of a nonionic surfactant, an anionic surfactant, and a cationic surfactant can be used, but a nonionic surfactant is preferably used from the viewpoint of wettability to a plastic lens substrate.
  • nonionic surfactants that can be suitably used include sorbitan fatty acid ester, glycerin fatty acid ester, decaglycerin fatty acid ester, propylene glycol / pentaerythritol fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester , Polyoxyethylene glycerin fatty acid ester, polyethylene glycol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene phytosterol / phytostanol, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene castor oil / cured Castor oil, polyoxyethylene lanolin, lanolin alcohol, beeswax derivative, poly Alkoxy polyoxyethylene alkyl amine fatty acid amides, polyoxyethylene alkylphenyl formaldehyde condensates, can be mentioned a single-chain polyoxyethylene alkyl
  • antioxidants such as hindered phenol antioxidants, radical scavengers such as phenol radical scavengers, UV stabilizers such as benzoate compounds, UV absorbers such as benzotriazole compounds and benzophenone compounds, etc. It can mix
  • the amount of these additives is preferably in the range of 0.1 to 2 parts by mass per 100 parts by mass of the (A) inorganic oxide fine particles.
  • Dyes and pigments are used to color optical substrates. Nitroso dyes, nitro dyes, azo dyes, stilbenzoazo dyes, ketoimine dyes, triphenylmethane dyes, xanthene dyes, acridine dyes, quinoline dyes , Methine dye, polymethine dye, thiazole dye, indamine dye, indophenol dye, azine dye, oxazine dye, thiazine dye, sulfur dye, aminoketone dye, oxyketone dye, anthraquinone dye, perinone dye, indigoid dye, phthalocyanine dye, azo series Examples thereof include pigments, anthraquinone pigments, phthalocyanine pigments, naphthalocyanine pigments, quinacridone pigments, dioxazine pigments, indigoid pigments, triphenylmethane pigments, and xanthene pigments.
  • the amount used is appropriately determined according to the color density of the substrate to be colored. Therefore, although it cannot be generally limited, the amount used is preferably in the range of 0.001 to 1 part by mass per 100 parts by mass of the (A) inorganic oxide fine particles.
  • the coating agent obtained from the coating composition can be produced by weighing and mixing a predetermined amount of each component.
  • the mixing order of each component is not particularly limited, and all components can be mixed at the same time. However, in order to obtain a coating agent capable of obtaining stable physical properties from the beginning of preparation without prolonged turbidity, hydrolysis is required. It is preferable to mix the components in the order in which the previous component (B1) and component (C) are not in direct contact.
  • the physical properties of the hard coat layer are not adversely affected, and the storage stability of the resulting coating agent is not reduced. Therefore, it is preferable to perform mixing at a temperature of 10 to 40 ° C. for 5 to 72 hours. Under this condition, the component (B1) can be sufficiently hydrolyzed. The end of hydrolysis of the component (B1) may be confirmed by the amount of alcohol generated during hydrolysis. Subsequently, a coating agent is manufactured by mixing the said mixture and (C) component.
  • the order of mixing water, curing catalyst, water-soluble organic solvent, and other additives added as necessary in the present invention is not particularly limited, and all components can be mixed at the same time. It is preferable to mix when the component (B1) and the component (B2) are hydrolyzed.
  • the water-soluble organic solvent and other additives may be mixed before and after hydrolyzing the component (B1) and the component (B2), or a mixture of the hydrolyzate of the component (B1) and the component (A). May be mixed.
  • the curing catalyst may be mixed after the hydrolysis of the component (B1) and the component (B2), or the hydrolyzate of the component (B1) and the component (B2) may be mixed with the component (A) or a water-soluble organic compound. You may mix after adding a solvent.
  • the component (C) is most preferably mixed after all the above components are mixed.
  • the mixture of the component (A) and the component (C) can be obtained by mixing the dispersion (A) in which the inorganic oxide fine particles are dispersed in water or a water-soluble organic solvent and the component (C).
  • a water-soluble organic solvent as the dispersion medium of the component (A).
  • the hydrolyzate of the component (B1) can be obtained by a known method, for example, by adding and mixing the component (B1) in water (acidic aqueous solution). The completion of hydrolysis may be confirmed by the amount of alcohol generated during hydrolysis.
  • (B2) component it is preferable to hydrolyze (B1) component and (B2) component simultaneously.
  • the mixture of the component (A) and the component (C) thus obtained and the hydrolyzate of the component (B1) are mixed to obtain a coating agent.
  • the order of mixing water, curing catalyst, water-soluble organic solvent, and other additives added as necessary is not particularly limited, but water is (B1) component, (B2 It is preferable to mix when hydrolyzing the component.
  • the water-soluble organic solvent and other additives can be mixed before and after hydrolyzing the component (B1) and the component (B2), or mixed before and after the components (A) and (C) are mixed.
  • the mixture of the component (A) and the component (C) and the hydrolyzate of the component (B1) may be mixed and then mixed.
  • the water-soluble organic solvent is used as a dispersion medium for the component (A) and mixed with the component (C), or after the components (A) and (C) are mixed, the water-soluble organic solvent is added thereto. It is preferable to do. Moreover, it is preferable that a curing catalyst mixes, after mixing the mixture of (A) component and (C) component, and the hydrolyzate of (B1) component.
  • the physical properties of the hard coat layer are not adversely affected, and the stability of the coating agent itself can be improved.
  • the coating agent is continuously produced, it is preferable to mix the diluted component (C) with the hydrolyzate of component (B1), so that component (A) and component (C)
  • a method of mixing a mixture in which components are mixed in advance and a hydrolyzate of component (B1) is preferably employed.
  • the solid content concentration in the coating agent obtained by mixing in this way is not particularly limited, but is 15% by mass to 50% by mass, preferably 20% by mass to 40% by mass in the total mass of the coating agent. It is below mass%.
  • an optical substrate such as a plastic lens on which the obtained coating agent is applied will be described.
  • the coating composition of the present invention is applied to the formation of a hard coat layer on the surface of a plastic optical substrate such as an eyeglass lens, a camera lens, or a liquid crystal display, and is particularly preferably used for an eyeglass lens.
  • the type of plastic used for plastic lenses such as eyeglass lenses is not particularly limited, and examples thereof include (meth) acrylic resins, epoxy resins, polycarbonate resins, allyl resins, urethane resins, and thioepoxy resins. Known resins can be mentioned.
  • the coating composition of the present invention can be applied without any limitation as a hard coat layer formed on the resin surface. Especially the coating agent obtained from the coating composition of this invention can improve more adhesiveness with (meth) acrylic-type resin and urethane type resin. The reason for this is that, as described above, the amino group generated by hydrolysis of the (C) ketimine compound added in the present invention is a functional group generated on the surface of a plastic lens substrate activated by pretreatment such as alkali treatment.
  • the coating composition of the present invention can suitably form a hard coat layer on a plastic optical substrate made of a (meth) acrylic resin containing a photochromic compound.
  • a hard coat layer is hardly adhered to a (meth) acrylic resin.
  • there has been a method of adding 2-hydroxyethyl (meth) acrylate, glycidyl methacrylate, ⁇ -methacryloyloxypropyltrimethoxysilane, or the like to a (meth) acrylic resin in order to improve the adhesion of the hard coat layer. are known.
  • the coating composition of the present invention is a component that improves the adhesion of a coating composition such as 2-hydroxyethyl (meth) acrylate, glycidyl methacrylate, and ⁇ -methacryloyloxypropyltrimethoxysilane in a (meth) acrylic resin.
  • a coating composition such as 2-hydroxyethyl (meth) acrylate, glycidyl methacrylate, and ⁇ -methacryloyloxypropyltrimethoxysilane in a (meth) acrylic resin.
  • the (meth) acrylic resin used in the present invention is not particularly limited, but has a polyfunctional acrylate having a (meth) acrylate group having three or more functional groups and an alkylene glycol chain having 2 to 15 repeating units.
  • a (meth) acrylic resin obtained by curing a composition containing di (meth) acrylate is preferable.
  • the polymers of these (meth) acrylate compounds provide a photochromic lens having a high color density and a fast fading speed because there are many free spaces where the photochromic compound is likely to undergo structural changes when the photochromic compound coexists. I can do it.
  • polyfunctional acrylate having a tri- or higher functional (meth) acrylate group examples include trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, tetramethylolmethane trimethacrylate, and tetramethylolmethane triacrylate. It is done.
  • di (meth) acrylate having an alkylene glycol chain having 2 to 15 repeating units examples include polyethylene glycol dimethacrylate having an average molecular weight of 536, polytetramethylene glycol dimethacrylate having an average molecular weight of 736, and polypropylene glycol dimethacrylate having an average molecular weight of 536.
  • Methacrylate polyethylene glycol diacrylate having an average molecular weight of 258, polyethylene glycol diacrylate having an average molecular weight of 308, polyethylene glycol diacrylate having an average molecular weight of 522, polyethylene glycol methacrylate acrylate having an average molecular weight of 272, polyethylene glycol methacrylate acrylate having an average molecular weight of 536, 2,2 -Bis [4-methacryloxy polyethoxy) phenyl] propane, 2,2-bis [4-actyl Proxy-diethoxy) phenyl] propane, 2,2-bis [4- acryloxy polyethoxy) phenyl] propane.
  • composition containing the polyfunctional acrylate having a tri- or higher functional (meth) acrylate group and the di (meth) acrylate having an alkylene glycol chain having 2 to 15 repeating units includes other polymerizable monomers.
  • a (meth) acrylate monomer such as urethane acrylate can also be added.
  • a plastic lens base material (photochromic lens base material) containing a photochromic compound is a base material in which a photochromic compound is dispersed inside the base material, or a base material in which a photochromic coating layer in which a photochromic compound is dispersed is formed on the surface of the base material.
  • the coating composition of the present invention is suitably used for forming a hard coat layer of a base material using a polymerization curable composition containing the (meth) acrylate monomer and a photochromic compound as a photochromic lens by a kneading method. it can.
  • the surface of the plastic lens substrate is coated with a polymerization curable composition containing the (meth) acrylate monomer and the photochromic compound, and then cured to form a photochromic coating layer of the hard coating layer of the substrate. It can also be suitably used for forming.
  • the coating agent obtained from the coating composition of the present invention has excellent adhesion to urethane resins.
  • the reason is that the urethane bond part contained in the urethane-based resin and the amino group produced by hydrolysis of the component (C) interact with each other such as hydrogen bonds, thereby presuming high adhesion. .
  • the urethane-based resin used in the present invention is a resin obtained by reacting a thiol compound and an isocyanate compound.
  • the thiol compound include 1,2-ethanedithiol, 1,6-hexanedithiol, 1,2,3-propanetrithiol, propanetris (2-mercaptoacetate), 1,3-propanedithiol, tetrakis (mercapto) Methyl) methane, petaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (2-mercaptopropionate), tetrakis (2-mercaptoethylthiomethyl) propane, 2-mercaptoethanol, 2,3-dimercaptopropanol, 3-mercapto-1,2-propanediol, di (2-mercaptoethyl) sulfide, 2,5-dimercapto-1,4-dithian
  • isocyanate compound examples include methylene diphenyl diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,2-diisocyanate benzene, 1,3-diisocyanate benzene, 1,4-diisocyanate.
  • the produced coating agent is filtered to remove foreign substances as necessary, and then applied to the surface of the plastic lens substrate, dried and cured to form a hard coat layer.
  • the plastic optical substrate may be subjected to various surface treatments. Examples of such surface treatment include chemical treatment using a basic aqueous solution or acidic aqueous solution, polishing treatment using an abrasive, plasma treatment using atmospheric pressure plasma and low-pressure plasma, corona discharge treatment, and the like. it can.
  • the coating agent can be applied by dipping, spin coating, dip spin coating, spraying, brushing or roller coating. After drying, the coating is first preliminarily cured at 60 to 80 ° C. for about 5 to 30 minutes, and then cured at a temperature of 90 to 120 ° C. for about 1 to 3 hours, depending on the substrate. Is good.
  • the temperature after preliminary curing can be made relatively low. Specifically, the temperature after pre-curing can be 95 to 115 ° C., more preferably 100 to 110 ° C. Since it can be cured at a relatively low temperature in this way, it is possible to prevent yellowing and thermal deformation of the plastic lens.
  • the hard coat layer to be formed may have a thickness of about 0.1 to 10 ⁇ m. In general, a thickness of 1 to 5 ⁇ m is suitable for a spectacle lens.
  • an antireflection film is further formed on the hard coat layer by vapor deposition of a thin film made of a metal oxide such as SiO 2 , TiO 2 , ZrO 2, or coating of a thin film of an organic polymer. May be formed. Further, an impact resistant primer such as a urethane primer may be provided between the plastic lens substrate and the hard coat layer. Furthermore, the antireflection film can be subjected to processing such as antistatic treatment, water repellent treatment and antifogging treatment, and secondary treatment.
  • MA1 Methacrylic resin photochromic lens produced as follows: 43 parts by mass of polypropylene glycol dimethacrylate having an average molecular weight of 328, 10 parts by mass of trimethylolpropane trimethacrylate, and 5 parts by mass of methoxypolyethylene glycol methacrylate having an average molecular weight of 394.
  • a polymerizable composition is prepared using 16 parts by mass of polyethylene glycol diacrylate having an average molecular weight of 522, 1 part by mass of glycidyl methacrylate, 1 part by mass of ⁇ -methylstyrene dimer, and 25 parts by mass of urethane acrylate (EBECRYL4858 manufactured by Daicel Chemical Industries).
  • 0.1 part by mass of bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and the following photochromic compound (1) 0.03 part by mass, 1.0 part by mass of t-butylperoxyneodecanate as a radical polymerization initiator, and 0.1 part by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) may be added.
  • the mixture was mixed to prepare a photochromic polymerization curable composition.
  • the obtained composition was poured into a mold composed of a glass plate and a gasket made of an ethylene-vinyl acetate copolymer, and cast polymerization was performed.
  • the polymerization was carried out using an air furnace, gradually raising the temperature from 33 ° C. to 90 ° C. over 17 hours, and then maintained at 90 ° C. for 2 hours. After completion of the polymerization, the mold was taken out from the air furnace and allowed to cool, and then the cured product was removed from the glass of the mold, and then placed in an oven and heated at 110 ° C. for 3 hours.
  • MA2 Methacrylic resin lens produced as follows: 43 parts by mass of polypropylene glycol dimethacrylate having an average molecular weight of 328, 10 parts by mass of trimethylolpropane trimethacrylate, 5 parts by mass of methoxypolyethylene glycol methacrylate having an average molecular weight of 394, which are radical polymerizable monomers
  • a polymerizable composition is prepared using 16 parts by mass of polyethylene glycol diacrylate having an average molecular weight of 522, 1 part by mass of ⁇ -methylstyrene dimer, and 26 parts by mass of urethane acrylate (EBECRYL4858 manufactured by Daicel Chemical Industries) as a raw material.
  • a photochromic polymerizable curable composition 100 parts by mass, 0.1 part by mass of bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 0.03 part by mass of photochromic compound (1), t- Butylpa 1.0 part by mass oxy neodecanate, and 2,2'-azobis (2,4-dimethylvaleronitrile) were mixed well with the addition of 0.1 part by mass, to prepare a photochromic polymerizable curable composition. Next, the obtained composition was poured into a mold composed of a glass plate and a gasket made of an ethylene-vinyl acetate copolymer, and cast polymerization was performed. The polymerization was carried out using an air furnace, gradually raising the temperature from 33 ° C.
  • the mold was taken out from the air furnace and allowed to cool, and then the cured product was removed from the glass of the mold, and then placed in an oven and heated at 110 ° C. for 3 hours.
  • MA3 Photochromic lens having a photochromic layer on the surface produced as described below 2,2-bis (4-acryloyloxypolyethylene glycol phenyl) propane / polyethylene glycol diacrylate having an average molecular weight of 776, which is a radical polymerizable monomer (average molecular weight 532) / Trimethylolpropane trimethacrylate / polyester oligomer hexaacrylate / glycidyl methacrylate were blended in a blending ratio of 49 parts by mass / 15 parts by mass / 25 parts by mass / 10 parts by mass / 1 part by mass, respectively.
  • this optical substrate made of plastic was thoroughly degreased with acetone and washed with a 5% aqueous sodium hydroxide solution at 50 ° C. After washing for 4 minutes, washing with running water for 4 minutes, and washing with distilled water at 40 ° C. for 4 minutes, it was dried at 70 ° C.
  • a primer coating solution a moisture curing type primer “Takeseal PFR402TP-4” manufactured by Takebayashi Chemical Industry Co., Ltd. and ethyl acetate are prepared to be 50 parts by mass, respectively.
  • a liquid obtained by adding 0.03 part by mass of a leveling agent FZ-2104 manufactured by company and sufficiently stirred under a nitrogen atmosphere until uniform was used.
  • This primer solution was spin-coated on the surface of lens B using a spin coater 1H-DX2 manufactured by MIKASA. By leaving this lens at room temperature for 15 minutes, a lens substrate having a primer layer with a thickness of 7 ⁇ m was prepared. Next, about 1 g of the above-described photochromic polymerization curable composition (photochromic coating agent) was spin-coated on the surface of the lens substrate having the primer layer.
  • Fusion UV adjusted so that an output at 405 nm of the lens surface is 150 mW / cm 2 in a nitrogen gas atmosphere on a lens coated with a coating film made of the photochromic polymerization curable composition (photochromic coating agent).
  • photochromic coating agent the photochromic polymerization curable composition
  • F3000SQ equipped with a D valve manufactured by Systems, light irradiation was performed for 3 minutes to cure the coating film.
  • the photochromic coating layer was formed by performing heat processing for 1 hour with a 110 degreeC thermostat further.
  • the film thickness of the resulting photochromic coating layer can be adjusted depending on the spin coating conditions.
  • the film thickness of the photochromic coat layer was adjusted to be 40 ⁇ 1 ⁇ m.
  • SOL2 a methanol-dispersed sol of composite metal oxide fine particles containing 11.7% by mass of zirconium oxide, 77.6% by mass of tin oxide, 7.0% by mass of antimony oxide, and 3.7% by mass of silicon dioxide. Solid content concentration (concentration of composite metal oxide fine particles); 40% by mass.
  • SOL5 Water-dispersed cerium oxide fine particles. (Nydral U-15 manufactured by Taki Chemical Co., Ltd .; solid content 15% by mass, acetic acid 2% by mass, water 83% by mass).
  • K1 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (“KBE-9103” manufactured by Shin-Etsu Chemical Co., Ltd.).
  • K2 The following reaction product of 3-aminopropyl trimethoxysilane and methyl isobutyl ketone [ketimine compound represented by the formula (K2)].
  • the remaining amount of ⁇ -aminopropyltrimethoxysilane was analyzed by gas chromatography, and the reaction was continued until the remaining amount disappeared. Thereafter, a vacuum pump was connected, and the remaining methyl isobutyl ketone and toluene were distilled off to obtain a reaction product.
  • the obtained reaction product was identified by measuring the mass spectrum with GC-MASS (Gas Chromatograph Mass Spectrometer: JMS-K9, manufactured by JEOL Ltd.) and determining the molecular weight.
  • the molecular weight of the obtained reaction product was 261. From the molecular weight determined by analysis and the raw materials used for the reaction, it was confirmed that the reaction product was a ketimine compound represented by the formula (K2).
  • K3 The following reaction product of ethylenediamine and diethyl ketone [ketimine compound represented by the following formula (K3)].
  • ethylenediamine molecular weight 60
  • diethyl ketone molecular weight 86
  • toluene 100 ml was charged, toluene was distilled at a reaction temperature of 85 to 100 ° C., and the dehydration reaction was performed until ethylenediamine disappeared while measuring the water content of the distillate.
  • the remaining amount of ethylenediamine was analyzed by gas chromatography, and the reaction was continued until the remaining amount disappeared. Then, the vacuum pump was connected and the remaining diethyl ketone and toluene were distilled off, and the reaction product was obtained.
  • the obtained reaction product was identified by measuring the mass spectrum with GC-MASS (Gas Chromatograph Mass Spectrometer: JMS-K9, manufactured by JEOL Ltd.) and determining the molecular weight.
  • the molecular weight of the obtained reaction product was 212. From the molecular weight determined by analysis and the raw materials used for the reaction, it was confirmed that the reaction product was a ketimine compound represented by the formula (K3).
  • K4 The following reactive organism [ketimine compound represented by the following formula (K4)] of isophoronediamine and diethyl ketone.
  • K4 The following reactive organism [ketimine compound represented by the following formula (K4)] of isophoronediamine and diethyl ketone.
  • the remaining amount of isophoronediamine was analyzed by gas chromatography, and the reaction was continued until the remaining amount disappeared. Then, the vacuum pump was connected and the remaining isophorone diamine and toluene were distilled off, and the reaction product was obtained.
  • the obtained reaction product was identified by measuring the mass spectrum with GC-MASS (Gas Chromatograph Mass Spectrometer: JMS-K9, manufactured by JEOL Ltd.) and determining the molecular weight.
  • the molecular weight of the obtained reaction product was 306. From the molecular weight determined by analysis and the raw materials used for the reaction, it was confirmed that the reaction product was a ketimine compound represented by the formula (K4).
  • MTEOS methyltriethoxysilane.
  • TEOS Tetraethoxysilane.
  • BSE 1,2-bis (triethoxysilyl) ethane.
  • MeOH methanol.
  • TBA t-butanol.
  • IPA isopropyl alcohol.
  • EGPE ethylene glycol monoisopropyl ether.
  • AcAc acetylacetone.
  • DAA diacetone alcohol.
  • Silicone surfactant L1 Silicone surfactant L7001 manufactured by Toray Dow Corning Co., Ltd. Cyclic ketone compound NMP: N-methylpyrrolidone.
  • TMAC Tetramethylammonium chloride.
  • AM2 N-phenyl- ⁇ -aminopropyltrimethoxysilane.
  • -Dye D1 Dialresin Blue J (manufactured by Diachemical Co., Ltd.)
  • coating agent 1 obtained from composition 1): (B1) component ⁇ -glycidoxypropyltrimethoxysilane 118 g, (B2) component methyltrimethoxylane 95 g, solvent t-butyl alcohol 165 g, acetylacetone 50 g, methanol 28 g, ethylene glycol monoisopropyl ether 95 g, silicone 0.5 g of a surfactant (trade name “L-7001” manufactured by Toray Dow Corning Co., Ltd.) was mixed in. While stirring this solution, 49 g of 0.05N hydrochloric acid aqueous solution was added.
  • coating agents 2-11 and comparative coating agents 1-6 (coating agents 2-11 obtained from coating compositions 2-11) and (comparative coating agents 1-6 obtained from comparative coating compositions 1-6): (A) inorganic oxide fine particles shown in Table 1, (B1) epoxy group-containing silicon compound, (C) ketimine group-containing compound, (B2) silicon compound, water, curing catalyst, water-soluble organic solvent, additive; silicone system It was produced by the same method as coating agent 1 except that a surfactant, a cyclic ketone compound, and a quaternary ammonium salt were used. Coating agents 2 to 11 were able to be produced without clouding and without gelation. The composition of the formulation is shown in Tables 1 and 2.
  • Comparative coating compositions 3 and 4 consist of (C) an organosilicon compound having an amino group instead of using a ketimine compound (AM1: ⁇ -aminopropyltriethoxysilane, AM2: N-phenyl- ⁇ -aminopropyltrimethoxysilane) ).
  • AM1 ⁇ -aminopropyltriethoxysilane
  • AM2 N-phenyl- ⁇ -aminopropyltrimethoxysilane
  • Example 1 MA1 was immersed in a 20% by mass aqueous sodium hydroxide solution at 60 ° C. as a plastic optical substrate, and alkali etching was performed for 5 minutes using an ultrasonic cleaner. After alkali etching, the substrate was washed successively with tap water and distilled water at 50 ° C., the remaining alkali was removed, and left for about 10 minutes until the temperature reached room temperature. This lens substrate was dip coated with the coating agent 1 at 25 ° C. at a pulling rate of 30 cm / min. Then, after pre-curing for 15 minutes in an oven at 70 ° C., curing was performed at 110 ° C. for 2 hours, and a hard coat layer having a thickness of 1.5 ⁇ m was formed on both surfaces of the plastic lens substrate MA1. An article (hard coat lens) was obtained.
  • This optical article (hard coat lens) was evaluated for appearance evaluation, hot water resistance test, weather resistance test, Bayer test, and steel wool scratch resistance. Appearance: ⁇ , hot water resistance: 100 (5 hours), weather resistance Property test: 100, Bayer value: 5.3, steel wool scratch resistance: B. The results are shown in Table 2. About each evaluation, it performed by the following method. (Appearance evaluation) The appearance of the plastic lens substrate having a hard coat layer was evaluated by visual inspection of the transparency of the coating film and the presence or absence of irregularities. A film having a transparent coating film and having no appearance and having a good appearance was evaluated as ⁇ , and a film having whitening and a coating having a appearance was evaluated as a poor appearance.
  • the obtained optical article (hard coat lens) was put in boiled distilled water, the adhesion of the hard coat layer was evaluated every 1 hour, and the test time was 5 hours.
  • the adhesion between the hard coat film and the plastic lens was measured by a cross-cut tape test according to JISD-0202. That is, using a cutter knife, cuts are made at intervals of about 1 mm on the lens surface to form 100 squares.
  • a cellophane pressure-sensitive adhesive tape (cello tape (registered trademark) manufactured by Nichiban Co., Ltd.) was strongly pasted thereon, and then pulled and peeled from the surface in a direction of 90 ° at a stretch, and the squares on which the coating film remained were measured.
  • the evaluation result was expressed as (number of remaining cells) / 100.
  • the adhesiveness evaluates the adhesiveness of all the layers laminated on the lens substrate.
  • the evaluation was performed on the convex surface of the lens. (Weather resistance test) As the test method, the following deterioration promotion test was performed in order to evaluate the durability of the cured product layer by light irradiation of the obtained optical article (hard coat lens).
  • the obtained optical article having a cured product layer was accelerated and deteriorated for 300 hours by a Xenon weather meter X25 manufactured by Suga Test Instruments Co., Ltd., and then the adhesion was evaluated in the same manner as in the hot water resistance test.
  • Bayer value ⁇ Haze (non-coated) / ⁇ Haze (hard-coated)
  • ⁇ Haze (non-coated) is a value obtained by subtracting the Haze value before the test from the Haze value after the test for the non-coated lens
  • ⁇ Haze (hard coat) is a test from the Haze value after the test in the hard-coated lens. The value obtained by subtracting the previous Haze value.
  • a larger value means higher surface hardness and better scratch resistance.
  • Step wool scratch resistance Using steel wool (Bonster # 0000 manufactured by Nippon Steel Wool Co., Ltd.), the surface of the optical article (hard coat film surface) was rubbed 10 times while applying a load of 3 kg, and the degree of damage was visually evaluated.
  • the evaluation criteria are as follows. A: No flaws (when no flaws can be confirmed visually). B: Scratches hardly occur (when there are 1 or more and less than 5 scratches visually). C: Slightly scratched (when there are 5 or more and less than 10 scratches visually). D: Scratches (when there are 10 or more scratches visually). E: Peeling of the hard coat film has occurred. Regarding the scratch resistance, an evaluation result of B or higher means that there is no practical problem and that the surface hardness is excellent. The above results are shown in Table 3.
  • Examples 2 to 16 Using the coating agents 1 to 11 obtained from the coating composition shown in Table 1 and a plastic lens substrate, a hard coat lens having a hard coat layer was prepared in the same manner as in Example 1, and the evaluation was performed. went. The evaluation results are shown in Table 3.
  • Comparative Examples 1-10 Using the comparative coating agents 1 to 6 obtained from the comparative coating composition shown in Table 2 and a plastic lens substrate, a hard coat lens having a hard coat layer was produced in the same manner as in Example 1, Evaluation was performed. The evaluation results are shown in Table 4. In Comparative Example 10, no cracks were generated in the hard coat layer obtained from the beginning, and the hard coat layer was not in close contact with the plastic lens substrate, and thus no further evaluation was performed.
  • coating agent 12 obtained from composition 12: While stirring 500 g of methanol-dispersed antimony pentoxide sol (SOL3) containing component (A), a mixed solution of 30 g of t-butyl alcohol, 200 g of diacetone alcohol, and 2.0 g of (C component) ketimine compound (K2) was added. Added.
  • SOL3 methanol-dispersed antimony pentoxide sol
  • coating agents 13-17 (coating agents 13-17 obtained from coating compositions 13-17): (A) inorganic oxide fine particles, (B1) epoxy group-containing silicon compound, (C) ketimine group-containing compound, (B2) silicon compound, water, curing catalyst, water-soluble organic solvent, additive shown in Table 5; silicone system It was produced by the same method as coating agent 12 except that a surfactant, a cyclic ketone compound, and a quaternary ammonium salt were used. Coating agents 13 to 17 were able to be produced without clouding and without gelation. The composition of the formulation is shown in Table 5. Note that a mixture of the coating compositions 13 to 17 in Table 5 mixed by the above method corresponds to the coating agents 13 to 17.
  • Examples 17-22 Using a coating agent 12 to 17 obtained from the coating composition shown in Table 5 and a plastic lens substrate, a hard coat lens having a hard coat layer was prepared in the same manner as in Example 1, and the evaluation was performed. went. The evaluation results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Provided is a coating composition which can form, on the surface of a plastic lens base, a transparent coating layer with high hardness and excellent mar resistance, namely, a hard coat layer. Even when in contact with warm water, a transparent coating layer formed using the coating composition exhibits excellent tight adhesion to the lens base. A coating composition for the formation of a hard coat layer, characterized by containing, with respect to 100 parts by mass of (A) fine particles of an inorganic oxide such as silica or antimony pentaoxide, 50 to 350 parts by mass of (B1) an epoxy-containing silicon compound that bears both an epoxy group and a hydrolyzable group (such as ?-glycidoxypropyltrimethoxysilane) and 0.1 to 10 parts by mass of (C) a compound having a ketimine group (such as 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine); and an optical article which is laminated with a cured layer of the coating composition on the surface.

Description

コーティング組成物および光学物品Coating composition and optical article
 本発明は、プラスチックレンズなどの光学基材の表面に施用するコーティング組成物に関する。詳しくは、ウレタン系樹脂や(メタ)アクリル系樹脂等からなるプラスチック製基材の表面に形成するハードコート層に好適なコーティング組成物に関する。 The present invention relates to a coating composition applied to the surface of an optical substrate such as a plastic lens. Specifically, the present invention relates to a coating composition suitable for a hard coat layer formed on the surface of a plastic substrate made of urethane resin, (meth) acrylic resin, or the like.
 光学基材用のコーティング組成物は、プラスチックレンズなどの光学基材の表面に塗布、硬化させることによって、耐擦傷性を向上させるためのハードコート層を形成するために用いられる。このようなコーティング組成物には、透明性を維持し、且つ、耐擦傷性の高い硬化体(ハードコート層)を形成することが望まれており、そのために、一般にコロイド状に分散したシリカゾル等の無機酸化物微粒子、及びアルコキシシランなどの有機ケイ素化合物を含む組成物が使用されている(特許文献1~6参照)。 The coating composition for an optical substrate is used for forming a hard coat layer for improving scratch resistance by applying and curing on the surface of an optical substrate such as a plastic lens. For such a coating composition, it is desired to form a cured body (hard coat layer) that maintains transparency and has high scratch resistance. For this reason, generally, a silica sol dispersed in a colloidal form, etc. A composition containing inorganic oxide fine particles and an organosilicon compound such as alkoxysilane is used (see Patent Documents 1 to 6).
 一方、コーティング組成物が適用される光学基材の材料は多種多様であり、(メタ)アクリル系樹脂やウレタン系樹脂が代表的である。(メタ)アクリル系樹脂は、特にフォトクロミックレンズのマトリックスとして使用されることが多い。なお、本発明において、(メタ)アクリル系樹脂とは、アクリル系モノマー、及びメタアクリル系モノマー{以下、まとめて(メタ)アクリル系モノマーとする場合もある}を重合させて得られる樹脂を指す。 On the other hand, there are a wide variety of optical base materials to which the coating composition is applied, and (meth) acrylic resins and urethane resins are typical. In particular, (meth) acrylic resins are often used as a matrix for photochromic lenses. In the present invention, the (meth) acrylic resin refers to a resin obtained by polymerizing an acrylic monomer and a methacrylic monomer {hereinafter sometimes collectively referred to as a (meth) acrylic monomer}. .
 フォトクロミックレンズとは、太陽光のような紫外線を含む光が照射される屋外ではレンズが速やかに着色してサングラスとして機能し、そのような光の照射がない屋内においては退色して透明な通常の眼鏡として機能する眼鏡であり、近年その需要は増大している。(メタ)アクリル系樹脂を用いたフォトクロミックレンズの製造方法としては、これまでに、(メタ)アクリル系モノマーにフォトクロミック化合物を溶解させそれを重合させることにより、直接、フォトクロミックレンズを得る方法(練り混み法)と、フォトクロミック化合物、及び(メタ)アクリル系モノマーを含んでなる硬化性組成物(以下、フォトクロミックコーティング剤とも言う)を用いてプラスチックレンズの表面にフォトクロミック性を有する層(以下、フォトクロミックコート層ともいう)を設ける方法(コーティング法)とが知られている。
 モノマーとして(メタ)アクリル系モノマーを使用した場合、樹脂間に存在するフォトクロミック化合物が、得られるフォトクロミックレンズ中、又はフォトクロミックコート層中で運動し易いため、優れたフォトクロミック特性を発揮することができる。
 上記フォトクロミックレンズにおいても、通常、その表面にハードコート層が形成される。近年、このようなハードコート層に要求される性能は、(メタ)アクリル系樹脂からなる光学基材のみならず、他の樹脂からなる光学基材においても、従来よりもより一層高まっている。
A photochromic lens is a lens that quickly colors and functions as sunglasses when exposed to light containing ultraviolet rays such as sunlight, and fades and is transparent in an indoor environment without such light irradiation. These glasses function as glasses, and their demand is increasing in recent years. As a method for producing a photochromic lens using a (meth) acrylic resin, a method of directly obtaining a photochromic lens by dissolving a photochromic compound in a (meth) acrylic monomer and polymerizing it (kneading) And a layer having photochromic properties on the surface of the plastic lens (hereinafter referred to as a photochromic coating layer) using a curable composition (hereinafter also referred to as a photochromic coating agent) comprising a photochromic compound and a (meth) acrylic monomer. Also known is a method (coating method).
When a (meth) acrylic monomer is used as the monomer, the photochromic compound existing between the resins easily moves in the resulting photochromic lens or in the photochromic coat layer, so that excellent photochromic properties can be exhibited.
Also in the photochromic lens, a hard coat layer is usually formed on the surface thereof. In recent years, the performance required for such a hard coat layer has been further enhanced not only in optical substrates made of (meth) acrylic resins but also in optical substrates made of other resins.
 例えば、特許文献1~3に示されているコーティング組成物を(メタ)アクリル系樹脂よりなる光学基材に使用した場合には、ハードコート層の密着性が十分ではない場合や、耐擦傷性などの硬度が十分ではない場合があり、改善の余地があった。
 特許文献4、及び5には、無機酸化物微粒子、有機ケイ素化合物、及び水の量を最適化し、(メタ)アクリル系樹脂層表面に塗布した場合、優れた密着性と硬度を発現するハードコート形成用コーティング組成物が示されているが、これらコーティング組成物においても、以下の点で問題点があった。ハードコート層を有する光学物品は、その用途において温水と接触する場合がある。前記コーティング組成物を使用した場合には、温水と接触した際、形成されたハードコート層の一部が剥離することがあり、改善の余地があった(以下、温水と接触した後のハードコート層の密着性を耐熱水性とする場合がある。)。
 特許文献6には、アリル系樹脂、及びチオウレタン系樹脂よりなる光学基材に適した、硬化触媒を含有するハードコート層形成用コーティング組成物が示されているが、このコーティング組成物においても、以下の点で改善の余地があった。特許文献6には、バインダーとして機能するエポキシ基を有する有機ケイ素化合物や他の有機ケイ素化合物を使用することが示されている。しかしながら、本発明者等の検討によると、該コーティング組成物は、特定のケイ素化合物を組み合わせ、しかも、それらを特定量使用しなければ、特に、耐熱水性と耐擦傷性に優れたハードコート層を形成できないことが分かった。
For example, when the coating composition disclosed in Patent Documents 1 to 3 is used for an optical substrate made of a (meth) acrylic resin, the hard coat layer may not have sufficient adhesion, or scratch resistance However, there was room for improvement.
Patent Documents 4 and 5 describe a hard coat that exhibits excellent adhesion and hardness when the amount of inorganic oxide fine particles, organosilicon compound, and water is optimized and applied to the surface of a (meth) acrylic resin layer. Forming coating compositions are shown, but these coating compositions also have the following problems. An optical article having a hard coat layer may come into contact with warm water in that application. When the coating composition is used, a part of the formed hard coat layer may be peeled off when contacting with warm water, and there is room for improvement (hereinafter, hard coat after contacting with warm water). The adhesion of the layer may be hot water resistant.)
Patent Document 6 discloses a coating composition for forming a hard coat layer containing a curing catalyst, which is suitable for an optical substrate composed of an allyl resin and a thiourethane resin. In this coating composition, too, There was room for improvement in the following points. Patent Document 6 discloses the use of an organosilicon compound having an epoxy group that functions as a binder and other organosilicon compounds. However, according to the study by the present inventors, the coating composition is a combination of specific silicon compounds, and a hard coat layer excellent in hot water resistance and scratch resistance is obtained unless they are used in a specific amount. It turned out that it cannot be formed.
特開昭53-111336号公報JP-A-53-111336 特表2001-520699号公報JP-T-2001-520699 特表2002-543235号公報JP 2002-543235 A 国際公開WO2007/086320号パンフレットInternational Publication WO2007 / 086320 Pamphlet 国際公開WO2008/105306号パンフレットInternational Publication WO2008 / 105306 Pamphlet 国際公開WO2005/097497号パンフレットInternational Publication WO2005 / 097497 Pamphlet
 本発明の目的は、プラスチックレンズなどの光学基材に対する密着性と耐擦傷性に優れ、さらには、耐熱水性にも優れたハードコート層を形成できるコーティング組成物を提供することにある。
 本発明の目的は、また、ウレタン系樹脂や(メタ)アクリル系樹脂よりなる光学基材、特に後者樹脂よりなる光学基材のハードコート層として好適なコーティング組成物を提供することにある。
The objective of this invention is providing the coating composition which can form the hard-coat layer excellent in the adhesiveness with respect to optical base materials, such as a plastics lens, and abrasion resistance, and also excellent in hot water resistance.
Another object of the present invention is to provide a coating composition suitable as a hard coat layer for an optical substrate made of urethane resin or (meth) acrylic resin, particularly an optical substrate made of the latter resin.
 本発明者等は、上記課題を解決するため、鋭意検討を行った。その結果、(A)無機酸化物微粒子、並びに(B1)エポキシ基及び加水分解性基を有するエポキシ基含有ケイ素化合物(以下、単に、エポキシ基含有ケイ素化合物とする場合もある。)に、さらに、特定量の(C)ケチミン基を有するケチミン化合物(以下、単に、ケチミン化合物とする場合もある。)を配合してハードコート層形成用のコーティング組成物とすることで、上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies to solve the above problems. As a result, (A) inorganic oxide fine particles and (B1) an epoxy group-containing silicon compound having an epoxy group and a hydrolyzable group (hereinafter sometimes simply referred to as an epoxy group-containing silicon compound) are further included. It is possible to solve the above problems by blending a specific amount of (C) a ketimine compound having a ketimine group (hereinafter sometimes simply referred to as a ketimine compound) into a coating composition for forming a hard coat layer. The headline and the present invention have been completed.
 即ち、本発明は、(A)無機酸化物微粒子、(B1)エポキシ基含有ケイ素化合物、及び(C)ケチミン化合物を含有するハードコート層形成用コーティング組成物であって、(A)成分を100質量部として、(B1)成分を50質量部以上350質量部以下、(C)成分を0.1質量部以上10質量部以下含んでなることを特徴とする前記コーティング組成物である。 That is, the present invention is a coating composition for forming a hard coat layer comprising (A) inorganic oxide fine particles, (B1) an epoxy group-containing silicon compound, and (C) a ketimine compound, wherein the component (A) is 100 It is the said coating composition characterized by including 50 mass parts or more and 350 mass parts or less (B1) component as a mass part, and 0.1 mass part or more and 10 mass parts or less of (C) component.
 上記コーティング組成物の発明において、
1)(C)ケチミン化合物が、ケチミン基、及び加水分解性基を有するケチミン基含有ケイ素化合物(以下、単に、ケチミン基含有ケイ素化合物とする場合もある。)であることが好ましい。なお、本発明において、ケチミン基とは、
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、有機基である。)で示される基である。
In the invention of the coating composition,
1) The (C) ketimine compound is preferably a ketimine group-containing silicon compound having a ketimine group and a hydrolyzable group (hereinafter sometimes simply referred to as a ketimine group-containing silicon compound). In the present invention, the ketimine group is
Figure JPOXMLDOC01-appb-C000003
(Wherein R is an organic group).
2)さらに(B2)成分として、下記式(I)
Figure JPOXMLDOC01-appb-C000004
(式中、
 Rは、水素原子、又は炭素数1~5のアルキル基であり、
 Rは、炭素数1~3のアルキル基であり、
 Aは、0~2の整数である。)
で示されるケイ素化合物、及び下記式(II)
2) Further, as the component (B2), the following formula (I)
Figure JPOXMLDOC01-appb-C000004
(Where
R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
R 2 is an alkyl group having 1 to 3 carbon atoms,
A is an integer of 0-2. )
And a silicon compound represented by the following formula (II)
Figure JPOXMLDOC01-appb-C000005
(式中、
 Rは、炭素数1~8のアルキレン基であり、
 R、及びRは、炭素数1~3のアルキル基であり、
 R、及びRは、炭素数1~3のアルキル基であり、
 Bは、0~2の整数である。)
で示されるケイ素化合物からなる群より選ばれる少なくとも1種のケイ素化合物を含み、(A)成分を100質量部として、(B2)成分を10質量部以上150質量部以下含有することを特徴とするコーティング組成物であることが好ましい。(B2)成分を配合することにより、耐擦傷性を高めることができる。
Figure JPOXMLDOC01-appb-C000005
(Where
R 3 is an alkylene group having 1 to 8 carbon atoms,
R 4 and R 5 are alkyl groups having 1 to 3 carbon atoms,
R 6 and R 7 are alkyl groups having 1 to 3 carbon atoms,
B is an integer of 0-2. )
It contains at least one silicon compound selected from the group consisting of silicon compounds represented by the formula (A), 100 parts by mass of the component (A2), and 10 parts by mass or more and 150 parts by mass or less of the component (B2). A coating composition is preferred. By blending the component (B2), scratch resistance can be enhanced.
 本発明は、さらに、プラスチック製光学基材上に、上記コーティング組成物を硬化させて得られるハードコート層を有する光学物品である。本発明は、該基材が、(メタ)アクリル系樹脂、又はウレタン系樹脂よりなる基材である場合に、優れた効果を発揮する。特に、該基材が、(メタ)アクリル系樹脂よりなり、さらにフォトクロミック化合物を含む基材である場合に、優れた効果を発揮する。 The present invention further relates to an optical article having a hard coat layer obtained by curing the coating composition on a plastic optical substrate. The present invention exhibits an excellent effect when the substrate is a substrate made of a (meth) acrylic resin or a urethane resin. In particular, when the substrate is made of a (meth) acrylic resin and further includes a photochromic compound, an excellent effect is exhibited.
 本発明のコーティング組成物は、プラスチックレンズなどの光学基材の表面に、密着性がよく、かつ優れた耐擦傷性を有するハードコート層を形成できる。特に、温水と接触しても剥離することが少ない、耐熱水性に優れるハードコート層を形成することができる。中でも、該光学基材がウレタン系樹脂、又は(メタ)アクリル系樹脂よりなる基材である場合に優れた効果を、特に、基材がフォトクロミック化合物を含む(メタ)アクリル系樹脂である場合に優れた効果を発揮する。 The coating composition of the present invention can form a hard coat layer having good adhesion and excellent scratch resistance on the surface of an optical substrate such as a plastic lens. In particular, it is possible to form a hard coat layer that hardly peels when contacted with warm water and is excellent in hot water resistance. Above all, when the optical substrate is a urethane resin or a substrate made of a (meth) acrylic resin, an excellent effect is obtained, particularly when the substrate is a (meth) acrylic resin containing a photochromic compound. Exhibits excellent effects.
 本発明のコーティング組成物が、プラスチックレンズなどの光学基材に対して優れた密着性、特に、耐熱水性に優れる理由は、(B1)エポキシ基含有ケイ素化合物、及び(C)ケチミン化合物を特定量使用することにあると考えられる。
 (C)ケチミン化合物は、コーティング組成物を混合して得られるコーティング剤中において、ケチミン基が加水分解されることによりアミノ基を生じる。該アミノ基は、プラスチック基材の表面に存在する官能基と反応し、また、(B1)エポキシ基含有ケイ素化合物のエポキシ基への付加反応にも関与するものと考えられる。その結果、形成されたハードコート層とプラスチック製光学基材との密着性、特に、耐熱水性が高くなるものと考えられる。
 ケチミン化合物がケチミン基含有ケイ素化合物である場合には、以下のような作用機構により、より優れた効果を発揮するものと考えられる。
 ケチミン基含有ケイ素化合物を使用した場合、上記アミノ基に加えて、加水分解性基、例えば、アルコキシシリル基が加水分解されることによりシラノール基を生じる。該シラノール基は、ハードコート層中のその他のケイ素化合物と縮合したり、無機酸化物微粒子表面の水酸基と反応するものと考えられる。その結果、上記アミノ基の作用に加え、このシラノール基の作用も生じるため、ケチミン基含有ケイ素化合物を使用することにより、形成されたハードコート層とプラスチック基材との密着性、特に、耐熱水性がより向上するものと考えられる。
The reason why the coating composition of the present invention has excellent adhesion to an optical substrate such as a plastic lens, particularly excellent hot water resistance, is that (B1) an epoxy group-containing silicon compound and (C) a ketimine compound are in a specific amount. It is thought to be in use.
(C) A ketimine compound generates an amino group by hydrolyzing a ketimine group in a coating agent obtained by mixing a coating composition. It is considered that the amino group reacts with a functional group present on the surface of the plastic substrate, and also participates in the addition reaction of the (B1) epoxy group-containing silicon compound to the epoxy group. As a result, it is considered that the adhesion between the formed hard coat layer and the plastic optical substrate, in particular, the hot water resistance is increased.
When the ketimine compound is a ketimine group-containing silicon compound, it is considered that a more excellent effect is exhibited by the following mechanism of action.
When a ketimine group-containing silicon compound is used, a silanol group is generated by hydrolyzing a hydrolyzable group, for example, an alkoxysilyl group, in addition to the amino group. The silanol group is considered to condense with other silicon compounds in the hard coat layer or react with the hydroxyl group on the surface of the inorganic oxide fine particles. As a result, in addition to the action of the amino group, the action of the silanol group also occurs. Therefore, by using the ketimine group-containing silicon compound, the adhesion between the formed hard coat layer and the plastic substrate, in particular, hot water resistance Is considered to improve more.
 光学基材として(メタ)アクリル系樹脂を使用した場合には、上記作用に加えて、(メタ)アクリル系樹脂中に残存する(メタ)アクリロイル基と該アミノ基がマイケル付加反応により結合し、形成されたハードコート層が高い密着性、特に耐熱水性を発現すると考えられる。さらに、ウレタン系樹脂を使用した場合には、該アミノ基がウレタン結合部と、水素結合などの相互作用をすることために、高い密着性、特に耐熱水性を発現すると考えられる。
 このように(C)ケチミン化合物は、ハードコート層と光学基材の両方に作用することができ、ハードコート層と光学基材の密着性、特に、耐熱水性の向上に寄与するものと考えられる。
 本発明のコーティング組成物は、透明性が高く、優れた耐擦傷性を有するハードコート層を形成することができ、優れた密着性、特に耐熱水性を有する。そのため、本発明のコーティング組成物は、前記した(メタ)アクリル系樹脂、又はウレタン系樹脂のみならず、他の樹脂からなる基材用のハードコート層形成用コーティング組成物としても、好適に使用できる。
When a (meth) acrylic resin is used as an optical substrate, in addition to the above action, the (meth) acryloyl group remaining in the (meth) acrylic resin and the amino group are bonded by a Michael addition reaction, It is considered that the formed hard coat layer exhibits high adhesion, particularly hot water resistance. Furthermore, when a urethane-based resin is used, it is considered that the amino group interacts with the urethane bond portion such as hydrogen bond, and thus exhibits high adhesion, particularly hot water resistance.
As described above, the (C) ketimine compound can act on both the hard coat layer and the optical substrate, and is considered to contribute to the improvement of adhesion between the hard coat layer and the optical substrate, particularly hot water resistance. .
The coating composition of the present invention has high transparency, can form a hard coat layer having excellent scratch resistance, and has excellent adhesion, particularly hot water resistance. Therefore, the coating composition of the present invention is suitably used not only as the above-mentioned (meth) acrylic resin or urethane resin, but also as a coating composition for forming a hard coat layer for a substrate made of another resin. it can.
 本発明のコーティング組成物は、(A)無機酸化物微粒子、(B1)エポキシ基含有ケイ素化合物、さらに(C)ケチミン化合物を含んでなることに特徴があるコーティング組成物である。以下、各成分について説明する。 The coating composition of the present invention is a coating composition characterized by comprising (A) inorganic oxide fine particles, (B1) an epoxy group-containing silicon compound, and (C) a ketimine compound. Hereinafter, each component will be described.
<(A)無機酸化物微粒子>
 本発明で使用する(A)無機酸化物微粒子は、公知のものを使用することができる。この(A)無機酸化物微粒子は、一種類の無機酸化物からなるもの、さらには二種類以上の無機酸化物を含んでなる複合無機酸化物微粒子であってもよい。
 この(A)無機酸化物微粒子は、形成されるハードコート層中に均一に分散させ得るという観点から、通常、水、アルコール溶媒、もしくは他の有機溶媒を分散媒として、(A)無機酸化物微粒子がコロイド状に分散したゾルの形態で使用される。なお、以下、この無機酸化物微粒子を単に(A)成分とする場合もある。
<(A) Inorganic oxide fine particles>
A well-known thing can be used for (A) inorganic oxide microparticles | fine-particles used by this invention. The inorganic oxide fine particles (A) may be composed of one kind of inorganic oxide, or may be composite inorganic oxide fine particles containing two or more kinds of inorganic oxides.
From the viewpoint that the (A) inorganic oxide fine particles can be uniformly dispersed in the hard coat layer to be formed, usually, water (alcohol solvent) or other organic solvent is used as a dispersion medium. Used in the form of a sol in which fine particles are colloidally dispersed. Hereinafter, the inorganic oxide fine particles may be simply used as the component (A).
 前記分散媒を具体的に例示すると、メタノール、エタノール、イソプロパノール、エチレングリコール等のアルコール溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン溶媒;水;およびこれらの混合溶媒を使用することができる。これらの中でも、アルコール溶媒、または水が好ましい。
 これらの分散媒を使用する場合、(A)無機酸化物微粒子の固形分濃度{ゾル中に含まれる(A)無機酸化物微粒子の濃度}は、分散状態の安定性、さらに得られるコーティング組成物の組成を調整しやすさという観点から、10~45質量%であることが好ましい。
Specific examples of the dispersion medium include alcohol solvents such as methanol, ethanol, isopropanol, and ethylene glycol; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; water; and mixed solvents thereof. Among these, an alcohol solvent or water is preferable.
When these dispersion media are used, (A) the solid content concentration of the inorganic oxide fine particles {the concentration of the (A) inorganic oxide fine particles contained in the sol} is the stability of the dispersion state and the coating composition obtained. From the viewpoint of easy adjustment of the composition, it is preferably 10 to 45% by mass.
 (A)無機酸化物微粒子は、電子顕微鏡(TEM)により観察される1次粒子径が1~300nm程度のものが好適に使用できる。
 このような(A)無機酸化物微粒子の使用量は、最終的に形成されるハードコート層に占める(A)無機酸化物微粒子の割合が、好ましくは20質量%乃至70質量%、さらに好ましくは25質量%乃至60質量%となるように、他の成分の使用量に合わせて設定するのがよい。
 上記範囲を満足することにより、形成されるハードコート層は、硬度が高くなり、耐熱性に優れたものとなる。更に、ハードコート層を形成しやすくなり、コーティング剤の硬化時にクラックを低減することができる
(A) As the inorganic oxide fine particles, those having a primary particle diameter of about 1 to 300 nm observed with an electron microscope (TEM) can be preferably used.
The amount of the (A) inorganic oxide fine particles used is such that the proportion of the (A) inorganic oxide fine particles in the finally formed hard coat layer is preferably 20% by mass to 70% by mass, more preferably It is preferable to set according to the amount of other components used so that it is 25 mass% to 60 mass%.
By satisfying the above range, the hard coat layer formed has high hardness and excellent heat resistance. Furthermore, it becomes easier to form a hard coat layer, and cracks can be reduced when the coating agent is cured.
 本発明における(A)無機酸化物微粒子は、特に制限されるものではなく、Si、Al、Fe、In、Zr、Sn、Sb、Ce、Ti及びWから選ばれる少なくとも1種の元素の酸化物からなる酸化物微粒子が挙げられる。中でも、Si、Zr、Sn、Sb及びTiから選ばれる少なくとも1種の元素の酸化物からなる酸化物微粒子が好ましい。具体的には、酸化ケイ素微粒子(シリカ微粒子)、五酸化アンチモン微粒子、または前記元素の酸化物を複数含む複合無機酸化物微粒子であってもよく、その使用用途に応じて、含まれる酸化物の割合が適宜決定される。 The inorganic oxide fine particles (A) in the present invention are not particularly limited, and an oxide of at least one element selected from Si, Al, Fe, In, Zr, Sn, Sb, Ce, Ti and W Oxide fine particles made of Among these, oxide fine particles made of an oxide of at least one element selected from Si, Zr, Sn, Sb, and Ti are preferable. Specifically, it may be silicon oxide fine particles (silica fine particles), antimony pentoxide fine particles, or composite inorganic oxide fine particles containing a plurality of oxides of the above elements. The ratio is appropriately determined.
 例えば、屈折率が1.50以下の低屈折率プラスチックレンズ基材に適用する場合には、シリカ微粒子が使用される。このシリカ微粒子は特に制限されるものではなく、公知のものを使用することができる。具体的には、水、アルコール溶媒、もしくは他の有機溶媒に分散させた、固形分濃度が10質量%乃至45質量%、1次粒子径が1~300nmの分散液状態のものを使用することが好ましい。これらシリカ微粒子の分散液は、市販のものを使用することができ、例えば日産化学工業(株)より、スノーテックスOXS、スノーテックスOS、スノーテックスO、スノーテックスO-40等の水を分散媒とするシリカゾルやMA-ST-MS(分散媒;メタノール)、IPA-ST(分散媒;イソプロパノール)等のアルコールを分散媒とするシリカゾルが市販されている。 For example, when applied to a low refractive index plastic lens substrate having a refractive index of 1.50 or less, silica fine particles are used. The silica fine particles are not particularly limited, and known ones can be used. Specifically, a dispersion in which the solid content concentration is 10% to 45% by mass and the primary particle size is 1 to 300 nm dispersed in water, an alcohol solvent, or another organic solvent is used. Is preferred. Commercially available dispersions of these silica fine particles can be used. For example, water such as SNOWTEX OXS, SNOWTEX OS, SNOWTEX O, SNOWTEX O-40, etc. is used as a dispersion medium from Nissan Chemical Industries, Ltd. There are commercially available silica sols having a dispersion medium of alcohol such as MA-ST-MS (dispersion medium: methanol) and IPA-ST (dispersion medium: isopropanol).
 屈折率が1.50を超える高屈折率プラスチックレンズ基材に適用する場合には、五酸化アンチモン微粒子、又は前記元素の酸化物を複数含む複合無機酸化物微粒子が好適に使用される。中でも、高屈折率プラスチックレンズ基材に適用する場合には、Si、Zr、Sn、Sb、及びTiの酸化物からなる複合無機酸化物微粒子を使用することが好ましい。この複合無機酸化物微粒子の各成分の配合割合は、使用する用途に応じて適宜決定すればよいが、酸化スズを50質量%乃至96質量%、酸化ジルコニウムを3質量%乃至49質量%、酸化アンチモンを1質量%乃至29.9質量%、酸化ケイ素を0.1質量%乃至29質量%を満足することが好ましい。
 上記五酸化アンチモン微粒子や複合無機酸化物微粒子は、水、アルコール溶媒、もしくは他の有機溶媒に分散させた、固形分濃度が10質量%乃至45質量%、1次粒子径が1~300nmの分散液状態のものを使用することが好ましい。これらの無機酸化物微粒子の分散液は、市販のものを使用することができ、具体的には、日産化学工業(株)製AMT-332S・NV(分散媒;メタノール)等の五酸化アンチモンゾル、酸化ジルコニウムや酸化スズの複合無機酸化物微粒子であるHXシリーズ(分散媒;メタノール)等が挙げられる。
 高屈折率プラスチックレンズ基材に適用する場合、耐候性を高めるため、五酸化アンチモン微粒子または上記複合無機酸化物微粒子と、酸化セリウム微粒子とを混合した無機酸化物微粒子が好ましく使用される。酸化セリウム微粒子の含有量は、全無機酸化物微粒子100質量%中、1質量%以上30質量%以下とすることが好ましい。
When applied to a high refractive index plastic lens substrate having a refractive index exceeding 1.50, antimony pentoxide fine particles or composite inorganic oxide fine particles containing a plurality of oxides of the above elements are preferably used. Among these, when applied to a high refractive index plastic lens substrate, it is preferable to use composite inorganic oxide fine particles composed of oxides of Si, Zr, Sn, Sb, and Ti. The blending ratio of each component of the composite inorganic oxide fine particles may be appropriately determined according to the application to be used, but 50% to 96% by mass of tin oxide, 3% to 49% by mass of zirconium oxide, and oxidation. It is preferable that 1% by mass to 29.9% by mass of antimony and 0.1% by mass to 29% by mass of silicon oxide are satisfied.
The antimony pentoxide fine particles and the composite inorganic oxide fine particles are dispersed in water, an alcohol solvent, or other organic solvent, and a solid content concentration of 10% by mass to 45% by mass and a primary particle size of 1 to 300 nm are dispersed. It is preferable to use a liquid state. A commercially available dispersion of these inorganic oxide fine particles can be used. Specifically, an antimony pentoxide sol such as AMT-332S · NV (dispersion medium: methanol) manufactured by Nissan Chemical Industries, Ltd. HX series (dispersion medium: methanol), which is a composite inorganic oxide fine particle of zirconium oxide or tin oxide.
When applied to a high-refractive-index plastic lens substrate, inorganic oxide fine particles obtained by mixing antimony pentoxide fine particles or the above composite inorganic oxide fine particles and cerium oxide fine particles are preferably used in order to improve weather resistance. The content of the cerium oxide fine particles is preferably 1% by mass to 30% by mass in 100% by mass of the total inorganic oxide fine particles.
<(B1)エポキシ基含有ケイ素化合物>
 本発明の(B1)エポキシ基、及び加水分解性基を有するエポキシ基含有ケイ素化合物(エポキシ基含有ケイ素化合物)は、コーティング剤を硬化してハードコート層を形成したときにマトリックスとなる透明な硬化体を形成する成分であり、前記(A)無機酸化物微粒子のバインダーとしての機能を有するものである。なお、以下、この(B1)エポキシ基含有ケイ素化合物を単に(B1)成分とする場合もある。
 該(B1)エポキシ基含有ケイ素化合物は、分子内にエポキシ基を含有し、アルコキシシリル基のような加水分解性基(アルコキシ基がSi原子に結合した基)を有する有機ケイ素化合物である。このエポキシ基含有ケイ素化合物は、プラスチックレンズなどの光学基材に対するハードコート層の密着性を高める作用を有する。
<(B1) Epoxy group-containing silicon compound>
The (B1) epoxy group-containing silicon compound (epoxy group-containing silicon compound) having an epoxy group and a hydrolyzable group of the present invention is a transparent curing that becomes a matrix when a hard coat layer is formed by curing a coating agent. It is a component that forms a body and has a function as a binder of the (A) inorganic oxide fine particles. Hereinafter, the (B1) epoxy group-containing silicon compound may be simply used as the component (B1).
The (B1) epoxy group-containing silicon compound is an organosilicon compound containing an epoxy group in the molecule and a hydrolyzable group such as an alkoxysilyl group (a group in which an alkoxy group is bonded to a Si atom). This epoxy group-containing silicon compound has the effect of increasing the adhesion of the hard coat layer to an optical substrate such as a plastic lens.
 (B1)エポキシ基含有ケイ素化合物としては、分子内に少なくとも一つのエポキシ基を有し、加水分解性基を有する有機ケイ素化合物であれば、特に制限無く使用できるが、前記効果の観点から好適な化合物を具体的に例示すると、下記式(III)で示されるケイ素化合物が挙げられる。 (B1) The epoxy group-containing silicon compound can be used without particular limitation as long as it is an organosilicon compound having at least one epoxy group in the molecule and having a hydrolyzable group. Specific examples of the compound include a silicon compound represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000006
 式中、Rは、下記式
Figure JPOXMLDOC01-appb-C000007
(式中、R11は、炭素数1~8のアルキレン基である。)で示される基、又は下記式
Figure JPOXMLDOC01-appb-C000008
(式中、R12は、炭素数1~8のアルキレン基である。)で示される基であり、
は、炭素数1~3のアルキル基であり、
10は、炭素数1~3のアルキル基であり、
Cは、0~2の整数である。
Figure JPOXMLDOC01-appb-C000006
In the formula, R 9 represents the following formula:
Figure JPOXMLDOC01-appb-C000007
(Wherein R 11 is an alkylene group having 1 to 8 carbon atoms), or a group represented by the following formula
Figure JPOXMLDOC01-appb-C000008
(Wherein R 12 is an alkylene group having 1 to 8 carbon atoms),
R 8 is an alkyl group having 1 to 3 carbon atoms,
R 10 is an alkyl group having 1 to 3 carbon atoms,
C is an integer of 0-2.
 Rとしては、メチル基、エチル基、プロピル基、イソプロピル基が挙げられ、特に、メチル基、エチル基が好ましい。Rが複数存在する場合には、互いに同じ基であっても、それぞれ異なる基であってもよい。ただし、反応性、密着性、耐擦傷性の点から考慮すると、Cは、0又は1であることが好ましい。
 R10としては、Rと同じく、メチル基、エチル基、プロピル基、イソプロピル基が挙げられ、特に、メチル基、エチル基が好ましい。R10が複数存在する場合には、互いに同じ基であっても、それぞれ異なる基であってもよい。
 R11、及びR12は、炭素数1~8のアルキレン基であり、直鎖状であっても、分岐状のものであってもよい。中でも、炭素数2~3の直鎖状のアルキレン基が好ましい。
Examples of R 8 include a methyl group, an ethyl group, a propyl group, and an isopropyl group, and a methyl group and an ethyl group are particularly preferable. When a plurality of R 8 are present, they may be the same groups or different groups. However, C is preferably 0 or 1 in view of reactivity, adhesion, and scratch resistance.
Examples of R 10 include a methyl group, an ethyl group, a propyl group, and an isopropyl group as in R 8, and a methyl group and an ethyl group are particularly preferable. When a plurality of R 10 are present, they may be the same groups or different groups.
R 11 and R 12 are each an alkylene group having 1 to 8 carbon atoms, and may be linear or branched. Of these, a linear alkylene group having 2 to 3 carbon atoms is preferable.
 前記式(III)で示される(B1)成分として、具体的には、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、又はβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを挙げることができる。これらは単独で用いても、2種以上を使用することもできる。
 これらの中でも、形成されるハードコート層におけるプラスチック製光学基材との密着性、耐擦傷性を考慮すると、γ-グリシドキシプロピルトリメトキシシラン(GTS)、γ-グリシドキシプロピルメチルジメトキシシラン(GDS)が好適である。このGTSやGDSは、単独で使用することもできるし、これらを混合して使用することができる。GTSは単独で使用しても優れた効果を発揮するが、GDSと併用して使用する場合は、GDSに対するGTSの質量比(GTS/GDS)が2.0以上10.0以下となるようにすることが好ましい。
 (B1)成分として、1種類のエポキシ基含有ケイ素化合物を使用する場合には、そのエポキシ含有ケイ素化合物の質量が、下記に詳述する(B1)成分の配合量となる。また、2種類以上のエポキシ基含有ケイ素化合物を使用する場合には、それらの合計量が(B1)成分の配合量に該当する。
Specific examples of the component (B1) represented by the formula (III) include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, Mention may be made of γ-glycidoxypropyltriethoxysilane or β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. These may be used alone or in combination of two or more.
Among these, γ-glycidoxypropyltrimethoxysilane (GTS) and γ-glycidoxypropylmethyldimethoxysilane are considered in consideration of adhesion to a plastic optical substrate and scratch resistance in the hard coat layer to be formed. (GDS) is preferred. These GTS and GDS can be used alone or in combination. GTS exhibits excellent effects even when used alone, but when used in combination with GDS, the mass ratio of GTS to GDS (GTS / GDS) is 2.0 or more and 10.0 or less. It is preferable to do.
When one kind of epoxy group-containing silicon compound is used as the component (B1), the mass of the epoxy-containing silicon compound is the blending amount of the component (B1) described in detail below. Moreover, when using 2 or more types of epoxy group containing silicon compounds, those total amounts correspond to the compounding quantity of (B1) component.
 〔(B1)成分の配合量〕
 本発明において、(B1)成分の配合量は、前記(A)無機酸化物微粒子の配合量を100質量部として、50質量部以上350質量部以下である。(B1)成分が50質量部未満の場合には、形成されるハードコート層の耐熱性、密着性が低下し、さらには柔軟性が低下し、ハードコート層自身が脆くなるため好ましくない。一方、350質量部を超える場合には、ハードコート層の硬度が低下し、耐擦傷性が低下するため好ましくない。形成されるハードコート層の硬度、耐熱性、柔軟性等を考慮すると、(B1)成分の好適な配合量は、80質量部以上300質量部以下である。
 なお、この(B1)成分の配合量は、加水分解性基、例えば、アルコキシシリル基が加水分解されていない状態の(B1)エポキシ基含有ケイ素化合物の量である。
[Amount of component (B1)]
In this invention, the compounding quantity of (B1) component is 50 to 350 mass parts by making the compounding quantity of the said (A) inorganic oxide microparticles into 100 mass parts. When the component (B1) is less than 50 parts by mass, the heat resistance and adhesion of the hard coat layer to be formed are lowered, the flexibility is further lowered, and the hard coat layer itself becomes brittle. On the other hand, when it exceeds 350 mass parts, since the hardness of a hard-coat layer falls and scratch resistance falls, it is unpreferable. Considering the hardness, heat resistance, flexibility and the like of the hard coat layer to be formed, the preferable blending amount of the component (B1) is 80 parts by mass or more and 300 parts by mass or less.
In addition, the compounding quantity of this (B1) component is the quantity of the (B1) epoxy group containing silicon compound of the state by which a hydrolysable group, for example, an alkoxysilyl group, is not hydrolyzed.
<(C)ケチミン化合物>
 (C)ケチミン化合物{以下、単に(C)成分とする場合もある}は、形成されるハードコート層とプラスチック製光学基材との密着性をより向上させる効果を発揮する。この密着性は、ハードコート層を形成した直後の密着性だけでなく、長期間の実使用を加味した耐候性試験後の密着性をも含まれる(以下、この密着性を耐候性とする場合もある)。さらには、温水と接触させた後の密着性(耐熱水性)をも改善することができる。
<(C) Ketimine Compound>
The (C) ketimine compound {hereinafter sometimes simply referred to as the component (C)} exhibits the effect of further improving the adhesion between the hard coat layer to be formed and the plastic optical substrate. This adhesion includes not only the adhesion immediately after forming the hard coat layer, but also the adhesion after a weather resistance test taking into account long-term actual use (hereinafter, this adhesion is assumed to be weather resistance). There is also.) Furthermore, the adhesiveness (hot water resistance) after contacting with warm water can also be improved.
 本発明において、(C)ケチミン化合物とは、アミンの第一級アミノ基をケトンでブロックして得られる、前記ケチミン基を分子内に少なくとも1つ有する化合物である。(C)ケチミン化合物が、優れた効果を発揮する理由は、以下のように推定している。
 ケチミン化合物を使用した場合、コーティング剤中で、ケチミン基が加水分解しアミノ基(-NH)が生じ、このアミノ基が以下に説明する反応機構により、プラスチック製光学基材へのハードコート層の密着性が向上すると考えられる。
 生成したアミノ基は、アルカリ処理などの前処理などで活性化されたプラスチック製光学基材の表面に生じる官能基や、該基材中の(メタ)アクリロイル基、エポキシ基、イソシアネート基などと反応したり、該基材中のウレタン結合やカーボネート結合との水素結合に関与するものと考えられる。また、該アミノ基は、(B1)エポキシ基含有ケイ素化合物のエポキシ基の付加反応にも関与するものと考えられる。このエポキシ基への付加反応で生じる水酸基やアミノ基の効果により、プラスチック製光学基材との結合や相互作用を強くすることができるため、ハードコート層とプラスチック製光学基材との密着性、特に、耐熱水性を高くするものと推定される。
In the present invention, the (C) ketimine compound is a compound having at least one ketimine group in the molecule obtained by blocking the primary amino group of an amine with a ketone. The reason why the (C) ketimine compound exhibits an excellent effect is estimated as follows.
When a ketimine compound is used, the ketimine group is hydrolyzed in the coating agent to produce an amino group (—NH 2 ), and this amino group is a hard coat layer on a plastic optical substrate by the reaction mechanism described below. It is thought that the adhesiveness of is improved.
The generated amino group reacts with the functional group generated on the surface of the plastic optical substrate activated by pretreatment such as alkali treatment, and the (meth) acryloyl group, epoxy group, isocyanate group, etc. in the substrate. Or is considered to be involved in hydrogen bonds with urethane bonds or carbonate bonds in the substrate. The amino group is also considered to be involved in the addition reaction of the epoxy group of the (B1) epoxy group-containing silicon compound. Due to the effects of hydroxyl groups and amino groups generated by the addition reaction to this epoxy group, the bond and interaction with the plastic optical substrate can be strengthened, so the adhesion between the hard coat layer and the plastic optical substrate, In particular, it is estimated to increase the hot water resistance.
 (C)ケチミン化合物は、アミン化合物とケトン化合物とを反応させることにより合成できる。具体的には、アミン化合物のアミノ基とケトン化合物のカルボニル基とを反応させることにより、(C)ケチミン化合物を合成できる。
 アミン化合物としては、炭素数2~15のアミン化合物、例えば、ジエチレントリアミン、トリエチレンテトラミン、ジエチルアミノプロピルアミン、m―キシリレンジアミン、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、N-アミノエチルピペラジン、1,2-ジアミノプロパンが挙げられる。また、ケイ素化合物を含むアミン化合物としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルジエトキシメチルシラン、γ-アミノプロピルジメトキシメチルシラン等が挙げられる。
 一方、ケトン化合物としては、炭素数2~10のケトン化合物、例えば、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルt-ブチルケトン、ジイソプロピルケトン、メチルイソブチルケトンが挙げられる。
(C) The ketimine compound can be synthesized by reacting an amine compound and a ketone compound. Specifically, the (C) ketimine compound can be synthesized by reacting the amino group of the amine compound with the carbonyl group of the ketone compound.
As the amine compound, an amine compound having 2 to 15 carbon atoms, such as diethylenetriamine, triethylenetetramine, diethylaminopropylamine, m-xylylenediamine, ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, trimethylhexamethylenediamine, N -Aminoethylpiperazine, 1,2-diaminopropane. Examples of the amine compound containing a silicon compound include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyldiethoxymethylsilane, γ-aminopropyldimethoxymethylsilane, and the like.
On the other hand, examples of the ketone compound include those having 2 to 10 carbon atoms such as acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl t-butyl ketone, diisopropyl ketone, and methyl isobutyl ketone.
 コーティング組成物が前出の優れた効果を発揮するためには、特に下記アミン化合物とケトン化合物を反応させて得られる(C)ケチミン化合物であることが好ましい。好適なアミン化合物として、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルジエトキシメチルシラン、γ-アミノプロピルジメトキシメチルシラン等のケイ素化合物を含むアミン化合物が挙げられ、一方、好適なケトン化合物としては、本発明のコーティング組成物に水溶性有機溶媒として好適に使用できるメチルイソプロピルケトン、メチルt-ブチルケトン、メチルイソブチルケトンが挙げられる。 In order for the coating composition to exhibit the above-described excellent effects, (C) a ketimine compound obtained by reacting the following amine compound with a ketone compound is particularly preferable. Suitable amine compounds include amine compounds containing silicon compounds such as γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyldiethoxymethylsilane, γ-aminopropyldimethoxymethylsilane, On the other hand, suitable ketone compounds include methyl isopropyl ketone, methyl t-butyl ketone, and methyl isobutyl ketone that can be suitably used as the water-soluble organic solvent in the coating composition of the present invention.
 アミン化合物とケトン化合物との反応は、両者を混合することにより達成できる。アミン化合物とケトン化合物の反応は、水が生成する平衡反応であるため、水を除去しながら反応を行う必要がある。水を除去する方法としては、無水硫酸塩やモレキュラーシーブなどの脱水剤の存在下で反応させる方法や、トルエンなどの共沸溶媒を反応系中に予め添加しておき共沸脱水しながら反応を進行させる方法などが挙げられる。
 本発明で使用する(C)ケチミン化合物を製造する場合には、アミノ基のモル数に対して、カルボニル基のモル数が多くなるように、アミン化合物とケトン化合物を使用することが好ましい。具体的には、アミノ基1モルに対して、1.5モル以上3.0モル以下のカルボニル基となるように設定される。ケトン化合物を多く使用する理由は、アミン化合物が未反応で残存した場合、本発明のコーティング組成物に配合すると、コーティング組成物に含まれる有機ケイ素化合物の加水分解、および縮合反応が進行するために粘度増加やゲル化を生じるおそれがあり、さらに形成されるハードコート層の外観不良を生じると共に、硬度の低下を招くおそれがあるからである。一方、ケトン化合物が残存したとしても、本発明のコーティング組成物の水溶性有機溶媒の一部として使用することが可能であるため、特に問題になることはない。
 アミン化合物とケトン化合物との反応生成物であるケチミン化合物は、GC-MASS(ガスクロマトグラフ質量分析計)による分子量分析で確認できる。GC-MASSによる分析を実施する前には、原料であるアミン化合物が消失していることを確認することが好ましい。
Reaction of an amine compound and a ketone compound can be achieved by mixing both. Since the reaction between the amine compound and the ketone compound is an equilibrium reaction in which water is generated, it is necessary to carry out the reaction while removing water. As a method for removing water, a reaction is performed in the presence of a dehydrating agent such as anhydrous sulfate or molecular sieve, or an azeotropic solvent such as toluene is added to the reaction system in advance to carry out the reaction while performing azeotropic dehydration. The method of making it progress is mentioned.
When the (C) ketimine compound used in the present invention is produced, it is preferable to use an amine compound and a ketone compound so that the number of moles of the carbonyl group is larger than the number of moles of the amino group. Specifically, it is set to be 1.5 mol or more and 3.0 mol or less of carbonyl group with respect to 1 mol of amino group. The reason why many ketone compounds are used is that when the amine compound remains unreacted, if it is added to the coating composition of the present invention, hydrolysis and condensation reaction of the organosilicon compound contained in the coating composition proceeds. This is because viscosity may increase or gelation may occur, and the appearance of the hard coat layer to be formed may be deteriorated and hardness may be decreased. On the other hand, even if the ketone compound remains, it can be used as a part of the water-soluble organic solvent of the coating composition of the present invention, so that there is no particular problem.
A ketimine compound, which is a reaction product of an amine compound and a ketone compound, can be confirmed by molecular weight analysis using GC-MASS (gas chromatograph mass spectrometer). Before conducting the analysis by GC-MASS, it is preferable to confirm that the amine compound as a raw material has disappeared.
 本発明においては、前記ケチミン化合物が、ケチミン基、及び加水分解性基を有するケチミン基含有ケイ素化合物(以下、単に「ケチミン基含有ケイ素化合物」とする場合もある)である場合に、上記アミノ基の作用に加えて、以下の作用が生じるため、特に優れた効果を発揮するものと考えられる。
 ケチミン基含有ケイ素化合物を使用した場合、コーティング剤中にケチミン基が加水分解しアミノ基(-NH)が生じるだけでなく、加水分解性基、例えば、アルコキシシリル基が加水分解しシラノール基が生じる。これら2つの官能基が生成することにより、プラスチック製光学基材とハードコート層との密着性が、より一層向上するものと考えられる。
 該シラノール基は、(B1)エポキシ基含有ケイ素化合物等のケイ素化合物から生じるシラノール基と縮合反応したり、(A)成分の表面のシラノール基と反応して架橋体(硬化体)を形成する。一方、アミノ基は、前記の通り作用するものと考えられる。その結果、ケチミン基含有ケイ素化合物は、ハードコート層を形成する架橋体の一部となり、さらに、プラスチック製光学基材との結合を強くすることができるため、より一層ハードコート層とプラスチック製光学基材との密着性、特に、耐熱水性を高くするものと推定される。中でも、プラスチック製光学基材として(メタ)アクリル系樹脂を使用した場合、該樹脂中の(メタ)アクリロイル基とアミノ基がマイケル付加反応を起こすものと推定され、特に優れた密着性を達成することができる。
In the present invention, when the ketimine compound is a ketimine group-containing silicon compound having a ketimine group and a hydrolyzable group (hereinafter sometimes simply referred to as “ketimine group-containing silicon compound”), the amino group In addition to the above action, the following action occurs, and it is considered that a particularly excellent effect is exhibited.
When a ketimine group-containing silicon compound is used, not only does the ketimine group hydrolyze in the coating agent to produce an amino group (—NH 2 ), but also a hydrolyzable group such as an alkoxysilyl group hydrolyzes to form a silanol group. Arise. By producing these two functional groups, it is considered that the adhesion between the plastic optical substrate and the hard coat layer is further improved.
The silanol group (B1) undergoes a condensation reaction with a silanol group generated from a silicon compound such as an epoxy group-containing silicon compound, or reacts with a silanol group on the surface of the component (A) to form a crosslinked body (cured body). On the other hand, the amino group is considered to act as described above. As a result, the ketimine group-containing silicon compound becomes a part of the cross-linked body forming the hard coat layer, and can further strengthen the bond with the plastic optical substrate. It is presumed that the adhesiveness with the substrate, particularly the hot water resistance is increased. In particular, when a (meth) acrylic resin is used as a plastic optical substrate, it is estimated that a (meth) acryloyl group and an amino group in the resin cause a Michael addition reaction, thereby achieving particularly excellent adhesion. be able to.
 なお、上記理由から、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシランなどのアミノ基を有する有機ケイ素化合物も、プラスチック製光学基材と形成されるハードコート層との密着性向上に効果はあるが、下記の理由によりコーティング剤成分としては好ましくない。
 例えば、γ-アミノプロピルトリエトキシシランのように、一級アミノ基を有する化合物は、その塩基性が強いため、局所的に有機ケイ素化合物の加水分解、および縮合反応が進むものと考えられる。その結果、γ-アミノプロピルトリエトキシシランを使用した場合、得られるコーティング剤は、有機ケイ素化合物のゲル状物質が原因と考えられる白濁や、ブツが生じ易くなり、形成されるハードコート層の外観不良を生じると共に、硬度の低下を招くおそれがある。
 一方、N-フェニル-γ-アミノプロピルトリメトキシシランは、アミノ基の塩基性が弱いために、密着性を向上させるためにはその添加量を多くしなければならない。その結果、形成されるハードコート層は、硬度が低下する傾向にある。
For the above reasons, organosilicon compounds having amino groups such as γ-aminopropyltriethoxysilane and N-phenyl-γ-aminopropyltrimethoxysilane are also used for the plastic optical substrate and the hard coat layer to be formed. Although effective in improving adhesion, it is not preferred as a coating agent component for the following reasons.
For example, a compound having a primary amino group such as γ-aminopropyltriethoxysilane has a strong basicity, so that it is considered that the hydrolysis and condensation reaction of the organosilicon compound proceeds locally. As a result, when γ-aminopropyltriethoxysilane is used, the resulting coating agent is prone to white turbidity and spots caused by the organosilicon compound gel substance, and the appearance of the hard coat layer formed There is a risk of causing defects and a decrease in hardness.
On the other hand, since N-phenyl-γ-aminopropyltrimethoxysilane has a weak basic amino group, it must be added in an increased amount in order to improve adhesion. As a result, the hard coat layer to be formed tends to decrease in hardness.
 以上の理由により、アミノ基を有する有機ケイ素化合物よりも、ケチミン基含有ケイ素化合物の方がより優れた効果を発揮するものと考えられる。
 このようなケチミン基含有ケイ素化合物としては、下記式(IV)で示される化合物が好適である。
For the above reasons, it is considered that the ketimine group-containing silicon compound exhibits a better effect than the organosilicon compound having an amino group.
As such a ketimine group-containing silicon compound, a compound represented by the following formula (IV) is suitable.
Figure JPOXMLDOC01-appb-C000009
 式(IV)において、R13、R14、R16及びR17は、炭素数1~5のアルキル基であり、R15は、炭素数1~10のアルキレン基であり、Xは、2または3の整数である。
Figure JPOXMLDOC01-appb-C000009
In the formula (IV), R 13 , R 14 , R 16 and R 17 are alkyl groups having 1 to 5 carbon atoms, R 15 is an alkylene group having 1 to 10 carbon atoms, and X is 2 or It is an integer of 3.
 R13、R14、R16及びR17としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基が挙げられる。中でも、メチル基、エチル基が好ましい。
 R15は、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基などが挙げられ、中でも、エチレン基、プロピレン基、ブチレン基、ペンチレン基が好ましい。
 また、Xは、より架橋性の高いハードコート層を形成できるという観点から、3が好ましい。
Examples of R 13 , R 14 , R 16 and R 17 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a t-butyl group. Of these, a methyl group and an ethyl group are preferable.
Examples of R 15 include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group. Among these, an ethylene group, a propylene group, a butylene group, and a pentylene group are preferable.
X is preferably 3 from the viewpoint that a hard coat layer having higher crosslinkability can be formed.
 前記式(IV)で示されるケチミン基含有ケイ素化合物としては、具体的に3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-メチルジエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-メチルジメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリエトキシシリル-N-(1,2-ジメチル-プロピリデン)プロピルアミン、3-トリメトキシシリル-N-(1,2-ジメチル-プロピリデン)プロピルアミン、3-メチルジエトキシシリル-N-(1,2-ジメチル-プロピリデン)プロピルアミン、3-メチルジメトキシシリル-N-(1,2-ジメチル-プロピリデン)プロピルアミンなどが挙げられる。
 これらの中でも、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンが好ましい。これらケチミン基含有ケイ素化合物は、市販のものを使用することができ、具体的には、信越化学社製商品名「KBE-9103」などが挙げられる。
 なお、(C)ケチミン化合物は、単独で使用することもできるし、2種類以上のものを使用することもできる。
Specific examples of the ketimine group-containing silicon compound represented by the formula (IV) include 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-trimethoxysilyl-N- (1, 3-dimethyl-butylidene) propylamine, 3-methyldiethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-methyldimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-triethoxysilyl-N- (1,2-dimethyl-propylidene) propylamine, 3-trimethoxysilyl-N- (1,2-dimethyl-propylidene) propylamine, 3-methyldiethoxysilyl-N- ( 1,2-dimethyl-propylidene) propylamine, 3-methyldimethoxysilyl-N- (1,2-dimethyl) Propylidene) and propyl amine.
Among these, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine and 3-trimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine are preferable. As these ketimine group-containing silicon compounds, commercially available products can be used, and specific examples include trade name “KBE-9103” manufactured by Shin-Etsu Chemical Co., Ltd.
In addition, (C) ketimine compound can also be used independently and can also use 2 or more types of things.
 〔(C)成分の配合量〕
 (C)ケチミン化合物の配合量は、前記(A)無機酸化物微粒子の配合量100質量部に対して、0.1質量部以上10質量部以下である。(C)ケチミン化合物の配合量が0.1質量部未満の場合には、形成されるハードコート層とプラスチック製光学基材との密着性、特に耐熱水性の向上効果が十分ではないため好ましくない。一方、10質量部を超える場合には、形成されるハードコート層の硬度が低下するため、十分な耐擦傷性を発揮できないため好ましくない。形成されるハードコート層の硬度、密着性のバランスを考慮すると、(C)ケチミン化合物の配合量は、0.2質量部以上8質量部以下がより好ましく、0.4質量部以上5.5質量部以下であることがさらに好ましく、0.5質量部以上5.5質量部以下であることが特に好ましい。
 複数のケチミン化合物を使用する場合には、ケチミン化合物の合計量が上記範囲を満足すればよい。また、ケチミン化合物がケチミン基含有ケイ素化合物である場合の(C)成分の配合量は、加水分解性基、例えば、アルコキシシリル基が加水分解されていない状態のケチミン基含有ケイ素化合物の量である。
[Amount of component (C)]
(C) The amount of the ketimine compound is 0.1 to 10 parts by mass with respect to 100 parts by mass of the (A) inorganic oxide fine particles. When the blending amount of the (C) ketimine compound is less than 0.1 parts by mass, it is not preferable because the effect of improving the adhesion between the hard coat layer to be formed and the plastic optical substrate, in particular, the hot water resistance is not sufficient. . On the other hand, when the amount exceeds 10 parts by mass, the hardness of the hard coat layer to be formed is lowered, so that sufficient scratch resistance cannot be exhibited. Considering the balance of hardness and adhesion of the hard coat layer to be formed, the blending amount of (C) ketimine compound is more preferably 0.2 parts by mass or more and 8 parts by mass or less, and 0.4 parts by mass or more and 5.5 parts by mass. More preferably, it is 0.5 parts by mass or less, and particularly preferably 0.5 parts by mass or less.
When a plurality of ketimine compounds are used, the total amount of ketimine compounds only needs to satisfy the above range. In addition, when the ketimine compound is a ketimine group-containing silicon compound, the amount of component (C) is the amount of the ketimine group-containing silicon compound in a state where a hydrolyzable group, for example, an alkoxysilyl group is not hydrolyzed. .
 (C)成分の配合量は上記範囲を満足すればよいが、コーティング組成物が特に優れた効果を発揮するためには、(B1)成分と(C)成分との配合割合が、以下の範囲を満足することが好ましい。
 (B1)成分と(C)成分との配合割合が、(B1)成分100質量部に対して、(C)成分が0.1質量部以上10質量部以下となることが好ましく、0.3質量部以上5.5質量部以下となることがより好ましく、0.4質量部以上5.5質量部以下となることがさらに好ましい。(B1)成分100質量部に対して、(C)成分が0.1質量部以上10質量部以下の範囲を満足することにより、ハードコート層とプラスチック製光学基材との密着性、特に耐熱水性が向上し、更に十分な硬度を有するハードコート層を形成して耐擦傷性も向上する。
The blending amount of the component (C) may satisfy the above range, but in order for the coating composition to exhibit a particularly excellent effect, the blending ratio of the component (B1) and the component (C) is in the following range. Is preferably satisfied.
The blending ratio of the component (B1) and the component (C) is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the component (B1). It is more preferable that the amount is not less than mass parts and not more than 5.5 parts by mass, and it is further preferable that the amount is not less than 0.4 parts by mass and not more than 5.5 parts by mass. (B1) The component (C) satisfies the range of 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the component, whereby the adhesion between the hard coat layer and the plastic optical substrate, particularly heat resistance Aqueous property is improved, and a hard coat layer having sufficient hardness is formed to improve scratch resistance.
 本発明のコーティング組成物は、前記(A)成分、(B1)成分、及び(C)成分を必須成分として含むものであるが、必要に応じてその他の成分を配合することもできる。以下、その他の成分について説明する。先ず、(B1)成分のケイ素化合物、および(C)成分のケチミン基含有ケイ素化合物以外に、好適に配合される(B2)他のケイ素化合物について説明する。 The coating composition of the present invention contains the component (A), the component (B1), and the component (C) as essential components, but other components can be blended as necessary. Hereinafter, other components will be described. First, the (B2) other silicon compound that is suitably blended in addition to the silicon compound as the component (B1) and the ketimine group-containing silicon compound as the component (C) will be described.
<(B2)他のケイ素化合物>
 本発明のコーティング組成物には、形成されるハードコート層の硬度を向上させる目的で、前記(B1)成分、(C)成分のケチミン基含有ケイ素化合物に加えて、これら以外の(B2)他のケイ素化合物{以下、単に(B2)成分とする場合もある}を配合することができる。
<(B2) Other silicon compounds>
In the coating composition of the present invention, in addition to the ketimine group-containing silicon compound of the component (B1) and the component (C) for the purpose of improving the hardness of the hard coat layer to be formed, (B2) other than these The silicon compound {hereinafter sometimes simply referred to as component (B2)} can be blended.
 本発明で使用される(B2)成分としては、下記式(I)
Figure JPOXMLDOC01-appb-C000010
(式中、
 Rは、水素原子、又は炭素数1~5のアルキル基であり、
 Rは、炭素数1~3のアルキル基であり、
 Aは、0~2の整数である。)
で示されるケイ素化合物、及び下記式(II)
Figure JPOXMLDOC01-appb-C000011
(式中、
 Rは、炭素数1~8のアルキレン基であり、
 R、及びRは、炭素数1~3のアルキル基であり、
 R、及びRは、炭素数1~3のアルキル基であり、
 Bは、0~2の整数である。)
で示されるケイ素化合物からなる群より選ばれる少なくとも1種のケイ素化合物が好ましい。
The component (B2) used in the present invention includes the following formula (I)
Figure JPOXMLDOC01-appb-C000010
(Where
R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
R 2 is an alkyl group having 1 to 3 carbon atoms,
A is an integer of 0-2. )
And a silicon compound represented by the following formula (II)
Figure JPOXMLDOC01-appb-C000011
(Where
R 3 is an alkylene group having 1 to 8 carbon atoms,
R 4 and R 5 are alkyl groups having 1 to 3 carbon atoms,
R 6 and R 7 are alkyl groups having 1 to 3 carbon atoms,
B is an integer of 0-2. )
Of these, at least one silicon compound selected from the group consisting of silicon compounds is preferred.
 前記式(I)で示されるケイ素化合物において、Rは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基などである。中でも、メチル基、エチル基が好ましい。また、Rは、メチル基、エチル基、プロピル基、イソプロピル基などであり、メチル基、またはエチル基が好ましい。さらに、加水分解性基が多い方が、硬度が高くなる傾向にあるため、Aは、0又は1であることが好ましい。 In the silicon compound represented by the formula (I), R 1 is a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, or the like. Of these, a methyl group and an ethyl group are preferable. R 2 is a methyl group, an ethyl group, a propyl group, an isopropyl group or the like, and is preferably a methyl group or an ethyl group. Furthermore, since the more hydrolyzable groups tend to increase the hardness, A is preferably 0 or 1.
 前記式(II)で示されるケイ素化合物において、Rは、直鎖状、または分岐状のアルキレン基であってもよく、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基などであり、特に、メチレン基、エチレン基、プロピレン基、ブチレン基が好ましい。R、及びRは、メチル基、エチル基、プロピル基、イソプロピル基などであり、中でも、メチル基、エチル基が好ましい。また、R、及びRは、メチル基、エチル基、プロピル基、イソプロピル基などであり、中でも、メチル基、エチル基が好ましい。 In the silicon compound represented by the formula (II), R 3 may be a linear or branched alkylene group, specifically, a methylene group, an ethylene group, a propylene group, a butylene group, or pentylene. Group, hexylene group, heptylene group, octylene group and the like, and a methylene group, an ethylene group, a propylene group, and a butylene group are particularly preferable. R 4 and R 5 are a methyl group, an ethyl group, a propyl group, an isopropyl group, and the like, and among them, a methyl group and an ethyl group are preferable. R 6 and R 7 are a methyl group, an ethyl group, a propyl group, an isopropyl group, and the like, and among them, a methyl group and an ethyl group are preferable.
 前記式(I)及び(II)で示される化合物を具体的に示せば、テトラエトキシシランのようなテトラアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシランなどのメチルトリアルコキシシラン;エチルトリエトキシシラン、ジメチルジメトキシシラン、1,2-ビス(トリエトキシシリル)エタン、1,2-ビス(トリメトキシシリル)エタン、1,6-ビス(トリエトキシシリル)ヘキサン、1,6-ビス(ジエトキシメチルシリル)ヘキサン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(ジメトキシメチルシリル)ヘキサン、1,8-ビス(トリエトキシシリル)オクタン、1,8-ビス(トリメトキシシリル)オクタン、1,8-ビス(ジエトキシメチルシリル)オクタン、1-(トリエトキシシリル)-2-(ジエトキシメチルシリル)エタンなどを挙げることができる。
 特に、ハードコート層の硬度をより向上させるという観点から、加水分解性基を3つ以上有するケイ素化合物であることが好ましく、具体的には、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、1,2-ビス(トリエトキシシリル)エタンなどが好適に用いられる。前記式(I)及び(II)で示される化合物は、単独で使用することもできるし、2種以上併用することもできる。
Specific examples of the compounds represented by the formulas (I) and (II) include tetraalkoxysilanes such as tetraethoxysilane; methyltrialkoxysilanes such as methyltrimethoxysilane and methyltriethoxysilane; ethyltriethoxysilane. , Dimethyldimethoxysilane, 1,2-bis (triethoxysilyl) ethane, 1,2-bis (trimethoxysilyl) ethane, 1,6-bis (triethoxysilyl) hexane, 1,6-bis (diethoxymethyl) Silyl) hexane, 1,6-bis (trimethoxysilyl) hexane, 1,6-bis (dimethoxymethylsilyl) hexane, 1,8-bis (triethoxysilyl) octane, 1,8-bis (trimethoxysilyl) Octane, 1,8-bis (diethoxymethylsilyl) octane, 1- (triethoxysilane Le) -2-(diethoxy methyl silyl) ethane and the like.
In particular, from the viewpoint of further improving the hardness of the hard coat layer, a silicon compound having three or more hydrolyzable groups is preferable. Specifically, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane 1,2-bis (triethoxysilyl) ethane and the like are preferably used. The compounds represented by the formulas (I) and (II) can be used alone or in combination of two or more.
 〔(B2)成分の配合量〕
 (B2)成分の配合量は、(A)成分を100質量部として、10質量部以上150質量部以下であることが好ましい。(B2)成分の配合量が、上記範囲を満足することにより、形成されるハードコート層の硬度を向上することができ、さらには、コーティング剤が硬化する際に生じるクラックを低減することができる。形成されるハードコート層の硬度、クラック抑制などの観点を考慮すると、(B2)成分の配合量は、20質量部以上120質量部以下であることがより好ましい。
 複数種類の(B2)成分を使用する場合には、その合計量が上記範囲を満足すればよい。また、この(B2)成分の配合量は、加水分解されていない状態の(B2)成分の量である。
[Amount of component (B2)]
The blending amount of the component (B2) is preferably 10 parts by mass or more and 150 parts by mass or less with the component (A) as 100 parts by mass. When the blending amount of the component (B2) satisfies the above range, the hardness of the hard coat layer to be formed can be improved, and furthermore, cracks generated when the coating agent is cured can be reduced. . In view of the hardness of the hard coat layer to be formed and crack suppression, the blending amount of the component (B2) is more preferably 20 parts by mass or more and 120 parts by mass or less.
When a plurality of types of (B2) components are used, the total amount only needs to satisfy the above range. Moreover, the compounding quantity of this (B2) component is the quantity of the (B2) component of the state which is not hydrolyzed.
 (B2)成分を使用する場合、(B2)成分は、(A)成分に対して上記配合量を満足するように使用することが好ましいが、(B1)成分との配合割合が以下の範囲を満足することにより、特に、優れた効果を発揮する。すなわち、(B1)成分100質量部に対して、(B2)成分が1質量部以上150質量部以下となることが好ましく、10質量部以上120質量部以下となることがより好ましく、15質量部以上100質量部以下となることがさらに好ましい。なお、この場合も、(B1)成分と(C)成分との配合割合は、(B1)成分100質量部に対して、(C)成分が0.1質量部以上10質量部以下となることが好ましく、0.3質量部以上5.5質量部以下となることがより好ましく、0.4質量部以上5.5質量部以下となることがさらに好ましい。 When the component (B2) is used, the component (B2) is preferably used so as to satisfy the above blending amount with respect to the component (A), but the blending ratio with the component (B1) is in the following range. Satisfying the effect is particularly excellent. That is, with respect to 100 parts by mass of component (B1), the component (B2) is preferably 1 part by mass or more and 150 parts by mass or less, more preferably 10 parts by mass or more and 120 parts by mass or less, and 15 parts by mass. More preferably, the amount is 100 parts by mass or less. In this case as well, the blending ratio of the component (B1) and the component (C) is such that the component (C) is 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the component (B1). Is more preferably 0.3 parts by mass or more and 5.5 parts by mass or less, and further preferably 0.4 parts by mass or more and 5.5 parts by mass or less.
 本発明のコーティング組成物には、通常のコーティング組成物に使用される公知の成分、具体的には、水、硬化触媒、水溶性有機溶媒、添加剤等を配合することができる。 In the coating composition of the present invention, known components used in ordinary coating compositions, specifically, water, curing catalyst, water-soluble organic solvent, additives and the like can be blended.
 〔水〕
 本発明のコーティング組成物では、前記(B1)成分、及び必要に応じて配合される(B2)成分が加水分解し、この加水分解物が(A)成分を取り込んだ状態で重合硬化(重縮合)してマトリックスとなる硬化体を形成し、(A)成分が緻密にマトリックス中に分散したハードコート層を形成する。このコート層を形成するためには、(B1)、(B2)各成分の加水分解を促進させるために、水を配合することが好ましい。
〔water〕
In the coating composition of the present invention, the component (B1) and the component (B2) blended as necessary are hydrolyzed, and the hydrolyzate is polymerized and cured (polycondensation) with the component (A) incorporated. ) To form a cured body to be a matrix, and a hard coat layer in which the component (A) is densely dispersed in the matrix is formed. In order to form this coat layer, it is preferable to add water in order to promote hydrolysis of the components (B1) and (B2).
 このような水の配合量は、本発明で使用する(B1)、及び(B2)成分の合計質量100質量部当り、好ましくは10質量部以上100質量部以下、さらに好ましくは15質量部以上90質量部以下、特に好ましくは15質量部以上80質量部以下である。なお、(B2)成分を使用しない場合には、前記水の配合量は、(B1)成分のみの量を100質量部とする。また、前記水の配合量は、(B1)、(B2)各成分が加水分解されていない状態のものを基準とする。
 水の量が少なすぎると、(B1)、(B2)各成分の加水分解が十分に進行せず、得られるハードコート層の耐擦傷性が低下する傾向にあり、また、得られるコーティング剤の保存安定等の特性が低下するおそれがある。水の量が多すぎると、均一な厚みのハードコート層の形成が困難となり、光学特性に悪影響を与えるおそれがある。なお、(C)成分がケチミン基含有ケイ素化合物である場合、この(C)成分も加水分解されるが、(C)成分の配合量は、(B1)成分の配合量に比べて少ないため、上記配合量の水で十分に加水分解することができる。
The amount of such water is preferably 10 parts by mass or more and 100 parts by mass or less, more preferably 15 parts by mass or more and 90 parts by mass per 100 parts by mass of the total mass of the components (B1) and (B2) used in the present invention. It is 15 parts by mass or less and particularly preferably 80 parts by mass or less. In addition, when not using (B2) component, the compounding quantity of the said water makes the quantity of only (B1) component 100 mass parts. Moreover, the blending amount of the water is based on that in which the components (B1) and (B2) are not hydrolyzed.
If the amount of water is too small, hydrolysis of each component (B1) and (B2) does not proceed sufficiently, and the scratch resistance of the resulting hard coat layer tends to decrease. Properties such as storage stability may be reduced. If the amount of water is too large, it is difficult to form a hard coat layer having a uniform thickness, which may adversely affect optical properties. In addition, when (C) component is a ketimine group-containing silicon compound, this (C) component is also hydrolyzed, but since the blending amount of (C) component is smaller than the blending amount of (B1) component, It can be sufficiently hydrolyzed with the above amount of water.
 先に述べた通り、前記(A)成分は、水に分散させた分散液(ゾル)の形態で使用されることがある。このような場合には、上記水の配合量には、この分散液に使用されている水の量を含むものとする。例えば、(A)成分を使用する際に、分散液に含まれる水の量が、前記水の配合量の範囲を満足している場合には、さらに水をコーティング組成物に配合する必要ない。一方、前記水の配合量の範囲に満たない場合には、さらに水を添加する。 As described above, the component (A) may be used in the form of a dispersion (sol) dispersed in water. In such a case, the amount of water used includes the amount of water used in the dispersion. For example, when the component (A) is used, if the amount of water contained in the dispersion satisfies the range of the amount of water, it is not necessary to add water to the coating composition. On the other hand, when the water content is less than the range, water is further added.
 また、本発明で使用される水は、(B1)、(B2)成分の加水分解を促進するため、酸水溶液とすることもできる。この場合、酸分は少ないため、酸水溶液の量を水の配合量とすることができる。
 酸水溶液を具体的に例示すれば、塩酸、硫酸、硝酸、燐酸等の無機酸、または酢酸、プロピオン酸等の有機酸の水溶液を使用できる。これらの中でも、コーティング組成物の保存安定性、加水分解性の観点から、塩酸及び酢酸が好適に使用される。酸水溶液の濃度は、0.001~0.5N、特に0.01~0.1Nであるのが好適である。なお、水と酸水溶液の両方を使用する場合には、水と酸水溶液との合計質量が、前記水の配合量を満足すればよい。
Moreover, since the water used by this invention accelerates | stimulates the hydrolysis of (B1) and (B2) component, it can also be made into acid aqueous solution. In this case, since there is little acid content, the quantity of aqueous acid solution can be made into the compounding quantity of water.
Specifically, an aqueous acid solution such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or an organic acid such as acetic acid or propionic acid can be used. Among these, hydrochloric acid and acetic acid are preferably used from the viewpoints of storage stability and hydrolyzability of the coating composition. The concentration of the acid aqueous solution is preferably 0.001 to 0.5N, particularly 0.01 to 0.1N. In addition, when using both water and acid aqueous solution, the total mass of water and acid aqueous solution should just satisfy the compounding quantity of the said water.
 〔硬化触媒〕
 本発明のコーティング組成物には、下記の硬化触媒を配合することができる。硬化触媒は、前記(B1)成分、(C)ケチミン基含有ケイ素化合物、及び必要に応じて配合する(B2)成分の、各加水分解物の縮合(重合硬化)を促進させるために使用される。
 具体的には、アセチルアセトナート錯体、過塩素酸塩、有機金属塩、各種ルイス酸が使用され、これらは1種単独で使用することもできるし、2種以上を併用することもできる。これら硬化触媒を使用することにより、ハードコート層をより硬くすることができる。
[Curing catalyst]
The following curing catalyst can be mix | blended with the coating composition of this invention. The curing catalyst is used to promote condensation (polymerization curing) of each hydrolyzate of the component (B1), the (C) ketimine group-containing silicon compound, and the component (B2) to be blended as necessary. .
Specifically, an acetylacetonate complex, a perchlorate, an organic metal salt, and various Lewis acids are used, and these can be used alone or in combination of two or more. By using these curing catalysts, the hard coat layer can be made harder.
 アセチルアセトナート錯体としては、例えば特開平11-119001号公報に記されているもの、具体的には、アルミニウムアセチルアセトナート、リチウムアセチルアセトナート、インジウムアセチルアセトナート、クロムアセチルアセトナート、ニッケルアセチルアセトナート、チタニウムアセチルアセトナート、鉄アセチルアセトナート、亜鉛アセチルアセトナート、コバルトアセチルアセトナート、銅アセチルアセトナート、ジルコニウムアセチルアセトナート等を挙げることができる。これらの中では、アルミニウムアセチルアセトナート、チタニウムアセチルアセトナートが好適である。
 過塩素酸塩としては、過塩素酸マグネシウム、過塩素酸アルミニウム、過塩素酸亜鉛、過塩素酸アンモニウム等を例示することができる。
 有機金属塩としては、酢酸ナトリウム、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸亜鉛等を例示することができる。
 ルイス酸としては、塩化第二錫、塩化アルミニウム、塩化第二鉄、塩化チタン、塩化亜鉛、塩化アンチモン等を例示することができる。
 比較的低温でも短時間で耐擦傷性の高いハードコート層が得られ、且つ、コーティング組成物の保存安定性が優れるという観点から、硬化触媒として、アセチルアセトナート錯体、或いは過塩素酸塩を使用することが好適である。中でも、硬化触媒の50質量%以上、特に70質量%以上、最適には硬化触媒の全量が、アセチルアセトナート錯体、または過塩素酸塩であることが好ましい。
Examples of the acetylacetonate complex include those described in JP-A-11-119011, specifically, aluminum acetylacetonate, lithium acetylacetonate, indium acetylacetonate, chromium acetylacetonate, nickel acetylacetate. Examples thereof include narate, titanium acetylacetonate, iron acetylacetonate, zinc acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, and zirconium acetylacetonate. Among these, aluminum acetylacetonate and titanium acetylacetonate are preferable.
Examples of the perchlorate include magnesium perchlorate, aluminum perchlorate, zinc perchlorate, and ammonium perchlorate.
Examples of the organic metal salt include sodium acetate, zinc naphthenate, cobalt naphthenate, and zinc octylate.
Examples of Lewis acids include stannic chloride, aluminum chloride, ferric chloride, titanium chloride, zinc chloride, and antimony chloride.
From the viewpoint that a hard coat layer having high scratch resistance can be obtained in a short time even at a relatively low temperature, and the storage stability of the coating composition is excellent, an acetylacetonate complex or perchlorate is used as a curing catalyst. It is preferable to do. Among them, it is preferable that 50% by mass or more of the curing catalyst, particularly 70% by mass or more, and optimally the entire amount of the curing catalyst is an acetylacetonate complex or a perchlorate.
 前記硬化触媒は、より硬いハードコート層を得るという観点から、前記(A)成分の配合量100質量部当たり、0.5質量部以上15質量部以下、特に1質量部以上13質量部以下の範囲の量で使用されることが好ましい。なお、2種類以上硬化触媒を使用する場合には、合計量が前記範囲を満足すればよい。 From the viewpoint of obtaining a harder hard coat layer, the curing catalyst is 0.5 parts by mass or more and 15 parts by mass or less, particularly 1 part by mass or more and 13 parts by mass or less per 100 parts by mass of the component (A). It is preferably used in amounts in the range. In addition, when using 2 or more types of curing catalysts, the total amount should just satisfy the said range.
 〔水溶性有機溶媒〕
 本発明のコーティング組成物には、水溶性有機溶媒を添加することができる。本発明において、水溶性有機溶媒とは、水に対する25℃における溶解度が10質量%以上、好ましくは50質量%以上の有機溶媒を指す。
 水溶性有機溶媒は、(B1)成分、(C)成分、及び必要応じて配合する(B2)成分の溶剤となり、且つ(A)成分の分散媒となるものである。このような水溶性有機溶媒の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、t-ブチルアルコール、2-ブタノール、ジアセトンアルコール等のアルコール類;酢酸メチル等の低級カルボン酸の低級アルコールエステル類;セロソルブ、ジオキサン、エチレングリコールモノイソプロピルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトンなどのケトン類が挙げられる。これら有機溶媒は単独もしくは2種以上混合して使用することができる。
 コーティング剤を塗布して硬化させる際に容易に蒸発し、平滑なハードコート層が形成されるという観点から、特にメタノール、イソプロパノール、t-ブチルアルコール、ジアセトンアルコール、エチレングリコールモノイソプロピルエーテル、アセチルアセトンを使用することが好ましい。また、このような水溶性有機溶媒の一部は、先に述べたように、(A)成分の分散媒として、予め無機酸化物微粒子と混合しておくこともできる。
(Water-soluble organic solvent)
A water-soluble organic solvent can be added to the coating composition of the present invention. In the present invention, the water-soluble organic solvent means an organic solvent having a solubility in water at 25 ° C. of 10% by mass or more, preferably 50% by mass or more.
The water-soluble organic solvent serves as a solvent for the component (B1), the component (C), and the component (B2) to be blended as necessary, and a dispersion medium for the component (A). Specific examples of such water-soluble organic solvents include alcohols such as methanol, ethanol, propanol, isopropanol, t-butyl alcohol, 2-butanol and diacetone alcohol; lower alcohol esters of lower carboxylic acids such as methyl acetate. Ethers such as cellosolve, dioxane and ethylene glycol monoisopropyl ether; ketones such as acetone, methyl ethyl ketone and acetylacetone. These organic solvents can be used alone or in admixture of two or more.
From the viewpoint of easily evaporating when a coating agent is applied and cured to form a smooth hard coat layer, methanol, isopropanol, t-butyl alcohol, diacetone alcohol, ethylene glycol monoisopropyl ether, acetylacetone are particularly used. It is preferable to use it. In addition, as described above, a part of such a water-soluble organic solvent can be mixed with inorganic oxide fine particles in advance as a dispersion medium for the component (A).
 水溶性有機溶媒の使用量は、特に限定されないが、保存安定性と十分な耐擦傷性を得るために、前記(A)成分の配合量100質量部当たり、好ましくは200質量部以上1000質量部以下、より好ましくは250質量部以上800質量部以下の範囲とする。なお、該水溶性有機溶媒の配合量は、(B1)成分、(C)ケチミン基含有ケイ素化合物、及び(B2)成分が、各々加水分解して生じたアルコールは含まない量である。また、2種類以上の水溶性有機溶媒を併用する場合には、合計量が前記範囲を満足すればよい。 The amount of the water-soluble organic solvent used is not particularly limited, but in order to obtain storage stability and sufficient scratch resistance, it is preferably 200 parts by mass or more and 1000 parts by mass per 100 parts by mass of the component (A). Hereinafter, more preferably, the range is 250 parts by mass or more and 800 parts by mass or less. In addition, the compounding quantity of this water-soluble organic solvent is the quantity which does not contain the alcohol which (B1) component, (C) ketimine group containing silicon compound, and (B2) component produced | generated by hydrolysis, respectively. Moreover, when using together 2 or more types of water-soluble organic solvents, the total amount should just satisfy the said range.
 〔その他の添加剤成分〕
 本発明のコーティング組成物には、ハードコート層とプラスチックレンズ基材との密着性を向上、安定させる目的で環状ケトン化合物を添加することもできる。具体的には、N-メチルピロリドン、ε-カプロラクタム、γ-ブチロラクトン、1-ビニル-2-ピロリドン、イソホロン、シクロヘキサノン、メチルシクロヘキサノンなどが挙げられる。これら環状ケトン化合物の配合量は、(A)成分の配合量100質量部に対して、0.1質量部以上5質量部以下とすることが好ましい。
[Other additive components]
A cyclic ketone compound can also be added to the coating composition of the present invention for the purpose of improving and stabilizing the adhesion between the hard coat layer and the plastic lens substrate. Specific examples include N-methylpyrrolidone, ε-caprolactam, γ-butyrolactone, 1-vinyl-2-pyrrolidone, isophorone, cyclohexanone, methylcyclohexanone, and the like. The compounding amount of these cyclic ketone compounds is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the component (A).
 また、本発明で使用されるコーティング組成物には、プラスチックレンズ基材とハードコート層との密着性を向上させる目的で、4級アンモニウム塩を添加することもできる。4級アンモニウム塩を添加することにより、上記効果が得られる作用機構は明確ではないが、4級アンモニウム塩が(B1)エポキシ基含有ケイ素化合物のエポキシ基の反応を促進する反応触媒としての機能、及び界面活性剤としての機能を有することから、このような機能に起因して密着性が向上するものと考えられる。
 4級アンモニウム塩としては、窒素に炭素数1~4のアルキル基が置換したものが好ましく、対イオンとしてハロゲン原子を有するものが好ましい。このような4級アンモニウム塩を具体的に例示すると、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラ-n-ブチルアンモニウムクロライド、テトラ-n-ブチルアンモニウムブロマイド、ジメチルジイソプロピルアンモニウムクロライド、テトラ-n-ブチルアンモニウムアセテート、テトライソプロピルアンモニウムクロライドなどが挙げられる。その中でも、入手の容易さ、及び密着性の向上効果の観点から、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラ-n-ブチルアンモニウムクロライド、テトラ-n-ブチルアンモニウムブロマイドが好適に用いられる。
 この4級アンモニウム塩の配合量は、(A)成分の配合量100質量部に対して、0.1質量部以上1質量部以下とすることが好ましい。該4級アンモニウム塩は、コーティング組成物中に微量含まれていればよく、1質量部を超える場合には、ハードコート層の白化を生じる場合があり好ましくない。
Further, a quaternary ammonium salt can be added to the coating composition used in the present invention for the purpose of improving the adhesion between the plastic lens substrate and the hard coat layer. Although the mechanism of action by which the above effect is obtained by adding a quaternary ammonium salt is not clear, the function as a reaction catalyst in which the quaternary ammonium salt accelerates the reaction of the epoxy group of the (B1) epoxy group-containing silicon compound, In addition, since it has a function as a surfactant, it is considered that the adhesion is improved due to such a function.
As the quaternary ammonium salt, those in which an alkyl group having 1 to 4 carbon atoms is substituted for nitrogen are preferable, and those having a halogen atom as a counter ion are preferable. Specific examples of such quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, dimethyldiisopropylammonium chloride, tetra-n-butyl. Examples thereof include ammonium acetate and tetraisopropylammonium chloride. Among these, tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium chloride, and tetra-n-butylammonium bromide are preferably used from the viewpoint of easy availability and an effect of improving adhesion.
The amount of the quaternary ammonium salt is preferably 0.1 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the component (A). The quaternary ammonium salt only needs to be contained in a trace amount in the coating composition, and when it exceeds 1 part by mass, the hard coat layer may be whitened, which is not preferable.
 更に、本発明の目的を損なわない限り、通常、ハードコー層形成用のコーティング組成物に配合されるその他の添加剤を配合することができる。このような添加剤の例としては、界面活性剤、酸化防止剤、ラジカル補足剤、紫外線安定剤、紫外線吸収剤、離型剤、着色防止剤、帯電防止剤、蛍光染料、染料、顔料、香料、可塑剤等を挙げることができる。 Furthermore, as long as the object of the present invention is not impaired, other additives that are usually blended in the coating composition for forming the hard coat layer can be blended. Examples of such additives include surfactants, antioxidants, radical scavengers, UV stabilizers, UV absorbers, mold release agents, anti-coloring agents, antistatic agents, fluorescent dyes, dyes, pigments, and fragrances. And plasticizers.
 例えば、界面活性剤としては、ノニオン系、アニオン系、カチオン系の何れも使用できるが、プラスチックレンズ基材への濡れ性の観点からノニオン系界面活性剤を用いるのが好ましい。
 好適に使用できるノニオン系界面活性剤を具体的に挙げると、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、デカグリセリン脂肪酸エステル、プロピレングリコール・ペンタエリスリトール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンフィトステロール・フィトスタノール、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油・硬化ヒマシ油、ポリオキシエチレンラノリン・ラノリンアルコール・ミツロウ誘導体、ポリオキシエチレンアルキルアミン・脂肪酸アミド、ポリオキシエチレンアルキルフェニルホルムアルデヒド縮合物、単一鎖ポリオキシエチレンアルキルエーテル等を挙げることができる。界面活性剤の使用に当たっては、2種以上を混合して使用しても良い。界面活性剤の添加量は、(A)無機酸化物微粒子の配合量100質量部当たり、0.01~2.0質量部の範囲が好ましい。
For example, as the surfactant, any of a nonionic surfactant, an anionic surfactant, and a cationic surfactant can be used, but a nonionic surfactant is preferably used from the viewpoint of wettability to a plastic lens substrate.
Specific examples of nonionic surfactants that can be suitably used include sorbitan fatty acid ester, glycerin fatty acid ester, decaglycerin fatty acid ester, propylene glycol / pentaerythritol fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester , Polyoxyethylene glycerin fatty acid ester, polyethylene glycol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene phytosterol / phytostanol, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene castor oil / cured Castor oil, polyoxyethylene lanolin, lanolin alcohol, beeswax derivative, poly Alkoxy polyoxyethylene alkyl amine fatty acid amides, polyoxyethylene alkylphenyl formaldehyde condensates, can be mentioned a single-chain polyoxyethylene alkyl ethers. In using the surfactant, two or more kinds may be mixed and used. The addition amount of the surfactant is preferably in the range of 0.01 to 2.0 parts by mass per 100 parts by mass of the (A) inorganic oxide fine particles.
 また、ヒンダードフェーノール酸化防止剤などの酸化防止剤、フェノール系ラジカル捕捉剤などのラジカル捕捉剤、ベンゾエート系化合物等の紫外線安定剤、ベンゾトリアゾール系化合物やベンゾフェノン系化合物などの紫外線吸収剤等を好適に配合できる。これらの添加剤の配合量は、(A)無機酸化物微粒子の配合量100質量部当たり、0.1~2質量部の範囲が好ましい。 In addition, antioxidants such as hindered phenol antioxidants, radical scavengers such as phenol radical scavengers, UV stabilizers such as benzoate compounds, UV absorbers such as benzotriazole compounds and benzophenone compounds, etc. It can mix | blend suitably. The amount of these additives is preferably in the range of 0.1 to 2 parts by mass per 100 parts by mass of the (A) inorganic oxide fine particles.
 染料、顔料は、光学基材を着色するために使用されるものであり、ニトロソ染料、ニトロ染料、アゾ染料、スチルベンゾアゾ染料、ケトイミン染料、トリフェニルメタン染料、キサンテン染料、アクリジン染料、キノリン染料、メチン染料、ポリメチン染料、チアゾール染料、インダミン染料、インドフェノール染料、アジン染料、オキサジン染料、チアジン染料、硫化染料、アミノケトン染料、オキシケトン染料、アントラキノン染料、ペリノン系染料、インジゴイド染料、フタロシアニン染料、アゾ系顔料、アントラキノン系顔料、フタロシアニン系顔料、ナフタロシアニン系顔料、キナクリドン系顔料、ジオキサジン系顔料、インジゴイド系顔料、トリフェニルメタン系顔料、キサンテン系顔料等を挙げることができる。
 染料、顔料の使用に当たっては、着色すべき基材の色濃度によってその使用量が、適宜決定される。そのため、一概に限定できないが、その使用量は、(A)無機酸化物微粒子の配合量100質量部当たり、0.001~1質量部の範囲が好ましい。
Dyes and pigments are used to color optical substrates. Nitroso dyes, nitro dyes, azo dyes, stilbenzoazo dyes, ketoimine dyes, triphenylmethane dyes, xanthene dyes, acridine dyes, quinoline dyes , Methine dye, polymethine dye, thiazole dye, indamine dye, indophenol dye, azine dye, oxazine dye, thiazine dye, sulfur dye, aminoketone dye, oxyketone dye, anthraquinone dye, perinone dye, indigoid dye, phthalocyanine dye, azo series Examples thereof include pigments, anthraquinone pigments, phthalocyanine pigments, naphthalocyanine pigments, quinacridone pigments, dioxazine pigments, indigoid pigments, triphenylmethane pigments, and xanthene pigments.
When using dyes and pigments, the amount used is appropriately determined according to the color density of the substrate to be colored. Therefore, although it cannot be generally limited, the amount used is preferably in the range of 0.001 to 1 part by mass per 100 parts by mass of the (A) inorganic oxide fine particles.
 次に、上記成分を含むコーティング組成物を混合して、コーティング剤を製造する方法について説明する。
<コーティング剤の製造方法>
 前記コーティング組成物から得られるコーティング剤は、所定量の各成分を秤取り混合することにより製造することができる。各成分の混合順序は、特に限定されず、全ての成分を同時に混合することもできるが、白濁することなく、調合初期から長期にわたる安定した物性が得られるコーティング剤とするためには、加水分解前の(B1)成分と(C)成分とが直接接触しない順序で各成分を混合することが好ましい。具体的には、(B1)成分の加水分解物及び(A)成分が予め混合された混合物と(C)成分とを混合する方法、或いは、(A)成分及び(C)成分が予め混合された混合物と(B1)成分の加水分解物とを混合する方法が採用される。以下、これら混合方法について説明する。
Next, a method for producing a coating agent by mixing a coating composition containing the above components will be described.
<Manufacturing method of coating agent>
The coating agent obtained from the coating composition can be produced by weighing and mixing a predetermined amount of each component. The mixing order of each component is not particularly limited, and all components can be mixed at the same time. However, in order to obtain a coating agent capable of obtaining stable physical properties from the beginning of preparation without prolonged turbidity, hydrolysis is required. It is preferable to mix the components in the order in which the previous component (B1) and component (C) are not in direct contact. Specifically, a method in which the hydrolyzate of component (B1) and the component (A) are mixed in advance and the component (C) are mixed, or the component (A) and component (C) are mixed in advance. The method of mixing the mixture and the hydrolyzate of component (B1) is employed. Hereinafter, these mixing methods will be described.
 〔(B1)成分の加水分解物及び(A)成分が混合された混合物と(C)成分とを混合する方法〕
 (B1)成分の加水分解物及び(A)成分が混合された混合物は、(B1)エポキシ基含有ケイ素化合物を水、又は酸水溶液などにより加水分解した後に(A)無機酸化物微粒子を混合するか、或いは(A)無機酸化物微粒子を水または水溶性有機溶媒へ分散した分散液と(B1)成分とを混合し、(B1)成分の加水分解と両成分の混合を同時に行うことにより得ることできる。
 この(B1)成分の加水分解物と(A)成分との混合物を得る際には、ハードコート層の物性に悪影響を与えず、且つ得られたコーティング剤の保存安定性を低下させないようにするため、10~40℃の温度で5~72時間混合を行うことが好ましい。この条件であれば、(B1)成分を十分に加水分解できる。(B1)成分の加水分解の終了は、加水分解時に生じるアルコール量を確認すればよい。
 次いで、上記混合物と(C)成分を混合することにより、コーティング剤が製造される。この際、(B1)成分の加水分解が十分に行われておらず、また(A)成分と(B1)成分の混合・反応が不十分な場合には、白濁や沈降物を生じる場合がある。この理由は明らかではないが、(C)成分の加水分解により生じるアミノ基が(B1)成分の加水分解により生じるシラノール基の縮合を、局所的に一気に促進するため、高分子量成分が生成することが原因と推定している。そのため、(B1)成分が加水分解された後、(C)成分を混合することにより、コーティング剤製造時の安定性を高めることができる。なお、(B2)成分を使用する場合には、(B1)成分と同じタイミングで加水分解を行う。
[Method of Mixing Component (C1) with Mixture of Component (B1) Hydrolyzate and Component (A)]
(B1) The hydrolyzate of component and the mixture of component (A) are mixed with (B1) epoxy group-containing silicon compound with water or an aqueous acid solution, and then mixed with (A) inorganic oxide fine particles. Or (A) A dispersion obtained by dispersing inorganic oxide fine particles in water or a water-soluble organic solvent and (B1) component are mixed, and (B1) component is hydrolyzed and both components are mixed at the same time. I can.
When obtaining a mixture of the hydrolyzate of component (B1) and component (A), the physical properties of the hard coat layer are not adversely affected, and the storage stability of the resulting coating agent is not reduced. Therefore, it is preferable to perform mixing at a temperature of 10 to 40 ° C. for 5 to 72 hours. Under this condition, the component (B1) can be sufficiently hydrolyzed. The end of hydrolysis of the component (B1) may be confirmed by the amount of alcohol generated during hydrolysis.
Subsequently, a coating agent is manufactured by mixing the said mixture and (C) component. At this time, if the (B1) component is not sufficiently hydrolyzed, and if the mixing and reaction of the (A) component and the (B1) component is insufficient, white turbidity and sediment may occur. . The reason for this is not clear, but the amino group produced by the hydrolysis of component (C) locally promotes the condensation of the silanol groups produced by the hydrolysis of component (B1), so that a high molecular weight component is produced. Is presumed to be the cause. Therefore, after (B1) component is hydrolyzed, the stability at the time of coating agent manufacture can be improved by mixing (C) component. In addition, when using (B2) component, it hydrolyzes at the same timing as (B1) component.
 本発明において必要に応じて添加される水、硬化触媒、水溶性有機溶剤、及びその他添加剤を混合する順序は、特に限定されず、全ての成分を同時に混合することもできるが、水は、(B1)成分、(B2)成分を加水分解する際に混合することが好ましい。水溶性有機溶剤、及びその他添加剤は、(B1)成分、(B2)成分を加水分解する前後に混合してもよいし、又は(B1)成分の加水分解物と(A)成分との混合物に混合してもよい。また、硬化触媒は、(B1)成分、(B2)成分の加水分解後に混合してもよいし、或いは、(B1)成分、(B2)成分の加水分解物に(A)成分や水溶性有機溶剤を添加した後に混合してもよい。(C)成分は、上記成分全てを混合した後に、混合されることが最も好ましい。 The order of mixing water, curing catalyst, water-soluble organic solvent, and other additives added as necessary in the present invention is not particularly limited, and all components can be mixed at the same time. It is preferable to mix when the component (B1) and the component (B2) are hydrolyzed. The water-soluble organic solvent and other additives may be mixed before and after hydrolyzing the component (B1) and the component (B2), or a mixture of the hydrolyzate of the component (B1) and the component (A). May be mixed. The curing catalyst may be mixed after the hydrolysis of the component (B1) and the component (B2), or the hydrolyzate of the component (B1) and the component (B2) may be mixed with the component (A) or a water-soluble organic compound. You may mix after adding a solvent. The component (C) is most preferably mixed after all the above components are mixed.
 〔(A)成分及び(C)成分が混合された混合物と(B1)成分の加水分解物を混合する方法〕
 (A)成分と(C)成分との混合物は、(A)無機酸化物微粒子を水または水溶性有機溶媒へ分散した分散液と(C)成分とを混合することにより得ることができる。(C)成分の加水分解を抑制するために、(A)成分の分散媒としては水溶性有機溶媒を使用することが好ましい。
 一方、(B1)成分の加水分解物は、公知の方法、例えば、水(酸性水溶液)中に(B1)成分を添加、混合することにより得ることができる。加水分解の終了は、加水分解時に生じるアルコール量を確認すればよい。なお、(B2)成分を使用する場合には、(B1)成分、(B2)成分を同時に加水分解することが好ましい。
[Method of mixing the mixture of component (A) and component (C) and the hydrolyzate of component (B1)]
The mixture of the component (A) and the component (C) can be obtained by mixing the dispersion (A) in which the inorganic oxide fine particles are dispersed in water or a water-soluble organic solvent and the component (C). In order to suppress hydrolysis of the component (C), it is preferable to use a water-soluble organic solvent as the dispersion medium of the component (A).
On the other hand, the hydrolyzate of the component (B1) can be obtained by a known method, for example, by adding and mixing the component (B1) in water (acidic aqueous solution). The completion of hydrolysis may be confirmed by the amount of alcohol generated during hydrolysis. In addition, when using (B2) component, it is preferable to hydrolyze (B1) component and (B2) component simultaneously.
 このようにして得られた(A)成分及び(C)成分の混合物と、(B1)成分の加水分解物とを混合してコーティング剤とする。この際、必要に応じて添加される水、硬化触媒、水溶性有機溶媒、及びその他の添加剤を混合する順序は、特に制限されるものではないが、水は、(B1)成分、(B2)成分を加水分解する際に混合することが好ましい。水溶性有機溶剤、及びその他添加剤は、(B1)成分、(B2)成分を加水分解する前後に混合することもできるし、(A)成分と(C)成分とを混合する前後に混合することもできるし、又は(A)成分及び(C)成分の混合物と、(B1)成分の加水分解物とを混合した後に混合することもできる。水溶性有機溶剤は、(A)成分の分散媒として使用して(C)成分と混合するか、或いは(A)成分と(C)成分とを混合した後、これに水溶性有機溶媒を添加することが好ましい。また、硬化触媒は、(A)成分、及び(C)成分の混合物と、(B1)成分の加水分解物とを混合した後、混合することが好ましい。 The mixture of the component (A) and the component (C) thus obtained and the hydrolyzate of the component (B1) are mixed to obtain a coating agent. At this time, the order of mixing water, curing catalyst, water-soluble organic solvent, and other additives added as necessary is not particularly limited, but water is (B1) component, (B2 It is preferable to mix when hydrolyzing the component. The water-soluble organic solvent and other additives can be mixed before and after hydrolyzing the component (B1) and the component (B2), or mixed before and after the components (A) and (C) are mixed. Alternatively, the mixture of the component (A) and the component (C) and the hydrolyzate of the component (B1) may be mixed and then mixed. The water-soluble organic solvent is used as a dispersion medium for the component (A) and mixed with the component (C), or after the components (A) and (C) are mixed, the water-soluble organic solvent is added thereto. It is preferable to do. Moreover, it is preferable that a curing catalyst mixes, after mixing the mixture of (A) component and (C) component, and the hydrolyzate of (B1) component.
 以上の方法を採用することにより、ハードコート層の物性に悪影響を与えず、且つコーティング剤自体の安定性も向上させることができる。特に、連続してコーティング剤を製造することを考慮すると、希釈された状態の(C)成分を(B1)成分の加水分解物とを混合することが好ましいため、(A)成分及び(C)成分が予め混合された混合物と(B1)成分の加水分解物とを混合する方法が好適に採用される。 By adopting the above method, the physical properties of the hard coat layer are not adversely affected, and the stability of the coating agent itself can be improved. In particular, considering that the coating agent is continuously produced, it is preferable to mix the diluted component (C) with the hydrolyzate of component (B1), so that component (A) and component (C) A method of mixing a mixture in which components are mixed in advance and a hydrolyzate of component (B1) is preferably employed.
 このように混合して得られるコーティング剤中の固形分濃度は、特に制限されるものではないが、コーティング剤の全質量中、15質量%以上50質量%以下、好適には20質量%以上40質量%以下である。 The solid content concentration in the coating agent obtained by mixing in this way is not particularly limited, but is 15% by mass to 50% by mass, preferably 20% by mass to 40% by mass in the total mass of the coating agent. It is below mass%.
<プラスチック製光学基材>
 次に、得られたコーティング剤を塗布するプラスチックレンズなどの光学基材について説明する。
 本発明のコーティング組成物は、眼鏡レンズ、カメラレンズ、液晶ディスプレーなどのプラスチック製光学基材表面へのハードコート層の形成に適用されるが、中でも眼鏡レンズの用途に好適に使用される。
<Optical substrate made of plastic>
Next, an optical substrate such as a plastic lens on which the obtained coating agent is applied will be described.
The coating composition of the present invention is applied to the formation of a hard coat layer on the surface of a plastic optical substrate such as an eyeglass lens, a camera lens, or a liquid crystal display, and is particularly preferably used for an eyeglass lens.
 眼鏡レンズなどのプラスチックレンズに使用されるプラスチックの種類は、特に制限されず、例えば、(メタ)アクリル系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、アリル系樹脂、ウレタン系樹脂およびチオエポキシ系樹脂等の公知の樹脂を挙げることができる。本発明のコーティング組成物は、これら樹脂表面に形成するハードコート層としてなんら制限なく適用できる。
 本発明のコーティング組成物より得られるコーティング剤は、特に、(メタ)アクリル系樹脂、及びウレタン系樹脂との密着性をより向上させることが出来る。その理由は前述のように、本発明で添加する(C)ケチミン化合物が加水分解して生じるアミノ基が、アルカリ処理などの前処理などで活性化されたプラスチックレンズ基材表面に生じる官能基と反応することにより、高い密着性が得られると推定している。特に、(メタ)アクリル系樹脂を含むプラスチック製光学基材に対しては、(メタ)アクリル系樹脂中に残存する(メタ)アクリロイル基と(C)成分から生じるアミノ基がマイケル付加反応により結合することで、高い密着性を発現すると考えられる。
The type of plastic used for plastic lenses such as eyeglass lenses is not particularly limited, and examples thereof include (meth) acrylic resins, epoxy resins, polycarbonate resins, allyl resins, urethane resins, and thioepoxy resins. Known resins can be mentioned. The coating composition of the present invention can be applied without any limitation as a hard coat layer formed on the resin surface.
Especially the coating agent obtained from the coating composition of this invention can improve more adhesiveness with (meth) acrylic-type resin and urethane type resin. The reason for this is that, as described above, the amino group generated by hydrolysis of the (C) ketimine compound added in the present invention is a functional group generated on the surface of a plastic lens substrate activated by pretreatment such as alkali treatment. It is estimated that high adhesion can be obtained by the reaction. In particular, for plastic optical substrates containing (meth) acrylic resins, the (meth) acryloyl group remaining in the (meth) acrylic resin and the amino group generated from the (C) component are bonded by the Michael addition reaction By doing so, it is considered that high adhesion is expressed.
 〔(メタ)アクリル系樹脂〕
 本発明のコーティング組成物は、フォトクロミック化合物を含む(メタ)アクリル系樹脂よりなるプラスチック製光学基材上のハードコート層を好適に形成できる。
 従来、(メタ)アクリル系樹脂に対しては、ハードコート層が密着しにくいことが知られている。従来、ハードコート層の密着性を向上させるために、(メタ)アクリル系樹脂中に、2-ヒドロキシエチル(メタ)アクリレート、グリシジルメタクリレート、やγ-メタクリロイルオキシプロピルトリメトキシシランなどを添加する手法が知られている。
 しかし、2-ヒドロキシエチル(メタ)アクリレートを添加すると、得られるプラスチック製光学基材の吸湿性が増加し、レンズ基材の長期保存安定性などの問題が生じる。また、グリシジルメタクリレートを、フォトクロミック化合物(特にクロメン化合物)を含む(メタ)アクリル系樹脂に添加すると、フォトクロミック化合物と相互作用し、プラスチックレンズ基材を着色するといった問題が生じる場合がある。さらに、γ-メタクリロイルオキシプロピルトリメトキシシランを添加した場合には、ガラスモールド内で得られた(メタ)アクリル系樹脂の硬化体を離型する際に、ガラスモールドから剥しにくく、ガラスモールドや(メタ)アクリル系樹脂の硬化体に割れなどが生じるといった問題点がある。
 本発明のコーティング組成物は、(メタ)アクリル系樹脂中に、2-ヒドロキシエチル(メタ)アクリレート、グリシジルメタクリレート、及びγ-メタクリロイルオキシプロピルトリメトキシシラン等のコーティング組成物の密着性を向上させる成分を、全く含まないプラスチックレンズ基材に対しても好適に用いることができる。
[(Meth) acrylic resin]
The coating composition of the present invention can suitably form a hard coat layer on a plastic optical substrate made of a (meth) acrylic resin containing a photochromic compound.
Conventionally, it is known that a hard coat layer is hardly adhered to a (meth) acrylic resin. Conventionally, there has been a method of adding 2-hydroxyethyl (meth) acrylate, glycidyl methacrylate, γ-methacryloyloxypropyltrimethoxysilane, or the like to a (meth) acrylic resin in order to improve the adhesion of the hard coat layer. Are known.
However, the addition of 2-hydroxyethyl (meth) acrylate increases the hygroscopicity of the resulting plastic optical substrate, and causes problems such as long-term storage stability of the lens substrate. In addition, when glycidyl methacrylate is added to a (meth) acrylic resin containing a photochromic compound (particularly a chromene compound), there may be a problem that the plastic lens substrate is colored by interacting with the photochromic compound. Further, when γ-methacryloyloxypropyltrimethoxysilane is added, it is difficult to peel from the glass mold when releasing the cured product of the (meth) acrylic resin obtained in the glass mold. There is a problem that cracks occur in the cured body of the (meth) acrylic resin.
The coating composition of the present invention is a component that improves the adhesion of a coating composition such as 2-hydroxyethyl (meth) acrylate, glycidyl methacrylate, and γ-methacryloyloxypropyltrimethoxysilane in a (meth) acrylic resin. Can also be suitably used for plastic lens substrates that do not contain any of the above.
 本発明において使用する(メタ)アクリル系樹脂は、特に制限されるものではないが、3官能以上の(メタ)アクリレート基を有する多官能アクリレート、及び繰り返し単位が2~15のアルキレングリコール鎖を有するジ(メタ)アクリレートを含む組成物を硬化させた(メタ)アクリル系樹脂であることが好適である。これらの(メタ)アクリレート化合物の重合体は、フォトクロミック化合物が共存した場合に、フォトクロミック化合物が構造変化しやすい自由空間が多く存在するため、発色濃度が高く、退色速度が速いフォトクロミックレンズを提供することが出来る。
 このような3官能以上の(メタ)アクリレート基を有する多官能アクリレートを具体的に例示すれば、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタントリアクリレートが挙げられる。
 また、繰り返し単位が2~15のアルキレングリコール鎖を有するジ(メタ)アクリレートとしては、平均分子量536のポリエチレングリコールジメタクリレート、平均分子量736のポリテトラメチレングリコールジメタアクリレート、平均分子量536のポリプロピレングリコールジメタクリレート、平均分子量258のポリエチレングリコールジアクリレート、平均分子量308のポリエチレングリコールジアクリレート、平均分子量522のポリエチレングリコールジアクリレート、平均分子量272のポリエチレングリコールメタクリレートアクリレート、平均分子量536のポリエチレングリコールメタクリレートアクリレート、2,2-ビス[4-メタクリロキシ・ポリエトキシ)フェニル]プロパン、2,2-ビス[4-アクリロキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-アクリロキシ・ポリエトキシ)フェニル]プロパン等が挙げられる。
 さらに、上記3官能以上の(メタ)アクリレート基を有する多官能アクリレート、及び繰り返し単位が2~15のアルキレングリコール鎖を有するジ(メタ)アクリレートを含む組成物には、他の重合性単量体を加えてもよく、たとえば、ウレタンアクリレート等の(メタ)アクリレート系単量体を加えることもできる。
The (meth) acrylic resin used in the present invention is not particularly limited, but has a polyfunctional acrylate having a (meth) acrylate group having three or more functional groups and an alkylene glycol chain having 2 to 15 repeating units. A (meth) acrylic resin obtained by curing a composition containing di (meth) acrylate is preferable. The polymers of these (meth) acrylate compounds provide a photochromic lens having a high color density and a fast fading speed because there are many free spaces where the photochromic compound is likely to undergo structural changes when the photochromic compound coexists. I can do it.
Specific examples of such a polyfunctional acrylate having a tri- or higher functional (meth) acrylate group include trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, tetramethylolmethane trimethacrylate, and tetramethylolmethane triacrylate. It is done.
Examples of the di (meth) acrylate having an alkylene glycol chain having 2 to 15 repeating units include polyethylene glycol dimethacrylate having an average molecular weight of 536, polytetramethylene glycol dimethacrylate having an average molecular weight of 736, and polypropylene glycol dimethacrylate having an average molecular weight of 536. Methacrylate, polyethylene glycol diacrylate having an average molecular weight of 258, polyethylene glycol diacrylate having an average molecular weight of 308, polyethylene glycol diacrylate having an average molecular weight of 522, polyethylene glycol methacrylate acrylate having an average molecular weight of 272, polyethylene glycol methacrylate acrylate having an average molecular weight of 536, 2,2 -Bis [4-methacryloxy polyethoxy) phenyl] propane, 2,2-bis [4-actyl Proxy-diethoxy) phenyl] propane, 2,2-bis [4- acryloxy polyethoxy) phenyl] propane.
Further, the composition containing the polyfunctional acrylate having a tri- or higher functional (meth) acrylate group and the di (meth) acrylate having an alkylene glycol chain having 2 to 15 repeating units includes other polymerizable monomers. For example, a (meth) acrylate monomer such as urethane acrylate can also be added.
 フォトクロミック化合物を含むプラスチックレンズ基材(フォトクロミックレンズ基材)は、フォトクロミック化合物が基材内部に分散された基材、或いは基材表面にフォトクロミック化合物が分散されたフォトクロミックコート層が形成された基材であってもよい。
 詳しくは、本発明のコーティング組成物は、上記(メタ)アクレート系モノマーとフォトクロミック化合物とを含む重合硬化性組成物を練り込み法でフォトクロミックレンズとした基材のハードコート層の形成に好適に使用できる。また、プラスチックレンズ基材の表面に、上記(メタ)アクレート系モノマーとフォトクロミック化合物とを含む重合硬化性組成物を塗布し、次いで、硬化させてフォトクロミックコート層を形成した基材のハードコート層の形成にも好適に使用できる。
A plastic lens base material (photochromic lens base material) containing a photochromic compound is a base material in which a photochromic compound is dispersed inside the base material, or a base material in which a photochromic coating layer in which a photochromic compound is dispersed is formed on the surface of the base material. There may be.
Specifically, the coating composition of the present invention is suitably used for forming a hard coat layer of a base material using a polymerization curable composition containing the (meth) acrylate monomer and a photochromic compound as a photochromic lens by a kneading method. it can. Further, the surface of the plastic lens substrate is coated with a polymerization curable composition containing the (meth) acrylate monomer and the photochromic compound, and then cured to form a photochromic coating layer of the hard coating layer of the substrate. It can also be suitably used for forming.
 〔ウレタン系樹脂〕
 本発明のコーティング組成物より得られるコーティング剤は、ウレタン系樹脂に対しても優れた密着性を有する。その理由としては、ウレタン系樹脂に含まれるウレタン結合部と、(C)成分の加水分解により生じたアミノ基が水素結合などの相互作用をすることにより、高い密着性を発現すると推定している。
[Urethane resin]
The coating agent obtained from the coating composition of the present invention has excellent adhesion to urethane resins. The reason is that the urethane bond part contained in the urethane-based resin and the amino group produced by hydrolysis of the component (C) interact with each other such as hydrogen bonds, thereby presuming high adhesion. .
 本発明で使用されるウレタン系樹脂は、チオール化合物とイソシアネート化合物とを反応させて得られる樹脂である。
 チオール化合物としては、例えば、1,2-エタンジチオール、1,6-ヘキサンジチオール、1,2,3-プロパントリチオール、プロパントリス(2-メルカプトアセテート)、1,3-プロパンジチオール、テトラキス(メルカプトメチル)メタン、ペタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(2-メルカプトプロピオネート)、テトラキス(2-メルカプトエチルチオメチル)プロパン、2-メルカプトエタノール、2,3-ジメルカプトプロパノール、3-メルカプト-1,2-プロパンジオール、ジ(2-メルカプトエチル)スルフィド、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-1,4-ジチアン、トリス(メルカプトメチル)イソシアヌレート、1,4-ジメルカプトシクロヘキサン、4-メルカプトフェノール、1,2-ベンゼンジチオール、1,3,5-ベンゼントリチオール、1,2-ジメルカプトメチルベンゼン、1,3-ジメルカプトメチルベンゼン、1,4-ジメルカプトメチルベンゼン、1,3,5-トリメルカプトメチルベンゼン、ビスメルカプトエチルスルフィド、1,2-ビス{(2-メルカプトエチル)チオ}-3-メルカプトプロパン、1,2-ビス(メルカプトメチルチオ)エタン、テトラキス(メルカプトエチルチオメチル)メタン等が挙げられる。
The urethane-based resin used in the present invention is a resin obtained by reacting a thiol compound and an isocyanate compound.
Examples of the thiol compound include 1,2-ethanedithiol, 1,6-hexanedithiol, 1,2,3-propanetrithiol, propanetris (2-mercaptoacetate), 1,3-propanedithiol, tetrakis (mercapto) Methyl) methane, petaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (2-mercaptopropionate), tetrakis (2-mercaptoethylthiomethyl) propane, 2-mercaptoethanol, 2,3-dimercaptopropanol, 3-mercapto-1,2-propanediol, di (2-mercaptoethyl) sulfide, 2,5-dimercapto-1,4-dithiane, 2,5-dimercaptomethyl-1,4-dithiane, tris (mercaptomethyl) ) Isocyan 1,4-dimercaptocyclohexane, 4-mercaptophenol, 1,2-benzenedithiol, 1,3,5-benzenetrithiol, 1,2-dimercaptomethylbenzene, 1,3-dimercaptomethylbenzene, 1,4-dimercaptomethylbenzene, 1,3,5-trimercaptomethylbenzene, bismercaptoethyl sulfide, 1,2-bis {(2-mercaptoethyl) thio} -3-mercaptopropane, 1,2-bis (Mercaptomethylthio) ethane, tetrakis (mercaptoethylthiomethyl) methane and the like can be mentioned.
 イソシアネート化合物としては、例えば、メチレンジフェニルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,2-ジイソシアナートベンゼン、1,3-ジイソシアナートベンゼン、1,4-ジイソシアナートベンゼン、1,2-ジイソシアナートメチルベンゼン、1,3-ジイソシアナートメチルベンゼン、1,4-ジイソシアナートメチルベンゼン、4,4’-ジフェニレンジイソシアネート、3,3’-ジメチル-4,4’-ジフェニレンジイソシアネート、キシリレンジイソシアネート、ナフチレン1,5-ジイソシアネート、テトラメチルキシレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、1,3,5-トリイソシアナートメチルシクロヘキサン等を挙げることが出来る。 Examples of the isocyanate compound include methylene diphenyl diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,2-diisocyanate benzene, 1,3-diisocyanate benzene, 1,4-diisocyanate. Isocyanate benzene, 1,2-diisocyanate methylbenzene, 1,3-diisocyanate methylbenzene, 1,4-diisocyanate methylbenzene, 4,4'-diphenylene diisocyanate, 3,3'-dimethyl- 4,4'-diphenylene diisocyanate, xylylene diisocyanate, naphthylene 1,5-diisocyanate, tetramethylxylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, hexamethylene diisocyanate Tetramethyl xylylene diisocyanate, 1,3,5-isocyanatomethyl cyclohexane and the like.
 次に、プラスチックレンズなどの光学基材上に、前記方法で得られたコーティング剤を塗布し、ハードコート層を有する光学物品を製造する方法について説明する。 Next, a method for producing an optical article having a hard coat layer by applying the coating agent obtained by the above method on an optical substrate such as a plastic lens will be described.
<光学物品の製造方法、光学物品>
 製造されるコーティング剤は、必要に応じて異物を取り除くための濾過を行った後、プラスチックレンズ基材の表面に塗布され、乾燥後、硬化することによりハードコート層を形成する。なお、プラスチック製光学基材は、種々の表面処理が施されたものであってもよい。このような表面処理としては、例えば、塩基性水溶液又は酸性水溶液による化学的処理、研磨剤を用いた研磨処理、大気圧プラズマおよび低圧プラズマ等を用いたプラズマ処理、コロナ放電処理等を挙げることができる。
<Optical article manufacturing method, optical article>
The produced coating agent is filtered to remove foreign substances as necessary, and then applied to the surface of the plastic lens substrate, dried and cured to form a hard coat layer. Note that the plastic optical substrate may be subjected to various surface treatments. Examples of such surface treatment include chemical treatment using a basic aqueous solution or acidic aqueous solution, polishing treatment using an abrasive, plasma treatment using atmospheric pressure plasma and low-pressure plasma, corona discharge treatment, and the like. it can.
 コーティング剤の塗布は、ディッピング法、スピンコート法、ディップスピンコーティング法、スプレー法、刷毛塗りあるいはローラー塗りなどを採用できる。
 塗布後の乾燥は、最初に60~80℃で5~30分程度の予備硬化を行い、その後、基材によって異なるが、90℃~120℃の温度で1~3時間程度の硬化を行うのがよい。特に、本発明のコーティング組成物より得られるコーティング剤は、優れた密着性を発揮するため、予備硬化後の温度を比較的低温にすることもできる。具体的には、予備硬化後の温度を95~115℃、さらに100~110℃とすることも可能である。このように比較的低温で硬化させることができるため、プラスチックレンズの黄変や、熱変形を防止することが可能となる。
The coating agent can be applied by dipping, spin coating, dip spin coating, spraying, brushing or roller coating.
After drying, the coating is first preliminarily cured at 60 to 80 ° C. for about 5 to 30 minutes, and then cured at a temperature of 90 to 120 ° C. for about 1 to 3 hours, depending on the substrate. Is good. In particular, since the coating agent obtained from the coating composition of the present invention exhibits excellent adhesion, the temperature after preliminary curing can be made relatively low. Specifically, the temperature after pre-curing can be 95 to 115 ° C., more preferably 100 to 110 ° C. Since it can be cured at a relatively low temperature in this way, it is possible to prevent yellowing and thermal deformation of the plastic lens.
 形成されるハードコート層は、0.1~10μm程度の厚みとすればよく、一般に、メガネレンズでは1~5μmの厚みが好適である。上記方法を採用することにより、プラスチックレンズ基材上に、ハードコート層が形成された光学物品を得ることができる。
 本発明のコーティング組成物によれば、優れた耐擦傷性を有するハードコート層を与えるばかりでなく、長期間使用してもハードコート層の剥離などの外観不良を防止することができる。
The hard coat layer to be formed may have a thickness of about 0.1 to 10 μm. In general, a thickness of 1 to 5 μm is suitable for a spectacle lens. By adopting the above method, an optical article in which a hard coat layer is formed on a plastic lens substrate can be obtained.
According to the coating composition of the present invention, not only a hard coat layer having excellent scratch resistance can be provided, but also appearance defects such as peeling of the hard coat layer can be prevented even when used for a long period of time.
 本発明のプラスチックレンズ基材においては、ハードコート層上に、更に、SiO、TiO、ZrO等の金属酸化物から成る薄膜の蒸着や有機高分子体の薄膜の塗布等による反射防止膜を形成してもよい。また、プラスチックレンズ基材とハードコート層のとの間に、ウレタンプライマー等の耐衝撃性プライマーを施しても良い。更にまた、反射防止膜上に、帯電防止処理、撥水処理および防曇処理等の加工及び2次処理を施すことも可能である。 In the plastic lens substrate of the present invention, an antireflection film is further formed on the hard coat layer by vapor deposition of a thin film made of a metal oxide such as SiO 2 , TiO 2 , ZrO 2, or coating of a thin film of an organic polymer. May be formed. Further, an impact resistant primer such as a urethane primer may be provided between the plastic lens substrate and the hard coat layer. Furthermore, the antireflection film can be subjected to processing such as antistatic treatment, water repellent treatment and antifogging treatment, and secondary treatment.
 以下、実施例および比較例を掲げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
 本実施例で使用した光学基材(レンズ基材)、並びにコーティング組成物の各成分について説明する。
EXAMPLES Hereinafter, although an Example and a comparative example are hung up and this invention is demonstrated, this invention is not limited to these Examples. In addition, not all combinations of features described in the embodiments are essential to the solution means of the present invention.
The optical base material (lens base material) used in this example and each component of the coating composition will be described.
(1)プラスチック製光学基材(レンズ基材)
 CR:アリル樹脂プラスチックレンズ、屈折率=1.50
 MRA:チオウレタン系樹脂プラスチックレンズ、屈折率=1.60
 MRB:チオウレタン系樹脂プラスチックレンズ、屈折率=1.67
 MA1:下記作製のメタクリル系樹脂フォトクロミックレンズ
 ラジカル重合性単量体である平均分子量328のポリプロピレングリコールジメタクリレート43質量部、トリメチロールプロパントリメタクリレート10質量部、平均分子量394のメトキシポリエチレングリコールメタクリレート5質量部、平均分子量522のポリエチレングリコールジアクリレート16質量部、グリシジルメタクリレート1質量部、α―メチルスチレンダイマー1質量部、ウレタンアクリレート(ダイセル化学工業製EBECRYL4858)25質量部を原料とする重合性組成物を調製し、該重合性組成物100質量部に対し、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート0.1質量部、下記フォトクロミック化合物(1)を0.03質量部、ラジカル重合開始剤としてt-ブチルパーオキシネオデカネート1.0質量部、及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.1質量部を添加してよく混合し、フォトクロミック重合硬化性組成物を調製した。次いで、得られた該組成物をガラス板とエチレン-酢酸ビニル共重合体からなるガスケットで構成された鋳型の中に注入し、注型重合を行った。重合は空気炉を用い、33℃から90℃まで17時間かけて徐々に昇温した後、90℃で2時間保持した。重合終了後、鋳型を空気炉から取り出し、放冷後、硬化体を鋳型のガラスから取り外し、その後オーブンに入れ110℃で3時間加熱した。
Figure JPOXMLDOC01-appb-C000012
(1) Plastic optical substrate (lens substrate)
CR: Allyl resin plastic lens, refractive index = 1.50
MRA: Thiourethane resin plastic lens, refractive index = 1.60
MRB: Thiourethane resin plastic lens, refractive index = 1.67
MA1: Methacrylic resin photochromic lens produced as follows: 43 parts by mass of polypropylene glycol dimethacrylate having an average molecular weight of 328, 10 parts by mass of trimethylolpropane trimethacrylate, and 5 parts by mass of methoxypolyethylene glycol methacrylate having an average molecular weight of 394. A polymerizable composition is prepared using 16 parts by mass of polyethylene glycol diacrylate having an average molecular weight of 522, 1 part by mass of glycidyl methacrylate, 1 part by mass of α-methylstyrene dimer, and 25 parts by mass of urethane acrylate (EBECRYL4858 manufactured by Daicel Chemical Industries). Then, with respect to 100 parts by mass of the polymerizable composition, 0.1 part by mass of bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and the following photochromic compound (1) 0.03 part by mass, 1.0 part by mass of t-butylperoxyneodecanate as a radical polymerization initiator, and 0.1 part by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) may be added. The mixture was mixed to prepare a photochromic polymerization curable composition. Next, the obtained composition was poured into a mold composed of a glass plate and a gasket made of an ethylene-vinyl acetate copolymer, and cast polymerization was performed. The polymerization was carried out using an air furnace, gradually raising the temperature from 33 ° C. to 90 ° C. over 17 hours, and then maintained at 90 ° C. for 2 hours. After completion of the polymerization, the mold was taken out from the air furnace and allowed to cool, and then the cured product was removed from the glass of the mold, and then placed in an oven and heated at 110 ° C. for 3 hours.
Figure JPOXMLDOC01-appb-C000012
 MA2:下記作製のメタクリル系樹脂レンズ
 ラジカル重合性単量体である平均分子量328のポリプロピレングリコールジメタクリレート43質量部、トリメチロールプロパントリメタクリレート10質量部、平均分子量394のメトキシポリエチレングリコールメタクリレート5質量部、平均分子量522のポリエチレングリコールジアクリレート16質量部、α―メチルスチレンダイマー1質量部、ウレタンアクリレート(ダイセル化学工業製EBECRYL4858)26質量部を原料とする重合性組成物を調製し、該重合性組成物100質量部に対し、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート0.1質量部、フォトクロミック化合物(1)を0.03質量部、ラジカル重合開始剤としてt-ブチルパーオキシネオデカネート1.0質量部、及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.1質量部を添加してよく混合し、フォトクロミック重合硬化性組成物を調製した。次いで、得られた該組成物をガラス板とエチレン-酢酸ビニル共重合体からなるガスケットで構成された鋳型の中に注入し、注型重合を行った。重合は空気炉を用い、33℃から90℃まで17時間かけて徐々に昇温した後、90℃で2時間保持した。重合終了後、鋳型を空気炉から取り出し、放冷後、硬化体を鋳型のガラスから取り外し、その後オーブンに入れ110℃で3時間加熱した。
MA2: Methacrylic resin lens produced as follows: 43 parts by mass of polypropylene glycol dimethacrylate having an average molecular weight of 328, 10 parts by mass of trimethylolpropane trimethacrylate, 5 parts by mass of methoxypolyethylene glycol methacrylate having an average molecular weight of 394, which are radical polymerizable monomers A polymerizable composition is prepared using 16 parts by mass of polyethylene glycol diacrylate having an average molecular weight of 522, 1 part by mass of α-methylstyrene dimer, and 26 parts by mass of urethane acrylate (EBECRYL4858 manufactured by Daicel Chemical Industries) as a raw material. 100 parts by mass, 0.1 part by mass of bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 0.03 part by mass of photochromic compound (1), t- Butylpa 1.0 part by mass oxy neodecanate, and 2,2'-azobis (2,4-dimethylvaleronitrile) were mixed well with the addition of 0.1 part by mass, to prepare a photochromic polymerizable curable composition. Next, the obtained composition was poured into a mold composed of a glass plate and a gasket made of an ethylene-vinyl acetate copolymer, and cast polymerization was performed. The polymerization was carried out using an air furnace, gradually raising the temperature from 33 ° C. to 90 ° C. over 17 hours, and then maintained at 90 ° C. for 2 hours. After completion of the polymerization, the mold was taken out from the air furnace and allowed to cool, and then the cured product was removed from the glass of the mold, and then placed in an oven and heated at 110 ° C. for 3 hours.
 MA3:下記作製の表面にフォトクロミック層を有するフォトクロミックレンズ
 ラジカル重合性単量体である平均分子量776の2,2-ビス(4-アクリロイルオキシポリエチレングリコールフェニル)プロパン/ポリエチレングリコールジアクリレート(平均分子量532)/トリメチロールプロパントリメタクリレート/ポリエステルオリゴマーヘキサアクリレート/グリシジルメタクリレートを、それぞれ49質量部/15質量部/25質量部/10質量部/1質量部の配合割合で配合した。次に、このラジカル重合性単量体の混合物100質量部に対して、3質量部のフォトクロミック化合物(2)を加え、70℃で30分間の超音波溶解を実施した。その後、得られた組成物に重合開始剤であるCGI1870:1-ヒドロキシシクロヘキシルフェニルケトンとビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイドの混合物(重量比3:7)を0.35質量部、安定剤であるビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートを5質量部、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネートを3質量部、シランカップリング剤であるγ-メタクリロイルオキシプロピルトリメトキシシランを7質量部、及びレベリング剤である東レ・ダウコーニング株式会社製シリコーン系界面活性剤L-7001を0.1質量部添加し、十分に混合することによりフォトクロミック重合硬化性組成物(フォトクロミックコーティング剤)を調製した。
Figure JPOXMLDOC01-appb-C000013
 プラスチック製光学基材として、MRA(チオウレタン系樹脂プラスチックレンズ、屈折率=1.60)を用い、このプラスチック製光学基材をアセトンで十分に脱脂し、50℃の5%水酸化ナトリウム水溶液で4分間処理、4分間の流水洗浄、そして40℃の蒸留水で4分間洗浄した後、70℃で乾燥させた。次いで、プライマーコート液として、竹林化学工業株式会社製湿気硬化型プライマー『タケシールPFR402TP-4』及び酢酸エチルをそれぞれ50質量部となるように調合し、更にこの混合液に対して東レ・ダウコーニング株式会社製レベリング剤FZ-2104を0.03質量部添加し、窒素雰囲気下で均一になるまで充分に撹拌した液を用いた。このプライマー液を、MIKASA製スピンコーター1H-DX2を用いて、レンズB表面にスピンコートした。このレンズを室温で15分間放置することにより、膜厚7μmのプライマー層を有するレンズ基材を作成した。
 次いで、前述のフォトクロミック重合硬化性組成物(フォトクロミックコーティング剤)約1gを、前記プライマー層を有するレンズ基材の表面にスピンコートした。前記フォトクロミック重合硬化性組成物(フォトクロミックコーティング剤)よりなる塗膜が表面にコートされたレンズに、窒素ガス雰囲気中で、レンズ表面の405nmにおける出力が150mW/cmになるように調整したフュージョンUVシステムズ社製のDバルブを搭載したF3000SQを用いて、3分間、光照射し、塗膜を硬化させた。その後、さらに110℃の恒温器にて、1時間の加熱処理を行うことでフォトクロミックコート層を形成した。得られるフォトクロミックコート層の膜厚はスピンコートの条件によって調整が可能である。該フォトクロミックコート層の膜厚は、40±1μmとなるように調整した。
MA3: Photochromic lens having a photochromic layer on the surface produced as described below 2,2-bis (4-acryloyloxypolyethylene glycol phenyl) propane / polyethylene glycol diacrylate having an average molecular weight of 776, which is a radical polymerizable monomer (average molecular weight 532) / Trimethylolpropane trimethacrylate / polyester oligomer hexaacrylate / glycidyl methacrylate were blended in a blending ratio of 49 parts by mass / 15 parts by mass / 25 parts by mass / 10 parts by mass / 1 part by mass, respectively. Next, 3 parts by mass of the photochromic compound (2) was added to 100 parts by mass of the radical polymerizable monomer mixture, and ultrasonic dissolution was performed at 70 ° C. for 30 minutes. Thereafter, a mixture of CGI 1870: 1-hydroxycyclohexyl phenyl ketone and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide as a polymerization initiator (weight ratio 3) was added to the obtained composition. 7) 0.35 parts by mass, stabilizer bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate 5 parts by mass, triethylene glycol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate 3 parts by weight, silane coupling agent γ-methacryloyloxypropyltrimethoxysilane 7 parts by weight, and leveling agent Toray Dow Corning Silicone Of 0.1% by weight of a surfactant L-7001 and mixed well to produce photochromic Polymerizable curable composition (photochromic coating agent) was prepared.
Figure JPOXMLDOC01-appb-C000013
MRA (thiourethane resin plastic lens, refractive index = 1.60) was used as an optical substrate made of plastic, and this optical substrate made of plastic was thoroughly degreased with acetone and washed with a 5% aqueous sodium hydroxide solution at 50 ° C. After washing for 4 minutes, washing with running water for 4 minutes, and washing with distilled water at 40 ° C. for 4 minutes, it was dried at 70 ° C. Next, as a primer coating solution, a moisture curing type primer “Takeseal PFR402TP-4” manufactured by Takebayashi Chemical Industry Co., Ltd. and ethyl acetate are prepared to be 50 parts by mass, respectively. A liquid obtained by adding 0.03 part by mass of a leveling agent FZ-2104 manufactured by company and sufficiently stirred under a nitrogen atmosphere until uniform was used. This primer solution was spin-coated on the surface of lens B using a spin coater 1H-DX2 manufactured by MIKASA. By leaving this lens at room temperature for 15 minutes, a lens substrate having a primer layer with a thickness of 7 μm was prepared.
Next, about 1 g of the above-described photochromic polymerization curable composition (photochromic coating agent) was spin-coated on the surface of the lens substrate having the primer layer. Fusion UV adjusted so that an output at 405 nm of the lens surface is 150 mW / cm 2 in a nitrogen gas atmosphere on a lens coated with a coating film made of the photochromic polymerization curable composition (photochromic coating agent). Using F3000SQ equipped with a D valve manufactured by Systems, light irradiation was performed for 3 minutes to cure the coating film. Then, the photochromic coating layer was formed by performing heat processing for 1 hour with a 110 degreeC thermostat further. The film thickness of the resulting photochromic coating layer can be adjusted depending on the spin coating conditions. The film thickness of the photochromic coat layer was adjusted to be 40 ± 1 μm.
(2)コーティング組成物成分
〔A成分;無機酸化物微粒子〕
 SOL1:メタノール分散シリカゾル。(日産化学工業社製)、固形分濃度(シリカ微粒子の濃度)=30質量%。
 SOL2:酸化ジルコニウム11.7質量%、酸化スズ77.6質量%、酸化アンチモン7.0質量%、二酸化珪素3.7質量%を含む複合金属酸化物微粒子のメタノール分散ゾル。固形分濃度(複合金属酸化物微粒子の濃度);40質量%。
 SOL3:メタノール分散五酸化アンチモン微粒子(日産化学工業社製サンコロイドAMT-332S・NV)、固形分濃度(五酸化アンチモン微粒子の濃度)=30質量%
 SOL4:水分散シリカ微粒子。(日産化学工業社製スノーテックスO-40)、固形分濃度(シリカ微粒子の濃度)=40質量%。
 SOL5:水分散酸化セリウム微粒子。(多木化学社製ニードラールU-15;固形分15質量%、酢酸2質量%、水83質量%)。
(2) Coating composition component [component A; inorganic oxide fine particles]
SOL1: methanol-dispersed silica sol. (Manufactured by Nissan Chemical Industries, Ltd.), solid content (silica fine particle concentration) = 30% by mass.
SOL2: a methanol-dispersed sol of composite metal oxide fine particles containing 11.7% by mass of zirconium oxide, 77.6% by mass of tin oxide, 7.0% by mass of antimony oxide, and 3.7% by mass of silicon dioxide. Solid content concentration (concentration of composite metal oxide fine particles); 40% by mass.
SOL3: Methanol-dispersed antimony pentoxide fine particles (Sun Colloid AMT-332S / NV manufactured by Nissan Chemical Industries), solid content (concentration of antimony pentoxide fine particles) = 30% by mass
SOL4: Water-dispersed silica fine particles. (Snowtex O-40 manufactured by Nissan Chemical Industries, Ltd.), solid content (silica fine particle concentration) = 40% by mass.
SOL5: Water-dispersed cerium oxide fine particles. (Nydral U-15 manufactured by Taki Chemical Co., Ltd .; solid content 15% by mass, acetic acid 2% by mass, water 83% by mass).
〔B1成分;エポキシ基含有ケイ素化合物〕
 GTS:γ―グリシドキシプロピルトリメトキシシラン。
 GDS:γ―グリシドキシプロピルメチルジメトキシシラン。
[B1 component; epoxy group-containing silicon compound]
GTS: γ-glycidoxypropyltrimethoxysilane.
GDS: γ-glycidoxypropylmethyldimethoxysilane.
〔C成分;ケチミン化合物〕
 K1:3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(信越化学社製「KBE-9103」)。
 K2:3-アミノプロプロピルトリメトキシシランとメチルイソブチルケトンとの下記反応生成物〔式(K2)で示されるケチミン化合物〕。
Figure JPOXMLDOC01-appb-C000014
 撹拌機、温度計、留出管のついた四つ口フラスコにγ-アミノプロピルトリメトキシシラン(分子量176)17.6g(0.1モル)、メチルイソブチルケトン(分子量100)20.0g(0.2モル)、及びトルエン100mlを仕込み、反応温度85~100℃にてトルエンを留出させ、留出分の水分量を測定しながら、γ-アミノプロピルトリメトキシシランが消失するまで脱水反応を行なった。γ-アミノプロピルトリメトキシシランの残存量に関しては、ガスクロマトグラフにて分析を行い、その残量が消失するまで反応を継続した。その後、真空ポンプを接続し、残存するメチルイソブチルケトン、及びトルエンの留去を行い、反応生成物を得た。得られた反応生成物の同定は、GC-MASS(ガスクロマトグラフ質量分析計:日本電子株式会社製 JMS-K9)により質量スペクトルを測定し、分子量を求めることにより実施した。得られた反応生成物の分子量は261であった。分析により求めた分子量、および反応に使用した原料から、反応生成物は、前記式(K2)で示されるケチミン化合物であることを確認した。
[C component; ketimine compound]
K1: 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (“KBE-9103” manufactured by Shin-Etsu Chemical Co., Ltd.).
K2: The following reaction product of 3-aminopropyl trimethoxysilane and methyl isobutyl ketone [ketimine compound represented by the formula (K2)].
Figure JPOXMLDOC01-appb-C000014
In a four-necked flask equipped with a stirrer, thermometer, and distillation tube, 17.6 g (0.1 mol) of γ-aminopropyltrimethoxysilane (molecular weight 176), 20.0 g (0 molecular weight) of methyl isobutyl ketone (molecular weight 100) 2 mol), and 100 ml of toluene, the toluene was distilled at a reaction temperature of 85 to 100 ° C., and the dehydration reaction was performed until γ-aminopropyltrimethoxysilane disappeared while measuring the water content of the distillate. I did it. The remaining amount of γ-aminopropyltrimethoxysilane was analyzed by gas chromatography, and the reaction was continued until the remaining amount disappeared. Thereafter, a vacuum pump was connected, and the remaining methyl isobutyl ketone and toluene were distilled off to obtain a reaction product. The obtained reaction product was identified by measuring the mass spectrum with GC-MASS (Gas Chromatograph Mass Spectrometer: JMS-K9, manufactured by JEOL Ltd.) and determining the molecular weight. The molecular weight of the obtained reaction product was 261. From the molecular weight determined by analysis and the raw materials used for the reaction, it was confirmed that the reaction product was a ketimine compound represented by the formula (K2).
 K3:エチレンジアミンとジエチルケトンとの下記反応生成物〔下記式(K3)で示されるケチミン化合物〕。
Figure JPOXMLDOC01-appb-C000015
 撹拌機、温度計、留出管のついた四つ口フラスコにエチレンジアミン(分子量60)6.0g(0.1モル)、ジエチルケトン(分子量86)34.4g(0.4モル)、及びトルエン100mlを仕込み、反応温度85~100℃にてトルエンを留出させ、留出分の水分量を測定しながら、エチレンジアミンが消失するまで脱水反応を行なった。エチレンジアミンの残存量に関しては、ガスクロマトグラフにて分析を行い、その残量が消失するまで反応を継続した。その後、真空ポンプを接続し、残存するジエチルケトン、及びトルエンの留去を行い、反応生成物を得た。得られた反応生成物の同定は、GC-MASS(ガスクロマトグラフ質量分析計:日本電子株式会社製 JMS-K9)により質量スペクトルを測定し、分子量を求めることにより実施した。得られた反応生成物の分子量は212であった。分析により求めた分子量、および反応に使用した原料から、反応生成物は、前記式(K3)で示されるケチミン化合物であることを確認した。
K3: The following reaction product of ethylenediamine and diethyl ketone [ketimine compound represented by the following formula (K3)].
Figure JPOXMLDOC01-appb-C000015
In a four-necked flask equipped with a stirrer, thermometer, and distillation tube, 6.0 g (0.1 mol) of ethylenediamine (molecular weight 60), 34.4 g (0.4 mol) of diethyl ketone (molecular weight 86), and toluene 100 ml was charged, toluene was distilled at a reaction temperature of 85 to 100 ° C., and the dehydration reaction was performed until ethylenediamine disappeared while measuring the water content of the distillate. The remaining amount of ethylenediamine was analyzed by gas chromatography, and the reaction was continued until the remaining amount disappeared. Then, the vacuum pump was connected and the remaining diethyl ketone and toluene were distilled off, and the reaction product was obtained. The obtained reaction product was identified by measuring the mass spectrum with GC-MASS (Gas Chromatograph Mass Spectrometer: JMS-K9, manufactured by JEOL Ltd.) and determining the molecular weight. The molecular weight of the obtained reaction product was 212. From the molecular weight determined by analysis and the raw materials used for the reaction, it was confirmed that the reaction product was a ketimine compound represented by the formula (K3).
 K4:イソホロンジアミンとジエチルケトンとの下記反応性生物〔下記式(K4)で示されるケチミン化合物〕。
Figure JPOXMLDOC01-appb-C000016
 撹拌機、温度計、留出管のついた四つ口フラスコにイソホロンジアミン(分子量170)17.0g(0.1モル)、ジエチルケトン(分子量86)34.4g(0.4モル)、及びトルエン100mlを仕込み、反応温度85~100℃にてトルエンを留出させ、留出分の水分量を測定しながら、イソホロンジアミンが消失するまで脱水反応を行なった。イソホロンジアミンの残存量に関しては、ガスクロマトグラフにて分析を行い、その残量が消失するまで反応を継続した。その後、真空ポンプを接続し、残存するイソホロンジアミン、及びトルエンの留去を行い、反応生成物を得た。得られた反応生成物の同定は、GC-MASS(ガスクロマトグラフ質量分析計:日本電子株式会社製 JMS-K9)により質量スペクトルを測定し、分子量を求めることにより実施した。得られた反応生成物の分子量は306であった。分析により求めた分子量、および反応に使用した原料から、反応生成物は、前記式(K4)で示されるケチミン化合物であることを確認した。
K4: The following reactive organism [ketimine compound represented by the following formula (K4)] of isophoronediamine and diethyl ketone.
Figure JPOXMLDOC01-appb-C000016
In a four-necked flask equipped with a stirrer, a thermometer, and a distillation tube, 17.0 g (0.1 mol) of isophoronediamine (molecular weight 170), 34.4 g (0.4 mol) of diethyl ketone (molecular weight 86), and 100 ml of toluene was charged, toluene was distilled at a reaction temperature of 85 to 100 ° C., and the dehydration reaction was performed until isophoronediamine disappeared while measuring the water content of the distillate. The remaining amount of isophoronediamine was analyzed by gas chromatography, and the reaction was continued until the remaining amount disappeared. Then, the vacuum pump was connected and the remaining isophorone diamine and toluene were distilled off, and the reaction product was obtained. The obtained reaction product was identified by measuring the mass spectrum with GC-MASS (Gas Chromatograph Mass Spectrometer: JMS-K9, manufactured by JEOL Ltd.) and determining the molecular weight. The molecular weight of the obtained reaction product was 306. From the molecular weight determined by analysis and the raw materials used for the reaction, it was confirmed that the reaction product was a ketimine compound represented by the formula (K4).
〔B2成分;他のケイ素化合物〕
 MTEOS:メチルトリエトキシシラン。
 TEOS:テトラエトキシシラン。
 BSE:1,2-ビス(トリエトキシシリル)エタン。
〔水溶性有機溶媒〕
 MeOH:メタノール。
 TBA:t―ブタノール。
 IPA:イソプロピルアルコール。
 EGPE:エチレングリコールモノイソプロピルエーテル。
 AcAc:アセチルアセトン。
 DAA:ジアセトンアルコール。
〔その他添加剤〕
・シリコーン系界面活性剤
 L1:シリコーン系界面活性剤 東レ・ダウコーニング株式会社製L7001。
・環状ケトン化合物
 NMP:N-メチルピロリドン。
・4級アンモニウム塩
 TMAC:テトラメチルアンモニウムクロライド。
・アミノ基を有する有機ケイ素化合物
 AM1:γ-アミノプロピルトリエトキシシラン。
 AM2:N-フェニル-γ-アミノプロピルトリメトキシシラン。
・染料
 D1:ダイアレジンBlue J(ダイアケミカル株式会社製)
[B2 component; other silicon compound]
MTEOS: methyltriethoxysilane.
TEOS: Tetraethoxysilane.
BSE: 1,2-bis (triethoxysilyl) ethane.
(Water-soluble organic solvent)
MeOH: methanol.
TBA: t-butanol.
IPA: isopropyl alcohol.
EGPE: ethylene glycol monoisopropyl ether.
AcAc: acetylacetone.
DAA: diacetone alcohol.
[Other additives]
Silicone surfactant L1: Silicone surfactant L7001 manufactured by Toray Dow Corning Co., Ltd.
Cyclic ketone compound NMP: N-methylpyrrolidone.
-Quaternary ammonium salt TMAC: Tetramethylammonium chloride.
-Organosilicon compound having an amino group AM1: γ-aminopropyltriethoxysilane.
AM2: N-phenyl-γ-aminopropyltrimethoxysilane.
-Dye D1: Dialresin Blue J (manufactured by Diachemical Co., Ltd.)
コーティング剤1の製造(組成物1から得られるコーティング剤1):
 (B1)成分としてγ―グリシドキシプロピルトリメトキシシラン118g、(B2)成分としてメチルトリメトキシラン95g、溶媒としてt-ブチルアルコール165g、アセチルアセトン50g、メタノール28g、エチレングリコールモノイソプロピルエーテル95g、シリコーン系界面活性剤(東レ・ダウコーニング株式会社製、商品名「L-7001)0.5gを混合した。この液を十分に撹拌しながら、0.05Nの塩酸水溶液49gを添加し、添加終了後から約1時間撹拌を継続した。次いで、テトラメチルアンモニウムクロライド0.3g、(A)成分を含有するメタノール分散シリカゾル(SOL1)396g、さらにトリス(2,4-ペンタンジオナト)アルミニウム(III)4.4gを加えた後、室温で48時間撹拌した。最後に、(C)成分として3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(K1)2.1gを混合し、室温で3時間撹拌後一昼夜熟成させて本発明のコーティング剤1を得た。このコーティング剤1は、白濁することなく、またゲル化物が生じることなく製造できた。
 このコーティング剤1とする前の各成分の配合量(コーティング組成物1の配合量)を表1に示した。なお、表1におけるコーティング組成物1の配合割合のものを上記方法で混合したものがコーティング剤1に該当する。
Production of coating agent 1 (coating agent 1 obtained from composition 1):
(B1) component γ-glycidoxypropyltrimethoxysilane 118 g, (B2) component methyltrimethoxylane 95 g, solvent t-butyl alcohol 165 g, acetylacetone 50 g, methanol 28 g, ethylene glycol monoisopropyl ether 95 g, silicone 0.5 g of a surfactant (trade name “L-7001” manufactured by Toray Dow Corning Co., Ltd.) was mixed in. While stirring this solution, 49 g of 0.05N hydrochloric acid aqueous solution was added. Stirring was continued for about 1 hour, and then 0.3 g of tetramethylammonium chloride, 396 g of methanol-dispersed silica sol (SOL1) containing component (A), and tris (2,4-pentanedionato) aluminum (III) 4. After adding 4 g, the mixture was stirred at room temperature for 48 hours. Finally, 2.1 g of 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (K1) is mixed as the component (C), stirred at room temperature for 3 hours, and aged for 24 hours. A coating agent 1 was obtained, and this coating agent 1 could be produced without clouding and without generation of a gelled product.
Table 1 shows the amount of each component (the amount of coating composition 1) before the coating agent 1 was prepared. In addition, what mixed the thing of the compounding ratio of the coating composition 1 in Table 1 by the said method corresponds to the coating agent 1. FIG.
コーティング剤2~11、比較コーティング剤1~6の製造(コーティング組成物2~11から得られるコーティング剤2~11)と(比較コーティング組成物1~6から得られる比較コーティング剤1~6):
 表1に示す(A)無機酸化物微粒子、(B1)エポキシ基含有ケイ素化合物、(C)ケチミン基含有化合物、(B2)ケイ素化合物、水、硬化触媒、水溶性有機溶媒、添加剤;シリコーン系界面活性剤、環状ケトン化合物、4級アンモニウム塩を用いた以外は、コーティング剤1と同様な方法で製造した。コーティング剤2~11は、白濁することなく、またゲル化物が生じることなく製造できた。配合の組成を表1、表2に示した。なお、表1におけるコーティング組成物2~11の配合割合のものを上記方法で混合したものが、コーティング剤2~11に該当する。また、表2における比較コーティング組成物1~6の配合割合のものを上記方法で混合したものが、比較コーティング剤1~6に該当する。
 比較コーティング組成物3、4は、(C)ケチミン化合物を使用する代わりにアミノ基を有する有機ケイ素化合物(AM1:γ-アミノプロピルトリエトキシシラン、AM2:N-フェニル-γ-アミノプロピルトリメトキシシラン)を使用したものである。AM1、AM2を配合した順序は、(C)ケチミン化合物と同じにした。
Production of coating agents 2-11 and comparative coating agents 1-6 (coating agents 2-11 obtained from coating compositions 2-11) and (comparative coating agents 1-6 obtained from comparative coating compositions 1-6):
(A) inorganic oxide fine particles shown in Table 1, (B1) epoxy group-containing silicon compound, (C) ketimine group-containing compound, (B2) silicon compound, water, curing catalyst, water-soluble organic solvent, additive; silicone system It was produced by the same method as coating agent 1 except that a surfactant, a cyclic ketone compound, and a quaternary ammonium salt were used. Coating agents 2 to 11 were able to be produced without clouding and without gelation. The composition of the formulation is shown in Tables 1 and 2. In addition, the mixture of the coating compositions 2 to 11 in Table 1 mixed by the above method corresponds to the coating agents 2 to 11. Further, those obtained by mixing the comparative coating compositions 1 to 6 in Table 2 in the above ratio correspond to the comparative coating agents 1 to 6.
Comparative coating compositions 3 and 4 consist of (C) an organosilicon compound having an amino group instead of using a ketimine compound (AM1: γ-aminopropyltriethoxysilane, AM2: N-phenyl-γ-aminopropyltrimethoxysilane) ). The order in which AM1 and AM2 were blended was the same as (C) ketimine compound.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
実施例1
 プラスチック製光学基材としてMA1を、60℃の20質量%水酸化ナトリウム水溶液に浸漬し、超音波洗浄器を用いて、5分間アルカリエッチングを行った。アルカリエッチング後、水道水、及び50℃の蒸留水で順次洗浄し、残余のアルカリ分を取り除いた後、室温になるまで約10分間放置した。このレンズ基材に、コーティング剤1を25℃で、引き上げ速度30cm/分の速さで、ディップコートした。この後、70℃のオーブンにて15分間予備硬化した後、110℃で2時間の硬化を行い、プラスチックレンズ基材MA1の両面に、それぞれ1.5μmの厚みでハードコート層が形成された光学物品(ハードコートレンズ)を得た。
Example 1
MA1 was immersed in a 20% by mass aqueous sodium hydroxide solution at 60 ° C. as a plastic optical substrate, and alkali etching was performed for 5 minutes using an ultrasonic cleaner. After alkali etching, the substrate was washed successively with tap water and distilled water at 50 ° C., the remaining alkali was removed, and left for about 10 minutes until the temperature reached room temperature. This lens substrate was dip coated with the coating agent 1 at 25 ° C. at a pulling rate of 30 cm / min. Then, after pre-curing for 15 minutes in an oven at 70 ° C., curing was performed at 110 ° C. for 2 hours, and a hard coat layer having a thickness of 1.5 μm was formed on both surfaces of the plastic lens substrate MA1. An article (hard coat lens) was obtained.
(光学物品の評価結果)
 この光学物品(ハードコートレンズ)について、外観評価、耐熱水性試験、耐候性試験、Bayer試験、スチールウール耐擦傷性について評価を行ったところ、外観:○、耐熱水性:100(5時間)、耐候性試験:100、Bayer値:5.3、スチールウール耐擦傷性:Bであった。この結果を表2に示した。各評価については、下記の方法で行った。
(外観評価)
 ハードコート層を有するプラスチックレンズ基材の外観の評価は、コート膜の透明性、ブツの有無などを目視により実施した。コート膜が透明でブツがなく外観良好なものを〇、コート膜の白化やブツが見られるものに関しては、外観不良×と評価した。
(Evaluation results of optical articles)
This optical article (hard coat lens) was evaluated for appearance evaluation, hot water resistance test, weather resistance test, Bayer test, and steel wool scratch resistance. Appearance: ○, hot water resistance: 100 (5 hours), weather resistance Property test: 100, Bayer value: 5.3, steel wool scratch resistance: B. The results are shown in Table 2. About each evaluation, it performed by the following method.
(Appearance evaluation)
The appearance of the plastic lens substrate having a hard coat layer was evaluated by visual inspection of the transparency of the coating film and the presence or absence of irregularities. A film having a transparent coating film and having no appearance and having a good appearance was evaluated as ◯, and a film having whitening and a coating having a appearance was evaluated as a poor appearance.
(耐熱水性試験)
 試験方法は、得られた光学物品(ハードコートレンズ)を沸騰させた蒸留水に入れ、1時間毎にハードコート層の密着性を評価し、試験時間5時間を上限とした。密着性の評価は、ハードコート膜とプラスチックレンズの密着性をJISD-0202に準じてクロスカットテープ試験によって行った。すなわち、カッターナイフを使いレンズ表面に約1mm間隔に切れ目を入れ、マス目を100個形成させる。その上にセロファン粘着テープ(ニチバン(株)製セロテープ(登録商標))を強く貼り付け、次いで、表面から90°方向へ一気に引っ張り剥離した後、コート膜の残っているマス目を測定した。評価結果は、(残っているマス目数)/100で表した。ここでの密着性は、レンズ基材上に積層している全ての層の密着性を評価している。該評価をレンズの凸面で行った。
(耐候性試験)
 試験方法は、得られた光学物品(ハードコートレンズ)を光照射による硬化物層の耐久性を評価するために、次の劣化促進試験を行った。すなわち、得られた硬化物層を有する光学物品をスガ試験器(株)製キセノンウェザーメーターX25により300時間促進劣化させた後、前記耐熱水性試験と同様の方法で密着性を評価した。
(Heat resistance test)
In the test method, the obtained optical article (hard coat lens) was put in boiled distilled water, the adhesion of the hard coat layer was evaluated every 1 hour, and the test time was 5 hours. For the evaluation of adhesion, the adhesion between the hard coat film and the plastic lens was measured by a cross-cut tape test according to JISD-0202. That is, using a cutter knife, cuts are made at intervals of about 1 mm on the lens surface to form 100 squares. A cellophane pressure-sensitive adhesive tape (cello tape (registered trademark) manufactured by Nichiban Co., Ltd.) was strongly pasted thereon, and then pulled and peeled from the surface in a direction of 90 ° at a stretch, and the squares on which the coating film remained were measured. The evaluation result was expressed as (number of remaining cells) / 100. Here, the adhesiveness evaluates the adhesiveness of all the layers laminated on the lens substrate. The evaluation was performed on the convex surface of the lens.
(Weather resistance test)
As the test method, the following deterioration promotion test was performed in order to evaluate the durability of the cured product layer by light irradiation of the obtained optical article (hard coat lens). That is, the obtained optical article having a cured product layer was accelerated and deteriorated for 300 hours by a Xenon weather meter X25 manufactured by Suga Test Instruments Co., Ltd., and then the adhesion was evaluated in the same manner as in the hot water resistance test.
(Bayer試験)
 Bayer試験法(ASTM D-4060またはASTM F735-81)に基づいて、ハードコート層が形成されていないレンズ基材(ノンコートレンズ)の表面及びレンズ基材上に形成されたハードコート層表面(ハードコートレンズ表面)に、以下の方法で傷をつけた。
 即ち、2つのΦ50mmの穴を持つ研磨剤保持体に、ノンコートレンズ及びハードコートレンズを、それぞれ、その凸面を上にして、穴の下方から装着した。次いで市販されている研磨剤(SAINT-GOBAIN CERAMIC MATERIALS CANADA INC.,製のアルミナ-ジルコニアからなる研磨剤)500gを研磨剤保持体に入れ、この状態で装着された2つのレンズを毎分150ストロークの振動数で、合計2分間、4インチのストローク幅で振動させることにより、2つのレンズの表面を研磨することにより、傷をつけた。
 次いで、これらのレンズについて、分光計(スガ試験機(株)製 Hazeメーター)によりHazeを測定し、傷をつける前と傷をつけた後でのHaze値の差を求め、下記式によりBayer値を算出した。
 Bayer値=ΔHaze(ノンコート)/ΔHaze(ハードコート)
式中、ΔHaze(ノンコート)は、ノンコートレンズについて、試験後でのHaze値から試験前のHaze値を引いた値であり、ΔHaze(ハードコート)は、ハードコートレンズにおける試験後のHaze値から試験前のHaze値を引いた値である。この値が大きいほど表面硬度が高く耐擦傷性に優れていることを意味する。
(Bayer test)
Based on the Bayer test method (ASTM D-4060 or ASTM F735-81), the surface of the lens substrate (non-coated lens) on which the hard coat layer is not formed and the surface of the hard coat layer formed on the lens substrate (hard The surface of the coated lens was scratched by the following method.
That is, an uncoated lens and a hard-coated lens were mounted on an abrasive holding body having two holes of Φ50 mm from the bottom of the holes with the convex surfaces thereof facing up. Next, 500 g of a commercially available abrasive (SAINT-GOBAIN CERAMIC MATERIALS CANADA INC., Made of alumina-zirconia) was placed in an abrasive holder, and the two lenses mounted in this state were stroked 150 strokes per minute. The surface of the two lenses was scratched by being vibrated with a stroke width of 4 inches for a total of 2 minutes at a frequency of.
Next, for these lenses, the haze was measured with a spectrometer (Haze meter manufactured by Suga Test Instruments Co., Ltd.), and the difference between the haze values before and after scratching was obtained. Was calculated.
Bayer value = ΔHaze (non-coated) / ΔHaze (hard-coated)
In the formula, ΔHaze (non-coated) is a value obtained by subtracting the Haze value before the test from the Haze value after the test for the non-coated lens, and ΔHaze (hard coat) is a test from the Haze value after the test in the hard-coated lens. The value obtained by subtracting the previous Haze value. A larger value means higher surface hardness and better scratch resistance.
(スチールウール耐擦傷性)
 スチールウール(日本スチールウール(株)製ボンスター#0000番)を用い、3kgの荷重を加えながら、10往復、光学物品表面(ハードコート膜表面)を擦り、傷ついた程度を目視で評価した。評価基準は次の通りである。
A:傷が付かない(目視で傷が確認できなかった場合)。
B:ほとんど傷が付かない(目視で1以上5本未満の擦傷がある場合)。
C:極わずかに傷が付く(目視で5本以上10本未満の擦傷がある場合)。
D:傷が付く(目視で10本以上の擦傷がある場合)。
E:ハードコート膜の剥離が生じている。
 耐擦傷性に関しては、B以上の評価結果であれば実用上問題なく、表面硬度に優れていることを意味する。
 以上の結果を表3に示した。
(Steel wool scratch resistance)
Using steel wool (Bonster # 0000 manufactured by Nippon Steel Wool Co., Ltd.), the surface of the optical article (hard coat film surface) was rubbed 10 times while applying a load of 3 kg, and the degree of damage was visually evaluated. The evaluation criteria are as follows.
A: No flaws (when no flaws can be confirmed visually).
B: Scratches hardly occur (when there are 1 or more and less than 5 scratches visually).
C: Slightly scratched (when there are 5 or more and less than 10 scratches visually).
D: Scratches (when there are 10 or more scratches visually).
E: Peeling of the hard coat film has occurred.
Regarding the scratch resistance, an evaluation result of B or higher means that there is no practical problem and that the surface hardness is excellent.
The above results are shown in Table 3.
実施例2~16
 表1に示すコーティング組成物から得られたコーティング剤1~11、およびプラスチックレンズ基材を使用して、実施例1と同様の方法でハードコート層を有するハードコートレンズを作製し、その評価を行った。評価結果を表3に示した。
Examples 2 to 16
Using the coating agents 1 to 11 obtained from the coating composition shown in Table 1 and a plastic lens substrate, a hard coat lens having a hard coat layer was prepared in the same manner as in Example 1, and the evaluation was performed. went. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
比較例1~10
 表2に示す比較コーティング組成物から得られた比較コーティング剤1~6、およびプラスチックレンズ基材を使用して、実施例1と同様の方法でハードコート層を有するハードコートレンズを作製し、その評価を行った。評価結果を表4に示した。なお、比較例10においては、最初から得られたハードコート層にクラックが発生し、さらにプラスチックレンズ基材に密着していなかったことから、それ以上の評価は実施しなかった。
Comparative Examples 1-10
Using the comparative coating agents 1 to 6 obtained from the comparative coating composition shown in Table 2 and a plastic lens substrate, a hard coat lens having a hard coat layer was produced in the same manner as in Example 1, Evaluation was performed. The evaluation results are shown in Table 4. In Comparative Example 10, no cracks were generated in the hard coat layer obtained from the beginning, and the hard coat layer was not in close contact with the plastic lens substrate, and thus no further evaluation was performed.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
コーティング剤12の製造(組成物12から得られるコーティング剤12):
 (A)成分を含有するメタノール分散五酸化アンチモンゾル(SOL3)500gを撹拌しながら、t-ブチルアルコール30g、ジアセトンアルコール200g、及び(C成分)ケチミン化合物(K2)2.0gの混合溶液を添加した。得られた溶液に、(B1)成分であるγ―グリシドキシプロピルトリメトキシシラン170g、及びγ―グリシドキシプロピルジメトキシメチルシラン18g、(B2)成分であるテトラエトキシシラン100gを、水50g、及び0.05N塩酸50gで加水分解させた液を添加した。次いで、この得られた溶液に、シリコーン系界面活性剤(東レ・ダウコーニング株式会社製、商品名「L-7001)1.0gを添加し、室温で12時間撹拌した。撹拌終了後、トリス(2,4-ペンタンジオナト)アルミニウム(III)10gを加え、さらに室温で1時間撹拌することにより、本発明のコーティング剤12を得た。このコーティング剤12は、白濁することなく、またゲル化物が生じることなく製造できた。
 このコーティング剤12とする前の各成分の配合量(コーティング組成物12の配合量)を表5に示した。なお、表5におけるコーティング組成物12の配合割合のものを上記方法で混合したものがコーティング剤12に該当する。
Production of coating agent 12 (coating agent 12 obtained from composition 12):
While stirring 500 g of methanol-dispersed antimony pentoxide sol (SOL3) containing component (A), a mixed solution of 30 g of t-butyl alcohol, 200 g of diacetone alcohol, and 2.0 g of (C component) ketimine compound (K2) was added. Added. To the resulting solution, 170 g of γ-glycidoxypropyltrimethoxysilane as component (B1) and 18 g of γ-glycidoxypropyldimethoxymethylsilane, 100 g of tetraethoxysilane as component (B2), 50 g of water, And a solution hydrolyzed with 50 g of 0.05N hydrochloric acid was added. Next, 1.0 g of a silicone surfactant (trade name “L-7001” manufactured by Toray Dow Corning Co., Ltd.) was added to the resulting solution, and the mixture was stirred for 12 hours at room temperature. 2,4-pentanedionato) aluminum (III) 10 g was added and the mixture was further stirred at room temperature for 1 hour to obtain the coating agent 12 of the present invention. It was possible to produce without causing.
Table 5 shows the blending amounts of the respective components (the blending amount of the coating composition 12) before making the coating agent 12. In addition, what mixed the thing of the mixture ratio of the coating composition 12 in Table 5 by the said method corresponds to the coating agent 12. FIG.
コーティング剤13~17の製造(コーティング組成物13~17から得られるコーティング剤13~17):
 表5に示す(A)無機酸化物微粒子、(B1)エポキシ基含有ケイ素化合物、(C)ケチミン基含有化合物、(B2)ケイ素化合物、水、硬化触媒、水溶性有機溶媒、添加剤;シリコーン系界面活性剤、環状ケトン化合物、4級アンモニウム塩を用いた以外は、コーティング剤12と同様な方法で製造した。コーティング剤13~17は、白濁することなく、またゲル化物が生じることなく製造できた。配合の組成を表5に示した。なお、表5におけるコーティング組成物13~17の配合割合のものを上記方法で混合したものが、コーティング剤13~17に該当する。
Production of coating agents 13-17 (coating agents 13-17 obtained from coating compositions 13-17):
(A) inorganic oxide fine particles, (B1) epoxy group-containing silicon compound, (C) ketimine group-containing compound, (B2) silicon compound, water, curing catalyst, water-soluble organic solvent, additive shown in Table 5; silicone system It was produced by the same method as coating agent 12 except that a surfactant, a cyclic ketone compound, and a quaternary ammonium salt were used. Coating agents 13 to 17 were able to be produced without clouding and without gelation. The composition of the formulation is shown in Table 5. Note that a mixture of the coating compositions 13 to 17 in Table 5 mixed by the above method corresponds to the coating agents 13 to 17.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
実施例17~22
 表5に示すコーティング組成物から得られたコーティング剤12~17、およびプラスチックレンズ基材を使用して、実施例1と同様の方法でハードコート層を有するハードコートレンズを作製し、その評価を行った。評価結果を表6に示した。
Examples 17-22
Using a coating agent 12 to 17 obtained from the coating composition shown in Table 5 and a plastic lens substrate, a hard coat lens having a hard coat layer was prepared in the same manner as in Example 1, and the evaluation was performed. went. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 前記実施例から明らかなように、(C)ケチミン化合物を配合することにより、密着性に優れ、さらにBayer値や耐擦傷性といった硬度が良好であるハードコート層を形成することができた。特に、(メタ)アクリル系樹脂やウレタン系樹脂に対する密着性が向上した。それに対し、比較例1~8に示すように、(C)ケチミン化合物を含まない場合や2級のアミノ基を有するケイ素化合物を使用した場合は、密着性が十分に向上しなかった。また、(C)ケチミン化合物の配合量が多すぎる場合や、1級のアミノ基を有するケイ素化合物を使用した場合には、硬度が低下した。また、比較例9、及び10に示すように、(B1)成分の配合量が多すぎる場合には耐擦傷性が低下し、(B1)成分の配合量が少ない場合には密着性が低下した。 As is apparent from the above examples, by blending the (C) ketimine compound, it was possible to form a hard coat layer having excellent adhesion and excellent hardness such as Bayer value and scratch resistance. In particular, the adhesion to (meth) acrylic resins and urethane resins was improved. On the other hand, as shown in Comparative Examples 1 to 8, when (C) a ketimine compound was not included or a silicon compound having a secondary amino group was used, the adhesion was not sufficiently improved. Moreover, when the compounding quantity of (C) ketimine compound was too much, or when the silicon compound which has a primary amino group was used, hardness fell. Further, as shown in Comparative Examples 9 and 10, when the blending amount of the component (B1) is too large, the scratch resistance is lowered, and when the blending amount of the component (B1) is small, the adhesion is lowered. .

Claims (7)

  1. (A)無機酸化物微粒子、
    (B1)エポキシ基、及び加水分解性基を有するエポキシ基含有ケイ素化合物、及び
    (C)ケチミン基を有するケチミン化合物
    を含有するハードコート層形成用コーティング組成物であって、
    (A)成分を100質量部として、(B1)成分を50質量部以上350質量部以下、(C)成分を0.1質量部以上10質量部以下含むことを特徴とする前記コーティング組成物。
    (A) inorganic oxide fine particles,
    (B1) An epoxy group-containing epoxy compound and a hydrolyzable group-containing silicon compound, and (C) a hard coat layer forming coating composition containing a ketimine compound having a ketimine group,
    The said coating composition characterized by including (A) component as 100 mass parts, (B1) component at 50 mass part or more and 350 mass parts or less, and (C) component at 0.1 mass part or more and 10 mass parts or less.
  2.  前記(C)ケチミン化合物が、ケチミン基及び加水分解性基を有するケチミン基含有ケイ素化合物であることを特徴とする請求項1に記載のコーティング組成物。 The coating composition according to claim 1, wherein the (C) ketimine compound is a ketimine group-containing silicon compound having a ketimine group and a hydrolyzable group.
  3.  前記コーティング組成物が、さらに(B2)成分として、下記式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     Rは、水素原子、又は炭素数1~5のアルキル基であり、
     Rは、炭素数1~3のアルキル基であり、
     Aは、0~2の整数である。)
    で示されるケイ素化合物、及び下記式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     Rは、炭素数1~8のアルキレン基であり、
     R、及びRは、炭素数1~3のアルキル基であり、
     R、及びRは、炭素数1~3のアルキル基であり、
     Bは、0~2の整数である。)
    で示されるケイ素化合物からなる群より選ばれる少なくとも1種のケイ素化合物を含み、
    (A)成分を100質量部として、(B2)成分を10質量部以上150質量部以下含むことを特徴とする請求項1に記載のコーティング組成物。
    The coating composition further comprises the following formula (I) as component (B2):
    Figure JPOXMLDOC01-appb-C000001
    (Where
    R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
    R 2 is an alkyl group having 1 to 3 carbon atoms,
    A is an integer of 0-2. )
    And a silicon compound represented by the following formula (II)
    Figure JPOXMLDOC01-appb-C000002
    (Where
    R 3 is an alkylene group having 1 to 8 carbon atoms,
    R 4 and R 5 are alkyl groups having 1 to 3 carbon atoms,
    R 6 and R 7 are alkyl groups having 1 to 3 carbon atoms,
    B is an integer of 0-2. )
    Including at least one silicon compound selected from the group consisting of silicon compounds represented by:
    The coating composition according to claim 1, wherein the component (A) is 100 parts by mass and the component (B2) is 10 parts by mass or more and 150 parts by mass or less.
  4.  プラスチック製光学基材の表面に、請求項1~3の何れかに記載のコーティング組成物を硬化させて得られるコート層が積層されていることを特徴とする光学物品。 An optical article, wherein a coating layer obtained by curing the coating composition according to any one of claims 1 to 3 is laminated on a surface of a plastic optical substrate.
  5.  前記プラスチック製光学基材が、(メタ)アクリル系樹脂よりなる光学基材であることを特徴とする請求項4記載の光学物品。 The optical article according to claim 4, wherein the plastic optical substrate is an optical substrate made of a (meth) acrylic resin.
  6.  前記プラスチック製光学基材が、フォトクロミック化合物を含む基材であることを特徴とする請求項5記載の光学物品。 6. The optical article according to claim 5, wherein the plastic optical substrate is a substrate containing a photochromic compound.
  7.  前記プラスチック製光学基材が、ウレタン系樹脂よりなる基材である請求項4記載の光学物品。 The optical article according to claim 4, wherein the plastic optical base material is a base material made of urethane resin.
PCT/JP2010/069097 2009-11-06 2010-10-27 Coating composition and optical article WO2011055667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-254608 2009-11-06
JP2009254608A JP2013014636A (en) 2009-11-06 2009-11-06 Coating composition

Publications (1)

Publication Number Publication Date
WO2011055667A1 true WO2011055667A1 (en) 2011-05-12

Family

ID=43969907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069097 WO2011055667A1 (en) 2009-11-06 2010-10-27 Coating composition and optical article

Country Status (2)

Country Link
JP (1) JP2013014636A (en)
WO (1) WO2011055667A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467338A (en) * 2013-09-27 2013-12-25 桂林理工大学 2-octanone condensation-compound ethylenediamine and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6892343B2 (en) * 2017-07-20 2021-06-23 株式会社カネカ Hardener for primer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122969A (en) * 1981-07-31 1983-07-21 ジエラルド・デイ−・トレツドウエイ Organic silicone paint and manufacture
JP2004107396A (en) * 2002-09-13 2004-04-08 Sekisui Chem Co Ltd Curable composition
WO2008105306A1 (en) * 2007-02-22 2008-09-04 Tokuyama Corporation Coating composition and photochromic optical article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122969A (en) * 1981-07-31 1983-07-21 ジエラルド・デイ−・トレツドウエイ Organic silicone paint and manufacture
JP2004107396A (en) * 2002-09-13 2004-04-08 Sekisui Chem Co Ltd Curable composition
WO2008105306A1 (en) * 2007-02-22 2008-09-04 Tokuyama Corporation Coating composition and photochromic optical article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467338A (en) * 2013-09-27 2013-12-25 桂林理工大学 2-octanone condensation-compound ethylenediamine and application thereof

Also Published As

Publication number Publication date
JP2013014636A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
KR101474058B1 (en) Primer composition for optical articles, and optical article
JP5918138B2 (en) Primer composition for optical article and optical article
US20110317239A1 (en) Coating composition and optical article
JP5566306B2 (en) Coating composition, method for producing the composition, and laminate having a hard coat layer
JP5686728B2 (en) Coating composition
JP6480951B2 (en) Optical composition having a coating composition and a coating layer comprising the coating composition
JP4750694B2 (en) Plastic lens
JP5414449B2 (en) Coating composition
WO2011096304A1 (en) Primer composition for optical articles, and optical articles
KR20160114616A (en) Coating composition and optical member
JP3852100B2 (en) Coating composition and laminate thereof
EP2724185A1 (en) Optical article containing self-healing and abrasion-resistant coatings
WO2001042381A1 (en) Coating composition and method for preparation thereof
JP5530236B2 (en) Primer composition for optical article and optical article
WO2011055667A1 (en) Coating composition and optical article
JPH08311401A (en) Composition for coating and manufacture and multilayer material thereof
JP2003292882A (en) Composition for coating and laminated body
JPH11302598A (en) Coating material composition, coating material composition-coated molded product and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP