WO2011055185A1 - Power distribution system - Google Patents

Power distribution system Download PDF

Info

Publication number
WO2011055185A1
WO2011055185A1 PCT/IB2010/002691 IB2010002691W WO2011055185A1 WO 2011055185 A1 WO2011055185 A1 WO 2011055185A1 IB 2010002691 W IB2010002691 W IB 2010002691W WO 2011055185 A1 WO2011055185 A1 WO 2011055185A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
abnormality
unit
distribution system
power output
Prior art date
Application number
PCT/IB2010/002691
Other languages
French (fr)
Japanese (ja)
Inventor
裕明 湯浅
小新 博昭
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011055185A1 publication Critical patent/WO2011055185A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a power distribution system.
  • a distribution system that distributes DC power to a load such as an electric light through a circuit from a distributed power source such as a solar cell or a fuel cell that generates DC power by converting energy from natural energy has attracted attention in addition to commercial power.
  • a power distribution system is equipped with a storage battery (secondary battery) as one of the distributed power sources so that power can be supplied to the load even in the event of a power failure when the power supply from the power system stops.
  • a storage battery secondary battery
  • the power distribution system disclosed in Patent Document 1 monitors the power flowing between the power supply and the load, and when an abnormality such as an overcurrent flows is detected, it protects the load.
  • a breaker shut-off means is provided to shut off the power supply from the power source to the load.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 3-2 8 4 3 5 5
  • the present invention has been made in view of the above points, and detects an abnormality in a distributed power source before detecting an abnormality that interrupts the circuit for supplying power from the power source to the load.
  • a power adjustment unit capable of executing at least one of the DC power output unit and the power adjustment unit, when an abnormality is detected in at least one of the DC power output unit and the power adjustment unit.
  • a power distribution system that cuts off the circuit is provided.
  • the power distribution system is configured to check whether there is an abnormality in at least one of the DC power output unit and the power adjustment unit, a blocking unit capable of cutting off an electric circuit between the DC power output unit and the power adjustment unit.
  • An abnormality determining unit for determining, and a control unit for performing a blocking operation of the blocking unit when the abnormality determining unit determines that there is an abnormality may be further provided.
  • the control unit can control the blocking unit based on the determination result of the presence or absence of abnormality in at least one of the DC power output unit and the power adjustment unit by the abnormality determination unit. Therefore, it is possible to protect the load from excessive power caused by an abnormality in at least one of the DC power output means and the power adjustment means.
  • the abnormality determination unit may determine whether there is an abnormality that may be a sign that excessive power is output from the DC power output unit.
  • the abnormality determination means can determine whether there is an abnormality in the DC power output means that can be a precursor to the occurrence of excessive power. It is possible to prevent excessive power from being output from the power output means to the electric circuit. As a result, the load can be protected from excessive power and the DC power output means can be protected.
  • the power adjusting means can receive direct power from the plurality of DC power output means via the respective electric circuits, and a plurality of blocking means are provided for each of the electric circuits. And when the DC power output means among the DC power output means is determined to be abnormal, the control means is individually connected to the DC power output means determined to be abnormal.
  • the shut-off means corresponding to may be shut off.
  • the DC power output means may include power generation means for generating DC power by energy conversion from natural energy, and power storage means capable of storing the DC power generated by the power generation means.
  • control unit may store the determination content in a predetermined storage unit.
  • control unit can store the abnormality of the DC power output unit determined by the abnormality determination unit in the storage unit, the abnormality content of the DC power output unit can be easily confirmed.
  • control unit may notify the outside of the determination by a predetermined notification unit.
  • an abnormality in a distributed power source can be detected to automatically interrupt the electric circuit.
  • FIG. 1 is a block diagram showing an overall configuration of a power supply system according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of a power distribution system according to the present embodiment.
  • the house is equipped with a power supply system 1 as a power distribution system that supplies power to various devices (such as lighting equipment, air conditioners, home appliances, and audiovisual equipment) installed in the home.
  • the power supply system 1 is used to operate various devices using a commercial AC power source (AC power source) 2 for home use as well as power from solar cells 60 (see Fig. 2) that generate electricity from sunlight. Supply as.
  • the power supply system 1 supplies power not only to the DC device 5 that operates by inputting a DC power source (DC power source) but also to the AC device 6 that operates by inputting an AC power source (AC power source).
  • a house is described as an example of a place where the power supply system 1 to which the power distribution system according to the present invention is applied is installed.
  • the present invention is not limited to this. It can also be installed in factories.
  • the power supply system 1 is provided with a control unit 7 and a DC distribution board (built-in DC breaker) 8 as the distribution board of the system 1.
  • the power supply system 1 is provided with a control unit 9 and a release unit 10 as devices for controlling the operation of the DC device 5 in the house.
  • the control unit 7 is connected to an AC distribution board 11 1 for branching an AC power supply via an AC power line 12.
  • the control unit 7 is connected to the commercial AC power supply 2 via the AC distribution board 11 and connected to the solar cell unit 3 via the DC power line 13.
  • the control unit 7 is connected to the fuel cell unit 4 via the DC power line 42.
  • the control unit 7 receives AC power from the AC distribution board 11 1 and DC power from the solar cell unit 3 and the fuel cell unit 4, and converts these powers into predetermined DC power as a device power source. Then, the control unit 7 outputs the converted DC power to the DC distribution board 8 via the DC power line 14 or to the storage battery unit 16 via the DC power line 15. It stores the same power.
  • the control unit 7 not only takes in AC power from the AC distribution board 11 but also direct current from the solar cell 60 (see Fig. 2), fuel cell 62 (see Fig. 2) and storage battery 63 (see Fig. 2). It is also possible to convert the power into AC power and supply it to the AC distribution board 11. Furthermore, between the solar cell unit 3, the fuel cell unit 4 and the storage battery unit 1 6 and the control unit 7, a blocking means for cutting off the electric circuit between each battery unit 3, 4, 1 6 and the control unit 7. As DC breakers 4 4 a to 4 4 c are connected. The control unit 7 exchanges data with the DC distribution board 8 via the signal line 17.
  • the DC distribution board 8 is a type of breaker that supports DC power.
  • the DC distribution board 8 branches the DC power input from the control unit 7 and outputs the DC power after branching to the control unit 9 via the DC power line 18 or the DC power line 1 9 Or output to relay unit 10 via.
  • the DC distribution board 8 exchanges data with the control unit 9 via the signal line 20 and exchanges data with the relay unit 10 via the signal line 21.
  • a plurality of DC devices 5 are connected to the control unit 9. These DC devices 5 are connected to a control unit 9 via a DC supply line 22 that can carry both DC power and data by a pair of wires.
  • the DC supply line 22 is a so-called power line carrier communication that superimposes a communication signal for transmitting data by a high-frequency carrier wave on the DC voltage that serves as the power source for the DC device 5. Transport both to DC device 5.
  • the control unit 9 acquires the DC power source of the DC device 5 through the DC power line 1 8, and which DC device 5 is selected based on the operation command obtained from the DC distribution board 8 through the signal line 20. Figure out how to control. Then, the control unit 9 outputs a DC voltage and an operation command to the instructed DC device 5 via the DC supply line 22, and controls the operation of the DC device 5.
  • the control unit 9 is connected to a switch 2 3 that is operated when switching the operation of the DC device 5 in the home via the DC supply line 2 2. Further, for example, a sensor 24 that detects a radio wave transmitted from an infrared remote controller is connected to the control unit 9 via a DC supply line 22. Accordingly, not only the operation instruction from the DC distribution board 8 but also the operation of the switch 23 and the detection of the sensor 24, the DC device 5 is controlled by sending a communication signal to the DC supply line 22.
  • a plurality of DC devices 5 are connected to the relay unit 10 via individual DC power lines 25, respectively.
  • the relay unit 10 obtains the DC power source of the DC device 5 through the DC power line 19 and determines which DC device 5 based on the operation command obtained from the DC distribution board 8 through the signal line 21. Know what to do.
  • the relay unit 10 controls the operation of the DC device 5 by turning on / off the power supply to the DC power line 25 with the built-in relay for the instructed DC device 5.
  • the relay unit 10 is connected to a plurality of switches 26 for manually operating the DC device 5, and the power supply to the DC supply line 25 is turned on and off by the relay by the operation of the switch 26.
  • the DC device 5 is controlled.
  • a wall outlet or a floor outlet is connected to the DC distribution board 8 through a DC power line 2 8. If a DC device plug (not shown) is inserted into this DC outlet 27, DC power can be supplied directly to the device.
  • an electric power meter 29 capable of remotely measuring the usage amount of the commercial AC power source 2 is connected.
  • the power meter 29 has not only the function of remote meter reading of commercial power consumption, but also functions of power line carrier communication and wireless communication, for example.
  • the power meter 29 sends the meter reading result to an electric power company or the like via power line carrier communication or wireless communication.
  • the power supply system 1 is provided with a network system 30 that enables various devices in the home to be controlled by network communication.
  • the network system 30 is provided with a home server 31 as a control unit of the system 30.
  • the home server 3 1 is connected to a management server 3 2 outside the home via a network N such as the Internet, and is connected to the home equipment 3 4 via a signal line 3 3.
  • the in-home server 31 operates using DC power acquired from the DC distribution board 8 via the DC power line 35 as a power source.
  • a control box 36 that manages operation control of various devices in the home through network communication is connected to the home server 31 via a signal line 37.
  • the control box 36 is connected to the control unit 7 and the DC distribution board 8 via the signal line 17 and can directly control the DC device 5 via the DC supply line 38.
  • a gas / water meter 39 that can remotely measure the amount of gas and water used is connected to the control box 36, and also connected to the operation panel 40 of the network system 30.
  • the operation panel 40 is connected to a monitoring device 41 including, for example, a door phone slave, a sensor, and a camera.
  • the control box 3 6 When the home server 3 1 inputs operation commands for various devices in the home via the network N, the control box 3 6 notifies the control box 3 6 of the instructions so that the various devices operate in accordance with the operation commands. To work.
  • the home server 3 1 can provide various information acquired from the gas water meter 39 to the management server 32 via the network N, and operate the monitoring device 41 to detect that an abnormality has been detected. When accepted from panel 40, this is also provided to management server 32 via network N.
  • control unit 7 will be described in detail.
  • the control unit 7 includes various types of power supply systems 1 including a commercial AC power source 2 constituting a power system 2 and a solar cell unit 3, a fuel cell unit 4 and a storage battery unit 16 constituting a distributed power source.
  • Distribution line (electric circuit) 4 3 that is connected to the load F and distributes power.
  • the load F includes various components such as the DC device 5 and the AC device 6 as well as system components such as the controller unit, and the AC power line 1 2 and the DC power line 1 3 that supply power to them.
  • the distribution path 4 3 is composed of ⁇ 15, 18, 19, 25, 28, 35, 42, and the DC supply lines 22, 38.
  • control unit 7 efficiently supplies DC power generated by the solar cell unit 3 and the fuel cell unit 4 to the load F side, and at the same time, an active power conditioner (hereinafter referred to as an active power conditioner) for protecting the connection with the distribution system.
  • an active power conditioner hereinafter referred to as an active power conditioner
  • Active supercomputer J Active supercomputer J
  • control device 51 for controlling the operating state of active supercomputer 50.
  • the active supercomputer 50 includes an AC / DC converter 52 that converts AC power supplied from the commercial AC power source 2 into DC power, and a D CZD C converter 53 a connected to the solar cell unit 3 and the fuel cell unit 4. 53 b. That is, DC power converted from AC power through the ACZDC converter 52 and DC power supplied from the solar cell unit 3 and the fuel cell unit 4 through the DCZDC converters 53a and 53b are transformed. The load is supplied to the F side. In this respect, the AC / DC converter 52 and the DC / DC converters 53a and 53b function as power adjusting means.
  • the active computer 50 includes a discharge circuit 54 for sending DC power discharged from the storage battery 63 of the storage battery unit 16 to the load F side, and a charging circuit as a charging means for charging the storage battery 63 of the storage battery unit 16. And 55. That is, since the storage battery 63 functions as an emergency power source during a power outage or the like, the DC power is always charged via the charging circuit 55, and the stored DC power is discharged during a power failure or the like. It is designed to be discharged to the load F side via 54.
  • the active computer 50 includes a power measurement circuit 56 having a sensor function for measuring the power flowing through the distribution path 43 and detecting an abnormality (overcurrent, overvoltage, temperature abnormality, etc.) in the 7 active computer 50. Yes.
  • the power measurement circuit 56 outputs information such as the measured power value (current value or voltage value) and detected abnormality to the control device 51.
  • the control device 51 includes a storage unit 57 serving as a storage unit capable of reading and rewriting information, and a CPU 58 serving as a central processing unit.
  • the storage unit 57 includes power input from the power measurement circuit 56.
  • programs for the control device 51 to perform various controls are stored. Further, the control device 51 controls the ACZDC converter 52 and the D CZ DC converters 53 a and 53 b as necessary.
  • the control device 51 determines the presence or absence of an abnormality that may be a precursor to the occurrence of excessive power such as leakage or overdischarge in the active computer 50 based on the information of the active computer 50 obtained by the power measuring circuit 56. . Then, the reactive computer 50 is controlled based on the determined abnormality.
  • the control device 51 functions as a determination unit and a control unit. Further, the control device 51 is connected to a monitor 59 as a notification means for displaying information stored in the storage unit 57 and a home server 31 for transmitting the information to the outside via the network N. ing.
  • the control box 36 is omitted for the sake of simple illustration. However, referring to FIG.
  • the control device 51 is connected to the home server 31 via the control box 36.
  • the solar cell unit 3 includes a solar cell 60 as a power generation means for outputting DC power generated by energy conversion from solar energy, which is natural energy, and the electric power generated by the solar cell 60.
  • the sensor 6 1a detects the state of the solar cell 60, such as the current value, the voltage value, the amount of solar radiation to the solar cell 60, and the temperature of the solar cell 60.
  • the solar battery 60 is connected to the DCZDC converter 53a via a DC breaker 44a.
  • the sensor 61a is connected to the control device 51, and outputs the detected state of the solar cell 60 to the control device 51.
  • the fuel cell unit 4 includes a fuel cell 6 2 as a power generation means and a sensor 6 1 b.
  • the fuel cell 62 outputs DC power generated by a chemical reaction between hydrogen and oxygen from a fuel gas (for example, reformed gas rich in hydrogen) and an oxidant gas (for example, air containing oxygen).
  • the sensor 6 1 b measures the current value and voltage value of the electric power generated by the fuel cell 6 2 and detects the state of the fuel cell 6 2, for example, the temperature of the fuel cell 6 2.
  • the fuel cell 62 is connected to the DC / DC comparator 53b through the DC breaker 44b.
  • the sensor 6 1 b is connected to the control device 51, and outputs the measured and detected state of the fuel cell 62 to the control device 51.
  • the storage battery unit 16 measures the current value and the voltage value of the storage battery 63 as chargeable / dischargeable storage means, the current and voltage of the storage battery 63 when charging and storage, and the state of the storage battery 63, for example, And a sensor 6 1 c for detecting the temperature of the storage battery 6 3.
  • the storage battery 63 is connected to the discharge circuit 54 and the charging circuit 55 via the DC breaker 44c.
  • the sensor 6 1 c is connected to the control device 51, and outputs the measured and detected charge / discharge amount of the storage battery 63 and the state of the storage battery 63 to the control device 51.
  • the solar cell 60, the fuel cell 62, and the storage battery 63 function as DC power output means.
  • the control device 51 uses each of the battery units 3, 4, and 16 in the same manner as the active computer 50 based on the input states of the solar cell 60, the fuel cell 62, and the storage battery 63.
  • the storage unit 57 stores the state of each battery and the determination result. Then, each DC breaker 4 4 a to 4 4 c is controlled based on each discrimination result.
  • control unit 7 the solar cell unit 3, the fuel cell unit 4, the storage battery unit 16 and the DC breakers 4 4a to 4a provided with the active supercomputer 50 and the control device 51.
  • 4 4 c constitutes the power distribution system.
  • the control device 51 determines whether there is an abnormality based on the status of the solar cell unit 3, the fuel cell unit 4, the storage battery unit 16 and the active computer 50.
  • the circuit breakers 4 4 a to 4 4 c connected to 3, 4, and 16 and the active supercomputer 50 are controlled. That is, the control device 51 includes each sensor 6 of each battery unit 3, 4, 16. 1 a-61 c and active battery 50 Based on information indicating the status of each device such as current value, voltage value, temperature, etc. measured and detected by power measuring circuit 56 of each battery unit 3, 4, 1 6 In addition, it is determined whether or not there is an abnormality in the active computer 50 that may be a precursor to the occurrence of excessive power.
  • the control device 51 sends the corresponding DC / DC converter 53a from each of the battery units 3, 4, 1 6 , 53 b and discharge circuit 54 to output DC power and supply power to load F.
  • the control device 51 first starts the DC-DC converter 53a, connected to the battery unit that has been determined to have such an abnormality. 53 b or the discharge circuit 54 is controlled, and the output of DC power from the corresponding DC / DC comparator 53 a, 53 b or the discharge circuit 54 is stopped.
  • the DC breaker connected to the unit determined to be abnormal is activated to cut off the corresponding DC power line.
  • the process of controlling the DC / DC converters 53a, 53b or the discharge circuit 54 connected to the battery unit that has been determined to be abnormal and stopping the output can be omitted.
  • control device 51 stores the input information indicating the state of each of the battery units 3, 4, 16 and the active computer 50 and the presence / absence of the determined abnormality in the storage unit 57, and manages the abnormality log and the like. . Then, the stored states of the battery units 3, 4, 16 and the active computer 50 are output to the monitor 59 and the home server 31 together with the presence / absence of an abnormality.
  • the DC power 44a corresponding to the solar cell 60 is activated, and the DC power line 13 connected to the DCZDC converter 53a is cut off. Therefore, the supply of DC power from the solar cell 60 to the distribution line 43 including the DC system power line 13 is stopped, and the load F and the solar cell 60 main body are protected.
  • the control device 51 transmits (outputs) information indicating the state of the solar cell 60 together with the presence or absence of abnormality in the solar cell 60 to the monitor 59, and the information is displayed on the screen of the monitor 59. Therefore, the user can visually recognize the presence / absence of an abnormality and the device and cause of the abnormality by viewing the monitor 59.
  • the current value, the voltage value, and the temperature value of the fuel cell 62 generated by the fuel cell 62 are detected by the sensor 61b. Whether or not there is an abnormality is determined based on whether or not each detected value is equal to or greater than a predetermined abnormality threshold.
  • each detected value is equal to or greater than a predetermined abnormality threshold, it is determined that the fuel cell 62 is abnormal. Then, similarly to the case of the solar cell unit 3, the corresponding DC breaker 44b is operated to cut off the DC power line 42 connected to the DCZDC converter 53b. Therefore, the supply of DC power from the fuel cell 62 to the distribution line 43 including the DC power line 42 is stopped, and the load F and the fuel cell 62 main body are protected.
  • the current value, voltage value, and temperature of the storage battery 63 of the DC power sent from the storage battery unit 16 are Each value is detected by the sensor 61c, and whether or not there is an abnormality is determined based on whether or not each detected value is equal to or greater than a predetermined abnormality threshold value.
  • a predetermined abnormality threshold value As in the case of the fuel cell unit 4, when each detected value is equal to or greater than a predetermined abnormality threshold, it is determined that the storage battery 63 is abnormal. Then, as in the case of the solar cell unit 3 and the fuel cell unit 4, the corresponding DC breaker 44c is operated, and the DC power line 15 connected to the discharge circuit 54 and the charging circuit 55 is cut off.
  • the supply of DC power from the storage battery 63 to the distribution line 43 including the DC power line 15 is stopped, and the load F and the storage battery 63 main body are protected.
  • the active computer 50 whether or not there is an abnormality is determined based on whether or not the current value, voltage value, temperature of the active computer 50, etc. detected by the power measuring circuit 56 are equal to or higher than a predetermined abnormality threshold. The Then, when the detected value is equal to or greater than a predetermined abnormality threshold, it is determined that the active computer 50 is abnormal. In this case, all DC breakers 44a to 44c corresponding to the units 3, 4, 16 are operated, and the DC power lines 1, 3, 42, 15 are shut off. As a result, the supply of DC power to the distribution circuit 43 including the DC power lines 13, 4, 42, and 15 is stopped, and the load F, the active capacitor 50, and the batteries 60, 62, and 63 are protected.
  • the control device 51 determines whether there is an abnormality in the solar cell unit 3, the fuel cell unit 4, the storage battery unit 16 and the active battery 50. Based on the result of the discrimination, each battery unit 3, 4,
  • DC breakers 44 a to 44 c corresponding to 1 6 are controlled to cut off DC power lines 1, 42, 1 5. For this reason, it is possible to protect the load F from excessive power caused by an abnormality in at least one of the battery units 3, 4, 16 and the active supercomputer 50.
  • each battery unit 3 which can be a sign of excessive power generation 3
  • the control device 51 determines whether there are any abnormalities in 4, 16 and the active computer 50. For this reason, each battery unit 3, 4, 1 6 serving as DC power output means is connected to the power distribution path. Since it is possible to prevent excessive power from being output to 4 3, it is possible to protect the load F from excessive power and protect each of the battery units 3, 4, 16 and the active computer 50.
  • DC breakers 4 4 a to 4 4 c are connected to each of the solar cell unit 3, the fuel cell unit 4, and the storage battery unit 16. For this reason, when there is an abnormality in each battery unit 3, 4, 16, the distribution path 4 3 can be shut off for each battery unit 3, 4, 16. , 16 If at least one of the six cannot be used due to an abnormality, other battery units can be used.
  • the control device 51 stores the abnormalities of the identified solar cell unit 3, fuel cell unit 4, storage battery unit 16 and active battery 50 in the storage unit 5 7 can be memorized. Therefore, the history of abnormal contents in each of the battery units 3, 4, 16 and the active computer 50 can be easily confirmed by reading information from the storage unit 57.
  • the presence / absence of an abnormality determined based on the state of the solar cell unit 3, the fuel cell unit 4, the storage battery unit 16 and the active computer 50, and the state of each device And the details of the error are displayed on the monitor 59. For this reason, the abnormality of the power supply system 1 can be easily recognized by the monitor 59.
  • the presence or absence of abnormality in the power supply system (distribution system) 1 may be notified to the outside by generating an alarm sound by a buzzer or the like.
  • the presence or absence of abnormality of the storage battery unit 16 may be determined based on the battery life of the storage battery 63.
  • the state (current value, voltage value, etc.) of the fuel cell unit 4 and the storage battery unit 16 may be detected by the power measuring circuit 56 of the active computer 50.
  • the power supply system (distribution system) 1 outputs at least one of the solar cell 60, the fuel cell 62, and the storage battery 63 as direct power collection means for outputting direct current power. .
  • notifying means for notifying the outside of the abnormality of the power supply system (distribution system) 1 is not necessarily provided.
  • the abnormality content of the power supply system (distribution system) 1 may not be stored in the storage unit 57.
  • the DC breakers 4 4 a to 4 4 c need not be provided for each battery unit of the power supply system (distribution system) 1.
  • control device 51 determines whether or not there is an abnormality that can be a precursor to the occurrence of leakage or excessive power output in the solar cell unit 3, the fuel cell unit 4, and the storage battery unit 16. Based on the detection result of at least one of current, voltage, and temperature It may be determined.

Abstract

A power distribution system is provided with a direct-current power output means which outputs direct-current power generated by energy conversion from natural energy, and a power regulation means which is capable of executing the voltage regulation of the direct-current power outputted from the direct-current power output means and/or the power conversion thereof into alternating-current power. When an abnormality in the direct-current power output means and/or the power regulation means is detected, the power distribution system cuts off the power path between the direct-current power output means and the power regulation means.

Description

明細書 配電システム 技術分野  Specification Power Distribution System Technical Field
本発明は、 配電システムに関する。 背景技術  The present invention relates to a power distribution system. Background art
近年、 商用電源に加え、 自然エネルギーからのエネルギー変換により直流電力を発電す る太陽電池や燃料電池などの分散電源から電路を通して電灯などの負荷に直流電力を配電 する配電システムが注目されている。 また、 このような配電システムには、 電力系統から の電力供給が停止する停電時等にも負荷へ電力を供給することができるように、 分散電源 のひとつとして蓄電池 (二次電池) を備えたものがある (例えば、 特許文献 1 )。  In recent years, a distribution system that distributes DC power to a load such as an electric light through a circuit from a distributed power source such as a solar cell or a fuel cell that generates DC power by converting energy from natural energy has attracted attention in addition to commercial power. In addition, such a power distribution system is equipped with a storage battery (secondary battery) as one of the distributed power sources so that power can be supplied to the load even in the event of a power failure when the power supply from the power system stops. There are some (for example, Patent Document 1).
また、 特許文献 1の配電システムには、 電源と負荷との間に、 電路に流れ'る電力を監視 し、 過電流が流れる等の異常を検知したときに、 負荷を保護するために電路上で電源から 負荷への電力供給を遮断するブレーカ (遮断手段) が設けられている。  In addition, the power distribution system disclosed in Patent Document 1 monitors the power flowing between the power supply and the load, and when an abnormality such as an overcurrent flows is detected, it protects the load. A breaker (shut-off means) is provided to shut off the power supply from the power source to the load.
【特許文献 1】 日本特開 2 0 0 3— 2 8 4 3 5 5号公報  [Patent Document 1] Japanese Patent Laid-Open No. 2 0 0 3-2 8 4 3 5 5
しかしながら、 ブレーカが遮断するような過電流が電路上で検知されるような場合には、 その過電流の原因は分散電源自体に生じた異常に起因していることが多く、 過電流を生じ るほどの異常は分散電源にとって深刻な問題であることが多かった。 発明の概要  However, when an overcurrent that breaks off the breaker is detected on the circuit, the cause of the overcurrent is often caused by an abnormality that has occurred in the distributed power supply itself, resulting in an overcurrent. Such anomalies were often a serious problem for distributed power supplies. Summary of the Invention
本発明は上記点に鑑みてなされたものであり、 電源から負荷へ電力を供給するための電 路が遮断されるような異常が検知される前に、 分散電源における異常を感知して電路を自 動遮断させることができる配電システムを提供する。  The present invention has been made in view of the above points, and detects an abnormality in a distributed power source before detecting an abnormality that interrupts the circuit for supplying power from the power source to the load. Provide a power distribution system that can be automatically shut off.
本発明によれば、 自然エネルギーからエネルギー変換により発電した直流電力を出力す る直流電力出力手段と、 前記直流電力出力手段から出力された直流電力の電圧調整及び交 流電力への電力変換のうち少なくとも一方を実行可能な電力調整手段とを備え、 前記直流 電力出力手段及び前記電力調整手段のうち少なくとも一方における異常が検出される場合 に、 前記直流電力出力手段と前記電力調整手段との間の電路を遮断する配電システムが提 供される。  According to the present invention, among DC power output means for outputting DC power generated by energy conversion from natural energy, voltage adjustment of DC power output from the DC power output means, and power conversion to AC power A power adjustment unit capable of executing at least one of the DC power output unit and the power adjustment unit, when an abnormality is detected in at least one of the DC power output unit and the power adjustment unit. A power distribution system that cuts off the circuit is provided.
また、 上記配電システムは、 前記直流電力出力手段と前記電力調整手段との間の電路を 遮断可能な遮断手段と、 前記直流電力出力手段及び前記電力調整手段のうち少なくとも一 方における異常の有無を判別する異常判別手段と、 前記異常判別手段が異常有りと判別し た場合に前記遮断手段を遮断動作させる制御手段とを更に備えても良い。 この構成によれば、 制御手段が異常判別手段による直流電力出力手段及び電力調整手段 のうち少なくとも一方における異常の有無の判別結果に基づいて遮断手段を制御すること ができる。 したがって、 直流電力出力手段及び電力調整手段のうち少なくとも一方におけ る異常に起因する過大電力から負荷を保護することができる。 Further, the power distribution system is configured to check whether there is an abnormality in at least one of the DC power output unit and the power adjustment unit, a blocking unit capable of cutting off an electric circuit between the DC power output unit and the power adjustment unit. An abnormality determining unit for determining, and a control unit for performing a blocking operation of the blocking unit when the abnormality determining unit determines that there is an abnormality may be further provided. According to this configuration, the control unit can control the blocking unit based on the determination result of the presence or absence of abnormality in at least one of the DC power output unit and the power adjustment unit by the abnormality determination unit. Therefore, it is possible to protect the load from excessive power caused by an abnormality in at least one of the DC power output means and the power adjustment means.
また、 前記異常判別手段は、 前記直流電力出力手段から過大電力が出力される前兆とな リ得る異常の有無を判別しても良い。  In addition, the abnormality determination unit may determine whether there is an abnormality that may be a sign that excessive power is output from the DC power output unit.
この構成によれば、 直流電力出力手段から過大電力が出力される前に、 過大電力発生の 前兆となリ得る直流電力出力手段の異常の有無を異常判別手段によリ判別できるので、 直 流電力出力手段から電路に過大電力が出力されるのを防ぐことができる。 これにより、 過 大電力から負荷を保護するとともに、 直流電力出力手段を保護することができる。  According to this configuration, before the excessive power is output from the DC power output means, the abnormality determination means can determine whether there is an abnormality in the DC power output means that can be a precursor to the occurrence of excessive power. It is possible to prevent excessive power from being output from the power output means to the electric circuit. As a result, the load can be protected from excessive power and the DC power output means can be protected.
また、 前記電力調整手段には、 複数の前記直流電力出力手段から各々の電路を介して直 流電力が入力可能であると共に、 前記各々の電路毎に対応して複数の遮断手段が設けられ ており、 前記制御手段は、 前記異常判別手段によって前記各直流電力出力手段のうち何れ かの直流電力出力手段が異常有りと判別された場合には、 異常有りと判別された直流電力 出力手段と個別に対応する遮断手段を遮断動作させても良い。  Further, the power adjusting means can receive direct power from the plurality of DC power output means via the respective electric circuits, and a plurality of blocking means are provided for each of the electric circuits. And when the DC power output means among the DC power output means is determined to be abnormal, the control means is individually connected to the DC power output means determined to be abnormal. The shut-off means corresponding to may be shut off.
この構成によれば、 複数の直流電力出力手段の各々に遮断手段と電力調整手段が設けら れているので、 直流電力出力手段に異常があった場合には、 直流電力出力手段毎に電路を 遮断することができる。 したがって、 複数の直流電力出力手段のうち少なくとも一つが異 常のために使用できなくなっても、 他の直流電力出力手段は使用することができる。 また、 前記直流電力出力手段は、 自然エネルギーからのエネルギー変換により直流電力 を発電する発電手段と、 該発電手段により発電された直流電力を蓄電可能な蓄電手段とを 含んでも良い。  According to this configuration, since each of the plurality of DC power output means is provided with the cutoff means and the power adjustment means, when there is an abnormality in the DC power output means, an electric circuit is provided for each DC power output means. Can be blocked. Therefore, even if at least one of the plurality of DC power output means cannot be used due to an abnormality, the other DC power output means can be used. The DC power output means may include power generation means for generating DC power by energy conversion from natural energy, and power storage means capable of storing the DC power generated by the power generation means.
また、 前記制御手段は、 前記異常判別手段が異常有りと判別した場合には、 その判別内 容を所定の記憶手段に記憶させても良い。  In addition, when the abnormality determination unit determines that there is an abnormality, the control unit may store the determination content in a predetermined storage unit.
この構成によれば、 制御手段は異常判別手段が判別した直流電力出力手段の異常を記憶 手段に記憶することができるので、 直流電力出力手段の異常内容を容易に確認することが できる。  According to this configuration, since the control unit can store the abnormality of the DC power output unit determined by the abnormality determination unit in the storage unit, the abnormality content of the DC power output unit can be easily confirmed.
また、 前記制御手段は、 前記異常判別手段が異常有りと判断した場合には、 その判別内 容を所定の報知手段によリ外部に報知させても良い。  In addition, when the abnormality determination unit determines that there is an abnormality, the control unit may notify the outside of the determination by a predetermined notification unit.
この構成によれば、 直流電力出力手段に異常があった場合には、 その異常内容を外部に 報知することができる。 したがって、 直流電力出力手段の異常を外部から容易に認識する ことができる。 発明の効果  According to this configuration, when there is an abnormality in the DC power output means, the content of the abnormality can be notified to the outside. Therefore, the abnormality of the DC power output means can be easily recognized from the outside. The invention's effect
本発明によれば、 電源から負荷へ電力を供給するための電路が遮断されるような異常が 検知される前に、 分散電源における異常を感知して電路を自動遮断させることができる配 電システムを提供することができる。 図面の簡単な説明 According to the present invention, before an abnormality is detected such that an electric circuit for supplying power from a power supply to a load is interrupted, an abnormality in a distributed power source can be detected to automatically interrupt the electric circuit. An electric system can be provided. Brief Description of Drawings
本発明の目的及び特徴は以下のような添付図面を参照する以後の好ましい実施例の説明 により明確になる。  The objects and features of the present invention will become apparent from the following description of preferred embodiments with reference to the accompanying drawings.
【図 1】 本実施形態の電力供給システムの全体構成を示すブロック図。  FIG. 1 is a block diagram showing an overall configuration of a power supply system according to an embodiment.
【図 2】 本実施形態の配電システムの構成を示すプロック図。 発明を実施するため最良の形態  FIG. 2 is a block diagram illustrating a configuration of a power distribution system according to the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態が本明細書の一部を成す添付図面を参照してよリ詳細に説明す る。 図面全体において同一又は類似する部分については同一参照符号を付して説明を省略 する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, which form a part of this specification. Parts that are the same or similar throughout the drawings are given the same reference numerals, and descriptions thereof are omitted.
以下、 本発明を具体化した実施形態を図 1及び図 2に従って説明する。  Hereinafter, embodiments embodying the present invention will be described with reference to FIGS.
図 1に示すように、 住宅には、 宅内に設置された各種機器 (照明機器、 エアコン、 家電、 オーディオビジュアル機器等) に電力を供給する配電システムとしての電力供給システム 1が設けられている。 電力供給システム 1は、 家庭用の商用交流電源 (A C電源) 2を電 力として各種機器を動作させる他に、 太陽光により発電する太陽電池 6 0 (図 2参照) の 電力も各種機器に電源として供給する。 電力供給システム 1は、 直流電源 (D C電源) を 入力して動作する D C機器 5の他に、 交流電源 (A C電源) を入力して動作する A C機器 6にも電力を供給する。  As shown in Fig. 1, the house is equipped with a power supply system 1 as a power distribution system that supplies power to various devices (such as lighting equipment, air conditioners, home appliances, and audiovisual equipment) installed in the home. The power supply system 1 is used to operate various devices using a commercial AC power source (AC power source) 2 for home use as well as power from solar cells 60 (see Fig. 2) that generate electricity from sunlight. Supply as. The power supply system 1 supplies power not only to the DC device 5 that operates by inputting a DC power source (DC power source) but also to the AC device 6 that operates by inputting an AC power source (AC power source).
以下の説明において、 本発明による配電システムを適用する電力供給システム 1が設置 される場所として住宅を例として説明しているが、 これに限定されるのではなく、 集合住 宅やアパートメント、 事務室、 工場などに設置して適用することもできる。  In the following description, a house is described as an example of a place where the power supply system 1 to which the power distribution system according to the present invention is applied is installed. However, the present invention is not limited to this. It can also be installed in factories.
電力供給システム 1には、 同システム 1の分電盤としてコントロールュニット 7及び D C分電盤 (直流ブレーカ内蔵) 8が設けられている。 また、 電力供給システム 1には、 住 宅の D C機器 5の動作を制御する機器として制御ュニット 9及びリレ一ュニット 1 0が設 けられている。  The power supply system 1 is provided with a control unit 7 and a DC distribution board (built-in DC breaker) 8 as the distribution board of the system 1. In addition, the power supply system 1 is provided with a control unit 9 and a release unit 10 as devices for controlling the operation of the DC device 5 in the house.
コントロールユニット 7には、 交流電源を分岐させる A C分電盤 1 1が交流系電力線 1 2を介して接続されている。 コントロールユニット 7は、 この A C分電盤 1 1を介して商 用交流電源 2に接続されるとともに、 直流系電力線 1 3を介して太陽電池ユニット 3に接 続されている。 また、 コントロールユニット 7は、 直流系電力線 4 2を介して燃料電池ュ ニット 4に接続されている。 コントロールユニット 7は、 A C分電盤 1 1から交流電力を 取り込むとともに太陽電池ュニット 3及び燃料電池ュニット 4から直流電力を取り込み、 これら電力を機器電源として所定の直流電力に変換する。 そして、 コントロールユニット 7は、 この変換後の直流電力を、 直流系電力線 1 4を介して D C分電盤 8に出力したり、 又は直流系電力線 1 5を介して蓄電池ユニット 1 6に出力して同電力を蓄電したりする。 コントロールユニット 7は、 A C分電盤 1 1から交流電力を取り込むのみならず、 太陽 電池 6 0 (図 2参照)、 燃料電池 6 2 (図 2参照) 及び蓄電池 6 3 (図 2参照) の直流電力 を交流電力に変換して A C分電盤 1 1に供給することも可能である。 さらに、 太陽電池ュ ニット 3、 燃料電池ュニット 4及び蓄電池ュニット 1 6とコントロールュニット 7の間に は、 各電池ユニッ 3、 4、 1 6とコントロールユニット 7との間の電路を遮断する遮断 手段としての D Cブレーカ 4 4 a〜4 4 cが接続されている。 コントロールユニット 7は、 信号線 1 7を介して D C分電盤 8とデータやり取りを実行する。 The control unit 7 is connected to an AC distribution board 11 1 for branching an AC power supply via an AC power line 12. The control unit 7 is connected to the commercial AC power supply 2 via the AC distribution board 11 and connected to the solar cell unit 3 via the DC power line 13. The control unit 7 is connected to the fuel cell unit 4 via the DC power line 42. The control unit 7 receives AC power from the AC distribution board 11 1 and DC power from the solar cell unit 3 and the fuel cell unit 4, and converts these powers into predetermined DC power as a device power source. Then, the control unit 7 outputs the converted DC power to the DC distribution board 8 via the DC power line 14 or to the storage battery unit 16 via the DC power line 15. It stores the same power. The control unit 7 not only takes in AC power from the AC distribution board 11 but also direct current from the solar cell 60 (see Fig. 2), fuel cell 62 (see Fig. 2) and storage battery 63 (see Fig. 2). It is also possible to convert the power into AC power and supply it to the AC distribution board 11. Furthermore, between the solar cell unit 3, the fuel cell unit 4 and the storage battery unit 1 6 and the control unit 7, a blocking means for cutting off the electric circuit between each battery unit 3, 4, 1 6 and the control unit 7. As DC breakers 4 4 a to 4 4 c are connected. The control unit 7 exchanges data with the DC distribution board 8 via the signal line 17.
D C分電盤 8は、 直流電力対応の一種のブレーカである。 D C分電盤 8は、 コント口一 ルユニット 7から入力した直流電力を分岐させ、 その分岐後の直流電力を、 直流系電力線 1 8を介して制御ュニット 9に出力したり、 直流系電力線 1 9を介してリレーュニット 1 0に出力したりする。 また、 D C分電盤 8は、 信号線 2 0を介して制御ユニット 9とデー タやり取りをしたり、 信号線 2 1を介してリレ一ュニット 1 0とデータやり取りをしたり する。  The DC distribution board 8 is a type of breaker that supports DC power. The DC distribution board 8 branches the DC power input from the control unit 7 and outputs the DC power after branching to the control unit 9 via the DC power line 18 or the DC power line 1 9 Or output to relay unit 10 via. In addition, the DC distribution board 8 exchanges data with the control unit 9 via the signal line 20 and exchanges data with the relay unit 10 via the signal line 21.
制御ユニット 9には、 複数の D C機器 5が接続されている。 これら D C機器 5は、 直流 電力及びデータの両方を 1対の線によって搬送可能な直流供給線路 2 2を介して制御ュニ ット 9と接続されている。 直流供給線路 2 2は、 D C機器 5の電源となる直流電圧に、 高 周波の搬送波によりデータを電送する通信信号を重畳する、 いわゆる電力線搬送通信によ リ、 1対の線で電力及びデータの両方を D C機器 5に搬送する。 制御ユニット 9は、 直流 系電力線 1 8を介して D C機器 5の直流電源を取得し、 D C分電盤 8から信号線 2 0を介 して得る動作指令を基に、どの D C機器 5をどのように制御するのかを把握する。そして、 制御ュニット 9は、 指示された D C機器 5に直流供給線路 2 2を介して直流電圧及び動作 指令を出力し、 D C機器 5の動作を制御する。  A plurality of DC devices 5 are connected to the control unit 9. These DC devices 5 are connected to a control unit 9 via a DC supply line 22 that can carry both DC power and data by a pair of wires. The DC supply line 22 is a so-called power line carrier communication that superimposes a communication signal for transmitting data by a high-frequency carrier wave on the DC voltage that serves as the power source for the DC device 5. Transport both to DC device 5. The control unit 9 acquires the DC power source of the DC device 5 through the DC power line 1 8, and which DC device 5 is selected based on the operation command obtained from the DC distribution board 8 through the signal line 20. Figure out how to control. Then, the control unit 9 outputs a DC voltage and an operation command to the instructed DC device 5 via the DC supply line 22, and controls the operation of the DC device 5.
制御ュニット 9には、 宅内の D C機器 5の動作を切り換える際に操作するスィッチ 2 3 が直流供給線路 2 2を介して接続されている。 また、 制御ユニット 9には、 例えば赤外線 リモートコントローラからの発信電波を検出するセンサ 2 4が直流供給線路 2 2を介して 接続されている。 よって、 D C分電盤 8からの動作指示のみならず、 スィッチ 2 3の操作 やセンサ 2 4の検知によっても、 直流供給線路 2 2に通信信号を流して D C機器 5が制御 される。  The control unit 9 is connected to a switch 2 3 that is operated when switching the operation of the DC device 5 in the home via the DC supply line 2 2. Further, for example, a sensor 24 that detects a radio wave transmitted from an infrared remote controller is connected to the control unit 9 via a DC supply line 22. Accordingly, not only the operation instruction from the DC distribution board 8 but also the operation of the switch 23 and the detection of the sensor 24, the DC device 5 is controlled by sending a communication signal to the DC supply line 22.
リレーュニット 1 0には、 複数の D C機器 5がそれぞれ個別の直流系電力線 2 5を介し て接続されている。 リレ一ユニット 1 0は、 直流系電力線 1 9を介して D C機器 5の直流 電源を取得し、 D C分電盤 8から信号線 2 1を介して得る動作指令を基に、 どの D C機器 5を動作させるのかを把握する。 そして、 リレーユニット 1 0は、 指示された D C機器 5 に対し、 内蔵のリレーにて直流系電力線 2 5への電源供給をオンオフすることで、 D C機 器 5の動作を制御する。 また、 リレーユニット 1 0には、 D C機器 5を手動操作するため の複数のスィッチ 2 6が接続されており、 スィッチ 2 6の操作によって直流供給線路 2 5 への電源供給をリレーにてオンオフすることにより、 D C機器 5が制御される。 D C分電盤 8には、 例えば壁コンセントゃ床コンセントの態様で住宅に建て付けられた 直流コンセント 2 7が直流系電力線 2 8を介して接続されている。 この直流コンセント 2 7に D C機器のプラグ (図示略) を差し込めば、 同機器に直流電力を直接供給することが 可能である。 A plurality of DC devices 5 are connected to the relay unit 10 via individual DC power lines 25, respectively. The relay unit 10 obtains the DC power source of the DC device 5 through the DC power line 19 and determines which DC device 5 based on the operation command obtained from the DC distribution board 8 through the signal line 21. Know what to do. Then, the relay unit 10 controls the operation of the DC device 5 by turning on / off the power supply to the DC power line 25 with the built-in relay for the instructed DC device 5. In addition, the relay unit 10 is connected to a plurality of switches 26 for manually operating the DC device 5, and the power supply to the DC supply line 25 is turned on and off by the relay by the operation of the switch 26. As a result, the DC device 5 is controlled. For example, a wall outlet or a floor outlet is connected to the DC distribution board 8 through a DC power line 2 8. If a DC device plug (not shown) is inserted into this DC outlet 27, DC power can be supplied directly to the device.
また、 商用交流電源 2と A C分電盤 1 1 との間には、 商用交流電源 2の使用量を遠隔検 針可能な電力メ一タ 2 9が接続されている。 電力メータ 2 9には、 商用電源使用量の遠隔 検針の機能のみならず、 例えば電力線搬送通信や無線通信の機能が搭載されている。 電力 メータ 2 9は、 電力線搬送通信や無線通信等を介して検針結果を電力会社等に送信する。 電力供給システム 1には、 宅内の各種機器をネットワーク通信によって制御可能とする ネットワークシステム 3 0が設けられている。 ネットワークシステム 3 0には、 同システ ム 3 0のコントロールュニッ卜として宅内サ一バ 3 1が設けられている。 宅内サ一バ 3 1 は、 インタ一ネットなどのネットワーク Nを介して宅外の管理サーバ 3 2と接続されると ともに、 信号線 3 3を介して宅内機器 3 4に接続されている。 また、 宅内サーバ 3 1は、 D C分電盤 8から直流系電力線 3 5を介して取得する直流電力を電源として動作する。 宅内サーバ 3 1には、 ネットワーク通信による宅内の各種機器の動作制御を管理するコ ントロールボックス 3 6が信号線 3 7を介して接続されている。 コントロールボックス 3 6は、 信号線 1 7を介してコントロールュニット 7及び D C分電盤 8に接続されるととも に、 直流供給線路 3 8を介して D C機器 5を直接制御可能である。 コントロールボックス 3 6には、 例えば使用したガス量や水道量を遠隔検針可能なガス/水道メータ 3 9が接続 されるとともに、 ネットワークシステム 3 0の操作パネル 4 0に接続されている。 操作パ ネル 4 0には、 例えばドアホン子器やセンサやカメラからなる監視機器 4 1が接続されて いる。  In addition, between the commercial AC power source 2 and the AC distribution board 1 1, an electric power meter 29 capable of remotely measuring the usage amount of the commercial AC power source 2 is connected. The power meter 29 has not only the function of remote meter reading of commercial power consumption, but also functions of power line carrier communication and wireless communication, for example. The power meter 29 sends the meter reading result to an electric power company or the like via power line carrier communication or wireless communication. The power supply system 1 is provided with a network system 30 that enables various devices in the home to be controlled by network communication. The network system 30 is provided with a home server 31 as a control unit of the system 30. The home server 3 1 is connected to a management server 3 2 outside the home via a network N such as the Internet, and is connected to the home equipment 3 4 via a signal line 3 3. In addition, the in-home server 31 operates using DC power acquired from the DC distribution board 8 via the DC power line 35 as a power source. A control box 36 that manages operation control of various devices in the home through network communication is connected to the home server 31 via a signal line 37. The control box 36 is connected to the control unit 7 and the DC distribution board 8 via the signal line 17 and can directly control the DC device 5 via the DC supply line 38. For example, a gas / water meter 39 that can remotely measure the amount of gas and water used is connected to the control box 36, and also connected to the operation panel 40 of the network system 30. The operation panel 40 is connected to a monitoring device 41 including, for example, a door phone slave, a sensor, and a camera.
宅内サーバ 3 1は、 ネットワーク Nを介して宅内の各種機器の動作指令を入力すると、 コントロールボックス 3 6に指示を通知して、 各種機器が動作指令に準じた動作をとるよ うにコントロールボックス 3 6を動作させる。 また、 宅内サーバ 3 1は、 ガスノ水道メ一 タ 3 9から取得した各種情報を、 ネットワーク Nを通じて管理サーバ 3 2に提供可能であ るとともに、 監視機器 4 1で異常検出があったことを操作パネル 4 0から受け付けると、 その旨もネットワーク Nを通じて管理サーバ 3 2に提供する。  When the home server 3 1 inputs operation commands for various devices in the home via the network N, the control box 3 6 notifies the control box 3 6 of the instructions so that the various devices operate in accordance with the operation commands. To work. In addition, the home server 3 1 can provide various information acquired from the gas water meter 39 to the management server 32 via the network N, and operate the monitoring device 41 to detect that an abnormality has been detected. When accepted from panel 40, this is also provided to management server 32 via network N.
次に、 コントロールユニット 7について詳述する。  Next, the control unit 7 will be described in detail.
図 2に示すように、 コントロールユニット 7は、 電力系統を構成する商用交流電源 2並 びに分散電源を構成する太陽電池ュニット 3、 燃料電池ュニット 4及び蓄電池ュニット 1 6を電力供給システム 1が有する各種の負荷 Fに接続して配電する配電路 (電路) 4 3を 備えている。 なお、 負荷 Fには、 D C機器 5及び A C機器 6等の各種機器の他にコント口 ールュニットフ等のシステム構成要素も含まれ、 これらに電力を供給する交流系電力線 1 2、 直流系電力線 1 3〜 1 5 , 1 8 , 1 9 , 2 5 , 2 8 , 3 5 , 4 2、 及び直流供給線路 2 2 , 3 8により配電路 4 3は構成されている。 また、 コントロールユニット 7は、 太陽電池ユニット 3及び燃料電池ユニット 4で発電 された直流電力を効率よく負荷 F側に供給するとともに、 配電系統との連結を保護するた めのアクティブパワーコンディショナ (以下、 「アクティブパヮコン J と示す) 50と、 ァ クティブパヮコン 50の稼動状態を制御するための制御装置 51と、 を備えている。 As shown in FIG. 2, the control unit 7 includes various types of power supply systems 1 including a commercial AC power source 2 constituting a power system 2 and a solar cell unit 3, a fuel cell unit 4 and a storage battery unit 16 constituting a distributed power source. Distribution line (electric circuit) 4 3 that is connected to the load F and distributes power. The load F includes various components such as the DC device 5 and the AC device 6 as well as system components such as the controller unit, and the AC power line 1 2 and the DC power line 1 3 that supply power to them. The distribution path 4 3 is composed of ˜15, 18, 19, 25, 28, 35, 42, and the DC supply lines 22, 38. In addition, the control unit 7 efficiently supplies DC power generated by the solar cell unit 3 and the fuel cell unit 4 to the load F side, and at the same time, an active power conditioner (hereinafter referred to as an active power conditioner) for protecting the connection with the distribution system. , “Active supercomputer J” 50, and control device 51 for controlling the operating state of active supercomputer 50.
アクティブパヮコン 50は、 商用交流電源 2から供給される交流電力を直流電力に変換 する AC/DCコンバータ 52と、 太陽電池ュニット 3及び燃料電池ュニット 4に接続さ れた D CZD Cコンバータ 53 a , 53 bとを備えている。 すなわち、 ACZDCコンパ ータ 52を介して交流電力から変換された直流電力や、 DCZDCコンバータ 53 a, 5 3 bを介して太陽電池ュニッ卜 3及び燃料電池ュニット 4から供給される直流電力が変圧 されて負荷 F側に供給されるようになっている。 この点で、 AC/DCコンバータ 52と DC/DCコンバータ 53 a, 53 bは電力調整手段として機能する。  The active supercomputer 50 includes an AC / DC converter 52 that converts AC power supplied from the commercial AC power source 2 into DC power, and a D CZD C converter 53 a connected to the solar cell unit 3 and the fuel cell unit 4. 53 b. That is, DC power converted from AC power through the ACZDC converter 52 and DC power supplied from the solar cell unit 3 and the fuel cell unit 4 through the DCZDC converters 53a and 53b are transformed. The load is supplied to the F side. In this respect, the AC / DC converter 52 and the DC / DC converters 53a and 53b function as power adjusting means.
また、 アクティブパヮコン 50は、 蓄電池ユニット 1 6が有する蓄電池 63から放電さ れる直流電力を負荷 F側に送出させる放電回路 54と、 蓄電池ユニット 1 6の蓄電池 63 を充電する充電手段としての充電回路 55とを備えている。 すなわち、 蓄電池 63は、 停 電時等に非常用電源として機能するために、 常には充電回路 55を介して直流電力が充電 されると共に、 停電時等には蓄電している直流電力が放電回路 54を介して負荷 F側に放 電されるようになつている。  The active computer 50 includes a discharge circuit 54 for sending DC power discharged from the storage battery 63 of the storage battery unit 16 to the load F side, and a charging circuit as a charging means for charging the storage battery 63 of the storage battery unit 16. And 55. That is, since the storage battery 63 functions as an emergency power source during a power outage or the like, the DC power is always charged via the charging circuit 55, and the stored DC power is discharged during a power failure or the like. It is designed to be discharged to the load F side via 54.
さらに、 アクティブパヮコン 50は、 配電路 43に流れる電力を計測するとともに、 7 クティブパヮコン 50内の異常 (過電流、 過電圧及び温度異常など) を検出するセンサ機 能を有する電力計測回路 56を備えている。 電力計測回路 56は、 計測した電力値 (電流 値や電圧値) と検出した異常等の情報を制御装置 51に出力する。  Furthermore, the active computer 50 includes a power measurement circuit 56 having a sensor function for measuring the power flowing through the distribution path 43 and detecting an abnormality (overcurrent, overvoltage, temperature abnormality, etc.) in the 7 active computer 50. Yes. The power measurement circuit 56 outputs information such as the measured power value (current value or voltage value) and detected abnormality to the control device 51.
制御装置 51は、 情報の読み出し及び書き換えが可能な記憶手段としての記憶部 57と、 中央処理装置となる CPU 58とを備えており、 記憶部 57には電力計測回路 56から入 力された電力値や異常情報などのァクティブパヮコン 50の状態を示す情報が記憶される 他、 制御装置 51が各種の制御を行うためのプログラムが記憶されている。 また、 制御装 置 51は、 ACZDCコンバータ 52、 D CZ D Cコンバータ 53 a , 53 bを必要に応 じて制御する。  The control device 51 includes a storage unit 57 serving as a storage unit capable of reading and rewriting information, and a CPU 58 serving as a central processing unit. The storage unit 57 includes power input from the power measurement circuit 56. In addition to storing information indicating the state of the active computer 50 such as values and abnormality information, programs for the control device 51 to perform various controls are stored. Further, the control device 51 controls the ACZDC converter 52 and the D CZ DC converters 53 a and 53 b as necessary.
すなわち、 制御装置 51は、 電力計測回路 56により得られたアクティブパヮコン 50 の情報に基づいて、 アクティブパヮコン 50において漏電や過放電などの過大電力が発生 する前兆となりうる異常の有無を判別する。 そして、 判別した異常の有無によリアクティ ブパヮコン 50を制御する。 この点で、 制御装置 51は判別手段及び制御手段として機能 する。 さらに、 制御装置 51は、 記憶部 57に記憶された情報等を表示するための報知手 段としてのモニタ 59と、 ネットワーク Nを介して当該情報を外部に送信するための宅内 サーバ 31 と接続されている。 図 2においては簡単な図示のためにコントロールボックス 36を省略したが、 図 1を参照すると、 制御装置 51はコントロールボックス 36を介し て宅内サーバ 31と接続されていることは無論である。 図 2示すように、 太陽電池ユニット 3は、 自然エネルギーである太陽エネルギーからェ ネルギー変換により発電した直流電力を出力する発電手段としての太陽電池 6 0と、 太陽 電池 6 0により発電される電力の電流値、 電圧値、 太陽電池 6 0への日射量及び太陽電池 6 0の温度等の太陽電池 6 0の状態を検出するセンサ 6 1 aとで構成されている。 太陽電 池 6 0は D Cブレーカ 4 4 aを介して D C Z D Cコンバータ 5 3 aと接続されている。 ま た、 センサ 6 1 aは制御装置 5 1と接続されており、 検出した太陽電池 6 0の状態を制御 装置 5 1に出力する。 That is, the control device 51 determines the presence or absence of an abnormality that may be a precursor to the occurrence of excessive power such as leakage or overdischarge in the active computer 50 based on the information of the active computer 50 obtained by the power measuring circuit 56. . Then, the reactive computer 50 is controlled based on the determined abnormality. In this respect, the control device 51 functions as a determination unit and a control unit. Further, the control device 51 is connected to a monitor 59 as a notification means for displaying information stored in the storage unit 57 and a home server 31 for transmitting the information to the outside via the network N. ing. In FIG. 2, the control box 36 is omitted for the sake of simple illustration. However, referring to FIG. 1, it is obvious that the control device 51 is connected to the home server 31 via the control box 36. As shown in FIG. 2, the solar cell unit 3 includes a solar cell 60 as a power generation means for outputting DC power generated by energy conversion from solar energy, which is natural energy, and the electric power generated by the solar cell 60. The sensor 6 1a detects the state of the solar cell 60, such as the current value, the voltage value, the amount of solar radiation to the solar cell 60, and the temperature of the solar cell 60. The solar battery 60 is connected to the DCZDC converter 53a via a DC breaker 44a. Further, the sensor 61a is connected to the control device 51, and outputs the detected state of the solar cell 60 to the control device 51.
また、 燃料電池ユニット 4は、 発電手段としての燃料電池 6 2と、 センサ 6 1 bとで構 成されている。 燃料電池 6 2は、 燃料ガス (例えば水素が豊富な改質ガス) と酸化剤ガス (例えば酸素を含む空気) から、 水素と酸素の化学反応により発電した直流電力を出力す る。 センサ 6 1 bは、 燃料電池 6 2により発電された電力の電流値及び電圧値を測定する とともに、 燃料電池 6 2の状態、 例えば燃料電池 6 2の温度、 を検出する。 燃料電池 6 2 は D Cブレーカ 4 4 bを介して D C / D Cコンパ一タ 5 3 bと接続されている。 また、 セ ンサ 6 1 bは制御装置 5 1と接続されており、 測定及び検出した燃料電池 6 2の状態を制 御装置 5 1に出力する。  The fuel cell unit 4 includes a fuel cell 6 2 as a power generation means and a sensor 6 1 b. The fuel cell 62 outputs DC power generated by a chemical reaction between hydrogen and oxygen from a fuel gas (for example, reformed gas rich in hydrogen) and an oxidant gas (for example, air containing oxygen). The sensor 6 1 b measures the current value and voltage value of the electric power generated by the fuel cell 6 2 and detects the state of the fuel cell 6 2, for example, the temperature of the fuel cell 6 2. The fuel cell 62 is connected to the DC / DC comparator 53b through the DC breaker 44b. The sensor 6 1 b is connected to the control device 51, and outputs the measured and detected state of the fuel cell 62 to the control device 51.
また、 蓄電池ュニット 1 6は、 充放電可能な蓄電手段としての蓄電池 6 3と、 蓄電池 6 3の充電時及び蓄電時に流れる電力の電流値及び電圧値を測定するとともに、 蓄電池 6 3 の状態、 例えば蓄電池 6 3の温度、 を検出するセンサ 6 1 cとで構成されている。 蓄電池 6 3は D Cブレーカ 4 4 cを介して放電回路 5 4及び充電回路 5 5と接続されている。 ま た、 センサ 6 1 cは制御装置 5 1と接続されており、 測定及び検出した蓄電池 6 3の充放 電量及び蓄電池 6 3の状態を制御装置 5 1に出力する。 このように、 太陽電池 6 0、 燃料 電池 6 2、 蓄電池 6 3は直流電力出力手段として機能する。  The storage battery unit 16 measures the current value and the voltage value of the storage battery 63 as chargeable / dischargeable storage means, the current and voltage of the storage battery 63 when charging and storage, and the state of the storage battery 63, for example, And a sensor 6 1 c for detecting the temperature of the storage battery 6 3. The storage battery 63 is connected to the discharge circuit 54 and the charging circuit 55 via the DC breaker 44c. The sensor 6 1 c is connected to the control device 51, and outputs the measured and detected charge / discharge amount of the storage battery 63 and the state of the storage battery 63 to the control device 51. Thus, the solar cell 60, the fuel cell 62, and the storage battery 63 function as DC power output means.
そして、 制御装置 5 1は、 入力された太陽電池 6 0、 燃料電池 6 2及び蓄電池 6 3の状 態に基づいて、 アクティブパヮコン 5 0と同様に、 各電池ユニット 3 , 4 , 1 6における 過大電力発生の前兆となりうる異常の有無を判別するとともに、 各電池の状態と判別結果 を記憶部 5 7に記憶する。 そして、 各判別結果に基づいて各 D Cブレーカ 4 4 a〜4 4 c を制御する。  Then, the control device 51 uses each of the battery units 3, 4, and 16 in the same manner as the active computer 50 based on the input states of the solar cell 60, the fuel cell 62, and the storage battery 63. In addition to determining whether there is an abnormality that can be a sign of excessive power generation, the storage unit 57 stores the state of each battery and the determination result. Then, each DC breaker 4 4 a to 4 4 c is controlled based on each discrimination result.
このように、 本実施形態では、 アクティブパヮコン 5 0及び制御装置 5 1を備えたコン トロールユニット 7、 太陽電池ユニット 3、 燃料電池ユニット 4、 蓄電池ユニット 1 6及 び各 D Cブレーカ 4 4 a〜4 4 cにより配電システムが構成されている。  Thus, in this embodiment, the control unit 7, the solar cell unit 3, the fuel cell unit 4, the storage battery unit 16 and the DC breakers 4 4a to 4a provided with the active supercomputer 50 and the control device 51. 4 4 c constitutes the power distribution system.
次に、 制御装置 5 1による異常の有無の判別及び異常判別時における電路の遮断制御に ついて説明する。  Next, the determination of the presence / absence of abnormality by the control device 51 and the electric circuit interruption control at the time of abnormality determination will be described.
制御装置 5 1は、 太陽電池ュニット 3、 燃料電池ュニット 4、 蓄電池ュニット 1 6及び ァクティブパヮコン 5 0の状態に基づいて異常の有無を判別して、 異常の有無によリ各電 池ユニット 3 , 4 , 1 6に接続された各ブレーカ 4 4 a ~ 4 4 c及びアクティブパヮコン 5 0を制御する。 すなわち、 制御装置 5 1は、 各電池ユニット 3 , 4 , 1 6の各センサ 6 1 a〜61 c及びアクティブパヮコン 50の電力計測回路 56により測定及び検出された 電流値、 電圧値、 温度等の各装置の状態を示す情報に基づいて、 各電池ユニット 3, 4, 1 6及びアクティブパヮコン 50に過大電力発生の前兆となりうる異常があるか否かを判 別する。 The control device 51 determines whether there is an abnormality based on the status of the solar cell unit 3, the fuel cell unit 4, the storage battery unit 16 and the active computer 50. The circuit breakers 4 4 a to 4 4 c connected to 3, 4, and 16 and the active supercomputer 50 are controlled. That is, the control device 51 includes each sensor 6 of each battery unit 3, 4, 16. 1 a-61 c and active battery 50 Based on information indicating the status of each device such as current value, voltage value, temperature, etc. measured and detected by power measuring circuit 56 of each battery unit 3, 4, 1 6 In addition, it is determined whether or not there is an abnormality in the active computer 50 that may be a precursor to the occurrence of excessive power.
そして、 各電池ユニット 3, 4, 1 6及びアクティブパヮコン 50について異常がない と判別した場合には、 制御装置 51は、 各電池ユニット 3, 4, 1 6から対応する DC/ DCコンバータ 53 a, 53 b及び放電回路 54に直流電力を出力させて、 負荷 Fに電力 を供給する。一方、各電池ュニット 3, 4, 1 6について異常があると判別した場合には、 制御装置 51は、 先ず、 そうした異常があると判別した電池ユニットに接続している DC ノ DCコンバータ 53 a, 53 b又は放電回路 54を制御して、 該当 DC/DCコンパ一 タ 53 a、 53 b又は放電回路 54からの直流電力の出力を停止する。 そして、 異常があ ると判別されたュニッ卜に接続されている DCブレーカを作動させて対応する直流系電力 線を遮断する。 ここで、 異常があると判別した電池ユニットに接続している DC/DCコ ンバータ 53 a、 53 b又は放電回路 54を制御してその出力を停止させる過程は省略さ れることも可能である。  If it is determined that there is no abnormality in each of the battery units 3, 4, 1 6 and the active supercomputer 50, the control device 51 sends the corresponding DC / DC converter 53a from each of the battery units 3, 4, 1 6 , 53 b and discharge circuit 54 to output DC power and supply power to load F. On the other hand, if it is determined that there is an abnormality in each battery unit 3, 4, 1 6, the control device 51 first starts the DC-DC converter 53a, connected to the battery unit that has been determined to have such an abnormality. 53 b or the discharge circuit 54 is controlled, and the output of DC power from the corresponding DC / DC comparator 53 a, 53 b or the discharge circuit 54 is stopped. Then, the DC breaker connected to the unit determined to be abnormal is activated to cut off the corresponding DC power line. Here, the process of controlling the DC / DC converters 53a, 53b or the discharge circuit 54 connected to the battery unit that has been determined to be abnormal and stopping the output can be omitted.
また、 アクティブパヮコン 50に異常があると判別した場合には、 アクティブパヮコン 50の稼動を停止する。 そして、 各電池ユニット 3, 4. 1 6に接続されている DCブレ —力 44 a~44 cを作動させて直流系電力線 1 3, 42, 1 5を遮断する。  When it is determined that there is an abnormality in the active computer 50, the operation of the active computer 50 is stopped. Then, the DC bracing forces 44 a to 44 c connected to the battery units 3, 4, 16 are operated to cut off the DC power lines 1, 42, 15.
また、 制御装置 51は、 入力した各電池ユニット 3, 4, 1 6及びアクティブパヮコン 50の状態を示す情報と判別した異常の有無とを記憶部 57に記憶させて、 異常ログ等を 管理する。 そして、 記憶した各電池ユニット 3, 4, 1 6及びアクティブパヮコン 50の 状態を、 異常の有無とともにモニタ 59及び宅内サーバ 31に出力する。  Further, the control device 51 stores the input information indicating the state of each of the battery units 3, 4, 16 and the active computer 50 and the presence / absence of the determined abnormality in the storage unit 57, and manages the abnormality log and the like. . Then, the stored states of the battery units 3, 4, 16 and the active computer 50 are output to the monitor 59 and the home server 31 together with the presence / absence of an abnormality.
次に、 配電システムに異常が発生した場合の対処の一例について説明する。 例えば、 太 陽電池ユニット 3において発電が行われている場合、 まず、 太陽電池 60で発電された直 流電力の電流値、 電圧値、 太陽電池 60への日射量及び太陽電池 60の温度の各値がセン サ 61 aにより検出され、 その検出された各値から発電すべき理論電力量が制御装置 51 にて算出される。 そして、 算出された理論電圧量と実際の発電量とが比較されて、 太陽電 池 60における異常の有無が判別される。 理論電圧量と実際の発電量が著しく異なる場合 には、 太陽電池 60が異常であると判別される。 そして、 太陽電池 60と対応する DCブ レ一力 44 aが作動して DCZDCコンバータ 53 aにつながる直流系電力線 1 3が遮断 される。 そのため、 直流系電力線 1 3を含む配電路 43への太陽電池 60からの直流電力 の供給が停止して負荷 F及び太陽電池 60本体が保護される。  Next, an example of what to do when an abnormality occurs in the power distribution system is described. For example, when power generation is performed in the solar cell unit 3, first, each of the current value, the voltage value, the amount of solar radiation to the solar cell 60, and the temperature of the solar cell 60 is generated. The value is detected by the sensor 61a, and the theoretical power amount to be generated is calculated by the control device 51 from each detected value. Then, the calculated theoretical voltage amount is compared with the actual power generation amount, and the presence or absence of abnormality in the solar battery 60 is determined. When the theoretical voltage amount and the actual power generation amount are significantly different, it is determined that the solar cell 60 is abnormal. Then, the DC power 44a corresponding to the solar cell 60 is activated, and the DC power line 13 connected to the DCZDC converter 53a is cut off. Therefore, the supply of DC power from the solar cell 60 to the distribution line 43 including the DC system power line 13 is stopped, and the load F and the solar cell 60 main body are protected.
このとき、 制御装置 51から太陽電池 60における異常の有無.とともに、 太陽電池 60 の状態を示す情報がモニタ 59に送信 (出力) されて、 これらの情報がモニタ 59の画面 上に表示される。 そのため、 使用者はモニタ 59を視認することにより異常の有無及び異 常のあった装置及び原因を視認することができる。 また、 燃料電池ユニット 4において発電が行われている場合は、 燃料電池 62で発電さ れた直流電力の電流値、 電圧値及び燃料電池 62の温度の各値がセンサ 6 1 bにより検出 され、 その検出された各値が予め定められた異常閾値以上であるかによリ異常の有無が判 別される。 そして、 検出された各値が予め定められた異常閾値以上である場合には、 燃料 電池 62は異常があると判別される。そして、太陽電池ュニット 3の場合と同様に、 以後、 対応する DCブレーカ 44 bが作動して DCZDCコンバータ 53 bにつながる直流系電 力線 42が遮断される。 そのため、 直流系電力線 42を含む配電路 43への燃料電池 62 からの直流電力の供給が停止して負荷 F及び燃料電池 62本体が保護される。 At this time, the control device 51 transmits (outputs) information indicating the state of the solar cell 60 together with the presence or absence of abnormality in the solar cell 60 to the monitor 59, and the information is displayed on the screen of the monitor 59. Therefore, the user can visually recognize the presence / absence of an abnormality and the device and cause of the abnormality by viewing the monitor 59. In addition, when power generation is performed in the fuel cell unit 4, the current value, the voltage value, and the temperature value of the fuel cell 62 generated by the fuel cell 62 are detected by the sensor 61b. Whether or not there is an abnormality is determined based on whether or not each detected value is equal to or greater than a predetermined abnormality threshold. When each detected value is equal to or greater than a predetermined abnormality threshold, it is determined that the fuel cell 62 is abnormal. Then, similarly to the case of the solar cell unit 3, the corresponding DC breaker 44b is operated to cut off the DC power line 42 connected to the DCZDC converter 53b. Therefore, the supply of DC power from the fuel cell 62 to the distribution line 43 including the DC power line 42 is stopped, and the load F and the fuel cell 62 main body are protected.
また、 蓄電池ユニット 1 6から直流電力が放電回路 54を介して負荷 F側に送出されて いる場合は、 蓄電池ユニット 1 6から送出される直流電力の電流値、 電圧値及び蓄電池 6 3の温度の各値がセンサ 6 1 cにより検出され、 その検出された各値が予め定められた異 常閾値以上であるかにより異常の有無が判別される。 そして、 燃料電池ユニット 4の場合 と同様に、 検出された各値が予め定められた異常閾値以上である場合に、 蓄電池 63は異 常があると判別される。 そして、 太陽電池ユニット 3及び燃料電池ユニット 4の場合と同 様に、 以後、 対応する DCブレーカ 44 cが作動して放電回路 54及び充電回路 55につ ながる直流系電力線 1 5が遮断される。 そのため、 直流系電力線 1 5を含む配電路 43へ の蓄電池 63からの直流電力の供給が停止して負荷 F及び蓄電池 63本体が保護される。 また、アクティブパヮコン 50においては、電力計測回路 56により検出された電流値、 電圧値及びアクティブパヮコン 50の温度等が予め定められた異常閾値以上であるか否か により異常の有無が判別される。 そして、 検出値が予め定められた異常閾値以上である場 合に、 アクティブパヮコン 50は異常があると判別される。 そして、 この場合は各ュニッ ト 3, 4, 1 6と対応する全ての DCブレーカ 44 a〜44 cが作動して各直流系電力線 1 3, 42, 1 5が遮断される。 そのため、 各直流系電力線 1 3, 42, 1 5を含む配電 路 43への直流電力の供給が停止して負荷 F及びアクティブパヮコン 50並びに各電池 6 0, 62, 63本体が保護される。  In addition, when DC power is being sent from the storage battery unit 16 to the load F side via the discharge circuit 54, the current value, voltage value, and temperature of the storage battery 63 of the DC power sent from the storage battery unit 16 are Each value is detected by the sensor 61c, and whether or not there is an abnormality is determined based on whether or not each detected value is equal to or greater than a predetermined abnormality threshold value. As in the case of the fuel cell unit 4, when each detected value is equal to or greater than a predetermined abnormality threshold, it is determined that the storage battery 63 is abnormal. Then, as in the case of the solar cell unit 3 and the fuel cell unit 4, the corresponding DC breaker 44c is operated, and the DC power line 15 connected to the discharge circuit 54 and the charging circuit 55 is cut off. The Therefore, the supply of DC power from the storage battery 63 to the distribution line 43 including the DC power line 15 is stopped, and the load F and the storage battery 63 main body are protected. In the active computer 50, whether or not there is an abnormality is determined based on whether or not the current value, voltage value, temperature of the active computer 50, etc. detected by the power measuring circuit 56 are equal to or higher than a predetermined abnormality threshold. The Then, when the detected value is equal to or greater than a predetermined abnormality threshold, it is determined that the active computer 50 is abnormal. In this case, all DC breakers 44a to 44c corresponding to the units 3, 4, 16 are operated, and the DC power lines 1, 3, 42, 15 are shut off. As a result, the supply of DC power to the distribution circuit 43 including the DC power lines 13, 4, 42, and 15 is stopped, and the load F, the active capacitor 50, and the batteries 60, 62, and 63 are protected.
以上説明した本実施形態によれば、 以下に示す効果を得ることができる。  According to the embodiment described above, the following effects can be obtained.
( 1 ) 本実施形態の電力供給システム (配電システム) 1では、 制御装置 5 1が、 太陽 電池ユニット 3、 燃料電池ユニット 4、 蓄電池ユニット 1 6及びアクティブパヮコン 50 における異常の有無を判別する。そして、その判別結果に基づいて各電池ュニット 3, 4, (1) In the power supply system (distribution system) 1 of the present embodiment, the control device 51 determines whether there is an abnormality in the solar cell unit 3, the fuel cell unit 4, the storage battery unit 16 and the active battery 50. Based on the result of the discrimination, each battery unit 3, 4,
1 6に対応する DCブレーカ 44 a~44 cを制御して、 直流系電力線 1 3, 42, 1 5 を遮断する。 このため、 各電池ユニット 3, 4, 1 6及びアクティブパヮコン 50のうち 少なくとも一つにおける異常に起因する過大電力から負荷 Fを保護することができる。 DC breakers 44 a to 44 c corresponding to 1 6 are controlled to cut off DC power lines 1, 42, 1 5. For this reason, it is possible to protect the load F from excessive power caused by an abnormality in at least one of the battery units 3, 4, 16 and the active supercomputer 50.
(2) 本実施形態の電力供給システム 1では、 太陽電池ユニット 3、 燃料電池ユニット 4及び蓄電池ュニット 1 6から過大電力が出力される前に、 過大電力発生の前兆となり得 る各電池ユニット 3, 4, 1 6及びアクティブパヮコン 50の異常の有無を制御装置 51 が判別する。 このため、 直流電力出力手段となる各電池ユニット 3, 4, 1 6から配電路 4 3に過大電力が出力されるのを防ぐことができるので、 過大電力から負荷 Fを保護する とともに、 各電池ユニット 3 , 4 , 1 6及びアクティブパヮコン 5 0を保護することがで きる。 (2) In the power supply system 1 of the present embodiment, before the excessive power is output from the solar cell unit 3, the fuel cell unit 4, and the storage battery unit 16, each battery unit 3, which can be a sign of excessive power generation 3, The control device 51 determines whether there are any abnormalities in 4, 16 and the active computer 50. For this reason, each battery unit 3, 4, 1 6 serving as DC power output means is connected to the power distribution path. Since it is possible to prevent excessive power from being output to 4 3, it is possible to protect the load F from excessive power and protect each of the battery units 3, 4, 16 and the active computer 50.
( 3 ) 本実施形態の電力供給システム 1では、 太陽電池ユニット 3、 燃料電池ユニット 4、 蓄電池ュニット 1 6の各々に D Cブレーカ 4 4 a ~ 4 4 cが接続されている。 このた め、 各電池ユニット 3 , 4 , 1 6に異常があった場合には、 電池ユニット 3 , 4 , 1 6毎 に配電路 4 3を遮断することができるので、 各電池ユニット 3 , 4 , 1 6のうち少なくと も一つが異常のために使用できなくなっても、 他の電池ュニットは使用することができる。  (3) In the power supply system 1 of the present embodiment, DC breakers 4 4 a to 4 4 c are connected to each of the solar cell unit 3, the fuel cell unit 4, and the storage battery unit 16. For this reason, when there is an abnormality in each battery unit 3, 4, 16, the distribution path 4 3 can be shut off for each battery unit 3, 4, 16. , 16 If at least one of the six cannot be used due to an abnormality, other battery units can be used.
( 4 ) 本実施形態の電力供給システム 1では、 制御装置 5 1は、 判別した太陽電池ュニ ット 3、 燃料電池ユニット 4、 蓄電池ユニット 1 6及びアクティブパヮコン 5 0の異常を 記憶部 5 7に記憶することができる。 そのため、 各電池ユニット 3 , 4 , 1 6及びァクテ ィブパヮコン 5 0における異常内容の履歴を記憶部 5 7からの情報読み出しにより容易に 確認することができる。  (4) In the power supply system 1 according to the present embodiment, the control device 51 stores the abnormalities of the identified solar cell unit 3, fuel cell unit 4, storage battery unit 16 and active battery 50 in the storage unit 5 7 can be memorized. Therefore, the history of abnormal contents in each of the battery units 3, 4, 16 and the active computer 50 can be easily confirmed by reading information from the storage unit 57.
( 5 ) 本実施形態の電力供給システム 1では、 太陽電池ユニット 3、 燃料電池ユニット 4、 蓄電池ユニット 1 6及びアクティブパヮコン 5 0の状態と、 各装置の状態に基づいて 判別された異常の有無とその異常内容がモニタ 5 9に表示される。 このため、 電力供給シ ステム 1の異常をモニタ 5 9により容易に認識することができる。  (5) In the power supply system 1 of the present embodiment, the presence / absence of an abnormality determined based on the state of the solar cell unit 3, the fuel cell unit 4, the storage battery unit 16 and the active computer 50, and the state of each device And the details of the error are displayed on the monitor 59. For this reason, the abnormality of the power supply system 1 can be easily recognized by the monitor 59.
なお、 上記実施形態は以下のような別の実施形態に変更してもよい。  The above embodiment may be changed to another embodiment as described below.
•上記実施形態において、 電力供給システム (配電システム) 1の異常の有無をブザー などによる警報音を発生させることにより外部に報知してもよい。  • In the above embodiment, the presence or absence of abnormality in the power supply system (distribution system) 1 may be notified to the outside by generating an alarm sound by a buzzer or the like.
•上記実施形態において、 蓄電池ュニット 1 6の異常の有無を蓄電池 6 3の電池寿命に より判別してもよい。  In the above embodiment, the presence or absence of abnormality of the storage battery unit 16 may be determined based on the battery life of the storage battery 63.
■上記実施形態において、燃料電池ュニット 4及び蓄電池ュニット 1 6の状態(電流値、 電圧値等) をアクティブパヮコン 5 0の電力計測回路 5 6にて検出しても良い。  In the above embodiment, the state (current value, voltage value, etc.) of the fuel cell unit 4 and the storage battery unit 16 may be detected by the power measuring circuit 56 of the active computer 50.
■上記実施形態において、 電力供給システム (配電システム) 1は直流電力を出力する 直集電力出力手段として太陽電池 6 0、 燃料電池 6 2及び蓄電池 6 3のうち少なくとも一 つを備えていればよい。  ■ In the above embodiment, the power supply system (distribution system) 1 outputs at least one of the solar cell 60, the fuel cell 62, and the storage battery 63 as direct power collection means for outputting direct current power. .
■上記実施形態において、 電力供給システム (配電システム) 1の異常を外部に報知さ せる報知手段は必ずしも設けなくてよい。  In the above embodiment, notifying means for notifying the outside of the abnormality of the power supply system (distribution system) 1 is not necessarily provided.
•上記実施形態において、 電力供給システム (配電システム) 1の異常内容を記憶部 5 7に記憶させなくてもよい。  • In the above embodiment, the abnormality content of the power supply system (distribution system) 1 may not be stored in the storage unit 57.
■上記実施形態において、 電力供給システム (配電システム) 1の電池ユニット毎に D Cブレーカ 4 4 a〜4 4 cを設けなくても良い。  In the above embodiment, the DC breakers 4 4 a to 4 4 c need not be provided for each battery unit of the power supply system (distribution system) 1.
•上記実施形態において、制御装置 5 1は、太陽電池ュニット 3、燃料電池ュニット 4、 蓄電池ュニット 1 6において漏電や過大電力の出力等の発生の前兆となりうる異常がある か否かの判別を、 電流、 電圧、 温度の各値のうち少なくとも一つの値の検出結果に基づき 判別してもよい。 In the above embodiment, the control device 51 determines whether or not there is an abnormality that can be a precursor to the occurrence of leakage or excessive power output in the solar cell unit 3, the fuel cell unit 4, and the storage battery unit 16. Based on the detection result of at least one of current, voltage, and temperature It may be determined.
以上、 本発明の好ましい実施形態が説明されたが、 本発明はこれらの特定実施形態に限 定されず、 後続する請求範囲の範疇を超えず、 多様な変更及び修正が行われることが可能 であり、 それも本発明の範疇に属すると言える。  The preferred embodiments of the present invention have been described above, but the present invention is not limited to these specific embodiments, and various changes and modifications can be made without departing from the scope of the subsequent claims. Yes, it can be said to belong to the category of the present invention.

Claims

請求の範囲 The scope of the claims
【請求項 1】  [Claim 1]
自然エネルギーからエネルギー変換により発電した直流電力を出力する直流電力出力手 段と、  DC power output means for outputting DC power generated by energy conversion from natural energy,
前記直流電力出力手段から出力された直流電力の電圧調整及び交流電力への電力変換の うち少なくとも一方を実行可能な電力調整手段と、 を備え、  Power adjustment means capable of executing at least one of voltage adjustment of DC power output from the DC power output means and power conversion to AC power, and
前記直流電力出力手段及び前記電力調整手段のうち少なくとも一方における異常が検出 される場合に、 前記直流電力出力手段と前記電力調整手段との間の電路を遮断する 配電システム。  A power distribution system that cuts off an electric circuit between the DC power output means and the power adjustment means when an abnormality is detected in at least one of the DC power output means and the power adjustment means.
【請求項 2】  [Claim 2]
前記直流電力出力手段と前記電力調整手段との間の電路を遮断可能な遮断手段と、 前記直流電力出力手段及び前記電力調整手段のうち少なくとも一方における異常の有無 を判別する異常判別手段と、  A disconnecting means capable of interrupting an electric path between the DC power output means and the power adjusting means; an abnormality determining means for determining presence / absence of an abnormality in at least one of the DC power output means and the power adjusting means;
前記異常判別手段が異常有りと判別した場合に前記遮断手段を遮断動作させる制御手段 とを更に備えた  Control means for causing the shut-off means to shut off when the abnormality judging means determines that there is an abnormality.
請求項 1に記載の配電システム。  The power distribution system according to claim 1.
【請求項 3】  [Claim 3]
前記異常判別手段は、 前記直流電力出力手段から過大電力が出力される前兆となり得る 異常の有無を判別する  The abnormality determination unit determines whether there is an abnormality that can be a precursor to output of excessive power from the DC power output unit.
請求項 2に記載の配電システム。  The power distribution system according to claim 2.
【請求項 4】  [Claim 4]
前記電力調整手段には、 複数の前記直流電力出力手段から各々の電路を介して直流電力 が入力可能であると共に、 前記各々の電路毎に対応して複数の遮断手段が設けられておリ、 前記制御手段は、 前記異常判別手段によって前記各直流電力出力手段のうち何れかの直流 電力出力手段が異常有りと判別された場合には、 異常有りと判別された直流電力出力手段 と個別に対応する遮断手段を遮断動作させる  The power adjusting means is capable of inputting DC power from each of the plurality of DC power output means via each electric circuit, and is provided with a plurality of blocking means corresponding to each electric circuit, The control means individually corresponds to the DC power output means determined to be abnormal when any one of the DC power output means is determined to be abnormal by the abnormality determination means. Shut off the shut off means
請求項 2又は請求項 3に記載の配電システム。  The power distribution system according to claim 2 or claim 3.
【請求項 5】  [Claim 5]
前記直流電力出力手段は、 自然エネルギーからのエネルギー変換によリ直流電力を発電 する発電手段と、 該発電手段により発電された直流電力を蓄電可能な蓄電手段とを含んで いる  The DC power output means includes a power generation means for generating DC power by energy conversion from natural energy, and a power storage means capable of storing the DC power generated by the power generation means.
請求項 2〜請求項 4のうち何れか一項に記載の配電システム。  The power distribution system according to any one of claims 2 to 4.
【請求項 6】  [Claim 6]
前記制御手段は、 前記異常判別手段が異常有りと判別した場合には、 その判別内容を所 定の記憶手段に記憶させる 請求項 2〜請求項 5のうち何れか一項に記載の配電システム。 When the abnormality determination unit determines that there is an abnormality, the control unit stores the determination content in a predetermined storage unit. The power distribution system according to any one of claims 2 to 5.
【請求項 7】  [Claim 7]
前記制御手段は、 前記異常判別手段が異常有りと判断した場合には、 その判別内容を所 定の報知手段により外部に報知させる  When the abnormality determining means determines that there is an abnormality, the control means causes the predetermined notification means to notify the outside of the determination contents.
請求項 2〜請求項 6のうち何れか一項に記載の配電システム。  The power distribution system according to any one of claims 2 to 6.
PCT/IB2010/002691 2009-11-06 2010-10-21 Power distribution system WO2011055185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009255410A JP5838318B2 (en) 2009-11-06 2009-11-06 Power distribution system
JP2009-255410 2009-11-06

Publications (1)

Publication Number Publication Date
WO2011055185A1 true WO2011055185A1 (en) 2011-05-12

Family

ID=43969612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002691 WO2011055185A1 (en) 2009-11-06 2010-10-21 Power distribution system

Country Status (2)

Country Link
JP (1) JP5838318B2 (en)
WO (1) WO2011055185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680439A (en) * 2016-03-23 2016-06-15 安徽京师方圆信息技术有限公司 Wind-solar complementary energy management apparatus used for outdoors

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049501A2 (en) * 2011-09-30 2013-04-04 Solarbos, Inc. System for combining direct current power from multiple inputs
JP2013099188A (en) * 2011-11-04 2013-05-20 Sharp Corp Power converter, power storage system, and control method for the same
JP6141631B2 (en) * 2012-12-14 2017-06-07 シャープ株式会社 Power supply system
CN203491969U (en) * 2013-10-12 2014-03-19 何广飞 Safe direct current combiner box
JP6411830B2 (en) * 2014-09-18 2018-10-24 東京瓦斯株式会社 Electric power system, small output power generation unit, and power storage unit
JP2016126645A (en) * 2015-01-07 2016-07-11 株式会社デンソーウェーブ Power supply device and program for storing logs
US10411645B1 (en) 2016-05-09 2019-09-10 Solarbos, Inc Photovoltaic module sourced control power
US10950402B2 (en) 2017-10-17 2021-03-16 Solarbos, Inc. Electrical contactor
KR102497740B1 (en) * 2022-08-12 2023-02-10 박기주 Apparatus and method for limiting output of solar power generation system in remote place

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731057A (en) * 1993-07-07 1995-01-31 Hitachi Ltd Emergency power supply interrupting mechanism
JPH09182279A (en) * 1995-10-26 1997-07-11 Nitto Kogyo Kk Short circuit detector for photovoltaic power generation system
JP2001298854A (en) * 2000-04-17 2001-10-26 Tempearl Ind Co Ltd Earthquake protecting device for photovoltaic power generation panel
WO2006082727A1 (en) * 2005-02-02 2006-08-10 Sharp Kabushiki Kaisha Photovoltaic power generating device and connection controller
WO2009081912A1 (en) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. Dc power distribution system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731057A (en) * 1993-07-07 1995-01-31 Hitachi Ltd Emergency power supply interrupting mechanism
JPH09182279A (en) * 1995-10-26 1997-07-11 Nitto Kogyo Kk Short circuit detector for photovoltaic power generation system
JP2001298854A (en) * 2000-04-17 2001-10-26 Tempearl Ind Co Ltd Earthquake protecting device for photovoltaic power generation panel
WO2006082727A1 (en) * 2005-02-02 2006-08-10 Sharp Kabushiki Kaisha Photovoltaic power generating device and connection controller
WO2009081912A1 (en) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. Dc power distribution system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680439A (en) * 2016-03-23 2016-06-15 安徽京师方圆信息技术有限公司 Wind-solar complementary energy management apparatus used for outdoors

Also Published As

Publication number Publication date
JP2011101537A (en) 2011-05-19
JP5838318B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5838318B2 (en) Power distribution system
JP5792824B2 (en) Power supply system, distributed power supply system, management device, and power supply control method
CN103703646B (en) Method for diagnosing faults, system interconnect and control device
JP5166379B2 (en) Power coordination system
US20120235492A1 (en) Power supply system
JP5799225B2 (en) Power supply system
JP5796212B2 (en) Power supply system
US20160233560A1 (en) Power Storage System and Maintenance Method of the Power Storage System
JP2012147621A (en) Blackout relief system
WO2013073269A1 (en) Storage battery unit
JP2014132823A (en) Power distribution system
WO2016117315A1 (en) Electric power supply device
JP5858236B2 (en) Battery system
JP5661532B2 (en) Power supply system
JP2011083091A (en) Battery control unit
JP2011083059A (en) Storage battery operation controller of power supply system
JP2015220821A (en) Power supply system and power supply control device
US9979228B2 (en) Energy management apparatus and method of controlling the same
KR101384830B1 (en) Power supply system for portable energy storage battery pack capable of lan communication
JP6260194B2 (en) Power storage device, power storage system, and method for controlling power storage device
JP7143081B2 (en) Uninterruptible power supply system, uninterruptible power supply, uninterruptible power supply control program and uninterruptible power supply control method
US20120224286A1 (en) Power distribution system and protection method for main line thereof
KR101288723B1 (en) Energy storage and supply system
JP2015080392A (en) Power supply device
JP2019176685A (en) Providing device, providing method and providing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10827970

Country of ref document: EP

Kind code of ref document: A1